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ABSTRACT 

ELECTROCHEMICALLY REACTIVE MEMBRANES FOR EFFICIENT 
BIOMASS RECOVERY, POLLUTANT DEGRADATION AND 

COMMERCIALIZATION 
 

by 
Likun Hua 

 

Micropollution in natural waters such as rivers and groundwater aquifers is a widespread 

problem that prevents these potentially potable sources from being used as drinking water. 

In the United States, approximately two-thirds of the over 1,200 most serious hazardous 

waste sites in the nation are contaminated with trichloroethylene (TCE), a potentially 

carcinogenic compound. Other emerging and environmentally persistent organic 

micropollutants include polyromantic hydrocarbons (PAHs), organophosphate flame 

retardants, endocrine disrupting compounds (EDCs), pesticides, herbicides, 

pharmaceuticals and personal care products (PPCPs). Membrane filtration is one of the 

most efficient separation processes widely used for water treatment and pollutant removal. 

However, traditional membrane separations suffer from membrane fouling due to either 

the formation of a cake layer of biomass or more commonly due to organic matter 

adsorption onto the membrane surface. Moreover, some trace level organic 

micropollutants are not effectively removed particularly in microfiltration processes, 

where pore sizes are not small enough to capture small molecular weight organics. This 

study demonstrated an innovative and multifunctional reactive electrochemical 

membrane (REM) that acts as both a filter and a reactive anode. REM filtration has 

significant mitigation of membrane surface and efficient degradation of water 

contaminant fouling through electrochemical oxidation powered by anodic polarization 



under a DC current. This research demonstrate: (1) the use of the Ti4O7 REM to separate 

and oxidize potentially pathogenic microorganisms (e.g., algal cells and bacteria) in 

aqueous suspension with evidence of cell damage and removal; (2) Evaluation of the 

performance of REMs for the removal of antibiotic compound (sulfamethoxazole) and 

1,4-dioxane; (3) fouling mitigation and development of antifouling strategies via DC 

current applications and anode/cathode switch; (4) Radical formation mechanisms under 

DC currents in the REM filtration system. Overall, this project aims to demonstrate next 

generation reactive membrane filtration systems with high pollutant rejection or removal 

efficiencies toward water contaminants on electrochemical oxidation reactions on REM 

surfaces.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Challenges 

Utilization of biomass-based raw materials (e.g., bacteria, algae, and cellulose) for the 

production of high value chemicals such as proteins, pharmaceuticals, and biofuels is 

gaining an increasing interest. Due to the complex nature of biomass, a common major 

challenge in its refining is the low efficient separation processes. For instance, oleaginous 

microalgae usually grow in low cell density in aqueous media (e.g., 0.1-1 g L-1), and thus, 

dewatering of algae slurries contributes 20–30% of the total biorefinery cost for biofuel. 

Compared to many other separation methods, such as gravitational sedimentation, 

centrifugation, coagulation, chemical precipitation, filtration, and flotation, membrane 

separation processes such as ultrafiltration (UF) and nanofiltration (NF) have gained 

much attention in the biomass separation industry due to their high selectivity, relatively 

low energy costs and reduced chemical usage.1-2 UF membranes can selectively remove 

not only large molecules such as proteins, viruses, and microorganisms through size 

sieving mechanisms but can also substantially reduce emulsion to improve the successive 

solvent extraction efficiency. MF membrane filtration was proved to separate algal 

biomass up to 150 g L-1 (dry weight) and ∼99% volume reduction with relatively low 

energy consumption (Table 1.1).3-9 However, traditional membrane separations suffer 

from membrane fouling due to either the formation of a cake layer of algal cells, or more 

commonly due to extracellular organic matter (EOM) adsorption onto the membrane 

surface.10-11 Algal cells and EOMs are a complex mixture of polysaccharides, proteins, 
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nucleic acids, and other small biomolecules,12-13 which could clog the micropores of 

membrane filter and reduce permeate flux. Once membrane fouls, frequent backwash or 

even replacement of membrane materials are needed, which substantially increase the 

operational cost and energy footprint of bioenergy produced.  

 

Table 1.1 Comparison of Installation Cost, Energy Consumption and Dry Solid 
Concentration for Different Algal Separation Processes 

Process Installation cost 
Energy 

Consumption 
(kWh∙m-3) 

Dry algal 
concentration 

Chemical Flocculation Low to median 0.3 or less 3-8 % 
Centrifugation High 8 10-22 % 
Gravity sedimentation Low 0.1 0.1-1.5 % 
Membrane filtration Median to High 1-3 2-27 % 
Electrocoagulation High 0.3-2 3-5 % 
Flocculation-flotation High 10-20 7 % 

  
 

Algal biomass is the third generation feedstock for biodiesel or biofuel 

production. However, expensive algal harvesting, biomass pretreatment, and lipid 

extraction represent the major hurdles for producing cheap biofuels at industrial scales. 

Typical structures of algal cell walls contain uronic acids, glucosamine, and 

polysaccharides that provide cells with formidable defense against environmental 

conditions 14.  Extraction of biolipid that is usually located in globules or bound to cell 

membranes often involves the use of organic solvents such as n-hexane, chloroform and 

methanol because of their high selectivity and solubility towards lipids 15-16. An efficient 

extraction requires that the solvent penetrates completely into the biomass and physically 

contacts the lipid (e.g., triglycerides-esters) located in the photosynthetically active 

membranes. Therefore, cell disruption is a necessary pretreatment step prior to lipid 

extraction.  
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Cell disruption and lipid extraction processes can be energy-intensive, time-

consuming and costly. Current cell disruption methods include mechanical and non-

mechanical techniques. Mechanical techniques destroy the cell wall using non-specific 

solid and liquid shear forces or energy transfer through heating and waves 17, which 

include compression, high-pressure homogenization (HPH) 18, ultrasonic bath 19, 

autoclave 15, bead mill, microwave and magnetic stirring 20-21; while non-mechanical 

techniques include chemical lysing using enzymes or chemical agents and osmotic 

 shock 22-23. Selective interactions between chemical agents (enzymes, antibiotics, 

chelating agents, chaotropes, detergents, hypochlorite, acids and alkali) and the cell wall 

or membrane are designed to facilitate biolipid leaching 17. Life-cycle assessment (LCA) 

of biofuel production from microalgae feedstock determined that cultivation, harvesting 

and lipid extraction accounted for up to 90% of the total process energy 24. Further 

decreasing solvent consumption, preventing pollution, and enhancing lipid production 

(efficiency) are the major challenges in this field.  

 

1.2  Relevance and Impact of the Research  

Rapid and highly efficient biomass harvesting is not only critical for biomass engineering 

and biofuel production but also important water or wastewater treatment industries to 

produce cleaned water. Highly efficient algal biomass removal from water will lower the 

operational cost and increase the economic viability of produced products (biomass, 

biofuel or bioenergy, and cleaned water). However, traditional membrane separations 

suffer from membrane fouling due to either the formation of a cake layer onto the 

membrane surface that may consist of biomass debris, cells and organic matters. Thus, 
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developing innovative membrane filtration processes that can efficiently separate algae 

with strong antifouling characteristics is a pressing task.  

My research aims to develop multifunctional reactive electrochemical membranes 

(REMs) that facilitated filtration technologies for efficient algal recovery with multiple 

potential synergies. Algae was used as a model biomass substituting microbial pathogen 

or biofuel feedstock materials to evaluate the bioseparation performances because, algae 

are considered the third generation of biodiesel fuel feedstock, but dewatering of algae 

slurries is a major bottleneck towards the implementation of large-scale industrial 

processing. The anticipated impacts from my work includes (1) significantly decreasing 

fouling during biomass separation through electrochemical oxidation and repelling 

algogenic organic matters (AOMs), (2) destabilizing cell walls to facilitate lipid 

extraction from algal cells while concentrating algae, (3) promoting water and nutrient 

reuse for continual algal growth, and (4) reduce cost and energy consumption for algal 

biofuel production. The REM technology was addressed many of the limitations 

associated with traditional membrane bioseparation processes and increase sustainability 

to our society by reducing the stress from water, resource, and renewable energy 

production.  

 

1.3 Innovation 

The REM we developed are based on Ti4O7 , a porous substoichiometric TiO2 anodic 

material in various forms (i.e., monolithic porous ceramics). Ti4O7 is selected because of 

its high performance in generating hydroxyl radical (OH•) from water oxidation, stability 

under anodic and cathodic polarization, and low cost.25-27 The monolithic porous Ti4O7 
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membrane shows a high water flux in filtration (5000-6000 L m-2 h-1 bar-1 or LMH bar-1). 

These properties make Ti4O7 membranes an ideal material for sustainable algal recovery 

and biomass processing for lipid extraction. By applying a positive DC potential or 

current to the REM surface, the produced OH• oxidized EOMs to maintain a clean 

membrane surface and degrade inhibitors to promote water and nutrient reuse as shown 

in Figure 1.1. The positive charge imposed on the membrane also acted to 

electrostatically repel positively charged EOMs near the surface to prevent EOM 

adsorption and fouling. In addition, the oxidative surface of REM may also lead to partial 

chemical oxidation and breakdown of the cell walls during backwash, which may 

facilitate the downstream biomass processing such as lipid extraction, which has been 

verified in previous study. There have been no studies or commercialized applications of 

REMs for algal harvesting or removal. Specifically for this research, performance and 

mechanisms of algal destabilization that both remain elusive were addressed for the first 

time.  
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Figure 1.1 Schematic of the REM for algal separation basic flow diagram (a); and 
illustrations of the REM during filtration (b) and backwash. 

 

 

1.4 Social Impacts.  

This research primarily employed oleaginous microalgae as a model organism to evaluate 

separation efficiency and other anticipated benefits using REM. Algae hold great promise 

to be a sustainable biodiesel fuel feedstock, but dewatering of algae slurries is a major 

bottleneck towards the implementation of large-scale industrial processing. For example, 

dewatering process contributes 20–30% of the total biomass production cost.3 Membrane 

filtration is superior to other separation techniques because of its enhanced efficiency, 

improved reliability, and reduced reactor dimensions, cost, and energy footprint.3-4, 6, 28-30 

However, physical membrane separation suffers from membrane fouling due to algal cell 
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deposition as well as EOM adsorption, and frequent membrane backwashing and 

cleaning is required to maintain a desired separation performance, which elevates the 

operational cost. Moreover, algal culture media contain a large amount of water (> 90% 

water compared with algal dry weight), unutilized nutrients, as well as algae produced 

inhibitors (e.g., H2S, NH3). Permeate after simple physical filtration is usually not 

suitable for continual algal growth because of the presence of inhibitors. Treatment for 

selective removal of inhibitors is required to reuse water and nutrient, which could 

significantly enhance the sustainability of algae-based biofuel production.  

This work was transformative because it creates one integrated system to tackle 

several pressing challenges at energy-water nexus of bioseparation and water treatment. 

The results not only provided fundamental guidelines as to the rational design of REMs 

with controlled and efficient performance, flexible structure, and durability of operation, 

but also lead to an avenue for the applications of new generations of reactive 

transformative membranes in many industrial applications in addition to algal separation. 

For example, REMs can be used in food processing (e.g., wine or milk purification), 

drinking water treatment, bacterial separation, cellulose separation and oxidation, and 

biomolecule purification in pharmaceutical industries. This work greatly extends the 

application scopes of reactive membrane technologies and lay foundation toward 

versatile, efficient, flexible, durable, and sustainable membrane systems. Such an 

accomplishment would be transformative and radically change the fields of Energy, 

Environmental and Chemical Engineering, and has broad impacts on algal biofuel 

industries.   
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  Algae-based bioreactor techniques are being revived for wastewater treatment 

and nutrient removal while the harvested algal biomass may be used for broad 

applications such as biodiesel and fertilizer production. 31-35 

Phototrophic growth studies provide critical information about the kinetics of 

phototrophic growth and their linkage to nutrient uptake, which are essential for the 

design and operation of algal ponds or photobioreactors. 

Algal growth kinetics are often studied in batch experiments by determining the 

changes in biomass concentration (optical density or OD) 36-37, cell numbers38, and 

chlorophyll a content39. However, these experiments often require a long period (>10 

days) of cultivation to differentiate the changes and the results can be easily affected by 

biomass debris formation.40 Furthermore, the changes in water pH, nutrient availability, 

biomass concentration, and self-shading of light by algae affect algal growth during the 

cultivation period, which may lead to an underestimation or overestimation of growth 

kinetics.31 

Other techniques have been explored to determine algal growth kinetics by 

quantifying the photosynthetic products, such as oxygen or 14C assimilation products 

from the Calvin cycle.41-42 Oxygen evolution measurements with O2 electrodes allow for 

oxygen production measurements in the light.43 An extension of this method is the 

microamperometric oxygen evolution measurements by determining photosynthetic 

oxygen evolution using microelectrodes.44-45 However, the insertion of microelectrodes 

could physically injure cells and trigger undesired intracellular.44 Direct chlorophyll 

fluorescence measurement provides a sensitive analysis of photosynthetic activity based 

on the short-term change in chlorophyll fluorescence after light exposure.46-48 However, 
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interference from light absorbing compounds, such as dissolved organic matter may 

cause a significant underestimation of photosynthetic activity.48 On the other hand, 

 14C-assimilation rate measurements reflect the activity of photosynthesis by quantifying 

the amount of dissolved inorganic carbon converted into cell biomass during 

photosynthesis. However, the 14C techniques require the use of special equipment such as 

liquid scintillation counter and could result in significant variation in carbon fixed per 

unit chlorophyll due to nutrient limitation.49 The variation of photosynthetic activities 

revealed by the above methods were not only caused by the use of different test endpoints, 

but were also affected by many important factors such as initial phototrophic cell density, 

light intensity and exposure time.42 Therefore, it is necessary to develop a rapid, simple 

and reliable method to determine the photosynthetic activity of phototrophs upon light 

irradiation.31 

Respirometry based on oxygen production has been proposed as a non-destructive 

and non-invasive approach to rapidly determine phototrophic activity.43 Extant 

respirometry, which is reflective of conditions immediately before the assay, allows 

estimation of activated sludge growth kinetics and sludge decay rate coefficients by 

recording the dissolved oxygen (DO) profiles.50-51 A high-throughput respirometric assay 

results in information-rich data, which can translate into high precision of estimated 

parameters.52 The application of extant respirometry can be easily extended to 

phototrophic systems where the phototrophic activity and decay rate constant can be 

determined through the measurements of specific oxygen production rate (SOPR) in the 

light and specific oxygen uptake rate (SOUR) in the dark, respectively. Like SOUR 

measurement in extant respirometry, SOPR measurement is analytically facile because 
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the continuous acquisition of oxygen production by the phototrophs can be fully 

automated to avoid sampling errors and bias. In fact, respirometric methods have been 

explored and evaluated in photosynthetic studies for biokinetic parameter estimation. For 

example, photosynthetic rates obtained from respirometry suggest that the growth of 

diatoms is inhibited at higher light intensities. The respirometric method has been 

proposed for algal growth inhibition.53 Unfortunately, previous methods to determine 

photosynthetic activity by measuring O2 evolution are often ambiguous on what exact test 

devices are needed (e.g., the type and size of the bottles and whether or not the 

respirometric bottles should be filled completely without headspace) or test conditions 

such as carbon dioxide concentration in the mixed liquor, water pH and temperature, 

nitrogen source, light intensity, wavelength and light–dark period. The objective of this 

research was to develop a standard procedure to rapidly determine algal and 

cyanobacterial activities through SOPR measurement by taking into account these 

important factors affecting photosynthesis. The proposed SOPR measurement would, 

therefore, allow for determination of algal/cyanobacterial growth kinetics within minutes 

under different environmental and stress conditions (e.g., pH, nitrogen sources, chemical 

and metal exposure).31, 54 

          

1.5 Algal Cell Pretreatment for Lipid Extraction 

A variety of disruption methods is currently available for cell disruption. In general, these 

techniques are divided into two main groups based on the working mechanism of 

microalgal cellular disintegration, which is (i) mechanical and  

(ii) non-mechanical methods as shown in Fig. 1.2.55 
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Figure 1.2 Classification of the cell disruption methods.55 

1.5.1 Algal Cell pretreatment: methods and challenges 

The ultrasound power is a very important parameter in sonochemistry. Normally, higher 

ultrasound power causes more violent cavitation and accelerates reactions.56 But higher 

power costs more energy and is not always desirable. Table 1.2 reports the algae removal 

rate constants (k) under different ultrasound power levels.57 The increase of ultrasound 

power from 32 W to 80 W (80 kHz) increased the k value from 0.007 min−1 to 

0.023 min−1. To achieve 90% cell removal efficiency, 328 min was needed at 32 W and 

100 min was required at 80 W; the corresponding total energy consumption was 

0.175 kW h at 32 W and 0.134 kW h at 80 W. Therefore, higher power was more energy 

efficient than lower power for algae cell removal. However, high power (80 W) increased 

microcystins concentrations in water, which was not observed under the ultrasonic power 
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of 32 W. Therefore, low ultrasound power was recommended for use in drinking water 

supply.57 

Table 1.2. Impact of ultrasonic power on ultrasonic algae removal, 80 kHz 
Power (W) 32 48 64 80 
k (min−1) 0.007 0.013 0.018 0.023 

Ultrasound frequency is another important parameter that defines the sound field 

and significantly influences the reaction kinetics. There was little difference in the algae 

removal rate constants among the low frequency range (20–150 kHz), but there was 

significant increase in the algae removal rate constant by increasing the frequency from 

150 kHz to 410 kHz. The k value was 0.114 min−1 at 1320 kHz and 0.0224 min−1 at 

20 kHz. This could be explained by the closeness of the size of algae gas vacuoles and 

the resonance size of cavitation bubbles. Ultrasound can collapse gas vacuoles that 

control algae movement during cavitation.58-60 When the size of the gas vacuoles and the 

resonance size of cavitation bubbles are of the same order of magnitude, the gas vacuoles 

are more likely to resonate, undergo acoustic cavitation, and thus collapse. The resonance 

size of free bubbles at given ultrasound frequency can be estimated by:57 

 

where f is the ultrasound frequency, γ is the ratio of heat capacities of the gas at 

constant pressure and volume, a is the radius of the bubble, p0 is the ambient 

pressure, σ is the surface tension, and ρ is the density of the surrounding medium. γ is 

1.39 for air, ignoring the surface tension and assuming a density of 1.0 g∙cm-3, the 

resonance size of free air bubble in water is 0.166 mm at 20 kHz and 2.47 μm at 

1320 kHz. Usually the gas vesicles of microcystis aeruginosa are up to 1 μm in length, so 
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algae gas vesicles are more likely to resonate with the sound wave and collapse at higher 

frequencies than at lower frequencies. Thus, the algae cells can be removed quicker at 

higher frequencies. To reach 90 % cell removal efficiency, 20 min was sufficient at 

1320 kHz while 102 min was needed at 20 kHz. 

The effectiveness of ultrasonic irradiation on algae removal by coagulation was 

studied. Laboratory results suggest that ultrasonic treatment at 40 kHz and 60 W for 15 s 

can improve algae coagulation removal by 12.4 % as compared with direct coagulation. 

A photometric dispersion analyzer was employed to monitor the algae coagulation in this 

study. It is also indicated that variation in ultrasonic frequency does not have a notable 

effect on algae removal while increasing ultrasonic power to more than 60 W produces a 

negative result. The optimal irradiation duration is determined as 15 s. In conclusion, 

ultrasonic irradiation-coagulation proves effective for algae removal. However, practical 

application still takes time due to certain limitations of the technique.61 

1.5.2 Lipid extraction: methods and challenges 

Chemical solvent extraction is the most common method because of high selectivity and 

solubility toward lipids including inter-lipid content, and the low cost of solvents and 

equipment that would allow scaling up this technology. However, petroleum solvents 

such as conventional n-hexane, chloroform and methanol, are highly  

energy-consumption and environmentally damaging. An efficient extraction requires that 

the solvent penetrates completely into the biomass and has a connection corresponding to 

the polarity of the target compound, thus physical contact between the material and the 

lipid solvent is related to the successful extraction. Because the major form of the lipids 

in algae is triglycerides-esters, located in the photosynthetically active membranes, cell 
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disruption usually is required prior to lipid extraction step in order to retrieve these 

intracellular-membrane lipids more efficiently. The cell disruption methods aim to 

increase the lipid release from the microalgae using mechanical and non-mechanical 

techniques. In spite of advances in developed methods, due to the thick and rigid cell wall 

of microalgae that blocks the release of intra-lipids, the cell disruption and lipid 

extraction from microalgae often turn to be energy-intensive, time-consuming and 

costly.  

The disrupted algal cells have ruptured cell walls/membranes that facilitate the 

contact of solvent and biolipid and thus enhance the biolipid extraction.   

Currently, several studies are focused in solvent extraction and supercritical 

solvent extraction, for dry and wet paste microalgae biomass. Other extraction processes 

such as supercritical CO2, expelling, microwave-ultrasonic assisted extraction have also 

been reported. A recent life-cycle assessment (LCA) of biofuel production from 

microalgae feedstocks mentioned that drying and n-hexane extraction accounted for up to 

90% of the total process energy. Thus, the current challenges are how to decrease the 

solvent consumption, to increase pollution prevention and the extraction yield, to enhance 

the quality of final products (to preserve lipids’ unsaturated bonds), and to shorten the 

extraction time.  

 Mechanical techniques include compression, high-pressure homogenization, 

ultrasonic bath, autoclave, bead mill, microwave and magnetic stirring, pulsed electric 

field (PEF) charging, while non-mechanical techniques include chemical lysing and 

osmotic shock. The common structure of algal cell wall contains uronic acids and 

glucosamine in addition to other polysaccharides such as glucose, rhamnose, galactose, 
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xylose, arabinose, mannose and glycoprotein matrix, providing the cells with formidable 

defense against its environment. Therefore, in spite of advances in developed methods, 

the cell disruption and lipid extraction from microalgae often turn to be energy-intensive, 

time-consuming and costly. Clearly, it is highly desirable to develop a faster and 

environmentally safer microalgal lipid extraction technique, which is the thrust of this 

patent application. 

 As a way to massively pretreat algal cells and break down cell walls prior to 

biolipid extraction has potential to: decrease the organic (toxic) solvent consumption, 

increase pollution prevention and the extraction yield, enhance the quality of final 

products (to preserve lipids’ unsaturated bonds), and shorten the extraction time. 

Viral infection results in algal cell lysis and account for acceptable cell disruption 

in algae prior to lipid extraction compared to other harsh cell rupturing processes that 

consume more energy or time.   

Thus, compared to the harsh cell treatment using mechanical or non-mechanical 

processes, it is highly desirable to develop a faster and environmentally safer cell 

disruption process to facilitate microalgal lipid extraction. The overall aims are to 

decrease the solvent consumption, to increase pollution prevention and the extraction 

yield, to enhance the quality of final products (to preserve lipids’ unsaturated bonds), and 

to shorten the extraction time. This patent describes a biological method using virus-host 

interaction mechanisms to effectively rupture algal cells without the intensive use of 

chemicals. The treated algal cells are ready for lipid extraction at a reduced demand of 

organic solvent and thus increase the economic viability and environment benefit. 
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Another possible process is gasification of the algae, where the biomass is heated 

up to high temperature of about 1000 degrees Celsius. The partial oxidation of the 

biomass produces a mixture of combustible gases known as syngas. Then syngas can be 

used directly to produce energy or can be used as a fuel to power diesel or gasoline 

engines. This is an environmentally friendly method of converting biomass into energy, 

because it is not heavily-energy depended and only uses super-heated water as a solvent. 

The water breaks and completely dissolves the organic compounds in the algae and heats 

the components to form the syngas.  

One of the promising new technologies used for extractions has been pyrolysis 

and catalytic cracking; a process where the algal biomass is heated in the absence of 

oxygen. This produces liquid fuel, which is very similar to traditional petroleum diesel. 

The fuel produced is sufficient to use in engines and does not release large amounts of 

sulfur oxides and does not corrode copper. However, this method is not viable at the 

moment due to elevated levels of carbon residues which result from the burning of this 

fuel. More research needs to be done to bring this technology within current acceptable 

environmental levels.   

The extraction technology that is gaining the most traction in its environmental 

and economic feasibility is hydrothermal liquefaction (HTL); a process where the algal 

biomass is converted into liquid fuel. Basically, the process involves heated water  

(250-350oC) interacting with biomass in the presence of a catalyst2. The biomass breaks 

into small, reactive and unstable molecules and then recombines to form a range of 

molecular products. Recent studies have shown that, depending on the species, 

liquefaction of microalgae can produce between 30%-65% dry weight of oil. The 
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bioreactors necessary to perform this process are the major cost in extracting oil, but this 

method has been found to be energy positive and more effective than conventional 

extraction. HTL experimental studies have shown that the process produces higher bio-oil 

yields and produces a better quality of bio-oil for upgrading to fuel2. Presently, there are 

several methods of extraction that are still being tested for production and  

cost-effectiveness; and more research needs to be done to create a universally acceptable 

system that meets environmental guidelines. Currently, the hydrothermal liquefaction 

method appears to be leading the way in overall oil yield and quality as well as return on 

monetary investment in the process. 

 

1.6 Emerging contaminates 

Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals 

which have been produced for over 60 years., Their uses include military applications, 

and consumer products, such as nonstick coatings, food packaging such as ScotchGardTM 

and TeflonTM, water-proof clothing, fire extinguishing equipment, electronics, and 

aqueous film-forming foams (AFFFs).62 For example, AFFF formulations that have been 

used to suppress fires contain significant quantities of PFOS and related perfluoroalkyl 

sulfonates such as PFHxS. As a result, hundreds of sites are found with associated PFAS 

contamination due to the DoD's legacy use of AFFF.  

PFASs are also commonly referred to as perfluorinated chemicals or PFCs. The 

most notable PFASs are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate 

(PFOS) due to their toxicity and recalcitrance to many natural and enhanced degradation 

mechanisms such as hydrolysis, photolysis, microbial degradation, and metabolism by 
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organisms. The PFAS structure consists of a totally fluorinated carbon chain of varying 

length and a charged functional group, such as carboxylic or sulfonic acid.63 Thus, they 

are also soluble in water and can enter source waters through industrial releases, 

discharges from wastewater treatment plants, storm water runoff, release of firefighting 

foams, and land application of contaminated biosolids. As a result, PFASs are 

increasingly found in environmental media worldwide, including finished drinking water, 

surface water, groundwater, air, sludge, soils, sediments, outdoor and indoor dust, biota, 

and the polar ice caps.63-65 

PFASs are suspected of endocrine disrupting, and have been shown to 

bioaccumulate and cause acute/chronic toxicity in certain organisms. Exposure to PFASs 

can occur through use of products or consumption of food or water containing PFASs. 

Long-term contact with such material may increase the risk of kidney cancer, thyroid 

disease, high plasma lipids, liver and body weight reduction, alveolar wall thickening, 

mitochondrial damage, gene induction, increases in larval mortality, and increased 

susceptibility to disease.66 According to the San Antonio Statement and the Madrid 

Statement,67-68 PFASs are a concern because they have been shown to have adverse 

effects on animal health in studies. Data from some human studies suggest that PFASs 

also affect human health. The EPA’s health advisory levels (HALs) indicates that 

drinking water, with individual or combined concentrations of PFOA and PFOS,  

(below 70 parts per trillion), is not expected to result in adverse health effects over a 

lifetime of exposure.69 However a recent report documented that up to 6 million U.S. 

residents might be exposed to drinking water that exceeds these HALs.70-71 
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Recent studies have shown that conventional water or wastewater treatment 

processes are ineffective at removing perfluorochemicals.72 The Water Research 

Foundation (WRF) has released findings of a study addressing effective methods for 

removing poly- and perfluoroalkyl substances (PFASs) on waters collected from 13 water 

and wastewater treatment plants in the United States. The research report  

(WRF project #4322) indicated that aeration, chlorine dioxide, dissolved air flotation, 

coagulation, flocculation, sedimentation, granular filtration, and microfiltration are all 

ineffective for removing PFASs including PFOA and PFOS. Activated carbon and anion 

exchange can remove most of PFASs but are less effective at removing shorter chain 

PFOA and PFOS. The most effective treatment technologies are nanofiltration and 

reverse osmosis, which have costly investment, operation and maintenance (due to 

fouling). More importantly, these removal methods do not completely result in chemical 

degradation and destruction, but rather a separation and concentration of PFASs, which 

require further disposal of the concentrated slurry (perhaps via landfill or incineration). 

However, landfilling or incineration is both costly and poses additional transportation 

requirements. Thus, more sophisticated and novel treatment technologies are in need to 

effectively address real-world complexities of PFOA and PFOS mixtures and 

contaminants present in environmental matrices.  
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CHAPTER 2 

 
ALGAL DESTABILIZATION BY Ti4O7 REACTIVE MEMBRANE FILTRATION 

AND EFFECTS ON LIPID EXTRACTION 
 

 

2.1 Introduction 

Algae are one of typical water contaminants that affect water quality and drinking water 

security. Meanwhile, algal biomass can be the third generation feedstock for biodiesel or 

biofuel production. Thus, efficient algal separation or removal from water is not only 

critical for safe drinking water supply but also important for biofuel production. Due to 

the small size (typically 2‒20 µm in diameter) and low density  

(e.g., 0.5‒5 g-dry weight·L-1) of algal cells in growth media, most conventional algal 

separation methods such as gravitational sedimentation, centrifugation, microstraining, 

chemical coagulation, precipitation, filtration and flotation are often cost prohibitive, 

energy- or time-consuming.73-75 Rapid and high efficient algal harvesting or removal is 

clearly critical for water treatment industries as well as for biomass engineering and 

biofuel production. Specifically, high efficient algal biomass removal from water could 

lower the operational cost and increase the economic viability of produced products 

(biomass and cleaned water).  

Membrane filtration is one of the potentially efficient processes for algal 

separations because of its simple operation and energy savings. However, traditional 

membrane separations suffer from membrane fouling due to either the formation of a 

cake layer of algal cells, or more commonly due to organic matter adsorption onto the 
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membrane surface.76-77 Thus, developing innovative membrane filtration processes that 

can efficiently separate algae with strong antifouling characteristics is a pressing task.  

Reactive electrochemical membranes (REMs) based on electrochemical advanced 

oxidation processes (EAOPs) are a cutting-edge class of membranes that holding great 

promise in revolutionizing water and wastewater treatment and bioseparation.78-79 REMs 

are porous and act as three-dimensional electrodes that are operated in flow-through 

mode.78, 80 Radicals such as hydroxyl radicals (OH•) could be formed via water oxidation 

at an anode surface when the electric potential is supplied.81-82 Thus, the antifouling 

potential of REM is promising, as organic foulants could undergo electrochemical 

adsorption and rapid oxidation by OH•.83 Recent work has shown that the use of porous 

substoichiometric TiO2 (e.g., Ti4O7) anodes in flow-through filtration mode creates a 

REM, which combines microfiltration with electrochemical oxidation.78, 83 The 

micrometer-sized pores of the REM produced a high electroactive surface area and 

advection-enhanced mass transfer rates approximately 10-fold higher than those obtained 

in traditional flow-by mode. By converting TiO2 to Ti4O7 (usually at temperatures above 

900 °C under a H2 atmosphere),84 electrical conductivity can be increased from  

10-9 Ω-1∙cm-1 (TiO2) to 166 Ω-1∙cm-1 (Ti4O7).85 The REM also utilized Ti4O7 electrodes 

supported on monolithic porous ceramics or electrospun carbon nanofibers (CNFs). This 

type of membrane shows a high water flux in filtration and superior properties in both 

flexibility and mechanical strength. REM presents a new viable technology that holds 

potential for efficient sustainable algal separation. Past research with REMs has focused 

only on dissolved compound oxidation, but their ability to provide efficient algal 

separations is unexplored. Therefore, there is a pressing need to apply REM to algal 
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separation and to evaluate its technical feasibility and cost effectiveness, compared to 

traditional membranes or other algal harvesting methods. Additional synergistic benefits 

are also worth investigating, including algal pretreatment via anodic oxidation, 

antifouling characteristics, and removal of algal growth inhibitors from water media that 

could be reused. 

Expensive cell concentration and lipid extraction procedures represent one of the 

bottlenecks of large-scale algal biotechnological processes. One of the key challenges 

faced by algae biofuel industry is lack of energy-efficient and cost effective methods for 

disrupting algae cells for the separation and extraction of bioproducts. 

Typical structures of algal cell walls contain uronic acids, glucosamine, and 

polysaccharides that provide cells with formidable defense against the environment.14, 86  

Extraction of biolipid that is usually located in globules or bound to cell membranes often 

involves the use of chemical solvents such as n-hexane, chloroform and methanol 

because of high selectivity and solubility toward lipids.15,16 An efficient extraction 

requires that the solvent penetrates completely into the biomass and physically contacts 

the lipid (e.g., triglycerides-esters) located in the photosynthetically active membranes. 

Therefore, cell disruption is a pretreatment step prior to lipid extraction. Current cell 

disruption methods include mechanical and non-mechanical techniques. Mechanical 

techniques destroy the cell wall using non-specific solid and liquid shear forces or energy 

transfer through heating and waves,17 which include compression,87 high-pressure 

homogenization (HPH),88 ultrasonic bath,89 autoclave,15 bead mill,90 microwave and 

magnetic stirring,20,21 pulsed electric field (PEF) charging,91 while non-mechanical 

techniques include chemical lysing using enzymes or chemical agents and osmotic shock. 
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Non-mechanical methods are viewed as less harmful than mechanical processes as the 

cells are not shredded but perforated. Selective interactions between chemical agents 

(enzymes, antibiotics, chelating agents, chaotropes, detergents, solvents, hypochlorites, 

acids and alkali) and the cell wall or membrane are designed to allows biolipid to leach.17 

Cell disruption and lipid extraction processes can be energy-intensive, time-consuming 

and costly. A recent life-cycle assessment (LCA) of biofuel production from microalgae 

feedstock mentioned that cultivation, drying and n-hexane extraction accounted for up to 

90% of the total process energy.92 How to decrease the solvent consumption, to prevent 

pollution, and to enhance the quality of final products (to preserve lipids’ unsaturated 

bonds) and lipid production (efficiency) are the major challenges in this field.  

Our overall research aim is to explore substoichiometric TiO2 REMs for efficient 

algal recovery and pretreatment with potential antifouling capability while maintaining 

high flux and excellent stability under anodic and cathodic polarization.25, 93-94 The 

specific hypothesis to be tested in this study is that with a positive electrical potential 

applied to the REM surface during membrane backwash, the negatively charged algae 

may have intensive surface contact with REM due to electrostatic interactions. As shown 

in Figure 2.1, the produced OH• and other oxidative species oxidized the surface algal 

cells, which could promote cell disruption, reduce surface fouling, and potentially 

degrade algal growth inhibitors to permit water and nutrient reuse. The disrupted or 

ruptured cell walls/membranes may facilitate the contact of solvent and biolipid and thus 

enhance the biolipid extraction, which was investigated.  
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Figure 2.1 (a) Schematics of algal concentration and destabilization during the REM 
filtration process. (b) the configuration of the feed water and permeate flux through the 
REM (adapted from ref.78).  
 

2.2 Method and Materials 

2.2.1 Synthesis of Ti4O7 REM electrodes 

The REM used in this study was a 10-cm long Ebonex one-channel tubular electrode, 

with the outer and inner diameters of 10 mm and 6 mm respectively (Vector Corrosion 

Technologies, Inc.). Ebonex is a Magneli phase suboxide of TiO2, which consists 

primarily of Ti5O9 and Ti4O7.85 In order to increase conductivity of the electrode and 

obtain a higher Ti4O7 content, the as received electrodes were subjected to another 

reduction process. The tubular electrode was first soaked in a 0.625-M sodium hydroxide 

solution for 24 hours to remove possible organic contaminants, and then rinsed with DI 

water. The clean electrode was placed into a tube furnace (MTI OTF-1200X). The 
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furnace was purged with N2 gas (Praxair 99.99%) for 30 min, and then purged with H2 

gas (Praxair 99.99%) to remove oxygen. The furnace was heated to 200oC for 1 hour, to 

desorb water, and then was reduced under H2 flow at 1050 oC for 10 hours with a heating 

and cooling rate of 5oC∙min-1.  

