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ABSTRACT

MULTI-WAVELENGTH INVESTIGATION OF ENERGY RELEASE
AND CHROMOSPHERIC EVAPORATION IN SOLAR FLARES

by
Viacheslav M. Sadykov

For a comprehensive understanding of the energy release and chromospheric evapo-

ration processes in solar flares it is necessary to perform a combined multi-wavelength

analysis using observations from space-based and ground-based observatories, and

compare the results with predictions of the radiative hydrodynamic (RHD) flare

models. Initially, the case study of spatially-resolved chromospheric evaporation

properties for an M1.0-class solar flare (SOL2014-06-12T21:12) using data form IRIS

(Interface Region Imaging Spectrograph), HMI/SDO (Helioseismic and Magnetic

Imager onboard Solar Dynamics Observatory), and VIS/GST (Visible Imaging

Spectrometer at Goode Solar Telescope), demonstrate a complicated nature of

evaporation and its connection to the magnetic field topology. Following this study,

the Interactive Multi-Instrument Database of Solar Flares (IMIDSF) is designed for

efficient search, integration, and representation of solar flares for statistical studies.

Comparison of the energy release and chromospheric evaporation properties for

seven solar flares simultaneously observed by IRIS and RHESSI (Reuven Ramaty

High Energy Solar Spectroscopic Imager) with predictions of the RHD electron

beam-heating flare models reveals weak correlations between deposited energy fluxes

and Doppler shifts of IRIS lines for observations and strong fore models, together

with other quantitative discrepancies. Statistical analysis of properties of Soft

X-Ray (SXR) emission, plasma temperature (T), and emission measure (EM),

derived from GOES (Geostationary Operational Environmental Satellite) obser-

vations demonstrate that flares form two groups, “T-controlled” and “EM-controlled”,

distinguished by different contribution of T and EM to the SXR peak formation



and presumably evolving in loops of different lengths. Also, the modeling of

the SDO/HMI line-of-sight observables for RHD flare models highlights that for

relatively high deposited energy fluxes (≥ 5.0×1010 erg cm−2 s−1) the sharp magnetic

transients and Doppler velocities observed during the solar flares by HMI/SDO should

be interpreted with caution. Finally, problems of the solar flare prediction and

the role of the magnetic field Polarity Inversion Lines (PIL) in the initiation and

development of flares are considered. In particular, the possibility to enhance the

daily operational forecasts of M-class flares by considering jointly PIL and other

magnetic field and SXR characteristics is demonstrated, with corresponding Brier

Skill Scores (BSS = 0.29 ± 0.04) higher than for the SWPC NOAA operational

probabilities (BSS = 0.09± 0.04).
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CHAPTER 1

INTRODUCTION

1.1 Multi-wavelength Nature of Solar Flares

Solar flares are a very complex phenomenon and the most energetic process occurring

in the Heliosphere. Usually lasting from several minutes to several hours, a

solar flare releases about 1030-1032 erg of energy [56]. The flare energy stored in

magnetic fields and electric currents rapidly transforms into the kinetic energy of the

Solar Energetic Particles (SEPs), fast-moving Coronal Mass Ejections (CMEs), and

impulsive radiation from radio waves to X-rays and gamma-rays. The high-energy

particles and photons can damage equipment onboard satellites, and are dangerous for

astronauts working in open space. CMEs with embedded magnetic field can disturb

the Earth’s magnetosphere and cause geomagnetic storms leading to communication

problems, and ground return currents destroying electric transformers and initiating

corrosion in pipelines. One can claim that the solar flares are among the primary

drivers of the Space Weather. Correspondingly, the understanding of the underlying

physical processes and development of the reliable solar flare forecasts are among the

primary problems of Heliophysics.

Solar flares are observable in a broad range of the electromagnetic spectrum,

from radiowaves to γ-rays. For better understanding of solar flares and their

prediction, it is crucially important to analyze multi-wavelength observations, as

different physical processes are reflected at different energies. For example, in the

Standard flare model [38, 218, 83, 114, 108, 169, 212], the hard X-ray radiation

is assumed to be bremsstrahlung emission of accelerated particles, and carries

information about acceleration processes associated with magnetic energy release.

At the same time, observations of visible and ultraviolet spectral lines allow us
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to understand photospheric and chromospheric responses to the energy release.

The opportunity to diagnose different physical processes from radiation at different

wavelength ranges is one of the reasons why the solar flares are observed by numerous

satellites and ground-based observatories generating tremendous amounts of scientific

data and metadata.

Many problems of flare physics require performing analyses using data from

a particular set of instruments, or/and for a sample of flares with particular

characteristics. However, usually, flare lists are created for specific routinely-observing

instruments, and poorly communicate with each other. Addressing problems of

communication between various flare catalogs, integration of the flare records, and

organization of a convenient search and quicklook tools can save a significant time

for preparation of lists of events for the statistical studies. This is one of the points

which we plan to address in this Dissertation.

1.2 Chromospheric Evaporation in Solar Flares

The most successful model of solar flares is called the Standard Flare Model, or the

CSHKP model [38, 218, 83, 114, 108, 169, 212]. In this model, the primary energy

release occurs high in the corona, where a quasi-vertical current sheet is formed.

Electrons and protons accelerated in this region precipitate along magnetic field

lines into the chromosphere, lose their energy and create an overpressure region.

The hot chromospheric plasma heated in this region expands up to the corona and

fills coronal magnetic loops. This process is called “chromospheric evaporation”.

From this model, it follows that properties of the chromospheric evaporation, such

as velocity, temperature, and amounts of evaporated plasma, depend on the heating

rates, and thus on the mechanism of the energy release and transport, as well as on

the plasma radiative losses and dynamics. This is why the process of chromospheric
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evaporation is a key to understanding of how the flare energy is released, deposited

and transported in the solar atmosphere.

Eruptions of the chromospheric plasma caused by flares can be seen from

imaging observations. However, to determine physical characteristics of chromo-

spheric evaporations, analysis and modeling of multiline spectroscopic observations

are necessary [68, 147]. Different spectral lines are formed at different heights

of the solar atmosphere: some lines reflect the thermodynamic properties and

dynamics of the hot coronal plasma, while some other correspond to the relatively

cold chromospheric layers. The currently operating NASA’s Interface Region

Imaging Spectrograph [50, IRIS] observes the chromosphere and chromosphere-corona

transition region with high spatial (0.33′′) and spectral resolutions(26-53mÅ) in a

variety of observing modes. The IRIS spectral coverage includes several strong lines

formed in the upper chromosphere: Mg II h&k 2796 Å and 2803 Å (T = 8−10×103K)

and in the lower transition region: C II 1334/1335 Å (T = 1 − 2 × 104K) and

Si IV 1403 Å (T = 5−10×104K). In the hot plasma of solar flares IRIS can observe the

FeXXI 1354.1 Å line which corresponds to a magnetic dipole transition and is formed

at 1.1 × 107K. This line appears during flares in the IRIS O I spectral window. The

observed spectral lines are summarized in Table 1.1.

Analysis of these lines allows us to understand simultaneous plasma motions in

the upper chromosphere, lower transition region and hot corona, and trace all stages

of the chromospheric evaporation process. Also, simultaneous data from hard X-ray

observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager [131,

RHESSI] reveals the properties of the energy release in the form of the deposit of

high-energy accelerated electrons, and allows us to test the validity of the standard

CSHKP model and chromospheric evaporation modeling approaches. In this aspect,

a systematic statistical study of events jointly observed by IRIS and RHESSI becomes

of particular interest.
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Table 1.1 Spectral Lines Observed by IRIS

Spectral line Atomic transition Average formation temperature

Mg II k 2796 Å 2p63p, J = 3/2 → 2p63s, J = 1/2 T = 8− 10× 103K (UChr)

Mg II h 2803 Å 2p63p, J = 1/2 → 2p63s, J = 1/2 T = 8− 10× 103K (UChr)

C II 1334 Å 2s2p2, J = 3/2 → 2s22p, J = 1/2 T = 1− 2× 104K (TR)

C II 1335 Å 2s2p2, J = 5/2 → 2s22p, J = 3/2 T = 1− 2× 104K (TR)

Si IV 1394 Å 2p63p, J = 3/2 → 2p63s, J = 1/2 T = 5− 10× 104K (TR)

Si IV 1403 Å 2p63p, J = 1/2 → 2p63s, J = 1/2 T = 5− 10× 104K (TR)

FeXXI 1354.1 Å 2s22p2, J = 1 → 2s22p2, J = 0 T = 1.1× 107K (Cor)

Note: Notations used in the table: UChr — upper chromosphere, TR — transition
region, Cor — coronal plasma.
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The spectral lines and their behavior contain information about physical

parameters of the atmosphere and its dynamics. To correctly interpret the observed

line profiles a radiative transfer modeling based on first physical principles is needed.

The radiative transfer problem is not easy to solve because it is essentially non-local

and non-linear in nature, and the conditions of line formation are often far from the

Local Thermodynamic Equilibrium (LTE). The typical system of equations for the

radiative transfer problem can be written as follows:

dIs,ν
ds

= −χs,νIs,ν + ηs,ν (1.1)

nl

∑

l′

(Rll′ + Cll′)−
∑

l′

nl′(Rl′l + Cl′l) =
dnl

dt
(1.2)

Here Is,ν is the intensity along the ray direction s and at frequency ν, χs,ν and

ηs,ν are the opacity and emissivity coefficients, nl is number of atoms (of the considered

element) with level l populated, Rll′ and Cll′ are the radiative and collisional rate

coefficients for the transition from level l to level l′. Several non-LTE computational

methods and codes have been developed to solve this system of equations, including

RH radiative transfer code [189, 190, 227, 164], which allow us to calculate the line

profiles observed by IRIS and other instruments under the statistical equilibrium

assumption (dnl/dt = 0). These methods in combination with realistic radiative

hydrodynamic simulations of the chromospheric evaporation [2, 5, 6, 7] are a very

powerful technique for physical diagnostics of the flare processes.

In general, the studies of the energy release and chromospheric evaporation

processes are not limited by the spectroscopic observations in UV and visible

light lines. For example, the X-ray Sensor [23, XRS] onboard the Geostationary

Operational Environmental Satellite (GOES) series measures the Soft X-ray (SXR)

flux in two channels, 1-8 Å and 0.5-4 Å, where the strongest contribution comes from

thermal emission of evaporated plasma. Studying properties of the XRS/GOES
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measurements during the solar flares is very useful for understanding general behavior

of the chromospheric evaporation process.

In addition, several studies [209, 207] found that impulsive variations observed

in filtergrams of the Helioseismic and Magnetic Imager onboard the Solar Dynamics

Observatory [200, 44, SDO/HMI] are highly correlated with the Hard X-ray signals.

This demonstrates that high-energy particles can disturb the photospheric Fe 6173 Å

line properties measured by SDO/HMI, i.e., that the properties of the energy release

can be potentially reflected in and diagnosed from photospheric observations in

some cases.

1.3 Development of the Solar Flare Forecasts

Reliable operational forecast of solar flares remains one of the most challenging and

not completely solved tasks in the Heliophysics. The interest to this task increased

significantly during the last decade because of the exponential growth of the machine

learning methodology and accessibility of the computational resources, as well as

availability of the high-quality routine observational data.

It has long been known that understanding the relationships between solar

flares and the properties of magnetic field in active regions is extremely important for

developing flare forecasts. The strongly non-potential magnetic field of active regions

is the only reservoir able to store amounts of energy typically released in a solar

flare. The availability of the high-quality SDO/HMI data starting from 2010 with

almost no interruptions significantly increased the number of forecasting attempts,

including employment of the state-of-art deep learning techniques [86, 155]. It is

also realized that properties of the magnetic field Polarity Inversion Line (PIL) in

regions of strong field plays an important role in the flare activity [231, 61, 113, 203].

The flare development process is very often closely connected to the dynamics in the
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Figure 1.1 Schematic representation of studies competed/conducted during my PhD program, and relations between them.
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vicinity of the PIL. The characteristics of the PIL and the magnetic field structure

nearby represent a valuable information for the forecasting attempts.

1.4 Structure of the Dissertation

The research projects conducted during the PhD program are schematically illus-

trated in Figure 1.1. Each rectangle in this Figure represents a separate study. The

key questions which motivated us to begin each study are also presented in the Figure.

Among nine works described, two are not included in the Dissertation (and designated

by words “not included” in the end of the project title). Also, the Dissertation (as

well as Figure 1.1) does not include several collaboration projects done together with

my colleagues during the time of PhD [209, 208, 85].

The other seven works presented in Figure 1.1 are represented by seven separate

chapters in this Dissertation. Chapter 2 describes the case study of the relationship

between the chromospheric evaporation and magnetic field topology in an M-class

solar flare observed on June 12th 2014 at 21:01UT. Chapter 3 presents an Interactive

Multi-Instrument Database of Solar Flares created for more convenient and efficient

search among solar flares based on their physical characteristics. Chapter 4 presents a

statistical study of chromospheric evaporation in impulsive phase of solar flares from

both, observational and modeling, points of view. Chapter 5 describes an analysis of

statistical properties of soft X-ray emission of solar flares, one of the most widely-used

types of measurements. Chapter 6 is dedicated to modeling of SDO/HMI observables

for solar atmosphere heated by precipitating high-energy electrons.

We also discuss the questions of prediction of strong solar flares from the

characteristics of solar magnetic field and soft X-ray radiation. Chapter 7 illustrates

relationship between characteristics of the line-of-sight magnetic field and solar flare

forecasts, with particular focus on the Polarity Inversion Line (PIL) properties. We

extend this study in Chapter 8 where we test an enhancement of the binary and
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probabilistic forecasts of solar flares done by Space Weather Prediction Center of the

National Oceanic and Atmospheric Administration (SWPC NOAA) by using machine

learning algorithms.

Finally, Chapter 9 briefly summarizes the studies presented in the dissertation

and highlights the main results, and presents concluding remarks.

9



CHAPTER 2

RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION
AND MAGNETIC FIELD TOPOLOGY IN M-CLASS SOLAR FLARE

2.1 Introduction and Motivation

Spectroscopic observations provide a very powerful tool to study atmospheric

properties and dynamics of solar flares. The long history of these studies includes

observations from numerous satellites and rocket missions [68, 147]. The currently

operating NASA’s Interface Region Imaging Spectrograph [50, IRIS] observes the

chromosphere and chromosphere-corona transition region with high spatial, temporal

and spectral resolutions. The IRIS spectral coverage includes several strong lines

formed in the upper chromosphere: Mg II h&k 2796 Å and 2803 Å (T = 8−10×103K)

and in the lower transition region: C II 1334/1335 Å (T = 1 − 2 × 104K) and

Si IV 1403 Å (T = 5− 10× 104K). In the hot plasma of solar flares IRIS can observe

the FeXXI 1354.1 Å line which corresponds to a forbidden transition and is formed

at 1.1× 107K. This line appears during flares in the IRIS O I spectral window.

IRIS provides a unique opportunity for the chromospheric evaporation studies

[17, 30, 76, 128, 129, 168, 220, 221, 239, 198]. In particular, the FeXXI line appearing

only during flares detects the hot upward-moving plasma flows as a FeXXI blueshift.

The chromospheric evaporation is also observed in the IRIS UV chromospheric

and transition region lines. However, interpretation of the Doppler shift is less

straightforward and depends on the energy transfer mechanism and heating rates

resulting in “gentle” and “explosive” types of evaporation [9, 240, 67, 66, 65].

The chromospheric evaporation process is still not well understood. Despite

many numerical simulations [114, 67, 112, 134, 184, 185, 178], some details of the

process could not be reproduced. One of the most disputed effects is a time delay

of the coronal evaporation flow relative to the chromospheric response observed
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as redshift of relatively cold UV lines corresponding to the downward motions

of plasma. Graham and Cauzzi [76], Battaglia et al. [17], Young et al. [239]

found the delays of about 60 s using IRIS spectroscopic data. The simulations of

Rubio da Costa et al. [185] are the most successful in reproducing this effect. The

delays between the maximum of the upflow plasma velocity and the maximum of

the downflow velocity can reach ≈45 s for a low heating model with the maximum

temperature less than 107K. However, most of the numerical simulations of the

standard “thick-target” flare model predict that both phenomena should occur almost

simultaneously.

There are some attempts to explain this discrepancy. Emission of the FeXXI line

might be very weak at the initial and supposedly blueshifted stages of the evaporation,

and then became stronger but less blueshifted. This situation is clearly illustrated in

the paper of Graham and Cauzzi [76]. The weak FeXXI emission may happen due

to non-equilibrium ionization effects [17]. In particular, Figures 6-8 of Bradshaw [26]

demonstrate that for the number density of 108−109 cm−3 the characteristic ionization

time can reach ≈60 s for FeXIX and higher ionization degree ions, which may cause

the blueshift delays for about one minute. However, the theory cannot explain the

observed delays for a couple of minutes or longer.

In this chapter we focus on a detailed spatio-temporal analysis of the chromo-

spheric evaporation during an M1.0 class flare occurred on 12 June, 2014 from

21:01UT to 21:19UT in active region NOAA 12087. At this time the active region

was located south-east (heliocentric coordinates S22E49) on the solar disc, and the

flare event was well-covered by the IRIS observations in the coarse-raster mode (the

IRIS observational set started long before the flare beginning and continued long

after the flare decay). The eight slit positions run in a cyclic order with a high

cadence (≈ 20 s for the full cycle) allowed us to study the flare spectra in most of

the flare region. Some general properties of the chromospheric evaporation during
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this flare have already been studied in our previous paper [198]. Dynamical and

magnetic processes in the vicinity of the magnetic polarity inversion line (PIL) have

been studied by Kumar et al. [116] and Sharykin et al. [209]. This study highlights the

process of chromospheric evaporation and its relations to the flare magnetic geometry

in more detail.

In addition to the spectroscopic data, the knowledge of the magnetic field

topology is very important for understanding of the flare dynamics. The magnetic

field and corresponding electric current systems are the primary energy sources of

solar flares. They can store the magnetic energy and convert about 1030-1032 erg [56]

into the kinetic energy of moving plasma and accelerated particles via magnetic

reconnection, Joule heating and other mechanisms. Thus, it is especially important to

know the magnetic field configuration. Nowadays it is possible to obtain photospheric

vector magnetograms from the SDO/HMI telescope [200] and reconstruct magnetic

field in the solar atmosphere under certain assumptions. One of the key characteristics

of the magnetic field structure is the Quasi-Separatrix Layer [52, 51]. From the

physical point of view, the QSL is a relatively thin surface where the magnetic field

connectivity exhibits strong gradients [14], which can work as a channel of magnetic

energy dissipation.

Nowadays, it is also possible to analyze flares with high-resolution using

observations with large ground-based telescopes. One of the most breakthrough

ground-based facilities is the Goode Solar Telescope [75, GST] at Big Bear Solar

Observatory. The 1.6m primary mirror and implemented adaptive optics provide

diffraction-limited images and resolve features that are smaller than 0.1′′. The studied

flare was observed by the GST, and in this work we utilize the GST observations

obtained in the Hα line core.
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2.2 Methodology

The IRIS observation covered temporarily the entire event for more than one hour

from appearance of the first signs of flaring activity until the end of the decay phase.

The instrument obtained spectra in several wavelength windows in each point of the

region with ≈20 s temporal and 0.33′′×2′′ spatial resolution. To analyze the large

amount of spectroscopic data, we implemented the following techniques of the line

profile analysis.

For each IRIS line formed in the chromosphere and chromosphere-corona

transition region, the center-of-gravity approach used in the previous paper [198]

can be implemented. We decided to use the C II 1334.5 Å line as a representative

of the colder chromospheric layer response to the flare heating. The C II line is

formed at T = 1 − 2 × 104K. It is not overexposed in this flare unlike the Si IV

line, and its shape is simpler than that of the Mg II lines. For each C II line profile

the following characteristics are calculated: 1) the line peak intensity and 2) the

Doppler shift defined as a difference between the center of gravity of the line and the

reference wavelength for this line 〈λ〉 − λref =
∫

λIdλ/
∫

Idλ − λref . The reference

wavelength of the C II line was calibrated using observations of several quiet-Sun areas

before the flare and was chosen to be equal to 1334.56 Å. Obviously, the implemented

technique cannot be applied to blended spectral lines. An example of such kind of

lines is, in fact, the IRIS FeXXI 1354.1 Å line that is formed in the 1.1 × 107K hot

plasma, and is very important for our study. The blends of this line are discussed

by Tian et al. [220, Figure 2] and Young et al. [239, Appendix A]. We decided

to take into account only the strongest blend, the C I 1354.3 Å line. Our previous

study [198] did not reveal significant Doppler shifts of this line during the flare.

Thus, for the FeXXI line we performed a double-Gaussian fitting with a fixed peak

wavelength of the second Gaussian profile corresponding to reference wavelength of

the C I line (λref = 1354.34 Å). This reference wavelength was also determined from
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observations of several quiet-Sun regions before the flare. We kept the wavelength

difference between FeXXI and C I lines the same as in Vilhu et al. [230], and obtained

the FeXXI reference wavelength equal to 1354.146 Å. Parameters of the FeXXI line

obtained by Gaussian fitting are used to estimate its intensity (as the amplitude of

the Gaussian) and its Doppler shift (difference between the wavelength corresponding

to the peak of the Gaussian, and the reference wavelength). Using the procedures

described above, we determined the temporal and spatial behavior of the Doppler

shift of lower transition region C II 1334.5 Å and coronal FeXXI 1354.1 Å lines that

are essential for studying the chromospheric evaporation.

As mentioned before, it is especially important to study the delay of the

evaporated hot plasma flow observed as blueshift of the hot coronal lines relative to the

chromospheric response (observed as redshift or blueshift of the cooler chromospheric

or transition region lines). The IRIS raster scans provide an opportunity to study

the spatial configuration of the delays across the flare region. For this analysis the

following procedure was performed. First, the Doppler shift of the C II 1334.5 Å line

was estimated at every point for each time moment of the IRIS scans in the region, and

the same was done for the FeXXI 1354.1 Å line. After this, the temporal evolutions

of the redshift and blueshift in each point were plotted and smoothed with a 50 s

running window for better estimation of their peak times. The peak times of the

redshift and blueshift maxima were determined visually from the plotted curves. In

places where the redshifts or blueshifts did not show any peak we set the delay to

zero. Also, the delay was determined only in the flare “bright points”, where the

averaged over time magnitude of the C II 1334.5 line was greater than the one eighth

of the mean magnitude of this line across the flare region. The uncertainties of the

measured delays are ≈20 s because of the time needed for the IRIS to scan the 8

spatial positions.
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To reconstruct the magnetic field for the studied event, we followed the approach

of Wheatland et al. [236] implemented in the NLFFF package of the Solar Software

(SSW) for Interactive Data Language (IDL). The algorithm finds the solution for

the Nonlinear Force-Free Field (NLFFF) approximation assuming that all electric

currents flow along the field lines. For the boundary conditions, the 12-minute full-Sun

vector magnetograms obtained by the HMI/SDO instrument [200] were used. We

reconstructed the magnetic field for eight time moments covering the flare period

from 20:22:25UT to 21:46:25UT with 12min cadence. For the magnetic force line

tracing, a tri-linear interpolation technique implemented in the SSW NLFFF package

was used. To estimate topological peculiarities of the magnetic field in the flare region

we applied a method of quasi-separatrix layer (QSL) calculation [51]. The QSLs mark

areas in the extrapolated field with sharp variations of magnetic field connectivity.

To make a quantitative estimate of the connectivity changes at a point P (x, y, z) we

use parameter called Squashing factor N(x, y, z) calculated as:

N(x, y, z) =

√

√

√

√

2
∑

i=1

(

∂Xi

∂x

)2

+

(

∂Xi

∂y

)2

+

(

∂Xi

∂z

)2

. (2.1)

Here X1 and X2 are components of the vector connecting the point where the

field line crossing point P (x, y, z) is directed outward from the photosphere with the

point where the same line is directed down into the photosphere. The coordinate

derivatives ∂x, ∂y and ∂z characterize variations of magnetic connectivity from point

to point.

In addition, we analyzed the flare X-ray data from the Reuven Ramaty High-

Energy Solar Spectroscopic Imager [131, RHESSI] and compared the 12-25 keV X-

ray sources reconstructed by using the CLEAN algorithm with the magnetic field

topology. Data from the detectors 1F-7F are used for the reconstruction. RHESSI

observations covered the entire flare event, from ≈ 21:40UT till ≈ 21:35UT. The

X-ray flux above 25 keV was very weak and insufficient for the source reconstruction.
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2.3 Results

2.3.1 Behavior of the Integrated Redshifts

The integrated (averaged over the flare region) intensities and Doppler shifts of the

C II 1334.5 Å and FeXXI 1354.1 Å lines are displayed in Figure 2.1. For the C II line,

the intensity is measured at its peak, and the Doppler shift is estimated using the

Center-of-Gravity approach discussed in Sec. 2. For the FeXXI line, the intensity and

the Doppler shift correspond to the amplitude and the mean shift of the corresponding

Gaussian (see Sec. 2 for the details). The mean intensities and Doppler shifts are

plotted with different colors (see caption of Figure 2.1 for the color code).

The panel a) of Figure 2.1 represents the FeXXI 1354.1 Å line intensity and

Doppler shift integrated over the flare region. A delay of the FeXXI line intensity

relative to its Doppler shift is very obvious, and, probably, occurs because of the

gradual filling the magnetic loops by the hot evaporated plasma. The panel b) of

Figure 2.1 displays the mean intensity and Doppler shift of the C II line. The delay

between the high-temperature FeXXI line and low-temperature C II emission of about

6min is not a surprising result: the same types of delays were observed in several

works [33, 31]. One can notice an increase of the C II redshift during the flare, and

its correlations with the X-ray 12-25 keV light curve from RHESSI. Previously (see

[198] for details), it was found that the slowly varying redshifts mainly represent some

background activity in the region. Figure 2.1 shows that we observe a superposition

of the relatively steady downflows and fast varying downflows due to the flare energy

release.

The panel c) in Figure 2.1 displays the C II and FeXXI normalized Doppler

shifts fitted with cubic splines. The tension of splines was chosen to smoothly

fit all the significant features of the time curves. Additionally, the normalized

derivatives of these splines are plotted in Figure 2.1c. Despite the first peaks of

the C II line redshift and FeXXI line blueshift, marked as two dotted vertical lines in
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C II normalized redshift (spline fit)
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C II redshift derivative
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a)
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c)

Figure 2.1 a) the time dependence of the integrated FeXXI 1354.1Å line blueshift
(dark blue) and its peak intensity (light blue), calculated from the line profile observed
by IRIS and averaged over the flare region. Additionally, the RHESSI X-ray 12-
25 keV flux (green) is shown. b) the time curves for the integrated C II 1334.5 Å line
redshift (red) and its peak intensity (orange). The corresponding spline fits have
the same color code and are shown by thin solid lines. Two vertical dotted lines
indicate the strongest peaks of the FeXXI and C II Doppler shifts. c) spline fits of
the FeXXI 1354.1Å line blueshift (blue dotted) and the C II 1334.5 Å line redshift (red
dotted line). The normalized derivatives of splines are shown by solid curves of the
same colors.

Source: [197].
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Figure 2.1ab, are separated in time by about a minute, these curves started to rise

almost simultaneously as one can see from the derivatives in Figure 2.1c. This is in a

good correspondence with the expectations of the “thick-target” model, in which the

chromosphere is heated by a beam of accelerated electrons. Two dotted vertical lines

in Figures 2.1a,b correspond to the first peaks of the C II line redshift and FeXXI line

blueshift. One can see that the peak of the FeXXI blueshift is delayed with respect

to the C II line redshift for about one minute.

The typical values of the C II line redshifts are ∼30-50 km/s, and the typical

blueshifts of the FeXXI line are ∼50 km/s. In the previous paper [198] we mentioned

that the evaporation process in this flare can be characterized as of the “gentle”

type because of the subsonic velocities of the evaporated plasma [9]. However, the

integrated redshift of the C II line (Figure 2.1) starts increasing at the beginning of

the flare activity, which may be a sign of the explosive evaporation [67]. Figure 2.1

also reveals significant background steady plasma downflows obvious before and after

the flare. Possibly, the evaporation in this region is very complex structured, and

cannot be classified as a pure explosive or gentle type, according to the models.

2.3.2 Spatial Structure of Chromospheric Evaporation

The distribution of the FeXXI 1354.1Å blueshift maximum delay relative to the

C II 1334.5 Å redshift maximum across the flare region is demonstrated in Figure 2.2.

The procedure which we have performed to measure the delays is described in Sec. 2.

The result is presented in the form of the contour lines corresponding to the delays of

30 s, 60 s, 120 s and 240 s. The underlying IRIS 1330 Å slit-jaw (SJ) image is shown

for better representation of the chromospheric activity.

As one can see, the delays distributed across the flare region can be longer than

two minutes that is longer than the previously reported 1-minute delays [76, 17, 239].

The delays are distributed along the flare ribbon visible in the background IRIS 1330 Å
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Figure 2.2 Distribution of the FeXXI blueshift delays relative to the C II redshift
maxima. The contour lines correspond to 30 s, 60 s, 120 s and 240 s delays (from light
orange to dark red). Background is the corresponding IRIS 1330 Å SJ image. White
rectangle marks the region covered by the IRIS spectral observations.

Source: [197].
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SJ image, and are not uniform. Flare ribbons are thought to be closely connected

to the magnetic field configuration in the region. In the standard flare model it is

assumed that because of the deposit of energy of accelerated particles and heat flux

along the flare loops, the plasma emission becomes stronger near the loop footpoints

that becomes visible as the flare ribbons. Thus, we have decided to study the magnetic

field properties in the region in order to better understand their relationship to the

observed delay distribution.

2.3.3 Flare Process and Field Topology

For the magnetic field reconstruction, we use the NLFFF method [236] and vector

magnetograms from HMI/SDO as the boundary conditions. Figure 2.3 represents the

reconstructed magnetic field structure. In panel (a) this structure resembles the flux-

rope which was observed in the GST images and reported by Sharykin et al. [209] and

Kumar et al. [116]. The underlying grey-scale image represents the radial magnetic

field (white for the positive and black for the negative polarity regions). As one can

see, the field lines of the flux rope are twisted, reflecting a nonpotential nature of the

magnetic field in the studied region with the currents embedded. This configuration

is located exactly at the polarity inversion line (PIL). The detailed structure and

dynamics of this region, which is likely to be the primary energy source for the flare,

is discussed in a separate paper by Sharykin et al. [209].

Panels (b) and (c) of Figure 2.3 illustrate the reconstructed magnetic field

structure and the flare ribbons observed in the IRIS SJ 1330 Å image. For better

understanding the structure, only the magnetic field lines reaching a certain range

of heights (2′′-6′′, or 1.5-4.5Mm) are presented. The higher magnetic field lines have

their footpoints far away from the flare ribbons, and thus do not participate in the

energy transfer during the flare. The underlying image is the IRIS 1330 Å slit-jaw

image for 21:04:43UT. The field lines corresponding to the flux rope mentioned above
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Figure 2.3 Reconstruction of the Nonlinear Force-Free magnetic field lines from
the SDO/HMI vector magnetogram obtained at 20:58:25UT. Panel a) shows the field
lines (green) corresponding to the flux rope structure observed by GST [209]. The
radial magnetic field map is shown in the background in the range [-2000,3200]G. The
white line is the polarity inversion line (PIL). Panels b) and c) show two different
projections of the field lines connecting the flare ribbons (orange) and the flux rope
(green). The orange palette corresponds to the magnetic field strength in the start
point (see the scale below the panel c)). The background is the IRIS 1330 Å SJ image
(21:04:43UT). Notice that the height of all displayed magnetic field lines is 2′′-6′′

(1.5-4.5Mm).

Source: [197].
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are shown in green in this figure. One can see that almost all the lines starting from

the flare ribbons have their other footpoint near the flux rope region at the PIL.

One of the possibilities to understand changes of the magnetic field topology and

its connection with the observed delays is to reconstruct the so-called Quasi-Separatrix

Layer [52, 51, QSL]. We have already described the computational procedure in Sec. 2.

It was found that the QSL evolves with height very smoothly. Thus, we decided to

utilize the QSL at height of ≈ 1000 km above the photosphere, and calculated the

squashing factor for the comparison.

The QSL structure presented in Figure 2.4 is mostly stable before (from

20:22:25UT to 20:58:25UT) and after (from 21:22:25UT to 21:46:25UT) the flare.

However, during the flare impulsive phase the QSL undergoes significant changes in

the region marked by the red dashed ellipse. The magnetic field neutral line also

undergoes significant changes restricted to the marked region. Because of the 12min

integration time of the SDO/HMI vector magnetogram data, we cannot determine

when exactly during the period from 21:04:25UT to 21:16:25UT the QSL evolved.

We compare the QSL chromospheric structure with the flare ribbons visible in

the IRIS 1330 Å SJ images and the GST Hα line core images. The result is presented

in Figure 2.5. The observing times are shown for each panel. One can notice a

correspondence between the flare ribbons and the QSL cross-section. Also, the

evolution of both the QSL and the flare ribbons (for both GST and IRIS observations)

demonstrates similar patterns, confirming the idea that the flare energy transport

along the QSL forms the flare ribbons [201, 140, 41].

To understand when exactly the evolution of the flare ribbons occurred, we

studied the behavior of the Hα flare ribbon in more details. We found that the

motions of the flare ribbon occurred during the period from 21:12UT to 21:15UT,

i.e after the impulsive phase of the flare. This time interval is within the uncertainty

interval determined for the QSL change (from 21:04:25UT to 21:16:25UT). Also, only
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Figure 2.4 Evolution of the Quasi-Separatrix Layer (Squashing factor N , Eq. 2.1)
at the chromospheric level. The panels represent the IRIS SJ 1330 Å images for four
moments of time indicated in the panel titles with the overplotted contours of the
Squashing factor corresponding to the 60%, 40% and 20% of its maximum value of
≈25 (from light to dark green). The magnetic filed is reconstructed from the HMI
vector magnetograms for the same moments of time with a 12min integration time.
The white curve is the magnetic polarity inversion line (PIL). The dashed red ellipse
marks the region where the changes of the QSL are the most significant.

Source: [197].
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a) b) d)c)

e) f) g� h)

Figure 2.5 Comparison of the evolution of the QSL structure, UV flare ribbons
observed by IRIS (top panels) and Hα ribbons observed by GST (bottom panels):
before the flare at ≈20:58:30UT (panels a and e); during the maximum phase
at ≈21:10:30UT (b and f), and at ≈21:16:30UT (c and g); after the flare at
≈21:22:30UT (d and h). The QSL chromospheric cross-section (Squashing factor
N , Eq. 2.1) computed for the corresponding times is shown by green contours (the
contour levels are the same as in Figure 2.4). The white curve is the magnetic polarity
inversion line.

Source: [197].
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the north-eastern part of the ribbon changed, the other parts were mostly stable (see

Figure 2.5 g-h).

Figure 2.6 demonstrates the distribution of the delays across the flare region

with the QSL chromospheric cross-section and the magnetic field lines originated

from the delay regions. For convenience, only the field lines corresponding to the

main arcade are plotted. The GST Hα-line core image is displayed in the background.

Additionally, we plot the RHESSI 12-25 keV contours for different integration times

in the same Figure. Similarly to Figure 2.3, the height of most of the field lines does

not exceed 4.5Mm (or 6′′). So, the lines connecting the flux rope site and the delay

regions do not extend high into the solar corona. The RHESSI 12-25 keV sources

evolve along the reconstructed arcade with time as illustrated in Figure 2.6b,c. For

21:04:00UT - 21:05:40UT the primary source is located near the flux rope region

(solid contours in Figure 2.6b), while at 21:05:40UT - 21:06:16UT it appears closer

to the southeastern part of the flare ribbon (dashed contours). The X-ray sources do

not match the flare ribbons and arcade footpoints. During the further periods, shown

in Figure 2.6c, the X-ray source is slightly moving towards the top of the arcade,

and becomes more diffuse. Perhaps, it represents the emission of the hot evaporated

plasma. Thus, from the observations, we cannot confirm that the chromospheric

evaporation observed in the flare ribbons is caused by the accelerated electrons, as

predicted by the standard model. Unfortunately, the flux above 25 keV does not allow

us to analyze higher energy sources.

2.4 Discussion and Conclusion

In this project we studied the chromospheric evaporation event during the M1.0

GOES class flare occurred on June 12, 2014 from 21:01UT till 21:19UT. The

evaporated plasma flows were detected in the hot FeXXI 1354.1 Å line, and the

response of the “colder” layers was studied with the help of the lower transition
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Figure 2.6 (a) The FeXXI blueshift delays relative to the C II redshift maxima
shown by contour lines for 30 s, 60 s, 120 s and 240 s (from light orange to dark red),
and the QSL chromospheric Squashing factor before the flare (for 20:58:25UT) shown
by green contours (the contour levels are the same as in Figure 2.4). The GST Hα
line core image is shown in the background in all panels. The white curve represents
the PIL. (b) The reconstructed magnetic field lines with the starting footpoints in
the delay regions. The line colors correspond to the magnetic field magnitude at the
starting point (see the scale below the panels). The field lines corresponding to the
flux rope (see Figure 2.3) are plotted in green. Additionally, the RHESSI 12-25 keV
X-ray sources for the 21:04:00UT - 21:05:40UT (solid) and 21:05:40UT - 21:06:16UT
(dashed) time periods are plotted by level contours corresponding to the 90%, 80%
and 70% of their maxima. (c) the same as b) for RHESSI 12-25 kev 21:06:24UT -
21:07:48UT (solid) and 21:07:48UT - 21:09:12UT (dashed) time periods.

Source: [197].
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region C II 1334.5 Å line. The main focus was on the distribution of the chromospheric

evaporation delay time between the C II Doppler shift maximum and the FeXXI

blueshift maximum. In addition, the magnetic field lines were reconstructed from the

photospheric vector magnetograms, and the QSL was computed and compared with

the flare ribbons. Let us summarize the main observational findings mentioned in

this study:

1. The averaged over the region C II redshift presented in Figure 2.1 is correlated
with the flare activity observed in the X-ray 12-25 keV energy range. The onsets
of the FeXXI blueshift and the C II redshift are almost simultaneous. The
FeXXI blueshift maximum is delayed relative to the C II redshift maximum for
about 1min.

2. The detailed spatially-resolved study demonstrates that the delays are presented
in many points along the flare ribbon, and in some places can be longer
than 2min (see Figure 2.2). The distribution of the delays across the
initially-observed flare ribbon (in both IRIS 1330 Å and GST Hα line core
observations) is not uniform.

3. The reconstructed magnetic field lines originating from the delay regions mostly
connect the flare ribbon with the flux rope structure. The height of the magnetic
arcades rarely exceeds 4.5Mm, revealing their low-lying nature.

4. The X-ray 12-25 keV sources demonstrate a dynamic behavior along the main
bundle of the reconstructed field lines. Initially located near the flux rope region,
the sources later appear closer to the southeast flare ribbons, and then move
towards the top of the reconstructed arcade (Figure 2.6b,c).

5. The evolution of the QSL and flare ribbons detected in the 1330 Å and Hα line
core images demonstrate the same patterns: a mostly stable configuration with
a rapid change in the North-East part of the region. This region is the only
one along the initial QSL where the delays were not detected due to the weak
FeXXI signal.

The spatio-temporal properties of the chromospheric evaporation reveal very

strong delays of the blueshift of the hot evaporating plasma relative to the redshifts

of the cold chromospheric plasma across the flare region. While the averaged over

the region blueshift of the FeXXI line (see Figure 2.1) demonstrates the delay for
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about 1min, the spatially-resolved delays are found to be even more than 2min

in several zones along the flare ribbon. Thus, the delay averaged over the region

represents itself the superposition of many spatially-distributed delays occurred in

different zones and caused by the excitation of the chromospheric evaporation process

in different loops. In this sense, the observed situation corresponds to the “multi-

thread” model [233] proposing a sequence of independently heated threads occurred

in different loops. As it is clearly seen from our previous work [198], the chromospheric

excitation took place in different points across the region at different times. And thus

it is not surprising that we have found the same kind of behavior for the delays. A

“multi-thread” model was considered for the chromospheric evaporation studies in

the work of Rubio da Costa et al. [183], where the authors used the RADYN code

and superposition of evaporation events occurred in several loops at different times

to adequately model the observed signals.

The reconstructed magnetic field geometry also corresponds to the multi-thread

model but reveals an interesting complex configuration. As was observed from

Figure 2.3, the magnetic configuration of the region represents twisted small-scale

system of loops constructing a magnetic flux rope located at the polarity inversion

line, and a bundle of more large-scale magnetic field lines with one footpoint located

near the flux rope and the other footpoint located in the flare ribbons, i.e., connecting

the flare ribbons and evaporating regions with the flux rope. This magnetic flux

rope was studied in more details in the paper of Sharykin et al. [209]. One of the

conclusions was that the dissipation processes in this region can be the primary energy

source for this flare. It is obvious from the reconstructed magnetic field configuration

that accelerated particles and heat flux can spread from the flux rope region to the

observed flare ribbons along the field lines. Injections of the particles and heat flux

into different loops produce the chromospheric evaporation in different spatial zones
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as we find in the observations. Thus, the flux rope region at the polarity inversion

line may play a role of the “energy source” for the event.

It was found that almost all the magnetic field lines connecting the blueshift

delay regions with the flux rope are low-lying (see Figure 2.6). Their height rarely

exceeds 4.5Mm, thus, these loops mainly do not expand high into the corona. This

means that all the delays were observed in the low-lying loops. The delays are

non-uniformly distributed along the flare ribbon (upper panel of Figure 2.6), but

without any obvious patterns. One of the possible explanations of the delays based

on the non-equilibrium ionization of the highly-ionized Fe atoms [17, 26, 76] was

discussed in the introduction. The results presented in Figures 6-8 of Bradshaw [26]

show that the FeXIX ion population reaches equilibrium for the considered durations

of the heating phase (up to 60 s), but the FeXXIV ions are out of equilibrium

with a low population. There are no results presented for FeXXI, and it is

hard to understand how the FeXXI ion population behaves during the heating

phase. However, the highly ionized Fe fractions (including FeXIX and FeXXIV)

are in the equilibrium conditions during the thermal conductive cooling phase. The

non-equilibrium ionization explanation of delays becomes suitable only in the case

of very long continuous heating (for more than 2min). This may contradict to the

impulsive nature of solar flares. The strong growth of the C II intensity light curve in

Figure 2.1, and results presented in Figure 7 of Sadykov et al. [198] support the idea

that the chromosphere heating was impulsive. Thus, the non-equilibrium ionization

mechanism may be partly, but not fully responsible for the observed delays.

The only region where the delays are not present or not possible to calculate

is a part of the flare ribbon located in the upper left corner of Figure 2.6.

Figures 2.4 and 2.5 clearly show that this region is the only one where a rapid motion

of the flare ribbon and the QSL chromospheric cross-section was observed. We looked

at the spectra of this region in detail and revealed the following: the C II redshift was
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significant, but the weak signal in the FeXXI line made it impossible to measure the

delay. As shown in panels a, d, e and h of Figure 2.5, the computed QSL cross-section

fits the observed flare ribbons quite accurately before and after the impulsive phase

of the flare. Thus, one can assume that the QSL evolved at the same time as the

flare ribbons — i.e., from 21:12UT to 21:16UT. The first 12-25 keV X-ray pulse

occurred at ∼21:06UT (the first 12-25 keV peak corresponds to the first peak in the

C II integrated light curve in Figure 2.1). However, at the time when the flare ribbon

motion was observed, the 12-25 keV curve, as well as the C II integrated light curves,

shows the decay phase. It could be that the motion of the flare ribbons corresponds to

the process called “slipping magnetic reconnection” [90, 13]. This model is quite new

but already found observational evidences [128, 89]. On the other hand, it seems that

the studied flare was not driven by the slipping magnetic reconnection mechanism.

Despite that the ribbon motion was observed, it occurred definitely after the impulsive

phase of the flare. Even if the slipping mechanism was responsible for this motion,

it happened after the impulsive phase and could not support the idea that the flare

energy was released by this mechanism.

Of course, the found relationship between the chromospheric evaporation delays

and the magnetic field configuration is based only on one studied event. Further

statistical study is needed to confirm the proposed dependences.
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CHAPTER 3

INTERACTIVE MULTI-INSTRUMENT DATABASE OF SOLAR
FLARES

3.1 Introduction

Flare events are observed by a variety of space- and ground-based instruments in

different wavelengths. Usually, flare lists are created for specific routinely-observing

instruments. Currently, the primary flare catalog is based on soft X-ray emission

peaks (so-called X-ray flare classes) observed by the Geostationary Operational

Environmental Satellites [23, GOES]. The GOES X-ray instruments have observed

the solar activity for several decades, and created the largest database of solar flares.

Another example of flare-observing instruments is the Reuven Ramaty High Energy

Solar Spectroscopic Imager [131, RHESSI], launched in 2002. RHESSI observes the

X-ray radiation of flares in a wide range of energies, from 6 keV to > 300 keV. The

satellite detects the events and has its own flare list separate from the GOES flare

list. Two instruments onboard the Solar Dynamics Observatory (SDO) observe solar

flares in EUV bands: the Extreme Ultraviolet Variability Experiment instrument [238,

EVE] observes the EUV spectra of the integrated solar emission, and the Atmospheric

Imaging Assembly [125, AIA] instrument observes high-resolution images in several

EUV bands. The flare data from both of these instruments are stored in independent

data catalogs. In the EVE data, the flares are detected as enhancement of the EUV

emission, and in the AIA data, the flare events are detected using image processing

algorithms [138] and are summarized in the Heliophysics Event Knowledgebase [88].

Some of these events are linked to the GOES database.

The Virtual Solar Observatory (VSO, http://sdac.virtualsolar.org/cgi/

search, accessed on 04/08/2019) collects and accesses metadata from many space

missions and ground-based observatories, allowing the user to search for available
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data for a particular time range. It also contains several flare and flare-related event

catalogs (SOHO/LASCO CME catalog, GOES X-ray Catalog, RHESSI Flare list

etc.) The user can search the events having particular properties within each catalog,

and request the corresponding data. However, VSO does not allow a detailed search

based on flare parameters. The RHESSI browser (http://sprg.ssl.berkeley.edu/

~tohban/browser/, accessed on 04/08/2019) allows users to look at RHESSI and

Fermi data products, and to check the observational coverage of the detected flare

events by the Hinode and IRIS satellites. On the other hand, this browser does not

provide the ability to search for flares having particular properties.

Many problems of flare physics require performing analyses using data from

a particular set of instruments, or/and for a sample of flares with particular

characteristics. For example, find all events having GOES class ≥ C5.0 that were

observed by RHESSI, or find the flares observed by the IRIS satellite in the EUV

range, and by the Nobeyama radio telescope, in the microwave range. To address

this type of problems, we developed a new interactive multi-instrument database of

solar flares.

This is not the first attempt to provide flare lists or event catalogs. For example,

the Owens Valley Solar Array [87, 73, OVSA] legacy radio bursts database [157]

allows for the searching of events based on their physical parameter ranges, and the

Solar Flare Finder tool [150, http://hesperia.gsfc.nasa.gov/sff/, accessed on

04/08/2019], recently developed as a part of Solar SoftWare package for Interactive

Data Language [69, SSW IDL], allows selecting flaring events simultaneously observed

by GOES, RHESSI, SDO/AIA, Hinode, SDO/EVE and IRIS, and to see their

data summaries. However there is still room for a comprehensive solution that

could include features such as implementing user-interactive filters, providing more

convenient representation of the output set of events and improving the accessibility
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of the data by providing a search tool with minimum software requirements. We

provide these and other new features in our newly developed database.

Figure 3.1 represents the basic structure of the database, and each block of this

Figure is explained in the following sections of this study. In Sec. 3.2, we describe

the flare and flare-related event lists, as well as actual data, which serve as daily

input for our database. In Sec. 3.3, we explain the daily processing of the event

lists and data: integration of the flares from different lists, calculation of additional

event descriptors, preparation (smoothing) of the light curves. The processed data

are stored in a MySQL database allowing convenient and fast interaction. In Sec. 3.4,

we describe the web interface, the structure and logic of queries for our database,

and the structure of the output data available to the user. A query example is also

presented in this section. We present our conclusions in Sec. 3.5.

3.2 Data Collection and Storage

In this Section, we describe the catalogs of events used as inputs. The complete

and up-to-date list of the integrated event sources can be found via the link

https://solarflare.njit.edu/datasources.html (accessed on 04/08/2019), and

the current list is summarized in Table 3.1.

3.2.1 Primary Event Lists

The event lists are divided in “primary” and “secondary”. The primary event lists

represent daily-updated lists of flares independently detected by GOES, RHESSI and

SDO/AIA instruments. The secondary lists include partial flare lists, representing

subsets of the primary lists, and catalogs of flare-related phenomena (such as Filament

eruptions or CMEs).
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Figure 3.1 Schematic representation of the Interactive Multi-Instrument Database
of Solar Flares (IMIDSF). The database stores the metadata from GOES, RHESSI,
SDO, SOHO, Hinode, IRIS, Fermi and other space- and ground-based instruments,
as well as some instrument-specific light curves.
Source: [194].
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Table 3.1 Event Catalogs Implemented in the Interactive Multi-Instrument Database of Solar Flares
(https://solarflare.njit.edu/)

Source Name Dates presented Source web link
Primary flare lists

GOES flare list Jan, 2002 — current time ftp://ftp.swpc.noaa.gov/pub/warehouse/
RHESSI flare list Feb, 2002 — current time http://hesperia.gsfc.nasa.gov/hessidata/dbase/
HEK flare list Feb, 2010 — current time https://www.lmsal.com/isolsearch

Secondary event catalogs
IRIS observing logs Jul, 2013 — current time http://iris.lmsal.com/search/
Hinode flare catalog Nov, 2006 — July, 2016 http://st4a.stelab.nagoya-u.ac.jp/hinode_flare/

Fermi GBM flare catalog Nov, 2008 — current time https://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/
Nobeyama coverage check Jan, 2010 — current time ftp://solar-pub.nao.ac.jp/pub/nsro/norp/xdr/

OVSA flare catalog Jan, 2002 — Dec, 2003 http://www.ovsa.njit.edu/data/
CACTus CME catalog Jan, 2002 — current time http://sidc.oma.be/cactus/

Filament eruption catalog Apr, 2010 — Oct, 2014 http://aia.cfa.harvard.edu/filament/
Konus-Wind flare catalog Jan, 2002 — Jul, 2016 http://www.ioffe.ru/LEA/Solar/index.html

Source: [194] .
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Each event in the primary lists is characterized by start, peak, and end times.

In most cases, the event coordinates and the associated active region number are also

reported. We use three primary event catalogs:

• GOES flare list. The daily lists of events observed by the GOES satellites
in the 1-8 Å channel are available from June 2002 to present. The reported
characteristics include the GOES class, the X-ray peak flux during the event,
and the information about the active region and coordinates of the event (not
for all events). The daily lists are available at the NOAA website.

• RHESSI flare list. The list of the flares observed by the RHESSI X-ray telescope
from February 2002 to present. Besides the usual descriptors (the flare times and
position), the catalog contains the highest energy band in which the flares were
observed, the number of counts during the flares, and a variety of observational
quality flags.

• HEK SDO/AIA event list. The events detected in the EUV images from the
AIA/SDO instrument from February 2010 to present. The events reported in
this catalog are characterized by a variety of different parameters (besides the
common ones): the wavelength in which the event was detected, the coordinates
in a variety of coordinate systems, peak fluxes, web links to quick-look images
and movies, etc.

These three primary event lists are integrated into a single database, and Unique

Identifiers (UniqueID) are prescribed for each event, as discussed in Sec. 3.3.

3.2.2 Secondary Event Sources.

In addition to the primary event lists, the following secondary data sources are

integrated in our catalog:

• The Interface Region Imaging Spectrograph data [50, IRIS]. IRIS obtains the
slit-jaw UV images, as well as spectra of the Sun. The flare events are associated
with IRIS observations based on the time and pointing stored in the form of
instrument observing logs. The quicklook data web links allow the users to
select the events of interest.

• Hinode flare catalog [235]. The original catalog includes the events from the
GOES flare list observed by the Hinode spacecraft. This catalog includes the
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availability of observations for each Hinode instrument, and quicklook data
links.

• Fermi Gamma-ray Burst Monitor [146, GBM] solar flare catalog. The list of
the flares observed by the Fermi GBM in the 8 keV-40MeV energy range from
November 2008 to present. This catalog includes duration of the observed flares
and number of counts during the flares.

• Nobeyama Radio-polarimeter light curves [153]. The polarimetric measurements
from Nobeyama Radio Observatory are available for almost every day, usually
approximately 8 hours per day.

• OVSA legacy flare catalog [157], which includes short-time summaries of events
observed by the Ovens Valley Solar Array in the 1-18 GHz microwave range,
from 2001 to 2003 only.

• Computer Aided CME Tracking (CACTus) catalog [179, 180]. This catalog
collects records of CMEs detected by the LASCO/SOHO coronograph, and
contains a variety of CME properties, including the onset time, principal angle,
velocity, etc. The CME-flare event matching algorithm currently implemented
in our database is based on the following rule: the recorded CME onset time
must lie in an predefined time interval relative to the flare start and end times,
which can be interactively adjusted by the user by means of a “Search time
interval” filter.

• Filament eruption catalog [142]. The filament-flare event matching is based on
the time and position of the eruptions. A variety of filament parameters are
available. The catalog production was stopped on Oct, 19, 2014.

• Konus-Wind flare catalog [10, 159]. The original catalog includes the events
from the GOES flare list observed by the Konus-Wind spacecraft.

Our database is designed in such a way that it can support a continuously

expanding number of input sources of different types. These include flare and flare-

related event catalogs, and information about the observational coverage by different

instruments.

3.2.3 Background Data Characteristics

The aim of the developed database is not only to collect and integrate the flare

records from different sources, but also to provide users with an overview of the events

they potentially want to study. The flare catalogs themselves already contain many

37



useful quicklook links. For example, each HEK flare record contains the links to the

quicklook movies and images obtained by AIA/SDO. Our approach is to contribute

to the flare overview, and present additional data for each selected event.

Here is the summary of the time plots we provide for each event (if covered by

the instrument):

• GOES X-ray light curves (two channels 0.5-4 Å and 1-8 Å).

• Temperature and Emission Measure determined from the GOES X-ray data in
a one-temperature approximation.

• SDO/EVE ESP light curves (four diode channels: 18 nm, 26 nm, 30 nm, 36 nm).

• Nobeyama Polarimeter data (six frequency bands, two polarizations: 1 GHz,
2 GHz, 3.75 GHz, 9.4 GHz, 17 GHz, 35 GHz, I and V polarizations for each
frequency).

Each of the described sources is updated daily. The Temperature (T) and

Emission Measure (EM) for the events are computed using the Temperature and

Emission measure-Based Background Subtraction Algorithm [187, TEBBS] described

in Section 3.3. For the SDO/EVE ESP light curves, we apply 10-second averaging

in order to obtain smoother profiles. The same approach is used for the Nobeyama

Polarimeter data. These characteristics which help describe the flare evolution, may

provide useful information for selecting particular events for further detailed studies.

3.2.4 Data Storage and Queries

For quick access to the flare catalog information and other metadata derived from the

observational data, we store the information in a MySQL database. Each catalog is

created as a separate relation, and proper indexes are created to speed up the search.

A web interface allows the user to query and visualize the results. A query can take

from several seconds (for a typical one-month time period) to several minutes (for the

entire time period and no active filters).
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3.3 Data Enrichment and Processing

Besides the routine daily updates of the event lists, we perform additional processing

to enrich the original data. First, we calculate physical descriptors of the events

(coordinates, Temperature and Emission Measure peaks and their times for GOES

events) which are in addition to the descriptors already stored in the original lists.

Second, we match each event from each primary list with its counterparts in other

primary lists, and assign a unique identifier (UniqueID) for each uniquely-matched

case. These procedures are described in this section.

3.3.1 Determination of Coordinates for the GOES Events

The GOES flare list reports the events detected from the integrated X-ray light curves

and includes coordinates only for some events. However, in most cases, the NOAA

active region number where the flare occurred is known and reported in the list,

but without its coordinates. To estimate the coordinates of the event based on the

active region number, we utilize the Solar Region Summary (SRS) files. Such files are

formed every day half-an-hour after midnight and report the current active regions,

and their locations at 00:00UT. Using these angular coordinates, we compute the

position of the active region at the flare start time, assuming the Carrington rotation

period T ≈ 27.3 days, and taking into account the variations of the solar radius with

time as a function of the Earth’s position in its orbit.

3.3.2 Temperature and Emission Measure for GOES Events

Important physical properties derived from the GOES X-ray observations are

Temperature (T) and Emission Measure (EM) [219, 237]. These parameters can

be defined for each moment of time, and provide T and EM profiles for every flare. In

our database, we characterize flares by the peak values of these parameters (Tmax

and EMmax), as well as by the times when these peak values are reached. To
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remove the background (non-flare) X-ray flux, we use the Temperature and Emission

measure Based Background Subtraction (TEBBS) algorithm, initially proposed by

Bornmann [22] and improved by Ryan et al. [187] based on the assumption that T

and EM must grow during the flare impulsive phase. We have implemented in our

database the algorithm proposed by Ryan et al. [187]. The corresponding GitHub

repository is available for public access: https://github.com/vsadykov/TEBBS.git

(accessed on 04/08/2019)

As mentioned above, the algorithm receives all the physically-possible combi-

nations of the background level, which provide growing T and EM curves after the

flare start time. For each of these curves, we calculate the T and EM maximum

values during the flare. The range of these values defines the physical interval for

Tmax and EMmax. To obtain “the best” curve representing the T and EM dynamics,

we simultaneously minimize the deviation from the Tmax and EMmax median values

for all curves, and choose the one corresponding to the minimum mean deviation.

For the best estimate curve, we compute Tmax and EMmax, and the corresponding

time moments, and store them in our database, together with the possible physical

intervals of Tmax and EMmax. An example of the TEBBS calculations for a C3.9 class

flare is presented in Figure 3.2.

3.3.3 UniqueID Assignment and Relation to the SOL ID

The three “primary” catalogs (GOES, RHESSI and HEK flare lists) of the database

are updated on daily basis. For every new flare event, we assign the Unique Identifiers

(UniqueIDs) by integrating the information from these three different sources.

Each of the “primary” catalogs reports the events with the known start, peak,

and end times. Also, the information about the event coordinates is provided or

calculated as described above. This information is used to determine if the entries in
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Figure 3.2 Example of the Temperature (top panel) and Emission Measure (bottom
panel) calculations using the TEBBS algorithm for the SOL2016-02-15T04:02:00 event
(C3.9 class flare). The blue curves represent the physically possible Temperature and
Emission Measure solutions. The red lightcurves represent the best-estimate solution.

Source: [194].
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these catalogs represent the same physical phenomenon, i.e., they happened at the

same time in the same place, or they belong to different events.

For assigning the UniqueID, we introduce the following hierarchy order: NOAA

GOES, RHESSI, and the HEK flare list. This order means the following: if a flare

event is reported by GOES, then it labeled as a GOES event (“gev”). If an event

is not in the GOES catalog, but reported by RHESSI, this event is labeled as a

RHESSI event (“rhessi”). If an event is not reported by GOES and RHESSI, but

recorded as a flare in the HEK database, this is labeled as a HEK event (“hek”). The

UniqueID consists of two parts: the name of the primary instrument that observed

the flare, and its start time. For example, the GOES event observed at “yyyy-

mm-dd hh:mm” gets the UniqueID “gev yyyymmdd hhmm00”, while the RHESSI or

HEK events are labeled “rhessi yyyymmdd hhmmss” and “hek yyyymmdd hhmmss”

respectively (we add “00” to the GOES event UniqueIDs for compatibility with the

UniqueIDs from other catalogs). In the case of events with the same start time

but different locations (which was found for some HEK event only), we assign the

UniqueID “hek yyyymmdd hhmmss i”, where “i” is an increasing integer, starting

from 1 for each such case. The advantage of the event ID assignment procedure we

adopted is that this classification can be easily extended for any number of flare-

reporting instruments.

The procedure of the UniqueID assignment is the following:

1. Query GOES flare list events for their coordinates and active region numbers.
Then, sort the events according to their GOES X-ray class in the descending
order. For each event (hereafter parental event) assign “gev yyyymmdd hhmmss”
UniqueID according to the event. Then,

a) For each “gev” event, find all events in the RHESSI and HEK flare
catalogs overlapping in time, from the start to end times, and obtain their
coordinates and active regions. This is a list of candidate events corresponding
to the parental event.
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b) For each candidate event compare the coordinates and active regions
with the parent event. The events are assigned the same UniqueID as the
parent event if they have the same active regions and their location differs
by no more than δ = 250′′. This value was chosen experimentally, and it is
approximately equal to the size of a large active region. If one of the compared
events (parental or candidate) has coordinate or/and active region information
missing, the corresponding condition is assumed to be satisfied.

2. Repeat the procedure for the events for which the UniqueID is still not assigned,
using the RHESSI flare catalog. These events are sorted according to their
energy range and their UniqueIDs are assigned (“rhessi yyyymmdd hhmmss”).

3. Repeat the procedure for the remaining set of events for which the UniqueID
is still not assigned, using the HEK register. The HEK register contains events
overlapping in time (for example, reported for different SDO/AIA channels,
or from different locations), thus the matching procedure is still needed. For
the matched events, assign UniqueIDs “hek yyyymmdd hhmmss i”, where “i”
represents a discriminatory index assigned only to those events characterized
by the same start time but different locations.

The procedure of the UniqueID assignment for new events is repeated on a daily

basis. Nevertheless, a complication may happen if one of the events is reported with a

delay of one day or more. If this is the case, the UniqueIDs of the events overlapping

with such delayed events are deleted, and the UniqueID assignment starts for all the

events with empty UniqueIDs.

The same UniqueID may be defined for several GOES, HEK and RHESSI events.

For all such overlapping, we keep the maximum and minimum values for each of the

coordinates among all the matched events.

The last thing needed to be mentioned is how our UniqueIDs correspond to other

event IDs. The Solar Object Locator (SOL), which in its simplest form contains only

the event time, is one of the widely-used identifiers. Because it is not documented

whether the event time should correspond to the start, peak or end time, although,

for display purposes, we use the flare start time as a default reference time, but we

also assign and maintain in the database the correspondence between our UniqueID

and these three possible versions of the SOL IDs.
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3.4 Query Structure and Processing

In this chapter, we discuss the structure of the query engine. This engine is the most

important software component for the construction of the Web Application, because it

should be efficient, fast, and user-friendly. The current implementation retrieves and

displays the final list of events in a convenient form, works fast, and it is constructed

in such a way that adding new catalogs does not require changing the code structure.

To perform a query, the user needs to fill the request form in the Web

Application site: a web request form available at https://solarflare.njit.edu/

webapp.html (accessed on 04/08/2019). In the request form, the user selects the

desired time interval (including the ability to select the whole time range, starting

from January 1st, 2002), select the position of the event on the solar disk, apply

instrument-specific filters such as event availability of the uniquely-matched events

in different catalogs, as well as ranges of various physical parameters, and executes

the query by pressing the submit button. Alternatively, the user can load previously

saved query result.

3.4.1 Primary Catalogs, Filters and Appearance of the Additional Fields

The “primary” flare catalogs (GOES, RHESSI and HEK flare records) are updated

on a daily basis and have the flare records detected by their own algorithms. The

descriptors of the primary catalogs are displayed independent of the user’s selection

of filters. For example, if the user is searching for all events listed in the RHESSI

flare catalog, the output may have empty GOES or HEK fields. All fields will be

populated only if the data availability filters in “primary” catalogs are selected.

The on-the-fly generation of additional search fields corresponding to specific

event descriptors for the other catalogs depends upon user selection. For example,

let us consider the case of a user looking for the events listed in the Hinode catalog.

In such cases, the descriptor fields related to the Hinode catalog (number of observed
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frames, corresponding quicklook link etc.) will appear in the final table, as additional

columns. This strategy allows us to make the tables as short and informative as

possible based on the user’s query. Almost each of the parameter fields may be tuned

during the query: the filters allow not only the ability to check the appearance of

the event in a certain catalog, but also to select events having particular physical

characteristics.

The initially-constructed table (based on the primary catalogs) is the backbone

for the query: we simply discard from this table the event records which do not pass

additionally selected filters. This allows us to check the selected filters one by one,

without pulling them into one large query. This structure has one more advantage:

we can add the filters for new-uploaded catalogs/lists without disturbing the working

system. Adding of a new event table would just require a new independent block in

the query engine.