As we reported earlier,78, 83 the Ti4O7 electrode has a median pore diameter of  

1.7 μm with pore diameters of <10 nm accounting for >90% of the surface area. The 

Ti4O7 electrode had porosity of 30.7 ± 2.8% and a specific surface area of 2.8 ± 0.7 m2∙g-

1, and a roughness factor of 619. FE-scanning electron microscope (SEM) and Energy-

dispersive X-ray spectroscopy (EDS) were performed on a JSM-6010PLUS/LA (JEOL 

USA, Inc.). X-ray Diffraction (XRD) was recorded for the crystallography using a Philips 

PW3040 X-Ray Diffractometer. The BET surface area was measured with the 

Micromeritics® AutoChem II 2920 equipped with a thermal conductivity detector 

(TCD). Raman tests were executed for surface composition analysis by using a WITEC 

ALPHA300 Confocal Raman microscope. 

. 
2.2.2 Algal cultivation and preparation  

Oleaginous algal cells (Scenedesmus dimorphus or S. dimorphus) were cultivated in the 

modified Bold's Basal Medium (MBBM) with details reported in our previous works.73-75 

Briefly, S. dimorphus was cultivated in a 2-L Erlenmeyer flasks at the room temperature 

(25 ± 1 °C) with  CO2 at a rate of 8.5×10-4 L-CO2·min-1·(L-medium) -1.95-96 The light-

dark cycle (12 h/12 h) was maintained at a photon flux of approximately 4200 mWatt·m-2 

measured by a spectroradiometer (Spectral Evolution, SR-1100). The algal concentration 

(g·L-1) was characterized by the dry cell weight (DCW). The steady-state algal 
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concentration after 14-day incubation was around 1.4 g·L-1, which was then subject to 

algal harvesting experiments and other tests. 

 
2.2.3 Cell treatment by DC-charged REM and the cellular impact characterization 

To study the cell damage by the exposure to electrochemical reactions at the REM, an 

electrochemical batch reactor was used (Figure 2.2).  The reactor was filled with the algal 

suspension (the green liquid in Figure 2.2a), where the REM was immerged as the anode 

(the dark gray rod in the center), which was surrounded by a stainless steel circular mesh 

as the cathode with a spacing of 2.5 cm. The REM was operated at a constant current 

(100‒500 mA) using a DC power supply (Proteck P6035, Tempe, AZ) corresponding to 

cell voltages between 10‒20 V and for different times (30‒120 min) to achieve different 

algal disruption. The effective exposed surface area of the REM was 25.4 cm2. The 

conductivity of algal medium was 1040±5 μm∙cm-1, whereas the conductivity of algal 

medium with algal cells ranged from 1580±20 to 2520±10 μm∙cm-1 for newly inoculated 

algal culture and the culture after 14 days of incubation, respectively. 

 

2.2.4 Cellular impact characterization 
 

The impacts of REM exposure on the algal cell integrity were assessed by  

(1) morphologic changes, (2) surface composition changes, (3) photosynthetic activity, 

and (4) dissolved organic matter (DOM) in algal suspension.  

 

2.2.4.1 Morphology and surface composition. Cell morphology (size and shape) 

was examined by a fluorescent microscope (3012 Series, Miller Microscopes, Feasterville, 

PA) and a Keysignt 8500B scanning electron microscope (SEM). Surface morphology, 
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roughness, and rigidity were also examined by Atomic Force Microscope (AFM) on a 

NT-MDT AFM (NTEGRA Prima, Tempe, AZ) using a rectangular silicon nitride (Si4N3) 

cantilever (MLCT model; Bruker AFM Probes). Algal surface compositions were 

assessed by Fourier Transform Infrared (FTIR) Spectrometer. FTIR was performed on a 

Nicolet ThermoElectron FTIR spectrometer. 

 

2.2.4.2 Algal photosynthetic activity. Algal photosynthetic activity was monitored 

by in vivo fluorescence using a Turner Designs’ Trilogy Fluorometer with an optical 

block for in vivo chlorophyll a measurement (excitation 485 nm; emission 685 nm with 

bandwidth of 50 nm).97 Briefly, 25 μl of algal suspension was taken and stabilized in the 

dark for 10 min.  Then, 2 ml of media was added to the algal suspension, which was then 

subject to the fluorescence measurement immediately. Moreover, the specific oxygen 

production rate (SOPR) was monitored as a non-destructive and non-invasive approach to 

determine phototrophic activity of algae.31 

2.2.4.3 The specific oxygen production rate (SOPR). SOPR serves as a non-

destructive and non-invasive approach to rapidly determine phototrophic activity of 

algae.31 Due to photosynthesis under light illumination, the dissolved oxygen (DO) 

profiles over time were recorded and compared for treated and untreated algal cells. Prior 

to the SOPR tests, the algal suspension (0.7~1 g∙L-1 and  

500 ml) was purged with N2 gas to reduce the initial DO to approximately 1–3 mg/L or 

less. Sodium biocarbonate (NaHCO3) was added to the suspension at a final 

concentration of 4 mM to supply sufficient CO2 for photosynthesis. The suspension pH 

was adjusted to 7.0 by 1 M HCl or 1 M NaOH. The suspension in the bottles was stirred 
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at 100 rpm to ensure complete mixing. With the bottles covered with aluminum foil, the 

test culture was kept in the dark for a short period before it was exposed to a fluorescent 

light at an intensity of 50 ± 5 μmol∙m-2∙s-1. As shown in Figure 2.2b, the DO 

concentration in the bottle due to photosynthesis was measured by a DO probe 

(PASPORT Optical Dissolved Oxygen Sensor, PASCO scientific, California, USA) at 

the room temperature of 23 ± 1 °C and continuously monitored at 1 Hz by the Pasco 

Capstone software on a computer.  
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Figure 2.2 Bench setup for (a) REM treatment and (b) the measurement of 
photosynthetic activity of untreated or treated algae.  
 
2.2.4.4 DOM analysis using UV-vis and EEM spectra. DOM in algal suspension 

could originate from the released extracellular polymeric substances (EPS) from algae. 

Particularly for the damaged or lysed algae, the cytoplasm could be released leading to 

changes of the DOM types and concentrations. DOM was characterized by a Thermo 

scientific Evolution 201PC UV-vis spectrophotometer and a Hitachi FL4500 fluorescent 

spectrophotometer. The algal suspension was first centrifuged at 10,000×g for 15 min to 

remove suspended particles or large debris. The supernatant was then tested in a quartz 

cuvette by the UV-vis and florescence spectrophotometer. The UV-vis and fluorescent 

spectra as well as the 3D excitation/emission matrix (EEM) spectra were all obtained. 

The slit for excitation and emission was 10 nm, and the voltage of the photomultiplier 

tube was set to 400 V at a sample scan rate of 12,000 nm∙min-1. Deionized (DI) water 

blanks were run to monitor the instrument stability. The data were analyzed by Excel 

2007 (Microsoft Company) and Origin 9.1 (Origin Lab Company). 

 

2.2.4.5 Molecular weight (MW) distribution of DOM. The MW distribution of 

DOM was analyzed by both DLS and high performance liquid chromatography (HPLC). 

DLS was performed on a Zetasizer nano ZS instrument (Malvern Instruments, UK), 

while HPLC used an HPSEC (LC-20AT, Shimadzu, Japan) system with the combination 

of a TSK gel G3000PWXL column (0.78 cm × 30 cm) and a TSK gel G2500PWXL 

column (0.78 cm × 30 cm) in series. The HPSEC was coupled to a photodiode array 

detector (SPD-M20A, Shimadzu, Japan) and an on-line TOC detector (TOC, Sievers 900 

Turbo TOC, GE, USA). The mobile phase was a phosphate buffer (2.4 mmol∙L-1 
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NaH2PO4 and 1.6 mmol∙L-1 Na2HPO4) and 25 mmol∙L-1 Na2SO4. The flow rate was 0.5 

mL∙min-1. Sodium polystyrene sulphonate standards (34700, 10600, 6800, 4300 and 1670 

Da, PSS Polymer Standards Service GmbH, Germany) were used to calibrated the MW 

distribution. The supernatant of the algal suspension was subject to 0.45-μm 

polyethersulfone membrane filtration prior to the injection into HPLC. 

2.2.4.6 Fluorescent staining.  Propidium iodide(PI) binds to DNA and emit 617-

nm fluorescent at excitation wavelengths of 460-490 nm.98 Generally, PI is impermeable 

to cell membrane and thus cannot stain viable cells. PI was used to stain treated and 

untreated algal cells to indicate cell damage from REM exposure. Damaged algae 

allowed PI to penetrate into cytoplasm and bind to DNA. Briefly, PI was first pre-diluted 

using DI 10 μL of pre-diluted PI solution was added into 1 ml of algae suspension (1.4 

g/L) and incubated for 15 minutes in the dark. The stained suspension was then spread on 

glass slides and observed under fluorescent microscope (EVOS™ FL Cell Imaging 

System, Thermo Fisher Scientific). 

 

2.2.5 Lipid extraction  

2.2.5.1 Heterogeneous extraction 

The untreated and treated algal biomass was vacuum dried at room temperature prior to 

the solvent extraction, where non-polar organic solvents disrupt the hydrophobic 

interactions between non-polar/neutral lipids of the algae cells.99-100 By breaking down 

the cell, the lipids can be extracted leaving behind the residual biomass called the lipid-

extracted algae (LEA), which can be as much as 85% of the dry weight of the algae. To 

extract lipid, aliquots (ca. 0.5 g) of dried algal biomass were extracted with 40 ml of 2:1 
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dichloromethane: methanol with 400-W microwave irradiation for 45 min, and then 

centrifuged at 1,000×g for 15 min. The supernatant was transferred into a preweighed test 

tube while the pellet was successively re-extracted with a 1:1 and then a 1:2 

dichloromethane: methanol solution. The supernatant from each step was transferred to 

the same test tube. DI water (50 ml) was added to the test tube and incubated at 4°C 

overnight. The lower organic layer was collected and evaporated using a Thermo Savant 

AES1010 Automatic Environmental Speedvac system (Thermo Fisher Scientific, 

Waltham, MA). Dry weights of the samples were determined. Lipid content was 

calculated by dividing the dry weight of the extracted lipid by the dry weight of the 

samples used for lipid extraction (g-lipid∙g-algae-1).  

2.2.5.1 Homogeneous extraction 

Algal cell suspensions of 500 mL at 1.4 g/L of biomass were treated under 500 mA (with 

different time duration), and then each suspension had 150 mL n-hexane added and was 

stirred for 2 h with a magnetic stirrer to extract lipid. After the extraction, the mixture 

was centrifuged to separate the water phase and organic solvent phase. Then, the hexane 

phase and the emulsified phase had water added and was further stirred to break emulsion 

and wash out the hygrophilous substances. The hexane phase was collected again through 

separating funnel and the lipid was obtained from the hexane phase by evaporating n-

hexane. The extracted lipid was weighed after being dried in an oven at 80 °C for 2 h.101 

2.2.6 Fatty acid composition analysis 

A fatty acid composition analysis was performed using a gas chromatograph (Shimadzu 

GC-2010, Japan). Fifty milligram samples were placed into capped test tubes, saponified 

with 1 ml of a saturated KOH–CH3OH solution at 75 oC for 10 min, and then submitted 
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to methanolysis with 5% HCl in methanol at 75 oC for another 10 min. Thereafter, the 

phase containing the fatty acids was separated by adding 2 ml of distilled water and then 

recovered. The components were identified by comparing their retention times and 

fragmentation patterns with those for standards.102 Six fatty acids (C16:1, C17:0, C18:0, 

C18:1, C18:2, and C18:3) were used as the standard materials. 

2.2.7 Statistical Analysis 

Algal treatment experiments were carried out in duplicate for each condition. Filtration 

and lipid extraction were performed in duplicate or higher. The presented results are 

mean values ± standard deviation from three independent experiments. The differences 

between experimental groups and control groups were tested for significance using one-

way analysis of variance (ANOVA) at a 5% significance level (p= 0.05). 

 

2.3 Results and discussion 

2.3.1 Characterization of REM 

The morphology of the REM surface was characterized using SEM previously (Figure 

2.1b),78 which showed a pore size range of approximately 1‒6 μm, a porosity of  

30.7 ± 2.8% and a specific surface area of 2.78 ± 0.7 m2∙g-1. The XRD data in Figure 2.3 

shows that the lab-synthesized Ti4O7 exhibited similar crystallinity as compared to the 

standard Ti4O7.  
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Figure 2.3 XRD spectra for standard Ti4O7 and our lab-synthesized Ti4O7. 
 
 
2.3.1 Fluorescent properties of REM and algae 

The Fluorescent properties of the REM and dried algae surface were investigated using 

Confocal Raman microscope. Figure 2.4 shows different titanium oxide species existed 

on the REM surface. Three peaks with strong intensities at 148.17, 436.7, and  

619.25 cm-1 can be observed in the Raman spectra of the REM debris, which are close to 

that of reported titanium oxide anatase.103 Figure 2.5 shows Raman spectra of the on the 

dried and treated algae surface. The peak at wavelength 575.37nm is believed to be the NOM of 

algae cells. 
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Figure 2.4 Raman scope (WITEC ALPHA300) image and spectrum of Ebonex REM.  
(a) the image took under scope; (b) Raman image of the red square in (a); (c) comparison 
of Raman spectrum at red and blue cross in (a), Raman peaks at black arrow represent 
different titanium oxide species (e.g., TiO2, Ti4O7 and Ti5O9). 
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Figure 2.5 Raman scope image and spectrum of dried algae. (a) the image took under 
scope; (b) Raman image of the blue square in (a); (c) Raman spectrum at red cross in (a). 

520 560 600 640 680

900

1200

1500

1800

2100

 

 

C
C

D
 (c

ts
)

Wavelength (nm)

(c) 

(a) (b) 

Florescent 
interference 
caused by 
algae.  Raman peak of 

NOM in algae.  

575.37nm 

35 



2.3.2 Algal morphological changes before and after exposure to DC-charged REM  

Figure 2.6 compares the algal biomass with and without REM treatment. From the photos, 

the black color of algal biomass appears to fade slightly. As shown in Figure 2.6c and 

2.6d, although no major changes to the morphology or deformation in algal cells, there 

could be a major damage to the cellular structures with the REM treatment. As pointed by 

the red arrows, the treated algae had evident white-colored dots, which might be the pits 

(cavitation) on the damaged algal cell wall. This formation of white dots was repeatedly 

observed on numerous treated algal cells, which are not there (or at least not significant) 

on untreated algae. The SEM images in Figure 2.6e and 2.6f show that untreated algae 

had normal shapes and edges, whereas treated algae samples appear to have rough 

surfaces and some scattered debris surrounding algal cells that were likely damaged. To 

further verify the surface disruption, surface mapping by AFM was performed with the 

results compared in Figure 2.7. Figure 2.7a shows the same morphology as the SEM 

image in Figure 2.6e. By comparing Figure 2.7b and 2.7c, treated algae cells are likely to 

have some release of intracellular substances as marked by the red arrow.  

A similar observation was obtained on algae after ozonation, which led to the 

appearance of submicron particles due to lysis.104 Also, the reduction of algal size 

probably resulted from the disintegration of EOM from algal surface.76 cavity formation 

is common in algal cell treatment.17, 89, 91 Figure 2.8 compares algal suspension before 

and after REM treatment at different times, which shows that algal suspension had a 

transition from dark green to lighter over time of REM treatment. This may indicate the 

surface oxidation of algae by charged REM. Figure2.9 shows the fluorescent microscopy 

images of PI-stained algal cells after exposure to REM at different power intensities. 
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Figure 2.9a, 2.9c and 2.9e show the microscope images of PI-stained algal suspension 

without laser excitation. Figure 2.9b, 2.9d and 2.9f are microscope images under GRN 

fluorescence. The density of visible cells (dark dots in the optical microscope images) 

were almost same after REM treatment. Under florescent microscope, damaged cells 

became green dots, which increased from nearly invisible to a high density with the 

increasing  REM treatment intensity.  
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Figure 2.6 Comparison of morphology of untreated dried algae and treated dried algae 
with and without treatment by REM under  200 mA and 20 V for 60 min with photos of 
dried algal fragments in (a) and (b),  optical microscopic images in (c) and (d), and  SEM 
images in (e) and (f). 
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Figure 2.7 Morphological images of untreated and treated algae acquired by AFM.  
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Figure 2.8 Photos of algal suspension after REM treatment. 
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Figure 2.9 Microscopy fluorescent images of intact algae (a and b) and damaged algae 
(c, d, e and f) with PI staining after exposure to REM under 0h∙A, 0.375h∙A and 0.75h∙A 
REM treatment intensities. 
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2.3.3 Algal surface composition changes  

Surface disruption may also lead to the disintegration of extracellular organic matter 

(EOM) from the algal surface.76 FTIR was utilized to examine the effect of REM 

treatment on algal surface properties (e.g., characteristic functional groups). Typical 

components on algal surfaces are polysaccharides, protein, lipid and phosphates. As 

indicated in Figure 2.10, the characteristic peaks at 3550–3200, 2925, 1260–1000 cm− 1 

are associated with polysaccharide or polysaccharide-like substances, such as N–H 

stretching occurred at 3300 cm−1, aliphatic (−CH2) peak at 2930 cm−1, carboxylic (C–O) 

at 1250 cm−1 as well as at 1000 cm−1.104-105  The absorption peaks at 1650 cm− 1 and 

1550 cm− 1 are related to the peptide carbonyls (C = O, amide I band) and the N–H 

(amide II) bonding, respectively.106-107 FTIR spectra indicated that protein and 

polysaccharide-like substances were major constituents on the surface of S. dimorphus. 

As shown in Figure 2.10, all major functional groups remained with the intensity slightly 

decreased with the REM treatment, implying EOM (e.g., polysaccharides) were likely 

released from algal surface due to the oxidative attack of radicals on the cell wall of algae 

and subsequently algal lysis. Furthermore, similar changes in cell surface characteristics 

and in cell viability upon additions of oxidant was observed in previous works.104, 108 

42 

http://www.sciencedirect.com/science/article/pii/S0927776506002116%23fig7
http://www.sciencedirect.com/science/article/pii/S0927776506002116%23fig7


3500 3000 2500 2000 1500 1000
92

94

96

98

100

102

104

Untreated algae

Wavenumber (cm-1)

Treated algae

-CH2N-H

 

 

In
ten

sit
y 

(a
.u

)
Polysaccharide

C-ON-H
C=O

 

Figure 2.10 FTIR spectra for algal surface with and without REM treatment under the 
condition (72 J∙ml-1): 500 mA (≈20 mA∙cm-2), 20 V and 60 min for 500 ml of algal 
suspension at the initial concentration of 1.8 g∙L-1 (unless indicated, the same treatment 
condition applied to the following data comparison). 
 

2.3.4 Algal photosynthetic activity changes  

Figure 2.12 compares four photosynthetic efficiency curves for untreated and treated 

algae under three different treatment times of electrical treatment (500 mA and 20V) in 

500 ml. The photosynthetic efficiency declined from 0.5 to 0.2 fv∙fm-1 with the increase 

of the treatment time from 0 to 120 min (2.0 A∙h∙L-1). Figure 2.11 compares three DO 

regeneration curves for untreated and treated algae under two different conditions. 

Clearly, the DO curve for untreated algae was quite linear at a rate of c.a. 2.7 mg∙L-1∙h-1, 

which is the greatest among all. By applying 100 mA and 10 V to the REM to treat algae 
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suspension of 500 ml for 60 min (equivalent to the energy input of 7.2 W∙ml-1 or  

4 W∙mg-algae-1), the treated algae maintained the similar photosynthetic activity with the 

untreated algae. However, further increasing the DC charging level to 500 mA and 20 V 

(or 72 W∙ml-1 or 40 W∙mg-algae-1), the REM exposure significantly inhibited DO 

regeneration because of the perceivable cell damage as shown in Figure 2.6 and Figure 

2.7.  
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Figure 2.11 DO curves versus time for the untreated and treated algal cells in 500 ml 
algal suspension with the algal concentration of 1.8 g∙L-1.  
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Figure 2.12 Photosynthetic activity for the untreated and treated algal cells under the 
condition: 500 mA (current density≈20 mA∙cm-2) and 20 V for 500 ml of algal 
suspension at the initial concentration of 1.4 g∙L-1. * denotes significant differences 
(p<0.05) between the values of treatment groups and the initial value. 
 

2.3.5 Characterization of DOM in algal suspension  

Polysaccharide-like and protein-like substances found on the algal surfaces were likely 

the major components of algogenic organic matter (AOM) released from algae due to 

surface oxidation. In addition, cell lysis by oxidation may also be induced with a release 

of intracellular organic matter (IOM) that is considered as hydrophilic substances with 

high SUVA254, the ratio of UV254 to dissolved organic carbon (DOC).109 To evaluate the 

possible algal surface oxidation by DC-charged REM, the UV-vis spectra for the 
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supernatant collected from untreated and treated algal suspension were obtained and 

presented in Figure 2.13, which shows little difference between the samples, which is 

likely due to the low concentrations of AOM in the algal suspensions.  

However, the EEM spectra obtained by the fluorescent spectrophotometer in 

Figure 2.13 were particularly useful for revealing information on protein and humic- or 

fulvic-like substances.29 There are two major peaks at Ex/Em of 245/400 nm and  

340/400 nm. After the treatment, a peak at (Ex/Em of 350 nm/400 nm) emerged, which is 

likely ascribed to humic substances.110 This may indicate the production or release of 

AOM from algae was due to anodic oxidation. It was previously reported that DOC in the 

solution increased as contact time of ozonation increased.104 Ozone exposure further 

reduced the algal mass and the size of algal cells due to the release of AOM from algal 

surfaces. Consequently, the fluorescent intensity of the observed peaks in EEM also 

decreased, which agreed with the FTIR results as shown in Figure 2.10. 
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Figure 2.13 UV-vis spectra for supernatant from untreated and treated algal suspension 
under the same condition as Figure 2.10. 
 
 
 

 

 

 

 

 

Figure 2.14 EEM spectra for the supernatant from untreated and treated algal suspension 
under the same condition as Figure 2.10. The intensity of EEM is represented by contour 
lines. 
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Molecular weight (MW) distribution within samples was assayed using gel 

filtration chromatography. The MW distribution of AOM usually exhibits a significant 

heterogeneity (high polydispersivity) due to an array of different components such as 

glycolic acid, carbohydrates, polysaccharides, amino acids, peptides, organic phosphorus, 

enzymes, and vitamins.105 The untreated AOM may consist of high MW carbohydrates or 

proteins (>20 kDa), medium-MW components (i.e., humic like substances, ~1,000 Da 

and building blocks, 350–500 Da), and low-MW substances (<350 Da).111-113 Our data in 

Figure 2.15 shows that the peaks of 2.6 kDa and 1.8 kDa both decreased, indicative of the 

decomposition of typical AOM. The increase in the peak of 2.1 kDa suggested the 

possible conversion from larger organic matters to small ones.  The MW distribution in 

Figure 2.15 did not reveal any high MW biopolymers, probably because the UV detector 

could not detect all organics. A shift of MW from high to low region was also observed 

previously when applying ozone to algae.114 This shift could be supported by the 

calculation of the UV absorbance ratio index (URI), which corresponds to the ratio of UV 

absorbance at 210 nm to that at 254 nm (UVA210/UVA254). URI can provide information 

on the relative proportions between UV-absorbing functional groups and unsaturated 

compounds in DOM.115 Based on the results in Figure 2.13, URI for untreated and treated 

algal suspension were 11.8 and 12.7 respectively, which means a smaller MW of DOM 

existed in treated algal suspension. Furthermore, S275-295, a spectral absorption index, is 

the spectral slope coefficient in the spectral range of 250‒365 nm. S250-365 can be used for 

tracing DOM sources and indicating DOM molecular weights (a higher S275-295 indicates 

a lower MW of DOM).116 S250-365 can be calculated from a linear regression of log-

transformed absorption coefficient in Equation (2.1):117-118 
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              ( ) ( ) ( )ref-S λ-λ
λ refa λ = 2.303A / L = a λ e     (2.1) 

where a(λ) is the absorption coefficient at the wavelength of λ nm, λref is the reference 

wavelength (nm), Aλ is the absorbance at λ nm, and L (m) is the cell path length. Using 

the data in Figure 2.13, we compared the values S250-365 for untreated (0.0179 nm-1) and 

treated (0.0196 nm-1) algal suspension, which also indicates the shift of MW from large 

to small ranges. 
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Figure 2.15. MW distribution measured by DLS (a) and by gel chromatography (b) 
under the same condition as Figure 2.11. 

 

2.3.6 The role of the radicals production on algal pretreatment and filtration 

Under an applied electrode potential, the electrochemical reaction on the REM surface 

include direct electron transfer reactions (R→ R•+ + e-) and the formation of hydroxyl 

radicals (OH•) via water oxidation ( 2H O OH + −→ •+ +H e ).78 OH• radicals are short-

lived intermediates that self-decay with a second-order reaction rate of 5.5×109 M-1∙s-1. 

Therefore, reactions occurred to algal cells could only occur in a thin layer near the REM 

49 

app:ds:absorption
app:ds:coefficient


surface. The production of ROS (primarily OH•) and the removed chemical oxygen 

demand (COD) in the algal suspension could both be estimated by the Faraday’s law:119 

8
⋅ ⋅

= =
⋅

COD i t MR
V F      

(2.2) 

where R is the moles of OH• produced the REM electrode (mole), i is the current density 

(A∙cm-2), t is the elapsed (s), M is the surface area of the REM electrode (25.4 cm2), V is 

the volume of the algal suspension (500 ml), and F is the Faraday’s constant  

(96500 C∙mol-1). Under the current treatment (20 mA∙cm-2 for 60 min), the total produced 

OH• was approximately 0.038 mol∙L-1, which may lead to the reduction of COD by 0.303 

mol∙L-1 (9.7 g∙L-1 or 1.2 eq∙L-1). However, the algal concentration was 1.8 g·L-1, which 

corresponds to only 0.2 eq∙L-1 if the empirical formula for algae is assume to be 

C106H263O110N16 (419 eq∙mole-1).120 Clearly, the ROS production is the maximum level 

that could be achieved theoretically. In reality, not all electrons transferred are converted 

into OH• radical, but they may also lead to O2 production (i.e., 2 22H O 4 4+ −→ + +O H e ), 

thereby reducing the chances of algal surface oxidation.  

The role of the produced ROS on REM surface may have additional benefits 

besides the pretreatment of algae. The algal culture media usually contain hormonal 

substances, inhibitors, and toxins while algae grow and may accumulate these substances, 

especially when reusing the culture media. Thus, the oxidation power by REM may also 

enable the treatment of culture media with significant reductions in AOM and inhibiting 

compound accumulation, which makes the reuse of culture media more feasible and 

saves water consumption for algal cultivation. However, to better preserve the quality of 

algal biomass/extracted lipid and reduce energy consumption, the DC charging 

conditions shall also be optimized to avoid the excessive formation of free radicals that 

50 



could cause oxidation and proteins denaturation and consequently reduce the biolipid 

quality or production. 17 

 

2.3.8 Lipid extraction from untreated and treated algal cells 

Microalgae (S. dimorphus) used in this study are oleaginous. Treated cells are 

presumably broken and easy to extract and produce more lipid with the same extraction 

method compared to the untreated ones. Figure 2.16a shows that the specific extracted 

lipid increased from 15.2±0.6 to 23.4±0.7 g-lipid∙g-cells-1 (p<0.05) as the REM treatment 

intensity increased from 0 to 0.75 A∙h by increasing the exposure time at 500 mA. Figure 

2.16b shows that the extracted lipid increased from 6.3±0.13 to 20.0±0.14 g-lipid∙g-cells-1 

(p<0.05) as the REM treatment intensity increased from 0 to 0.75 A∙h by increasing the 

exposure time at 500 mA. However, once REM treatment intensity increased from  

0.75 to 1.25 A∙h, extracted lipid decreased down to 3.1±1.2 g-lipid∙g-cells-1. Clearly, the 

REM treated cells allowed greater lipid extraction efficiencies presumably due to the 

oxidative cell damage. But if the treatment intensity get too high, lipid extraction 

efficiencies may decrease presumably due to the lipids themselves were oxidized. Similar 

improvement in lipid extraction was previously reported when other algal pretreatment 

such as pressure-assisted ozonation (PAO), Fenton oxidation, and peroxone treatment 

were applied.121-123 
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Figure 2.16 Result of Heterogeneous lipid extraction (a) and homogeneous lipid 
extraction (b) efficiency by REM treatment under the condition: 500 mA (current 
density≈20 mA∙cm-2), 20 V for 500 ml of algal suspension at the initial concentration of 
1.4 g∙L-1. t-test suggested that there is a significant difference between the extracted 
amounts of lipid from untreated and treated cells. 
 
 
2.3.9 Comparison of energy consumption with other algal harvesting and treatment 
techniques 

 
Algal pretreatment by anodic oxidation of REM is comparable to some of the above-

mentioned techniques such as ultraonication, microwave, or pulsed electric field (PEF) 

charging, which employ oxidative stress or an electrical field to induce membrane 

compression and pore/cavity formation to facilitate lipid extraction.91 Mechanical 

techniques, such as bead mill, high-pressure homogenization (HPH) and high speed 

homogenizer (HSH), consume nearly the same amount of energy to process a unit of 

volume, independent on whether the feed is diluted or concentrated.92, 124-126  Thus, for 

these methods, processing higher DCW concentrations per unit of time is more cost 

effective. Energy consumption not only varies with processes but also design parameters. 

For example, Doucha and Lívanský  reported that the specific energy consumption 

(kWh/kg-disrupted cells) of bead milling can be reduced from 10.3 to 0.86 kWh∙kg-1 by 

changing the process parameters.127 A recent study on the disruption of Tetraselmis 
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suecica through AFM measured an energy consumption of 0.000187 kWh∙kg-1 to break 

up a single cell on analytical scale.128 Several authors compared different methods at low 

DCW concentrations, i.e., ultrasonication, HPH, bead milling and microwave 

treatment.15, 129-130 Generally, HPH has the highest specific energy consumption  

(kWh∙kg-1), followed by microwave treatment and ultrasonication as shown in Table 2.1. 

Ultrasonication has the specific energy consumption ranging from 36.67 kWh∙kg-1 

(inefficient disruption) to 100 kWh/kg (efficient disruption).15, 130 For continuous PEF 

treatment processes, the specific energy consumption almost linearly decreases with the 

biomass treatment rate (kg∙h-1), i.e., biomass disrupted per unit of time.124, 131-132 In other 

words, specific energy demand strongly depends on the concentration of the suspension 

and ranges from 0.42 kWh∙kg-1 for 10% DCW to 239 kWh∙kg-1 for 0.03% DCW.124-125, 131 

A recent literature review suggested that algal biomass pre-processing should not exceed 

a threshold level of energy consumption (5.8 kWh∙kg-1 or 21 kJ∙g-1) in order to be cost 

effective.17 Our current bench scale algal treatment by REM had a relatively high-energy 

consumption of approximately 14 to 28.6 kWh∙kg-1 to achieve improved lipid extraction. 

However, it is worth mentioning that the REM treatment can further be optimized  

(e.g., reducing the electrode spacing from 2.5 cm to 0.5 cm), which may reduce the 

needed cell voltages from 20 V to 4 V while maintaining the same current density. 

Moreover, the applied DC current potentially reduces membrane fouling and thus 

improves algal harvesting efficiency, which is an additional benefit that largely offsets 

the cost and needs further exploration. Overall, REM filtration and pretreatment could 

reduce energy demand for algal harvesting and pretreatment that is relatively easy to 

scale up at industrial applications.  
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Specific energy requirements vary from 33 megajoule (MJ) per kg of dry algae 

cells for hydrodynamic cavitation to 860 MJ per kg of dry algae cells for pulse electric 

field, refer to Table 2.2. The energy available by the combustion of the entire algal 

biomass was estimated to be about 22 MJ per kg of dry cells. Therefore, the existing ell 

disruption methods result in a negative net energy balance. This fact has been already 

demonstrated through an energy return of investment (EROI) analysis performed for 

various algal bioproducts extraction and upgrading pathways resulting in EROIs in the 

ranges of 9.2 × 10-5 to 0.36. 

The energy required for the indentation and disruption of a single algae cell was 

estimated as 17 picojoule (pJ) with an atomic force microscope, which is equivalent to 

670 J per kg of dry algae cell, demonstrating that the existing cell disruption methods are 

highly inefficient in transferring energy to the individual algae cells. In the hydrodynamic 

cavitation, the most “efficient” of the existing methods, only about 0.002% of the energy 

input is used for cell disruption. This clearly shows that any incremental or evolutionary 

improvement in the efficiencies of the existing cell disruption methods will not bring 

about a significant change in the algae biofuels industry. Therefore, an outside-the-box 

and transformative solution is necessary for the development of a sustainable algae 

biofuels industry. 
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Table 2.1 Comparison of Different Algal Cell Treatment Techniques (DCW: 1 %≈10 mg∙ml-1) 
Cell treatment 
techniques 

Preferred algal 
concentration  

Specific energy consumption 
(kWh∙kg-1) under different 
algal concentrations (DCW 
%) 

Overall 
energy 
consumption 

Reference 

Bead Milling Concentrated 10 for 3.5 % High/medium 87, 133 
HPH Diluted/concentrated 0.25‒147 for 15%‒0.85% High/medium 133-134 
HSH Diluted 0.125 for 0.14% High/medium 135-136 
Ultrasonication Diluted 0.06‒37 for 15%‒0.85% Medium/low 137-142 
Microwave Diluted 17‒117 for 0.14%‒0.5% High/medium 143-145 
Enzymatic lysis Diluted N.A. Low  146-147 
Chemical 
treatment 

Diluted/concentrated N.A. Medium/low 23, 90, 130, 148-

150 
PEF Diluted 0.07 for 25% High/medium/l

ow 
151-158 

REM Diluted 11 for 0.18% High/medium This study 
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Table 2.2 Summary of Existing Algae Cells Disruption Methods (adapted from Lee et al. 
2012) 

Methods 
Material and experimental conditions 

(disruption volume, concentration, power 
consumption, disruption duration) 

Calculated 
energy use 
(GJ/m3 cell 
suspension) 

Energy 
use 

MJ/kg 
dry mass 

Scale of use 

Sonication 
Chlorococcum sp. (0.2 L, 8.5g/L, 750 W, 5 

min) 1.125 132 
Laboratory, 
industrial 

High Pressure 
Homogenizer 

Chlorococcum sp. (0.2 L, 8.5g/L, 2.5 kW, 6 
min) 4.5 529 

Laboratory, 
industrial 

High Speed 
Homogenizer 

Saccharomyces cerevisiae (0.8 L, 10g/L, 0.6 
kW, 15 min) 0.675 67.5 

Laboratory, 
industrial 

Bead mills Botryococcus, Chlorella, Scendesmus (0.1 
L, 5g/L, 840 W, 5 min) 

2.52 504 Laboratory, 
industrial 

Microwave Botryococcus, Chlorella, Scendesmus (0.1 
mL, 5g/L, 700 W, 5 min) 

2.1 420 Laboratory, 
industrial 

Freeze Drying 
Mathematical modeling on an industrial 

scale 
1.4 140 

Laboratory, 
industrial 

Pulsed 
Electric Field 

Synechocystis PCC 6803 (5 mL, 0.3 g/L) 0.26 860 
Laboratory, pilot 

scale 

Hydrodynamic 
cavitation 

Saccharomyces cerevisiae (50 L, 10g/L, 5.5 
kW, 50 min) 0.33 33 

Laboratory, pilot 
scale 

 

 

2.4 Conclusion 

This work demonstrated for the first time the use of a novel REM to oxidize algal cells, 

which resulted in an increase in the lipid extraction yield. Particularly, algal cells 

underwent significant disruption in morphology due to surface oxidation, as evidenced by 

microscopic images and FTIR analysis. The REM-treated algae had reduced 

photosynthetic activity and oxygen production rates compared to untreated algal cells. 

Algal lysis was confirmed by the release of AOM that was analyzed by EEM, HPLC, and 

UV-vis spectrometry. Lipid extraction from the compromised algae  
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(23.4 ± 0.7 g-lipid∙g-algae-1) was proved to be higher than that from untreated algae  

(15.2 ± 0.6 g-lipid∙g-algae-1), highlighting the potential to integrate algal harvesting and 

pretreatment together in REM processes. Our batch REM system certainly deserves 

intensive optimization to improve the cost efficiency. The present work employed 

relatively low algal concentrations to facilitate the algal disruption and observation, more 

systematic work is clearly needed to optimize REM operations to deal with greater 

concentrations of algal feed at larger or industrial scales, which would provide important 

insight into the cost effectiveness of this novel technique. The results also offered new 

insights into the design of innovative REM systems for sustainable biomass separation or 

treatment for biofuel production. 

Overall, REM as a novel membrane filtration process holds great potential in 

efficient biomass separation, reduction of membrane fouling, biomass oxidation, ease of 

scaling up at industrial applications. This work particularly demonstrated the use of REM 

to oxidize and break down cells that increased the extraction yield. Although the batch 

results showed a great level of energy consumption to achieve algal destabilization and 

improved lipid extraction, future reactor optimizations clearly can reduce the energy 

demand. Moreover, additional benefits of REM such as reduced membrane fouling 

potential, reduction of organic (toxic) solvent and energy consumption for downstream 

lipid processing, and removal of aqueous algal growth inhibitors that enables water and 

nutrient reuse of algal media may largely offset the associated costs. Ultimately, the 

results also shed new insights into the sustainable design of innovative REM systems for 

broader energy and environmental applications such as biomass separation, water, 

wastewater treatment, pathogen removal, and inactivation. 
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Originality: The reported results are new and original, which are not under 

consideration for publication elsewhere. Reactive electrochemical membrane, Ti4O7, was 

demonstrated for the first time in algal destabilization for lipid extraction. This finding 

lays the groundwork for integrating algal harvesting and pretreatment in one step using 

REM filtration systems, which holds great potential to lower the algal or other biomass 

separation and biofuel cost.  

Scientific Merit: Extraction of biolipid from algae requires the use of chemical 

solvents such as n-hexane, chloroform and methanol or other mechanical treatment to 

break down cell walls, which increases significant costs and negatively affects the 

environmental safety. The presented REM treatment may not only serve as an efficient 

biomass separation (to be studied in the future research) but also be proven effective in 

algal destabilization or pretreatment, which improves the lipid extraction. The 

pretreatment process is completely chemical free and potentially reduces the cost or 

demand of downstream treatment for algal biofuel extraction. Therefore, the presented 

research well aligns with the principles of green chemistry and engineering. 

Environmental importance: In addition to biomass engineering and bio-fuel 

industrialization, rapid and high efficient algal harvesting or removal is clearly critical for 

water or wastewater treatment. Reactive electrochemical membranes (REMs) or 

electrochemical advanced oxidation processes (EAOPs) are next-generation membrane 

technologies holding great promise in revolutionizing water and wastewater treatment. 

REM pretreatment could lower the operating cost and increase the economic viability of 

products (biomass and cleaned water). Furthermore, unlike hollow fiber membranes 

which are generally subject to severe fouling, resulting in flux decline and an increase in 
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transmembrane pressure, REM could oxidize organic foulants via the anodic oxidation 

due to the radical production on anode surface and increase the operation cycles. Our 

ongoing work is currently investigating the algal harvesting efficiency, fouling/defouling 

processes, and removal organics in algal medium with REM, which should further our 

understanding in the design of sustainable reactive membrane systems for complex 

environmental matrix.  

This research is original and transformative because it was the first time that the 

use of REM for disrupting algae cells, making the proposed research innovative, novel, 

and unique. The findings from the research are expected to provide fundamental 

knowledge on the kinetics and mechanism of actions, optimal dose and contact time, 

influence of operational parameters on the process (e.g., pH, temperature and algal cell 

concentration), among others. The findings will also advance scientific knowledge and 

build a knowledge base on the use of electrochemistry for algae cells disruption. These in 

turn would move the algae biofuels industry forward by reducing the costs associated 

with the disruption and separation of algae bioproducts used as feedstock for biofuels 

production. Currently, there are 100 plus companies involved in the algae biofuel’s arena 

worldwide, with 36 plus of them based in the U.S. Thus, algae biofuels companies based 

in the U.S. and elsewhere in the world are expected to adopt the findings from this 

research. The adoption of the process would help the U.S. meet its biofuel goals, which 

calls for the production of 136 billion liters of biofuels annually by 2022. 
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CHAPTER 3 

 
ASSESSMENT OF ELECTROCHEMICAL CERAMIC MEMBRANE FOULING 

MITIGATION IN ALGAL BIOMASS HARVESTING 
 

 

3.1 Introduction 

Microalgae are one of the typical water contaminants that affect water quality and 

drinking water security. Meanwhile, microalgal biomass is deemed as a third-generation 

feedstock for biofuel production. Harmful algal bloom (HABs) threats freshwater 

resource and human health in the past decades. Numerous toxic metabolites that 

produced by HABs heavily accelerates the severity of the public human health issues 

(e.g., global water shortage).159 On the other hand, microalgae have been realized as a 

good resource of the third-generation biofuel feedstock due to its high lipid content and 

efficient biomass production. According to some researches, microalgae produce more 

than 20 times oil per hectare than the former biofuel feedstock.160-161 Therefore, efficient 

microalgal harvesting technology is not only critical for freshwater reservation, but also 

important to biofuel production in the future. However, the prohibitive cost of harvesting 

process is the major obstacle to the commercialization of biofuel production using 

microalgae. It has been reported that the process of microalgae harvesting typically 

accounts 20-30% of the total cost microalgal biofuel production.162 Among current 

biomass harvesting methods (e.g., sedimentation, centrifugation, filtration), membrane 

filtration is believed to be one of the most efficient processes for microalgal separations 

due to its advantages in complete retention of biomass, simplicity in operation and less 

consumption in energy.163-165 In addition, the absence of chemicals allows the integration 
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of membrane technology into the biorefinery of microalgae which does not complicate 

product extraction from the biomass and culture media.166 It is more suitable for fragile 

cells and small-scale production processes. Therefore, membrane filtration reveals a 

promising technology for microalgal harvesting. Figure 3.1 shows the hierarchy 

characterization of different membrane filtration technologies.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Filtration pore size, the transmembrane pressure requirement and the particle 
in permeate.  
 

Notwithstanding traditional membrane filtration has been discovered to have 

some advantages for microalgal harvesting, there are still many unsolved problems that 

impede its industrial applications. One of the problems that cause considerable energy 

consumption and system downtime is membrane fouling and associated membrane 

(69-207 kPa) 

(103-241 kPa) 

(551-1034 kPa) 
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(1034-2068 kPa) 
(3447-6205 kPa) 
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cleaning and maintenance. Membrane fouling is a process whereby a solution or a 

particle is deposited on a membrane surface or in membrane pores in a process.167 

Throughout the filtration harvesting process, microalgae and some other particles  

(e.g., microalgal metabolites, colloids, dissolved organic matters) tend to deposit and 

condense by gradually thickening on the filtration membrane surface, causing the 

decrement of permeation flux and constant drop of pressure.165, 168 This phenomenon 

induces the main drawback associated to the improvement of the filtration efficiency, 

thereby hampers the development and commercialization of this technology. Traditional 

membrane filtration development has encountered unprecedented challenges in 

nowadays. Different membrane technologies and their applications and molecular cutoff 

ranges are shown in Figure 3.1. Thus, developing an innovative method that can 

efficiently address the fouling problems is an imperative task in present membrane 

filtration technology.  

Reactive electrochemical membranes (REMs) based on electrochemical advanced 

oxidation processes (EAOPs) are a cutting-edge class of membranes that holding great 

promise in revolutionizing water and wastewater treatment and bioseparation.78-79 

Combining membrane filtration with electrochemical oxidation may effectively reduce 

filter fouling, extending membrane life, and enabling continuous operation. REMs are 

often made as porous, conductive, and chemically and mechanically stable. REM acts as 

both filters and electrodes.78, 80 Past research with REMs has focused more on dissolved 

compound oxidation, but their ability to provide efficient biomass separations is limited. 

Therefore, there is a pressing need to apply REM to biomass separation and to evaluate 

its technical feasibility and cost effectiveness, compared to traditional membranes or 

62 



other biomass harvesting methods. Application of potential bias transfers the electro-

generated electrons from the conduction band of the REM anode to the external circuit 

and then to the cathode. There are two possible mechanisms for microalgae 

destabilization through REM, namely, (1) direct anodic oxidation, where microalgae cells 

are oxidized after adsorption on the REM surface, which served as anode, without 

involvement of any substances other than the electron or (2) indirect electrolysis, in 

which organic pollutant oxidation is mediated by REM-generated species.169-170 For the 

second mechanism, radicals such as hydroxyl radicals (•OH) could be formed via water 

oxidation at an anode surface when the electric potential is supplied.81-82 During this 

indirect oxidation, the agents produced on the anode, which are responsible for oxidation 

of inorganic and organic matters, may be chlorine and hypochlorite, hydrogen peroxide, 

and ozone.171 Moreover, during electrolysis, two species of active oxygen can be 

electrochemically produced on oxide anodes (MOx). One is the chemisorbed “active 

oxygen” (oxygen in the oxide lattice, MOx+ 1), while the other is the physisorbed “active 

oxygen” (adsorbed hydroxyl radicals, •OH).172-173 Microalgae cells are, to a large extent, 

destroyed through indirect oxidation by oxidants (such as hypochlorite) generated from 

the anodic oxidation of chloride, which is abundant in the cultivating medium.174-175 Thus, 

the antifouling potential of REM is promising, as organic foulants could undergo 

electrochemical adsorption and rapid oxidation by •OH.176-177 Past research with REMs 

has focused largely on dissolved compound oxidation, but their anti-fouling ability in 

harvesting and inactivating microorganisms such as bacteria and algae is unexplored.  

In this study, a reactive electrochemical ceramic membrane, in which stainless 

steel mesh/rod acted as cathode and Ti4O7 as anode/filter was developed for efficient 
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algal separation while maintaining high flux during filtration and excellent stability under 

anodic and cathodic polarization. Ti4O7 ceramic membrane was synchronized from TiO2, 

which becomes an n-type semiconductor with donor impurities (i.e., electrons) after heat 

treatment in a reducing atmosphere due to the thermodynamically favored formation of 

under-coordinated Ti3+ species associated with oxygen vacancies and titanium 

interstitials.178-182 These changes lead to the formation of mediator trap states or ionized 

surface states, shifting the EF to more positive potentials. When thermally reduced in the 

presence of hydrogen, additional trap states are produced as a result of H dissociation into 

a proton bound to a lattice oxygen, creating Ti3+-OH species.183-184 The prepared 

conductive Ti4O7 REM can be directly used as not only a cathode but a separation 

membrane. Our device were expected to show no loss of efficacy, surface deactivation or 

corrosion after the treatment of over a 1000 L of water, which are all issues that have 

been reported for the Magnéli phases after prolonged anodic polarization.180 To 

substantiate this research, we designed, fabricated, and tested both dead-end and cross-

flow filtration systems to evaluate the separation efficiencies of algal biomass in algal 

medium suspension together with fabricated REM. Key questions addressed in the 

present work include (1) characterization of Ti4O7 REM such as inherent membrane 

resistance and porosity; (2) critical flux, filtration efficiency, fouling kinetics and 

backwash efficiency of different membrane configurations; 

(3) model development, fitting and simulation of different membrane filtration processes. 
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3.2 Method and Materials 

3.2.1 Cultivation of algae 

Details of cultivation and characterization are provided in Chapter 2 section 2.1. Briefly, 

the algal suspension was cultivated for 11 days at 20 °C. The algal concentration in the 

feed suspension was adjusted to 0.05 g∙L-1 with algae medium. 

3.2.2 Synthesis and preparation of Ti4O7 filter 

Ceramic TiO2 tubes (Vector Corrosion Technologies, Inc.) were firstly soaked into 

0.625M sodium hydroxide solution for 24 hours to remove the most organic compounds, 

and then rinsed with DI water. The cleaned electrodes were placed into a tube furnace 

(MTI OTF-1200X), which was then placed in a hood for safety. As shown in Figure 3.2, 

the furnace was purged with highly pure N2 (Airgas, 99.99%) for  

30 minutes to completely remove oxygen. The N2 was slowly reduced by swirling the 

valve until it was shut down. At last, the N2 gas was by H2 gas (Airgas, 99.99%) by 

turning on the H2 outlet valve. The furnace was heated to 200 °C for 1 hour in order to 

desorb water from membrane and the system, and then maintained the temperature at 

1050 °C for 10 hours. Then the system was shut down and cooled for at least 1 hour. 

After the temperature of the membrane recovered to room temperature, H2 flow was then 

closed. The TiO2 in the tubular membrane was considered to be transformed to Ti4O7 or 

REM, which was verified by XRD in our previous study.176 
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Figure 3.2 (a) Schematic of furnace system for REM thermal treatment synthesis.  
Not drawn to scale. (b) Actual setup of furnace system for REM thermal treatment 
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3.2.3 Characterization  

3.2.3.1 Electrical resistivity of REM. The total electrical resistance (R) was 

measured by Multi-meter (EXTECH INSTRUMENTS, MN26T) before and after the 

thermal treatment. Electrical resistivity of REM was calculated by the Pouillet's law: 

lR
A

ρ=  

where R is the electrical resistance (Ω), ρ is the electrical resistivity (Ω∙cm), l is REM 

length (cm) and A is the area of REM cross section (cm2). 

 

3.2.3.2 Voltage distribution of REM anode. Details of voltage distribution of 

REM anode are provided in Chapter 4. 

 

3.2.3.3 Zeta potential of algal cells. Algal size distribution and zeta potential of algae in 

culture medium was measured by the dynamic light scattering (DLS) technique 

performed with a Malvern Instruments Zetasizer Nano ZS at 25 °C using the folded 

capillary cell (DTS1060, Malvern Instruments).185-186 The same Zetasizer Nano ZS 

instrument was also used to measure electrophoretic mobility which can be converted to ζ 

potential using the Smoluchowski’s approximation.   

 

3.2.3.4 Surface zeta potential of REMs. Surface zeta potential of our samples was 

investigated by a surface zeta potential cell equipped on the Malvern DLS. The surface 

zeta potential cell is an accessory for the Zetasizer Nano instrument. The samples are 

attached by double coated adhesive tapes (Tedpella) to the cell (See Figure 3.3). The cell 

was placed in a cuvette filled with the dispersant (i.e., 0.001 mol·L-1 NaCl solution within 
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the pH range 4–11) and tracer particles (300 nm carboxylated latex tracer). The cuvette 

and cell are then placed in the temperature controlled Zetasizer instrument at a 

temperature of 25 °C. An electric field is applied and the subsequent motion of tracer 

particles, of arbitrary material dispersed within the electrolyte, is detected. By measuring 

the electrophoretic mobility of the particles at varying distances from the planar surface, 

the magnitude of the particle electrophoresis and the electro-osmosis generated by the 

wall zeta potential can be used to calculate the zeta potential at the wall surface using the 

Henry’s equation.187 Henry’s equation: 

2 ( )
3E
f KaU ε
η

=  

where UE is the electrophoretic mobility, ε is the dielectric constant, z is the zeta 

potential, f(Ka) is Henry’s function, and η is the viscosity. Henry’s function generally has 

value of either 1.5 or 1.0. For measuring zeta potential in aqueous solutions of moderate 

electrolyte concentration, a value of 1.5 is used and this is referred to as the 

Smoluchowski approximation.188 
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Figure 3.3 Zetasizer Nano accessory for surface zeta potential. The samples are attached 
by double coated adhesive tapes (Tedpella) to the cell. 
 
 
3.2.3.5 SEM/ XRD. The REM surface was imaged by scanning electron microscopy 

(SEM) previously by Dr. Brian P. Chaplin with Hitachi S-4800 cold field emission 

SEM.177, 189 XRD analysis was reported by Yin Jing, Lun Guo and Brian P. Chaplin with 

Siemens D5000 X-ray diffractometer.190  

 

3.2.3.6 Porosity and mean pore size. The overall porosity (Pr) was determined by 

a gravimetric method. Briefly, the REM membranes were immersed in water and fully 

soaked (or ran filtration to allow water to flow through all pores and channels. Then wet 

membrane weight (mw) was measured and the difference from the dry membrane (md) 

(a) 
 

(b) 
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was determine. This difference represents the weight of pure water in the REM pores, 

which can be used to calculate the overall porosity as defined in the following 

equation:191 

w d
r

m mP
SLρ
−

=      (3.1) 

where mw is the weight of the wet membrane; md is the weight of the dry membrane; S is 

the membrane effective area (m2), ρ is the water density (0.998 g∙cm-3), and L is the 

membrane thickness (m).  

In addition, to determine the membrane mean pore radius (rm), the Guerout–

Elford–Ferry equation in Equation 3.2 on the basis of the pure water flux and porosity 

data was utilized:192-193: 

r

r

(2.9 1.75P ) 8
Pm

LQr
S P

η− ×
=

× ×∆
    (3.2) 

where η is the water viscosity (8.9×10-4 Pas), Q is the volume of permeate water per unit 

time (m3∙s-1), and ΔP is the operation pressure. 

3.2.3.7 Electrochemical impedance spectrometry (EIS) 

To analyze electron transfer-initiated chemical reactions, cyclic voltammetry (CV) were 

carried out on a CHI 660 electrochemical workstation (CH Instrument, USA).194 A 

traditional three-electrode system was employed, including a 3-mm platinum wire as the 

counter electrode, an Ag/AgCl electrode as the reference electrode, and an REM filter as 

the working electrode. All the measured electrochemical potentials were referenced to the 

Ag/AgCl electrode potential, which is assumed to be zero. The electrolyte solution was 

10 mM K3Fe(CN)6
3- (a redox mediator) in 0.5 M KCl as a supporting electrolyte.195 The 

REM filter was cut to 5 cm in length to fit into the container, and was immersed in the 
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supporting electrolyte as shown in Figure 3.4. The CV curves were obtained by sweeping 

voltages from -1.5 to 1.5 V versus Ag/AgCl at a scan rate of 0.5 V·s-1. Based on the 

acquired CV data, the electroactive surface area of the Ti4O7 REM can be estimated from 

the calculation of the double layer capacitance (Cdl):190 (Ia - Ic)/2 = Cdl· v, where Ia and Ic 

are the measured anodic and the cathodic plateau currents at a given potential, 

respectively, and v is the scan rate (V·s-1). The electroactive surface area was determined 

by dividing the measured capacitance by 60 μF·cm-2, a standard value for metal oxides.190 

 

 

 

 

 

 

 

 

Figure 3.4 Placement of three electrode system in EC station. 
 

EIS is a non-invasive and non-destructive characterization technique for 

membrane fouling.190 Due to the foulant adsorption onto the REM surface, the interfacial 

polarization processes on REM will be affected. To reveal surface fouling on the REM 

surface and analyze the electrical resistance changes on fouled REM,190 EIS 

measurements were made at the OCP in an electrolyte solution containing 10 mM 

K3Fe(CN)6, where the clean and fouled REM membranes were immersed, with an 

amplitude of 5 mV in the sinusoid perturbation and over a frequency range of 1 MHz 
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to10 mHz. EIS is a non-invasive and non-destructive characterization technique for 

membrane fouling.190 Due to the foulant adsorption onto the REM surface, the interfacial 

polarization processes on REM were affected. To obtain the fouled REM, the membrane 

was installed into a dead-end filtration system and submerged into 0.05 g·L-1 algae 

suspension for filtration until 90% flux was lost. The configuration of dead-end filtration 

was described in Section 3.2.4.2). The initially applied voltage was the peak voltage 

achieved from the CV measurements. The fouled REM was obtained by filtering algal 

suspension through the REM filter, through which the algal cells and extracellular 

organic matters deposited on the REM surface and thus, induced surface fouling. To 

avoid the potential interfrence from the adsorption of the redox active species onto the 

REM surface on the impedance measurements by changing the interfacial polarization 

processes, the EIS measurements were conducted over a short time-scale (i.e., ~15 min) 

and the REM was thoroughly rinsed afterwards to minimize adsorption of the redox 

active species. A previosu study conducted by Yin Jing, et al. has indicated that these 

redox active species were not found to significantly react with REM during this EIS 

measurement.190  

3.2.4 Dead-end filtration  

3.2.4.1 Determination of intrinsic resistance (Rm) 

The dead-end filtration unit has a cell volume of 1 L,189  in which there is an Ebonex 

REM as anode and a 57 mm diameter stainless steel cylinder case as cathode.18, 19 The 

REM filter was sealed up on one end by acrylonitrile butadiene styrene (ABS) plastic and 

reinforced by Epoxy as shown in Figure 3.5f. The other end was also filled with the same 

ABS plastic and Epoxy but one stainless steel tube or copper tube (1.1 mm in diameter) 
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were punched through the gel to permit permeate flow and electric conductivity. The 

Sealing process was shown in Figure 3.5. The REM as anode is at the center of stainless-

steel cathode, with approximately 23 mm spacing and their concentric placement creates 

an isopotential surface on the outer surface of the REM. As shown in Figure 3.6, the 

solution was vacuum sucked through the surface of the REM at a constant 

transmembrane pressure (75 kPa) using an adjustable check valve and a vacuum pressure 

gauge, which forced flow through the REM pores. The constant transmembrane pressure 

was obtained by imposing a constant vacuum pressure as indicated in Figure 3.6. Flux 

measurements were made volumetrically by collecting the permeate weight data per 

minute using WinWedge software and an Ohaus Adventurer Pro Balance AV8101 

(Ohaus, USA). (See Figure 3.7b) The clean water flux jw (kg∙m-2∙h-1) is calculated using 

the following equation: 

w
VJ
At

=        (3.3) 

where V is the volume of permeated water, A (m2) is the membrane area, and t (h) is the 

permeation time.    

DI water was pumped through both the pristine TiO2 and Ti4O7 filters under the 

same TMP levels to compare the flux permeability and porosity differences. Inherent 

membrane resistance was calculated with TMP and permeate flow rate using Equation 

3.13.  
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Figure 3.5 Dead-end REM filter sealing process. (a) ABS plastic plate frames were 
collected from used model parts. (b)  ABS plastic plate frames were cut into small pieces 
so they would be easier to contain. (c)  ABS plastic pieces were put into an evaporating 
dish and an ethanol light is used to heat and liquefy them. (d)  With ethanol light, the 
ABS plastic pieces were starting to melt. (e)  Sample tube caps were use as the bottom of 
the sealing for reinforce. (f)  Liquid ABS plastic is poured on both end of REM, and 
Epoxy is covered after the ABS plastic became solid. 
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Figure 3.6 (a) Schematics of the REM filtration under a DC application; (b) dead-end 
filtration setup used in this research. 
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Figure 3.7 (a) Schematic and (b) picture of experiment setup for dead-end filtration in 
this chapter. 
 
3.2.4.2 Filtration of algal suspension for fouling kinetics study under dead-end 
filtration. 

  
The fouling kinetics test was performed at a TMP of 75 kPa with the same equipment the 

used in clean water test as shown in Figure 3.7a. The only difference is that the clean 
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suspension. Briefly, the REM was first chemically rinsed by 200 mg∙L-1 NaClO.  The DI 
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immediately collected and measured using WinWedge software and an Ohaus 

Adventurer Pro Balance AV8101 (Ohaus, USA). Three different DC current densities  

(0, 1.25 and -1.25 mA∙cm-2) were applied. The fouling kinetics data was further 

interpreted by the flux model as described in Section 3.2.6.  

 

3.2.4.3 Comparison of backwash efficiency with hydraulic rinsing, chemical rinsing 
and DC current applications for dead-end filtration 

 
The fouled REM was obtained from the above fouling experiments and was subjected to 

the following three backwash treatment to compare the flux recovery and defouling 

efficiency. Backwash efficiency (r) was calculated using Equation 3.13 and compared 

with each other.  

 (1) Hydraulic backwash.  

When the flux is close to zero, the clean water backwash was conducted at a backpressure 

of 137.90 kPa with a booster pump (aquatic® CDP8800).189 The backwash flushing was 

conducted for 60 min, 120 min and 240 min to effectively remove reversible and some 

irreversible foulant. Clean water flux tests were conduct under a TMP of  

70 kPa, 75 kPa, and 80 kPa to compare the recovery of flux permeability.  

(2) Chemical backwash 

While all other parameters remained the same, the backwash flushing was conducted 

using 200 mg∙L-1 NaClO as commonly used for membrane disinfection and biofouling 

control.196-198 After washing, REM was backwashed with DI water until pH in the wash 

water returned to neutral.  
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(3) Hydraulic backwash under DC currents (or electrochemical backwash) 

Electrochemical backwash was implemented using clean water to backwash fouled 

membranes under the application of DC current at a constant current density  

(25.3 mA∙cm–2) corresponding to a cell voltage of 18-22 V. The backwash flow was 

maintained at a backpressure of 137.90 kPa for 30-90 min.  

 

3.2.5 Cross-flow filtration  

The cross-flow filtration unit was prepared following the design published  

previously.29, 34 As illustrated in Figure 3.8, the membrane module consists of an Ebonex 

REM as anode and a 1.1-mm diameter 316 stainless steel rod as cathode. The REM 

anode is a hollow cylinder in shape with outer and inner diameters of 1 cm and 0.5 cm, 

the length is 20 cm and the volume in the filter was 3.925 ml, respectively. The cathode 

crosses through the center of the REM anode with approximately 4 mm spacing between 

the cathode and the inner surface of the anode. The resulting hollow space within the 

REM filter has a volume of 300 ml.189 With this concentric placement, an isopotential 

surface can be created on the outer surface of the REM when DC is applied. A bench 

analog drive gear pump (75211-70 Cole Parmer, USA) was used for injecting the feed 

influent. The flow meter #1 reads the influent flow rate; Flow meter #2 reads the retentate 

flow rate; and Flow meter #3 reads the permeate flow rate.  An adjustable check valve on 

flow meter #1was used to control and modulate the flow rate of the permeate flux. Two 

pressure gauges was installed before and after the crossflow filtration unit to monitor the 

pressure of the inflow and cross-flow, respectively. Cross-flow velocity and 
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transmembrane pressure (TMP) are two major parameters affecting cross-flow 

microfiltration process. Cross-flow velocity was calculated by: 

3 -1
-1

2

Flow rate of the influent (m s )Cross flow velocity (m s )
Flow channel cross sectional area (m )

⋅
⋅ =  

where the flow channel cross sectional area was 1.96×10-5cm in this study. TMP was 

calculated by:199  

2
in cr

out
P PTMP P+

= −      (3.4) 

where Pin denotes the influent pressure, Pcr denotes the crossflow pressure and Pout 

denotes the permeate flow pressure. Pout is equal to 0 in this case due to the permeate flux 

was in connection to air. 
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Figure 3.8.  (a) Schematics of the cross-flow filtration unit and (b) Real setup of the 
cross-flow filtration apparatus. 
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resistance (Rm) of Ti4O7 REM, DI water was pumped through the REM anode at five 

different permeate flux ranging from 5 ml·min-1 to 25 ml·min-1. In our current cross-flow 
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that all DI water must permeate through REM (in a dead-end mode). The step height and 

duration were set to be 2.07×10-5·m3·m-2·s-1 (5 L∙m-2∙min-1) and 15 min, respectively. The 

pressures of inflow (Pin) and crossflow (Pout) were directly recorded from the pressure 

gauges and recorded once every minute. TMP was calculated with the corresponding 

observed Pin and Pout by using Equation 3.4 and Rm was then calculated using Equation 

3.13.  

3.2.5.2 Critical flux determination. Critical flux is the permeate flux above which the 

membrane fouling rate becomes aggravated and thereby a sharp decline of permeate flux 

or increase of TMP may be immediately observed.200 Operation under critical flux 

enables a longer filtration time due to a lower potential of membrane fouling. In addition, 

critical flux can also be employed to compare the fouling propensities between different 

membranes or operation conditions.200 

Critical flux was obtained from flux-TMP measurements by flux or pressure 

stepping.201 In this study, critical flux was determined by varying the permeate flux using 

an improved flux-step method (IFM).202 The step height and duration were set to be 

2.07×10-5·m3·m-2·s-1 (5 L∙m-2∙min-1) and 15 min, respectively. The initial cell density of 

the algal suspension was 0.05 g∙L-1. A magnetic stirrer was used to mix the algal 

suspension to avoid significant sedimentation and maintain good distribution or 

dispersion of algal cells in the feed tank. The permeate was continuously returned to the 

feed tank to keep the algal suspension at a constant concentration. The pressures of 

inflow (Pin) and crossflow (Pout) were observed and recorded once every minute. The 

filtration process lasted for at least 1 h until the pressures shown on the gauges #1 and #2 

increased significantly. When the increase in the TMP (ΔP/Δt) is 20 Pa∙min-1 or higher, it 
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is commonly regarded as the occurrence of a pronounced membrane fouling. Accordingly, 

the permeate flux at the onset of the TMP increase corresponds to the critical flux.203  

Different DC densities were also applied on the REM to compare the possible 

changes of critical fluxes. Both positive and negative currents were separately applied to 

the REM to gain anodic or cathodic polarization at 1.25, 2.5 and 5 mA∙cm-2 using a 

programmable direct current (DC) power supply (Proteck P6035). These DC current 

densities were chosen based on commonly reported levels in literature, which are 

anticipated to produce sufficient electrode potentials and radicals on REM, while not 

significantly cause undesirable side reactions such as water splitting. 

3.2.5.3 Fouling kinetics of cross-flow filtration with algal suspension under different 
DC currents 
 
Fouling kinetics was assessed under different levels of DC currents applied on the REM 

under a fixed TMP of 10 psi (68.94 kPa) to examine the impact of EAOP on fouling 

kinetics and fouling mitigation.  Three different DC densities (0.625, 1.25 and  

2.5 mA∙cm-2) were applied. Permeate flux under different DC current applications were 

measured respectively. The fouling kinetics data was further employed in the flux model 

as described in Section 3.2.6 to analyze the fouling mechanisms.   

3.2.5.4 Comparison of backwash efficiency with hydraulic, chemical and 
electrochemical backwash for fouled membranes after cross-flow filtration 

 
Similar to dead-end filtration, three backwash treatment was used to compare the flux 

recovery and defouling efficiency.177 Clean water flux tests were conducted under TMP 

from 5 to 25 psi (34.47 to 172.37 kPa) to compare the recovery of flux permeability.  
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(1) Hydraulic backwash.  

When the permeate flux is close to zero, the hydraulic backwash was conducted by 

sucking DI water at a vacuum pressure of 80 kPa from the outside chamber of the 

membrane module into or across the REM surface as illustrated in Figure 3.8a.  The 

backwash flushing was conducted for 60 min, 120 min and 240 min to allow the filtered 

DI water to cross the membrane from outside to inside and effectively rinse off the 

attached algal biomass or other foulants on the inner surface of the REM.  

(2) Chemical backwash 

In chemical backwash, while all other parameters remained the same, the DI water 

solution was replaced by a chemical reagent solution (200 mg∙L-1 H2O2 as used in 

membrane disinfection and biofouling control196-198). After washing, REM was 

backwashed with DI water until pH in the wash water returned to neutral.  

(3) Electrochemical backwash 

Electrochemical backwash was implemented using clean water to backwash fouled 

membranes under the application of DC current at a constant current density  

(2.5 mA∙cm–2) corresponding to a cell voltage of 3-3.3 V. The backwash flow was 

maintained at a backpressure of 20 psi for 15-30 min.  

3.2.5.5 Evaluation of biomass concentration performance. Volumetric reduction 

factor (VRF) and concentration factor (CF) are commonly used to assess algal harvesting 

efficiency in membrane filtration processes:204-206  

0

f

VVRF
V

=       (3.5) 

0

fC
CF

C
=

      
(3.6) 
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where V0 and C0 are, the initial volume (L) and initial algal concentration (dry weight, 

g∙L-1), respectively; Vf and Cf are final volume (L) and concentration (g∙L-1) of the 

concentrated algal suspension, respectively.   

To evaluate the harvesting efficiency per unit membrane surface, the recovery rate 

(Rec), the productivity of the physical cleaning (ηm, g∙m-2∙min-1) and the retentate in the 

membrane tank (ηt, g∙m-2∙min-1) were calculated using the following equations: 

f f
ec

0 0

C VR = 100%
C V

×      (3.7) 

f f
m

C V=
A t

η
⋅

       (3.8) 

t 0 t
t

C C V
A t
−

η =
⋅

（ ）
                                  (3.9) 

where Vt and Ct were the volume of the algae culture (m3) and algae density (g∙m-3) of 

the membrane tank at the membrane filtration time; A is the membrane filtration area 

(0.004 m2 for the cross-flow membrane) and t is the filtration time (min).  

Moreover, the algal distributions on the membrane (Wm) and in the membrane 

tank (Wt) were also calculated as: 

f f
m

t 0 t f f

C VW
(C C )V C V

=
− +

    (3.10) 

t 0 t
t

t 0 t f f

(C C )VW
(C C )V C V

−
=

− +
    (3.11) 

In addition, I propose a new indicator of recovery efficiency that is named as 

specific biomass recovery efficiency (SBRE). In this definition, we evaluate the biomass 

harvesting or recovering efficiency by considering the total energy consumption for 

harvesting certain amount of biomass.  
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1

0 0

C V
C V

f fSBRE W − 
=  
 

      (3.12) 

where W is the total energy applied to concentrate algae (J) in the suspension, and 

W=Q∙t∙TMP (Q: flow rate, m3∙s; t: filtration time, s; and TMP is the transmembrane 

pressure, Pa).  

Finally, we also computed the uptime, which is equal to (Volume of treated 

wastewater)/(Volume of available wastewater or the stock algal suspension) × 100% (Not 

including chemical cleaning). In industrial membrane operations, system uptime is often 

used as an indicator of membrane operation stability and residual waste to manage.  

3.2.6 Membrane fouling kinetics modeling using resistance-in-series model 

The resistance-in-series model was used to calculate the permeate flow rate according to 

the Darcy’s law:207-208 

( )m r ir

A PQ
R R Rµ

∆
=

+ +
      (3.13)  

All parameters are explained in Table 3.1. Particularly, Rm is the inherent 

membrane resistance that was determined with filtration of DI water as mentioned above 

in section 3.2.4.1 and 3.2.5.1. The calculation of irreversible membrane resistance (Rir) is 

shown in Equation 3.15 and reversible membrane resistance (Rr) is described in 

Equation 3.16.204     

3.2.6.1 Calculation of backwash efficiency (r) and irreversible fouling resistance (Rir) 

Backwash efficiency is calculated using the following equation: 

1

n

n

Qr
Q −

=       (3.14) 
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where r is backwash efficiency, and Qn−1 and Qn are the flow rates after the n − 1 and n 

backwashes. 

The flow rates after the n − 1 and n backwashes can be calculated by: 

     ( 1)
1 1

irn m ir n
rR R R

r r −

−
= +       (3.15) 

where Rir(n−1) and Rirn are the irreversible fouling resistances after the n − 1 

and n backwashes. At the beginning of the filtration, Rir0 = 0, and r can be determined via 

the backwash experiment. Thus, Equation 3.15 can be used to calculate the irreversible 

fouling resistance.204 

3.2.6.2 Calculation of reversible fouling resistance. The cake layer is usually an 

immobile layer of retained particles packed on the membrane surface. Neglect the 

polarization effect, reversible fouling resistance Rr could be equal to the resistance of the 

cake layer Rc, is given as: 

   c c cR k δ= ⋅        (3.16) 

The specific resistance per unit of cake thickness (kc) and cake layer thickness (δc) 

were calculated by Equation 3.17 and Equation 3.18 with experimental data of t and Vt 

under different conditions.209 

        22
c b m

t
t

k C Rt V
V A P A P

µ µ
= +

∆ ∆
     (3.17) 

For dead-end filtration, δc can be calculated from Equation 3.13 to 3.18 (See the 

logic chart in Figure 3.9a).210 

2 2 b
m m c

w
c

c

CPR R k t
C

k
µ

δ

∆
− + +

=     (3.18) 
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For cross-flow filtration, Equation 3.19 and Equation 3.20 were used to describe 

the cake growth kinetics instead of Equation 3.18.  

ln 1
( )

s c c c

s c cr s m ir cr

P J k t
J k k P J R R k

µ δ δ
µ µ

 ∆
− − − = ∆ − + 

       (3.19) 

0
0

s b
cr

s w

J Ck J
J J C

= ⋅ ⋅
−

     (3.20) 

where Js is the flux at steady state and J0 is the initial flux, both could be obtained by 

filtration experiment. 