The final result of a query is presented in the form of a web table with moving

headers. One can simply drag the table to the right to see various characteristics of the

events. For better performance, we currently restrict the number of events appearing

in the table to 1000. However, the full lists of events are available for downloading in

the output file, which can be saved locally and reloaded anytime. We also added the

possibility to sort the output table according to the flare characteristics. The sorting

procedure represents another query to the server and includes all events, even if the

number of events exceeds 1000. The user has the option to download the output

table. In order to simplify the processing of the output file, we created a Python

parser which reads the table and creates the structure corresponding to the events.

3.4.2 Detailed Visualization of a Selected Event

The main purpose of the created database is to integrate the entries from different

catalogs, and to present a complete list of events satisfying a set of conditions specified
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by the user. However, from a practical perspective, it is very important to have a

brief look at the event data, and decide whether a particular event is interesting for a

case study or not. For this purpose, we created the ability to look at the event light

curves derived from different instruments. To proceed into the event page, one needs

to select the event of interest from the summary table retrieved in the previous stage,

and click the “Plot Data” button.

The main elements of this event page are the two dynamic graphs reflecting

the behavior of several event light curves: X-ray fluxes, Temperature and Emission

Measure calculated for the GOES data using the TEBBS algorithm, light curves from

the SDO/EVE/ESP instrument, and the Nobeyama Radio Polarimeter fluxes. The

user can select which plot to display, and scale it accordingly. For visualization, we

are currently using the Google Charts tool.

The interactive web interface also allows the user to download all the displayed

light curves. The downloaded file contains the GOES data with 2s resolution, and

the 10s averaged Nobeyama and SDO/EVE/ESP data. Besides the graphs, we also

provide the user with an image of the flare generated from SDO/AIA 1600 Å data,

and a detailed description of all overlapping events from the primary GOES, RHESSI

and HEK lists corresponding to the same UniqueID, as well as from the secondary

event sources. Besides the usual flare descriptors, the HEK database contains links

to the flare quicklook images: we keep these links in our event summary page, which

also can be downloaded.

In addition, the users are provided with the option of a similarity search

mechanism (currently beta version) that allows automatic selection of similar events

from the initial query table, based on some predefined and user-defined characteristics.

Each such event characteristic is normalized, and, if the associated fields are absent

from the table for some of the events, they are replaced by the median values of

the corresponding characteristic. The nearest neighbors of the selected event are
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determined based on the selected (predefined) characteristics using the Euclidean

distance.

3.4.3 Example of a Query

To demonstrate the capabilities of our Multi-Instrument Database of Solar Flares, we

provide here an example of a multi-instrument query. Suppose that the user wants

to study the chromospheric evaporation processes occurred during strong solar flares

(≥M1.0) in 2015 using the spatially-resolved high-cadence multiline spectroscopic

observations performed by the IRIS satellite, and simultaneously analyze the energy

released by precipitating accelerated electrons using RHESSI observations. Selecting

the corresponding GOES filter: GOES class ≥M1.0; the IRIS filter: expansion of the

field-of-view by 100′′, ≥4 slit positions, ≥5′′ covered perpendicular to the slits with

cadence of ≤60s; the availability of RHESSI observations, and selecting the non-limb

events (located not farther than 750′′ from the disc center to avoid strong projection

effects), the query would return six records. Some descriptors of these flares are

presented in Table 3.2. After such a query, the user can check the events manually:

see the lightcurves for each event, proceed to the IRIS quick look images and movies,

and check how well the events were covered by the IRIS slit positions, etc.

3.5 Conclusion and Future Plans

We have created an Interactive Multi-Instrument Database of the Solar Flares

available to the community at https://solarflare.njit.edu/. This database

integrates a set of available solar flare lists and data in a convenient way, and includes

the following main features:

• The integration of the flare events from different flare catalogs (GOES, RHESSI,
HEK, Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs). The match of
events from GOES, RHESSI and HEK primary flare lists, and assignment of
Unique Identifiers (UniqueIDs) for flares. The queries provide ”one flare — one
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Table 3.2 Results of the Sample Query

SOL ID Flare Class RHESSI highest energy IRIS raster mode
and number of slits

SOL2015-03-10T23:46:00 M2.9 12-25 keV coarse, 4-step
SOL2015-03-11T16:11:00 X2.1 25-50 keV coarse, 4-step
SOL2015-03-11T18:37:00 M1.0 25-50 keV coarse, 4-step
SOL2015-06-22T17:39:00 M6.5 100-300 keV sparse, 16-step
SOL2015-08-27T04:48:00 M2.9 12-25 keV coarse, 8-step
SOL2015-11-04T13:31:00 M3.7 50-100 keV coarse, 16-step

Note: see text for the query details.

Source: [194].
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result.” After the UniqueID assignment, the flare reports are integrated with
secondary flare catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA) and flare-
related events (Filament Eruption catalog, CACTus CME catalog), depending
on the user’s query;

• The search of the flare events based on their physical descriptors (both stored
in the catalogs and calculated by our efforts) and availability of observations
(currently IRIS and Nobeyama observational filters are available). The search
allows the users to select the events of interest based on the specified filters, get
the integrated properties of the events in one table, download the results of the
query, and visualize the processed light curves for each event;

• The detailed look at the data (GOES, ESP/EVE and Nobeyama light curves,
and temperature and emission measure derived from GOES data) for a
particular event, and to its summary containing quicklook links stored in the
primary catalogs, allows the user to form an initial opinion about the selected
event, and to decide whether the event would be interesting for a case study.

The integrated catalog results generated by our database provide a tool to

assist researches who study solar flares using large data archives. Firstly, the tool we

have created allows the user to search for events having the parameters of interest for

various statistical studies, handling all the catalog-creation tasks, or at least providing

a catalog to start from. Secondly, it provides a summary for each event, allowing the

researchers to understand if the particular event satisfies the criteria for particular

case studies. Our web application allows a platform- and software-independent access

to the data.

As far as we know, there are almost no examples of such kinds of query engines

for solar flares. In this case, our database really provides a unique overlook of the

flare data. Currently, there are many filters, catalogs and data processing modules

already implemented in our database. However, the design allows further addition of

the instrumental logs and sources without distortion of the current schema. Further

expansion of the sources is definitely in our plans. We also plan to increase the

flexibility of the project by developing a true Web API which will allow the user

to receive the flare lists, apply different integration schema, and contribute to the
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database by adding his own records and data. We also plan to integrate the VSO

API and generate data links for the stored flare events.
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CHAPTER 4

STATISTICAL STUDY OF CHROMOSPHERIC EVAPORATION
DURING IMPULSIVE PHASE OF SOLAR FLARES

4.1 Introduction

Depending on the deposited energy flux, the chromospheric evaporation during

the solar flares can be of two types: “gentle” (with subsonic velocities of the

evaporated plasma and timescales of several minutes) driven by low-energy flux

electron beams or heat conduction, and “explosive” (characterized by supersonic

upflows on shorter timescales) driven by high-intensity electron beams [9, 240].

Interestingly, the response of the chromospheric and lower transition region layers

differs in these regimes. For the “explosive” type, the model predicts downward

expansion accompanied by formation of a radiative shock and a relatively low-

temperature (∼ 104K) dense layer formed in the shock relaxation zone [112], which

is called the “chromospheric condensation”. For the “gentle” type, the downward

expansion is weak, so that upward motions dominate. Numerical simulations by

Fisher et al. [67, 66, 65] confirmed the existence of such evaporation regimes, and

showed that the critical energy flux for transition from the “gentle” to “explosive” is

∼1010 erg cm−2 s−1 for electron beams with a 20 keV low-energy cutoff. It is obvious

that evaporation properties are closely connected to the energy release and transport

mechanisms.

Multiwavelength spectroscopy is of special interest for studying chromospheric

evaporation because different spectral lines are formed at different heights and

can represent local properties of the plasma at these heights. An overview of

multiwavelength spectroscopic studies of solar flares was presented by Milligan [147].

Previous observational studies [148, 173, 29, 55, 74, etc.] have confirmed the existence

of the “gentle” [149, 198] and “explosive” [33, 30, 127, 32] chromospheric evaporation
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regimes which was concluded from the observations of the Doppler shifts of the

chromospheric and transition region lines of different signs. In addition, transition

between these regimes had been observed during some flares [173, 129].

Observations by the Interface Region Imaging Spectrograph [50, IRIS] provide

a unique opportunity for detailed spectroscopic studies of dynamics of the solar

atmosphere associated with chromospheric evaporation. IRIS observes several lines

formed in the chromosphere and lower transition region (Mg II h&k 2796 Å and

2803 Å lines, C II 1334 Å and 1335 Å lines and Si IV 1394 Å and 1403 Å lines), and, in

addition, the FeXXI 1354.1 Å line which corresponds to a forbidden magneto-dipole

transition and is formed in a very hot ∼ 107K plasma. There have been many

works on analysis of the chromospheric evaporation process using the high spatial,

spectroscopic and temporal resolution observations from IRIS [220, 30, 76, 100, 129,

168, 198, 221, 239, 167, 197, 241, 32, 121, 126, 130, etc]. A wide range of velocities of

the hot evaporated plasma and various dynamical responses of colder chromospheric

layers have been reported.

Radiative hydrodynamic flare simulations developed in recent years allow us to

understand a complicated physics behind the observed phenomena. Many numerical

simulations of the chromospheric evaporation process have been performed, both

for general studies of the flare dynamics and applications to specific flare events,

considering various heating mechanisms and energy release rates [114, 135, 67, 66,

65, 112, 134, 27, 96, 175, 184, 185, 99, 176, 178, 183, 92, 93]. In the simulations, it is

possible to test a variety of initial conditions and heating mechanisms, understand how

the atmosphere responds from the physical point of view, and derive relations between

the observed characteristics of the chromospheric evaporation and the deposited

energy flux and other parameters. Currently one of the most advanced code for

the modeling is the RADYN radiative hydrodynamic code [37, 1, 2, 5, 6, 134, 7].

A grid of RADYN models is available online from the F-CHROMA project website
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(http://www.fchroma.org/, accessed on 04/08/2019), allowing us to investigate

various regimes of flare energy release in the form of non-thermal electrons, and

to compare the atmospheric response to observations.

The goal of this project is to perform a statistical analysis of chromospheric

evaporation in flares simultaneously observed by RHESSI and IRIS, and compare the

derived relations with those obtained from the RADYN models. In particular, we

focus on analysis of the C II 1334.5 Å and FeXXI 1354.1 Å lines observed by IRIS in

the fast scanning regimes. The synthetic line profiles are calculated using the RH1.5D

radiative transfer program [189, 190, 227, 164] and the Chianti atomic line database

[119]. Section 4.2 explains details of the spectroscopic data analysis and calculation

of the synthetic line profiles. The analysis results are described in Section 4.3. A

discussion is presented in Section 4.4, followed by a summary and conclusion in

Section 4.5.

4.2 Data Selection and Analysis

4.2.1 Selection of Events

Using the Interactive Multi-Instrument Database of Solar Flares [191, IMIDSF,

https://helioportal.nas.nasa.gov/, accessed on 04/08/2019], we select flares the

impulsive phase of which was simultaneously observed by RHESSI and IRIS. Our

initial selection is restricted to the flare events from the GOES and RHESSI flare

lists, which have the GOES X-ray class of C5.0 or greater, located not farther than

750′′ from the solar disk center (to avoid strong projection effects), and observed

by IRIS in one of the fast scanning regimes (with ≥4 slit positions across the flare

region covering ≥6′′ in the direction perpendicular to the slit, with ≤90 s cadence

per cycle). The events with HXR sources not covered by the IRIS slit or with no

prominent non-thermal component in HXR spectra are excluded from the analysis.

Also, the events, for which the emission of FeXXI 1354.1 Å line is non-detectable by
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Table 4.1 Characteristics of the Analyzed Flares from Spectroscopic Analysis of UV and X-ray Radiation

SOL1 SOL2 SOL3 SOL4 SOL5 SOL6 SOL7

2014-02-13 01:32 2014-02-13 02:41 2014-03-29 17:35 2014-06-12 18:03 2014-06-13 00:30 2015-03-11 11:21 2015-08-27 04:48

GOES class M1.8 M1.0 X1.0 M1.3 C8.5 C5.8 M2.9

RHESSI analysis times 01:34:35-01:36:05 02:47:35-02:48:35 17:44:55-17:45:55 18:07:30-18:08:30 00:33:30-00:34:30 11:26:00-11:28:00 05:36:20-05:37:20

RHESSI detectors 1, 3, 4, 5, 7-9 1, 3, 4, 5, 7-9 2, 4, 5, 7-9 2, 4, 5, 7-9 1, 2, 4, 5, 7 1, 3, 5, 7-9 1, 5-9

Fitting energy range [keV] 6-40 6-40 6-100 6-49 6-70 6-40 6-58

Fnonth[erg/cm
2s] (9.6±1.4)·109 (3.9±1.1)·108 (2.2±1.1)·1010 (9.0±2.6)·108 (2.6±1.1)·109 (3.1±0.8)·108 (4.8±0.3)·1010

Ec[keV] 19.4±0.1 18.8±0.3 17.0±0.3 19.0±0.4 17.2±0.1 22.2±0.9 19.8±0.1

δ 8.93±0.25 9.09±0.13 4.65±0.15 6.69±0.47 6.50±0.29 9.81±0.56 8.35±0.11

C II mean Doppler shift [km/s] -21±27 -14±17 -24±33 -32±30 -54±48 -10±13 -40±48

C II mean Doppler shift time 01:36:18-01:36:56 02:47:34-02:48:12 17:45:36-17:46:41 18:08:21-18:08:39 00:34:10-00:34:28 11:27:04-11:28:09 05:37:25-05:37:46

C II strongest redshifts [km/s] -85±3 -40±3 -84±4 -90±5 -156±5 -31±4 -169±19

C II strongest redshifts time 01:37:01-01:37:39 02:47:34-02:48:12 17:45:36-17:46:41 18:08:21-18:08:39 00:33:49-00:34:07 11:25:48-11:26:54 05:38:14-05:38:35

FeXXI mean Doppler shift [km/s] 43±27 17±18 42±34 142±42 27±24 42±25 53±47S

FeXXI mean Doppler shift time 01:36:18-01:36:56 02:48:17-02:48:55 17:45:36-17:46:41 18:07:59-18:08:18 00:33:49-00:34:07 11:25:48-11:26:54 05:37:25-05:37:46

FeXXI strongest blueshifts [km/s] 112±6 54±6 181±52 217±9 70±9 88±8 146±7

FeXXI strongest blueshifts time 01:36:18-01:36:56 02:48:17-02:48:55 17:44:21-17:45:27 18:08:21-18:08:39 00:33:49-00:34:07 11:27:04-11:28:09 05:37:25-05:37:46

Note: Parameters from the RHESSI X-ray data are obtained using thick-target spectral fitting and images reconstructed using “vis cs”

algorithm. The spectral line Doppler shift characteristics are deduced from the IRIS UV data.

Source: [196].
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our methods, are also eliminated from the analysis. The final selection includes 7

flare events (see Table 4.1) that satisfy all the criteria.

4.2.2 RHESSI Data Analysis

The X-ray spectroscopic data obtained by RHESSI [131] allow us to estimate the

deposited energy rates as well as the size and location of the hard X-ray (HXR)

source and therefore derive the energy flux, one of the key parameters for the flare

hydrodynamic simulations.

To estimate the deposited energy rate we fit the thermal plus non-thermal thick-

target model [34, 114] to the X-ray spectra calculated for five 12 sec intervals (or

18-24 s for the flares with low count rates) covering the emission peaks in the 25-50 keV

energy range. The pileup correction and isotropic albedo component are applied to the

spectra. The total time intervals, fitting energy intervals, and the RHESSI detectors

used for our spectral analysis are listed in Table 4.1. In the case of several HXR peaks

we select the one preceding the enhancement of UV line characteristics observed by

the IRIS satellite.

The fitting is performed using a least-squares procedure available from the

OSPEX Solar SoftWare [69, SSW] package. The fit functions include three

components: “vth”, isotropic “albedo”, and “thick2”. The deposited energy rate for

each time interval is calculated using the formula Pnonth =
δ − 1

δ − 2
F (E > Ec)Ec, where

Ec is the low-energy cutoff derived from the spectra, F (E > Ec) is the number of

deposited electrons per second, δ is the spectral index. From the five time intervals for

each flare we select two intervals with prominent non-thermal components, the highest

deposited energy rates, and the smallest relative errors of the fitting parameters.

In addition to the deposited energy rates, for each event we derive the averaged

parameters of the energy spectra, δ and Ec. We note here that Ec is notoriously hard
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to measure, and consider a maximum value that is consistent with the data, meaning

that the derived power carried by non-thermal electrons is a lower limit.

To determine the energy flux, we reconstruct the RHESSI images using the

recently developed “vis cs” algorithm [63] applied with the standard λ = 0.5

sparseness parameter to the entire time intervals of the RHESSI analysis. The

data from detectors 2-8 are used for image reconstruction. The source size, S, is

determined as the area within 50% contours of the reconstructed images of the HXR

flux in the energy range of 25-50 keV. The reconstructed HXR sources areas are likely

overestimated, meaning that the stated energy fluxes are lower limits. Finally, we

derive the flux rate of non-thermal electrons for each flare event as Fnonth = Pnonth/S

(projection effects are taken into account in the source size calculation) and use

this value as the deposited energy flux. Along with the low-energy cutoff, Ec, and

the power-law index, δ, it is used for identifying the closest RADYN model for the

analyzed flares. In addition, we calculate the mean 25-50 keV photon fluxes emitted

from the HXR sources by dividing the integrated flux by the source area.

4.2.3 IRIS Data Analysis

The spatially-resolved measurements of ultraviolet (UV) spectra obtained by IRIS

[50] allow us to understand the properties of the evaporated plasma, as well as the

dynamical response of the lower layers of the solar atmosphere. In this study, we focus

on analysis of the C II 1334.5 Å (1−2·104K) and FeXXI 1354.1 Å (≈107K) lines which

reflect the dynamics of the relatively cold chromospheric and lower transition region

layers (including the chromospheric condensation) and the hot evaporating plasma

respectively. We choose the C II line because it has a less complex profile than the

Mg II lines, and it is rarely overexposed during the flares. However, the C II line is

still optically-thick [174] which can make any interpretation of C II Doppler shifts

ambiguous [117].
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For analysis of the C II line, we calculate the center-of-gravity parameters:

(1) the line peak intensity, and (2) the Doppler shift defined as the difference

between the center of gravity of the line and the reference wavelength for this

line 〈λ〉 − λref =
∫

λIdλ/
∫

Idλ − λref . This approach was tested in our previous

works [198, 197]. We calculate these characteristics for every spatial point and every

available time moment, and reconstruct time-dependent maps of the line intensity and

Doppler shift. Examples of such maps and the line profiles are presented in Figure 4.1

for SOL2014-06-12T18:03:00 event. The reference wavelength for the C II line, λref, is

estimated for each flare separately from the spectra in the areas not affected by the

flares.

The Center-of-Gravity estimates cannot be directly applied to the FeXXI line,

because it is blended with other lines. The strongest blend of the FeXXI line is the

C I 1354.334 Å line. These two lines are dominant in the corresponding IRIS spectral

window during the flares. Thus, we fit the spectra using the double-Gaussian fitting,

the applicability of which was demonstrated by Battaglia et al. [17]. From the fitting

parameters, we estimate the peak intensity of the FeXXI line (as the amplitude of the

corresponding Gaussian) and its Doppler shift (as a mean shift of the corresponding

Gaussian from the reference wavelength). The spectra where the fitting results are

unreliable (the intensity in the channel does not exceed preflare activity level, the

standard deviation of the Gaussian corresponding to C I line exceeds 0.15 Å, and the

standard deviation of the Gaussian corresponding to the FeXXI line is outside the

0.15 Å-0.30 Å range) are not considered in the analysis. The reference wavelength

of the FeXXI line is kept equal to 1354.14 Å as in our previous work [198]. This

estimate deviates from the value of 1354.106 Å derived by Young et al. [239] by ∼

0.03 Å (or∼6 km/s). However, the difference does not affect analysis of chromospheric

evaporation flows with velocities of ∼100 km/s or greater. An example of FeXXI
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Figure 4.1 An example of joint IRIS and RHESSI observations of the SOL2014-06-
12T18:03:00 flare event. a) IRIS 1330 Å slit-jaw image. White rectangle corresponds
to the region scanned by the spectrograph slit. b) Map of C II 1334.5 Å line Doppler
shifts. c) Map of FeXXI 1354.1 Å line Doppler shifts. Yellow contours in panels
a)-c) correspond to the 50%, 70%, and 90% of the maximum of the HXR 25-50 keV
source reconstructed from RHESSI data for 18:07:30-18:08:30 time period. Green
contours correspond to the mask of points for which the Doppler estimates (mean
and strongest) are obtained. d,e) C II line profiles obtained for points 1 and 2 (orange
and black crosses in panels a-c). Red vertical line corresponds to the centroid of the
line, green vertical line — to its reference wavelength. f,g) FeXXI and C II line profiles
obtained for points 1 and 2 (black and grey crosses in panels a-c). Grey profiles show
the corresponding double-Gaussian fitting. Blue vertical lines indicate the center of
the Gaussian corresponding to the FeXXI line, green vertical lines — its reference
wavelength.

Source: [196]
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Doppler shift map together with examples of FeXXI and C I line profiles and double-

Gaussian fitting are also presented in Figure 4.1.

After calculating the line intensities and Doppler shifts for the entire flare region,

we determine a time-dependent mask of points involved in the flare heating. First, we

find the maximum of the averaged C II line intensities (integrated across the scanned

region) for each scan during the flare and define it as a threshold, and then for

each scan, construct the mask of points where the C II intensity is greater than the

threshold. The derived masks capture the flare dynamics and are independent from

the RHESSI data. A comparison of the mask derived for SOL2014-06-12T18:03:00

with the HXR sources is presented in Figure 4.1a-c. Basically, for each considered

flare event the derived IRIS masks intersect the previously obtained regions of the

25-50 keV HXR sources.

To quantify the response of the solar atmosphere, we calculate the mean values of

the C II and FeXXI Doppler shifts within the derived masks, and record the time and

value of their maxima. We calculate the standard deviation for the mean Doppler shift

values to estimate their uncertainties. An example of the evolution of C II and FeXXI

mean Doppler shifts during the SOL2014-03-29T17:35:00 X1.0 class flare is presented

in Figure 4.2. The mean Doppler shift peaks are very prominent, and correspond to

the first pulse of HXR 25-50 keV flux. In addition, we quantify the Doppler shifts

in the areas that responded most strongly to the heating. The following procedure

is applied: 1) for each IRIS slit scan, derive the Doppler shift level above which

95% of detected C II Doppler shifts are located (i.e., separating the 5% strongest C II

redshifts across the flare region); 2) find the minimum among the derived Doppler shift

levels. We repeat the same procedure for the FeXXI blueshifts (hereafter referred as

“FeXXI strongest blueshifts”). Their values and times are summarized in Table 4.1

for each flare. To estimate errors in the determination of the C II strongest redshifts

and FeXXI strongest blueshifts, we decreased the IRIS raster field-of-view by 25%
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and repeated the procedure. The standard deviations for the mean Doppler shifts

are comparable with the Doppler shifts themselves, but the uncertainties for the

strongest Doppler shift values are usually lower than the IRIS spectral resolution

value, ≈3 km/s, for the C II line, and the uncertainty in the reference wavelength of

the FeXXI line.

4.2.4 Calculation of Synthetic Line Profiles

The F-CHROMA database provides the 1D radiative hydrodynamic (RADYN)

models of solar flares for a variety of the electron beam parameters (averaged energy

fluxes from 1.5×109 to 5.0×1010 erg cm−2s−1, low-energy cutoff values of 15 keV,

20 keV, or 25 keV, and spectral indexes ranging from 3 to 8). The RADYN code

solves the coupled, non-linear, equations of hydrodynamics, radiation transport, and

non-equilibrium atomic level populations, on an adaptive 1D vertical grid. The

elements that are important for the chromospheric energy balance are treated in

the non-LTE formulation, and the other species are included in the radiative loss

function in the LTE approximation. The atomic level population and radiation

transport equations are solved for a 6-level-with-continuum hydrogen atom, a

9-level-with-continuum helium atom, and a 6-level-with-continuum Ca II atom. For

a detailed description see Allred et al. [7] and references therein. In the F-CHROMA

database, the 1D flare models are calculated with 300 height grid points and 201

frequency points. To avoid overestimating radiative losses from the Ly-α line partial

redistribution (PRD) effects were mimicked by modeling these lines as Doppler

profiles. The initial atmosphere is described using the VAL3C model [229]. The

temporal profile of the deposited energy flux rate is a triangle; the electron beam

heating lasts for 20 s with the peak at 10 s. In this work, we analyze 20 RADYN

models. Although there are models which are close to the analyzed flares in terms

of the averaged energy flux, averaged low-energy cutoff and spectral index, we do
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Figure 4.2 An example of the normalized integrated light curves and variations
of the spectral line parameters for the SOL2014-03-29T17:35:00 flare event. a)
normalized HXR 12-25 keV (green), 25-50 keV (black) light curves and normalized
C II 1334.5 Å intensity (orange) and Doppler shift (red). b) normalized HXR
12-25 keV (green), 25-50 keV (black) light curves and normalized FeXXI 1354.1 Å
intensity (light blue) and Doppler shift (dark blue). Black dotted vertical lines mark
the time interval where the deposited energy flux was estimated from RHESSI data.
Grey vertical line represents the middle of the time interval where the peaks of the
Doppler shifts means occur.

Source: [196]
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not explicitly compare them to each other because of ambiguities (and possible

overestimations) in HXR source areas derived from RHESSI data. The selection

results are summarized in Table 4.2.

To calculate the C II 1334.5 Å line we use the height scale, density, temperature,

electron density, plasma vertical velocity, and hydrogen populations from the RADYN

snapshots as an input for the RH radiative transfer code [189, 190, 227, 164].

The latest version of the RH 1.5D massively-parallel code (https://github.com/

ITA-Solar/rh, accessed on 04/08/2019) has been adopted for the calculations. Notice

that the code assumes that the populations of atomic levels are in the statistical

equilibrium, but the non-equilibrium electron density distribution is taken from the

RADYNmodels. The inclusion of the non-LTE hydrogen, carbon, and silicon [174, 97,

an important source of background opacity for C II lines] populations provides results

accurate enough for the C II line profile calculations, other species are assumed to be

in LTE. Also, the calculations are done under the complete frequency redistribution

assumption (CRD) that has been proven to be adequate for the C II line [174]. The

C II line profiles are calculated with 1 s time cadence for the selected RADYN models.

To calculate the FeXXI 1354.1 Å line, we use Chianti atomic line database [119].

It allows us to simulate the optically-thin emission of the FeXXI line under the

ionization equilibrium assumption for a single temperature plasma. Using the

Chianti software we simulate the FeXXI emission at each grid point of the RADYN

model (assuming thermal line broadening only), calculate the emission Doppler shift

according to the local plasma velocities, and sum up the results for each snapshot.

Finally, the Doppler shift is calculated using the Center-of-Gravity method

for both C II and FeXXI lines. An example of the Doppler shift behavior and the

simulated C II and FeXXI line profiles is presented in Figure 4.3, which illustrates

the “explosive” chromospheric evaporation (with strong redshifts of the C II line).

For each run, we record the peak C II Doppler shifts during or within five seconds

62



Table 4.2 Characteristics of Spectral Lines Calculated from the RADYN Models

F-CHROMA ID Fnonth[erg/cm
2s] Ec[keV] δ C II Doppler shift FeXXI Doppler shift

maximum, km/s maximum, km/s

d4 3.0e10 t20s 15keV 1.5·109 15 4 38.2 99.0

d7 3.0e10 t20s 15keV 1.5·109 15 7 44.7 71.0

d8 3.0e10 t20s 15keV 1.5·109 15 8 39.7 54.0

d7 3.0e10 t20s 20keV 1.5·109 20 7 17.2 —

d8 3.0e10 t20s 20keV 1.5·109 20 8 12.6 —

d4 3.0e10 t20s 25keV 1.5·109 25 4 8.4 —

d7 1.0e11 t20s 15keV 5.0·109 15 7 -4.6 400.0

d8 1.0e11 t20s 15keV 5.0·109 15 8 -11.4 422.0

d4 1.0e11 t20s 20keV 5.0·109 20 4 28.9 148.0

d7 1.0e11 t20s 20keV 5.0·109 20 7 27.0 94.0

d8 1.0e11 t20s 20keV 5.0·109 20 8 39.7 73.0

d8 1.0e11 t20s 25keV 5.0·109 25 8 17.4 —

d8 3.0e11 t20s 15keV 1.5·1010 15 8 -44.7 510.0

d4 3.0e11 t20s 20keV 1.5·1010 20 4 8.3 436.0

d8 3.0e11 t20s 20keV 1.5·1010 20 8 -17.8 559.0

d6 3.0e11 t20s 25keV 1.5·1010 25 6 11.4 242.0

d8 3.0e11 t20s 25keV 1.5·1010 25 8 10.9 184.0

d4 1.0e12 t20s 20keV 5.0·1010 20 4 -30.5 614.0

d5 1.0e12 t20s 20keV 5.0·1010 20 5 -36.9 705.0

d5 1.0e12 t20s 25keV 5.0·1010 25 5 -15.7 706.0

Source: [196].
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after the heating phase, and the peak FeXXI Doppler shifts during the entire run,

and use them as a measure of the atmospheric response to the heating. The peak

values of the Doppler shifts for each model are shown in Table 4.2. The missing

FeXXI values correspond to the RADYN models for which the plasma temperature

does not exceed 106K or the FeXXI Doppler shift was still increasing in the end

of the model. We do not apply any instrumental effects to our synthetic spectra

(resolution, point-spread-function). Also, we assume that the emergent synthetic

spectra are at disk center, originating from a vertical flux tube. While this is an

adequate assumption for C II line which forms over in a narrow region deep in the

flare loop, FeXXI line likely forms over an extended region. Therefore when we

sum up the emission from Fe XXI we are not separating footpoint emission from

looptop emission. Our observations originate from various locations on the disk, and

so geometric effects in some events may account for some differences between our

model-data comparison.

4.3 Results

In this section, we analyze correlations among the observed flare parameters and

compare them with the correlations found for the RADYN RHD flare models.

Relationships between the energy fluxes and Doppler shifts are of particular interest.

Such relations can provide a possibility to diagnose the properties of the energy release

from the observed UV spectroscopic data. To analyze presence of correlations for each

considered pair of parameters we calculate non-parametric Kendall’s τ coefficient

(Kendall’s rank correlation coefficient) defined as:

τ =
2

n(n− 1)

∑

i<j

sgn(xi − xj)sgn(yi − yj) (4.1)

Here {xi} and {yi} are the values of the considered pair of parameter; sgn is a

sign operator; n is a number of elements in each data set. Kendall’s τ ranges between
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Figure 4.3 a) An example of the C II 1334.5 Å and FeXXI 1354.1 Å line Doppler
shift calculations for the RADYN run d5 1.0e12 t20s 20keV. In this simulation, a
non-thermal electron distribution with a slope of δ = 5, low energy cutoff Ec = 20 keV
was injected for 20s, according to the triangle-shaped profile (gray), delivering a total
time-integrated flux of 1.0 ×1012 erg cm−2. The corresponding C II (red, left scale)
and FeXXI (blue, right scale) Doppler shift evolutions are presented. Gray dashed
lines mark the time moments for which the simulated C II and FeXXI line profiles in
panels b)-e) are presented. Red and blue vertical lines in panels b)-e) correspond to
the centroids of the lines, green vertical lines — to their reference wavelengths.

Source: [196]
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-1 and 1, and its value is expected to be 0 for independent data sets. We calculate

a p-value for a hypothesis test whose null hypothesis is an absence of association

(τ = 0). Low p-value (< 0.05) indicates that the difference of the presented τ values

from zero is statistically significant. We also calculate linear regression correlation

coefficients (CC) and the corresponding p-values (for a hypothesis test whose null

hypothesis is that the slope is zero), with a weighted least squares procedure applied

for the regression. Results of the statistical analysis, together with the empirical

dependences for parameters, are summarized in Table 4.3.

Figure 4.4 presents the relationship between the 25-50 keV averaged photon flux

and the estimated electron energy flux for the analyzed flare events. The correlation

between these parameters in the log-log scale is significant (τ=0.90, p-value 0.0043),

with the linear correlation coefficient (CC) of 0.88. The observed correlation confirms

the applicability of the thick-target flare model which assumes that the observed HXR

emission is a bremsstrahlung radiation of high-energy electrons.