3.2.6.3 Calculation of flux at steady state using the force balance model. In the 

cross-flow membrane filtration process, negative direction forces such as permeation 

drag (Fd) move algae toward the membrane surface, while positive forces such as 

Brownian diffusion (FB), shear-induced diffusion (Fs), and lateral inertial lift (Fl) shift 

algae away from the membrane surface. The net force exerted on an algal particle, F, is 

the sum of all forces listed above. At a steady state, the flux (Js) can be calculated using 

the following equation:211-212 

s B S IJ V V V= + +       (3.21) 

                          
2/3 1/3

1/3

0.807 ln wB
B

b

CD
L C

γν
 

=  
 

      (3.22) 

              
2/3 1/3

1/3

0.807 lnS w
s

b

D C
L C

γν
 

=  
 

      (3.23) 

3 2

20.577 P m
I

d U
I

ν
ν

=        (3.24) 

The wall shear rate (γ) can be calculated from the following formulas:212 

8 mU
I

γ =        (3.25) 
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Some related studies misused wall shear stress (τw, Pa) with wall shear rate (γ, s-1) 

and in Equations 3.22 and 3.23, which may lead to calculation error or misunderstanding. 

The wall shear stress (τw) is in fact calculated by: 

8 m
w

U
I

τ µ=       (3.26) 

3.2.6.4 Simulation of membrane fouling kinetics in dead-end mode using Matlab 

Figure 3.9a shows the algorism schematics using above mentioned equations for dead-

end membrane filtration. Briefly, ExpQ, were firstly calculated the linear interpolation 

method from experimental data (t and Vt). ExpQ was then used to calculate a set of Cw 

with the input value of μ, Rm, A, Rir, Cb and ΔP, with Equation 3.13 and 3.18. Rir was 

obtained from backwash experiment (descried in Section3.2.4.3). Then, Cw was used to 

calculate a set of Q with Equation 3.13 and 3.18. R2 method was used to compare Q and 

ExpQ. The Q with the R2 was output as the simulated flow rate with the corresponding 

Cw. The simulation code is provided in Appendix 3.5.1. This model was not only used for 

the fitting of experimental data, but also used to predict the flow rate without 

experimental data and evaluate the dependence of the flow rate on factors such as volume 

concentration of algal cells at the membrane surface (Cw), inherent membrane resistance 

(Rm), specific resistance per unit of cake thickness (kc) and bulk concentration (Cb). 

3.2.6.5 Simulation of membrane fouling kinetics in cross-flow mode using Matlab 

Figure 3.9b presents the calculation processes using above mentioned equations for cross-

flow membrane filtration. Briefly, Q, J0 and Js were firstly calculated the linear 

interpolation method from experimental data (t and Vt). Q was then used to calculate a set 

of Rc (or Rr) with the input value of μ, Rm, A and ΔP. Rir was ignored for cross-flow 

filtration experiments as only one filtration cycle was operated after which chemical 
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backwash was used to remove all membrane foulants. Thus, the irreversible membrane 

foulants or resistance was minimized before the start of new filtration tests. Then, with 

Equations 3.16 and 3.17, we can determine the specific resistance per unit of cake 

thickness (kc) and the time-dependent cake layer thickness (δc). Finally, Cw was 

calculated using Equations 3.19 and 3.20 with the input of kc, δc and other parameters that 

already known or determined. The full Matlab code is provided in the appendix 1.1.  
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Figure 3.9 Logic chart of Matlab algorithm. (a) Dead-end filtration; (b) cross flow 
filtration. 
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Table 3.1 Parameter Nomenclature 
Parameters Physical meanings and values 
* Q Permeate flow rate (m3∙s-1), which is determined by Equation 3.13 
 

ΔP 

Transmembrane pressure (Pa), which is the trans-membrane pressure   (TMP) 
defined as:213 feed permeateTMP P P P= ∆ = −   
ΔP remained constant in our filtration experiments and was determined by pressure 
gauges 1 and 2 as labeled in Figure 3.6. 

 μ Dynamic viscosity (Pa∙s)(for water, 8.90 × 10−4 Pa∙s at 25 °C).  
 Rm Inherent membrane resistance (m−1), which is constant (to be determined by 

filtration experiment using pure water.  
* Rr or Rc 

Reversible fouling resistance or resistance of the cake layer (m−1) , determined by 
Equation 3.16 

* Rir  Backwash irreversible resistance (m−1) , determined by Equation 3.15 
 A Membrane filtration area (m2), known parameter, approximately 0.004 m2 for cross 

flow REM filter 
 r Backwash efficiency, determined by Equation 3.14 via experiment  
* kc 

Specific resistance per unit of cake thickness (m−2); To be determined by Equation 
3.18 

* δc Cake thickness (m); To be determined by Equation 3.19 
 

Cb 
Algae bulk concentration (v/v, %), defined as algal volume divided by volume of 
water. 
Constant, variable around 0.0005% (or 0.05 g∙L-1) in cross flow experiment 

 t Filtration time (s) 
 Vt 

Permeate volume at time t (m3), which is a variable factor (to be determined by 
experiment), vary by time 

* Js  Permeation flux at steady state (m3∙m-2∙s-1); To be determined by Equation3.21 
* kcr  Cake growth rate constant (m∙s-1); To be determined by Equation3.20 
 J0 Initial permeate flux (m3∙ m-2∙s-1); Constant (to be determined by each experiment) 
 Cw Volume concentration of algal cells at the membrane surface (%); To be determined 

by Equation 3.20 
* VB Algal transport velocity due to Brownian diffusion (m∙s-1); To be calculated by 

Equation 3.22 
* VS 

Algal transport velocity due to shear-induced diffusion (m∙s-1); To be calculated by 
Equation 3.23 

* VI 
Algal transport velocity due to lateral inertial lift (m∙s-1); To be determined by 
Equation 3.24 

 DB Brownian diffusion coefficient (m2∙s-1), which is a constant (DB = kBT/6πμdp
2) used 

in Equation 3.22 
 T Temperature (K), a constant (298 K or 25 °C), used for DB 
 kB Boltzmann constant (1.38064852 × 10-23 m2 kg s-2 K-1), used for DB 
 γ Wall shear rate s-1; To be determined by Equation3.25 
 L Membrane module channel length (m), a constant (approximately 0.2m), 
 DS Shear-induced diffusion coefficient, a constant (DS = 0.03 dp

2τW) 
 dp Equivalent volume radius of the algae (m), (approximately 1.7 × 10−6 m) 
 ν Kinematic viscosity (m2∙s-1)(for water, 1.0 × 10−6 at 25 °C) 
 I  Channel height (m) or diameter of the tubular REM (approximately 0.009m) 
 Um Cross-flow velocity (m∙s-1), which is the linear rate of flow of fluid parallel to the 

membrane (m∙s) and Um=4Q∙(π∙I2)-1 
The * highlighted are unknown key factors. 
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Table 3.2 Parameters in Matlab Codes 

 

Parameters Matlab symbols Property value 
Q Q    
ΔP deltaP Global Constant 68947.6 
μ Mu Global Constant  8.90 × 10−4  Pa∙s 
Rm R_m global  3 × 1011 
Rc R_c, R_c1     
Rir  R_ir    
A A global Constant 4 ×10-3 
r R global   

kc 
k_c, realk_c, 
k_c1 

 Constant  

δc delta_c, delta_c1    
Cb C_b global Constant 0.1% 
t t    
Vt V_t    
Js  Js   Determine by experiment 
kcr  Kcr    
J0 J0 global  Determine by experiment 
Cw realC_w, C_w global Constant 92.5% 
VB VB    
VS VS    
VI VI    
DB D_B  Constant  
T T global Constant 298 
kB KB global Constant 1.38064852 × 10-23 
γ Gama  Constant  
L L global Constant 0.07 
DS DS    
dp DB global Constant 1.7 × 10−6  
ν V  Constant 1.0 × 10−6 
I  I global Constant 0.009 
Um Um    
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3.2.7 Viscosity effects on algal filtration 

The three major factors affecting fouling are biomass and feed characteristics, membrane 

operation and membrane module characteristics as shown in Figure 3.10 for submerged 

MBRs.213 Non-Newtonian fluid does not have a constant viscosity, in particular biomass 

suspension such as activated sludge, which has a decreasing apparent viscosity with 

increasing applied shear rate214-215 The behavior of MBR viscosity has also been referred 

to as pseudoplastic, i.e. the particles tend to flocculate in a large network that, when 

disrupted, by increasing the applied shear rate, results in a decrease in viscosity.214 

Several models were proposed where the apparent viscosity of the MBR activated sludge 

was calculated as a function of MLSS concentration, shear rate and temperature. 214, 216-217 

The models proposed by the abovementioned authors are presented in Table 3.3. In our 

simulation of the impacts of suspension viscosity, we assumed algal suspension is 

subjected to viscosity increase when their concentration is increased after repeated 

membrane filtration. We adopted three models with a fixed level of shear rate. 

Permeability (P), the ratio between the flux and TMP [L∙m-2.h-1∙bar-1] was calculated as 

follows: 

   JP
TMP

=       (3.27) 

Permeability can   be corrected for   temperature by incorporating   viscosity, as 

follows: 

act
c

ref

JP
TMP

η
η

= ⋅      (3.28) 

where: Pc = permeability corrected for reference temperature [L∙m-2.h-1∙bar-1]; ηact = 

actual viscosity [Pa·s]; ηref = viscosity at reference temperature [Pa·s]. 
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Figure 3.10  Factors affecting fouling in submerged MBRs.218 
 
Table 3.3 Models for Determining the Viscosity of MBR Activated Sludge at 20ºC 
Model types Equation Reference 
Model 1  0.41 0.372 0.23MLSS MLSSC Ceη γ× − ×= ×   

214 

Model 2  0.494 0.6310.882 0.05MLSS MLSSC Ceη γ× − ×= ×   
216 

Model 3  1.359 0.80732.36 MLSSCη γ −= × ×   217 

Η: apparent viscosity of biomass suspension [mP∙s];  
CMLSS: biomass concentration [g∙L-1];  
γ : shear rate [s-1]. 
 
3.2.8 Compressibility  coefficient for the cake layer 

Compressibility can be understood as the compress potential of a certain cake layer 

expressed by the compressibility coefficient or index (n), varying between 0 and 1. A 

compressibility coefficient of 0 is obtained when no compression occurs, i.e., when the 

resistance is independent from compression. In contrast, a compressibility coefficient of 1 

is obtained when the resistance is dependent from compression, therefore when the cake 
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layer is highly compressible. When permeate flux is fixed and TMP is changing, the 

compressibility index (n) and resistance coefficient (α) can be calculated if the cake 

resistance (Rc) are known. 

log( ) log( ) logcake
c

mR n TMP
A

α×
= +         (3.29) 

where A is the membrane filtration area (m2), TMP is transmembrane pressure and mcake 

is the mass of cake layer (g). When TMP is fixed while the permeate flux is changing, 

Equation 3.29 can be modified as follows: 

log( ) log( ) logcake
c

mR n J
A

α×
= −      (3.30) 

where J is the permeate flux (m3·m-2·s-1). mcake can be estimated as 

( )cake c Wm A Cρ δ= ⋅ ⋅ ⋅ , where Cw is the cell density on the membrane wall (%, v/v) and ρ 

is the algal density (approximately 0.05 g·L-1). This equation was used to fit the 

experimental result in Figure 3.27. 

3.2.9 Surface energy calculation based on EDLVO theory 

The REM-algae interactions were modeled as particle–surface geometry.219 In our 

calculation, the total interaction energies, TotalU , between Ti4O7 REM and algae are equal 

to: 

Total vdW EL ABU U U U= + +      (3.31) 

where vdWU , ELU , and ABU are the van der Waals, double-layer and and acid-base 

interaction energy (kBT), respectively..220  

132
132 ln

6 2 2
vdw A a a hU

h h a h a
  = − + +   + +  
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( ) { }2 2 1 2
132 0 1 2 2 2

1 2

2 1 exp( )ln ln 1 exp( 2 )
1 exp( )

EL hU h
h

ξ ξ κπε ε ξ ξ κ
ξ ξ κ
 + −

= + + − − + − − 
  (3.32) 

Although surface hydrophobicity changes may induce the changes to van der 

Waals, electrostatic and steric interaction energies, to simplify the EDLVO calculation, 

the effect of surface hydrophobicity changes is only attributed to the change of acid-base 

interaction energy in Equation 3.33 in this study:221 

    
0

0
132,( ) expAB

AB D
h hU h a Gπ λ
λ
− = ∆  

 
    (3.33) 

0132,
AB

DG∆ can be estimated by following equations:222-223 

0

132
132,

02
AB

D
KG

hπ λ
∆ = −      (3.34) 

1 2
132

cos coslog 7.0 18.0
2

K θ θ+ = − − 
 

   (3.35) 

where 
0132,

AB
DG∆ is the standard polar or acid-base free energy (J m-2) at the minimum 

equilibrium distance (h0=0.157 nm) due to Born repulsion can be estimated by the 

hydrophobicity determination using water contact angles,222-223 K132 is the hydrophobic 

force constant (J). The contact angles (θ) were measured on plain surfaces of different 

samples at room temperature by liquid drops and ImageJ software. The results of contact 

angles using three different probe liquids are shown in Table 3.4.  

The extended Young's equation is used to calculate the surface tension:224 

(1 cos ) 2( )LW LW
L i L i L i Lθ γ γ γ γ γ γ γ+ − − ++ ⋅ = + +    (3.36) 

where γL is the probe liquid surface energy (mJ·m-2), which is known for the three probe 

liquids as shown in Table 3.4. LW
iγ is the apolar part of surface tension of condensed 
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material (i) caused by dispersion energy between molecules, and to iγ
+ or iγ

−  are the polar 

part of surface tension of condensed material (i) caused by dipole interaction included 

dipole moments and hydrogen bonds. The surface tension results are summarized in 

Table 3.5, which are further used to compute the Hamaker constant for interaction 

between algae and Ti4O7 REM in water using the method of van Oss: 

( )( )2
132 0 1 3 2 324 LW LW LW LWA hπ γ γ γ γ= − −    (3.37) 

where h0 is the minimum equilibrium distance (0.157 nm). The subscript 1, 2, and 3 

corresponds to Ti4O7 REM, algae, and water, respectively. The calculated Hamaker 

constant is 2.2×10-21 J, which is incorporated in the EDLVO calculation in Table 3.6.  

Table 3.4 Contact Angles Data 

 Contact angle (º) 
Water Formamide Glycerol 

Thermally reduced REM 0 59.44±8.89 58.08±8.93 
Untreated REM 0 46.58±2.47 77.42±5.24 
Scenedesmus dimorphus 19.3±3.1 26.1±3.7 24.2±2.4 
 
Table 3.5 Surface Energy Components of Untreated and thermally reduced REM, Algae, 
and the Three Probe Liquids 225-226 

 

Surface 
energy 
(mJ·m-2) 

Polar surface 
tension 
components 
(mJ·m-2) 

Polar surface tension 
components (mJ·m-2) 

Lγ  
LWγ  iγ

+
 iγ

−
 

Untreated REM N.A. 6.142086667 3.83703333
 114.84908 

Thermally reduced REM N.A. 14.39811591 10.189025 74.22501818 
Scenedesmus dimorphus N.A. 8.8±8.3 7.9±7.2  86.1±2.2 
Water 72.8 21.8  25.5 25.5 
Formamide 58  2.3 39.6 
Glycerol 64  3.9 57.4 
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Table 3.6 Parameters used in EDLVO Theory Equations 
a1 The radius of Ti4O7 REM taken as 27 nm.227 

a2 
The radius of algal cells taken as 4000 nm, which is the average radius of 
Scenedesmus dimorphus characterized by the Multisizer 3 Coulter 
Counter instrument previously.228 

A The reduced particle radius, a =a1a2/(a1+a2).  

A132 
Hamaker constant for interacting subject 1 and subject 2 in the medium 3.  
2.2×10-21 J (calculated above) 

1ξ and 2ξ  
Zeta potential. -1.03±0.4 and -29.0±1.3 mV for Ti4O7 REM and algae, 
respectively, in algal medium (assuming no changes in zeta potential of 
the nanocomposite during UV irradiation). 

h0 The minimum equilibrium distance due to the Born repulsion, 0.157 nm.  
H The separation distance between the two interacting particles (nm). 

Λ The correlation length, or decay length, of the molecules of the liquid 
medium. For pure water, it is approximately 0.6 nm 229. 

1θ  the water contact angles of algae, (19.3±3.1) º 

2θ  the water contact angles of thermally reduce REM 

Λc The “characteristic wavelength” of the interaction, often assumed to be 
100 nm.230  

κ The inverse Debye length (m-1) defined as ( )1/22 2
0/A i i r BN e c z k Tκ ε ε= ∑ .   

NA Avogadro’s number, 6.02×1023 mol-1. 
e Unit charge, 1.602×10-19 C. 
ci ci is the molar concentration of one species ions (i), mol·L-1. 
ε0 The dielectric permittivity of a vacuum, 8.854×10-12 C·V-1·m-1. 
ε The dielectric constant of water, 78.5 (dimensionless). 
zi The valence of the ith ion. 
kB Boltzmann constant, 1.38×10-23 J·K-1. 
T The absolute temperature taken as 298 K. 

n The molar concentration of ionic species in the medium (mol.m-3) 
multiplied by Avogadro’s number (#.mol-1). 

DSc Scaling length, 1 nm. 
αSckBT/am

3 3×105  N∙m-2.231 

δ Adsorbed SA layer thickness, 2 nm (measured from the SEM images in 
Figure 3.13). 

ΦS0 SA volume fraction at a single saturated surface, 0.2. 
Γ/Γ0 Fractional SA surface coverage, 0.5* 
μ

0
 The magnetic permeability of vacuum (μ

0 
= 1.26×10

-6 
Tm A

-1
).232 

RR The reduced particle radius, RR =a1a2/(a1+a2).  
  

* The surface coverage was assumed in this EDLVO analysis.  
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3.3. Results and discussion 

3.3.1 Characterization of Ti4O7 REM  

3.3.1.1 Conductivity change before and after thermal reduction.  

There is a conductivity change from the original TiO2 REM to thermally treated ones that 

are reduced to Ti4O7. The electrical resistivity changed from 4-6 Ω∙cm to 1.5-3.5 Ω∙cm, 

which agrees with previous studies.233 Figure 3.11 shows the tubular filters had negligible 

appearance change before and after the thermal treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Original TiO2 tubular filter (a) and thermal treated TiO2 (Ti4O7) filter (b). 

(a) 

(b)
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3.3.1.2 FTIR analysis . FTIR analysis was also conducted to verify the change of 

surface composition or functional groups. As shown in Figure 3.12, the green spectrum 

corresponds to TiO2 (rutile) while the red spectrum has a shift of the first peak at 721 cm-1 

due to TiO2 changed to Ti4O7 after the thermal treatment. This result is consistent with 

previous research.234  

 

 

 

 

 

 

 

Figure 3.12 FTIR spectra of rutile TiO2 and Ti4O7. 
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3.3.1.3 Zeta potential of algae and REM. Figure 3.13 shows the zeta potentials and 

surface zeta potentials of suspended algae cells in water, untreated REM and thermally 

reduced REM as a function of pH. As pH increases, the zeta potential and surface zeta 

potentials both decreases, which agrees with most colloidal behavior.235 The zeta 

potentials of algae and REMs were also measured in the algal cultivation medium. In the 

presence of medium suspension, both algae and REMs were negatively charged at around 

-30 mV. The original TiO2 filter was more negative (-55 mV) than the thermally reduced 

REM (-30 mV), probably because the Ti4O7 REM has reduced surface oxygen atoms 

after hydrogen reduction, which reduces the number of the negatively charged hydroxyl 

groups on REM surface. 

 

 

 

 

 

 

 

 

Figure 3.13 Zeta potential of REM and algae in DI water at different pH. 
 

3.3.1.4 SEM/XRD. The SEM image in Figure 3.14a shows an asymmetrical and 

porous structure of the REM. The XRD characteristic peaks for Ti4O7 and Ti6O11 are 

located at 2 theta angles of 20.78° and 22.84°, respectively.236 The two peaks in Figure 

3.14b indicates that the REM consists primarily of Ti4O7 and Ti6O11.190 Peaks 
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(a) 
 

  
 

(b) 
 

characteristic of TiO2 were not present, which indicates a full conversion from TiO2 to 

the Magnéli phases was accomplished.190 

 

 

 

 

 

 

 

 
Figure 3.14 (a) Overall SEM image. (b) XRD of substoichiometric TiO2 membrane with 
red (solid) and green (dash) arrows representing standard characteristic peaks of Ti4O7 
and Ti6O11. Data cited from ref.190. 
 
 
3.3.1.5 Porosity and mean pore size. Table 3.7 summarizes the measurement of 

mean flow rates under different TMPs for untreated and thermally treated REM. The 

overall porosity and pore sizes were calculated with Equation 3.1 and 3.2. Clearly, the 

porosity for untreated and thermally treated REM remained almost unchanged at 14-15%. 

The mean pore size, however, was shown to reduce slightly from 524±32 nm to 408±7 

nm for untreated and treated REM respectively, which agrees with previous studies.237 

The minor change of the mean pore size could result from the thermal sintering process 

that may melt some TiO2 and lead to reorganization of porous structures.237 
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Table 3.7 Results of Pore Sizes of Untreated and Treated REM Filters. 

 TMP 
(Pa) 

Mean 
flow rate 
(m3∙s-1) 

Surface 
area 
(m2) 

Membrane 
thickness 
(m) 

Overall 
porosity 
(%) 

Pore size 
(m) 

Mean pore 
size (m) 

Untreated 
REM 

31000 6.07×10-08 

0.00283 0.002 15.08 

4.91×10-07 

5.24×10-07 40000 7.24×10-08 5.22×10-07 
60000 7.07×10-08 5.43×10-07 
70000 8.88×10-08 5.38×10-07 

Thermally 
reduced 
REM 

31000 8.50×10-08 

0.00197 0.002 14.91 

5.00×10-07 

4.08×10-07 40000 1.24×10-07 4.40×10-07 
60000 2.01×10-07 3.60×10-07 
70000 2.30×10-07 3.32×10-07 

 

3.3.1.6 Cyclic voltammetry and EIS. The increase in the size of the peaks and the 

shift toward the oxygen-evolution region with increasing scan rate indicates that these 

peaks correspond to irreversible reactions. Likewise, the decrease in the size of the 

reverse peaks corresponding to peaks P1 and P2 (Figure 3.15a) suggests the occurrence 

of a later chemical reaction involving the electrochemically formed products (EC 

mechanism). In fact, the voltammetry behavior observed is characteristic of the anodic 

oxidation of K3Fe(CN)6 on REM electrodes, and it has been previously reported for 4-

chlorophenol. 

Figure 3.15b shows the EIS comparison of original Ti4O7 membrane and fouled 

membrane. Membrane fouling was represented by the backward shift on Figure 3.15(c), 

which is consisted with previous report.190 Therefore, EIS could be used as an indicator 

of membrane fouling in the future studies. 
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Figure 3.15 (a) I/V curves for REM filters in 0.5 M KCl solution when exposed to 20 
mM K3Fe(CN)6

3- and (b)  EIS spectra in complete frequency range for clean and fouled 
REM. 
 
3.3.2 Dead-end filtration 
3.3.2.1 Measurement of membrane resistance (Rm) and permeate flux (J0) for dead-
end filtration. 

 
Figure 3.16 shows that the fluxes of untreated and treated REM both increased with the 

increasing TMP. As the porosity and means pore size both decreased slightly, the fluxes 

of the treated REM under different TMPs were generally lower than those of untreated 

REM, specially under high TMPs. The levels of membrane resistance (Rm) fluctuated 
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between 0.8×1012 m-1 and 1.2×1012 m-1, which is at similar order of magnitude with that 

of ZrO2/Al2O3 ceramic membrane  (0.43 to 1.24×1012 m-1) as reported previously.238   

 

 

 

 

 

 

 

Figure 3.16 Flux and membrane resistance (Rm) under different TMPs in Psi and kPa in 
clean water test.  
 
3.3.2.2 Membrane fouling kinetics in dead-end filtration. Figure 3.17 presents 

the dynamic change of permeate flow rate in continuous dead-end filtration. Three 

filtration cycles were executed in 12 hours. Hydraulic backwash without applying DC 

currents was conducted between each cycle. Clearly, the membrane fouling occurred 

rapidly as the permeate flow rate decreased with filtration time, primarily due to the algal 

cake layer formation and irreversible fouling mechanisms. Hydraulic backwash was not 

effective to reverse the fouling process. Figure 3.19 compares the fouled REM (left) that 

is covered by a green film of algal cake layer on the surface and the cleaned REM that is 

dark black (right). 

As shown in Figure 3.18, the permeate flow rates was also simulated using the 

membrane fouling kinetics model mentioned in Section 3.2.6 using Equation 3.13 to 

Equation 3.18 according to the algorism in Figure 3.9a, which requires the determination 

of a key parameter, the volume concentration of algal cells at the membrane surface (Cw), 
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which was determined to be 83%. The Matlab code for the determination is provided in 

Section 3.5.1. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17 Change of permeate flow rate in dead-end filtration and fittings (Initial algal 
concentration: 1 g∙L-1 and TMP: 75 kPa). 
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Figure 3.18 (a) to (d) Simulations of permeate flow change in dead-end filtration with 
the change of different parameters (Rm, Cb, Cw and kc). 
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Figure 3.19 (a) REM with a fouling cake layer. (b) REM after chemical backwash. 
 
3.3.2.3 Assessment of backwash efficiency and flux recovery after dead-end 
filtration using three different backwash methods 

 
As mentioned in the Section 3.2.4.3, backwash studies were performed after the permeate 

flux was close to zero, indicating that the REM membranes had significant surface 

fouling. Flux recoveries under different duration of hydraulic backwash with and without 

DC currents were measured. Figure 3.20 indicated that (1) hydraulic backwash under DC 

currents (electrochemical backwash) for a longer duration time (90 min) led to a better 

flux recovery as shown in blue triangle data; (2) hydraulic backwash alone without DC 

resulted in very limited flux recovery, though the flux recovery was increased as the 

backwash time increased; (3) chemical backwash led to a lower flux recovery than 

electrochemical backwash did. Moreover, chemical backwash not only involved the use 

of corrosive chemicals but took longer times to achieve the comparable flux recovery. 

Backwash efficiency (r) for each backwash method was calculated by dividing the fluxes 

(a) 
 

(b) 
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at different TMPs by the original flux in Figure 3.16. Figure 3.21 shows that the highest 

flux recovery by electrochemical backwash was 35%-40% of the original fluxes for the 

clean REM membrane. 

 

 

 

 

 

 

 

 

 

Figure 3.20 Comparison of flux recovery under hydraulic backwash with and without 
DC current (25.3 mA∙cm–2 corresponding to a cell voltage of 18-22 V) and chemical 
backwash (2 g∙L-1 NaClO).  
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Figure 3.21 Backwash efficiency (r) for three different backwash methods at different 
TMP levels. 
 
3.3.2.4 The dead-end filtration performance with and without DC currents 

Membrane fouling is typically caused by surface accumulation of inorganic particles, 

biomass, and organic matter (OM), which has seriously hampered membrane applications 

forwater purification.29 It was previously reported that chemical treatment such as 

preozonation improved performance of microfiltration because surface oxidation reduced 

cake compressibility and the biomass loading.104 EAOP on REM surfaces has shown to 

inhibit membrane fouling through swift oxidation of organic matters.239-240 To understand 

this effect, we performed a dead-end filtration experiment using clean REM membranes 

and DI water under different DC currents. Figure 3.22 shows that bubbles formed on the 

REM surface under high DC currents (e.g., 25.26 mA∙cm-2), which induces strong anodic 

oxidation reactions. The electrode potential at REM surface may reach 22 V when the 

current density was 25.26 mA∙cm-2. Thus, water may be oxidized as 

+
2 2 HO + 4H 4 2H O  E (pH=0) 1.23 Ve− →+ = +← , and oxygen is produced and rise up as 

bubbles. The bubble formation may also scour the REM surface and physically remove 
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surface foulant. However, excessive bubbling on REM surface was shown to negatively 

affect the dead-end filtration efficiency as shown in Figure 3.23a, which shows that the 

permeate flux declined with high DC currents (e.g., 25.26 mA∙cm-2).  

Figure 3.23b shows the normalized ratio of permeate flux (J) to their respective 

initial permeate flux (J0) of dead-end filtration with and without DC currents were almost 

identical. Figure 3.23c compares the flux decline or fouling processes when a lower level 

of DC current density was applied to avoid oxygen production. The electrode potential at 

REM surface was ±3.3 V when the current density was ±2.5 mA∙cm-2. Positive or 

negative DC currents cause anodic oxidation or cathodic reduction, which shows limited 

impacts on permeate flow decline rate or fouling kinetics. This suggests under dead-end 

filtration, the EAOP on REM may not be effective for membrane fouling mitigation 

probably because the anodic oxidation or electrostatic repulsion against algal cells or 

organic matters could not overcome their deposition rates driven by TMP.  
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Figure 3.22 Significant bubble generated on REM surface under current density at 25.26 
mA∙cm-2. See our lab video at: https://youtu.be/J5YdyaF3sSw. 
 
 
 
 
 
 
 
 
 
 
 
 

Bubble
s 

112 

https://youtu.be/J5YdyaF3sSw


5 10 15 20 25 30

0

10

20

30

40

50

 

 

 -2.5 mA·cm-2 
 +2.5 mA·cm-2 
 Without DC

Fl
ux

 (1
0-5

m
3 . m

-2
. s-1

)

Time (min)

0 2000 4000 6000

0.1
0.2
0.3
0.4
0.5
0.6
0.7  Filtration w/o DC

 Filtration with 500mA DC
 Filtration with 200mA DC
 Filtration with 100mA DC

Fl
ux

 (1
0-5

·m
3 ·m

-2
·s-1

)

Time (s)

0 2000 4000 6000
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

 

 

 Filtration with 100mA DC
 Filtration with 200mA DC
 Filtration with 500mA DC
 Filtration w/o DC

J/
J 0

Time (s)

(a)  

(b)  

(c)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.23 Permeate flux decline of permeates flux under a constant TMP of 10 psi 
(68.9 kPa) during dead-end filtration with different DC current density (algal 
concentration in the influent: 0.05 g∙L-1). (a) Current density was 0, 5.05, 10.10 and 25.26 
mA∙cm-2 and potential was ranging from 0-22 V. (b) Ratio of permeate flux (J) to initial 
permeate flux (J0) of (a). (c) Current density was 0, -2.5 and 2.5 mA∙cm-2. 
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3.3.3 Cross flow filtration 

3.3.3.1 Measurement of inherent membrane resistance (Rm) and permeate flux (J0) 
for cross flow filtration. 

 
As verification, Rm and J0 were both determined using the cross-flow filtration unit in a 

dead-end filtration mode as mentioned in Section 3.2.5.1. Figure 3.24 shows the permeate 

flux almost linearly increased with the increasing TMP. The membrane resistance (Rm) 

calculated by Equation 3.12 is an inherent membrane property that should be independent 

on TMP. Our result shows that Rm fluctuates slightly under different TMP with a mean 

level of around 1.0 ×1011 m-1. This result is at similar order of magnitude with the 

reported membrane resistance of ZrO2/Al2O3 ceramic membrane (0.43 to 1.24×1012  

m-1 ).238   

 

 

 

 

 

 

Figure 3.24 Permeate flux and membrane resistance (Rm) under different TMPs in the 
clean water test. The upper and lower axes are TMPs in the units of psi and kPa, 
respectively.  
 
3.3.3.2 Critical flux determination with and without different DC currents.  

Figure 3.25a shows the change of TMP with the filtration time under different DC 

currents. Without DC currents, no significant change was observed in the TMP during the 

first (2.08×10-5·m3·m-2·s-1) and second flux steps (4.17×10-5·m3·m-2·s-1) during the first 

15 min and the interval of 15 min to 30 min. However, after the permeate flux reached 
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6.25×10-5·m3·m-2·s-1, the TMP suddenly increased from 112 kPa to 207 kPa in the first 7 

min in the third 15-min step. Accordingly, the increase rate of TMP (ΔP/Δt) reached 226 

Pa·s-1, which means the turning point of TMP corresponds to the critical flux. Therefore, 

the permeation flux of 6.25×10-5·m3·m-2·s-1 was the critical flux of the Ti4O7 ceramic 

membrane in the filtration of algal suspension (0.05 g L-1) without DC current as pointed 

in Figure 3.25b.  

With the same determination method, the critical fluxes were also determined 

when positive and negative DC currents run through REM at different current densities 

(1.25, 2.5 and 5 mA·cm-2), which are expected to induce different electrode potentials or 

oxidation or reduction reactions. For example, when applying 1.25 mA·cm-2 current 

density (the electrode potential=1.803 V), the TMP increased from 11.72 kPa to 164.79 

kPa starting from the 16 min to 45 min and then dramatically increased to 226.84 kPa at 

the 30 min, which corresponds to the occurrence of critical flux as ΔP/Δt was 166 Pa·s-1. 

Thus, the critical flux was approximately 4.16×10-5 m3·m-2·s-1 under the positive DC 

current at 1.25 mA·cm-2. Compared to the critical flux without DC, the critical flux 

slightly decreased when applying a low level of positive DC currents, probably because 

the positive surface charge on REM favored the deposition of negatively charged algal 

cells and deteriorated the membrane fouling.  

With applications of higher DC currents at 2.5 mA·cm-2 (the electrode 

potential=2.803 V) and 5 mA·cm-2 (the electrode potential=9.803 V), the TMP increase 

occurrence was apparently delayed to over 40 min. The estimated critical flux was about 

the same (6.25×10-5·m3·m-2·s-1) for both DC levels. The shift of critical flux indicates that 
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the membrane fouling under DC polarization could be reduced due to the anodic surface 

oxidation of surface foulants.  

By contrast, cathodic polarization was achieved by applying negative DC current 

to REM. Different from the anodic polarization, the negatively charged REM surface 

may repel negatively charged algal cells and thus mitigate membrane fouling, which is 

verified by our results in Figure 3.25a. For example, at the DC density of -1.25 mA·cm-2, 

the TMP level was relatively stable under 43.8 kPa in the first 60 min of the four different 

flux steps. An increase of TMP from 43.8 kPa to 62.0 kPa occurred at 61 min after the 

permeate flux increased 10.41×10-5·m3·m-2·s-1. Thus, the critical flux was approximately 

8.33×10-5·m3·m-2·s-1 and 14.56×10-5·m3·m-2·s-1 for the DC densities of -1.25 mA·cm-2 

and -2.5 mA·cm-2 respectively. When applying -5 mA·cm-2, the TMP remained stable in 

the first three flux steps and increased very mildly, which made it difficult to estimate the 

critical flux. Apparently, the membrane fouling mitigation was obtained under cathodic 

polarization.  

Figure 3.25b shows that the critical flux determined under -2.5 mA·cm-2 was 

14.56×10-5·m3·m-2·s-1, which is two times that of 2.5 mA·cm-2 (6.25×10-5·m3·m-2·s-1). 

This result suggests that in anodic polarization, EAOP could be the main anti-fouling 

mechanism, whereas the electrostatic repulsion against algal cell deposition on REM was 

the main anti-fouling mechanism in cathodic polarization. Critical flux without EAOPs 

on membrane filters has previously been studied.200, 206, 241 For example, the critical flux 

of 47-mm Anopore Inorganic disc membranes (Anodisc, Whatman) were 17 LMH 

(4.7×10-6·m3·m-2·s-1) when filtering algal suspension (C. sorokiniana) at a mass 

concentration of 0.29 g·L-1.241 Different anti-fouling approaches (e.g., vibrating 
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membranes203) were reported to improve algal harvesting and increase the critical flux 

from 22 to 64 LMH (6.1×10-6 to 1.7×10-5 m3·m-2·s-1) when filtering 0.2 g·L-1 C. 

pyrenoidosa suspension.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.25 (a) TMP and Flux profiles of membrane filtration with S. dimorphus of 0.05 
g∙L-1 under an initial permeate flux of 2.08×10-5 m3∙m-2∙s-1 in the cross-flow filtration test 
with different DC current densities according to the conditions described in section 3.2.5. 
(b) TMP versus permeate flux for REM filtration. The red arrow shows the possible 
critical flux at 4.17×10-5, 6.25×10-5 and 12.48×10-5 m3∙m-2∙s-1. 
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3.3.3.3 Membrane fouling kinetics in the cross-flow filtration under different DC 
currents. 

 
Due to membrane fouling, the specific rate of permeate flux changes can generally be 

divided into three stages: the rapidly declining stage, the slowly declining stage and the 

stable stage.242 Figure 3.26a shows for the REM filtration without DC current, the 

permeate flux experienced a sharp decrease stage within the initial 5 min followed by a 

relatively slow declining period, which is similar to the observations of some other 

membrane filtration systems.243-244 The stabilized permeate flux was 1.18 × 10-5 m3·m-2·s-

1 with a decline rate of 89% of the initial level. When applying positive or negative DC 

currents, the decline of permeate flux was apparently became less significant than that of 

no DC currents. Moreover, the stabilized fluxes reached approximately 5.50 × 10-5 when 

applying +2.5 or -2.5 mA·cm-2, which confirms the above-mentioned antifouling ability 

empowered by anodic oxidation or cathodic repulsion against negatively charged foulants 

respectively.   

Figure 3.26b provides the profiles of the cake layer resistance (Rc) calculated by 

Equation 3.12 with the experimental data of permeate flux and TMP shown in Figure 

3.26a. Moreover, the kinetics of the Rc increase can be simulated with the model 

equations Equation 3.15-3.19 shown in Section 3.2.6, which requires the determination of 

three key parameters: the specific resistance per unit of cake thickness (kc), the volume 

concentration of algal cells at the membrane surface (Cw) and cake layer thickness (δc). 

The Matlab code for the determination is provided in Section 3.5.1. The cake layer 

resistance increased gradually as the deposited algal biomass formed a cake layer on the 

membrane surface. The cake layer resistance was about 4 × 1012 m-1 after 40 min 

filtration without DC currents. Under DC currents, the increase rate of cake layer 
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resistance decreased with the increasing intensity of DC currents, indicative of the 

antifouling feature of REM. For example, Rc increased to approximately 9 × 1011 m-1 

when applying +2.5 or -2.5 mA·cm-2 after 40 min. The simulated cake resistance is 

shown in Figure 3.26b in continuous lines, which were calculated using Equations 3.15, 

3.16, 3.18 and 3.19, and the mean values of the specific resistance per unit of cake 

thickness (kc) and the volume concentration of algal cells at the membrane surface (Cw). 

The simulated results well fitted the experimental data (R2>0.9).   
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Figure 3.26. (a) Variations in permeate flux under a constant TMP of 10 psi (68.9 kPa) 
during continuous filtration with different DC current density (algal concentration in the 
influent: 0.05 g∙L-1). (b) Cake layer resistance (Rc) increase in the membrane filtration 
process with different DC current densities over 40 min time period, where dots represent 
the experimental values and continuous lines represents the model calculation values.  
(c) Cake layer thickness (δc) increase over time of filtration. 
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Figure 3.27 shows the fitted results of kc and Cw, which both fluctuated under 

different DC conditions (-2.5 to 2.5 mA·cm-2). For example, kc fluctuated from 2×1016 to 

10×1016 m-2, which is comparable to the reported values in literature.204 Moreover, kc 

exhibited no clear dependence on DC currents, which may be reasonable because kc 

represents an inherent material property that describes the cake layer resistance for 

specific types of algal biomass or foulant on REM surface. Cw ranged from 60% to 110% 

with the lowest levels when no DC was applied, which means that the positive or 

negative DC currents on REM may increase the volume concentration of algae on the 

membrane wall. This value was fluctuated because of all calculation were based on the 

best fitting result. 

 
 

 

 

 

 

 

Figure 3.27 Variations of specific resistance per unit of cake thickness (kc) and cake 
concentration on the membrane wall (Cw) in the membrane filtration process under 
different DC current densities.  
 
 
3.3.3.4 Influences of different backwash methods on backwash efficiency and flux 
recovery in cross-flow filtration. 

 
Flux recovery under different duration of hydraulic backwash (TMP = 85 kPa) with and 

without and DC were tested by clean water under TMP from 5 psi to 25 psi (34.5 kPa to 

172.4 kPa). The DC current was 200 mA and the density was 5 mA∙cm-2. As shown in 
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Figure 3.28, (1) hydraulic backwash with DC by longer duration time had a better flux 

recovery in clean water test; (2) hydraulic backwash with DC by the same duration time 

had a better flux recovery than hydraulic backwash without DC; (3) 30 min hydraulic 

backwash without DC had a better flux recovery than 15 min backwash without DC. The 

affinity of algal foulants to membrane surfaces is strongly affected by their nature. In 

reversible fouling, the weak affinity of foulants to the membrane surface due to external 

deposition suggests that the foulants can be removed by hydraulic backwash alone. 

However, hydraulic backwash process without additional chemical could not remove 

adsorbed, or chemical bonded algogenic organic matter, which can only be removed by 

chemical and electricity backwash.245  

 
 

 

 

 

 

 

Figure 3.28 Comparison of flux recovery under hydraulic backwash (80 kPa) with and 
without DC current and chemical (0.2 g∙L-1 H2O2) backwash. The power setting of DC is 
100 mA, 3.0-3.3 V and the current density was 2.5 mA∙cm-2.  
 

3.3.3.5 Determination of cake layer compressibility and resistance coefficient 

Based on the results in Figure 3.26a-3.26b, we plotted the logarithm values of cake layer 

resistance (Log Rc) over permeate flux (Log J) under different current densities in Figure 

3.29. The compressibility index (n) and resistance coefficient (α) were determined by 
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fitting this log-log plot with Equation 3.30. To determine n and α from the fitting 

equation shown as an inset in Figure 3.29, an average value of Cw (96.75%) in Figure 

3.27 was chosen. The cake layer thickness (δc) was taken from Figure 3.26c. Table 3.8 

shows the results of compressibility indexes and resistance coefficients under different 

current densities. Clearly, the fitted values of compressibility indexes were all greater 

than 1, indicating that algal cake layers on various filtration conditions were possibly 

compressible and the flux resistance is dependent on the cake layer compression state. 

Moreover, the compressibility index increased slightly when positively or negative DC 

currents were applied, suggesting that the algal cake layer may become more 

compressible than that under no DC current. This compressibility increase may be 

attributed to the possible surface oxidation and destruction or repulsion of algal cells by 

REM under anodic oxidation or cathodic reduction.  

The resistance coefficient (α) is not the same as the above analyzed specific 

resistance per unit of cake thickness (kc). However, they both indicate that degree of flux 

resistance from algal cake layer.  From the result in Table 3.8, the resistance coefficient 

appeared to increase when DC currents run on REM, which suggests that the flux 

resistance per unit mass of the accumulating cake layer may be higher, especially under 

negative DC currents.   
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Figure 3.29 Log (Rc) and Log (J) relationship. Compressibility index (n) and resistance 
coefficient (α) was fitted by Equation 3.30. 
 
Table 3.8 Compressibility Index (n) and Resistance Coefficient (α) Determined by 
Equation3.30 with Curve Fitting. 

Current density 
(mA∙cm-2) 

Compressibility index 
(n) 

Resistance coefficient 
(α) 

0 1.2 1.6×109 
+1.25 2.6 1.2×1010 
+2.5 1.49 1.2×1011 
-1.25 2.8 1.4×1010 
-2.5 2.8 9.5×1010 

 

3.3.3.6 Impacts of viscosity increase in algal suspension on membrane permeation 

Figure 3.30 shows that the simulation results about the dependence of viscosity and 

permeability corrected for reference temperature (Pc) on algal concentrations using the 

three models in Table 3.3. Flux and TMP used in simulation were chosen from the 

experimental data in Section 3.3.3.3. The reference viscosity was the viscosity of water at 

25 °C. The result shows that as the algal concentration increases, the viscosity almost 

linearly increases. The permeability of membrane decreased as predicted by the model 1 

and 2, which is reasonable due to the increase of viscosity and membrane fouling. 

However, the model 3 revealed an increasing permeability, implying that the model 3 

may not be suitable for explaining our membrane filtration. 
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Figure 3.30. (a) Simulation of actual viscosity (ηact) by the thre models in Table 3.3 at 
differetn algal  concentrations; (b) calculated permeability corrected for reference 
temperature (Pc) from actual viscosity.  

3.3.3.7 Biomass concentration in continuous filtration under different DC currents 

Table 3.9 shows the different indicators of algal harvesting efficiencies at three DC 

conditions (0, +2.5 and -2.5 mA∙cm-2) in one cross-flow filtration cycle with the algal 

suspension of 1.8 L and 0.05 g∙L-1. For these three conditions, relatively lower volumetric 

reduction factors (VFR) and concentration factors (CF) were obtained when applying DC 

currents, because of the cell damage or oxidation by REM as we characterized 

previously.176 As comparison, the VFR of Millipore 0.45μm filter has a VFR of 5 to 40, 

40 kDa polyacrylonitrile filter has a VFR of 10 and 50 kDa PVC UF membrane has a 

VFR of 154.204, 246 For the same reason, algal distribution on the membrane (Wm) and 

retentate (ηt) in the membrane tank have shown negative value. However, negative 
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charged membrane shows high uptime of 76.3%, which is higher than the 57.3% uptime 

when membrane was served as anode. 

 

 

Table 3.9 Algal Harvesting Concentration Performances at Three DC Conditions.

 

3.4 Conclusion 

In this study, the microalgae biomass separation performance of reactive electrochemical 

membranes, using different current density during dead-end and cross flow membrane 

filtration, was systematically investigated through experiments performed under different 

operating conditions (such as flux and TMP). According to the critical flux calculations, 

the membrane with the best filtration flux performance was the one with 1.25 mA·cm-2 

current density, when the REM served cathode. The characteristic properties of the 

membranes (e.g., pore diameter, morphology, and hydrophilic affinity) might all have an 

effect on the critical flux values.247 However, the loss of algal integrity was significant 

when the filtration system was running. The cake layer formation can be easily removed 

by electrochemical cleaning and the irreversible membrane fouling was insignificant 

during this process. 

In order to examine microfiltration behaviors of REM for micro algae under both 

constant flux and constant pressure conditions with direct current. Micro algae were 

Current 
density 

(mA∙cm-2) 
VRF CF Rec 

(%) 
ηm 

(g·m−2·min−1) 
ηt 

(g·m−2· min −1) Wm Wt 
Uptime 

(%) 

0 5.06 0.89 17.6 0.0011 -0.03 1.1
4 

-0.14 19.4 

+2.5 4.12 0.51 12.4 0.0007 -0.18 21.
33 

-20.3 57.3 

-2.5 3.24 0.78 24.1 0.0014 -0.10 1.3
9 

-0.39 76.3 
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filtered with REM in both dead-end and cross flow mode.248 The model for describing the 

pore blocking of the membrane and the buildup of the cake layer that proceed 

simultaneously during the course of filtration has been developed by integrating the 

intermediate blocking law and the cake filtration model sophisticatedly. The model 

calculations well described not only the pressure rising behaviors in constant flux 

filtration but also the flux decline behaviors in constant pressure filtration. The adjustable 

parameters such as Rir, and Rc, which were measures of pore blocking, as well as kc and 

δc, which was a measure of cake formation, were little influenced by the filtration rate in 

constant flux filtration, the filtration pressure in constant pressure filtration, and the solid 

mass fraction in suspension. Moreover, the model calculations well evaluated the 

negative slope occurring in the plots of the characteristic filtration curve based on the 

classical blocking filtration law. 
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CHAPTER 4 

Ti4O7 REACTIVE ELECTROCHEMICAL MEMBRANE (REM) FILTRATION 
FOR RECALCITRANT POLLUTANTS REMOVAL AND MICROBIAL 

DISINFECTION 
 

4.1 Introduction 

4.1.1 Challenges of emerging micropollution in aquatic environments 

Emerging water contaminants in natural waters such as rivers and groundwater aquifers is 

a widespread problem. These emerging contaminants could be persistent in the 

environment and pose adverse effects on ecosystems and human health. Environmentally 

persistent organic micropollutants may include polyromantic hydrocarbons (PAHs), 

organophosphate flame retardants, endocrine disrupting compounds (EDCs), pesticides, 

herbicides, pharmaceuticals and personal care products (PPCPs).249-250 For example, 

poly- and perfluoroalkyl substances (PFASs) such as perfluorooctanoic Acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS), as an example of emerging water contaminants, are 

potentially carcinogenic and persistent in the environment. The Water Research 

Foundation (WRF) has released findings of a study addressing effective methods for 

removing PFASs on waters collected from 13 water and wastewater treatment plants in 

the United States. The research report (WRF project #4322) demonstrated that 

conventional treatment at wastewater treatment plants and most drinking water treatment 

plants (e.g., aeration, chlorine dioxide, dissolved air flotation, coagulation, flocculation, 

sedimentation, granular filtration, and microfiltration) were all ineffective for removing 

PFASs. Carbon–fluorine bonds make PFASs extremely stabile. PFCs repel and resist oil, 

water, and degradation at high temperatures. Activated carbon and anion exchange can 
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remove most of PFASs but are less effective at removing shorter chain PFASs. The most 

effective treatment technologies are nanofiltration and reverse osmosis, which are 

characterized by high initial capital investment and costly operation and maintenance. A 

combination of multiple treatment technologies will likely be required to effectively 

degrade PFAS and their different forms.  

 

4.1.2 Challenges of membrane filtration in the removal of micropollutants  

Membrane separation such as ultrafiltration (UF) and nanofiltration (NF) have gained 

increased attention in the water treatment industry due to their high selectivity, high 

throughput, and reduced chemical usage.1-2 For example, UF membranes can selectively 

remove not only large molecules such as proteins, viruses, and microorganisms through 

size sieving mechanisms but can also substantially reduce emulsion to improve the 

successive solvent extraction efficiency. However, traditional membrane separations 

suffer from membrane fouling due to either the formation of a cake layer of biomass, or 

more commonly due to organic matter or salt adsorption onto the membrane surface.10-11 

Moreover, membrane filtration is not effective to remove small molecular weight 

compounds such as nitrate or nitrite, phosphate, metal ions and trace-level 

micropollutants.204, 251 Therefore, post-treatment is necessary before or after membrane 

filtration is essential. 

 

4.1.3 Integration of AOP into for reactive membrane systems 

Advanced oxidation processes (AOPs) are widely studied to effectively treat 

biorefractory organic substances252 or resistant microbes.253  Three categories of AOPs 
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exist: (1) UV/O3; (2) Photocatalysis (TiO2 or other semiconductor particles under UV-vis 

illumination); (3) Fenton process (Fe2+ / H2O2), Photo Fenton process (Fe2+ / H2O2 / UV) 

and Photo-Fenton-like processes of homogeneous nature (Fe3+/ H2O2 / UV, Fe3+/ APS / 

UV and Fe2+/ APS / UV) and heterogeneous nature (Fe0 / oxidants) (where APS is 

(NH4)2S2O8).254 AOPs such as photocatalytic oxidation, photochemical oxidation, 

electrochemical oxidation, photochemical reduction, persulfate radical treatment, 

thermally induced reduction, and sonochemical pyrolysis involves the production of 

hydroxyl radicals (•OH) as potent, nonselective oxidants to degrade recalcitrant 

pollutants.255 However, continuous UV irradiation and consumption of chemical reagents 

(e.g., H2O2, O3, and ferrous iron) cause potentially high operation and maintenance costs. 

256   

Coupling AOP with physical membrane filtration has been extensively studied to 

enable the destruction of organic pollutants by free radicals (mainly hydroxyl radicals or 

•OH) and antifouling capabilities.257-260 For instance, photocatalytic ceramic membranes 

(PCMs)261-265 utilize semiconducting inorganic materials, such as TiO2 and ZnO, as 

photocatalysts to enable surface reactions on water-permeable porous membranes. Along 

with the physical separation of contaminants in water through the porous structure of 

PCMs, the contaminants are chemically decomposed by reactive radical species 

generated on the PCMs under UV radiation. However, there are still some practical 

challenges when implementing the PCMs technology, including: (1) difficulty in 

providing effective UV illumination; (2) the reduced light penetration in tabular and 

spiral membrane surfaces; (3) the reduced active surface on catalyst and membranes 

accessible to chemicals and photons. Therefore, other than photo irradiation, an 

130 



alternative irradiation source that can evenly pass through membrane modules and 

distribute energy to water, catalysts and membrane surface is highly needed. 

 

4.1.4 EAOP and electrochemically reactive membrane development 

Recent studies shows electrochemical advanced oxidation processes (EAOPs) also 

known as electrolytic treatment have emerged as promising technologies for the 

destruction of recalcitrant and complex waste.82 EAOPs mineralize persistent organic 

pollutants (POPs) primarily through direct electron transfer at the electrode surface and 

through mediated oxidation by electro-generated reactive oxygen species (ROS), such as 

•OH radicals produced from the electrolysis of water:25-26, 78, 266  

2H O OH H e• + −→ + +  

OH• is a powerful and unselective oxidant with a high oxidation potential (Eo = 

2.6 V), which could mineralize most organics at near diffusion-limited rates.267-268 

Additional reactions at the anode surface will produce several other stable oxidants. 

These may include, H2O2, Cl2, and S2O8
2- (depending the presence of ionic species in the 

feed solution) as shown below: 

2 22OH H O• →  

Cl Cl e− • −→ +    22Cl Cl• →  

2
4 4SO SO e− −• −→ +    2

4 2 82SO S O−• −→  

The standard reduction potentials for H2O2 (Eo = 1.8 V), Cl2 (Eo = 1.48 V), and 

S2O8
2- (Eo = 2.01 V) are high enough to oxidize typical organic compounds and inorganic 

substances such as H2S and NH3 efficiently, and are currently used for aquifer 

remediation.269  
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Many studies have demonstrated high conversion rates of to CO2 or readily 

biodegradable products. Electrochemical processes have been reported to be effective for 

recalcitrant organic pollutants such as PFASs (Table 4.1), as well as microbial 

inactivation (Table 4.5 and Table 4.6). Most previous studies have focused on the 

electrochemical generation of active chlorine species (>2.5 V; HOCl, Cl2) or 

electrochlorination that can result in the formation of harmful disinfection byproduct.270 

However, recently the anodes without electrochlorination was also studied (e.g, BBD, 

porous carbon.). The low driving potentials of these materials will reduce energy 

requirements and avoid disinfection byproduct formation.271 

Reactive Electrochemical Membranes (REM) or electrochemically reactive 

membranes combined electrochemistry with ceramic membranes may provide a solution 

by in situ and real-time production of chemical oxidants, higher flux, and less 

maintenance. This combination may help overcome some of limitations of traditional 

EAOP such as the intrinsic mass transport limitations associated with organic pollutants 

required to interact with the electrode surface,272-275 high cost of electrodes, and low 

current densities without high concentrations of electrolyte.276 Because the radicals can 

be generated in-situ via electrochemistry, which means the oxidation process can be 

driven by electricity rather than by chemicals to produce radicals.277 The reduced 

chemical consumption potentially leads to a more environment-friendly approach.278 For 

example, Doped-SnO2 electrodes has resulted in an electrode with high conductivity and 

a potential for O2 evolution of 1.9 V versus SHE. However, Sb is a toxic substance with 

an EPA drinking water limit of 6 μg∙L-1.82, 279 PbO2 and doped PbO2 electrodes are also 
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utilized in packed-bed reactors containing oxidized Pb pellets, which may cause safety 

concerns in water treatment due to the release of Pb element.8  

 

4.1.5 Applications of EAOP in the removal of different micropollutants 

4.1.5.1 Industrial solvent additives-1,4-dioxane. 1,4-Dioxane is a semivolatile, cyclic 

ether historically used as a stabilizer in chlorinated solvents and currently still used in the 

manufacturing.280-283 1,4-dioxane causes liver damage and kidney failure with 

carcinogenic effects on animals and human beings.284 Thus, EPA has classified 1,4-

dioxane as a hazardous and priority pollutant.252 Its water miscibility and low potential 

for sorption to soil promote the formation of large and dilute plumes and environmental 

transport.275 1,4-dioxane is not readily biodegradable in the environment due to the strong 

internal chemical bonding of its heterocyclic ether ring.281-282, 285-286 Table 4.2 

summarizes electrochemical processes applications on 1,4-dioxane with different 

electrode materials. For example, boron-doped diamond (BDD) electrodes demonstrated 

that 1,4-dioxane can be completely mineralized by anodic oxidation.256, 275, 287 The high 

cost of BDD electrodes, however, precludes their application in large-scale operations at 

this point. In addition, many electrochemical studies are conducted in stirred-batch 

reactors with elevated electrolyte concentrations that favor high mass-transfer rates and 

current densities, creating increased contaminant degradation rates that may not be 

achieved in realistic conditions.  
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4.1.5.2 Persistent dye micropollutants. Synthetic dyes are extensively used in textile, 

leather, painting and printing processes because of their uniquely high brilliant shades, 

and relatively simple, low cost production methods. More than 10–15% of synthetic dyes 

produced are lost as effluent and pose a major threat to the health of ecosystem.288 

Industrial effluents discharged from dyeing industries are highly colored, of low BOD 

and high COD. Disposal of this colored water into receiving waters can be toxic to 

aquatic life. The dyes upset the biological activity in water bodies. They also pose a 

problem because they may be mutagenic and carcinogenic and can cause severe damage 

to human beings, such as dysfunction of kidney, reproductive system, liver, brain and 

central nervous system.289 Dye-contaminated water is usually chemically stable, non-

biodegradable, and potentially carcinogenic.290 Furthermore, dyes inhibit photosynthesis 

because they reduce light penetration.  These dyes diminish the amount of dissolved 

oxygen because they block the oxygen interchange at the surface while simultaneously 

increasing the biochemical oxygen demand.290 Therefore, the treatment of dye 

wastewater is one of the growing needs.291  

Among the various dyes, methylene blue (MB), rhodamine B (RB) and orange II 

(OGII) are three of the most commonly used coloring agents. Methylene blue is an 

important basic dye widely used for printing calico, printing cotton and tannin, dyeing 

leather, and in purified zinc-free form.291 Rhodamine B has been often used as a tracer 

dye, fluorescent staining dye and also used in fluorescence instruments. Orange II dye is 

mainly used in textiles, plastics, tanneries, pharmaceuticals, leather, packed food, pulp, 

paper, paint, and electroplating.292 MB, RB and OGII are toxic and highly water soluble. 

RB causes irritation to skin, eyes and respiratory tract. The carcinogenicity, reproductive 
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and developmental toxicity, neurotoxicity and chronic toxicity of these dyes towards 

humans and animals have been experimentally proven.291 

Common treatment of dye wastewater include activated carbon adsorption, 

chemical oxidation, reverse osmosis and ion exchange.293 Different AOPs such as 

photo/Fenton, photocatalysis, and UV/H2O2/O3 have also been applied for degradation of 

azo dyes.294 Ozonation is effective in decolorizing the textile wastewaters. But the cost of 

operation is rather high.294  In recent years, electrochemical treatment processes, 

especially electrochemical oxidation and electrocoagulation, have been studied as 

alternatives for degradation of various types of organic dyes in wastewater.295 A 

summary of electrochemical processes for different dyes and their effectiveness was 

listed in Table 4.3. For example, electrochemical oxidation on conductive diamond was 

used to discolorize Azoic Dyes, such as methyl orange (MO) and congo red (CR).103 

However, the high cost of electrodes and high energy consumption often make this 

technology unsuitable in industrial productions. Additionally, many studies have 

employed different types of electrodes (e.g., TiO2/Ti, Ti/Pt, Ti/MnO2, and Ti/PbO2) in the 

electrocatalytic process of dyes. However, lower removal efficiency limit them in 

practical application.105,106,107 

 

4.1.5.3 Cyanotoxins and harmful algal blooms (HABs) related micropollutants. 

Oxygen depletion or hypoxia and anoxia in coastal and estuarine, resulted from excessive 

phytoplankton growth and decay, have major deleterious impacts on fish and other living 

resources. In particular, the occurrence of HABs is increasingly common in inland 

freshwater (lakes, ponds, reservoirs and rivers) across all 50 states in the US296 and 
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globally.297 Algal blooms are caused by an expeditious growth and aggregation of 

microalgae in the surface waters, such as cyanobacteria, dinoflagellates and diatoms.298 In 

some cases, accumulation of these organisms (mainly dinoflagellates) can cause a 

discoloration of water, giving rise to the name “red tides”.299 HABs form naturally and 

are triggered by slow water movement or droughts. They can also form as a result of the 

nutrients from the environment and contaminants from human activities such as storm 

water runoff, runoff from agricultural activities that release pesticides, and salinization300. 

HABs negatively affect the environment, ecosystems and human health.300-301 The 

accumulation of HABs reduce water quality and change color, taste, odor, turbidity of the 

surface water.298  

HABs pose a serious threat to public health also because many HAB species 

produce potent toxins. Cyanobacteria release cyanotoxins such as anatoxin, 

cylindrospermopsin, nodularin, saxitoxin, and microcystin that are responsible for illness 

and death of animals and human.302 In 2007, 11 states reported 70 pet, livestock, and 

wildlife mortality and morbidity cases related to freshwater HABs.303 Yet basic questions 

of HAB occurrence, extent, intensity, and timing are largely unanswered.304-306 The 

increase in HAB occurrences has triggered the need to track health issues related to 

HABs, investigate the formation mechanisms of HABs, and develop effective mitigation 

and control measures.303  

Incorporating a chemical oxidation process to treat cyanobacteria cells is shown 

to produce toxic metabolites (e.g., microcystin, anatoxin, cylindrospermopsin) and/or 

odorous metabolites (e.g., Methyl-Isoborneol (MIB) and geosmin).307 For example, the 

effect of chlorination on cell lysis, toxin release, and disinfection byproduct (DBP) 
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formation has been observed on a few aquatic organisms and algae.308 Clearly, the 

potential physicochemical interactions with reactive NBs and oxidation of algae may also 

lyze algal cells and release intracellular toxins, which has not been investigated and 

reported. It is therefore interesting and imperative to investigate the release and removal 

mechanisms of cyanotoxin such as microcystins. For example, Microcystin-LR (MCLR), 

a cyclic heptapeptide produced by the blue-green algae Microcystis aeruginosa, is a 

common cyanotoxin in water.309-310 In MC degradation, the conjugated diene bond, 

benzene ring, and methoxy group of the side chain of MCLR can be attacked by •OH and 

produce byproducts such as dihydroxylated-MCLR, aldehyde or ketone peptide residues, 

benzene hydroxylation and formic acide-MCLR.311 The degradation mechanisms of 

cyanotoxin by NBs remain largely illusive and deserve extensive research. The objectives 

of our project are (1) to further examine the release characteristics of cyanotoxins 

following cell damage and lysis after treatment by different NBs; and (2) quantitatively 

compare the efficacy of degradation of a few model cyanotoxins (e.g., MC-LR, CYN, 

ANTX) in their dissolved form (extracellular) in water by different NBs. 

In addition to cyanotoxin, many studies indicated that both NH3 and H2S are 

produced by algae may be inhibitory toward other aquatic organisms.312-313 Previous 

studies indicated that both NH3 and H2S can be oxidized on different electrodes as shown 

in Table 4.7.314-315 For example, Ti/IrO2 electrodes demonstrated complete removal of 

ammonia ions by anodic oxidation.115 BDD can remove 90% of H2S at high current 

densities.121 Similarly, the high cost of BDD electrodes and high current density in 

operation, however, precludes their applications in large-scale operations. Such oxidation 

could be enhanced in the presence of Cl-, due to the oxidation of chloride ion to chlorine 
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gas at the anode and then conversion to hypochlorous acid and hypochlorite (strong 

oxidizing reagents).315-316  

 

4.1.5.4 Removal of NOM and precursors of disinfection byprdoucts. Natural 

organic matter (NOM) constitutes a complex mixture of organic compounds with varying 

molecular weights, charge densities, and hydrophobicity. The presence of NOM or 

dissolved organic matters in drinking water primary affects the aesthetic quality such as 

taste, color,and odor issues. Moreover, NOM serve as a carrier of toxic metal ions and 

organic micropollutants in water bodies, promote the microbial re-growth and corrosion 

problems in the water distribution systems.317 Finally, NOM is one of the precusor of 

disinfection byproducts (DBPs), which cause adverse human health impacts.318 Thus, 

removal of NOM is critical for the safety of drinking water supply.  

Currently, no single process alone can be used to treat NOM due to its high 

variability. The most common and economically feasible processes available are 

coagulation and flocculation followed by sedimentation/flotation and filtration. 

Numerous bench-scale studies have demonstrated the ability of electrochemical processes 

to remove organic contaminants, chemical oxygen demand (COD) and dissolved organic 

carbon (DOC),319-320 as summarized in Table 4.4. 

  

4.1.5.5 Removal of Antibiotic resistant bacteria (ARB) and antibiotic resistance 
genes (ARG) 

 
Bacterial contamination is one of the greatest global problems for drinking water security. 

Recent occurrences of pathogenic microorganisms such as pervasive SARS, Ebola virus, 

avian influenzas, and pneumonia causes severe diseases and poses threat on general 
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public safety and human health. In the USA, each year 560,000 people suffer from severe 

waterborne diseases, and 7.1 million suffer from a mild to moderate infections, resulting 

in estimated 12,000 deaths a year.321 Majority of waterborne diseases in the US are 

associated with the opportunistic pathogen Legionella, which may originate from 

drinking water contamination in distribution systems and premise plumbing. 

Conventional disinfectants (e.g., chlorine, chlorine dioxide, or ozone) can eliminate a 

wide spectrum of undesirable microorganisms; however, they also render the rise of more 

than 600 different disinfection byproducts (DBP)322-325 and increase microbial resistance 

to disinfectant chemicals.326-328 Most DBPs (e.g., trichloromethane, 

brominedichloromethane, dibromomethane and tribromomethane) are potentially 

carcinogenic.329 Conventional disinfection methods are becoming less efficient due to the 

evolution of antibiotic-resistant strains or genes.330-331 UV irradiation is an effective, safe, 

and environmentally friendly disinfection method but the lack of persistent antibacterial 

capacity generally causes high risk of regrowth, particularly in poor sanitation. Due to 

recent changes in water quality regulations, particularly the Long-Term 2 Enhanced 

Surface Water Treatment Rule (LT2ESWTR) and the Stage 2 Disinfectants and 

Disinfection Byproducts Rule (D/DBPR), water utilities may need to implement 

alternative treatment technologies to remain in full regulatory compliance.    

Besides regular microbial pathogen, antibiotic resistant bacteria (ARB) and 

antibiotic resistance genes (ARG) in the aquatic environment have also become an 

emerging contaminant issue, which has implications for human and ecological health. As 

antibiotics are widely applied to treat bacterial infections and due to the environmental 

accumulaiton and magnficaition, there is growing concern that unused antibiotics in the 
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surface water may be causing a risk to human health by promoting ARB and ARG.253 

ARB and ARG are formed due to the intensive application of antibiotics in 

pharmaceuticals and agriculture worldwide, which are not fully removed by wastewater 

treatment and released to the environment.253 Table 4.4 and 4.5 summarizes the reported 

perfomrane of EAOPs on bacterial and viral removal or inactivation. For example, 

Ti/RuO2 electrodes showed the ability to remove 96% of the Microcystis aeruginosa by 

anodic oxidation. BDD was also reported 98% removal of E.coli cells. 

4.1.6 Research objectives of this chapter 

To advance the electrochemically reactive membrane applications in micropollution 

treatment, this study employed a monolithic tubular ceramic membrane made of a 

Magneli phase suboxide of TiO2 (primarily of Ti5O9 and Ti4O7 85) to assess the 

degradation performances of a few biorefractory contaminants (i.e., 1,4-dioxane, dyes 

and algal metabolites) and bacteria in both dead-end and continuous filtration conditions. 

The Magneli phase TiO2 membrane or typically termed as reactive electrochemical 

membrane (REM) can generate •OH from water oxidation under anodic and cathodic 

polarization.26, 332 At the same time, the monolithic porous structure results in a high 

water flux in filtration (e.g., 5000-6000 L m-2 h-1 bar-1 or LMH bar-1), which makes the 

REM filtration an ideal platform for sustainable water treatment and chemical separation. 

In the past research, the Magneli phase REM has been demonstrated in the degradation of 

various micropollutants (e.g., tetracycline,333 p-substituted phenol,177 and N-

nitrosodimethylamine334). In this study, we first examined the DC voltage drop or decline 

along the REM surface experimentally and developed a mathematical model of electrical 

resistance using Matlab to provide new insight into in the future design of up-scaled 
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REM filters. We also measured the electrode potentials of REM under different DC 

current densities to explain the formation of potential oxidative species or radicals. For 

degradation performance assessment, we ran batch and continuous flow filtration 

experiments, in which the effects of DC current density and the initial pollutant 

concentration on the degradation efficiency were analyzed.  
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Table 4.1 Summary of Electrochemical Oxidation of PFASs Pollutants. 

 
 

Table 4.2 Summary of Electrochemical Oxidation of 1,4 dioxane. 

 

Reference Pollutant Catalyst 
Electrode 
Potential 

(V) 

Current 
Density 

(mA·cm-2) 

Removed 
(%) 

276  1,4-dioxane TiO2 8.0 - 14.0 3.5 - 8.3  70 

335 1,4-dioxane 
Ti/IrO2−Ta2O5 
with Aerobic 

Biodegradation 
3.0 - 8.0 0.2 - 2.3 41 - 62 

336 1,4-dioxane 
Boron-doped 

diamond 
(BDD) 

- 12 > 85  

337 1,4-dioxane 
Activated 

carbon 
electrode 

- - > 98.8  

Reference Pollutant Catalyst 

Electrod
e 

Potential 
(V) 

Current 
Density 

(mA·cm-2) 

Removed 
(%) 

338 
Perfluorooctanoic 
acid (C7F15COOH, 

98%) 
Ti/SnO2-Sb 1.492 5 - 40  76.9 - 98  

339 6:2 Fluorotelomer 
sulphonic acid 

BDD anode 
and a 

stainless-
steel cathode 

14  50  80  

340 Perfluorooctanoic 
acid (96%) 

UNCD -
tungsten 8 10 - 20 70.6 - 

81.8  
71 PFOS (40% in 

H2O) 
UNCD -
tungsten 4.6 - 12 3 - 50  60 - 98  

274 PFOA and PFOS 
stainless 
steel and 
Ti/RuO2 

4 - 13 0 - 20  90  
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Table 4.3 Summary of Electrochemical Oxidation of Dyes.  

 

 

Table 4.4 Summary of Electrochemical Oxidation of Bacteria/Genes  

Reference Pollutant Catalyst 
Electrode 
Potential 

(V) 

Current 
Density 

(mA·cm-2) 

Removed 
(%) 

349 Escherichia 
coli 

Platinum-tipped 
copper 5  - 100 

349 Pseudomonas 
aeruginosa 

Platinum-tipped 
copper 5  - 100  

271 Escherichia 
coli 

Carbon 
nanotubes 2 - 3  - 87 - 99 

350 Microcystis 
aeruginosa Ti/RuO2 9.2  10  96 

351 Escherichia 
coli BDD 2.8 - 3.1  1.5 - 13.3  98 

 

Reference Pollutant Catalyst Electrode 
Potential (V) 

Current 
Density 

(mA·cm-2) 

Remove
d  

(%) 

341-342 

Azoic Dyes 
(Naphthol and 

Diazo-
compound) 

Such as 
Methyl 

Orange (MO) 

Conductive 
Diamond 2.8 30  80 - 85 

343 Methyl 
Orange (MO) TiO2 1.5 0.055  53 

344-345 
Methylene 

Blue 
(Cationic dye) 

Ni and Fe 
bimetallic 
catalyst 

0.01 0.06 40 

346 

chromate Cr 
(VI) and azo 

dye Acid 
Orange 7 

Brevibacterium 
casei 1.5 1.47 25 - 30 

347-348 Cationic Red 
X-GRL 

Hydrothermal 
Synthesis of 
PbO2/RGO 

Nanocomposite 

1.0 1.77  30 
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Table 4.5 Summary of Electrochemical Oxidation of Ciruses 

Reference Pollutant Catalyst 
Electrode 
Potential 

(V) 

Current 
Density 

(mA·cm-2) 

Remove
d (%) 

349 Bacteriophag
e MS2 

Platinum-tipped 
copper 5  - 98 

349 PRD1 Platinum-tipped 
copper 5  - 98 

271 Bacteriophag
e MS2 

Carbon 
nanotubes 2 - 3  - 99 - 100 

352 Bacteriophag
e MS2 

Ti pellet with a 
thin layer of 

IrO2 –Sb2O5 –
SnO2 coating 

18  21.7  95 

 

 
 
Table 4.6 Summary of Electrochemical Oxidation of Ammonia, H2S or Na2S. 