Figure 4.5 shows the observed relationships between (a) the C II 1334.5 Å line

mean Doppler shift and the deposited energy flux, and (b) the C II line strongest

redshifts and the deposited energy flux. Panel (c) shows the C II Doppler shift vs the

energy flux for the RADYN models. Although all panels demonstrate correlations

between the deposited energy flux and the C II Doppler shift parameters (with τ of

-0.52, -0.52, and -0.58, and with linear CCs of -0.42, -0.67, and -0.73 for panels a-c),

the correlations are statistically significant only for models (p-values for observational

relationships are high). However, the correlation between the C II strongest redshifts

and the deposited energy flux also has a trend toward significance: the corresponding

p-value for Kendall’s τ is ∼ 0.1. The strongest difference between the models and

observations (panels a and b) is that no positive C II mean Doppler shifts (blueshifts)

are found in the observations, although according to the RADYN models these are

expected for some of the observed flare events.
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Table 4.3 Correlation Coefficients and Relationships for the Observed and Modeling Parameters

Pair of parameters Kendall’s τ Kendall’s τ p-value∗ Linear fit CC Linear fit p-value+ Linear fit equation

Observational parameters

Fph and Fnonth 0.90 0.0043 0.88 0.0083 log10Fnonth = (11.6 ± 0.5) + (0.87 ± 0.20) · log10Fph (2)

Fnonth and vC II
mean -0.52 0.10 -0.42 0.34 —

Fnonth and vC II
5%red

-0.52 0.10 -0.68 0.093 vC II
5% red

= (302± 195) − (42± 21) · log10Fnonth (3)

Fnonth and vFeXXI
mean 0.29 0.36 -0.08 0.87 —

Fnonth and vFeXXI
5% blue

0.33 0.29 0.39 0.38 vFeXXI
5% blue

= (−138 ± 274) + (28± 29) · log10Fnonth (4)

vC II
mean and vFe XXI

mean -0.20 0.54 -0.13 0.78 —

vC II
5%red

and vFeXXI
5% blue

-0.24 0.45 -0.19 0.69 —

Modeling parameters

Fnonth and vC II -0.58 0.0012 -0.73 2.4·10−4 vC II = (359.0 ± 77.0) − (35.9 ± 7.9) · log10Fnonth (5)

Fnonth and vFeXXI 0.77 0.00012 0.84 4.6·10−5 EvFe XXI = (3500.0 ± 662.0) + (386.0 ± 66.0) · log10Fnonth (6)

vC II and vFe XXI -0.78 2.8·10−5 -0.92 4.3·10−7 vFeXXI = (373.0 ± 24.5) − (7.45 ± 0.84) · vC II (7)

Note: : the observed and modeling parameters include non-thermal energy flux, Fnonth; 25-50 keV photon flux, Fph; C II mean Doppler
shift, vC II

mean; C II strongest redshifts, vC II
5%red; FeXXI mean Doppler shift, vFeXXI

mean ; FeXXI strongest blueshifts, vFeXXI
5% blue (v in km/s, Fph in

photons/cm2arcsec2s, Fnonth in erg/cm2s).
∗p-value for a hypothesis test whose null hypothesis is an absence of association (Kendall’s τ is zero).
+p-value for a hypothesis test whose null hypothesis is that the slope is zero.

Source: [196].
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Figure 4.4 Dependence of the deposited electron energy flux estimated using the
thick-target model fits to the X-ray spectra on the mean flux of 25-50 keV photons for
the analyzed flare events. Different colors correspond to the closest low-energy cutoff
values among 15 keV (green), 20 keV (red) and 25 keV (black). The inclined dashed
line indicates the best linear log-log fit. The linear fit coefficients and corresponding
correlation coefficient are presented in Table 4.3.

Source: [196]
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Figure 4.5 Dependence of the C II 1334.5 Å line Doppler shift estimates on the deposited energy flux from the observations
(panels a and b, mean values and the strongest redshifts) and the RADYN models (panel c, strongest Doppler shifts over the
run). The size of crosses in panels b) and c) corresponds to the errors estimated for each flare event. Different colors correspond
to the closest low-energy cutoff values among 15 keV (green), 20 keV (red) and 25 keV (black). The inclined dashed lines show
the best linear fits. The fitting and correlation coefficients are presented in Table 4.3.

Source: [196]
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Figure 4.6 shows the observed relationship between (a) the FeXXI,1354.1 Å line

mean Doppler shift and the deposited energy flux, and (b) the FeXXI line strongest

blueshifts and the deposited energy flux. Panel (c) shows the FeXXI Doppler shift and

energy flux relationships for the RADYN models. Although the models demonstrate

a very strong correlation (panel c, τ = 0.77, CC = 0.84), the observed FeXXI Doppler

shift mean values do not show any significant dependence on the deposited energy

flux. The FeXXI strongest blueshifts show weak correlation (τ=0.33, CC=0.39) with

the energy flux which, moreover, cannot be called statistically-significant. We still

show the corresponding linear fit in Figure 4.6b, however, point out that low number

of events does not allow us to confirm or decline presented trend. Also, one can see

that many models demonstrate very strong FeXXI Doppler shifts, in the range of

400-700 km/s, while there is only one observational result exceeding 200 km/s.

Figure 4.7 shows the observed relationship between (a) the C II 1334.5 Å line

mean Doppler shift and the FeXXI,1354.1 Å line mean Doppler shift, and (b) the

C II line strongest redshifts and FeXXI strongest blueshift. Panel (c) shows the C II

Doppler shift and FeXXI Doppler shift relationships for the corresponding RADYN

models. Although the correlations for the models are strong demonstrating that

higher velocities of chromospheric evaporation correspond to faster downflows in the

colder atmospheric layers, we do not find such behavior for observations.

4.4 Discussion

In this work, we have performed a statistical analysis of the Doppler shifts of two

UV lines, C II 1334.5 Å and FeXXI 1354.1 Å, which characterize the lower transition

region and coronal dynamics during solar flares, and compared the results with the

corresponding radiative hydrodynamic RADYN models. To estimate the deposited

energy flux, we assumed the thick-target flare model of bremsstrahlung radiation.

Figure 4.4 illustrates the general correctness of this assumption. Such kind of
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Figure 4.6 The same as in Figure 4.5 for the relationship between the energy flux and the FeXXI 1354.1 Å line Doppler shift.

Source: [196]

7
1



Observations

-200 -150 -100 -50 0
C II redshift (5% level), km/s

0

50

100

150

200

250

F
�

�
�

	


��

�


�
��

�
��

�
��

�
�
��

�
�
�

�


Observations

-80 -60 -40 -20 0
C II Doppler shift mean, km/s

0

50

100

150

F
e 

X
X

I 
D

o
p
p
le

r 
sh

if
t 

m
ea

n
, 
k
m

/s

a) b) c)

Modeling

-40 -20 0 20 40
C II Doppler shift, km/s

0

200

400

600

F
e 

X
X

I 
D

o
p
p
le

r 
sh

if
t,

 k
m

/s

Figure 4.7 The same as in Figure 4.5 for the relationship between the C II 1334.5 Å and FeXXI 1354.1 Å line Doppler shift
estimates.

Source: [196]
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relationships potentially allows us to filter out the flare events for which the

thick-target model is inappropriate or the fitting procedure is performed incorrectly.

It is found from the RADYN flare hydrodynamic models of chromospheric

evaporation that the relationships between the Doppler shifts of the UV lines and

the energy flux (Figures 4.5c-4.7c) can be approximated by a linear-log regression

(see the correlation coefficients and fitting parameters in Table 4.3), although the

considered data set has a multi-parametric nature (low-energy cutoffs and slopes of

the energetic electron spectra are not taken into account in the correlation analysis).

Thus, one should expect to find similar trends for the observations to reasonable

degree, given the assumptions of the model, the lack of geometric considerations,

and the impact of spatio-temporal resolution on the observed profiles. However, such

trends are not so clear for the considered observational data set. Figures 4.5a,b-4.7a,b

show significantly weaker correlations. The only correlation with a tendency to be

statistically-significant is found between the C II strongest redshift and the deposited

energy flux, and is described by the empirical Eq. 3 (Table 4.3). In principle, this

relation could be used as an indirect diagnostic tool of the deposited energy flux,

allowing the estimation of the energy flux at least by an order of magnitude. We

cannot make a comparison with the modeling Eq. 5 due to absence of the mean

blueshifts in observational results.

In Section 4.1 we have discussed two regimes of chromospheric evaporation: the

“explosive” regime characterized by supersonic velocities of evaporated plasma and

chromospheric condensation downflow, and “gentle” regime with subsonic evaporation

and upflows of colder layers. Using the empirical relations we can estimate the energy

flux corresponding to transition between these regimes. For RADYN models, we use

Eq. 5 and 6 in Table 4.3 assuming vC II[km/s] = 0 and the coronal sound speed

vFeXXI =100-200 km/s. Considering the uncertainties of fitting coefficients, we obtain

that the transition energy flux is (2.2-10.1)·109 erg cm−2 s−1 for the models. We
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note that this flux is lower than the ∼1010 erg cm−2 s−1 transition flux obtained by

Fisher et al. [67, 20 keV low-energy cutoff is assumed for the beam]. Unfortunately,

it is impossible to derive reliable transition energy flux from the observations. The

only way to get an estimate is to use the Eq. 5 (Table 4.3) for FeXXI strongest

blueshifts, because no positive mean Doppler shifts were observed for C II, and no

correlation for the FeXXI mean Doppler shift was found. Assuming that there are no

supersonic flows (greater than 100-200 km/s) for the flares with gentle evaporation,

we estimate the transition energy flux to be (2-8)·109 erg cm−2 s−1. Notice again

that high ambiguities of the observational relation and high p-value do not allow

us to claim that the estimated transition energy flux is statistically-reliable. We

also need to mention that the transition energy depends in general not only on the

deposited energy fluxes, but also on the low-energy cutoff values, the power law of

the non-thermal spectra, and the duration of heating [64, 175]. It seems that the

low-energy cutoff dependence dominates over the spectral slope variations [211]. We

see signatures of this effect in the models.

Our analysis revealed the difference between the simulated and observed FeXXI

Doppler velocities: the observed Doppler velocities rarely exceed 150 km/s, while

the Doppler shifts calculated for the RADYN models indicate significantly higher

upflow velocities, ranging from 200 km/s to 700 km/s. The Doppler shifts of the

FeXXI line detected in other works also rarely exceed 200 km/s. For example,

Young et al. [239] reported the evaporation velocities of about 100-200 km/s for

the SOL2014-03-29T17:35:00 flare. Brosius and Daw [30] reported Doppler shifts of

150 km/s for the FeXXI line during the M7 flare of 2014 April 18. Polito et al. [168]

detected 82 km/s blueshift for the C6.5 class flare of 2014 February 3. For two X1.6

class solar flares of 2014 September 10 and October 22, Li et al. [129] found the

FeXXI velocities up to 200 km/s. Zhang et al. [241] found the upflows of 35-120 km/s

during the C4.2 circular-ribbon flare on 2015 October 16. Polito et al. [167] detected

74



the evaporation flow velocities of 200 km/s for fully-resolved (single-gaussian) FeXXI

line profile. Why does this discrepancy happen? Graham and Cauzzi [76] pointed

out that the FeXXI line is very strongly blueshifted in the beginning of the flare,

but its emission is weak. As evaporation develops, the line becomes stronger but less

blueshifted. This effect is also seen in Figure 4.2b. The weak forbidden FeXXI line,

with several blends on it, might simply be non-detectable during the most blueshifted

phase, when the maximum of the evaporation velocities takes place. The RADYN

models confirm such line behavior in general: the intensity of the synthesized FeXXI

line continues to grow at the time of the Doppler shift peak for most of the models.

We also note here that it is not possible to detect FeXXI line blueshifts of ' 300 km/s

because of the limited wavelength range of IRIS O I spectral channel. However, the

Doppler shifts found in this work rarely exceed 200 km/s, and there is no strong

influence of this effect on our results.

The RADYN models available from the F-CHROMA database website (http:

//www.fchroma.org/, accessed on 04/08/2019) have a standard time dependence of

the energy input in a form of triangle 20 s duration with the peak at 10 s. To estimate

the influence of the deposited energy flux profile shape on the Doppler shifts of the C II

and Fe XXI lines without changing the heating phase duration and energetics (average

and peak deposited energy fluxes), we performed four additional RADYN runs. Two

of them were similar to the run “d5 1.0e12 t20s 25keV”, with the only difference that

the location of the peak of the heating function was at 5 s (1st run) and at 15 s (2nd run)

from the start of the run. The 2nd run was computationally demanding, and so we

show here the first 18 s that we have computed (long enough to demonstrate any large

scale differences). For two other runs, the total energy of 1010 erg cm−2 (lower than

in any F-CHROMA run) was deposited by a population of accelerated electrons with

15 keV low-energy cutoff and spectral slope of 7. The heating was, again, triangular

shape, lasted 20 s, and peaked at 5 s (3rd run) and at 15 s (4th run). We applied the
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same analysis for these runs as for the F-CHROMA runs, and calculated the peak

Doppler shifts for C II and FeXXI. For the 1st and 2nd runs, the C II peak Doppler shift

was -21.6 km/s and -13.4 km/s, which is relatively close to the Doppler shift derived for

“d5 1.0e12 t20s 25keV” run (-15.7 km/s). The corresponding Fe XXI peak Doppler

shift for the 1st run was 550 km/s (compare with 706 km/s for “d5 1.0e12 t20s 25keV”

run). Unfortunately, the FeXXI peak Doppler shift was not reached during the first

18 s of the 2nd run, but the calculated Doppler velocities of the FeXXI line were

>330 km/s at 18 s and continued to grow. The 3rd and 4th runs showed consistent

behavior. The peak Doppler shifts for these runs were 20.5 km/s and 21.2 km/s (for

C II line) and 34 km/s and 35 km/s (for FeXXI line) correspondingly. Thus, we can

expect that the heating profile variations (with the total and peak deposited energy

fluxes fixed) do not significantly affect the overall response and large scale trends of

the atmospheric response, but do introduce differences.

Among the studied flares, we did not find any with positive mean Doppler shift

of the C II line. The C II line is always mainly redshifted in observations. However, the

RADYN models suggest that for the low energy fluxes found in several studied events,

we should detect “gentle” chromospheric evaporation with blueshifts of the C II line.

One of the possibilities to explain this discrepancy is that we significantly overestimate

the area into which energy is deposited, thus underestimating the energy fluxes of

the observed events. As an example, the deposited energy flux for the SOL2014-03-

29T17:35:00 flare estimated by Kleint et al. [104] is more than 10 times higher than one

obtained in this work. On the other hand, Sadykov et al. [198] previously found gentle

chromospheric evaporation during the SOL2014-06-12T21:01:00 M1.0 where the C II

line was also mainly redshifted. Despite negative values of the C II mean Doppler

shifts, we found that for all observed events there are areas with blueshifted C II line

during the impulsive phase. This finding is in agreement with the multi-thread nature

of solar flares [76, 234, 178, 183] and requires further detailed investigation.
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4.5 Summary and Conclusion

In summary,

1. We analyzed seven flares jointly observed by the RHESSI and IRIS satellites
that allowed us to perform a statistical study of the chromospheric evaporation,
and investigate relationships between the energy release properties and the
atmospheric response. To compare observational findings with the results of the
chromospheric evaporation process simulations, we calculated synthetic C II and
FeXXI line profiles for 20 different radiative hydrodynamic (RADYN) models
and derived the corresponding Doppler shifts.

2. For the observations, the deposited energy fluxes (derived using the thick-target
model assumption) correlate with the 25-50 keV photon fluxes averaged over the
HXR sources. The linear correlation coefficient for their logarithmic values is
very high (0.88, see Figure 4.4 and Table 4.3). Strong deviations from this
dependence may indicate on inapplicability of the thick-target model for some
flare events.

3. Despite differences in the slopes and low-energy cutoffs of the deposited energy
electron spectra, RADYN models reveal linear dependence of the C II and
FeXXI peak Doppler shifts from the logarithm of the deposited energy flux,
with high statistically-significant correlation coefficients (-0.73 for C II and 0.84
for FeXXI).

4. The only observational relation having a tendency to be statistically-significant
is found for the strongest C II Doppler shifts and deposited energy flux. The
empirical relation Eq. 3 (Table 4.3) is the best candidate for the energy flux
diagnostics from the UV spectroscopic data.

5. The C II and FeXXI line Doppler shifts derived for the studied flares do not
correlate with each other in observations but do strongly correlate in RADYN
models (the correlation coefficients are -0.13/-0.19 for observational results and
-0.92 for the results of the models).

6. The energy flux required for the transition from “gentle” to “explosive”
evaporation regime is (2.2-10.1)·109 erg cm−2 s−1 from the RADYN models,
and (2-8)·109 erg cm−2 s−1 from the observations. The observational estimate
require verification on a larger statistics of events.

7. There are qualitative discrepancies between the observations and RADYN
models:

a) The observed FeXXI Doppler shifts are weaker than ones derived from
the models. The maximum observed FeXXI Doppler shifts reach 220 km/s,
while the models show the Doppler shifts of 400 km/s and higher. However,
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notice that the synthesized FeXXI emission is integrated over the whole loop,
and it is likely that FeXXI is unobservable during the most blueshifted phase
due to low plasma emission measure at high (> 1MK) temperatures at that
moment.

b) The observed mean C II Doppler shifts are always negative (corre-
sponding to redshifts) during the studied flares even for the events with
relatively weak deposited energy fluxes (of about 109 erg cm−2 s−1). Contrary,
the models predict that the C II Doppler shift should change from negative to
positive with the decrease of the energy flux. However, for all events there are
areas with blueshifted C II line during the impulsive phase of flares, which is in
agreement with the multi-thread nature of solar flares.

There are several assumptions made in this study. First, the IRIS raster

scans cover only a part of the flare ribbons, and we assume that the distribution of

chromospheric responses is the same in covered and uncovered parts of the ribbons.

Second, we consider only certain descriptors of the UV line Doppler shifts but not

their dynamical properties. Third, the synthetic spectral line profiles are calculated

under assumption of statistical equilibrium for the C II line and ionization equilibrium

optically-thin emission assumption for the FeXXI line. Under these assumptions, our

observational statistical study demonstrated for the first time how the Doppler shifts

of UV lines during the chromospheric evaporation process depend on the deposited

heat flux. Further joint X-ray and UV spectroscopic observations of flares as well

as development of more sophisticated data analysis techniques are needed for better

understanding of the flare energy release and transport.
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CHAPTER 5

STATISTICAL PROPERTIES OF SOFT X-RAY EMISSION OF
SOLAR FLARES

5.1 Introduction into the Problem

Although different mechanisms can be responsible for chromospheric evaporation

during the solar flares, the general sequence of physical processes is qualitatively

similar. After the flare starts, the energy release mechanism heats the dense

chromospheric plasma until it reaches maximum temperature, Tmax. During and after

this process, the hot chromospheric plasma expands into the coronal loops. Once the

energy release weakens, the evaporated plasma flow also weakens, and at some point

the plasma starts condensing back into the chromosphere. At this time moment, the

plasma reaches its maximum emission measure, EM =
∫

n2dV .

The X-ray Sensor [23, XRS] at the Geostationary Operational Environmental

Satellite (GOES) series currently provides one of the longest continuous observations

of solar activity. GOES measures the Soft X-ray (SXR) flux in two channels, 1-8 Å

and 0.5-4 Å. The maximum emission in the 1-8 Å channel is traditionally used to

define the flare class, which often serves as a measure of the flare strength. Thus

it is important to understand what physical characteristics, such as the plasma

temperature and emission measure, are represented by the GOES classes. Assuming

a single-temperature plasma approximation, Thomas et al. [219], Garcia [72], and

White et al. [237] developed a procedure to compute the temperature (T) and emission

measure (EM) of the flare plasma based on the GOES SXR measurements. Studies

of Feldman et al. [62], Garcia [71], Ryan et al. [187] demonstrated correlations of the

GOES SXR flux maximum with the maximum temperature and emission measure

during solar flares. Because the instrument response per unit emission measure [237,

Figure 7] is a monotonically increasing function of temperature, increasing both T
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and EM can increase the SXR flux in both GOES channels. Since the maximum

temperature, Tmax, is expected to occur before the maximum of emission measure,

EMmax, one can suggest that the maximum of the GOES SXR 1-8 Å flux is likely

to occur between the T and EM maxima. The timeline of events is illustrated in

Figure 5.1.

Figure 5.2 illustrate the SXR 1-8 Å flux, its derivative, temperature, and

emission measure calculated for the standard flare model using the RADYN radiative

hydrodynamic code [7]. The model results are in qualitative agreement with the

timeline in Figure 5.1. The RADYN code solves time-dependent hydrodynamic,

radiative transfer, and non-equilibrium atomic level population equations on an

adaptive 1D vertical grid. Specifically, Figure 5.2 shows the results for the RADYN

model “radyn out.val3c d3 1.0e12 t20s 15kev fp” from the F-CHROMA solar flare

model database (http://www.fchroma.org/, accessed on 04/08/2019). In this

model, the energy flux is deposited by a beam of accelerated electrons (with a 15 keV

low-energy cutoff and a power-law spectral index of 3) propagating downwards and

delivering a total of 1012erg cm−2 into the atmosphere in 20 seconds. The SXR

emission is calculated for each grid point of the RADYN model assuming that the

loop cross-section is S = 1018 cm2, and summed up over the grid points for each time

snapshot. Using these SXR light curves and assuming a single-temperature plasma

approximation, we calculate T and EM.

The motivation of this work is to understand the relationships between the

plasma parameters (maximum values of T and EM and the corresponding times) and

the properties of the SXR emission (GOES class, emission duration, characteristic

times, etc). In particular, we define events as “T-controlled flares” if the SXR

maximum – T maximum time interval is at least two times shorter than the EM

maximum – SXR maximum interval, and as “EM-controlled flares” if the EM
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Figure 5.1 Time sequence of events during the chromospheric evaporation process
in solar flares.
Source: [193].
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Figure 5.2 (a) SXR 1-8 Å flux and its derivative calculated for RADYN model
“radyn out.val3c d3 1.0e12 t20s 15kev fp” from the F-CHROMA solar flare model
database (http://www.fchroma.org/, accessed on 04/08/2019); (b) temperature and
emission measure calculated from the modeled SXR 0.5-4 Å and 1-8 Å fluxes. Loop
cross-section of S = 1018 cm2 is assumed for these calculations. Gray triangle
represents the deposited energy flux profile. Dashed vertical lines mark the maxima
of presented characteristics.
Source: [193].
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maximum – SXR maximum time interval is at least two times shorter than the SXR

maximum – T maximum interval, and try to answer the following questions:

1. How often do flares obey the scenario of the chromospheric evaporation process
illustrated in Figure 5.1?

2. Which of the plasma properties, T or EM, mainly influence the SXR maximum
value and timing for the different GOES flare classes?

3. What is the physical difference between the T-controlled and EM-controlled
flares of the same GOES class range?

The implemented algorithm to calculate T and EM and the event selection

process are described in Section 5.2. Relationships among the flare characteristics are

presented in Section 5.3, followed by a discussion and conclusions in Section 5.4.

5.2 Data Selection and Processing

To estimate behavior of T and EM during solar flares, we have applied the

Temperature and Emission measure-Based Background Subtraction algorithm [22,

187, TEBBS], which allows the user to obtain T and EM values for flares detected by

the GOES satellite. In this algorithm, the background level of the GOES X-ray

emission is taken into account in order to obtain T and EM during the whole

flare duration, including the rising phase. Our Python realization of the TEBBS

algorithm for coronal element abundances is available at https://github.com/

vsadykov/TEBBS (accessed on 04/08/2019). We note that the GOES data allow us to

determine the flare temperature and emission measure only in a single-temperature

approximation, because the data are obtained only in two SXR energy channels.

In this work, we analyze the GOES data obtained from January 2002 to

December 2017. The full list of events for this time period is obtained from

the Interactive Multi-Instrument Database of Solar Flares [191, IMIDSF, https:

//helioportal.nas.nasa.gov, accessed on 04/08/2019]. In the TEBBS algorithm,
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we add the Savitzky-Golay smoothing procedure with third-order polynomials and

a 30-second running window function [199]. This allows us to perform analysis for

relatively weak B-class flares and also compute smooth derivatives of the light curves.

For each event, we determine the maximum values and times of the temperature,

emission measure, and background-subtracted SXR 1-8 Å flux and its derivative. We

determine the flare end time as the moment when the background-subtracted flux

drops by a factor of two from its maximum value. This definition is the same as in

the GOES flare catalog but instead of the preflare SXR flux level we subtract the

derived background. The resulting difference in the flare end times does not change

our conclusions. Then, we calculate various parameters related to the flare temporal

behavior: the duration, growth time (defined as the maximum time minus start time),

relative growth time (defined as the growth time divided by the flare duration), and

the time intervals among the maxima of T, EM, SXR, and SXR derivative. Following

Reep and Toriumi [177] we calculate the FWHM of the GOES 1-8 Å light curve

(defined as the difference between two time moments when the SXR reaches the half

maximum value before and after its maximum) and its characteristic decay time,

τdecay, at the flare end defined as:

τdecay = − FSXR(t)

dFSXR(t)/dt
|t=tend

(5.1)

In addition, when possible, we define the flare ribbon areas from the catalog by

Kazachenko et al. [95] (for the events of the SDO epoch only). We exclude from our

analysis the events, for which:

• The background-subtracted SXR maximum flux is lower than the flux of B1.0
class flare (10−7Wm−2) because of the low S/N ratio;

• The maximum temperature shows the presence of the super-hot plasma [39,
>30MK], indicating that the single-temperature model is not valid [210];
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• The relative uncertainties of the maximum temperature or emission measure
are greater than 100%;

• The maximum of the emission measure occurs when the flux in the GOES
0.5-4 Å channel is smaller than 1% of the flare maximum flux in this channel
(i.e., almost at the level of the background);

• The gaps in the GOES data are longer than 5% of the flare duration;

• The TEBBS algorithm does not return any reliable background combination
(for all combinations (1) the number of rising phase time bins is low, (2) the
flare maximum temperature does not exceed 3MK [187], or (3) the preflare T
and EM values are higher than their maximum values during the flare);

We found that a total of 14955 out of 22728 flares satisfy these criteria. The

flares, which do not satisfy the above criteria and are excluded from the consideration,

are mainly weak B-class or C-class events. The final statistical sample includes

5915 B-class, 7774 C-class, 1159 M-class, and 107 X-class flare events. Hereafter,

we consider the X-class flares in one group together with the M-class flares.

5.3 Results

5.3.1 Time Sequence of Events During Solar Flares

We compare the order of appearance of the maxima of T, EM, and SXR flux, as

well as their derivatives, with the flare scenario illustrated in Figure 5.1. First,

we found that 94.5% of B-class flares (5587 out of 5915), 97.3% of the C-class

flares (7568 out of 7774), and 98.6% of M- and X-class flares (1248 out of 1266)

follow the sequential appearance of the T, SXR, and EM maxima, i.e., the assumed

chromospheric evaporation scenario. On average, 96.3% of all flares follow the

sequence, and the fraction of such flares increases with the GOES class.

Second, we found that for 82.5% of all flare events (82.6% of B-class flares,

83.4% of C-class flares, and 76.7% of M- and X-class flares) the 1-8 Å SXR derivative

maximum mainly occurs prior the T maximum. Interestingly, the fraction of such

events does not increase with the GOES class, and even becomes lower for M- and

X-class flares.
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5.3.2 Physical Parameters Controlling the SXR Emission for Flares of
Different Classes

In order to understand which of the two parameters, T or EM, determines the timing

of the maximum of the SXR emission, we consider the time intervals between the SXR

and T maxima and between the EM and SXR maxima. Two-dimensional diagrams of

the SXR-T and EM-SXR intervals for different flare classes are presented in Figure 5.3.

White horizontal and vertical dashed lines restrict the zones where events do not obey

the sequential T, SXR, and EM maxima appearances. Inclined white dashed lines

represent places in the histogram where one of the intervals is two times longer than

another.

The relationships are very different for the different flare classes. Among the

B-class flares (Figure 5.3a), 34.0% are T-controlled and 26.4% are EM-controlled.

The situation is completely opposite for the M- and X-class flares (Figure 5.3c): the

number of EM-controlled events is 82.8% and just 1.7% are T-controlled. The C-class

flares (Figure 5.3b) fall between these two cases: 43.6% events are EM-controlled and

18.0% are T-controlled. We can see that the SXR maximum occurs very close to the

EM maximum mostly for the M- and X-class flares and closer to the T maximum for

the B-class flares. In this respect, the weak and strong flares behave differently.

Figures 5.4a and 5.4b show the dependence of the T and EM maximum values

from the SXR maximum flux. It is essentially the same as previously presented

by Ryan et al. [187]. As one can see, both the temperature and emission measure

maxima are correlated with the SXR maximum, and the correlations for the EM are

more prominent. For M- and X-class events (with the logarithm of the maximum flux

of -5.0 or greater) the logarithm of the EM maximum is proportional to the logarithm

of the SXR flux maximum.

Figure 5.4c presents the relationship between the flare SXR class as defined in

the GOES flare catalog and the SXR maximum flux calculated after subtraction of
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Figure 5.3 Two-dimensional relationships of the time intervals between the EM
and SXR maxima (x-axis) and SXR and T maxima (y-axis) for a) B-class flares,
b) C-class flares, and c) M- and X-class flares. White dashed lines show zones for
the T-controlled events and the EM-controlled events. Panel (d) illustrates the same
relationships for the flares of B6.3 - C1.6 classes.

Source: [193]
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Figure 5.4 Two-dimensional relationships of (a) temperatures, (b) emission
measures, (c) GOES classes, and (d) time intervals between the T and SXR derivative
maxima of flare events, and their SXR maximum fluxes. Black dashed lines show
median values for each SXR maximum flux. White vertical lines mark the B6.3 -
C1.6 flare class range selected for the detailed study.

Source: [193]
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the background. The background subtraction is especially important for the B-class

and low C-class events, because, as is evident from the figure, the same SXR flux

corresponds to a wide spread of the flare classes in the GOES catalog.

Figure 5.4d illustrates the relationship between the SXR maximum flux, and

the time interval between the temperature and the SXR derivative maxima. As one

can see, the temperature reaches the maximum in most cases after the derivative

maximum. The median value of the time interval slightly varies with the SXR flux

maximum, and for strong≥M-class flares becomes smaller than for B-class and C-class

flares (for the flares with SXR flux maxima of < 10−5Wm−2), although it does not

exceed one minute for any flare class.

5.3.3 Difference between T-controlled and EM-controlled Events.

Figure 5.3 reveals a transition in behavior of the time intervals with an increase in

the flare’s SXR maximum flux. One should expect that in some range of the SXR

maximum fluxes the number of the T- and EM-controlled events is almost the same.

We have found that such situation happens when the logarithm of the SXR flux

maximum (in Wm−2) is between -6.20 and -5.80 (i.e., for the background-subtracted

SXR classes of B6.3 - C1.6). Figure 5.3d illustrates the time interval relationship

for this range. Among the selected flares, 1365 are EM-controlled, and 1176 are

T-controlled. The B6.3 - C1.6 class range is indicated in Figure 5.4 by white vertical

dashed lines.

Previously, we have concluded that the relationship between the SXR-T and

EM-SXR time intervals depends on the SXR flux maximum. By selecting relatively

narrow class ranges, we can study the influence of other physical parameters to the

partition among the intervals. Table 5.1 summarizes the median values and corre-

sponding median absolute deviations of physical parameters for the EM-controlled

and T-controlled flares in several such class ranges. The median absolute deviation
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is a dispersion measure of a univariate data set, and is equal to a median of absolute

deviations of the data points from the data set median. One can see the following

trends from this table. Except for the ≥M1.0 class range (due to insufficient

statistics), the T-controlled events are cooler on average than the EM-controlled

events and have larger emission measures. Also, these events are typically longer

in duration, but grow faster (have shorter relative growth times) and have greater

FWHM and characteristic decay times.

Figure 5.5a-f presents histograms of various physical parameters for the

T-controlled (red) and EM-controlled (gray) flare events of the B6.3 - C1.6 class

range for the same characteristics as in Table 5.1. As one can see, although the

distributions significantly overlap, they prominently differ from each other. The

difference is especially visible for the relative growth times, where two peaks of the

histogram are clearly separated. The histograms constructed for other class ranges

(B1.0 - B2.5, B2.5 - B6.3, C1.6 - C4.0, and C4.0 - M1.0) are found to have similar

behaviors.