Reference Pollutant Electrode 
Electrode 
Potential 

(V) 

Current 
Density 

( mA·cm-

2) 

Removed 
(%) 

353 Ammonia 
ion 

Cu as cathode, Ti/IrO2 as 
anode -1.8 - 0.2 45.13 100  

354 Ammonia 
ion Pt roughened 2.8 - 3.0 0.4 98 

355 Ammonia 
ion 

Cu/Zn as cathode, 
Ti/RuO2-Pt as anode 50 30 100 

356 Ammonia 
ion Ti/RuO2 as anode 0-50 20 88.3  

357 Ammonia 
ion Ni(OH)2 0.3 - 0.54 5 - 10 58 

357 Ammonia 
ion Ni0.8Cu0.2LHs -0.2 - 1.0 34 - 40 84 

358 Na2S Ru MMO 0.92 - 
0.17 20 4.8 

359 H2S 
Boron-(BOD) diamond 

as anode, graphite as 
cathode 

0.44 33.3 90 

360 H2S Carbon felt porous 0.01 - 0.1 19 - 57 83.4 
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4.2 Method and Materials 

4.2.1 Preparation of REM filtration system 

The bench top REM filtration system was assembled as we reported previously.176 

Briefly, a 10-cm long Ebonex one-channel tubular REM with the outer and inner 

diameters of 10 mm and 6 mm respectively were purchased from Vector Corrosion 

Technologies, Inc.85 This Ebonex REM has a median pore diameter of 1.7 μm with pore 

diameters of <10 nm accounting for >90% of the surface area. The Ti4O7 electrode had 

porosity of 30.7 ± 2.8% and a specific surface area of 2.8 ± 0.7 m2∙g-1, and a roughness 

factor of 619. To increase conductivity of REM and obtain a higher Ti4O7 content, the 

received REM electrodes was first soaked in a 0.625-M sodium hydroxide solution for 24 

hours to remove possible organic contaminants, and then rinsed with DI water. The clean 

electrode was reduced under a H2 flow at 1050 oC for 10 hours with a heating and cooling 

rate of 5oC∙min-1 in a tube furnace (MTI OTF-1200X). Other important characterization 

data were reported elsewhere.78, 83, 189  

 The REM filtration unit has a total liquid volume of 0.5 L, in which the Ebonex 

REM was placed in the center with a 57-mm diameter stainless steel cylinder case as the 

counter electrode.18, 19 There were approximately 23 mm spacing between REM and the 

counter electrode, which creates an isopotential surface on the outer surface of the REM. 

The REM filter was sealed up on one side by acrylonitrile butadiene styrene (ABS) and 

reinforced by Epoxy as shown in Figure 3.5 or Figure 4.3. The other end was also sealed 

with the same ABS plastic and Epoxy but one stainless steel tube or copper tube (1.1 mm 

in diameter) were inserted through the plastic gel to permit the permeate flow out.  
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The continuous filtration was run in a dead-end mode by filtering the feed 

solution through the REM surface under a constant vacuum pressure (75 kPa) using a 

check valve and a vacuum pressure gauge. Permeate flux was measured volumetrically 

by collecting the permeate weight data per minute using the WinWedge software and an 

Ohaus Adventurer Pro Balance AV8101 (Ohaus, USA).  

4.2.2 Porosity and mean pore size 

See Chapter 3 for details. 

4.2.3 Voltage drop measurement and calculation 

A conceptual model of membrane electrical resistance was established to compute the 

voltage distribution and drop along the length direction of the REM. As shown in Figure 

4.1, the REM filter is divided into multiple layers of circular discs with a thickness of dl. 

The electrical resistance is composed of water resistance (RW) and membrane resistance 

(RM), which can be integrated along the radial direction: 

2

1

2

0

ln
2 2

r
W W

W
r

dr rdR
rdl dl r

ρ ρ
π π

= =∫      (4.1) 

       2 2
1 2( )

M
M

dldR
r r
ρ

π
=

−
      (4.2) 

where dRW and dRM are the fluid resistance and the REM resistance at a depth of dl (e.g., 

dl = L/n and n =108); L is the length of the REM (10 cm); r1 and r2 are the outer and inner 

radius of REM; r0 is the radius of the stainless steel rod; ρW is the resistivity of water 

(Ω·m); and ρM is the resistivity of REM (Ω·m). Along the different distance (x) from the 

top of the REM, the applied voltage decline (αn) is equal to:  
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     (4.3) 

where Rx is the total resistance from point x to the bottom of REM. Using recursive 

algorithm to express the resistance at point x: 

The 1st dl layer: R1= WdR + MdR  

The 2nd dl layer: R2= MdR + R1// WdR  

The 3rd dl layer: R3= MdR + R2// WdR  

At point x: Rx= dRM + Rx-1// dRW   (4.4) 

where // x y
x y

x y

R R
R R

R R
=

+
. The corresponding voltage decline from point x to the bottom 

of REM could be expressed as: 

x+1dl: 1
//

//
x W

u x W

R R
dR R R

α =
+

 . Rx+dl = MdR + Rx// WR  

x+2dl: 2 1
//

//
x dl W

M x dl W

R R
dR R R

α α +

+

=
+

 . Rx+2dl = MdR + Rx+dl // WR  

x+3dl: 2
3 2

2

//
//

x dl W

M x dl W

R R
dR R R

α α +

+

=
+

 . Rx+3dl = MdR + Rx+2dl // WR  

At the bottom of REM: 1
//

//
L dl W

n n
M L dl W

R R
dR R R

α α −
−

−

=
+

 

Rtotal =RL =dRM+ RL-dl //RW     (4.5) 

A set of Matlab calculation code was developed based on Equation 4.1 to 

Equation 4.5 to calculate the voltages at different axil locations when connecting the DC 

power to one end or the top of the REM as shown in Figure 3.5. The Matlab code is 
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provided in appendix. This model allows us to evaluate the dependence of the voltage 

distribution on factors such as radius of stainless-steel cathode (r0), inner and outer radius 

of REM (r2 and r1), the applied voltage (Uinitial) and resistivity of liquid medium (ρW) and 

REM (ρM). The voltage decline at different locations of REM was also measured in the 

tap water with a DC power (the cell potential of 20 V or 15 mA·cm-2) applied to REM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 The conceptual model of electrical resistance along axil and radial directions 
of a hollow REM filter as well as the corresponding electric circuit diagram. 
 
 
4.2.4 Electrode potential measurement in relevant aqueous environment 

A two-electrode system was set up where the working electrode (REM) and the reference 

electrode are equipotential. Modified Bold's Basal Medium (MBBM) solution was used 
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as the electrolyte as shown in Figure 4.2. The MBBM contains Na+, K+, Mg2+, Fe2+, Zn2+, 

Mn2+, Cu2+, Co2+, Ca2+, H+, OH-, NO3
-, H2PO4

-, HPO4
2-, SO4

2-, Cl-, MoO4
2- and  

EDTA2-.73-75 A cylinder-shaped stainless-steel mesh as the counter electrode was placed 

around the REM in the center. A Silver/Silver chloride (catalog# 930-00015; Gamry) was 

the reference electrode.361 The reference electrode was immersed in the solution and the 

voltage between the reference and the working electrode was measured by a Multi-meter 

(EXTECH INSTRUMENTS, MN26T). The experimental temperature was kept at 21 ± 

1 °C. The conductivity of MBBM solution was measured by a Pasco conductivity meter 

(Model: #699-06621). All potentials were reported versus the standard hydrogen 

electrode (SHE).  

Uc=Ua+Ur+Urf     (4.6) 

where the Uc is the cell voltage between anode and cathode, Ua is the electrode potential 

for anode, Ur is the voltage loss by the liquid resistance, and Urf is the potential between 

anode and reference electrode. The Ag/AgCl reference electrode potential is +0.197 V at 

25 °C compare with Standard Hydrogen Electrode (SHE). 

4.2.5 Redox potentials of different reactive species 

The redox potentials of different reactive species that are involved in EAOPs on 

REM were indicated by the half reaction (EH) using the Nernst equation. For a redox 

reaction, 

[ ] [ ]aA bB n e h H cC dD− ++ + + = +     (4.7) 

The EH can be calculated by Equation 4.8:  

0
0.05916 { } { } 0.05916log

{ } { }

a b

H c d

A BE E pH
n C D n

 
= + − 

    (4.8) 
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where E0 is the standard potential at pH=0. In standard condition, EH can be simplified as 

follows: 

0
0.05916

HE E pH
n

= −
    (4.9) 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Experimental setup for electrode potential measurement (a) Schematic and 
circuit diagram. (b) The setup of this electrochemical cell. 
 
 
4.2.6 Assessment of chlorine species generation on REM 

Chlorite and chlorate production appears to involve oxidation of HOCl or HClO2 via 

direct electron transfer from the medium solution containing Cl−, followed by reactions 

of ClO• or ClO2• with •OH, which may react with ≡C•, =C•H, ≡C-O• and =C•HO from 

anodic polarization, and generate chlorine oxyanions (ClO− or ClO2
−).362  These chlorine 

oxyanions could further react with •OH and generate higher oxidized states (ClO2
− or 

ClO3
−).  
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To generate and measure chlorine species via surface electrochemical reactions at 

the REM and stainless-steel cathode, an electrochemical batch reactor (500 ml glass 

beaker) were used (Figure 4.3). The reactor was filled with the MBBM medium (the 

green liquid in Figure 4.3a), where the REM was immerged as the anode (the dark gray 

rod in the center) and a stainless-steel circular mesh as the cathode surrounded the REM 

with a spacing distance of 2.5 cm. The REM was applied under a constant current 

(100‒500 mA) using a DC power supply (Proteck P6035, Tempe, AZ) corresponding to 

cell voltages between 10‒20 V and for different times (30‒120 min) to generate different 

levels of chlorine species. The effective exposed surface area of the REM was 25.4 cm2. 

The conductivity of the MBBM medium was 1040±5 μm∙cm-1. 

The concentration of active chlorine and the other combined chlorine species 

generated was determined as the total Cl2 by a N, N-diethyl-p-phenylenediamine (DPD) 

colorimetric method, which included free chlorine, hypochlorous acid (HClO) and 

hypochlorite ion (ClO-). DPD is oxidized to form a red-violet product, which was 

measured by the total chlorine test kit (CN-70, HACH Co., Loveland, USA) (Figure 

4.4a).363 For a low range (0-0.7 mg∙L-1) of the total Cl2, 25 ml of the electrically treated 

MBBM medium was taken from the 1-L beaker and mixed with the DPD Total Chlorine 

Reagent Power Pillow. After 3 minutes, 15 ml of the mixed sample was filled into a test 

tube (Figure 4.4b), while another test tube was filled with DI water as a blank. Then, the 

lengthwise viewing adapter was placed into the color comparator (Figure 4.4c). The 

above-mentioned test tubes were then inserted into the color comparator and viewed 

through the openings in the front of the comparator. To obtain the reading, the disc was 

rotated to make two tubes have a color match. When the tubes had the same color from 
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(a) 
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Ti4O7 REM 
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(b) 

the openings, the total chlorine concentration could be read from the scale window 

(Figure 4.4d). The value was divided by 5 to obtain the total chlorine in mg∙L-1 unit. For a 

high range (0 - 3.5 mg∙L-1) of the total Cl2, the lengthwise viewing adapter was not used, 

and the final value did not need to be divided by 5. Other procedure was the same as that 

for the low range total Cl2 method. Concentrations of ClO2− and ClO3− were determined 

by ion chromatography (Dionex ICS-3000; Dionex IonPac AS16 column; KOH eluant; 1 

mL·min-1 eluant flow rate).362 

 

 

 

 

 

 

 

Figure 4.3 (a) Schematic and (b) experimental setup for the chlorine species generation 
detection. 

 

 

 

 

 

 

 

 

152 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 (a) The schematic of HACH total chlorine test kit. (b) 15 ml test tube used for 
color comparator. (c) Lengthwise viewing adapter used for low range total Cl2 
measurement. (d) Chlorine concentration reading from the scale window. 
 
4.2.7 Assessment of other ROS generation on the REM surface and stainless steel 

cathode and in the solution   

ROS, such as O3, H2O2, and •OH, O2
•−, and 1O2 were identified by direct or indirect 

methods. Same batch reactor and the same DC configuration for of chlorine species 

generation assessment was used. The concentration of O3 was measured using the indigo 
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method (EMD Millipore™ MColortest™ Ozone Test Kits) with an UV–vis 

spectrophotometer (Hewlett-Packard 8453, USA) and 10 cm cuvettes. This method is 

based on the quantitative decolorization of indigo trisulfonate as a result of its reaction 

with O3, which is observed at 600 nm and whose detection limit is about 0.01 mg·L-1.2 

All experiments for O3 generation were conducted at low temperature (10 °C), since our 

previous study revealed that the electrochemical generation of O3 is strongly dependent 

upon the temperature of electrolytic solution, such that a higher O3 concentration is 

achieved at lower temperature.364-365  

For O2
•−, 100 µM XTT (2, 3-Bis(2-methoxy-4-nitro-5-sulfophehyl)-2H-

tetrazolium-5-carboxanilide) was used as the indicator.366-367 The XTT stock solution 

(5.25 mM, Sigma-Aldrich) was stored for no longer than one week at 4oC.  After UV 

illumination for different periods of time, 1 mL of the suspension was sampled and 

injected into a quartz vial.  The concentration of the orange-colored XTT-formazan (the 

product resulting from the reduction of XTT by O2
•−) was measured using a UV-Vis 

spectrophotometer (Thermo Scientific Evolution 201) at 470 nm.  Exposure tests were 

run for different time periods up to 48 h until indicator degradation equilibrium was 

reached. Superoxide anion radicals (O2
·-) can be formed from potassium superoxide 

(KO2). Positive tests can be run with KO2 solution. Krebs-Ringer phosphate buffer (pH 

7.4) containing a fluorescence probe (1 μM of APF or 2 μM of DCFH) was added and 

vigorously mixed with the KO2 powder in the centrifuge tube. After reacting with KO2 

for 5 minutes, the fluorescence intensity was determined. To detect the reaction of APF 

with O2
·-, we compared the fluorescence increase of probes using the buffer with and 

without hydrogen NBs. 
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p-Chlorobenzoic acid (pCBA, 20 μM, Sigma-Aldrich) and furfuryl alcohol (FFA, 

0.85 mM, Sigma-Aldrich) were used as indicators for •OH and 1O2, respectively.366-367 

Standard solutions with different concentrations (0-150 μM) of pCBA (HPLC-grade, 

SPEX CertiPrep, USA) were prepared, and used to generate the calibration curve. The 

average, standard deviation, and limit of detection (LOD) were obtained from triplicate 

experimental results. LOD was calculated by: 

LOD = 3×STYX/slope of the standard curve 

where STYX is the standard error of the predicted y-value for each x in the  

regression.368-369 The concentrations of pCBA were analyzed by Alliance high 

performance liquid chromatography (LC/MS) waters 2695 system with Waters 2489 

UV/visible detector, according to the published methods. The mobile phase was 

acetonitrile/Direct-Q UV Millipore water 65:35 (v: v), and the used UV detector, flowrate, 

and injection volume was 234 nm, 1 ml.min-1, and 10 μl, respectively.370-371 All tested 

samples were filtered with 0.2-micron filter (Whatman Anotop 25 Plus syringe filter -

Sigma Alorich, USA) prior to testing by LC/MS system. 500 ml MBBM solutions with 

25 μM of pCBA in the beaker setup (same as Figure 4.3) were exposed to REM anode 

oxidation for 1h.366 Applied current density was 0.4 mA∙cm-2 (electrode potential 4.803 V 

as the result in Table 4.7a), according to radical formation requirement in Table 4.7a. 

Samples were collected at different reaction time and tested immediately. 

Alternatively, we can use the fluorescence probes to detect most of the probes for 

radicals. The fluorescence probes are reduced dyes, such as 2’7’-

dichlorodihydrofluorescein (DCFH), 3’-(p-aminophenyl) fluorescein (APF), 3’-(p-

hydroxyphenyl) fluorescein (HPF) and mitochondrial superoxide indicator (MitoSOX). 
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The reduced dyes exhibited little or no fluorescence due to disrupted π conjugation. 

However, upon reaction with radicals, the reduced dyes were oxidized, regenerating the 

extended π conjugation, which substantially increased the fluorescence intensity. For 

example, APF (final concentration 1 μM) was added to the Krebs-Ringer phosphate 

buffer (0.1 M, pH 7.4) and mixed with the electrochemical reactor. Then, the efficiencies 

of •OH production can be assessed by the increase of fluorescence intensity of oxidized 

APF. 

The formation of hydroxyl radicals (•OH) on the surface of REM can be detected 

by a photoluminescence (PL) technique with terephthalic acid as a probe molecule. 

Terephthalic acid readily reacts with •OH to produce highly fluorescent product, 2-

hydroxyterephthalic acid.372-373 The intensity of the PL peak of 2-hydroxyterephtalic acid 

is in proportion to the amount of OH radicals produced in water. This method relies on 

the PL signal at 425 nm of the hydroxylation of terephthalic acid with •OH generated at 

the water/REM interface with DC. Experimental procedures are as follows:374 The REM 

with its stainless steel cathode is inserted into a 500 mL of the 5×10-4 M terephthalic acid 

aqueous solution with a concentration of 2×10-3 M NaOH in a glass beaker. Connect with 

DC (5V) for 60 min. PL spectra of the generated 2-hydroxyterephthalic acid are 

measured on a Hitachi fluorescence spectrophotometer. After DC connection every 

10min, the reaction solution was filtrated to measure the increase in the PL intensity at 

425 nm excited by 315 nm light. 

Thermo Scientific™ Pierce™ Quantitative Peroxide Assay Kits were used to 

detect and measure hydrogen peroxide levels (H2O2) in samples using an iron (Fe) and 

xylenol orange (XO) reagent for microplates or tubes. The working reagent (WR) was 
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prepared by mixing Fe reagent and XO reagent at the ratio of 1:100 (v/v). Before 

measuring hydrogen peroxide levels, a calibration curve is required for Quantitative 

Peroxide Assay Kits. 30% (8.8 M) H2O2 stock solutions are serially diluted to achieve 10 

standards in the range of 1-1000 μM. WR was added into these standards at the ratio of 

1:10 (v/v). After 15-20 minutes incubation at room temperature, 700 μL of each sample 

was extracted and filled into plastic cuvette for UV-vis spectrum scan to find the peak of 

absorbance at 590 nm. Then, the wavelength of the peak was used as a fixed value for 

establishing the calibration curve. 

The production of oxidants other than ROS and active chlorine, such as S2O8
2−, 

C2O6
2−, and P2O8

4−, was also investigated because the importance of these oxidants in the 

chlorine-free disinfection process has been frequently reported.375 

To detect the reaction of hydrogen with Nitric oxide (NO•), NO donor 1-hydroxy-

2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7) (Dojindo Molecular 

Technologies, Inc. Japan) was dissolved in 0.1 M NaOH solution (Kanto Chemical Co., 

Inc. Japan) and was freshly prepared prior to each use. APF was added to the buffer with 

and without hydrogen NBs; 10–80 μM NOC7 was then added and the mixture was 

incubated for 30 minutes at 20 °C. 

 

4.2.8 Degradation of 1,4-dioxane by REM under different electrode potentials 

4.2.8.1 Analytical detection.  The concentration of 1,4-dioxane was determined by gas 

chromatography (Trace 1300, Thermo Scientific, US) using an TG-624 capillary column 

(Thermo Scientific, 30 m length×0.25 mm ID×1.4 μm film) equipped with a flame 

ionization detector (FID) with auto sampler (Thermo Scientific, A11310, US) and 
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GC/MS system (Agilent 7890A/5975C, Santa Clara, CA, USA). An HP-5MS capillary 

column (30 m × 0.25 mm × 0.25 µm) was utilized for separation on GC/MS system. The 

liquid samples from the REM filtration tests were obtained and subjected to liquid/liquid 

extraction using methylene chloride (MC). The extraction procedure is shown in Figure 

4.5.10 mL of water sample was placed in a 60 mL separatory funnel spiked with 20 μL 

surrogate (1,4-dioxane-d8). 2 g of sodium chloride was added and dissolved in the water 

sample to improve the extraction efficiency.376 Then, 20 mL of methylene chloride (MC) 

was added and shaken vigorously. A 2 μL of this organic phase was injected and 

analyzed by GC/MS.376 Purge flow set as 5.0 mL; the inlet temperature of 200 °C; the 

flow rate was constant at 6.0 mL min-1 with He as the carrier gas; the oven temperature 

program started at 110 °C for 1 min, then ramped to 180 °C at 15 °C·min-1, held for 4 

min. The detector temperatures were maintained at 250 °C. 5 standard samples with 

different concentrations from 0.39 to 100 ppm were prepared and injected to GC/MS. 

The standard curve based on GC/MS readings was used for concentration calculation in 

the following experiments. 
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Figure 4.5 Sample preparation procedure of 1,4-dioxane by liquid–liquid extraction. 
 

4.2.8.2 Batch reaction 

(a) The effect of current density.   

The concentration of 1,4-dioxane in DI water was 60 ppm. The batch reaction was 

operated in a 500-ml beaker as described in Section 4.2.1. The REM was operated at 3 

levels of electrode potentials (approximately 1.3 V-5 V) using a DC power supply 

(Proteck P6035, Tempe, AZ) corresponding to the current density between 1.17-9.34 

mA∙cm-2 and for different times (10‒40 min).  

Theoretically, to completely degrade 50 ppm dioxane in 500 ml solution under 23 

mA current, a reaction time of 20 min is required, which is computed as follows: First, 

according to the half-reaction of 1,4-dioxane degradation in Equation 4.10, each 1,4-

dioxane molecule provides 20 electrons. The molecular weight of 1,4-dioxane is 88.11 

g·mol-1. If the total volume of 1,4-dioxane was 500 ml, the total electrons that can be 

transferred to REM can be calculated: 
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88.11 g mol

=× ⋅
×

⋅
 

Given that one electron has 1.6×10-19 C of charge and the Avogadro constant is 

6.02×1023 mol-1, the total transferrable amount of charges could be calculated as 

following: 

2.837×10-4 mol×6.02×1023 mol-1×1.6×10-19 C=27.326 C 

The reaction time (t) is equal to 20 min (=Q/I), where Q is the total charge 

(27.326 C) and I is the DC current (23 mA).  

(b) The COD changes.  

To measure the COD changes under batch reactions with REM, 500 ppm 1,4-dioxane 

was present in the reaction solution, which was treated under three current densities from 

5 – 15 mA∙cm-2. COD was calorimetrically tested according to the USEPA Reactor 

Digestion Method 8000 (DOC316.53.01099)377 using a Hach COD kit (HR+) on a UV-

vis spectrophotometer (model Evolution 201, Thermo Scientific).378 Briefly, liquid 

sample was added in to Hach COD vials and heated to 150 oC for 2 hours in Hach COD 

reactor (16000 series). After cooling down, the absorbance of the samples in the vials 

were tested on the UV-vis spectrophotometer at 620 nm. Sample’s COD levels could be 

calculated from a standard curve using samples with known COD values. 

 

4.2.8.3 Continuous dead-end filtration. Filtration unit was prepared following the 

design in Chapter 3, as illustrated in Figure 3.8. The 1,4-dioxane solution was filtered 

through the surface of the REM under a constant pressure of 10psi using an adjustable 
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check valve and a a booster pump (aquatic® CDP8800) in dead-end filtration mode. The 

resulting permeate flux was approximately 0.213 m3·m-2·h-1. Every 10 minutes the 

permeate solution was collected and stored in a cleaned container, which was sent to 

GC/MS for analysis. Three initial concentrations of 1,4-dioxane were chosen (500 ppb, 

250 ppb, and 125 ppb). The filtration was operated with a constant current density of 15 

mA∙cm-2 starting from 10 min.256 The aqueous samples were taken every 10 minutes and 

analyzed by GC/MS. 

 

4.2.6 Degradation studies with Dyes  

4.2.6.1 Analytical detection. Two cationic dyes, Rhodamine B (RB) and Methylene Blue 

(MB), and one anionic dye, Orange II (OGII) were selected for the degradation studies. A 

UV/vis spectrophotometer (Thermo Scientific Evolution 201) was used for the 

determination of dye discolorization kinetics. All samples were analyzed by a UV-vis 

spectrometer and a TOC analyzer, along with the untreated dye solution and physically 

filtered solution (without DC) as control tests. The corresponding absorbance wavelength 

is at 550 nm for RB, 664 nm for MB and 486 nm for OGII.379-380 Five different 

concentrations (10 ppm, 5 ppm, 2 ppm, 1 ppm, and 0.25 ppm) of each dye were used to 

build the calibration curves.  

Fluorescence spectroscopy is a relatively low-cost and easily handled analysis, 

providing emission-excitation matrices (EEMs) that identify different fluorophores and 

helps analyze the species of organic matters and their degradation byproducts. EEMs of 

Rhodamine B samples with/without REM treatment were measured in a 1 cm quartz 

cuvette (4 mL volume) using a Hitachi FL4500 fluorescent spectrophotometer. EEMs 
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were measured for excitation wavelengths of λex = 200-400 nm at 5 nm increments across 

an emission range of λem = 280-500 nm at 2 nm intervals.381. Excitation and emission slit 

widths were set to 5 nm, with a photomultiplier tube (PMT) voltage of 700 V.381  

 

4.2.6.2 Batch reaction. Similar to the 1,4-dioxane batch test, 500 ml dye solution 

with an initial concentration of 5 ppm for three kinds of dyes was prepared in the same 

REM filtration unit. 12.52 mA∙cm-2 (250 mA) and 25.3 mA∙cm-2 current density (500 mA) 

were used to examine the current density effect.  

 

4.2.6.3 Continuous dead-end filtration 

In continuous filtration tests, 25.3 mA∙cm-2 current density (500 mA) was selected and 

inlet concentration of dyes was fixed at 5 ppm. TMP was maintained constant at 75 kPa. 

The resulting permeate flux was approximately 0.213 m3·m-2·h-1. Filtration was lasted for 

one hour. Every 10 minutes filtered solution was collected and the collection container 

was cleaned for next sample.  

 

4.2.6.4 Continuous dead-end filtration with extended reaction time 

Besides the above regular dead-end filtration test, we also conducted a dead-end filtration 

with repeated filtration or treatment of the collected permeate solution. The intent was to 

analyze the degradation of dyes and their byproducts in a continuous dead-end filtration 

for an extended treatment time as opposed to that for the filtrate water to pass through the 

REM membrane once, which might be too short to achieve substantial degradation of 

dyes. To evaluate the degradation kinetics in in this continuous dead-end filtration with 
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external circulation of the collected permeate, we first defined and calculated the 

treatment time, which is related to the hydraulic retention time (HRT): 

HRT membraneV
Q

=  

where Vmembrane is the void volume in the REM membrane (2.827×10-6 m3); and Q is the 

flow rate (6.99×10-6 m3·min-1). In this experiment, we prepared 500 ml of the Rhodamine 

B (RB) solution with an initial concentration of 20 ppm. Other conditions were the same 

as above mentioned in section 4.2.6.3. The 500-ml solution was first filtered and the 

concentration of Rhodamine B (RB) was measured in the permeated. Then, the treated 

500 ml solution was filtered for the second round under the same condition to measure 

the further decline of the Rhodamine B (RB) concentration as well as the TOC level 

changes. The result of the dye concentration was plotted against the number of filtration 

times with each filtration cycle accounting for a reaction time of one HRT (0.4 min). 

 

4.2.7 Degradation of geosmin and MIB 

4.2.7.1 Analytical detection  

For sample extraction, purification and concentration, a liquid-liquid extraction method 

was adopted.382 Briefly, 50 mL of the water sample and 5 g of sodium chloride were 

placed in a 50-mL extraction glass flask. The sample was mixed thoroughly and then 

filled with 1 mL n-Hexane, followed by mechanical shaking for 60 min. 0.5 mL of 

sample in hexane was taken out after extraction and 1 µL of extracted sample solution 

was injected into the GC–MS system (Agilent 7890A/5975C, Santa Clara, CA, USA) to 

measure the concentrations of 2-MIB and geosmin.383 An HP-5MS capillary column 

 (30 m × 0.25 mm × 0.25 µm) was utilized for separation. The GC operating conditions 
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were as follows: the temperature of the injector was 270 °C; the carrier gas was helium at 

a flow of 1 mL min−1; the oven was programmed to start at 60 °C with a 4 min hold, and 

then the temperature was increased at a rate of 10 °C min−1 to 200 °C, followed by 20 °C 

min−1 to 280 °C. The electron impact (EI)-MS conditions were as follows: ion source 

temperature of 230 °C; MS transfer line temperature of 280 °C; solvent delay time of 5 

min; ionizing voltage of 70 eV; a splitless mode was selected due to the low amount of 

analytes. Selected ion monitoring (SIM) mode for 2-MIB and geosmin were selected to 

monitor specific ions: m/z = 112 (GSM), m/z = 95 (2-MIB). The ions monitored in SIM 

were m/z 111, 112, 125 amu for geosmin, 95, 107, 108 for 2-MIB, respectively. The full 

scan mass spectra were obtained at an m/z range of 50–350 amu to analyze all potential 

degradation byproducts.382 

The molecular weight of GSM is 182.3 g·mol-1. If the total volume of GSM was 

500 ml, the total electrons that can be transferred to REM can be calculated: 

+
12 22 2 2

1 23 3C H O + H O= CO +H
68 68 17

e−+    

-1
-6

-1

500 ml 50 μg L 9.3 10 mol
182.3 g mol

=× ⋅
×

⋅
 

Given that one electron has 1.6×10-19 C of charge and the Avogadro constant is 

6.02×1023 mol-1, the total transferrable amount of charges could be calculated as 

following: 

9.3×10-6 mol×6.02×1023 mol-1×1.6×10-19 C=0.89 C 
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4.2.7.2 The degradation performance in continuous dead-end filtration 

The geosmin and MIB solutions at an initial concentration of 200 ppb were filtered 

through the surface of the REM under a vacuum pressure of 75 kPa and a resulting 

permeate flux of approximately 0.213 m3·m-2·h-1 using the same unit as shown in  

Figure 4.3. At the initial 5 min, no DC current was applied to examine the rejection of 

geosmin and MIB by physical filtration on REM. Then, a positive DC current at  

25.3 mA∙cm-2 run through REM beginning from 10 min. The permeate solution was 

collected and was sent to GC-MS to measure the residual concentrations of geosmin and 

MIB as well as the speciation of their degradation byproducts.   

4.2.8 Cyclic voltammetry 

To analyze electron transfer-initiated chemical reactions, cyclic voltammetry (CV) were 

carried out on a CHI 660 electrochemical workstation (CH Instrument, USA).194 The 

traditional three-electrode system was the same setup as described in Chapter 3. All the 

measured electrochemical potentials were referenced to the Ag/AgCl electrode potential, 

which is assumed to be zero. The electrolyte solution was 10 mM K3Fe(CN)6
3- (a redox 

mediator) in 0.5 M KCl as a supporting electrolyte.195 The REM filter was cut to 5 cm in 

length, 1 cm in outer diameters and 0.5 cm in inner diameters to fit the container, and was 

immersed in the supporting electrolyte as shown Figure 3.4. The CV curves were 

obtained by sweeping voltages from -1.5 to 1.5 V versus Ag/AgCl at a scan rate of 0.5 

V·s-1. Based on the acquired CV data, the electroactive surface area of the Ti4O7 REM 

can be estimated from the calculation of the double layer capacitance (Cdl):190 (Ia - Ic)/2 = 

Cdl· v, where Ia and Ic are the measured anodic and the cathodic plateau currents at a 

given potential, respectively, and v is the scan rate (V·s-1). The electroactive surface area 

165 



was determined by dividing the measured capacitance by 60 μF·cm-2, a standard value for 

metal oxides.190 

 We measured CV in the presence of a few model water pollutants (i.e., 1,4-

dioxane, Rhodamine B (RB) and Methylene Blue (MB), and Orange II (OGII), geosmin 

and MIB). These pollutants were spiked into the 0.5 M KCl solution at 20 ppm except at 

200 ppt for geosmin and MIB. Control tests were conducted in 0.5 M KCl solution. 

Several cycles were run for each pollutant. These CV curves will help determine the 

proper levels of applied electrode potentials for explore the activity of the anode for the 

oxidation of different pollutants.   

4.2.9 Bacterial inactivation and removal studies.  

Chlorine is generally applied to disinfect water because it is readily available and 

effective.253 To quantify the effect of E. coli concentration, 60 petri dishes with Luria 

broth-agar (LB Agar) layer were prepared for culturing. Efficiency of inactivation was 

tested by batch reaction and continuous filtration. The batch reaction test used the same 

instrument in Sub-Section 4.2.5.1, in which REM was submerged in 500 ml E. coli 

suspension with approximately 103 and 104 cfu·ml-1 concentration under current density 

from 5.02 mA·cm-2 to 25.26 mA·cm-2 (current at 100 mA to 500 mA) for various time. A 

magnetic stirrer was put in the container to insure mixing.  

The continuous filtration test used the same instrument in Sub-Section 4.2.5.2, 

where E. coli suspension (approximately 103 and 104 cfu·ml-1) was forced flow through 

the REM pores by 75 kPa vacuum. REM was also charged with 5.02 mA·cm-2 to 25.26 

mA·cm-2 density of current. The result was indicated by colony counting on LB-Agar 

petri dishes after spreading and 24 hours culturing. 
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4.2.10 Degradation of NOM 

Several analytical techniques have been applied for the characterization of NOM and for 

monitoring the changes occurring during the application of different water treatment 

stages (Matilainen et al.2011).384 Dissolved organic carbon (DOC) and absorbance at 254 

nm (UV254) are the most commonly controlled parameters, utilized for the optimization 

of respective treatment processes. The ratio of UV254 to DOC concentration (SUVA) is 

also used as a surrogate for NOM molecular weight, aromatic content, and 

hydrophobic/hydrophilic characterization. Fluorescence spectroscopy is a relatively low-

cost and easily handled analysis, providing emission-excitation matrices (EEMs) that can 

constitute an identity of NOM origin and recognize the different fluorophores. EEMs 

coupled with multi-way data analysis (e.g., PARAFAC) can be also used to quantify 

different NOM fractions, such as humic-like and protein-like (Fellman et al. 2010, 

Stedmon and Bro2008).385-386 Size exclusion liquid chromatography combined with 

organic carbon detector (LC-OCD) is possibly the most sensitive and reliable technique 

for the detailed NOM characterization. LC-OCD fractionates NOM, based on molecular 

weight, into five separate groups: biopolymers, humic substances, building blocks, low 

molecular weight humic substances and acids, and low molecular weight neutrals (Huber 

et al. 2011).317, 387 

4.2.11 Bacteriophage removal studies  

Bacteriophage male specific type 2 (MS2) (ATCC 15597-B1) and its host bacterium 

Escherichia coli (E. coli) cells (ATCC 15597) were obtained from the American Type 

Culture Collection (ATCC, Rockville, MD). E. coli cells in log phase of growth in tryptic 

soy broth solution were collected as the host cells. MS2 were grown in E. coli 
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suspensions and purified by sequential centrifugation and filtration with minor 

modifications (Li et al., 2008).388 Briefly, after cell lysis and virus release, debris was 

removed via microfiltration through 0.2-mm and 0.05-mm low-protein-binding 

polycarbonate track-etched membranes (Whatman Nucleopore, USA). Virus was 

concentrated on a 100-kDa membrane (Koch Membranes, USA) in a Millipore ultra-

microfiltration unit (Whatman Nucleopore, USA). The virus accumulated on the 

membrane surface was washed extensively with sterilized 1 mM NaCl solution to remove 

nutrients and organic matters. The final MS2 stock was stored in 1-mM phosphate 

buffered saline solution (PBS, pH 7.3) at 4 ℃. MS2 was enumerated by the double agar 

layer procedure USEPA Method 1602. Briefly, concentrated MS2 were sequentially 

diluted with the same PBS and cultivated with E. coli cells at 37 ℃ for 16 h. Plates with 

between 20 and 200 plaques were used for calculating the concentration of MS2. The 

average MS2 concentration in the stock suspension was 1.5 ×108 PFU·mL-1. 

 

4.3 Results and Discussion 

4.3.1 Voltage decline and influencing factors 

Figure 4.6a shows the voltage decline on the REM with 10 cm in length when immersed 

in tap water with a cell potential of 20 V DC power applied. Resistivity of tap water and 

the wetted Ti4O7 REM were 290 Ω·m and 0.24 Ω·m respectively as measured by a 

PASCO conductivity probe. According to Equation 4.1 to Equation 4.5, when applying 

the following conditions (20 V DC power was applied to the top of REM; the radius of 

the stainless steel rod (r0) was 0.15 cm, the outer and inner radius of REM (r1=0.5 cm and 

r2=0.3 cm), the voltage may decline from 20 V to 19.5 V from the top to the bottom part 
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of the REM filter as shown in blue solid line in Figure 4.6a due to the electrical resistance 

of REM. The experimental data points in Figure 4.6a showed a similar extent of voltage 

drop along the length distance with the prediction from the model calculation.  

Other configurations were also calculated by the Matlab code to observe the 

influences of different factors. Figure 4.6b-4.6d shows the calculated voltage decline 

when varying the REM’s outer or inner diameters and the diameter of stainless-steel rod 

(r0). The result shows the increasing r0 from 0.05 to 0.2 cm, although not significant, can 

increase the voltage drop. The reason of this phenomenon is due to the resistance 

increasing of liquid between membrane and cathode according to Equation 4.1. As the 

inner radius of membrane (r2) was fixed, the cross-sectional area of liquid was decreased 

with the increasing r0, which caused the increasing resistance according to Pouillet's law. 

Since resistivity of simulated liquid was far higher than cathode, resistance decrease of 

cathode was ignorable compare to resistance increasing of liquid, which could explain 

Figure 4.6b.   

Decreasing the REM’s outer diameter (r1) from 0.8 to 0.4 cm caused a greater 

extent of voltage decline because of the decreasing resistance of REM according to 

Pouillet's law. For the same reason, increasing the REM’s inner diameter from 0.2 to 0.4 

cm slighted increased the voltage decline. Figure 4.6e shows under different input cell 

potentials, the voltage decline was similar and does not significantly depend on the 

applied voltage.  

Figure 4.6f and Figure 4.6g shows the dependence of voltage decline on Wρ  and 

Mρ . Obviously, increasing the liquid medium’s resistivity can lead to substantial voltage 

drop due to the increasing electrical resistance from liquid. Likewise, increasing the 
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REM’s resistivity also significantly reduce voltage along the length of REM due to the 

increasing energy loss by the internal resistance of REM. These results as well as the 

mathematical model calculations provide new potential insight into the rational design of 

REM filtration unit of different scales or configurations of electrodes/electrolyte.  
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Figure 4.6. (a) Voltage decline data from 
experiment of 10 cm REM in tap water, 
with 20V DC power input while radius of 
stainless steel cathode (r0) fixed at 0.15 
cm, outer radius of REM (r1) fixed at 0.5 
cm and inner radius of REM (r2) fixed at 
0.3 cm; (b)-(g) Matlab calculation of 
voltage decline (the overall cell potential) 
with various factor: (b) various r0; (c) 
various r1; (d) various r2; (e) various input 
voltage Uinitial; (f) various resistivity of 
liquid filtrate ρW; (f) various resistivity of 
REM ρM. 
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4.3.2 All potential radicals and non-radicals and their redox potentials/free energies. 

Table 4.7 shows the redox potentials of all possible radicals and non-radicals at standard 

conditions. The redox potentials at pH 7 were calculated by the Nernst equation in 

Equation 4.9.  

 

Table 4.7a Half-reactions and redox potentials of different radicals at pH 0 and pH 7 

 

Radical species half-reaction EH
0 (pH 0) ∆G/n (kJ∙mol-1) EH

0 (pH 7) 
3

2 2O e O •−− →+ ←  -0.16 +15.42 0.83 
3

2 2O H e HO •+ − →+ + ←  +0.12 -11.57 -0.293 
1

2 2O e O •−− →+ ←  +0.83 -80.01 0.83 

2 2O e O+ − →+ ←  +3.20 -308.45 3.2 

OH e OH• − −→+ ←  +1.90 -183.14  -0.224 

2OH H e H O• + − →+ + ←  +2.72 -262.19 2.307 

O H e HO•− + − −→+ + ←  +1.77 -170.61 1.357 

2 2HO e HO− −→+ ←  +0.75 -72.29 0.75 

2 2 2HO H e H O+ − →+ + ←  +1.50 -144.59 1.087 

2 2 22 2 2H O H e H O+ − →+ + ←  +1.77 -170.61 1.357 

2 2 2H O e OH H O•− →+ +←  +0.72 -69.40 0.72 

3 2 22 2O H e O H O+ − →+ + +←  +2.08 -200.50 1.667 

3 3O e O •−− →+ ←  +1.00 -96.39 1 

3 2O H e O OH•+ − →+ + +←  +1.34 -129.17 0.927 
2

4 4SO e SO•− − −→+ ←  +2.437 -235.13 2.437 
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Table 4.7b Half-reactions and redox potentials/free energies of non-radical species 

 

 

 

 

 

 

 

 

 

 

 

Non-radical species half-reaction EH (pH 0) ∆G/n (kJ∙mol-1) EH  
(pH 7) 

2 24 4 2O H e H O+ − →+ + ←  +1.23 -118.56 0.817 

2 2 22 2O H e H O+ − →+ + ←  +0.70 -67.47 0.287 

3 2 22 2O H e O H O+ − →+ + +←  +2.076 -200.30 1.663 

2 2 2ClO H O e Cl OH− − − −→+ + +←  +0.841 -81.14 0.427 

22HClO H e Cl H O+ − −→+ + +←  +1.482 -142.99 1.069 

2 2( )ClO aq e ClO− −→+ ←  +0.954 -92.05 0.954 

4 28 8 4ClO H e Cl H O− + − −→+ + +←  +1.389 -134.02 0.976 

2 ( ) 2 2Cl g e Cl− −→+ ←  +1.358 -131.03 1.358 

4 2 24 3 2MnO H e MnO H O+ − →+ + +←  +1.679 -162.00 1.128 
2

4 28 5 4MnO H e Mn H O+ − +→+ + +←  +1.507 -145.40 0.8462 
2 3
4 28 3 4FeO H e Fe H O− + − +→+ + +←  +2.20 -212.27 1.099 

2
4 2 24 2 ( ) 2SO H e SO aq H O− + − →+ + +←  +0.17 -16.40 -0.656 
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4.3.3 Electrode potential measurement in relevant aqueous environment. 

Table 4.8 shows the measured electrode potential. The MBBM conductiviy was 

27000±280 μS∙cm-1. Calculated solution resistivity was 3.7×10-11 Ω∙cm. Since the 

distance between anode and reference electrode was 1mm, the resistance between them 

was the 3.7×10-12 Ω. The voltage output of the DC generator was selected between 0.5 V 

to 29 V. The corresponding current density was 0.00616 mA∙cm-2 to 25.263 mA∙cm-2. 

The calculated electrode potential for both anode and cathode was from 0.303 V to 

around 29 V. However, the voltage measure from reference electrode shown that the 

potential dropped dramatically on the anode when the output voltage raised, while stay 

almost the same on the cathode (Figure 4.7). By comparing Figure 4.7 to Table 4.7, it can 

be concluded that if cell voltage was maintained above 5V, all half reactions in Table 4.7 

could proceed and generate ROS. 
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Table 4.8a Electrode potentials for REM anode under different current densities. 

Step Operation and 
measurement items Data 

1 
Distance between 

reference electrode and 
anode (mm) 

1±0.1 

2 Solution conductivity 
(μS∙cm-1) 27000±280 

3 Solution resistivity 
(Ω∙cm) 3.7×10-11 

4 
The resistance between 

anode and reference 
electrode (Ω) 

3.7×10-12 

5 
Current flow between 
anode and reference 

electrode (mA) 
0.0123 0.33 8 100 200 300 400 500 

6 Current density 
(mA∙cm-2) 0.00616 0.016 0.4 5.053 10.105 15.158 20.210 25.263 

7 Voltage loss in 
resistance, Ur, (V) 

4.551×10-

16 
1.221×10-

14 
2.96×10-

13 
3.7×10-

12 7.4×10-12 1.11×10-

11 
1.48×10-

11 
1.85×10-

11 

8 
Cell voltage, Uc, 

between anode and 
cathode (V) 

0.5 2 5 10 14 20.4 25 29 

9 

Insert reference 
electrode near anode at 
the distance as shown 
above. Measure the 
potential between 

anode and reference 
electrode, (V) 

0.4  
±0.05 

1.54 
±0.06 

4.2  
±0.1 

7.2  
±0.1 

8.45 
±0.15 

11.5  
±0.3 

12.3 
±0.2 

13.5  
±0.1 

10 Electrode potential for 
anode, Ua (V) 0.303 1.803 4.803 9.803 13.803 20.203 24.803 28.803 
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Table 4.8b Electrode potential for the stainless steel cathode. 

Step Operation and 
measurement items Data 

1 
Distance between 

reference electrode and 
cathode  (mm) 

1±0.1 

2 Solution conductivity 
 (μS∙cm-1) 27000±280 

3 Solution resistivity 
(Ω∙cm) 3.7×10-11 

4 
The resistance between 

anode and reference 
electrode (Ω) 

3.7×10-12 

5 
Current flow between 
anode and reference 

electrode (mA) 
0.0123 0.33 8 100  200  300  400  500  

6 Current density 
(mA∙cm-2) 0.00616 0.016 0.4 5.053 10.105 15.158 20.210 25.263 

7 Voltage loss in 
resistance, Ur, (V) 

4.551×1
0-16 

1.221×
10-14 

2.96×10-

13 
3.7×10-

12 7.4×10-12 1.11×10-11 1.48×10-11 1.85×10-11 

8 
Cell voltage, Uc, 

between anode and 
cathode (V) 

0.5 2 5 10 16.5 21 26 29.5 

9 

Insert reference 
electrode near cathode 

at the distance as 
shown above. Measure 
the potential between  
cathode  and reference 

electrode, (V) 

0.425 
±0.1 

1.75 
±0.2 4.5 ±0.2 9.2 

±0.1 
15.4 

±0.15 
18.89 
±0.24 

24.74 
±0.32 

28.28 
±0.14 

10 Electrode potential for 
anode, Ua 

0.303 1.803 4.803 9.803 16.303 20.803 25.803 29.303 
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Figure 4.7. Electrode potentials for REM anode (a) and stainless steel cathode (b) in 
MBBM medium. Black dots are the applied cell voltage (Uc) and red dots are the 
electrode potential (Urf). 

 

4.3.4 Assessment of  the ROS. 

4.3.4.1 Measurement of hydroxyl radical  

Calibration curve/LOD , according to the following Equation 4.11: 

LOD bS k
m
×

=       (4.11) 

where k is a factor with the value of 3, Sb is the standard deviation of the blank and m is 

the slope of the calibration graph in the linear range.   

 

 

 

 

 

 
Figure 4.8 The pCBA concentration changes over the treatment time on REM under a 
current density of 25.3 mA·cm-2 in algal medium.  
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4.3.4.2 Measurement of H2O2  

Figure 4.9a shows the characteristic absorbance of the solution where H2O2 reacted with 

an iron (Fe) and xylenol orange (XO) reagent at 590 nm, which indicates the presence of 

H2O2. Figure 4.9b is a calibration curve with different concentrations of H2O2 spiked in 

the solution to react with the reagent. Before 300 µM of H2O2, the curve is linear and 

after that leave, the curve levels off and declines at high H2O2 concentrations, which may 

resulted from the rapid self-decay of H2O2. The LOD for the linear range is determined to 

be 4.413±1.07 μM. 

 

 

 

 

 

Figure 4.9 (a) Spectral and peak position of H2O2. (b) The calibration curve for the H2O2 
concentration versus absorption. 
 

Figure 4.10 shows the H2O2 production in REM unit under anodic polarization when 

two different current densities were applied to REM. At a high current density (25.26 

mA∙cm-2), up to 55 μM of H2O2 was produced, whereas the H2O2 production reached 

only 10 μM at 5.02 mA∙cm-2. Clearly, higher current densities lead to greater electrode 

potentials, which promotes the formation of more powerful radicals such as •OH and 

catalyze the production of H2O2. As comparison, a modified graphite electrode could 

produce 26.27 mM H2O2 under 5.02 mA∙cm-2 in an electro-Fenton reaction.389 
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Figure 4.10 Concentrations of the produced H2O2 over time when the REM was 
subjected to DC currents of 5.02 mA∙cm-2 and 25.26 mA∙cm-2. 
 
 
4.3.5 Detection of the chlorine species generation electrochemical processes. 

Figure 4.11 compares the total chlorine concentrations versus reaction time under two 

different current densities. Applying the lower current density of 5.02 mA∙cm-2, the total 

chlorine production was 0.35 mg∙L-1 in two hours. This result indicates that it is possible 

to promote oxidation of small amounts of chlorine species even at low current densities. 

As expected, at a higher current density of 25.26 mA∙cm-2, the total chlorine production 

was 1.5 mg∙L-1 in two hours.390 This result is comparable with boron-doped diamond 

(BDD), which was reported has 0.25 to 0.33 mg∙L-1 with 167 mA∙cm-2 by one hour 

electrochemical reaction in synthetic conductive waters.391 
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Figure 4.11 The total chlorine concentrations versus reaction time in MBBM medium 
solution under 5.02 mA∙cm-2 and 25.26 mA∙cm-2 density. 
 
4.3.6 Assessment of  1, 4-dioxane degradation  

4.3.6.1 Calibration curve of 1,4-dioxane. Figure 4.12 shows the standard curve of 1,4-

dioxane detected by GC-FID with the fitting equation shown in the graph. The fitting 

result in an correlation coefficient (R2) of 0.997, indicating that the calibration equation 

could account for 99.7% of the errors. The LOD of 1,4-dioxane by GC-FID is calculated 

from the date in the linear range of the calibration plot, according to the following 

Equation 4.11: 

LOD bS k
m
×

=       (4.11) 

k is a factor with the value of 3, Sb is the standard deviation of the blank and m is 

the slope of the calibration graph in the linear range. The LOD in this experiment was 

988.7 ppb.  

180 



0 20 40 60 80 100

0

1

2

3

4

 

In
te

ns
ity

 (p
A.

m
in

)
Concentration (ppm)

C (ppm)=26.628I-0.6749
R2=0.997

 

 

 

 

 

 

Figure 4.12 Calibration curve of 1, 4-dioxane. 

4.3.6.2 Batch degradation test. Figure 4.13a shows the degradation of 1,4-dioxane 

by anodic oxidation under different current densities almost followed a zero order of 

kinetics as indicated by the linear concentration decline.392 Linear regression coefficients 

(R2) were 0.93 - 0.95 for the three fitting equations. The corresponding electrode 

potentials were 1.3 V-5 V (1.17 to 9.34 mA·cm-2 current density), which means that 

electrode potential from 1.3 V became effective to degrade 1,4-dioxane with REM anode.  

Figure 4.13b shows the 1,4-dioxane concentration decrease with three different 

initial concentration (50 ppm, 25 ppm, and 12.5 ppm) under a fixed current density of 15 

mA∙cm-2. The concentration remained unchanged during the first 10 min with no DC 

currents and began to decrease progressively for three conditions. Figure 4.13c compares 

the removal of 1,4-dioxane expressed as the COD reduction after 60 minutes of anodic 

reaction with current densities from 0 - 15 mA∙cm-2. The initial concentration of 1,4-

dioxane was 500 ppm, which has a corresponding COD of approximately 1100 mg·L-1.393 

At 15 mA∙cm-2 current density the 1,4-dioxane concentration dropped to approximately 

990 mg·L-1.  
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Figure 4.13 (a) The concentration decrease of 1,4-dioxane under different current 
densities over 40 min of batch reactions with an initial concentration of 60 ppm. (b) The 
1,4-dioxane concentration decrease with different initial concentrations and a constant 
current density of 15 mA∙cm-2 starting from 10 min. (c) COD decline in the 1,4-dioxane 
solution after 60 min of batch reactions under different current densities. * labels the 
results that are significantly different from the control group (no DC) according to the t-
test (p<0.05). 

 

(a) 

(c) 

0 5 10 15
900

950

1000

1050

1100

1150

CO
D 

(m
g·

L-1
)

Current Density (mA·cm-2)

* 

* 

* 

y = -0.5908x + 61.07 
R² = 0.95 

 
 y = -0.5364x + 59.436 

R² = 0.95 
y = -0.5629x + 58.824 

R² = 0.93 
 
 0 10 20 30 40

35
40
45
50
55
60
65

 1.3V (1.17 mA·cm-2)
 3.0V (5.02 mA·cm-2)
 5.0V (9.34 mA·cm-2)

Co
nc

en
tr

at
io

n 
(p

pm
)

Time (min)

(b) 

0 10 20 30 40 50 60

10

20

30

40

50
 50ppm initial
 25ppm initial
 12.5ppm initial

C
on

ce
nt

ra
tio

n 
(p

pm
)

Time (min)

w/o DC 

182 



4.3.6.3 Continuous dead-end filtration. Figure 4.14 shows C/C0 value of 1,4-

dioxane concentration after continuous dead-end filtration with current density from 0 to 

15 mA∙cm-2 with REM served as anode and cathode. The result indicated physical 

filtration without DC could remove 40% of 1,4-dioxane, which could also the result of 

REM structure absorption. When REM served as anode, as the current density increasing 

from 5 to 15 mA∙cm-2, appreciable decrease of 1,4-dioxane concentration up to 90% and 

there was no significant flux decline during the filtration process. Even though the idea of 

REM served as cathode with the same current density was to repel the 1,4-dioxane 

molecules in order to prevent fouling, the removal rate was low according to the result. 

As comparision, TiO2 pellet was reported have 85.2% degarded rate with 7.0 mA∙cm-2 

current density on 1,4-dioxane when served as anode.276 

 

 

 

 

 

 

 
Figure 4.14 The stable 1,4-dioxane concentration (C) in the permeate under different 
current densities in continuous membrane filtration process. The results is expressed as 
the ratio of C/C0, where C0 is the initial 1,4-dioxane concentration (49.52 ppm). The TMP 
or influent flux was 75kPa. 
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A model was developed in 2018 by Lan et al to calculate limiting current density in 

Equation 4.12: 394 

lim mF k CJ n ⋅ ⋅ ⋅=     (4.12) 

where Jlim is the limiting current density (A·m-2), n is the number of exchanged electrons 

per molecular of pollutant degraded (e.g., 20 electrons of 1,4-dioxane), F is the Faraday 

constant (96,485.33 C·mol-1), km is the average mass transfer coefficient (m·s-1), and C is 

the pollutant concentration (mol·m-3) that readily react on the electrode surface.394 The 

average mass transfer coefficient (km) could be estimated with the results in Figure 4.12a 

and 4.13. For example, in the batch reaction, we estimated by: 

lim
mk

F C
J

n ⋅ ⋅∆
=  

where C∆ is the changes of the concentration in the solution, which represents the mean 

1,4-dioxane concentration that readily react on the electrode surface. Thus, km is 

estimated to be 9.14×10-6 m·s-1 (assuming Jlim= 5 A·m-2) in batch reaction. Similarly, in 

continuous filtration, the estimated km is 5.43×10-6 m·s-1. Clearly, in continuous filtration, 

the mass transfer coefficient is significantly higher than that in batch reaction, which 

confirms that integrating EAOPs into membrane filtration processes could lower mass 

transfer resistance and enhance surface reaction due to the flow pressure. 

The experimental results have also been compared with instantaneous current 

efficiency (ICE). As a function of time during electrolysis, ICE is estimated by the 

following equation: 

[ ]t t tCOD CODn F VICE
I t

+∆−⋅ ⋅
=

∆
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where F is the Faraday constant 96,485.33 C·mol-1, V is electrolyte volume (m3), I is 

applied current (A), ∆t is time interval(s), COD is chemical oxygen demand (mol O2·m-3). 

n is mole electron transferred per mole pollutant degrade. The stoichiometric quantity of 

O2 needed for combustion of 1 mol 1,4-dioxane is 5 mol. And 20 mole electron is 

transferred per mole 1,4-dioxane. So n = 4 in this case. Based the equation of ICE COD 

method, we modified it to: 

[ ]t t tC Cn F VICE
I t

+∆−⋅ ⋅
=

∆
 

C is the pollutant concentration (mol·m-3), and n is mole electron transferred per mole 

pollutant degrade (20 mole electrons per mole for 1,4-dioxane) 

Table 4.9 ICE calculation in batch reaction mode and continuous dead-end filtration 
mode 

Mode current density 
(mA·cm-2) I (A) ICE (%) 

Batch reaction 
1.17 0.023049 450.90 
5.02 0.098894 106.00 
9.34 0.183998 61.94 

Continuous dead-end 
filtration 

5 0.0985 62.74 
10 0.197 54.45 
15 0.2955 39.13 

 

The result showed a decrease of ICE when current increases. However, Fig 4.12(a) 

and Figure 4.13, shows that processes operating at higher current density had much better 

degradation rate. This could be a consequence of secondary reaction (such as oxygen 

evolution) when the applied current density is higher than the limiting current density and 

electrolysis is under mass transport control.256 Thus, it can be concluded that a 

compromise must be made to balance energy consumption with the time required to 

achieve the desired removal efficiency. The more amount of current supplied into the 

system is used up for oxidation of more 1,4-dioxane, showing faster degradation rate. 
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However, the system becomes to meet the limit of mass transport earlier due to the low 

concentration of 1,4-dioxane. Therefore, the process using higher current density can 

show faster degradation rate while the current efficiency decreases.256 

4.3.6.4 Mechanism analysis. Initial concentration of 1,4-dioxane influences pH variation 

during the electrochemical reaction. Major reaction intermediates produced during 

oxidation of 1,4-dioxane by hydroxyl radicals are acidic species such as oxalic acid, 

glycolic acids, acetic acid.256, 395 These reaction intermediates are finally degraded into 

carbon dioxide and water. Thus, if the rate that 1,4-dioxane is degraded into acidic 

intermediates is higher than that acidic intermediates are mineralized perfectly, it can be 

expected that pH decreases during the reaction due to a buildup of acidic intermediates, 

and then recovers its origin point after complete mineralization of acidic intermediates 

into carbon dioxides and water.256 Also, the initial concentration affects initial limiting 

current density. When limiting current density is higher than the applied current density 

of the system, electrochemical reaction would begin from current control regime and the 

concentration of 1,4-dioxane decreased linearly with time as shown in Figure 4.12(b).256 

Otherwise, the reaction began from mass transport control regime with a non-linear 

decrease of 1,4-dioxane due to a secondary reaction (such as oxygen evolution).256  
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4.3.7 Assessment of MB, RB and OGII dye degradation  

4.3.7.1 Calibration curves. Five different concentrations of each dye were prepared in 

DI water and scanned by a UV-vis spectrometer to determine the characteristics 

absorbance wavelength. Figure 4.15a-4.15c show the characteristic absorption peaks and 

the intensity shift for different dye concentrations, which agrees with other literature.379-

380 Figure 4.15-4.15d are the calibration curves with the fitting equations and R2 shown in 

the graphs. The LOD values for MB, RB and OGII were determined to be 100ppb, 25ppb, 

and 20ppb respectively using the current detection method. 
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Figure 4.15 Absorption spectra of MB at 664 nm, RB (c) at 550 nm and OGII (e) at 486 
nm. Calibration curves for MB (b), RB (d) and OGII (f).  
 
4.3.7.2 Discoloration in batch reaction and continuous filtration modes 

Figure 4.16a and 4.16b compare the visual color changes of MB and RB solutions after 

REM filtration with DC in batch reaction treatment, which shows that MB and RB 

solutions had a transition from dark to lighter color after batch reaction treatment. Figure 
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4.17c and Figure 4.17d show the visual color changes after continuous filtration of MB 

and RB. With physical filtration alone, the solutions turned to lighter color which was not 

obvious in visual. With DC filtration in one hour, all the samples turned clear. The dye 

solutions were then tested in a quartz cuvette by the UV-vis spectrophotometer. As 

shown in Figure 4.16a and 4.16b, in batch reaction, MB concentration was brought down 

from 5.12 ppm to 3.33 ppm in 60 minutes with 12.53 mA∙cm-2 current density and from 5 

ppm to 0.118 ppm in the same time with 25.3 mA∙cm-2 current density.  Similar to MB, 

the initial RB concentration was brought down from 5.049 ppm to 1.914 ppm with lower 

current density and from 5.339 ppm to 0.152 ppm with higher current density. With 

higher current density, REM showed more than 95% reduction in concentration for both 

dyes. Figure 4.18c to 4.18e show the removal of dyes in filtration. With physical filtration 

only, REM obtained 60% removal rate on MB and 50% on RB. Filtration with 25.3 

mA∙cm-2 current density DC could reach 100% removal for both dyes in 10 min dead-end 

filtration. As reference, it was reported activated carbon could gain 100% removal of RB 

with 120 min contact time.379 

Figure 4.19 shows the TOC change of RB and MB solutions during continuous 

filtration. The initial concentrations of both dyes were 5ppm. Since the carbon mass is 

70.14% in RB and 60.03% in MB. The initial TOC of concentrations RB and MB 

solutions were 3.5 and 3 ppm. There was no significant disappearance TOC on both RB 

and MB after filtration, which may indicated even though dye solutions were degraded 

during the electrochemical filtration, the products still contain organic compounds. 
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Figure 4.16 (a), (b) and (c) The visual color changes of MB, RB and OGII solutions 
under anodic oxidation of 25.3 mA∙cm-2.  
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Figure 4.17 (a), (b) and (c) show color changes after continuous filtration (with and 
without DC currents of 25.3 mA∙cm-2) of the MB, RB and OGII solution. Sample time 
interval was 10 min. The video of filtration process could be accessed at 
https://youtu.be/K6iTSSV6rvI. 
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Figure 4.18. (a) - (c): The concentration changes of MB (a), RB (b) and OGII (c) in batch 
reaction mode under two different current densities; (d) – (f): the concentration changes 
of MB (d), RB (e) and OGII (f) in the permeate of dead-end filtration under the DC 
current density of 25.3 mA∙cm-2
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Figure 4.19 TOC change of dyes during continuous filtration.  
 
 
4.3.8 Assessment of  Geosmin and MIB degradation  

4.3.8.1 Calibration curves  and recovery rates of the extraction method 

For 2-MIB and geosmin test, liquid samples were extracted and concentrated for 25 times. 

Standard solutions with different concentrations of 2-MIB and geosmin were used to 

obtain the calibration curves as shown in Figure 4.20. The tested extraction efficiency 

was 74.5% ± 5% for 2-MIB and 84.7% ± 4% for geosmin respectively. The LOD for 2-

MIB and Geosmin were 52 ppt and 35 ppt respectively. 

 

 

 

 

 

 

 

Figure 4.20. Calibration curves for Geosmin and MIB 
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4.3.8.2 Degradation of Geosmin and MIB in continuous filtration with/without DC 
current 

 
  Figure 4.21 show the removal of Geosmin and MIB in filtration. With physical 

filtration only, REM obtained 95% removal rate on Geosmin and MIB. Filtration with 

12.5 and 25.3 mA∙cm-2 current density DC could reach 100% removal for both Geosmin 

and MIB  in 5min dead-end filtration. 

 

 

 

 

 

 

 

Figure 4.21 The concentration changes of Geosmin and MIB during continuous filtration. 

 
4.3.8.4 Mechanism analysis.  The formation of numerous intermediate products 

took place were illustrated in Figure 4.22. The majority of the identified intermediates 
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unsaturated products (Scheme 1). The formation of all intermediates is followed by their 

decay during the photocatalytic process, coming finally to total photodecomposition to 

CO2. As presented in Figure 4.22a, part of 2-MIB were directly transformed to P1 and P2 
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smaller molecular weight (Figure 4.22a).400 During the electrochemical degradation of 

geosmin, CO2 was assumed to be the final product. However, according to Figure 4.23, 

as the by-products produced during the electrochemical reaction were not detected, in the 

further research, it is still needed to be studied to confirm whether toxic by-products 

exist.401 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Degradation pathways in the oxidation processes of MIB (a) and Geosmin (b) 
solutions.400  
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Figure 4.23 The m/z spectrum of the original and electrochemical treated Geosmin (a) 
and MIB (b) solutions in batch reaction. The current density was 25.26mA·cm-2 and 
treatment time was 40 min. 
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The voltammograms for the dioxane, MB, RB and OGII containing solutions 

show no corresponding reduction or oxidation peak (Figure 4.24). This illustrates 

electrochemical oxidation was not happening in -3 to 3V potential range. Therefore, it 

was decided to focus on the electrochemical oxidation behaviour of dioxane in higher 

potential region in further experiments.  

 

 

 

 

 

 

 

 

Figure 4.24. 20 ppm of 1,4-dioxane, Rhodamine B (RB) and Methylene Blue (MB), and 
Orange II (OGII), and geosmin and MIB at 200 ppt. The arrow indicates the beginning 
and sweep direction of the first segment.  
 
 

4.3.10 Bacterial inactivation and removal studies  

Figure 4.25 shows the plate spreading and counting of two different concentrations of E. 

coli inactivation in REM batch reaction and filtration with different DC current density 

(5.02 mA∙cm-2 to 25.26 mA∙cm-2). In all four experiments, the result shows E. coli was 

mostly inactivated in the first 20 minutes. 
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Figure 4.25 E. coli inactivation under different DC current density by different elapsed 
time. (a) 8900 and 2240 cfu·ml-1 initial concentration E. coli were filtered by REM under 
5.02 mA·cm-2 and 12.56 mA·cm-2 current density. (b) 8900 and 2240 cfu·ml-1 initial 
concentration E. coli were reacted with REM in batch under 5.02 mA·cm-2 to 25.26 
mA·cm-2 current density. (c) 8900 and 2240 cfu·ml-1 initial concentration E. coli were 
filtered by REM without DC. 
 
 

4.4 Conclusion 

In this study, Ti4O7 REM under direct current was demonstrated to be highly effective for 

the degradation of organic dye in aqueous solution. Batch reaction and filtration studies 

have been conducted for three different dyes to assess the removal capability of REM to 

remove in the aqueous phase. All three dyes were successfully decolorized. COD and 

TOC removal efficiencies during batch reaction and dead-end filtration implied that few 

intermediate products remained and the organic part was completely converted into CO2. 

Ti4O7 REM appears as a valuable treatment for purifying and reusing colored aqueous 

effluents. 

The electrochemical oxidation of 1,4-dioxane with Ti4O7 electrode was also 

investigated under a range of major system variables such as initial 1,4-dioxane 

concentration, current density, electrode potential and current direction. As a result, Ti4O7 
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REM showed a high removal efficiency of 1,4-dioxane in both batch reaction and 

continues dead-end filtration. The initial concentration of 1,4-dioxane had no effects on 

removal behavior of 1,4-dioxane with the setting in this study since the reaction was 

under current control in this study. However, the mass transfer controlled reaction could 

be investigated in the future study. The voltage decline along the tubular membrane was 

also investigated and proved that the voltage distribution on Ti4O7 electrode did not have 

significant decline along the surface, which suggested that the reaction efficiency along 

the membrane surface did not have significant change either. The removal efficiency of 

COD was shown to be low while the initial COD was high. During the dead-end filtration, 

no electrode fouling was observed during the reaction. Thus, if several process variables, 

such as surface area, applied current density and initial concentration, are considered, 

electrochemical degradation of 1,4-dioxane by Ti4O7 REM promises to be both efficient 

and economically feasible. 
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CHAPTER 5 

COMMERCIALIZATION 

 

5.1 I-Corps Team 

5.1.1 Rationale for team formation 

The project PI (Wen Zhang) has been advising the PhD student (Likun Hua) as his thesis 

advisor since January 2015. They started to work on the fundamental research of 

antifouling and reactive ceramic membranes for water treatment and biomass separation 

since then. Up to today, they have filed a provisional patent (Reactive Electrochemical 

Membrane Filtration, 2016, US application: 62/337,940) and published one journal 

article in Bioresource Technology.402 They also presented results at different conferences, 

workshop and technical meetings including New Jersey Technology Council, 251st 

National American Chemical Society Meeting, New Jersey Entrepreneurial Network 

(NJEN) meeting at Princeton University, Dana Knox Student Research Showcase, and 

Otto York Research Center Workshop. Thanks to a number of internal grant support from 

the Undergraduate Research Innovation (URI) phase I/II grants and NSF I-Corps Site 

grant (2015 fall-2016 spring), a major research progress was achieved. Particularly, the 

entrepreneurial lead, Likun Hua, has obtained systematic and intensive training in 

technology commercialization, foster entrepreneurial leadership, and skills to interface 

customers and identify marketing challenges. In addition, the PI’s research team received 

a 3-year NSF CBET grant (Award Number: 1603609) starting from September 1, 2016, 

which could allow for the fundamental investigations of chemical mechanisms of reactive 
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membranes. This fundamental research could largely support the proof of concept and 

complement the NSF I-Corps work. 

The PI and the industrial mentor (Paul Schorr) are both serving as committee 

members in American Water Works Association (AWWA) in New Jersey section, where 

they began to know each other. This committee is formed to facilitate the interactions and 

foster industry-university collaboration. The PI represents academia to demonstrate 

institutional resources in research facilities, students, and faculty expertise to local 

industries. Paul works with the PI to identify current challenges and problems in water 

industries and seek research opportunities, which is in line with the mission and operation 

of NSF I-Corps. Moreover, they also collaborated in hosting the national ACS 

symposiums on water resources, water quality and water treatment technologies. Due to 

the sustained interactions, Paul has established a deeper understanding of the PI’s 

research group and the ongoing research project related to the reactive electrochemical 

membrane (REM) technology. Since he retired from New Jersey Department of 

Environmental Pollution (NJDEP), he has been closely following Wen’s research and 

team members. He now joins the same Department of Civil and Environmental 

Engineering at NJIT as adjunct professor. Based on his more than 45 years in the water 

engineering fields, Paul has accumulated unparalleled knowledge, insight and 

connections with local industries, which is important and highly needed for our research 

team to move forward on technology transfer, commercialization and business 

development. Thus, we had a couple of conversation and discussions at different venues 

and finalized the plan of partnership and application of national NSF I-Corps.  
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5.1.2 Members' entrepreneurial expertise 

The PI, Wen Zhang, is an associate professor in the Department of Civil and 

Environmental Engineering at NJIT. He is a licensed Professional Engineer (P.E.) 

registered in the States of New Jersey and Delaware. His research aims to integrate 

nanotechnology into environmental engineering and develop innovative solutions for 

environmental sustainability and challenges in water quality and renewable energy. He 

served as the PI for this I-Corps team and support the team to perform fundamental 

research, business model development and customer discovery to facilitate technological 

development and commercialization. He serves as SBIR proposal reviewers for many 

agencies including USDA, EPA and NSF. He also led SBIR phase I proposals on a few 

research projects related to renewable energy and nanotechnology. He co-founded a 

Chinese Young Environmental Professionals Association (CYEPA, 

http://www.cyepa.org/), a state-registered nonprofit organization providing industrial 

networking opportunities and peer review and language editing for technical articles. 

Likun Hua, majored in environmental engineering, is a second-year PhD student 

(a full time research assistant) in the Department of Civil and Environmental Engineering 

at New Jersey Institute of Technology. In this project, Likun acted as the entrepreneurial 

lead with a leading role of building business models, customer discovery, product 

development, testing and on-site interview or demonstration. In his previous effort, he 

was supported by the NSF I-Corps site grant to perform tutorial learning on business 

planning, technology commercialization, and customer interview. He established 

connections with local industries ranging from Water Engineering firms such as United 
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Waters and American Waters to Engineering consulting firms and obtained invaluable 

feedback and advice toward marketing and commercialization.  