5.4 Discussion and Conclusion

In this section, we summarize our answers to the questions posted in Section 5.1 and

discuss possible explanations.

5.4.1 How Often do the Flares Obey the Scenario of the Chromospheric
Evaporation Process Illustrated in Figure 5.1?

We found that the temperature (T), soft X-ray flux (SXR), and emission measure

(EM) maxima appear sequentially during solar flares for most of analyzed events

(96.3% on average). The fraction of such events increases with increasing SXR flux

maximum. The observed sequence of the temperature, soft X-ray emission, and

emission measure maxima fits into the standard picture of chromospheric evaporation,
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Table 5.1 Median Values and Median Absolute Deviations of the SXR Characteristics of the T-controlled and EM-controlled
Flares for Different GOES Class Ranges

GOES class Regime
Number of Physical characteristics Flare temporal characteristics, min Number of events in

events T max, 106 K EM max, 1048 cm−3 Duration, min Relative growth time, min FWHM, min Decay time, min Flare Ribbon Catalog

B1.0 - B2.5
T-controlled 329 9.87±0.71 0.23±0.06 13.2±5.0 0.43±0.09 9.20±4.00 3.79±1.12 0

EM-controlled 198 10.9±1.1 0.17±0.04 11.2±4.9 0.57±0.10 6.98±3.43 3.33±1.39 0

B2.5 - B6.3
T-controlled 946 10.6±0.9 0.43±0.09 15.2±6.3 0.44±0.09 10.6±4.2 6.44±2.38 19

EM-controlled 639 11.1±0.9 0.36±0.07 11.8±5.1 0.60±0.09 7.65±3.65 5.06±2.43 18

B6.3 - C1.6
T-controlled 1176 11.2±0.9 0.89±0.22 20.4±10.2 0.42±0.09 14.2±6.6 9.20±4.64 228

EM-controlled 1365 12.0±1.1 0.80±0.18 13.5±5.9 0.58±0.09 8.65±4.30 6.00±3.33 240

C1.6 - C4.0
T-controlled 660 12.0±1.1 1.80±0.38 23.1±10.9 0.42±0.10 16.3±7.6 6.49±2.98 112

EM-controlled 1434 13.3±1.1 1.69±0.34 15.0±6.4 0.58±0.09 9.73±4.88 5.83±2.87 289

C4.0 - M1.0
T-controlled 155 13.3±1.2 3.77±0.73 32.6±14.7 0.40±0.13 24.2±11.8 11.2±4.35 23

EM-controlled 1138 14.9±1.2 3.67±0.74 16.9±7.4 0.59±0.10 10.6±5.4 8.12±4.19 273

≥M1.0
T-controlled 21 16.0±1.1 8.37±1.38 31.5±16.0 0.50±0.18 23.6±15.3 8.90±5.23 4

EM-controlled 1030 17.5±1.6 11.1±4.5 20.5±9.6 0.61±0.09 11.4±6.0 8.27±4.39 215

Note: The last column gives the number of events for which information about the flare ribbon areas is available [95].

Source: [193].
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Figure 5.5 Histograms for the T-controlled (red) and the EM-controlled (gray)
events of (a) EM maxima, (b) T maxima, (c) duration of the event, (d) event growth
time (from SXR start to maximum time) normalized to the duration of the event,
(e) FWHM, (f) characteristic decay time, (g) the SXR derivative during the EM
maximum, (h) temperature during the EM maximum, and (i) ribbon areas of the
events, for the flares of B6.3 - C1.6 GOES classes. Red dashed vertical line represents
the median value for T-controlled events, black — for EM-controlled events. The
median absolute deviations are presented in Table 5.1.

Source: [193]
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supported by the radiative hydrodynamic simulations (Figure 5.1). However, what

is the reason for the remaining 3.7% (552 out of 14955) of events not following the

sequence? Most of these events are weak B-class flares. Possibly, the T and EM

calculations for weak events are not sufficiently accurate because of the relatively

strong background level during these events.

Another interesting fact is that, for most flares, the SXR derivative maximum

occurs even before the temperature maximum. According to the Neupert effect [154],

the derivative of the SXR flux are correlated with the time of the energy deposit

of high-energy electrons. Therefore, for most of events the strongest energy deposit

happens before the plasma reaches the highest temperature, because some time is

required for the deposited energy to heat the plasma. This is in agreement with the

considered RADYN simulation (Figures 5.1b and 5.1c). Note that the fraction of such

events decreases with the flare class. We do not try to explain this in the present

study.

5.4.2 Which of the Plasma Properties, T or EM, Mainly Influence the
SXR Maximum Value and Timing for the Different GOES Flare
Classes?

Figure 5.3 illustrates that the temperature, emission measure, and SXR 1-8 Å flux

light curves behave differently for different class flares. For the weak B-class flare

events, we see that the SXR maximum predominantly occurs closer to the T maximum

than to the EM maximum. For the stronger M- and X-class flares, the SXR maximum

occurs very close to the emission measure maximum. Also, Figure 5.4b illustrates

that the logarithm of the SXR maximum is proportional to the logarithm of the EM

maximum for strong flares. Thus, one can conclude that the GOES class of strong

M- and X-class flares most often represents the emission measure of the evaporated

plasma and not the plasma temperature.
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In contrast, for the weak B-class flares we see that the SXR maximum is close to

the T maximum. However, Figure 5.3a (illustrating the relations between the T and

SXR maxima) does not show any direct relations between these two parameters for

weak B-class flares. This means that for the weak events the corrected-for-background

GOES class depends on both the temperature and emission measure.

5.4.3 What is the Physical Difference between the T-controlled and EM-
controlled Flares of the Same GOES Class Range?

Our results indicate that for relatively narrow class ranges (see Table 5.1) the T-

controlled events are colder, have larger maximum EMs, are longer in duration, have

shorter relative growth times, and have longer FWHMs as well as longer decay times.

One of the possibilities is that the high-temperature plasma in the T-controlled events

evolves in longer magnetic loops than in the EM-controlled events.

Several previous studies point to this conclusion. For example, Bowen et al. [25]

performed a statistical study of 17 flares of the ≈C8 class simultaneously observed

by GOES, SDO/AIA, and SDO/EVE. The authors found that the flares with longer

durations are usually cooler and evolve in larger volumes. As was mentioned before,

the T-controlled events are on average longer and have lower temperatures than

the EM-controlled flares and thus should evolve in larger volumes to maintain the

observed EM level. Figure 5.5i illustrates the flare ribbon areas for events of the

B6.3 - C1.6 class range from the flare ribbon catalog [95]. One can see that the ribbon

areas on average are almost the same for the T-controlled and EM-controlled events.

Thus, the larger volumes with the same ribbon areas will correspond to the longer

loops. Several works based on the classical relations for coronal loop parameters [181]

predicted longer decay times for the events evolving in longer loops [205, 11]. As seen

in Table 5.1, the characteristic decay times are longer for the T-controlled events than

for the EM-controlled events.
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Reep and Toriumi [177] provided direct observational and modeling relations

between the GOES SXR light curve parameters (FWHM and characteristic decay

times) and the distances between the flare ribbons. One of the conclusions of this work

is that the events with longer FWHM and decay times should have larger separation of

flare ribbons, i.e., evolve in longer loops. Although the observational relations in Reep

and Toriumi [177] are derived for the flares of M5.0 GOES class or higher, the modeled

SXR emission linearly scales with the assumed cross-section area, which makes it

possible to extend the modeling relations to any GOES classes. The T-controlled

events from our study have longer FWHMs and decay times and thus should evolve

in longer loops according to the conclusion of Reep and Toriumi [177].

For further interpretation, we analyze the dynamics during the flare decay

phase using the analytical equations for the spatially-averaged plasma parameters in

magnetic loops implemented in Enthalpy-Based Thermal Evolution of Loops model

[105, 35, 36, EBTEL]. Following Eq. 2 in Cargill et al. [35]:

L

2(γ − 1)

dp

dt
=

γ

γ − 1
p0v0 − F0 +

L

2
Q− L

2
n2Λ(T ) (5.2)

Here p, n, T are the pressure, number density, and temperature averaged along

the loop; γ is the adiabatic constant, L is the length of the loop, F0 = κ0T
5/2∂T

∂s
|s=0

is the heat conduction flux at the loop footpoint, Q is the heating term, and Λ(T )

is the radiative loss function depending on the temperature. We consider the loop

energetics during the EM maximum time for the four flare class ranges (B2.5 - B6.3,

B6.3 - C1.6, C1.6 - C4.0, and C4.0 - M1.0), for which we have statistics for flares

with defined ribbon areas (last column in Table 5.1). The B6.3 - C1.6 class properties

presented in Figure 5.5g-i show that the T-controlled events have slightly lower SXR

1-8 Å derivative and lower temperatures during the EM maximum, and almost the

same flare ribbon areas compared to the EM-controlled events. The median values of

these parameters for the considered flare class ranges are summarized in Table 5.2.
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Table 5.2 Median Values and Median Absolute Deviations of the SXR Flux Derivative and Temperature during EMMaximum,
Flare Ribbon Area, and Loop Length of the T-controlled and EM-controlled Flares for Different GOES Class Ranges

GOES class Regime
Flux derivative during Temperature during Flare ribbon Loop lengths, 108 cm

EM maximum, 10−9 Wm−2s−1 EM maximum, MK area, 1018 cm2 F0 = 106 erg cm−2s−1 F0 = 107 erg cm−2s−1 F0 = 108 erg cm−2s−1

B2.5 - B6.3
T-controlled 0.55±0.30 7.11±0.95 1.04±0.50 1.32±1.14 4.82±3.82 104.4±78.7

EM-controlled 0.74±0.41 9.57±0.97 0.99±0.22 0.63±0.44 1.46±1.07 41.2±31.5

B6.3 - C1.6
T-controlled 0.97±0.58 7.79±1.02 1.36±0.42 6.18±5.42 12.9±10.7 189.3±154.2

EM-controlled 1.40±0.81 10.48±1.13 1.60±0.50 2.34±2.03 5.44±4.50 85.4±71.5

C1.6 - C4.0
T-controlled 2.06±1.20 8.76±1.31 2.45±0.78 6.20±5.21 10.4±8.5 146.0±116.3

EM-controlled 2.70±1.36 11.59±1.21 2.27±0.69 3.31±2.70 6.33±5.21 86.0±69.9

C4.0 - M1.0
T-controlled 3.26±1.91 9.89±1.48 4.01±1.58 24.8±18.4 36.0±27.9 411.4±359.6

EM-controlled 5.01±2.48 13.08±1.03 3.57±1.02 6.70±5.53 10.2±8.3 98.3±82.1

Note: Loop lengths are is estimated from Eq. 5.6 for every event for each of three values of conduction flux, F0, presented in the table.

Source: [191].
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We assume that during the emission measure maximum, the inflow and outflow

of plasma into the flare volume are balanced, p0v0 = 0, there is no heating along the

loop at that time, i.e.,
L

2
Q = 0, and there is no change of the flare volume,

dEM

dt
=

0 ⇒ dn

dt
= 0. Following Rosner et al. [181], Aschwanden et al. [11], Aschwanden and

Tsiklauri [12], we approximate the radiative loss function in the 2-40MK temperature

range as Λ(T ) ∼ 10−17.73T−2/3 = ΛT−2/3. The equation of state is taken to be

p = nkBT . The emission measure is EM = n2LS, where S is the cross-sectional

area of the loop. Then, from Eq. 5.2 we obtain:

dT

dt
=

2(γ − 1)

kBL

√

LS/EM(−F0 − EM
Λ

2ST 2/3
) (5.3)

Following White et al. [237], the GOES flux in 1-8 Å channel can be represented

as F
1−8Å

= C ×EM ×φ(T ), where φ(T ) is the function corresponding to the coronal

element abundances shown in lower panel of Figure 7 of White et al. [237]. Assuming

linear behavior of φ(T ) in the temperature range from 5 to 15MK, we approximate

φ(T ) = AT + B. Parameters C and A are estimated from the tabulated functions

for T and EM calculation available in the SolarSoft package (the SXR flux per unit

emission measure as a function of temperature). The results are averaged for the

GOES10 — GOES15 satellites (the difference is negligible). The derived parameter

values are C = 0.7×10−55 erg cm s−1, A = 2.22×10−3K−1. The flux equation becomes

F
1−8Å

= C × EM × (AT +B). At the EM maximum
dEM

dt
= 0, hence:

dF
1−8Å

dt
= A× C ×EM

dT

dt
(5.4)

Replacing the temperature derivative from Eq. 5.3 we obtain:

dF
1−8Å

dt
= − 1√

L

√
EM × S

(

F0 + EM
Λ

2ST 2/3

)

2AC(γ − 1)

kB
(5.5)

L = EM × S

(

dF
1−8Å

dt

)−2
(

F0 + EM
Λ

2ST 2/3

)2
4A2C2(γ − 1)2

k2
B

(5.6)
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There are two processes which can decrease the SXR flux: heat conduction

at the loop footpoints and radiative losses along the loop. F0 = κ0T
5/2∂T

∂s
|s=0,

where κ0 ≈ 10−6erg s−1 cm−1K−7/2 [215], represents the conduction flux at the loop

footpoints. If the temperature increases from T ≈ 104K to T ≈ 106K at the

loop footpoints on scales of ≈ 1000 km, then
∂T

∂s
≈ 10−2Kcm−1, and flux in the

transition region is 107 erg cm−2s−1. Notice that the radiative loss term is comparable

with the conduction flux: for example, for the median characteristics of B6.3 - C1.6

class events
EM × Λ

2ST 2/3
≈ (2 − 3)× 107 erg cm−2s−1, where Λ = 10−17.73 erg cm3 Ks−1,

T ≈ (8− 10)× 106K, EM = (8− 9)× 1047 cm−3, S ≈ (0.7− 0.8)× 1018 cm2 (half of

the ribbon area).

Assuming F0 = 107 erg cm−2s−1 and the flaring loop cross-sections S = Sribbon/2,

we estimate from Eq. 5.6 the lengths of the loops where the chromospheric evaporation

was developed for every flare (for which information about the flare ribbon areas

is available) in the B2.5 - B6.3, B6.3 - C1.6, C1.6 - C4.0, and C4.0 - M1.0 class

ranges. The histograms for the selected class ranges are presented in Figure 5.6.

The corresponding median values are presented in Table 5.2 (column for F0 =

107 erg cm−2s−1). The median values of the loop lengths are 2 - 4 times longer for the

T-controlled flares in all selected class ranges than those for the EM-controlled events.

Variation of the conduction flux from 106 erg cm−2s−1 to 108 erg cm−2s−1 leads to the

same conclusion about the loop lengths (see Table 5.2). However, high conduction

fluxes (≥ 108 erg cm−2s−1) result in unrealistic median loop lengths of ≥ 1010 cm.

The results allow us to conclude that the development of flares in coronal loops of

different length can be one of the reasons for the difference between the T-controlled

and EM-controlled events.

In the case of two or more temporarily-overlapping distinct events of approx-

imately the same magnitude occurring at the solar disk, the presented analysis

is not valid. To estimate the influence of this effect, we analyzed spatially-
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Figure 5.6 Histograms of the loop lengths calculated from Eq. 5.6 (for F0 =
107 erg cm−2s−1) for T-controlled (red) and EM-controlled (gray) events of (a) B2.5 -
B6.3, (b) B6.3 - C1.6, (c) C1.6 - C4.0, and (d) C4.0 - M1.0 GOES class ranges. Red
dashed vertical line represents the median value for T-controlled events, black — for
EM-controlled events. The median absolute deviations are presented in Table 5.2.

Source: [193]
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resolved observations of flares obtained from the 131 Å data of the Atmospheric

Imaging Assembly onboard Solar Dynamics Observatory [125, SDO/AIA] using image

processing algorithms [138]. These data are collected in the Heliophysics Event

Knowledgebase [88, HEK], which is incorporated in the IMIDSF [191]. We found

that in 2010-2017 about 6.5% (530 out of 8115 events) of the GOES flares with

the SDO/AIA 131 Å counterparts were overlapping with other flares of comparable

EUV magnitude (at least a half of the EUV flux of the primary flare identified in

the GOES catalog). However, the analysis of such overlapping events led us to

qualitatively the same conclusions as for the entire data set (i.e., the existence of

temporarily-overlapping flare events did not influence our conclusions).

Our conclusions are the following:

1. The soft X-ray radiation of most flares (96.3%) follows the sequential appearance
of the temperature (T), radiation flux (SXR), and emission measure (EM)
maxima in agreement with the chromospheric evaporation scenario. The
fraction of such flares increases with the amplitude of the SXR maximum (GOES
X-ray class). For 82.5% of such flares, the SXR derivative reaches its maximum
before the T maximum.

2. The SXR maximum of weak B-class flares mainly occurs very close to the
temperature maximum (34.0% of the events are the T-controlled). The situation
is opposite for the M- and X-class flares, 82.8% of which are EM-controlled;

3. The transition between the two regimes occurs in the range of X-ray class B6.3 -
C1.6. The number of the T-controlled (1176) and EM-controlled (1365) events
is almost the same in this class range;

4. The following differences in the averaged physical parameters are found for
the T-controlled and EM-controlled events (see Table 5.1). Compared to the
EM-controlled events, the T-controlled events have:

– larger maximum emission measure and lower maximum temperature;

– shorter relative growth time and longer duration;

– larger SXR FWHM and longer characteristic decay times;

5. The lengths of the flare loops estimated from the analysis of a single loop
dynamics supports the conclusion that the T-controlled events can be developed
in longer loops than the EM-controlled events.
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This interpretation of the statistical results is based on several simplifications

due to the limited information in the GOES data. It does not take into account the

possible presence of heating in the gradual and decay phases of the flare [49, 48, 186]

and the multi-thread nature of solar flares when the different coronal loops are heated

at different times [233]. Also, we consider a single-temperature approximation of the

flaring plasma, although there is evidence for its multi-thermal structure [232, 210].

Further studies with the use of complimentary observations by RHESSI [39],

SDO/AIA [125, 188], SDO/EVE [145], SphinX/CORONAS-Photon [77, 102], etc.

will increase understanding of the limitations of the single-temperature plasma

approximation. Nevertheless, the statistical analysis of 14955 events performed in

this study allows us to better understand the physical characteristics of flare SXR

emission.
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CHAPTER 6

BEHAVIOR OF SDO/HMI OBSERVABLES FOR SOLAR
ATMOSPHERE HEATED BY PRECIPITATING HIGH-ENERGY

ELECTRONS

6.1 Introduction

Observations of changes of line-of-sight (LOS) photospheric magnetic fields in active

regions during solar flares are of high interest for both individual case studies, and for

larger scale statistical studies [132, 40]. The LOS magnetic field maps obtained by the

Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory [200, 44,

SDO/HMI] currently represent one of the most widely-used data product in solar

physics. Correct interpretation of these measurements is important for understanding

the underlying physics and expansion of our knowledge about magnetic energy release

in solar flares.

The HMI measurements take 45 s during which the Fe 6173 Å line formed deep

in the solar photosphere [158, 152, 103, at the height range of 0-300 km] is scanned

at six wavelength points (filtergrams) in two polarizations (right-circular, RCP, and

left-circular, LCP). The HMI observables (line depth and width, continuum intensity,

Doppler velocity, and LOS magnetic field) are calculated from the filtergrams

using a line profile model. If the characteristic times of variations of the Fe I

line profile are comparable with the time required for one observing sequence,

then one should expect deviations of the HMI observables from the actual line

parameters (and consequently, derived atmospheric parameters). Consideration

of the non-instantaneous nature of the measurements is especially important for

interpretation of “magnetic transients” — reversible sharp changes of magnetic field

measured during the solar flares [244, 162]. Previous reports of such magnetic

transients observed from SOHO/MDI and SDO/HMI concluded that such transients
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may represent real changes of magnetic field strength [113, 242, 82] as well as artifacts

due to rapid changes of the line profile and data analysis algorithms [171, 141].

The CSHKP flare model [38, 218, 83, 108, 169, 212], often referred as the

standard flare model, is a scenario in which the solar atmosphere is heated by

precipitating high-energy electrons accelerated in the corona. Many results [209, 207,

etc.] found that impulsive variations observed in SDO/HMI filtergrams are highly

correlated with the Hard X-ray (HXR) signals, thus qualitatively supporting the

standard model and demonstrating that deposited high-energy particles can disturb

the photosphere. Radiative hydrodynamic simulations of the standard flare model

developed in recent years allow us to investigate effects of the flare energy release on

the HMI observables. Currently one of the most advanced codes for flare modeling is

RADYN, a radiative hydrodynamic code [37, 2, 5, 6, 7]. A grid of RADYN models is

available online from the F-CHROMA project (http://www.fchroma.org/), allowing

us to investigate the response of the solar photosphere to impulsive beam heating.

We use the RADYN models to simulate the Fe I 6173 Å line Stokes profiles, and

derive the corresponding SDO/HMI observables by applying to the synthetic data the

data analysis algorithms implemented in the SDO/HMI JSOC pipeline. We analyze

how strongly the synthetic observables deviate from the actual properties of the line

profile and atmospheric conditions in the flare models. The modeling of the Fe 6173 Å

spectral line and procedure of SDO/HMI LOS observable calculations are explained

in Section 6.2. The results are presented in Section 6.3, followed by a short discussion

in Section 6.4.

6.2 Modeling of SDO/HMI Observables

The F-CHROMA database is a collection of 1D radiative hydrodynamic (RADYN)

models of solar flares driven by an electron beam of a power-law electron energy distri-

bution (averaged energy fluxes from 1.5×109 erg cm−2s−1 to 5.0×1010 erg cm−2s−1,
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low-energy cutoff values of 10 keV, 15 keV, 20 keV, or 25 keV, and spectral indexes

ranging from 3 to 8) heating the atmosphere for 20 s. The RADYN code solves

coupled, non-linear, equations of hydrodynamics, radiation transport, and non-

equilibrium atomic level populations, using an adaptive 1D vertical grid. The

elements that are important for the chromospheric energy balance are treated in

non-Local Thermodynamic Equilibrium (NLTE), and other species are included in the

radiative loss function in the LTE approximation. The atomic level population and

radiation transport equations are solved for a 6-level-with-continuum hydrogen atom,

a 9-level-with-continuum helium atom, and a 6-level-with-continuum Ca II atom. For

a detailed description see Allred et al. [7] and references therein. In the F-CHROMA

database, the 1D flare models are calculated with 300 height grid points and 201

frequency points of the radiation spectrum. The initial atmosphere is similar to the

VAL3C model [229], but with a somewhat deeper transition region. The temporal

profile of the deposited energy flux rate is a triangle; the electron beam heating lasts

for 20 s with a peak at 10 s. In addition to the F-CHROMA models, we consider one

high-energy RADYN model. This model, which was used in Kerr et al. [98], injected

an electron beam of constant flux, F = 1.0×1011 erg cm−2s−1, for a period of 10 s. The

electron beam spectra had a 20 keV low-energy cutoff, and a power law index of δ = 4.

This high energy model (called “GSK19” hereafter) also used a different pre-flare

atmosphere: a hotter and denser corona (3MK vs 1MK). See Kerr et al. [98] for

further details of this simulation. In Figure 6.1 we show the atmospheric stratification

for the pre-flare atmospheres, along with the temporal profiles of energy injection.

For 80 available F-CHROMA models and for the GSK19 model, we calculate

the Stokes profiles for the Fe I 6173 Å line using the RH radiative transfer code

[189, 190, 227, 164]. The latest massively-parallel version of the RH 1.5D code [164]

has been adopted for the calculations. Snapshots of the RADYN flare atmospheres

were used as input to RH. Since RH is a stationary code, the NLTE atomic level
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Source: [195]
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populations were solved using statistical equilibrium, meaning that non-equilibrium

and non-thermal effects are not included in our model. This is somewhat mitigated

by using the non-equilibrium electron density from the RADYN snapshots. This

procedure has been used by others [99, 182, 196]. To take into account magnetic

field effects we make a simplistic assumption that the beam heating occurs in a

vertical flux tube with a 100G or 1000G uniform vertical magnetic field. The

vertical magnetic field does not affect the flare hydrodynamics in the models but

affects the line properties. The Fe atom (described by 31 Fe I bound states, one

singly-ionized Fe II state, and one two times-ionized Fe III state) was calculated in

non-LTE statistical equilibrium simultaneously with H atom and Si atom. Other

species were excluded from calculations because they did not affect the Fe I 6173 Å line

profile. We included 2 km/s microturbulence in the line profile calculations. For each

model, the calculations are performed with 1 s time step, and the resulting Stokes

profiles are interpolated linearly for any time moment required for calculation of

the observables. The right-circular polarization (RCP) and left-circular polarization

(LCP) signals are derived from the Stokes I and V profiles. For each considered

snapshot, we derive the line continuum as an averaged intensity at ±0.20 Å from

the line reference wavelength (λref =6173.3390 Å), the line depth as the continuum

intensity minus the average of the smallest intensities in the LCP and RCP signals.

The line Doppler shift is calculated using the center-of-gravity approach △λ =< λ >

−λref =
∫ λref+0.2 Å

λref−0.2 Å
(I− Ic)dλ−λref . The examples of the atmospheric properties and

the polarization profiles for the “val3c d4 1.0e12 t20s 20keV” F-CHROMA RADYN

model (which has the average deposited energy flux of 5.0 × 1010 erg cm−2 s−1, the

power law index of the injected electron spectrum of 4, and the low-energy cutoff of

20 keV) are illustrated in Figure 6.2 for t = 0 s and t = 10 s snapshots. The 100G

uniform magnetic field is assumed. The neutral and ionized Fe number densities are

computed using Chianti atomic database [119].
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Each RADYN run lasts 50 s from the beginning of the beam impact. For

the purposes of processing the synthetic results through the SDO/HMI pipeline, we

assumed that the pre-flare state was unvarying. We replicated the pre-flare state

for 42 s. We then replicated the final RADYN snapshot (t = 50 s) for additional

42 seconds at the end of the simulation. The flare phases were then: pre-flare

t = −42 − 0 s, energy injection t = 0 − 20 s, dynamic cooling phase t = 20 − 50 s,

fixed cooling phase t = 50− 92 s. We are aware that this final “fixed” cooling phase

is rather unrealistic as the atmosphere would continue to radiate and conduct in a

dynamic fashion since it had not reached equilibrium. However, for the purposes

of this experiment it is a sufficient approximation. At a cadence of 1 s between

t = −21 s and t = 71 s, we apply the HMI observing sequence algorithm as illustrated

in Figure 6.1a. The filtergrams correspond to ±34.4mÅ,±103.2mÅ, and 172.0±mÅ

relative to λref [152]. The temporal order of scanned wavelength is assumed as

in Table 3 of Schou et al. [202]. The SDO/HMI transmission profiles for each

measurement are modeled with the Gaussian of FWHM = 76mÅ [82]. Also, the

measurements are integrated for 3.75 s centered at the time point of the filtergram.

The examples of the synthesized SDO/HMI measurements for the RADYN model

“val3c d4 1.0e12 t20s 20keV” and the observing sequences centered at t = 0 s and

t = 10 s time moments are also illustrated in Figure 6.2.

We calculate the line width, line depth, Doppler shift and vertical LOS magnetic

field following the procedure described by Couvidat et al. [44, 46, 45]. First, we

estimate the first and second Fourier components of the line profile separately for

each polarization sequence as:
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Figure 6.2 Illustration of the atmospheric properties (a,b) and Fe I 6173 Å line
profiles (c,d) for t = 0 s and t = 10 s snapshots of the “val3c d4 1.0e12 t20s 20keV”
RADYN model. Corresponding SDO/HMI filtergram signals obtained for
measurement series centered at t = 0 s and t = 10 s are also presented in panels
(c) and (d). The dashed vertical lines in panels (a,b) correspond to τ = 1 optical
depths for the Fe I 6173 Å line center (black) and continuum (gray), the wavelengths
are correspondingly marked in panels (c,d).

Source: [195]
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ak ≈
2

6

5
∑

j=0

Ijcos(2kπ
2.5− j

6
), k = 1, 2 (6.1)

bk ≈ 2

6

5
∑

j=0

Ijsin(2kπ
2.5− j

6
), k = 1, 2 (6.2)

Then, we estimate the line depth, line width, Doppler velocity and LOS

magnetic field strength as:

v1 =
dv

dλ

T

2π
atan

(

b1
a1

)

(6.3)

λ0 = λref + v1
dλ

dv
(6.4)

v =
vLCP
1 + vRCP

1

2
(6.5)

B = (vLCP
1 − vRCP

1 )Km (6.6)

Id =
T

2σ
√
π

√

a21 + b21exp

(

π2σ2

T 2

)

(6.7)

Ic =
1

6

5
∑

j=0

[

Ij + Idexp

(

−(λj − λ0)
2

σ2

)]

(6.8)

Here Km = 0.231Gm−1,
dv

dλ
= 48562.4ms−1Å−1, T =412.8mÅ. We do not

apply any velocity corrections from the lookup tables suggested in Couvidat et al. [45]

as they lead to incorrect estimates of the vertical magnetic field in the unperturbed

atmosphere. In the SDO/HMI algorithm, a significant error comes from incorrect

determination of the Gaussian line widths because of the coarse sampling of the line

profile. The correction implemented in the SDO/HMI pipeline is based on azimuthal

average of the measured width derived at the solar disc center obtained during a

period of low solar activity [45]. In our calculations, we assume that the exact line

width is derived from the preflare state (σ = 0.0623 Å at t = 0 s). In addition,

we multiplied the line width used in the above equations, as well as the resulting
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line depth, by the correction coefficients, K2 = 6/5 and K1 = 5/6, respectively as

suggested by Couvidat et al. [45].

6.3 Results

Figure 6.3 illustrates the Fe I line properties derived from the simulated line profiles,

“instant” HMI observables (the results of instantaneous application of the HMI

observing sequence to the current line profile), and the HMI observables obtained

with the proper timing for the “val3c d4 1.0e12 t20s 20keV” F-CHROMA RADYN

flare model. Two setups with vertical uniform magnetic field of 100G and 1000G are

considered. Panels (a) and (b) in Figure 6.3 show that perturbations of the continuum

level do not exceed 6% during the flare. Deviations of the HMI line-depth observable

(panels c and d in Figure 6.3) from the actual values are significant during the heating

phase. For example, the actual line depth significantly decreases in the middle of the

heating phase, but the corresponding value of the HMI observable centered at this

time moment shows an increase. Nevertheless, the formation heights of the Fe I 6173 Å

line core and continuum do not experience significant changes during the peak of the

heating phase (see Figure 6.2 for details).

While the instant observables for the Doppler velocity and magnetic field agree

with the properties of the line profile (which confirms that the HMI algorithm is

correct in general), the HMI observables calculated for the time-dependent observing

sequence are in strong disagreement with the actual line properties (panels e-h). The

strongest deviations are found for the Doppler velocities: while the actual values are

less than 0.1 km/s, the HMI observable gives up to 0.5 km/s. The magnetic field

observable can deviate for about 40% for the 100G background vertical field and

about 6% for the 1000G field. Such deviations result from strong changes of the

Fe 6173 Å line depth and non-instantaneous nature of the HMI observing sequence.
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Figure 6.3 Fe I 6173 Å line parameters and corresponding SDO/HMI observables for
RADYN model “val3c d3 1.0e12 t20s 15keV” for the vertical uniform 100G (panels
a, c, e, g) and 1000G (panels b, d, f, h) fields. Black curves correspond to the
measures obtained from the exact line profiles. Gray dashed curves correspond to
HMI algorithm applied to the line profile instantly. Dark gray curves correspond to
the HMI algorithm applied with proper timing centered at the referred time. Dashed
vertical black lines mark the heating phase of the run.

Source: [195]
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Figure 6.4 illustrates the strongest deviations of the Doppler shift and magnetic

field which we found for the RADYN models. For the illustration, the results are

presented only for the high-energy electron beam spectra with the power law indexes

of 3 (panels a-d) and low energy cutoffs of 20 keV (panels e-h). As one can see, the

deviations depend on the deposited energy flux, and increase with the flux value.

The strongest Doppler velocity deviations found for F = 5.0 × 1010 erg cm−2s−1 are

about 0.6 km/s, and the strongest deviations of the LOS magnetic field observable can

reach 60% for 100G field and 10% for 1000G field. Incompleteness of the grid of the

F-CHROMA RADYN flare models with high deposited energy fluxes (F = 5.0×1010

erg cm−2s−1) does not allow us to conclude the dependence of the strongest deviations

of the observables on low-energy cutoffs and power law indexes.

Figure 6.5 illustrates the same Fe I line properties as in Figure 6.3 but for the

GSK19 model. One can see that this high-energy model (F = 1.0×1011 erg cm−2s−1)

results in even stronger Doppler velocity and magnetic field deviations than these for

the F-CHROMA models, likely due to more impulsive nature of the energy deposit

and resulting dynamics. The deviation of the LOS magnetic field observable from the

superimposed uniform vertical field are especially strong for the 100G case (panel

g). In such case, depending on the observing sequence center time, the measured

magnetic field can be almost two times stronger for the sequence centered at around

t = 19 s or even four times weaker for t = −11 s.

6.4 Discussion and Conclusion

In this work we analyzed how heating of the solar atmosphere by precipitating

high-energy electron beams during the impulsive phase of solar flares can affect the

observables of SDO/HMI (line-of-sight magnetic field, Doppler velocity, line depth

and continuum). We highlight two main results of our study:
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Figure 6.4 Illustration of the strongest deviations between Fe I 6173 Å line
parameters and simulated HMI observables for various RADYN runs evolving in
100G (panels a, c, e, g) and 1000G (panels b, d, f, h) vertical uniform magnetic
fields. Panels a-d correspond to the deposited electron beam spectra with the slope
of 3, panels e-h — to the slope of 5. Different colors and markers correspond to the
different low-energy cutoffs of the deposited electron beam spectra.
Source: [195]
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Figure 6.5 Same as Figure 6.3 but for GSK19 model.
Source: [195]
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1. Because the HMI observables are obtained from individual filtergrams distributed
in time, the Fe I 6173 Å line depth, Doppler velocity, and magnetic field strength
measured by HMI during the flare impulsive phase can significantly deviate from
the actual values. For beam heating events with the average deposited energy
fluxes of F = 5.0 × 1010 erg/cm2s, the deviations can be as strong as 0.6 km/s
for the Doppler velocity, and about 60G and 100G for the vertical uniform
100G and 1000G magnetic field respectively.

2. The deviations increase with the increase of the energy flux. Electron beams
with energy flux F < 5.0× 1010 erg/cm2s do not cause significant change in the
Fe 6173 Å line profile and, thus, do not cause significant deviations of the HMI
observables from the actual values. However, electron beams of F ≥ 5.0× 1010

erg/cm2s cause stronger deviations of observables, and may even results in a
very weak measured magnetic field (as observed for GSK19 model).

There are several qualitative conclusions about possible misinterpretation of the

HMI magnetic field measurements during solar flares, which can be derived from this

work. First, the magnetic field variations are reversible. However, this is the direct

consequence of the fact that the field was imposed into the model externally, i.e. it

was not a part of the hydrodynamic simulations. Second, the HMI magnetic field

observable becomes about four times weaker than the actual embedded magnetic

field (27G) for the GSK19 model with the stronger electron energy flux, although

such behavior was not observed for any of F-CHROMA models, which indicates a

possibility to induce an artificial magnetic field sign reversal for the heating by a

very high-energy electron beam (F > 1.0× 1011 erg/cm2s). Previously, the magnetic

field reversals were studied by Harker and Pevtsov [82] who did not reproduce the

magnetic field sign reversal (stokes V reversal) by considering forward modeling of the

Fe I 6173 Å line Doppler shifts and concluded that the sign reversal can be reached

only if the Fe I line profile goes to emission, which has not been observed. In our

study, the modeled Fe I 6173 Å line profiles are always absorption profiles (i.e. the

line depths derived from the exact line profile shapes is always positive). However,

for the strong (F = 1.0 × 1011 erg/cm2s) deposited energy fluxes the magnetic field

observable reaches very low values because of the rapid changes of the line profile.
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In the work by Švanda et al. [228], the authors highlighted the discrepancy

between the Fe I 6173 Å line continuum observable from the SDO/HMI measurements

(filtergrams), and the line continuum derived with the help of the inversion of Hinode

Solar Optical Telescope spectropolarimetric data for the same spatial locations [115,

226, Hinode SOT]. The disagreement between the observed and modeled continua

is found to be mostly within 10% from modeled values [228, Figure 5], with some

points deviating for 20% or more. For our study, the disagreement for the continuum

intensity can reach up to 7% for GSK19 model, which can qualitatively explain such

results. However, Švanda et al. [228] also mentioned the presence of Fe I 6173 Å line

profiles in emission which is not found in our simulations.

One of the significant restrictions of our study is that the initial atmospheric

models were close to the quiet-Sun VAL3C atmospheres [229] except for the GSK19

models. However, it was shown in the simulations of Hong et al. [84] that

Fe I 6173 Å line profile perturbations can be stronger for the initial atmospheric models

corresponding to sunspot penumbra. So one can expect stronger deviations of the

SDO/HMI observables from the actual values in such case. Also, the F-CHROMA

and GSK19 models have a certain timing of the heating phase (triangular-shaped 20 s

heating and 10 s uniform heating respectively) which is not necessarily the case for a

particular solar flare. Nevertheless, we conclude that for correct interpretation of the

SDO/HMI observables during solar flares it is necessary to model the line formation

and variations of the line profile, taking into account the HMI observing sequence

and data analysis procedure.
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CHAPTER 7

RELATIONSHIPS BETWEEN CHARACTERISTICS OF THE
LINE-OF-SIGHT MAGNETIC FIELD AND SOLAR FLARE

FORECASTS

7.1 Introduction

Usually lasting from several minutes to several hours, solar flares can release more

than 1032 erg of energy, and cause harmful effects to the terrestrial environment. The

only possible source to accumulate such large amounts of energy is magnetic field

of active regions. Emslie et al. [56] demonstrated for a sample of 38 flares that

the free (non-potential) energy of magnetic field was sufficient to explain the flare

energy release including Coronal Mass Ejections (CMEs), energetic particles, and

hot plasma emission and dynamics. For understanding the flare physical mechanism

and developing flare prediction methods it is important to find critical magnetic field

characteristics that are linked to the flare initiation and strength.

There have been two types of such study. The first approach is to focus on

global characteristics of active regions, and the second approach is to search for

local critical properties of magnetic fields. For instance, in the first type studies,

Mandage and McAteer [136] demonstrated a difference between the magnetic field

power spectrum slopes of flaring and non-flaring active regions. Korsós et al. [109]

found several promising preflare signatures using the SOHO/MDI-Debrecen Data

sunspot catalog. Korsós et al. [111] introduced the weighted horizontal magnetic

gradient, WGM , which allowed them to predict the onset time for ≥M5.0 class

flares, and conclude whether or not a flare is likely be followed by another event

in the next 18 hours. The daily averages of WGM together with a separation

parameter Sl−f of magnetic polarities were used by Korsós and Erdélyi [110] to

obtain some conditional probabilities of flare and CME characteristics. Many authors

[19, 20, 156, 133] have used vector magnetograms from the Space-weather HMI
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Active Region Patches (SHARP) and applied machine-learning techniques (Support

Vector Machine, Random Forest, and Nearest-Neighbor classifiers) for flare and CME

predictions. Also, a recent study of Raboonik et al. [172] used the Zerneke moments

as characteristics of the active region magnetic field for flare prediction.

Many observational studies of the second type found that the magnetic field

Polarity Inversion Line (PIL) in regions of strong field plays an important role in the

flare activity [206, 81, 231, 61, 113, 91, 203, 116, 16, 204, 209, 225, 15, 243, etc.].

Kusano et al. [118] demonstrated from three-dimensional magnetohydrodynamic

simulations that flare eruptions can be initiated by emergence of certain small

magnetic structures near PIL, as evident from observations. Toriumi et al. [223, 224]

pointed out an important role of highly-sheared magnetic field in the vicinity of PILs

in the flare development process. Guennou et al. [79] found from simulations that

the PIL parameters measuring the total non-potentiality of active regions present

a significant ability to distinguish between eruptive and non-eruptive cases. From

magnetograms one can extract several descriptors representing the local field in the

PIL vicinity. Mason and Hoeksema [139] introduced the Gradient-Weighted PIL

length as a characteristic for solar flare forecasts. Falconer et al. [60, 57, 58, 59]

found that this characteristic is a good proxy for the free magnetic energy. Leka

and Barnes [123, 122, 124] suggested to use a shear angle between the observed and

reconstructed magnetic fields. Chernyshov et al. [42] used the PIL length, the area

of strong magnetic field in the PIL vicinity, and the total flux in this area, as well as

the rates of change of these characteristics.

In this project, we perform a critical analysis of various line-of-sight (LOS)

magnetic field characteristics (derived for the entire active region and for the

PIL vicinity), their relationship to the flaring activity, and importance for flare

forecast. Such analysis based on the LOS magnetograms is important because

these observations can be performed more easily and accurately than the full
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vector magnetic field measurements in near-real time by various space-based and

ground-based observatories. In Section 7.2, we describe automatic procedures for

identification of PIL, calculation of various magnetic field characteristics, association

of the derived characteristics with flare events, and construction of “train” and

“test” data sets. In Section 7.3, we estimate the effectiveness in the separation of

flaring and non-flaring cases for different LOS characteristics. Section 7.4 describes

the application of Support Vector Machine (SVM) classifier for prediction of M-

and X-class flares. The results are summarizes in Section 7.5. The comparison

with previous results, expert-based scores and following conclusion are presented in

Section 7.6.

7.2 Data Preparation

7.2.1 Magnetogram Segmentation

For analysis we used the Line-of-Sight (LOS) magnetograms of Active Regions (AR),

obtained by the Helioseismic and Magnetic Imager onboard the Solar Dynamics

Observatory [200, SDO/HMI]. The active region data were represented in the form

of 30o×30o data cubes with 1 h cadence, remapped onto the heliographic coordinates

using the Postel’s projection, and tracked with the solar differential rotation during

the whole passage of active regions on the solar disk, employing the standard SDO

software. To avoid projection effects, following Bobra and Couvidat [19] we consider

ARs only when they are located within ±68deg from the disk center.

By definition, the Polarity Inversion Line (PIL) is the line where the LOS

magnetic field changes its sign. For the automatic robust detection of the PIL

of strong fields in active regions we use the algorithm initially introduced by

Chernyshov et al. [42]. This algorithm is based on a magnetogram segmentation

process formulated as an optimization task. The goal is to divide the magnetogram

into regions with strong positive field (“positive” segments), strong negative field
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(“negative” segments), or weak field (“neutral” segments). We describe the algorithm

in detail in Appendix A. An example of the segmentation and PIL detection for AR

11158 is illustrated in Figure 7.1.

To isolate the active region area, we use the following two algorithms. The

first one is based on the segmentation result: we apply one morphological dilation

(inclusion of neighboring pixels) to the positive/negative segments (see Appendix A),

combine them, choose the largest segment containing the active region center,

and determine the minimum bounding box around it. The second algorithm

is implemented following the procedure of Stenflo and Kosovichev [216]. The

magnetogram is smoothed, and for each strong magnetic field island the bounding

box with a margin of fixed width (18′′) on all sides is defined. Then, the intersecting

bounding boxes are replaced by a larger bounding box. The solution represents the

largest bounding box intersecting the center of the data cube (the center of AR). We

have found that by applying both algorithms and selecting the smallest bounding box

almost all ARs can be effectively separated from their neighbors. The bounding box

extracted for AR 11158 is presented in Figure 7.1.

7.2.2 Derivation of PIL and AR Characteristics

After performing the segmentation and bounding procedures, we calculate the

following descriptors (characteristics) using the derived PIL and the tracked and

remapped magnetogram:

1. The PIL length defined as the number of pixels occupied by the PIL.

2. The PIL area obtained after 10 morphological dilations of the PIL.

3. The unsigned magnetic flux in the PIL area.

4. The unsigned horizontal gradient in the PIL area defined as the sum of ∇hBz =
√

(

∂Bz

∂x

)2

+

(

∂Bz

∂y

)2

over the PIL area pixels.

120



Figure 7.1 Illustration of the PIL automatic identification procedure: a) The
magnetogram of AR 11158 obtained by the SDO/HMI at 2011-02-16 20:00:00UT.
b) The magnetogram segmentation and identification of PIL: red, green, and blue
areas correspond to negative, neutral and positive segments. The PIL identified by
the algorithm described in Appendix A is shown by white curves.
Source: [191].
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5. The maximum gradient of the LOS magnetic field across the PIL.

6. The gradient-weighted PIL length [139] calculated as the sum of the PIL pixels
multiplied by the unsigned horizontal gradient in each pixel.

7. The R-value [203] representing the unsigned magnetic flux weighted with the
inverse distance from the PIL.

Also, we calculate the following characteristics of the entire AR (“global”

characteristics):

8. The AR area defined as the total area of the positive and negative segments.

9. The unsigned magnetic flux in the AR area.

10. The maximum strength of magnetic field in AR.

11. The unsigned horizontal gradient in the AR area.

7.2.3 Definition of Positive and Negative Classes, and Construction of
“Train” and “Test” Data Sets

The next important step is to associate the magnetic field characteristics derived

for each AR with the flare events detected by the GOES satellite. Following

Nishizuka et al. [156], we classify a set of magnetic field characteristics as a “positive”

case if a ≥M1.0 flare occurred in the corresponding AR within 24 h after the last field

measurement. This means that for each flare there can be 24 positive cases (sets of

measured LOS magnetic field characteristics) or less. For the period from April, 2010

to June, 2016, 521 M-class and 31 X-class flares were associated with at least one

positive case.

Ahmed et al. [3] introduced two ways to determine the negative cases,

described by so-called “operational” and “segmented” associations of active region

characteristics and flares. According to the operational association, the negative

cases are defined to be exactly opposite to the positive cases, i.e., are assigned if there
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was no flare of ≥M1.0 X-ray class within 24 h after the magnetic field measurement.

For the segmented association, the case is defined as negative if no flares occurred 48 h

before and after the case time moment. In the following we will use the operational

association for the “test” subset while keeping the segmented association for the

“train” subset. The segmented association better separates the positive and negative

cases (by neglecting negative cases occurring very close to the flare time), while the

operational association is needed for real-time predictions. The same procedure was

applied also for ≥X1.0 class flares.

For the operational-type real-time flare forecasts, the classifier is defined for

future cases based on the previously observed classified cases. To simulate the

real-time operational forecast, we constructed the “train” and “test” datasets to be

sequential in time. We assign all the cases belonging to ARs with the NOAA numbers

11059-12158 to the “train” data set, and AR 12159-12559 to the “test” data set. The

ratio of the “train” and “test” datasets is approximately 70% to 30% [19, 156]. We

also assume that we have just one attempt to classify a “test” dataset for prediction

of ≥M1.0 or ≥X1.0 flares, which means that the classifier tuning should be done on

the “train” dataset only.

7.3 Effectiveness of Characteristics

In this Section, we analyze the effectiveness of the derived magnetic field character-

istics to separate the positive and negative (flaring and non-flaring) cases. One of the

simplest ways to illustrate the separation ability of magnetic field characteristics is to

construct combined histograms for positive and negative cases. The examples of such

histograms are presented in Figure 7.2. The upper two panels correspond to two PIL

characteristics: the unsigned magnetic flux in the PIL area and the gradient-weighted

PIL length; and the lower two panels correspond to two AR characteristics: the
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Figure 7.2 1D-histograms of a) unsigned magnetic flux in the PIL area; b) gradient-
weighted PIL length; c) unsigned magnetic flux in the AR area; d) unsigned horizontal
gradient in the AR area. The negative cases are shown in grey, the positive ≥M1.0
class cases are shown in red, and the positive ≥X1.0 class cases are shown in green.
The darker areas represent the intersections of the histograms. The red and green
solid lines represent the average values of the positive ≥M1.0 and ≥X1.0 cases, the
corresponding dashed lines show the thresholds corresponding to 5% of positive cases.

Source: [191].
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unsigned magnetic flux in the AR area and the unsigned horizontal gradient in the

AR area.

One can notice that for the PIL characteristics there are more flaring than non-

flaring cases in the tails of the histograms (light color areas). We found such situation

for all PIL characteristics that we computed. For the global AR characteristics, we

found a slight dominance of positive cases in the distribution tail only for the unsigned

magnetic flux, and did not observe it for other three characteristics.

There is one common feature in the histograms. The positive cases occur only if

the characteristics reach some critical (threshold) value. For some LOS characteristics

the existence of the critical values is more prominent in the normal-scaled histogram,

but for others in the logarithmic-scaled histogram. This feature is used to simplify

the classification (prediction) problem by reduction of the amounts of data considered

for the classification. The red dashed (for ≥M1.0 flares) and green dashed (for ≥X1.0

flares) lines in Figure 7.2 represent the threshold values, above which 95% of positive

cases are observed. Note that the threshold values are determined using the “train”

data set. At the same time, the mean values of the positive cases are shown by solid

lines of the same color. The threshold and mean values for the positive cases, as well

as the mean value for the negative cases, are summarized in Table 7.1.

There are many ways to quantitatively determine which characteristics are most

effective for a classification problem. The inclusion of characteristics that are not

discriminative leads to a high computational cost without improvement of the result,

and may even decrease the performance of the SVM [19]. Breiman [28] proposed to

evaluate feature importance by using the Random Forest classification, which was also

used by Nishizuka et al. [156]. Al-Ghraibah et al. [4] employed the univariate True

Skill Statistics (TSS) score as a measure of feature importance. Ahmed et al. [3] used

the Correlation-Based Feature-Selection (CFS) and Minimum Redundancy Maximum

Relevance (MRMR) methods. Leka and Barnes [123] suggested the Mahalanobis
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Table 7.1 Relationship between Magnetic Field Characteristics and Solar Flares of the GOES X-ray Classes Greater than
M1.0 and X1.0

Characteristic Average value Average value Average value 5% threshold 5% threshold

(negative cases) (positive ≥M1.0 cases) (positive ≥X1.0 cases) (positive ≥M1.0 cases) (positive ≥X1.0 cases)

PIL length [m] (1.7±1.8)·107 (6.8±4.0)·107 (8.3±3.6)·107 1.7·107 3.2·107

PIL area [m2] (7.3±5.5)·1014 (19.3±7.9)·1014 (21.8±7.6)·1014 7.9·1014 9.6·1014

Unsigned magnetic flux in the PIL area [G ·m2] (1.14±1.15)·1017 (4.68±2.98)·1017 (5.96±2.98)·1017 1.20·1017 1.57·1017

Unsigned horizontal gradient in the PIL area [G ·m] (0.81±0.75)·1011 (2.93±1.67)·1011 (3.40±1.34)·1011 0.89·1011 1.47·1011

Maximum gradient across the PIL [G/m] (3.8±2.3)·10−4 (9.0±4.4)·10−4 (10.3±3.4)·10−4 3.7·10−4 5.3·10−4

Gradient-weighted PIL length [m ·G/m] (3.1±4.1)·103 (19.4±16.4)·103 (24.1±13.2)·103 2.8·103 6.2·103

R-value [G ·m2] (2.4±3.2)·1015 (14.2±11.7)·1015 (19.1±10.7)·1015 2.0·1015 4.8·1015

AR area [m2] (4.8±4.0)·1015 (10.1±4.9)·1015 (11.9±4.7)·1015 3.2·1015 3.7·1015

Unsigned magnetic flux in the AR area [G ·m2] (7.7±7.1)·1017 (21.1±13.0)·1017 (29.2±13.0)·1017 5.6·1017 7.1·1017

Maximum strength of magnetic field in the AR [G] (1.31±0.41)·103 (1.66±0.48)·103 (1.84±0.52)·103 1.06·103 1.20·103

Unsigned horizontal gradient in the AR area [G ·m] (6.1±5.4)·1011 (13.4±7.4)·1011 (16.5±8.2)·1011 3.9·1011 4.3·1011

Note: Columns 2 and 3 show the average values of the parameters for the ≥M1.0 and ≥X1.0 class flares correspondingly. Columns 4
and 5 show the thresholds, above which 95% of all ≥M1.0 and ≥X1.0 class flares were observed.

Source: [191].
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distance between classes and Hotelling’s T2-test to measure statistical differences

between flaring and non-flaring cases. Bobra and Couvidat [19] calculated the Fisher

Ranking score (or F-score) as a measure of a univariate effectiveness of the separation

ability.

In this work, we calculated two simple univariate scores for the obtained

magnetic field characteristics. Firstly, for each characteristic we derived the threshold

separating 5% of the positive cases. As seen from Table 7.1, these threshold values

(for both ≥M1.0 and ≥X1.0 flares) are comparable or even greater than the mean

values for the negative cases for most characteristics. Thus, the fraction of negative

cases which could be cut off by this threshold is used as a measure of effectiveness of

characteristics in separating the “train” and “test” data sets. Secondly, we calculate

the Fisher ranking score [19, F-score]:

F (i) =
(x̄+

i − x̄i)
2 + (x̄−

i − x̄i)
2

1

n+ − 1

n+
∑

k=1

(x+
k,i − x̄+

i )
2 +

1

n− − 1

n−
∑

k=1

(x−
k,i − x̄−

i )
2

,

where x̄i is the mean value of characteristic i; x̄+
i and x̄−

i are the mean values

of characteristic i for the positive and negative cases; and n+ and n− are the total

numbers of the positive and negative cases. We calculated the F-score for all the

characteristics for the train dataset. Sometimes, the F-score is higher if calculated

for the logarithms of the parameters. Therefore, we also calculated the F-scores of

decimal logarithms of each parameter and used it if the score was higher than the

one for the normal-scaled characteristic.

The results for both estimates of effectiveness are combined and summarized in

Tables 7.2 and 7.3 for the ≥M1.0 and ≥X1.0 class flares respectively. The cases for

which the logarithmic scale was used in the F-score calculation are labeled as (log) in

Tables 7.2 and 7.3. The SVM training and testing were also done in the logarithmic

scale for such parameters. One can notice from Tables 7.2 and 7.3 that for every
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Table 7.2 Importance of Magnetic Field Characteristics for the Forecast of ≥M1.0
Class Solar Flares

Characteristic Fraction of negative F-score

cases below threshold, %

PIL length (log) 0.63 1.41

PIL area 0.60 1.46

Unsigned magnetic flux in the PIL area (log) 0.63 1.41

Unsigned horizontal gradient in the PIL area (log) 0.64 1.48

Maximum gradient across the PIL (log) 0.56 1.15

Gradient-weighted PIL length (log) 0.62 1.45

R-value (log) 0.61 1.35

AR area (log) 0.44 0.66

Unsigned magnetic flux in the AR area (log) 0.49 0.86

Maximum strength of magnetic field in the AR (log) 0.29 0.30

Unsigned horizontal gradient in the AR area 0.44 0.69

Source: [191].
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Table 7.3 Importance of Magnetic Field Characteristics for the Forecast of ≥X1.0
Class Solar Flares

Characteristic Fraction of negative F-score

cases below threshold, %

PIL length 0.84 2.68

PIL area 0.71 2.36

Unsigned magnetic flux in the PIL area 0.74 2.51

Unsigned horizontal gradient in the PIL area 0.83 2.81

Maximum gradient across the PIL 0.79 2.46

Gradient-weighted PIL length (log) 0.84 2.62

R-value (log) 0.84 2.47

Total AR area 0.51 1.32

Unsigned magnetic flux in the AR area (log) 0.60 1.91

Maximum strength of magnetic field in the AR (log) 0.41 0.68

Unsigned horizontal gradient in the AR area (log) 0.49 1.29

Source: [191].
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considered univariate test the PIL characteristics have higher scores than the global

AR parameters.

7.4 Methodology of Flare Prediction

Currently most operational flare forecasts are based on expert decision. However,

many recent works [19, 213, 80, 8, 133, 172, 156] demonstrated that the Machine-

Learning algorithms can be successfully applied for flare prediction. In this Section,

we test if it is possible to forecast ≥ M 1.0 and ≥ X 1.0 flares, using Machine-Learning

algorithms based solely on the LOS magnetic field characteristics. Our approach is

to utilize the Support Vector Machine [43, SVM] classifier for flare forecasting using

the Python module “Scikit-Learn” [163]. The description of SVM can be found in

Bobra and Couvidat [19], and in Appendix B.1.

The computational cost of the SVM classifier scales with the number of cases

in the “train” data set and the number of features (characteristics, descriptors) as

O(N2 ×M) if N >> M . On one hand, a large number of training samples should

positively affect the classifier performance. On the other hand, the SVM classifier has

many parameters that should be optimized, and the computing time quadratically

increases with the size of “train” dataset. Thus, any possibility to reduce the number

of cases which need to be classified should be utilized. In the previous Section we

have found that the flaring cases mostly occur if a specific characteristic exceeds a

certain threshold. We have also obtained that the PIL descriptors are more effective

in the separation of the positive and negative cases. Thus, we first performed the

classification based on the PIL characteristics only. We automatically classified a case

as negative if any of its PIL characteristics was below the corresponding threshold.

It was found that this procedure allows us to reduce the amount of data for the SVM

classification by 74.4% (leaving about 1/4 of all cases) for the ≥M1.0 class flares

and by 91.2% for the ≥X1.0 class flares. Only about 11.6% of positive cases for the
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≥M1.0 and 14.0% for the ≥X1.0 class flares were misclassified as negative at this

stage. To check the validity of this approach, we repeated the training procedure

with the threshold values decreased by a factor of two that led to exclusion of 52.2%

of cases (two times more cases need to be classified) for the ≥M1.0 class and 72.8%

(three times more cases need to be classified) for the ≥X1.0 class cases. We have also

checked how the inclusion of the global AR parameters (AR area, unsigned magnetic

flux, maximum strength of magnetic field, and unsigned horizontal gradient) affect

the forecasting result by repeating the training procedure with all 11 parameters.

For the SVM training, we normalize the “train” dataset: Z = (X−µ)/σ, where

X is a non-normalized data set, µ is the mean, and σ is the standard deviation [156].

We use the same µ and σ parameters to normalize the “test” data set. To find the

optimal SVM kernel (among the Linear, RBF, Polynomial, and Sigmoid available in

the Python Scikit-Learn package) and its parameters, we perform a cross-validation

procedure on the “train” dataset: divide it into two subsets (one simulating the train

data set, and another simulating the test data set) ten times, and then average the

SVM results. As a measure of the SVM performance, we use the True Skill Statistics

(TSS) metrics defined as:

TSS =
TP

TP + FN
− FP

FP + TN
,

where TP is the true positive prediction (number of positive cases predicted as

positive), TN is the true negative prediction (number of negative cases predicted as

negative), FP is the false positive prediction (number of negative cases predicted as

positive), FN is the false negative prediction (number of positive cases predicted as

negative). The TSS score is not sensitive to the class imbalance ratio (the relative

number of positive and negative cases), and is zero for a pure negative prediction

(when all cases are predicted as negative). The standard deviation of the TSS was
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estimated from the scores obtained during the cross-validation procedure with the

optimal parameters.

7.5 Results

In Section 7.3 it was pointed out that the PIL characteristics separate flaring and

non-flaring cases more effectively than the global (integrated) characteristics obtained

for the whole ARs. The results in Tables 7.2 and 7.3 demonstrate that all PIL

characteristics give approximately the same scores in both tests for both, the ≥M1.0

and ≥X1.0 flare predictions. Among the global AR characteristics, the highest score

is obtained for the unsigned magnetic flux in the AR area, but still it does not exceed

the scores for any PIL parameter.

The results of prediction tests based on the PIL parameters only are summarized

in the second column of Table 7.4. For the ≥M1.0 class solar flares, we found that

the best score of TSS = 0.76±0.03 can be obtained using the “sigmoid” SVM kernel

(described in Appendix B.1) with parameters C = 0.1, γ = 0.01 and r = 0.001,

and the negative/positive class weights of 1/20. Description of these parameters can

be found in Appendix B.1. The score was derived from the following classification

results: TP = 1932, TN = 42382, FP = 6654, FN = 234 (including all cases in the

test dataset). For the ≥X1.0 class solar flares, we obtained TSS = 0.84 ± 0.07 for

the same “sigmoid” SVM kernel but with different parameters: C = 0.0001, γ = 10.0

and r = 0.0001, and the negative/positive classes weights of 1/100. This TSS was

derived from the following classification results: TP = 194, TN = 44991, FP = 6009,

FN = 8.

Interestingly, the flare forecasts performed using only the PIL characteristics

have almost the same TSS scores as the forecasts based on the full set of characteristics

(including both the PIL and global AR characteristics). The TSS scores for the full set

of characteristics are summarized in the third column of Table 7.4. For prediction of
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Table 7.4 Comparison of TSS Scores for Different Methods of Prediction of ≥M1.0
and ≥X1.0 Class Solar Flares

Prediction of ≥M1.0 flares Prediction of ≥X1.0 flares

PIL characteristics only 0.76±0.03 0.84±0.07

PIL + global characteristics 0.74±0.03 0.84±0.07

50% decreased cutoff values 0.76±0.03 0.85±0.04

Note: The standard deviations are estimated using a cross-validation procedure.

Source: [191].
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≥M1.0 solar flares, the inclusion of global characteristics even decreased the TSS score

from TSS =0.76 to TSS =0.74. For prediction of ≥X1.0 flares, we have obtained the

same TSS =0.84 score.

The last column of Table 7.4 summarizes the results of the classification using

the PIL parameters with the pre-classification threshold decreased by a factor of two.

The 50% decrease of the threshold (which results in a smaller number of pre-classified

samples) leads to an insignificant increase of TSS for the ≥X1.0 flare prediction (from

TSS =0.84 to TSS =0.85) and gives the same TSS for the ≥M1.0 flare prediction.

Thus, we can conclude that it is possible to pre-classify a significant number of cases

(74.4% for the ≥M1.0 class flares and 91.2% for the ≥X1.0 class flares) by applying

thresholds to the PIL parameters without a significant decrease of the prediction

TSS score.

7.6 Discussion and Conclusion

In this study, we have developed a machine-learning procedure solely based on

the line-of-sight (LOS) magnetic field observations that are available in near-real

time from space-based and ground-based observatories. The procedure is based on

analysis of characteristics of the magnetic field Polarity Inversion Line (PIL) which

is automatically identified by performing the magnetogram segmentation formulated

as an optimization task. The PIL characteristics were derived from the SDO/HMI

magnetograms for each AR with 1 h cadence. We estimated the effectiveness of

these characteristics for forecasting ≥M1.0 and ≥X1.0 solar flares, and trained the

Support Vector Machine (SVM) to maximize the True Skill Statistics (TSS) metrics.

Interestingly, the univariate effectiveness scores are similar for all PIL characteristics,

probably, because the PIL characteristics (except, possibly, the Maximum gradient

across PIL) correlate with each other (depend on the same PIL length or the PIL

area that depends on the PIL length).
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The obtained True Skill Statistics scores TSS = 0.76 for prediction of ≥M1.0

class flares, and TSS = 0.84 for prediction of≥X1.0 class flares, can be compared with

the scores mentioned in other works. For example, Anastasiadis et al. [8] reported

TSS ≈ 0.5 for the prediction of ≥C1.0 class flares, Shin et al. [213] received a

maximum of TSS = 0.371 for ≥M1.0 class flares, Hada-Muranushi et al. [80] —

the TSS = 0.295 for ≥M1.0 class flares, Liu et al. [133] — TSS = 0.50 for ≥M1.0

class flares. On the other hand, our TSS score for ≥M1.0 is lower than ones in the

works of Bobra and Couvidat [19, TSS =0.817], Nishizuka et al. [156, TSS =0.88

for SVM classifier], Raboonik et al.[172, TSS =0.856]. Also, Nishizuka et al. [156]

reported a higher TSS score for ≥X1.0 class flares (TSS = 0.88 for SVM classifier).

Our results solely based on the line-of-sight magnetic field observations are lower than

those obtained with the use of vector magnetograms, but still comparable.

The score for ≥M1.0 class flares received in our work is higher than the known

expert predictions quoted by Nishizuka et al. [156]: TSS = 0.50 for the NICT Space

Weather Forecasting Center and TSS = 0.34 for the Royal Observatory of Belgium

[53]. It is also higher than the TSS = 0.53 of the National Oceanic and Atmospheric

Administration (NOAA) Space Weather Prediction Center (SWPC) deduced from

Table 4 of Crown [47]. For the ≥X1.0 flares, again, our result is higher than the expert

prediction with TSS = 0.21 [156, the NICT Space Weather Forecasting Center] and

with TSS = 0.49 [47, Table 4]. We can conclude that the accurately-tuned machine-

learning technique, even if it is solely based on the LOS magnetic field measurements,

can compete with the expert-based predictions.

It is necessary to discuss the influence of the data set construction on the

prediction results. First, the way of the division of the data set into the “train” and

“test” subsets can change the prediction scores. For example, the shuffled division

(when the “train” and “test” subsets are not consequent in time, but all cases from

one AR are kept in one subset) reduces the scores from TSS = 0.76 to TSS = 0.70 for
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≥M1.0 class flares, and from TSS = 0.84 to TSS = 0.63 for ≥X1.0 class flares. The

strong difference in the TSS score for ≥X1.0 class flares is caused by a low number

of X-class flares in the data set. In this work, we relied on the NOAA AR detection

and considered every case with the detectable PIL, which already makes the data

set to be subjective to the PIL detection method. Nishizuka et al. [156] used their

own method to detect ARs, which definitely leads to another data set with larger

number of cases. Bobra and Couvidat [19] reduced the actual data set by cutting out

some randomly-selected portion of negative cases. Thus, to guarantee the accurate

comparison of different prediction methods, one should unify the starting data set and

its division into the “train” and “test” subsets. Such attempts were done previously

[16], and hopefully will be continue in the future.

The important role of PIL in the flare development process was pointed out

in many observations, simulations and forecasts of solar flares. Generally, the

PILs are characterized by highly-sheared magnetic fields, strong field gradients and

complicated topology of neighboring magnetic field structures. These properties

result in a substantial amount of free magnetic energy that can be released in

flares. It is not surprising that many flares are developed locally in the PIL vicinity.

Our study statistically confirms the importance of the PIL characteristics for flare

forecasting. In particular, it demonstrated that the PIL characteristics obtained

just from the line-of-sight magnetic field component can be used to obtain flare

predictions compatible with expert-based forecasts and comparable to the predictions

that are based on full vector magnetic field observations. However, our results

are accompanied by a significant number of false positive predictions. Generally,

a more accurate comparison of machine-learning-based and expert-based predictions

is required. Despite the promising results, we should always keep in mind that the

prediction is metrics-dependent. In this work, we maximize the True Skill Statistics in

a single parameter setup. Maximizing other metrics can result in other optimal SVM
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parameters and prediction scores [19]. Further work is needed to develop algorithms

for quantitative prediction of the flare class and physical properties (eruptive or

non-eruptive nature, geo-effectiveness etc).
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CHAPTER 8

ENHANCEMENT OF BINARY AND PROBABILISTIC SWPC NOAA
FLARE FORECAST BY USING MACHINE LEARNING

8.1 Introduction

Solar flares are important agents of the solar-terrestrial interactions and drivers of

the space weather. Often accompanied by fast coronal mass ejections (CME), solar

energetic particles (SEP), and high-energy radiation, strong solar flares can lead

to harmful consequences to the terrestrial environment. The prediction of solar

flares and accompanying events, as well as understanding their physical triggers,

remains one of the most important problems in heliophysics for many decades.

The Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory [200,

SDO/HMI] obtained tremendous amounts of magnetic field observations starting

from 2010, which significantly increased number of forecasting attempts, including

employment of the state-of-art deep learning techniques [86, 155].

Regions of the strong-field Polarity Inversion Lines (PIL) in active regions are

of a special interest. The evolution and structure of the magnetic field in the vicinity

of the PIL plays a crucial role in the development of the flare process [91, 118, 223,

204, 15, 209]. Parameters related to the PIL are previously demonstrated to correlate

with the flaring and CME productivity of active regions [139, 222, 120], and are

very often considered as proxies for the “free energy” budget of the active regions

[81, 60, 203, 57]. Sadykov and Kosovichev [191] summarized seven commonly-used

PIL properties together with four active region properties calculated from line-of-sight

(LOS) magnetic field measurements, and tested the possibility to build the solar flare

forecast for active regions based on LOS data.

Other commonly-used properties of the active regions are Space weather HMI

Active Region Patches [21, SHARPs]. SHARPs represent 18 descriptors calculated
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on routine basis for each identified active region (magnetic field patch) with 12min

cadence, and form the largest database of active region descriptors in solar physics.

Bobra and Couvidat [19], Bobra and Ilonidis [20] used the Support Vector Machines

(SVM) to predict the solar flares and coronal mass ejections based on SHARP

descriptors. Liu et al. [133] tested the Random Forest classification algorithm for

prediction of the solar flares of different classes.

In addition to the properties of the magnetic field, the descriptors of the flaring

prehistory can significantly enhance the flare forecasts [58, 156]. The flares are

historically defined as enhancements of the 1-8 Å Soft X-ray (SXR) flux measured

by the X-ray Sensor- onboard Geostationary Operational Environmental Satellite

[23, GOES/XRS]. Inclusion of both the number of strong flares happened during the

previous day and the properties of the preceding SXR 1-8 Å flux should be tested for

the forecast.

In general, since the amounts and quality of the observational data and

descriptors are continuously rising, there are more and more attempts appearing to

predict the solar flares and flare-related events using the machine learning techniques

[170, 3, 59, 4, 8, 165] on various temporal and spatial scales. However, because the

structures of the utilized data sets are not the same among the studies, it is almost

impossible to compare them with each other [16]. The question of the unification of

the data sets are especially important for comparison of the results from the developed

prediction attempt with the forecasts of any operational facility [53, 151, 47].

The main goal of the current study is an accurate comparison of the prediction

of M-class and X-class flares using machine learning algorithms with the forecast

issued by SWPC NOAA [47], investigation of properties of the operational forecast

probabilities, and demonstration of the possibility to enhance the forecast. Because of

this, we use the same spatial (whole-Sun descriptors) and temporal (one-day forecast)

scales as for SWPC probabilities, which will allows us not only to have more direct
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comparison with SWPC NOAA in terms of both binary and probabilistic forecasts,

but also to check if the SWPC NOAA probabilities contain any additional information

with respect to PIL, SHARP, and SXR descriptors derived in this work by including

them as one of the descriptors in the classification algorithm.

The study has the following structure. Section 8.2 summarizes the data

preparation and feature extraction steps for the study. Section 8.3 describes the

feature selection and machine learning procedures. The results of the binary and

probabilistic forecasts are presented in Section 8.4. The discussion of the results is

initiated in Section 8.5 and is followed by a brief summary of the main findings and

conclusions in Section 8.6.

8.2 Data Description and Preparation

8.2.1 SWPC NOAA Operational Forecasts

Operational space weather forecasts are currently prepared jointly by United States

Department of Commerce, SWPC NOAA, and the United States Air Force. The

forecasts are issued on daily basis, at 22:00UT, for the next day according to the

universal time. The forecasts are available via ftp (ftp://ftp.swpc.noaa.gov/pub/

warehouse/, accessed on 04/08/2019) under RSGA folder for each year. The forecast

of solar flares is presented in terms of probabilities (ranging from 1 to 100) of M-class

and X-class flares to occur next day, day after next day, and two days after next

day, in the section “III” of the document. Currently operational flare forecasts are

performed by SWPC NOAA by forecasters using a modified three-component Zurich

class [144] and magnetic class [214] for each active region and historical look-up tables

of flare probability as a function of active region class, flaring history, growth/decay

of sunspots. The calculated probability is corrected by forecasters based on their

experience. The usage of this subjective forecast was proven to be more reasonable

in terms of Brier Skill Score [47, BSS] than non-corrected probabilities.
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For the presented study we utilize only the next-day probabilities of the

M-class and X-class flares. The data are collected for each day of May, 2010 —

December, 2017. The probabilities for the days when the reports were not issued

were interpolated from the neighboring days. Figure 8.1 presents Pearson’s correlation

coefficient of the SWPC NOAA next-day probability of an M-class or X-class flare and

presence/absence of such flare during the day, as well as SXR 1-8 Å daily-averaged

flux, with respect to different time lags between the data sets. As one can see, the

next-day flare probabilities are highly correlated with the current flare activity, even

stronger than with the next-day flare activity. This confirms one more time that the

flare prehistory is one of the key parameters influencing the forecast. However, the

correlation coefficients with the next-day SXR activity are still high, indicating that

the SWPC NOAA flare probabilities definitely represent valuable descriptors for the

flare forecasts.

8.2.2 Magnetic Field Descriptors

SWPC NOAA operational forecasts of next-day M-class or X-class flare is essentially

one number (probability) issued on a daily basis for the whole Sun, and it somehow

describes the state of the Sun at that day. Our idea is to build a set of magnetic

field and SXR descriptors also characterizing the entire Sun for the whole day (i.e.,

each descriptor is one number per day). This will allow us not only to preserve the

same spatial and temporal scales of forecast at SWPC NOAA, but also to include the

SWPC NOAA probabilities as one of the descriptors for the learning procedure, and

evaluate if the inclusion of these probabilities results in higher prediction scores.

In this work we use two types of magnetic field descriptors previously mentioned

in the literature. The first are the PIL and AR descriptors from Sadykov and Kosovichev [191]

which are computed for each NOAA active region with 1 hr cadence for 2010-2015.

We extend the computations of the descriptors for active regions of 2016-2017 for
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Figure 8.1 Pearson’s correlation coefficient for the next-day SWPC NOAA
operational forecast and flare presence (a,b) or SXR 1-8 Å daily average flux (c,d) as
a function of the time lag between these quantities. Panels (a) and (c) correspond to
M-class flares, panels (b) and (d) — to X-class flares. Dashed vertical line corresponds
to 1 day time lag (i.e., correlation between next-day forecast and next-day activity),
solid vertical line — to the time lag for which the maximum correlation is found.

Source: [192]
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this study. Another set of the magnetic field descriptors is SHARPs [21], which are

calculated for every magnetic field patch with 12min cadence. In this work, we will

use only SHARPs for patches related to NOAA active regions.

We emphasize here that there are many ways to construct the daily descriptors

of the entire Sun from the high-cadence descriptors of solar active regions. We follow a

simplistic approach. In the previous study, Sadykov and Kosovichev [191] found that

the stronger values of PIL descriptors correspond to higher flare activity. This is also

true for absolute values of most of the SHARP descriptors in this study. Thus, one

expects that the region with the strongest values of the descriptors at the current day

is the most likely to flare. Following that logic, we make two steps: 1) calculate the

mean and the absolute maximum daily values of each descriptor of each active region

separately; 2) for each day for each descriptor, select the absolute maxima among the

previously-calculated mean and maximum values for the active regions presented at

the Sun. Thus, any considered PIL/AR and SHARP descriptor produces two daily

descriptors of the Sun. Such way of obtaining descriptors results in 22 PIL descriptors

and 36 SHARP descriptors for the whole Sun for the entire day.

8.2.3 Flare Statistics and SXR Descriptors

Statistics of solar flares is recovered from the Helioportal [194, https://helioportal.

nas.nasa.gov/, accessed on 04/08/2019], and cross-checked for completeness with

the original NOAAGOES flare catalog (ftp://ftp.swpc.noaa.gov/pub/warehouse/,

accessed on 04/08/2019). For each day, we get the number of M-class and X-class

flares occurred on the Sun. We use these numbers as the descriptors for the presented

study, as well as for the label/class assignment. We also obtain several descriptors

related to the GOES/SXR 1-8 Å flux and flare statistics. We use the mean and

maximum flux values for the day, two days, and three days before the forecast. Also,

we count the total number of M-class and X-class flares 1-3 days before the forecast
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time. This results in additional 12 descriptors for each day. We will call them SXR

descriptors further in the text.

8.2.4 Data Set Cleaning and Labeling

One should be careful while processing the magnetic field descriptors: once the flare-

producing active region moves closer to the limb, very strong projection effects corrupt

the derived PIL and SHARP properties. Thus, it is better to neglect the cases when

the flare-productive active regions were located very close to the limb. For our study,

we use the following criteria. If the Sun is flaring the day after the considered day, and

all the flares were produced only from the active regions located farther than 68o from

the disk center at the current day, then we discard that day from the consideration.

This weak selection criteria allows us to keep as many days in the data set as possible.

Remember that we keep the day also if there is at least one flare next day produced

by region within 68o from the disk center, or if the Sun is flare-silent for that day.

For each of the remaining days we have 70 descriptors and one SWPC NOAA

flare probability. We label each day according to the fact if the flare of M-class or

X-class (depending what class we are focusing at) happens next day (“1”) or not (“0”).

It was found previously [191] that sometimes the descriptors are better-performing

if used in linear scale, and sometimes in logarithmic scale. We test each of the

descriptors and keep the scale which results in higher F-score for this descriptor:

F (i) =
(x̄+

i − x̄i)
2 + (x̄−

i − x̄i)
2

1

n+ − 1

n+
∑

k=1

(x+
k,i − x̄+

i )
2 +

1

n− − 1

n−
∑

k=1

(x−
k,i − x̄−

i )
2

(8.1)

Here x̄i is the mean value of characteristic i; x̄+
i and x̄−

i are the mean values

of characteristic i for the flaring and non-flaring cases; and n+ and n− are the total

numbers of the flaring and non-flaring cases. We also normalize each descriptor by

subtracting its mean across the data set and by normalizing to its standard deviation.
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For each study, we consider both the classification solely based on one group of

features by their origin (PIL, SHARP, SXR) and the combination of all these features,

with or without the SWPC NOAA flare probabilities.

Although we tried to keep as many days of 2010-2017 as possible, the number

of data points is not too large (2698 days for M-class flares, and 2776 days for X-class

flares). Because of this, we do not create a fully-separated test data set for this study.

Instead, we perform the cross-validation, and derive the validation prediction score

together with its generalization error obtained through 10 train-validation pairs of the

data sets constructed with 10-times “shuffle and divide” approach. Notice again that

all obtained scores are the validation scores rather than the scores from performance

on the test data. Also, because the class-imbalance ratio for X-class flares is very high,

we will just briefly mention the results related for X-class flares in this study, without

going into details. The methodology for the X-class flares is essentially the same as

for M-class flares but the results are much more ambiguous due to low occurrence

rate of X-class flares.

8.3 Methodology of the Forecast

After the data preparation step, we have the labeled normalized data set subdivided

10 times to the train-validation pairs, fully-prepared for the classification problem.

In this study, we test the machine learning classification algorithms available in

the Scikit-Learn package for Python [163]. The description of the classification

algorithms, together with their hyperparameters for this study, is provided in

Appendix B. Here we just list their abbreviations: Support Vector Machines (SVM)

with Linear, Radial Basis Function (RBF), and Sigmoid kernels; Logistic Regression

(LR); k-Nearest Neighbors (kNN); Adaptive Boosting (AdaBoost) with the Decision

Tree classifier as a basis; and Multi-Layer Perceptron with two hidden layers of 200

neurons each (MLP1), of five hidden layers of 200 neurons each (MLP2), and of five
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hidden layers having 200, 100, 50, 25, and 10 neurons correspondingly (MLP3). In

addition to the classification problem, we evaluate a probabilistic forecast for the

Support Vector Machines [166], which is also a part of the Scikit-Learn package and

described in Appendix B.

Any classification problem has a result of four numbers: TP (True Positive;

number of cases where the flaring day predicted as flaring), TN (True Negative;

number of cases where the non-flaring day predicted as non-flaring), FP (False

Positive; number of cases where the non-flaring day predicted as flaring), and FN

(False Negative; number of cases where the flaring day predicted as non-flaring).

The ultimate goal of any classification problem is to minimize FP and FN. Because

there are two numbers of minimize, the particular minimization strategy depends on

the desired purposes of the prediction (e.g., robust detection of “all-clear” cases and

maximum-accuracy classification are different tasks). In this work, we will use three

measures which are commonly considered in the works of the flare prediction, namely

Accuracy, True Skill Score (TSS), and Heidke Skill Score (HSS):

Accuracy =
TP + TN

TP + TN + FP + FN
(8.2)

TSS =
TP

TP + FN
− FP

FP + TN
(8.3)

HSS =
2× (TP × TN − FN × FP )

(TP + FN)× (FN + TN) + (TP + FP )× (TN + FP )
(8.4)

As a measure of the success of the probabilistic forecast, we use the Brier Score

and the Brier Skill Score [143, BS and BSS] with respect to the flare climatology

(when the probability of the flare to happen is the same for each day and equal to

the flaring day occurrence rate), defined as:

BS =
1

n

n
∑

i=1

(Pi −Qi)
2 (8.5)

BSS = 1− BS

BSclim

(8.6)
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Here BSclim is the Brier Score for climatological forecast. BS is indicating how

strongly the probabilities deviate from the precise prediction of 0% or 100%: lower

BS indicated better forecast. BSS indicates how strongly the probabilistic forecast

outperforms the event occurrence rate: higher BSS indicates better forecast.

The next important step is the selection of descriptors which will be utilized

in the forecast. Usage of all descriptors may not improve the forecast or even can

decrease the forecast score [19]. Also, the usage of highly-correlated descriptors is

meaningless because addition of such descriptors does not introduce new information

into the classification problem. In this case, selection of descriptors based on any

univariate measures (such as F-score) is not suitable because this measure do not

count for correlations. Our advantage is in the relatively small size of the data set

(less than 3000 data points). For each classification algorithm, metrics to maximize,

feature type (PIL, SHARP, SXR, all of them), inclusion of exclusion SWPC NOAA

probabilities, we performed the following algorithm to select the descriptors/features:

1. Make the initial ranking of descriptors according to their F-scores on the entire
data set;

2. Select two descriptors with the highest F-score if the SWPC probabilities are
not used, or the SWPC flare probability and the descriptor with the highest
F-score if opposite;

3. Find the classifier hyperparameters maximizing the mean of the metrics (score)
across the train-validation data sets;

4. Introduce the descriptor with the next highest F-score and temporarily add it to
the previously-considered descriptors. If the F-score of the descriptor is below
the threshold (1/4 of the maximum F-score among features for M-class flares,
and 1/10 for X-class flares), stop the procedure;

5. Find again the classifier hyperparameters which maximize the mean of the
metrics (score) across the train-validation data sets;

6. If the score is higher (lower for BS) than previously-obtained with certain
threshold (0.002 for TSS and HSS, 0.001 for accuracy and BS), keep the
descriptor for the classification. Discard it otherwise. Return to step 4.
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Although such algorithm may not guarantee the optimal basket of features,

it allows us to collect only the features which introduce significant additional

information to the forecast (i.e., improve the forecast), and discard highly-correlated

features. An example of work of the feature selection algorithm is presented in

Table 8.1. Notice that here prediction of M-class flares was considered, all features

were used except the SWPC NOAA probabilities, the classifier was the SVM with

the Radial Basis Function (RBF) kernel. As one can see, different metrics require

different number and type of features. We found that typically 5-15 features maximize

the targeted score.

SWPC NOAA flare forecasts represent the probability of the flare to happen

next day. To convert the probabilistic forecast into binary, we need to set up a

probability threshold above which we predict the flare to happen. We did this also

using the train-validation data sets for each metrics separately, by varying probability

threshold and maximizing the metrics on the train data set, and applying the same

threshold on validation data set. The scores are finally averaged over the validation

data sets to evaluate the binary “operational” forecast. We will call them “expert

scores” hereafter in the text.

8.4 Results

8.4.1 Binary Forecast

The results for the binary forecasts of M-class flares for different classifiers and

different groups of features are presented in Tables 8.2-8.4. The top left corner

of the tables indicates the metrics which we maximize, the top bar indicates the

algorithms used to obtain the prediction, the left column indicates the groups of

features. Here “+/- ES” refers to if the SWPC NOAA probabilities were included or

excluded as descriptors for the forecast. The cross-section of “Expert Scores (ES)” row

and “ES thresholding” column refers to the average score obtained by thresholding
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Table 8.1 List of Parameters Maximizing the Target Score (Accuracy, TSS, HSS, or BS) for the SVM RBF Classifier Trained
on all Features except the SWPC NOAA Probabilities

Score / Descriptor type

Skill score PIL SHARP SXR

Gradient-weighted length (mean) Absolute value of the net current helicity (mean) 3 day peak SXR flux

Accuracy Gradient-weighted length (max) 1 day history of M and X class flares

PIL area (mean)

Gradient-weighted length (mean) Absolute value of the net current helicity (max) 1 day mean SXR flux

Gradient-weighted length (max) 2 day mean SXR flux

TSS PIL area (mean) 1 day peak SXR flux

Maximum gradient across PIL (mean) 2 day peak SXR flux

Maximum gradient across PIL (max)

Gradient-weighted length (mean) Total unsigned current helicity (max) 1 day mean SXR flux

Gradient-weighted length (max) Sum of the modulus of the net current per polarity (max) 2 day mean SXR flux

PIL area (mean) Proxy for total photospheric magnetic free energy density (max) 1 day peak SXR flux

HSS PIL area (max)

Unsigned magnetic flux in PIL area (mean)

AR area (mean)

Unsigned horizontal gradient in AR area (max)

Gradient-weighted length (mean) Absolute value of the net current helicity (max) 1 day mean SXR flux

BS/BSS Gradient-weighted length (max) 1 day peak SXR flux

PIL area (mean) 2 day peak SXR flux

Unsigned horizontal gradient in PIL area (max)

Note: The descriptors are grouped by their origin (PIL, SHARP, SXR) in columns for convenience.

Source: [192].
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Table 8.2 Summary of Accuracy Scores Obtained for Prediction of M-class Flares Using Different Machine Learning Classifiers
(Columns) and Different Types of Descriptors (Rows)

Accuracy, M flares ES threshold SVM Linear SVM RBF SVM Sigmoid LR kNN AdaBoost MLP1 MLP2 MLP3

Expert scores (ES) 0.891±0.002 - - - - - - - - -

PIL + ES - 0.886±0.007 0.899±0.007 0.896±0.006 0.898±0.005 0.901±0.006 0.897±0.007 0.900±0.005 0.900±0.007 0.897±0.006

SHARP + ES - 0.886±0.007 0.898±0.007 0.894±0.010 0.899±0.006 0.897±0.006 0.896±0.007 0.900±0.007 0.899±0.004 0.899±0.006

SXR + ES - 0.893±0.006 0.897±0.006 0.897±0.005 0.898±0.006 0.897±0.007 0.898±0.006 0.897±0.006 0.896±0.005 0.898±0.007

ALL + ES - 0.899±0.006 0.901±0.008 0.900±0.006 0.904±0.006 0.903±0.007 0.901±0.006 0.902±0.007 0.901±0.006 0.897±0.006

PIL - ES - 0.888±0.008 0.899±0.005 0.901±0.008 0.901±0.007 0.901±0.007 0.898±0.007 0.902±0.006 0.902±0.005 0.898±0.005

SHARP - ES - 0.886±0.007 0.894±0.008 0.891±0.008 0.896±0.006 0.895±0.009 0.892±0.008 0.894±0.006 0.895±0.009 0.892±0.007

SXR - ES - 0.891±0.007 0.895±0.007 0.897±0.006 0.898±0.006 0.895±0.007 0.896±0.007 0.899±0.007 0.898±0.007 0.894±0.005

ALL - ES - 0.897±0.006 0.903±0.006 0.900±0.007 0.904±0.006 0.903±0.007 0.901±0.007 0.902±0.008 0.903±0.005 0.902±0.007

Note: The score represent the average over the scores obtained for train-validation subsets, with corresponding standard deviation.

Top left score represents the accuracy of the M-class flare forecast obtained using SWPC NOAA probabilities. The probability

threshold for binary forecast was obtained by maximizing accuracy on train data set and applied to validation data set for each

train-validation data set pair, and averaging the result.

Source: [192].
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Table 8.3 Summary of True Skill Statistics (TSS) Scores Obtained for Prediction of M-class Flares Using Different Machine
Learning Classifiers (Columns) and Different Types of Descriptors (Rows)

TSS, M flares ES threshold SVM Linear SVM RBF SVM Sigmoid LR kNN AdaBoost MLP1 MLP2 MLP3

Expert scores (ES) 0.56±0.02 - - - - - - - - -

PIL + ES - 0.60±0.04 0.60±0.03 0.60±0.04 0.59±0.03 0.57±0.03 0.59±0.03 0.62±0.03 0.61±0.04 0.60±0.04

SHARP + ES - 0.56±0.02 0.59±0.03 0.58±0.03 0.58±0.03 0.56±0.03 0.56±0.03 0.59±0.02 0.59±0.02 0.58±0.03

SXR + ES - 0.57±0.04 0.57±0.04 0.57±0.04 0.57±0.04 0.52±0.04 0.56±0.04 0.57±0.04 0.57±0.02 0.57±0.04

ALL + ES - 0.61±0.04 0.63±0.03 0.62±0.04 0.62±0.03 0.60±0.02 0.61±0.04 0.62±0.03 0.63±0.03 0.62±0.04

PIL - ES - 0.59±0.03 0.59±0.04 0.59±0.02 0.59±0.02 0.55±0.04 0.57±0.03 0.61±0.02 0.59±0.02 0.61±0.02

SHARP - ES - 0.57±0.04 0.58±0.03 0.59±0.03 0.58±0.03 0.55±0.04 0.57±0.03 0.58±0.03 0.59±0.03 0.60±0.03

SXR - ES - 0.56±0.04 0.57±0.04 0.57±0.04 0.57±0.03 0.51±0.04 0.57±0.04 0.58±0.04 0.57±0.04 0.58±0.04

ALL - ES - 0.62±0.03 0.63±0.03 0.63±0.03 0.63±0.02 0.60±0.03 0.62±0.03 0.64±0.03 0.63±0.02 0.64±0.03

Source: [192].
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Table 8.4 Summary of Heidke Skill Scores (HSS) Obtained for Prediction of M-class Flares Using Different Machine Learning
Classifiers (Columns) and Different Types of Descriptors (Rows)

HSS, M flares ES threshold SVM Linear SVM RBF SVM Sigmoid LR kNN AdaBoost MLP1 MLP2 MLP3

Expert scores (ES) 0.41±0.01 - - - - - - - - -

PIL + ES - 0.44±0.03 0.45±0.04 0.44±0.03 0.45±0.03 0.43±0.04 0.43±0.03 0.46±0.04 0.46±0.03 0.45±0.04

SHARP + ES - 0.40±0.03 0.43±0.03 0.41±0.04 0.41±0.03 0.40±0.04 0.41±0.03 0.42±0.04 0.42±0.04 0.42±0.03

SXR + ES - 0.42±0.02 0.42±0.02 0.41±0.02 0.43±0.02 0.39±0.02 0.41±0.04 0.42±0.03 0.43±0.02 0.43±0.02

ALL + ES - 0.47±0.03 0.48±0.03 0.47±0.04 0.48±0.03 0.46±0.03 0.45±0.02 0.48±0.03 0.48±0.02 0.47±0.02

PIL - ES - 0.43±0.04 0.43±0.04 0.43±0.04 0.44±0.04 0.44±0.03 0.42±0.04 0.44±0.04 0.44±0.04 0.44±0.04

SHARP - ES - 0.42±0.04 0.44±0.04 0.43±0.04 0.42±0.04 0.38±0.06 0.41±0.04 0.41±0.05 0.43±0.04 0.43±0.04

SXR - ES - 0.41±0.03 0.41±0.03 0.41±0.02 0.42±0.02 0.39±0.03 0.40±0.03 0.43±0.02 0.42±0.02 0.42±0.02

ALL - ES - 0.48±0.04 0.49±0.04 0.48±0.04 0.48±0.03 0.46±0.03 0.46±0.04 0.48±0.03 0.48±0.03 0.48±0.02

Source: [192].
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SWPC/NOAA probabilities (described in the end of Section 8.3), and represents the

score which we are aimed to improve.

As one can see, all methods perform approximately at the same level for any

group of descriptors. For example, the Support Vector Machine (SVM) classifier

(which determines separatrix for the data points in the descriptor space and, thus, is

relatively easy to interpret), performs at the same level or better than other considered

machine-learning algorithms. The fact that Linear SVM and Logistic Regression

algorithms also perform very good may indicate that the data are relatively simple

in nature, and again could be separated by hyperplane in the descriptor space.

Another interesting finding is that almost any classifier trained on just one group

of descriptors (PIL, SHARP, or SXR) performs at the same level or better than the

operational probabilities converted to the binary forecast. The most interesting are

the cases when the classifier is trained solely on the SXR features, with no inclusion of

expert probabilities (i.e., “SXR — ES”). As one can see, training on SXR descriptors

gives scores comparable to expert scores. This again confirms the importance of the

flare activity prehistory for the forecasts.

If the classifier is trained in all available features excluding SWPC NOAA

operational probabilities (i.e., “ALL-ES” rows) then the achieved scores are higher

with the significance than ones obtained solely from the SWPC NOAA probabilities.

For the accuracy, the maximum “ALL-ES” score is obtained for LR and is 0.904 ±

0.006, while the expert score is 0.891 ± 0.002. The maximum obtained TSS (for

MLP3) is 0.64± 0.03, while the expert score is 0.56± 0.02. The maximum obtained

HSS (for RBF SVM) is 0.49± 0.04, while the expert score is 0.41± 0.01. As one can

see, the scores obtained with machine learning algorithms enhance the expert scores,

and the enhancement is significant in terms of generalization errors of these scores.

This also demonstrates that the enhancement is possible only if considering jointly

magnetic field features and SXR descriptors.
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One more important point to mention is that the “ALL+ES” and “ALL-ES”

rows have approximately the same scores, which indicates that SWPC NOAA flare

probabilities do not introduce new information in addition to the derived descriptors.

The information is already included in the properties of the magnetic field and the

flare prehistory.

Table 8.5 illustrates the classification results for TSS metrics for the X-class

flares. The qualitative results for the prediction of X-class flares are essentially the

same as for the M-class flares. However, the poor occurrence rate of such strong flares

makes their prediction almost meaningless in the framework of this study, as visible

from huge uncertainties and spread of the results.

8.4.2 Probabilistic Forecast

The SWPC/NOAA operational forecast is probabilistic in nature. Attempts to

apply thresholding the probability and convert the forecast to binary one will

be accompanied by loss of essential information. One can try to construct the

probabilistic prediction using the machine learning algorithms, and compare the

issued probabilities directly. Attempts to build the probabilistic forecasts have

previously been developed [217]. Also the probabilistic forecast of solar flares using

the McIntosh classification of sunspots was tested by McCloskey et al. [143].

Our decision was to evaluate the event probabilities using the technique

introduced by Platt [166] for SVMs (see Appendix B, SVM Section), and compare

them with SWPC NOAA probabilities in terms of the Brier Score. Also, for

both forecasts, we evaluate their Brier Skill Scores (BSS) with respect to the flare

climatology. We use only SVM with two different kernels (RBF and Sigmoid) to

evaluate probabilities, and consider all features (PIL, SHARP, and SXR) jointly,

with or without SWPC NOAA probabilities.
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Table 8.5 Summary of True Skill Statistics (TSS) Scores Obtained for Prediction of X-class Flares Using Different Machine
Learning Classifiers (Columns) and Different Types of Descriptors (Rows)

TSS, X flares ES threshold SVM Linear SVM RBF SVM Sigmoid LR kNN AdaBoost MLP1 MLP2 MLP3

Expert scores (ES) 0.57±0.08 - - - - - - - - -

PIL + ES - 0.61±0.13 0.60±0.15 0.68±0.13 0.65±0.15 0.58±0.09 0.68±0.11 0.68±0.15 0.65±0.13 0.64±0.13

SHARP + ES - 0.51±0.23 0.56±0.17 0.61±0.18 0.65±0.15 0.37±0.17 0.56±0.16 0.67±0.15 0.60±0.19 0.60±0.16

SXR + ES - 0.72±0.07 0.73±0.07 0.74±0.10 0.75±0.08 0.71±0.21 0.78±0.06 0.79±0.07 0.78±0.07 0.77±0.09

ALL + ES - 0.74±0.07 0.73±0.07 0.77±0.07 0.75±0.08 0.71±0.21 0.78±0.06 0.80±0.09 0.78±0.07 0.77±0.09

PIL - ES - 0.66±0.09 0.66±0.08 0.67±0.04 0.68±0.11 0.41±0.13 0.68±0.12 0.70±0.08 0.68±0.09 0.70±0.08

SHARP - ES - 0.40±0.22 0.40±0.21 0.47±0.15 0.45±0.18 0.41±0.19 0.42±0.17 0.48±0.19 0.44±0.21 0.45±0.19

SXR - ES - 0.77±0.07 0.75±0.08 0.76±0.07 0.76±0.08 0.58±0.15 0.78±0.06 0.80±0.06 0.78±0.07 0.79±0.04

ALL - ES - 0.77±0.07 0.78±0.08 0.76±0.07 0.77±0.07 0.72±0.15 0.78±0.06 0.82±0.06 0.79±0.07 0.79±0.04

Source: [192].
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The results are presented in Table 8.6 for both M-class and X-class flares. As

one can see, the probabilities issued by SVM classifier have lower BS than the SWPC

NOAA probabilities. The BSS demonstrates that the SWPC NOAA probabilities

are slightly better than the climatological forecast for M-class flares (i.e., constant

probability equal to the event occurrence rate), but forecasts based on SVM have

significantly higher BSS. Also, one can find that for X-class flares, the climatology is

even better than the forecasts issued by SWPC NOAA, and the SVM methods give

no improvement with respect to it. As was found for the binary forecast, the inclusion

of SWPC NOAA probabilities does not improve the score.

Figure 8.2 illustrates the probabilities of the M-class flare to happen for every

day in 2016-2017 if we train RBF SVM on 2010-2015 data. The features summarized

in Table 8.1 for BS/BSS are used for the training. One can see that, in “operational”

sense, machine learning based probabilities are also better than the SWPC NOAA

probabilities.

8.5 Discussion

In this work, we made an attempt to compare the probabilistic operational forecast

with the predictions based on various machine learning methods. Our results

indicate the the performance of various machine learning classification algorithms

is comparable to each other. The same result was previously demonstrated by

Domijan et al. [54] using the features from Solar Monitor Active Region Tracker

(SMART) and different machine learning algorithms (LR, SVM, Random Forest,

MLP). Such conclusions indicate that, most probably, the classification scores are

limited by the structure of our data set and derived descriptors rather than by the

impurity of the algorithms, i.e., it is essentially impossible to improve the classification

without improving descriptors.
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Table 8.6 Summary of Brier Scores (BS) and Bries Skill Scores (BSS, with respect
to Event Climatology) Obtained for Prediction of M-class and X-class Flares using
SVM Classifiers with RBF and Sigmoid Kernels

BS/BSS, M flares Expert scores (ES) SVM RBF SVM Sigmoid

Expert scores (ES) 0.092±0.004 / 0.09±0.04 - -

ALL + ES - 0.073±0.004 / 0.28±0.04 0.073±0.004 / 0.28±0.04

ALL - ES - 0.072±0.004 / 0.29±0.04 0.072±0.004 / 0.29±0.04

BS, X flares Expert Scores (ES) SVM RBF SVM Sigmoid

Expert scores (ES) 0.011±0.001 / -0.63±0.18 - -

ALL + ES - 0.007±0.001 / 0.01±0.20 0.007±0.001 / 0.04±0.18

ALL - ES - 0.007±0.001 / 0.01±0.19 0.007±0.001 / 0.03±0.19

Note: The probabilities for the SVM classification results are obtained using method by
Platt [166] and implemented in Python Scikit-learn package [163]. The score represents the
average over the scores obtained for train-validation subsets, with corresponding standard
deviation. Top left scores for each flare class represents the Brier scores of the probabilistic
SWPC NOAA forecast averaged over the validation data sets, showed with corresponding
standard deviations. One can see that the forecast improvements for the X-class flares
cannot be considered to be statistically significant with respect to climatology.

Source: [192].
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Figure 8.2 Comparison of next-day M-class flare probabilities issued for 2016-2017 on daily basis by SWPC NOAA (gray)
and probabilities of flaring for SVM with RBF kernel trained on 2010-2015 data (black). Dashed gray vertical lines mark days
with the M-class flares.

Source: [192]
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An interesting moment regarding the binary forecast is that the scores are not

so high as ones evaluated for hourly forecasts of M-class flares for active regions or

magnetic field patches [19, 156, 191]. In these works, the TSS scores were ≥ 0.76,

peaking at ≈ 0.90. However, the features for our work were derived from the same

descriptors as used in these works. Most probably, such discrepancy in scores is caused

by the structure of the data sets and different separation to the train/validation/test

data subsets. Our descriptors are constructed on daily basis rather than hourly,

for the whole Sun rather than for the active regions. This results, for example,

in completely different class-imbalance ratio (about 1/7 flaring to non-flaring cases

rather than about 1/50 in these studies). This confirms that the comparison of the

scores among the prediction algorithm and the operational facility should not be done

unless the prediction of the algorithm is issued in the same format (i.e., preserving the

spatial and temporal scale of operational facility). The same is true for comparison

of the predictions made by different algorithms. In this aspect, the development of

the benchmark data sets for algorithm testing is especially necessary [137].

When one separates data points from consequent time moments to different

(train and validation) data sets, one has to make sure that high prediction scores

are not the results of the strong correlation between these data points. To check

for this issue, we try to subdivide the data set to train and validation not randomly

but by 5-day and 15-day chunks, and obtain scores for M-class flares for RBF SVM

classifier using all features except SWPC NOAA probabilities. The results show a

slight decrease of the score which is, however, strongly within the cross-validation

error. Although there are some correlations between the train and validation data

sets, they do not seem to influence the obtained results.

One more parameter which we have used in our feature selection procedure is

the threshold for the score improvement starting from which we keep the feature for

the classifier. Decrease of this threshold may lead to inclusion of more features in
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classification but less robustness to occasional fluctuations of the scores. To check

the issue, we have decreased the threshold twice for M-class flares for RBF SVM

classifier using all features except SWPC NOAA probabilities. We found that the

scores remain the same, strongly within cross-validation error.

One can mention that the BS for M-class flares for the “operational” separation

of the train and test data sets presented in Figure 8.2 is significantly lower (≈0.022)

than one obtained for cross-validation and presented in Table 8.6 (≈0.072). We

have found that this issue is common: accuracy, TSS, and HSS become higher if the

classifier is trained on 2010-2015 and tested on 2016-2017. This illustrates one more

time that the subdivision of the data set into the train and test can affect the score

and should be done similarly for the prediction algorithms aimed to be compared.

8.6 Summary and Conclusion

In this work we investigated whether it is possible to enhance daily whole-Sun

operational SWPC NOAA flare forecast by utilizing descriptors of the photospheric

magnetic field and soft X-ray flux and employing various machine learning classifi-

cation algorithms. Let us summarize the main findings of the study:

1. SWPC NOAA operational forecasts (next-day probabilities of M-class and X-
class flares) are strongly correlated with the current flare activity rather than
with the next-day flare activity;

2. Typically just 5 to 15 descriptors are enough to achieve maximum score for any
considered pool of descriptors, any metrics, and any classifier;

3. Almost all analyzed classifiers perform approximately at the same level for every
metrics, including SVM classifiers;

4. Binary (yes/no) forecasts of M-class and X-class flares based on each pool of
descriptors (PIL, SHARP, SXR) separately have a potential of the same or
better performance than the SWPC NOAA operational forecasts;

5. It is possible to enhance binary forecast of M-class and X-class flares by
considering joint magnetic (PIL, SHARP) and SXR characteristics. The
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accuracy increases from 0.891 ± 0.002 to 0.904 ± 0.006, TSS increases from
0.56± 0.02 to 0.64± 0.03, the HSS increases from 0.41± 0.01 to 0.49± 0.04;

6. Inclusion of the SWPC NOAA operational forecasts as features usually does
not improve the forecast;

7. Probabilistic forecast of M-class flares based on the SVM improves to the SWPC
NOAA operational forecasts in terms of Brier Score, and has a significant Brier
Skill Score (0.29± 0.04) with respect to the flare climatology.

Although this study demonstrated a possibility to enhance the operational

forecast, its results should be taken with caution. The proper test data set was not

established for this study, and all scores represent validation scores. Also, the study

was limited to the time period of the solar cycle 24 and corresponding flare activity

and statistics. Nevertheless, we made an attempt to establish more direct comparison

between SWPC NOAA forecast and our predictions in terms of temporal and spatial

resolutions of descriptors, as well as qualitatively analyzed its informational value.

Of course, there are many possibilities to improve this study. First, one can

construct more complex magnetic field descriptors of the whole Sun, and test other

parameters characterizing the magnetic field in active regions [124, 111, 110, 136,

161, 172, 106, 107]. Also, one can discover more complicated non-linear relations

between the observational data and solar flares using deep learning algorithms

[86, 94, 155, 160]. Although deep learning is more complicated for interpretation and

knowledge extraction, it demonstrated a strong potential for prediction problems.

Finally, the questions of prediction of the flare occurrence time and its soft X-ray

emission properties, although discussed in literature [24, 213], still remain an

undiscovered field.

161



CHAPTER 9

SUMMARY AND CONCLUDING REMARKS

9.1 Summary of the Presented Studies

In this section we highlight the main results of the presented studies, one paragraph

per one dissertation chapter.

In Chapter 2 we present a detailed analysis of spatially-resolved multi-

wavelength observations of chromospheric evaporation during an M1.0-class solar

flare (SOL2014-06-12T21:12) using data from the NASA’s IRIS (Interface Region

Imaging Spectrograph) and HMI/SDO (Helioseismic and Magnetic Imager onboard

Solar Dynamics Observatory), and high-resolution observations from VIS/NST

(Visible Imaging Spectrometer at New Solar Telescope). The results show that the

averaged over the flare region FeXXI blueshift of the hot (107K) evaporating plasma

is delayed relative to the C II redshift of the relatively cold (104K) chromospheric

plasma by about 1min. The spatial distribution of the delays is not uniform across

the region and can be as long as 2min in several zones. Using vector magnetograms

from HMI we reconstruct the magnetic field topology and the quasi-separatrix layer

(QSL), and find that the blueshift delay regions as well as the Hα flare ribbons are

connected to the region of magnetic polarity inversion line (PIL) and an expanding

flux rope via a system of low-lying loop arcades with height . 4.5Mm. As a result,

the chromospheric evaporation may be driven by the energy release in the vicinity of

PIL, and has the observed properties due to a local magnetic field topology.

Inspired by the case study, we have developed an Interactive Multi-Instrument

Database of Solar Flares (https://solarflare.njit.edu/, https://helioportal.

nas.nasa.gov/), a tool for efficient data search, integration of different flare lists

and representation of observational data. We present this tool in Chapter 3.
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The web accessible database is fully functional and allows the user to search for

uniquely-identified flare events based on their physical descriptors and availability

of observations by a particular set of instruments. Currently, the data from

three primary flare lists (GOES, RHESSI and HEK) and a variety of other event

catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs, CACTus CME

catalog, Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage)

are integrated, and an additional set of physical descriptors (temperature and

emission measure) is provided along with an observing summary, data links, and

multi-wavelength light curves for each flare event since January, 2002. We envision

that this new tool will allow researchers to significantly speed up the search of events

of interest for statistical and case studies.

In Chapter 4 we present a statistical study of chromospheric evaporation in

solar flares using simultaneous observations by the RHESSI X-ray telescope and the

IRIS UV spectrograph. The selection of the events was done using the IMIDSF

mentioned in the previous paragraph. The results are compared with radiation

hydrodynamic flare models from the F-CHROMA RADYN database. For each event,

we study spatially-resolved Doppler shifts of spectral lines formed in the transition

region (C II 1334.5 Å) and hot coronal plasma (FeXXI 1354.1 Å) to investigate the

dynamics of the solar atmosphere during the flare impulsive phase. We estimate the

energy fluxes deposited by high-energy electrons using X-ray imaging spectroscopy

and assuming the standard thick-target model. Using the RADYN flare models,

the RH 1.5D radiative transfer code and the Chianti atomic line database, we

calculate C II and FeXXI line profiles and compare with the observations. While

the RADYN models predict a correlation between the Doppler shifts and deposited

energy flux for both lines, this was only observed in the C II data. Several

quantitative discrepancies are found between the observations and models: the FeXXI

Doppler shifts are substantially stronger in the models than in the data; the C II
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mean blueshifts are absent in the observations but predicted by the models. The

transition energy between “gentle” and “explosive” evaporation regimes estimated

from the observations (2 − 8 × 109 erg cm−2 s−1) and derived from the models

(2.2−10.1×109 erg cm−2 s−1) are comparable with each other. The results illustrate

relationships among the processes of chromospheric evaporation, response of the

colder layers, and the flare energy flux deposited by high-energy electrons, although

demonstrating discrepancy between analyzed observations and RADYN models.

In Chapter 5 we analyze properties of Soft X-Ray (SXR) emission, plasma

temperature (T), and emission measure (EM), derived from GOES observations of

flares in 2002-2017. The temperature and emission measures are obtained using the

TEBBS algorithm [187], which delivers reliable results together with uncertainties

even for weak B-class flare events. The calculations of T, EM, and corresponding

timing properties is a part of the data enrichment procedure for the IMIDSF database.

More than 96% of flares demonstrate a sequential appearance of T, SXR, and EM

maxima, in agreement with the expected behavior of the chromospheric evaporation

process. The relative number of such flares increases with increasing the SXR flux

maximum. The SXR maximum is closer in time to the T maximum for B-class

flares than for ≥C-class flares, while it is very close to the EM maximum for M- and

X-class flares. We define flares as “T-controlled” if the time interval between the

SXR and T maxima is at least two times shorter than the interval between the EM

and SXR maxima, and as “EM-controlled” if the time interval between the EM and

SXR maxima is at least two times shorter than the interval between the SXR and T

maxima. For any considered flare class range, the T-controlled events compared to

EM-controlled events have: a) higher EM but lower T; b) longer durations and shorter

relative growth times; c) longer FWHM and characteristic decay times. Interpretation

of these statistical results based on analysis of a single loop dynamics suggests that
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for flares of the same class range, the T-controlled events can be developed in longer

loops than the EM-controlled events.

Chapter 6 presents the modeling of the line-of-sight (LOS) observables of the

Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory

(SDO) for models of the solar atmosphere heated by precipitating high-energy

electrons during solar flares. The radiative hydrodynamic (RADYN) flare models are

obtained from the F-CHROMA database. The Stokes profiles for the Fe 6173 Å line

observed by SDO/HMI are calculated using the radiative transfer code RH assuming

statistical equilibrium and 100G or 1000G uniform vertical magnetic fields. The

SDO/HMI data processing pipeline algorithm is applied to derive the observables

(continuum intensity, line depth, Doppler velocity, LOS magnetic field). Our results

reveal that for the flare models with the average deposited energy fluxes of 5.0× 1010

erg cm−2 s−1 the deviations of the observables from the actual spectroscopic line

parameters can reach 0.6 km/s for Doppler velocities, and about 100G for the LOS

magnetic field. Such deviations decrease significantly for the weaker flare models

with the average deposited energy flux of < 5.0 × 1010 erg cm−2 s−1. Although

changes of the LOS magnetic field observable for F-CHROMA RADYN models are

not accompanied by magnetic field sign reversals, an additional investigation using a

higher-energy RADYN model (F = 1.0× 1011 erg/cm2s) from Kerr et al. [98] reveals

stronger deviations for the observables and the possibility to detect significantly

weaker LOS magnetic field. The results highlight that the sharp magnetic transients

observed during the solar flares by SDO/HMI may appear due to rapid heating of the

atmosphere by accelerated electrons of high energy fluxes (F ≥ 5.0× 1010 erg/cm2s),

and should be interpreted with caution.

In Chapter 7 we analyze the relationship between the flare X-ray peak flux, and

characteristics of the Polarity Inversion Line (PIL) and Active Regions (AR), derived

from line-of-sight (LOS) magnetograms. The statistics of M-class and X-class flares
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used for the study is obtained from IMIDSF database. The PIL detection algorithm

based on a magnetogram segmentation procedure is applied for each AR with 1 hour

cadence. The PIL and AR characteristics are associated with the AR flare history and

divided into flaring and non-flaring cases. Effectiveness of the derived characteristics

for flare forecasting is determined by the number of non-flaring cases separated from

flaring cases by a certain threshold, and by their Fisher ranking score. The Support

Vector Machine (SVM) classifier trained only on the PIL characteristics is used for the

flare prediction. We have obtained the following results: (1) the PIL characteristics

are more effective than global characteristics of ARs, (2) the highest True Skill

Statistics (TSS) values of 0.76±0.03 for ≥M1.0 flares and 0.84±0.07 for ≥X1.0 flares

are obtained using the “Sigmoid” SVM kernel, (3) the TSS scores obtained using

only the LOS magnetograms are slightly lower than the scores obtained using vector

magnetograms, but significantly better than current expert-based predictions, (4)

for prediction of ≥M1.0 class flares 74.4% of all cases, and 91.2% for ≥X1.0 class,

can be pre-classified as negative with no significant effect on the results, (5) the

inclusion of global AR characteristics does not improve the forecast. The study

confirms the unique role of the PIL region characteristics in the flare initiation

process, and demonstrate possibilities of flare forecasting using only the line-of-sight

magnetograms.

Finally, in Chapter 8 we extend the previous study and investigate the possibility

to enhance daily operational flare forecast performed at NOAA Space Weather

Prediction Center (SWPC NOAA) by employing daily whole-Sun descriptors obtained

from routine observations of the photospheric magnetic fields by SDO/HMI and

soft X-ray (SXR) observations by XRS/GOES. The magnetic field descriptors are

constructed from properties of the Polarity Inversion Lines of Active Regions [191,

PIL] and the Space weather HMI Active Region Patches [21, SHARP]. The SXR

descriptors include the flare history of the Sun, and properties of its SXR 1-8 Å
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emission. For each day in 2010-2017, we define vector of 70 PIL, SHARP, and SXR

descriptors, and optionally include SWPC NOAA next-day flare probability as an

additional descriptor. We subdivide the data set into 10 train-validation subsets

and compare performance of various machine learning classification algorithms in

terms of their accuracy, TSS, HSS, and BSS scores. Our results indicate that 1)

Support vector classifiers perform at the same level or better than other considered

classifiers; 2) binary (yes/no) forecasts of the M-class and X-class flares based

on each groups of descriptors (PIL, SHARP, SXR) separately have the same or

better performance than the SWPC NOAA operational forecasts; 3) it is possible

to enhance the binary forecast of M-class and X-class flares by considering jointly

PIL, SHARP, and SXR characteristics; 4) additional inclusion of the SWPC NOAA

probabilities as descriptors does not improve the forecast; 5) Brier Skill Score (BSS) of

probabilistic forecast of M-class flares based on the Support Vector Machine results

(BSS = 0.29 ± 0.04) is higher than for the SWPC NOAA operational forecasts

(BSS = 0.09±0.04) and indicates the enhancement of the probabilistic forecast with

respect to the flare climatology.

9.2 Concluding Remarks: the Multidisciplinary Nature of Solar Physics

The Sun is definitely the most observed star in our Universe. We continuously

increase our knowledge about the origin and development of the solar activity,

inner structure of the Sun and solar dynamo, influence of the solar activity on

the terrestrial environment and formation of the Space Weather. The most critical

component for such progress in understanding of the Sun is tremendous amounts

of observational data acquired by the space-based and ground-based facilities. For

example, the Atmospheric and Imaging Assembly telescope onboard the Solar

Dynamics Observatory makes 4K-resolution images of the Sun faster than each two
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seconds, which results in around 1TB of scientific data per day. I do not think that

there is a person who looked through all SDO/AIA images.

At the same time, the fast development of realistic 3D simulations also results in

large data volumes. As an example, let us consider the widely-used Bifrost simulation

results of the enhanced network of the Sun [78]. One of the publicly-available

results of these simulations cover the region of the solar atmosphere of the size

24Mm×24Mm×17Mm for less than 30min with 10 s temporal resolution, which

already results in 1.5TB of scientific data. These are also the data volumes which

are very hard to handle manually.

Growing amounts of data from ground and space observing instruments and

realistic 3D simulations, together with the demand on the reliable operational

forecasts of solar activity and space weather, require implementation of new

approaches for analysis of multidimensional data sets. A cross-disciplinary synergy

based on machine learning and data mining becomes a necessity rather than a

desired research direction. The machine learning techniques are already applied

for prediction of solar and heliospheric events on certain timescales (strong solar

flares, coronal mass ejections, solar energetic particles), reconstruction of coronal mass

ejections, deconvolution of the solar observational images, similarity search among

multidimensional spectroscopic data sets. Moreover, applications of such techniques

not only deliver the results but allow us to understand better the physics behind the

studied processes. Thus, the number of works containing “machine learning” term in

the title or abstract increases continuously, and this trend will continue to exist.

In conclusion, it is very probable that the future solar and heliospheric physicists

will have a fundamental knowledge from and understand both physics and data science

disciplines. And it is a very proper time to anticipate that direction and prepare

the next generation of solar scientists for the bright future full of discoveries in our

interdisciplinary area.
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APPENDIX A

MAGNETOGRAM SEGMENTATION AND PIL DETECTION
ALGORITHM

Suppose B is a magnetic field strength map (magnetogram), Zi is a class of

pixel i of the magnetogram (i.e., “positive”, “negative” or “neutral”), N is the total

number of pixels in the magnetogram, ε(i) is a neighborhood (e.g., the closest 8

pixels) of pixel i. The magnetogram segmentation can be formulated as the following

optimization procedure to maximize function p(Z,B) for a given B by finding optimal

classification Zmax [42]:

p(Zmax, B) = max
Z

p(Z,B) ∝
N
∏

i=1

φi(Zi, Bi)
∏

j∈ε(i)

φ(Zi, Zj)

Here φi(Zi, Bi) and φ(Zi, Zj) are the scoring functions for each pixel depending

on the magnetic field strength and assumed classes of pixels. The choice of the scoring

function defines segmentation characteristics and, in fact, should do the following:

separate the segments of positive and negative magnetic field polarity, and avoid very

small segments with weak field probably coming from noise in the data. We use the

scoring functions suggested by Chernyshov et al. [42]:

φi(Zi, Bi) = e−C1

√
|B0−Bi|, for Zi “positive”

φi(Zi, Bi) = e−C1

√
|B0+Bi|, for Zi “negative”

φi(Zi, Bi) = e−C2|Bi|, for Zi “neutral”

φ(Zi, Zj) = eCpair [Zi 6=Zj ],

where parameters C1 = 1.0, C2 = 1.0, Cpair = 20, B0 = 1000G are chosen to

obtain a stable segmentation of magnetic polarities in strong field regions. Here [Zi 6=

Zj] is equal 1 if Zi 6= Zj, and zero otherwise. Following Chernyshov et al. [42], the

function p(Z,B) is interpreted as conditional probability density function p(Z|B), and
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is approximated by the factorized probability density function q(Z) =
∏n

i=1 qi(Zi).

To measure how strongly the factorized distribution deviates from the actual, one

can use the Kullback-Leibler (KL) divergence Bishop [18]. In order to find the best

approximating factorized distribution, q(Z), one can minimize the KL divergence:

min
q(Z)

KL(q||p) = −
∫

q(Z)log
p(Z|B)

q(Z)
dZ

Here we keep the original notation for KL-divergence KL(q||p) between

distributions q and p introduced in Bishop [18]. The optimal q(Z) is given by solution

of the equation [42]:

qi(Zi) =
1

C
exp(log(φi(Zi))− Cpair

∑

t∈ε(i)

∑

j 6=i

qj(Zj))

This solution can be found iteratively [42]:

qnewi (Zi) =
1

C
exp(log(φi(Zi))− Cpair

∑

t∈ε(i)

∑

j 6=i

qoldj (Zj))

Using this equation, one can calculate the factorized distribution multiplier qi for

each pixel i and its assumed class Zi (“positive”, “negative”, or “neutral”). Because

the factorized distribution represents the product of multipliers for each pixel, one

can simply maximize qi(Zi) for each pixel i separately and obtain Zmax.

For identification of PIL in active regions, we smooth the original HMI magne-

togram using the Gaussian filter with width σ =1.5′′, and apply the segmentation

algorithm. Then, we apply a morphological dilation procedure separately for positive

and negative segments (i.e., expand each segment to include neighboring pixels), and

find the PIL as an intersection of the dilated positive and negative segments. Finally,

we filter all small islands of the PIL with the number of pixels less than 3% of the

total number of pixels occupied by PIL. This approach is quite robust, and allows us

to automatically identify the PIL and calculate magnetic field properties.
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APPENDIX B

DESCRIPTION OF CLASSIFIERS

B.1 Support Vector Machine (SVM) and Probabilistic Forecast

The SVM classifier [43] is aimed to find a separatrix manifold in the descriptor space,

which optimally separates the classes by maximizing the following functional:

min
ω,ǫ

L =
1

2
||ω||2 + C

m
∑

i=1

Wiǫi, (B.1)

yi(〈ω, xi〉+ b) ≥ 1− ǫi, ǫi ≥ 0, (B.2)

where ω is a vector normal to the separating manifold; i is case number in

the “train” dataset, varying from 0 to m; C is a soft margin parameter; Wi is the

weight of the group which the case i belongs to, ǫi is a measure of misclassification of

case i; yi is a constant equal to 1 for positive cases, and -1 for negative cases. After

some transformations, the functional to minimize depends only on scalar products of

descriptor vectors, 〈xi, xj〉. To work with cases which are not linearly-separated, one

can replace the scalar product with the kernel function, 〈xi, xj〉 → k(xi, xj). In this

work, we have tested several kernels available in the Python Scikit-Learn package:

k(xi, xj) = 〈xi, xj〉 (Linear), (B.3)

k(xi, xj) = exp(−γ |xi − xj |2) (RBF ), (B.4)

k(xi, xj) = tanh(γ 〈xi, xj〉+ r) (Sigmoid). (B.5)

Notice here that γ and r, as well as previously-mentioned C and Wi, are SVM

hyperparameters which should be selected and optimized during the cross-validation

procedure. The decision about how to classify the upcoming data point is made by

thresholding of evaluated decision function:
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f(x) =
∑

i

yiαik(xi) + b, (B.6)

where αi and b are computed at the training stage. The idea of Platt [166] was

to use the unthresholded output, f(x), to build probabilistic forecast. The parametric

model (the sigmoid function) is used to fit the posterior probabilities directly, i.e.,

P (y = 1|f(x)) = 1

1 + exp(Af +B)
, (B.7)

where A and B are fit using a maximum likelihood estimation from a training

set. Although the method of mapping of classifier decision function to probabilities

is not unique, we use the described implementation in our research.

B.2 Logistic Regression (LR)

The LR is essentially the smooth regularized mapping of the descriptor space to their

binary outputs using the logistic function:

P (x) =
1

1 + exp(−β0+ < β1x >)
, (B.8)

where β0 is a scalar parameter, and β1 is a vector parameter with the dimension

equal to number of descriptors, both are subject to optimize across the train data

sets with involvement of regularization. The regularization parameters are determined

during the cross-validation procedure in our study.

B.3 k-Nearest Neighbors (kNN)

The kNN algorithm is an algorithm where the class of each point from the test data set

is determined based on the classes of points from the train data set which are closest to

that point (i.e., its “neighbors”). It is possible to vary several hyperparameters for the
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kNN classifier: 1) number of neighbors influencing the decision; 2) the weights of the

neighbors on the decision depending on their class; 3) the weights of the neighbors on

the decision depending on their distance from the point; 4) the measure of the distance

between points (Euclidean or Manhattan). In our study, these hyperparameters were

maximized across the train-validation data set pairs.

B.4 Adaptive Boosting (AdaBoost) based on Decision Trees

AdaBoost is a meta-algorithm rather than an algorithm: it proposes an idea to handle

an ensemble of weak classifiers and adapt their voting weights during the training

process [70]. If one has T classifiers, then their combined output may be written as:

FT (x) =

T
∑

t=1

ft(x) (B.9)

After each training loop, one can minimize the sum training error Et by adapting

coefficients with which the classifiers contribute to the decision:

Et =
∑

i

E [Ft−1(xi) + αth(xi)] , (B.10)

ft(x) = αth(x) (B.11)

Here Ft−1 is the boosted classifier built in the previous stage, and E(F ) is

some function to minimize, h(x) is the output of each single classifier participating

in boosting. For our case, each single classifier is the decision tree classifier with the

maximum depth of one, and the only hyperparameter to optimize is the number of

decision tree classifiers.

B.5 Multi-Layer Perceptron (MLP)

In this work, MLP is referred to a class of the feed-forward neural networks. MLP

consists of several neuron layers, and each neuron is connected to the each neuron at
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the next layer only. The number of neurons at the first layer is equal to the number

of inputs (descriptors), and there is just one neuron in the output layer. The layers

between them are called “hidden”. The neurons from the preceding layer i contribute

to the neurons at the next layer j according to some weights, and fire according to

the selected activation function (hyperbolic tangent function in our case), i.e.,:

xj =
∑

i

yiwi,j (B.12)

yj = tanh(xj) (B.13)

In this work, we use MLPs with two hidden layer of 200 neurons each, with

five hidden layers with 200 neurons each, and with five hidden layers with 200, 100,

50, 25, and 10 neurons, correspondingly. To find the optimal weights wi,j, we use

a method for stochastic optimization called “Adam” [101] available as an option for

MLP training in Scikit-learn. To prevent the MLP from overfitting the data, for each

train-validation pair separately, we evaluate the validation score at each epoch (each

complete pass through the available training data points) and stop training once the

validation score stops to increase.
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Å Line in a Flaring Atmosphere. The Astrophysical Journal, 857:L2, April
2018.

[85] N. Huang, Y. Xu, V. Sadykov, J. Jing, and H. Wang. Spectral diagnosis of mg ii and
hα lines during the initial stage of an m6.5 flare. The Astrophysical Journal,
under review, 2019.

[86] X. Huang, H. Wang, L. Xu, J. Liu, R. Li, and X. Dai. Deep Learning Based
Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms. The
Astrophysical Journal, 856:7, March 2018.

[87] G. J. Hurford, R. B. Read, and H. Zirin. A frequency-agile interferometer for solar
microwave spectroscopy. Solar Physics, 94(2):413–426, 1984.

[88] N. Hurlburt, M. Cheung, C. Schrijver, L. Chang, S. Freeland, S. Green, C. Heck,
A. Jaffey, A. Kobashi, D. Schiff, J. Serafin, R. Seguin, G. Slater, A. Somani,
and R. Timmons. Heliophysics Event Knowledgebase for the Solar Dynamics
Observatory (SDO) and Beyond. Solar Physics, 275:67–78, January 2012.

[89] M. Janvier, G. Aulanier, V. Bommier, B. Schmieder, P. Démoulin, and E. Pariat.
Electric Currents in Flare Ribbons: Observations and Three-dimensional
Standard Model. The Astrophysical Journal, 788:60, Jun 2014.

[90] M. Janvier, G. Aulanier, E. Pariat, and P. Démoulin. The Standard Flare Model in
Three Dimensions. III. Slip-running Reconnection Properties. Astronomy &
Astrophysics, 555:A77, Jul 2013.

[91] J. Jing, H. Song, V. Abramenko, C. Tan, and H. Wang. The Statistical Relationship
between the Photospheric Magnetic Parameters and the Flare Productivity of
Active Regions. The Astrophysical Journal, 644:1273–1277, June 2006.

[92] C. D. Johnston, A. W. Hood, P. J. Cargill, and I. De Moortel. A New Approach
for Modelling Chromospheric Evaporation in Response to Enhanced Coronal
Heating. I. The Method. Astronomy & Astrophysics, 597:A81, January 2017.

182



[93] C. D. Johnston, A. W. Hood, P. J. Cargill, and I. De Moortel. A New Approach
for Modelling Chromospheric Evaporation in Response to Enhanced Coronal
Heating. II. Non-uniform Heating. Astronomy & Astrophysics, 605:A8, August
2017.

[94] E. Jonas, M. Bobra, V. Shankar, J. Todd Hoeksema, and B. Recht. Flare Prediction
Using Photospheric and Coronal Image Data. Solar Physics, 293:48, March
2018.

[95] M. D. Kazachenko, B. J. Lynch, B. T. Welsch, and X. Sun. A Database of Flare
Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection
Flux. The Astrophysical Journal, 845:49, August 2017.

[96] M. B. Kennedy, R. O. Milligan, J. C. Allred, M. Mathioudakis, and F. P. Keenan.
Radiative Hydrodynamic Modelling and Observations of the X-class Solar
Flare on 2011 March 9. Astronomy & Astrophysics, 578:A72, June 2015.

[97] G. S. Kerr, J. C. Allred, J. Leenaarts, E. Butler, and A. Kowalski. Simulating the
Mg II NUV Spectra &amp; C II Resonance Lines During Solar Flares. In
AAS/Solar Physics Division Abstracts #48, page 1.02, August 2017.

[98] G. S. Kerr, M. Carlsson, J. C. Allred, P. R. Young, and A. N. Daw. SI IV Resonance
Line Emission during Solar Flares: Non-LTE, Nonequilibrium, Radiation
Transfer Simulations. The Astrophysical Journal, 871:23, Jan 2019.

[99] G. S. Kerr, L. Fletcher, A. J. B. Russell, and J. C. Allred. Simulations of the Mg II k
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Lites, A. López Ariste, R. I. Bush, H. Socas-Navarro, and P. H. Scherrer.
Spectral Line Selection for HMI: A Comparison of Fe I 6173 Å and Ni I 6768
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