Paul Schorr is a licensed Professional Engineer retired from New Jersey 

Department of Environmental Protection (NJDEP), a state agency responsible for 

environmental pollution management and remediation. He has over 45 years of 

experience in the field of water resources with consulting engineering firms of Clinton 

Bogert Associates and Gerald E. Speitel Associates; with the federal Environmental 

Protection Agency (EPA). He was the Project Manager on the New Jersey Special Water 

Treatment Plan, which provided the framework for the State to approve advanced 

physical chemical and biological processes to achieve stringent drinking and surface 

water standards. Equipment and processes included ozonation, denitrification, granular 

activated carbon, and packed aeration towers. As a member of the American Chemical 

Society, he hosts a number of symposiums on “Advances in Water Monitoring” that 

focus on new equipment and techniques to measure water quality parameters.  His role in 

this project included mentorship on evaluating water and wastewater equipment to meet 

Federal standards and construction costs, industrial customer connections, public 

financing and market demand analysis.  
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5.1.3 Lineage of the Proposed Innovation 

Table 5.1 Relevant Awards before 2016 National I-Corps 

 

Physical membrane separation suffers from membrane fouling due to the deposition and 

adsorption of various foulants. Frequent membrane backwashing and cleaning is required 

to maintain a desired separation and functional filtration, which elevates the operational 

cost. Usually, hydraulic flushing, biocides or harsh chemical cleaners are used to recover 

permeate flux, which are costly and potentially harmful to membrane integrity or life 

span. The REM technology we developed uses direct current (DC), alternating current 

(AC) and a combination of DC and AC as an environmentally benign approach to control 

and mitigate membrane fouling while filtration, backwash or recovering flux. Many prior 

research including ours demonstrated the use of REM membrane in various forms (i.e., 

monolithic porous ceramics, electrospun mats of nanofibers, and carbon nanofibers 

loaded with conductive nanomaterials) as both electrodes and membrane filter could have 

could have anodic or cathodic polarization under DC current and therefore could 

efficiently oxidize organic compounds or surface foulants by hydroxyl radical (•OH) 

 Relevant Awards 
Program officer or 

agency 

1 
Undergraduate Research Innovation (URI) phase I/II 

grants (spring 2015 to spring 2016) 
Atam Dhawan, NJIT  

2 NSF I-Corps Site grant (2015 fall-2016 spring) 
Michael Ehrlich and Judith 

Sheft, NJIT 

3 
NSF CBET grant (Award Number: 1603609) (2016 

fall-2019 fall) 
Carole Read, NSF 
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produced from water oxidation.25-27 Compared to regular ceramic membrane filtration, 

our invention of electrochemical ceramic membranes will bring more measurable 

synergies, including but not limited to: durable and stable permeate flux across ceramic 

membrane without significant fouling over a larger period of time, degradation of organic 

pollutants or compounds in the treated water, and reduction in membrane fouling and 

energy use for backwash for recovery of flux. These features are usually not all available 

in one integrated membrane process.   

The REM technology holds high commercialization potential because (1) ceramic 

membranes and conductive membranes are already implemented in many industrial water 

and wastewater treatment in various fields (e.g., pharmaceutical wastewater, dye and 

mining wastewater treatment). Thus, REM could be conveniently deployed and upgrade 

the existing ceramic membrane modules. (2) The increasing demand for high water 

quality in many industrial applications. For example, semiconductor production requires 

ultra-high purity water and has a great demand for reliable and high efficient filtration 

systems to eliminate water pollutants such as salts, particles, and organics.  

(3) Conventional polymer membrane filtration suffers inherent limitations in fouling, 

aging, and instability in the treatment of complex water (e.g., corrosive or high salt 

content waters). (4) A benchmark innovation in reactive ceramic filtration will advance 

and potentially upgrade the filtration industries from physical separation to versatile and 

tunable reactive separation, which is interesting and attractive to customers we 

interviewed in the past.    
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5.1.4 Description of the Potential Commercial Impact 

One of our typical customers in water and wastewater treatment industries is Mr. Kui 

Zhou, the General Manager of Nanjing Suhuan Environmental Technology Development 

Co., Ltd, China. This company’s primary business is designing and constructing water 

treatment equipment and facilities. Their treatment targets are recalcitrant organic 

wastewater. The treatment method they use is a combination of Al2O3 ceramic membrane 

and polymer membrane filtration. The major problems they constantly encounter are 

expensive operational and maintenance cost in electricity consumption to drive the water 

pumps, which are attributed to the membrane surface fouling and resultant hydraulic 

backwash. Additional cost is caused by the polymer filter replacement due to aging and 

damage after prolonged exposure to corrosive wastewater and repeated uses. Frequent 

backwash and chemical rinsing to eliminate surface foulants are also observed to damage 

membrane surfaces and lead to the hole or crack formation on polymer membranes in 

addition to the cost of energy consumption. Collectively, as one of the treatment 

examples on phenol-containing wastewater, the overall operation and treatment cost is 

approximately $150 per ton of wastewater to reach the discharge standard- reducing 

chemical oxygen demand (COD) from 3000 mg/L in influent to 50 mg/L in treated water. 

More than of half of this operational cost is related to pump electricity usage and 

membrane replacement.  

Our proposed technology represents a potentially game-changing filtration 

technology that is designed to improve water filtration efficiency, lower fouling potential 

(increased durability and stability), enabling high fluxes of water permeate and pre-

oxidation of organic substituents. Accordingly, we may provide value propositions in 
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saving the capital costs on membrane backwash, membrane maintenance, reduce down 

time or off-line time, and reduce chemical uses for membrane cleaning, and replacement 

of membranes that are fouled or aged; decrease pumping energy; increase water quality 

by efficiently removing organic matters in water based on electrochemical oxidation 

reactions on REM surfaces. Based on the preliminary interview with the customers, they 

do have desire to substitute current physical filtration with our reactive filtration systems 

to achieve the identified benefits and long run sustainability. The possible capital 

investment to upgrade and install new filtration systems may range from $50,000 to 

$500,000 depending on the treatment capacity need.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Schematic of the REM for algal biomass containing water filtration in cross 
flow mode (a) Filtration and radical formation for antifouling and biomass degradation 
(b) and backwash. (c) the dissolved organic matters was oxidized by OH• and other 
oxidants that are formed electrochemically at the REM surface during backwash. 
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The innovative REM process consists of conductive and porous Ti4O7 material as 

the anodic filter. Ti4O7 is initially selected because of its high performance in generating 

hydroxyl radical (OH•) from water oxidation, stability under anodic polarization, and low 

cost.25-27 The monolithic porous Ti4O7 membrane shows a high water flux in filtration 

(5000-6000 L m-2 h-1 bar-1 or LMH bar-1). These properties make Ti4O7 membranes an 

ideal material for sustainable water filtration and pollutant degradation. By applying a 

positive DC potential or current to the REM surface, the produced OH• could oxidize 

organic compounds (surface foulants marked in green) to maintain a clean membrane 

surface as shown in Figure 5.1. The REM serves as both filter and anode with a stainless 

steel mesh as a cathode. During filtration (Figure 5.1b) the permeate solution first passes 

through a 100 µm-thick inert glass fiber membrane spacer with tunable pore sizes  

(e.g., 1-2 µm) that could effectively filter most microbial contaminants such as bacteria. 

While passing through the REM, the dissolved organic matters could be oxidized by OH• 

and other oxidants that are formed electrochemically at the REM surface during 

backwash (Figure 5.1c). The key physical/chemical processes occurring include 1) 

Physical Separation;2) Interfacial Electrostatic interactions; and 3) Electrochemical 

Oxidation, which produce hydroxyl radicals (OH•) at the electrode surface:25-26, 78, 266 

. OH• is a powerful and unselective oxidant with a high oxidation 

potential (Eo = 2.6 V), which could mineralize most organic pollutants at near diffusion-

limited rates.267-268 Major fundamental research has been performed at NJIT to verify the 

degradation performance while filtering different pollutant-containing waters. As the 

demand for high water quality increases and wastewater recycling for direct and indirect 

potable reuse becomes more widespread, REM technologies will further ensure water 
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quality security and sustainability by effectively eliminating public health risks associated 

with pathogens and contaminants in addition to taste, odor and color. 

5.1.5. Brief description of the project plan 

We have completed the part of the proof-of-concept research and assemble a benchtop 

prototype as shown in Figure 5.2. A provisional patent was filed at NJIT for the novel 

REM filtration configuration and the designs of REM filtration system. At the end of this 

I-Corps project, we demonstrated (1) systematic filtration results on various water types; 

(2) antifouling characteristics compared to the filtration system without DC polarization; 

(3) relevant operational parameters and their control strategies to achieve antifouling 

functions, maintain water quality and separation efficiency; (3) disseminate the above 

information to customers to receive feedback.   

The next step is to have the patent licensed by ceramic membrane manufacturers 

or design companies, filtration industries, algal biofuel companies, water/wastewater 

treatment consulting firms, pharmaceutical, or chemical engineering industries where 

efficient bioseparation or treatment processes are needed. Our team may join the licensee 

company as technical support and consultant. The second route of commercialization is 

to form a startup company with expected 3-5 personnel in charge of R/D and sales in 

partnership with NJIT. We will leverage these unique advantages to secure potential off-

take agreements with membrane, biofuel, and water/wastewater industries. At the initial 

stage, REM production will be subcontracted to the manufacturer (Vector Corrosion 

Technologies Ltd.) and maybe we enter into a joint venture or manufacturing agreement. 

The core filtration part manufacturing or assembly will be done by our contract 

manufactures to be sought and determined in the future. To market the product, we may 
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work with dealers or contract sales through marketing agreements. Regarding financing 

plans, besides this national I-Corps grant application, we will work with local commercial 

firms to pursue some non-Federal capital commitments including personal investment, 

venture capital investment, crowd sourcing, intent to license or collaborate. Moreover, we 

plan to prepare SBIR and GOALI proposals to submit to NSF, USDA and EPA to secure 

phase II grants. 

The education impacts of this NSF I-Corps project include (1) training of a group 

of NJIT students (especially the entrepreneurial lead) to develop relevant skills for 

business planning, team management, customer discovery, technology commercialization, 

entrepreneurial leadership, and marketing. Moreover, these experiences are important 

learning materials that could be incorporated in our current curricula to enrich 

engineering education and motivate students to involve in research innovation. The 

commercial impacts are expected on end users or markets in, but not limited to, 

membrane industries, manufacturers and users for water/wastewater treatment industries 

and algae biofuel industries, renewable energy, bioenergy industries. REM technologies 

holds promise to transform current physical filtration processes from a chemically inert 

system to chemically reactive systems that proactively filtrate water with well-defined 

reactions or reactivity on filter surfaces. In the long term, reactive ceramic membranes, 

due to their flexible surface modifications and a longer lifetime compared to widely used 

polymer membranes, will reduce filtration operational cost and increase process 

stainability. 
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Figure 5.2. Our current REM filtration system apparatus. 

 

5.2. Business Model hypothesis 

The business model is defined as the model that describes the rationale of how an 

organization creates, delivers, and captures value. In this case, business model is 

described through nine basic building blocks in a “canvas” that show the logic of how a 

company intends to make money. The nine blocks cover the four main areas of a business: 

customers, offer, infrastructure, and financial viability. The business model is like a 

blueprint for a strategy to be implemented through organizational structures, processes, 

and systems. This concept has been applied and tested around the world and is already 

used in organizations such as IBM, Ericsson, Deloitte, the Public Works and Government 

Services of Canada, and many more.403 The original hypothetical business model canvas 

(BMC) before any interview is shown in Figure 5.3a. As interviews going further, the 
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BMC experienced several change/pivot (Figure 5.3b and c) and evolved into the final 

version (Figure 5.3d).  
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Figure 5.3 (a)-(d) The evolution of BMC. (Contioued) 

(b) 

(a) 
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Figure 5.3 (Contioued) (a)-(d) The evolution of BMC. 

(c) 

(d) 
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5.2.1 Value proposition 

Value proposition solve customer problems and satisfy customer needs. In this case, there 

were 3 original value propositions and 2 additional value propositions after several 

interviews: 

1. REM filtration system has a longer lifetime comparing with traditional filters 

along with effective microbes suppression/removal, which will reduce daily cost for 

water treatment plants and beverage companies. 

2. REM filtration system provides high selective filtration that is needed for 

separating specific compounds or biomolecules from the biomass feedstock, which will 

increase the productive efficiency and lower the risk of defective products for 

pharmaceutical industries. 

3. REM filtration system could provide high purity water from semi-conductor 

parts for electronic device manufacturers, reduce the defective rate and eventually drop 

down the recall cost. High-purity rinse water is needed for microchip manufacturing. 

Since Microchips are getting more and more compact, with a million transistors per chip, 

a single micrometer-sized particle can result in a short circuit. The high-purity rinse water 

from REM will reduce the defective rate and eventually drop down the recall cost. 

4. REM filtration system could increase water quality and safety (reduce Cl2 odor) 

and will reduce daily cost in backwash or chemical cleaning by at least 50% for 

swimming pools and landscape water.  

5. REM filtration system could increase better water quality for aquarium and fish 

tank than normal fish tank filters. 
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5.2.2 Customer segment 

Based on the value proposition, the market is divided by 6 different parts: (1) water 

treatment plants, (2) beverage companies, (3) electronic device manufacturers, (4) 

pharmaceutical industries, (5) swimming pools and landscape water (e.g., for hotels, 

schools, fitness centers, residents), and (6) aquariums. 

Due to the invalidation of market (1)-(4) in the early stage (see section 5.3.2) and 

(6) in the latter stage, there are no further customer discoveries in these five markets. The 

further customer discovery is conducted on the market of swimming pools and landscape 

water, which gives the following customer segments hypothesis: (1) General Managers, 

Chief Engineers, Director of Engineering and Director of facilities in hotels and fitness 

centers; (2) Certified Pool Operator (CPO) of public pools and schools; (3) residential 

pool owners and designers. 

5.2.3 Channels 

Channels are the communication, distribution, and sales that delivers value propositions 

to customers. In the hypothesis, due to the REM system is a physical product; the 

Physical Distribution Channels is applied, which includes direct sales through our own 

website and indirect sale from distributors, retailers, value-added resellers (VARs) and 

system integrators. The relationship between channels is shown in the distribution 

complexity diagram (Figure 5.4). The detail and validation of channels were obtained by 

interviews. (See Section 5.3.3) 
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Figure 5.4 Distribution Complexity assumptions. The red texts are different types of 
channels defined: Web, VARs, Direct Sales, and Integrators. In between that are product 
types for the range of complexity from these types of channels. 
 
 
5.2.4 Customer Relationships 

Customer relationships are established and maintained with each Customer segment. 

Three major components of customer relationships are “Get”, “Keep” and “Grow” 

customers. A funnel diagram is used to represent these three components. (Figure 5.5)  
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Figure 5.5 Funnel diagram of “Get/Keep/Grow” relationships. Left and right funnels 
showed the “Get” and “Grow” processes while the square in the middle shows the 
“Keep” processes.  
 

In the “Get” process, the cost associated in convincing a customer to buy our 

product or service is called Customer Acquisition Cost (CAC). This cost is inclusive of 

the product cost as well as the cost involved in research, marketing, and accessibility 

costs. Our CAC hypothesis is shown in Table 5.2. 

Table 5.2 Customer Acquisition Cost of the First Year 
Item and Activities Cost 

Oral/Poster presentation $150-300 each 
Student Showcase $0-300 each 

Partner’s web-platform and referral Unknown 
Trade show $2,000 each 

Free test 
Manufacture $5,000 

Labor fee $3,000 
Transportation $500 

Total estimate >$11,000 (first year) 
 

The sum of all the revenue from the beginning of purchase through keeping them 

and all the grow activities is called customer Lifetime Value (LTV). To make the 

business practical, the CAC should be less than LTV. In this case, the LTV is  shown in 

Table 5.3. 
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Table 5.3 Customer Lifetime Value of First and Second Year 
Item and Activities Value 

Labor fee for maintenance/ training/ water quality test $3000/yr. 

Labor fee for upsell (1st year) $8000 

Labor fee for upsell (2nd year) $3000 

Profit from each customer $7000 
 

Assuming the profit from each customer is $7000 and there will be two additional 

customers per year, the total estimated profit will be: $0 in the 1st year and $20000 in the 

2nd year.                          

5.2.5 Revenue Streams 

Revenue streams result from value propositions successfully offered to customers. It 

represents a strategy for generating revenues (per Customer Segment). Based on the 

funnel diagram, our revenue model strategy includes three parts, which are: 

(1) Asset sale: The REM system, parts. 

(2) Freemium: Free use of the REM for a certain period of time (e.g., one month)  

(3) Licensing (upsell): The control/simulation software. 

5.2.6 Key Partners  

A partnership is a two-way street. Both parties have to mutually benefit/share successes 

and failures. In our hypothesis, there were three kinds of partners: (1) Raw material 

suppliers are considered to be one of the key partners, by providing/selling essential parts 

for REM to us, their business could also gain benefit. The cost of this partnership is raw 

material itself and shipping fee and the risk is quality control. (2) Distributor in the 

channel section since our product can solve the safety dilemma for their customers. Cost 
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of the partnership is profit share in the distribution channel while the possible risk is from 

Saboteurs in other pool equipment manufacturers and the reliability of the distributor. (3) 

Membrane system manufacturer (Joint ventures).  By helping us manufacture the system, 

they will share the profit, and cooperative research could provide novel ideas for their 

R&D department. Cost in this partnership includes manufacturing, shipping, and time 

consuming. The risk is potential common customer may turn the partner to competitor, 

the possible intellectual property (IP) issue, and the alliance may be affected by the key 

person changing. 

5.2.7 Key Resources 

Key resources include financial, physical, intellectual property and human resources. Our 

hypotheses of the key resources are concluded in Table 5.4.  

Table 5.4 Key Resources 

Financial resources Federal grant and award, and the 
investment from key partners. 

Physical resources University lab space and storage, key 
partners’ facility  

Intellectual property A patent which has been already filed 

Human resources 
Mentors, advisors and qualified employees, 
which could be the above mentioned team 
(Section 5.1) or hire additional personnel 
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5.2.8 Key Activities 

The key activities include REM treatment test, mobile treatment system production, 

obtain certification, product website development for sale and demonstration and 

customer support/technical consulting.  

1. REM treatment test 

2. Mobile treatment system production 

3. Certification 

4. Website development 

5.2.9 Cost structure 

The assumed cost structure contains the CAC (discussed in section 5.2.4) plus material 

cost, fabrication cost, long range delivery fee, storage fee, and labor fee. 

 

5.3 Business model validation 

5.3.1 Customer interview questionnaires 

There are three questionnaires prepared for users (customers), distributors and 

manufacturers. Questionnaire for users was focused on value proposition and market size. 

(See Table 5.4) Questionnaire for distributors was used for channel validation and 

competitor/partner exploration. (See Table 5.5)  Questionnaire for manufacturers was to 

validate key activity and plan pricing tactics. (See Table 5.6) 
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Table 5.4 Question List for Users (swimming pool/aquarium owners/operators) 

Interview Questions Purpose 
Who is your interviewee (e.g., name, 
contact phone or email, title, location)  

What are the current technical processes 
or systems for the water purification for 
water recirculation and reuse (e.g., 
filtration or chemical additions)? 

To validate the hypothesis that customers 
are using filtration and/or disinfection 
technologies. 

Do they use chemical for disinfection? If 
yes, what are those chemicals? (e.g., 
Chlorine? Bromine? ) 

To validate the hypothesis that chemical 
disinfection is the most common method. 

What are the major concern, problem, and 
pain of the current 
technic/process/system? 

To validate the hypothesis that chemical 
balance and safety is the great concern. 

* If there is a technology that could solve 
the chemical safety issue and obtain the 
same disinfection effect, will you consider 
changing the current approach? 

* This question will be asked only when 
the answer of the last question is related to 
the potential safety issue of chemical use. 

Who is the supplier?  Who provide 
service/maintenance (supplier, themselves 
or a third party)? 

To find the distribution channel. And to 
validate the hypothesis that the end users 
have limited knowledge of maintenance 
and operation. 

How much does the system cost? the 
installation cost as well as the operational 
cost 

This information will be used as a 
reference for price tactics of our own 
product 

What is the daily/monthly cost of the 
entire process? Cost structure? (e.g., labor 
fee, electric and water consumption, filter 
replacement fee, or chemical uses…) 

This information will be used as a 
reference for price tactics of our own 
product 

What is the volume and flow rate? This information will be used as a 
reference for prototype build. 
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Table 5.5 Question List for Distributors (e.g. chain stores, retail stores, designers) 
Interview Questions Purpose 

Who is your interviewee (e.g. name, 
contact phone or email, title, location)?  

What are the current technical processes or 
systems for the water purification for water 

recirculation and reuse (e.g., filtration or 
chemical additions)? 

To validate the hypothesis that customers 
are using filtration and/or disinfection 

technologies. 

Do they use chemical for disinfection? If 
yes, what are those chemicals? (E.g. 

Chlorine? Bromine? ) 

To validate the hypothesis that chemical 
disinfection is the most common method. 

What are the major concern, problem, and 
pain of the current technic/process/system? 

To validate the hypothesis that chemical 
balance and safety is the great concern. 

* If there is a certified technology that 
could solve the chemical safety issue with 

the same disinfection effect, will you 
consider selling this kind of product? 

* This question will be asked only when 
the answer of the last question is related 
to the potential safety issue of chemical 

use. 

Who is the manufacturer of the product 
you are selling?  Do you need to provide 
service/maintenance to your customers? 

To find the potential partner/competitor. 
And to validate the hypothesis that the 
end users have limited knowledge of 

maintenance and operation. 

How much does the system cost? the 
installation cost as well as the operational 

cost 

This information will be used as a 
reference for price tactics of our own 
product. The distributor may not be 

willing to give answer of this question as 
well as the next question. If so, write 

down their price tag. 
What is the daily/monthly cost of the entire 

process? Cost structure? (e.g., labor fee, 
electric and water consumption, filter 
replacement fee, or chemical uses…) 

This information will be used as a 
reference for price tactics of our own 

product 

What is the major customer? To understand the market size. 
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Table 5.6 Question List for Manufacturers (for different manufacturers, questions may be 
changed) 

Interview Questions Purpose 
Who is your interviewee (e.g., 

name, contact phone or email, title, 
location)? 

 

What is your technical process or 
systems for the water purification 
for water recirculation and reuse 

(e.g., filtration or chemical 
additions)? 

The question is only for system manufacturers. 

What chemicals are using for 
pool/aquarium? (e.g., Chlorine? 

Bromine? ) 

The question is only for chemical manufacturers. 
To validate the hypothesis that chemical 
disinfection is the most common method. 

What are the major concern, 
problem, and pain of the current 

technic/process/system? 

The question is for all manufacturers. 
To validate the hypothesis that chemical balance 

and safety is the great concern. And the 
alternative method is lacking in the market. 

Will you or do you apply 
technology from institutes and 
universities? How and Why? 

If there is a technology in 
developing that could solve the 

chemical safety issue with the same 
disinfection effect, will you 

consider invest in this kind of 
product? 

Exploring partners. 
This question is only for system manufacturers. 
However, these questions need to be asked very 

carefully. 

How do you introduce those 
products to distributors or the 

customers? 
To find the distribution channel. 

Are these products certified? Who 
of authorities issue the 

certification? 

To validate obtain certification is one of the key 
activities. 

What is the major customer? To understand the market size. 
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5.3.2 Customer and value proposition validation 

5.3.2.1 Water treatment plants and water utilities. Ten interviews have been 

conducted on water treatment plants and water utilities which located in Texas and New 

Jersey. Some large plants (e.g., 540 MGD capacity) are still using sand filter and dual 

media filter in there filtration process, while smaller plants  

(e.g., 45 MGD capacity) are applying membrane filtration. The result of these interviews 

showed testing a new technology in a large existing plant in which all the components are 

interrelated may not be as feasible as testing a new technology such as membrane in a 

small facility. The cost of maintenance is not a major concern for water treatment plants 

and they are not likely to apply technology from a start-up. So the conclusion of this 

market is that there is no room for a start-up in the business of water treatment facilities. 

 

5.3.2.2 Beverage companies.  Five interviews have been conducted on Beverage 

companies, which included Coco Cola and Nestle Bottle Water. Beverage companies do 

use filtration technology. They need to remove the ammonia, chlorine, hardness and other 

taste odor which are actually from the water utilities, but this is not their primary “pain”, 

the current technics are able to handle the problem. 

Since the beverage industry operates on a smaller margin of profit than most other 

process industries, it was difficult to justify the expense of discarding what had always 

worked (e.g., thermal evaporation) and installing a new unit operation) that had not yet 

been completely proven to "work" in other industries. 

5.3.2.3 Swimming pools and landscape water. More than 50 interviews are focusing 

on the owners and users of swimming pool and landscape water. The results show that: (1) 
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the disinfection is relying on Chlorine and the related odor and safety issue is a major 

concern. Half of the hotels rely on third parties to maintain their system because their 

own engineers are not qualified to do so. (2) Automatic and simplified system is 

preferred. Backwash is occurred once a week or once per two weeks, but the cost of 

which is not a major concern. (3) Some of hotels do not have filtration system for 

landscape water and instead with manually cleaning the algae.  

 

5.3.2.4 Aquariums. About 20 interviews were conducted with the aquarium suppliers 

in San Francisco, the USA. This segment was invalidated because of fish tank filters have 

their special design to make sure the balance of ecosystems in the aquarium fish tanks. A 

certain amount of microbes should be maintained in the system; however, REM is 

targeting all microbes in the system. This technology does not match the requirement of 

aquarium fish tanks 

 

5.3.3 Channel validation. For channel validation, about 20 interviews were executed 

to possible distributors related to pool supplies. As a result, we found retail stores, chain 

stores and web-based resellers are the current available distribution channel for pool 

supplies. More than half of their customers are from residential swimming pools, though 

they also provide supplies to schools, hotels and fitness center. The relationship between 

distributor and users are shown in Figure 5.6.    
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Figure 5.6   Distribution channel diagram. Black arrows show the known channels while 
blue arrows show the channels not confirmed yet. 
 

5.3.4 Revenue Streams and pricing tactics 

Average cost for a residential swimming pool (e.g., 12,000 gallons) is estimated from 80 

interviews of users and distributors. The current filtration system uses Sand filter and 

active carbon. The system costs more than $10,000. For the maintenance, sand costs $110 

per 6 months and active carbon costs $120 per three weeks. The current disinfection 

system uses Chlorine tabs, Chlorine liquid, UV light, Bromine or Copper sulfate. The UV 

system costs $3,000 and auto chemical system costs $2,800 to $7,100. Maintenance and 

consumption costs $360 per 6months. Besides, the design fee will be 30% to 50% of total 

system cost. This makes total system cost to be $35,000 and total maintenance cost to be 
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$3000 per year. The workflow diagram (Figure 5.7) shows how the revenue flowed in 

the market.  

According to the Revenue Streams, Value Based Pricing Tactics is preferred in 

this business. The value provided are (1) Solve the health risk of Chlorine and the 

pathogen/bacteria issue at the same time; (2) Drop down the maintenance cost by 50%. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Workflow diagrams (private pools), estimation based on interviews. 

 

5.3.5 Key Partners and Key Resources 

We have established partnership with industry mentors, including Joseph G. Stanley, 

Vice President of Hatch Mott MacDonald, an internationally acclaimed Water 

Engineering firm and Yuhong Jiang, President of BRISEA Group, which is dedicated in 
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providing environmental and energy professional services, technology and know-how 

transfer from USA to the developing nations. 

5.3.6 Key Activities 

After interviewing over 20 manufacturers, the following key activity has been confirmed: 

Before the product gets into the market, certain organization will test it to make sure it 

meets the parameter we claimed. If our business is related to membrane manufacturing, 

ASME and ANSI could issue the certification. In addition, NSF certification #61, #372, 

and #419 is also required if the business is related to drinking or municipal water. At last, 

NSPF certification is required for pools supplies. 

5.3.7 Cost structure 

As hypnotized in Section5.2.4, the cost in the first year would be more than $11,000. 

What was confirmed is the demo unit structure cost 1100 Chinese Yuan each (about 

$164.99) if manufacture in China. And a single REM tube cost $25 (purchased from 

Canada). That makes the demo unit cost about $190. If the larger test unit is also 

manufacture this way, we except the cost might be lower than hypothesis ($5000). 

 

5.4 SBIR proposal 

5.4.1 Executive Summary 

Reactive electrochemical membrane (REM) is an emergent technology that offers a novel 

approach to small scale water purification and disinfection that could be useful for 

swimming pools, landscape water and small water treatment facilities without access to 

the capital needed for more traditional means of physical purification and chemical 

disinfection.  
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The potential end users or markets for this technology include, but are not limited 

to, membrane industries, manufacturers, water/wastewater treatment industries, biofuel 

industries, renewable energy, bioenergy industries as well as residential users. In our initial 

research, we performed the proof of the concept studies verifying the impacts from REM 

filtration on pollutant removal (e.g., algal cells) and water quality purification. As our 

REM system addresses common challenges of water purification and bioseparation, we 

plan to include additional extensive market surveys and research into a broader spectrum of 

potential users (e.g., food processing, drinking water treatment, and biomolecule 

purification) in addition to algal separation or biofuel industries of this work. The value of 

this technology includes: (1) the membrane filtration technology is free of chemicals, 

which will save operation costs; (2) it is less vulnerable to fouling and backwash cleaning, 

which will save energy, cost and reduce overall downtime; and (3) it is easy to install, scale 

up and flexible to adapt to both small- and large-scale systems without much maintenance.  

We have published this research176 and filed for a provisional patent. In addition, 

we have initiated collaborations with several entities and will continue to expand our 

industry collaborations of this commercialization. Second, we have obtained funding from 

NSF I-Corps which fosters entrepreneurial leadership and skills to commercialize our 

technology to the market. In this effort, we have established connections with industry 

mentors, including Joseph G. Stanley, Vice President of Hatch Mott MacDonald, an 

internationally acclaimed Water Engineering firm and Yuhong Jiang, President of BRISEA 

Group, which is dedicated in providing environmental and energy professional services, 

technology and know-how transfer from USA to the developing nations. They will 
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continue to mentor us with invaluable feedback and advice toward marketing and 

commercialization.  

REM-Ark (a tentative firm name) designed, optimized, and constructed a 

prototype REM that built upon existing research, making a water purification and 

disinfection system that is more safe, eco-friendly and cost effective. The final prototype 

consists of a cell casing made of Polytetrafluoroethylene (PTFE), a reactive 

electrochemical membrane served as filter and anode, a cylinder-shaped stainless steel 

mesh as cathode, two pump systems connecting raw water container, REM unit and clean 

water container by vinyl tubes and a direct current (DC) generator that provides 

adjustable electric power to REM unit by necessary wires. REM-Ark also designed a 

simplified and inexpensive mobile platform for on-site convenience. 

The functional prototype produces flow rate of 57.6 mL∙h-1 under 10 psi pump 

pressure, provides purified and disinfected water and 90 days of use before the REM 

must have backwash, is portable, operates on a feed obtainable by the user, and proves 

the validity of the concept of using an REM for safe, inexpensive, small scale water 

purification and disinfection. The flow rate output of the system can be improved 100 to 

1,000 times that of this prototype by the addition of multiple tubular REM and pump with 

higher pressure. Further research is needed with these cases before implementation; 

however, this research is beyond the scope of REM-Ark’s project. 

5.4.2 Anticipated Benefits 

This technology represents a potentially game-changing filtration technology that is 

designed to improve disinfection safety, separation efficiency, lower fouling potential 
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(increased durability and stability), higher fluxes of water permeate and pre-oxidation of 

organic substituents and biomass if desirable for downstream processing. We will 

leverage these unique advantages to secure potential off-take agreements with membrane, 

biofuel, and water/wastewater industries. The substantial commercial impacts are 

expected on end users or markets in, but not limited to, membrane industries, 

manufacturers and users for water/wastewater treatment industries and algae biofuel 

industries, renewable energy, bioenergy industries. REM technologies holds promise to 

transform current physical filtration processes from a chemically inert system to 

chemically reactive systems that proactively filter out water with well-defined reactions 

or reactivity on filter surfaces. In the long term, reactive ceramic membranes, due to their 

flexible surface modifications and a longer lifetime compared to widely used polymer 

membranes, will reduce filtration operational cost and increase process sustainability. 

5.4.3 Responsiveness to SBIR Program Priorities 

Membrane filtration is one of the most efficient processes for biomass separations and 

water purification. However, traditional membrane separations suffer from membrane 

fouling due to either the formation of a cake layer of algal cells, or more commonly due 

to organic matter adsorption onto the membrane surface. We designed a novel technique 

to mitigate membrane surface fouling through electrochemical oxidation powered by 

anodic polarization under a DC current. This invention demonstrated an innovative and 

multifunctional reactive electrochemical membrane (REM), to act as a model filtration 

membrane that exhibit great antifouling characteristics and strong surface reactivity. The 

REM surface acts as both filter and electrode that separate microbes and soluble organic 

compounds from water and enable water purification in addition to disinfection.  
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Prior NSF award(s): (1) NSF I-Corps Site grant (2015 Fall-2016 spring); (2) The 

NSF CBET grant in Chemical Biological Separation program starting from fall 2016. 

5.4.4 Technical Objectives 

5.4.4.1 Affectivity. This project is intended to demonstrate the creation of a safe and 

environmental-friendly method of purification and disinfection. To accomplish this 

objective, the design must at least produce a standard quality of product water during its 

operation. 

5.4.4.2 Size. In order to fulfill the design considerations for the intended customers, the 

working prototype must be transportable from one location to another. Therefore, the size 

and mobility of the prototype must promote reasonable portability. 

5.4.4.3 Cost efficiency. The tubular membrane used under research conditions for 

separation is typically for limited flow rate and needs long time synthesize with 

significant supply consumption. In order to produce a prototype that promotes use in the 

intended market, REM-Ark must design a membrane that is comparably effective as the 

laboratory membrane, which should be inexpensive, and can be manufactured with large 

scale for high flow rate demand. 

5.4.4.4 Lifetime. The design of a final prototype must take into consideration means 

by which to maximize the functional lifetime of the REM. The prototype REM should be 

able to last for one year with minimal user intervention or maintenance. 
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5.4.4.5 Flow rate. The goal set forth by this project is to build upon existing research 

and improve upon the accomplishments published to date. Since many other objectives 

have an effect on flow rate, the project goal is to produce at least a comparable flow rate 

to the least real-life demand. 

 

5.4.5 Design 

5.4.5.1 Projected Customers 

5.4.5.1.1 Profile. Because of the same purification and disinfection effect, less 

chemical requirement, low operating costs, low maintenance cost, and low flow rate 

output associated with a REM system, REM-Ark’s main market is focused on the owners 

and operators of swimming pools and landscape water, especially (1) General Managers, 

Chief Engineers, Director of Engineering and Director of facilities in hotels and fitness 

centers; (2) Certified Pool Operator (CPO) of public pools and schools; (3) residential 

pool owners and designers. 

5.4.5.1.2 Resources. Limited resources are available for the construction and 

maintenance of the REM system in the range of projected use. Since the projected use of 

the REM system is for people with little engineering background, designing a prototype 

while maintaining a low cost will result in a much broader impact. The materials for 

building REM systems should be readily available or easily obtained, inexpensive and 

simple to construct. 

5.4.5.2 Design Norms 
5.4.5.2.1 Trust. Gaining the trust of any customer who would purchase and operate 

an REM system is an important design norm that impacted the prototype design of this 
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project. Having a reliable disinfection ability and enough capacity are crucial especially 

when it is the only filtration device available, as the REM system would be for nearly all 

of the projected customers. Unexpected failures could result in lost time, expensive 

repairs, frustration by the consumer. If the REM system is not dependable, potential 

clients will not invest in the technology, rendering the REM ineffective in fulfilling the 

customer’s needs. 

5.4.5.2.2 Design Transparency. The design process of the REM system should be 

carefully documented. This documentation makes the expressed results reproducible from 

the documented research and experiments, so further testing and optimization could build 

upon this research. Aside from replication, this design needed to be transparent so that 

users can understand the functionality of the product and are able to maintain and use the 

product to its full potential. 

5.4.5.3 Current Design 

5.4.5.3.1 Overview. The first prototype includes a four-compartment design (Figure 

5.8). The prototype is designed to be fully enclosed to minimize the bacteria and TDS in 

the product clean water and provide minimal water head for small scale pool. The design 

incorporates mobile platform that allows the prototype to be transported easily without 

dismantling. 
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Figure 5.8 First prototype design of REM system. 

5.4.5.3.2 Design Component Descriptions. REM Unit is the key component of the 

entire system (Figure 5.9). Tubular REM anode is attached with stainless steel tube on 

top for electric connection and water flow, which is sealed on both end with PTFE and 

waterproof glue. REM is surrounded by cylinder-shaped stainless steel mesh cathode and 

placed in a PTFE chamber. The chamber has pre-drilled holes for electric wires and vinyl 

tubes. 
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Figure 5.9 (a) Schematic of REM unit; (b) size of module parts; (c) photos of REM parts. 
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5.4.6 Budget and schedule. Budget information is still under discussion. It will be 

finished after further contact with our partners. 

 

5.5 Conclusion 

This NSF I-Corps project allowed us to comprehensively understand the basis steps and 

principles of business development, technology transfer and market analysis. In this 

project, we conducted intensive customer interviews (more than 130 interviews) that 

covered different sectors of industries such as pure water companies, bottle beverages, 

swimming pools, landscape water management, chemical processing, pharmaceutical 

factory, water and wastewater treatment, medical and hospital facilities, and aquarium. 

Significant and valuable feedbacks were obtained and aided us in the complete business 

canvas development and some of the key hypothesis validation.  

The original value proposition is three fold:  

(1) REM filtration system has a longer lifetime than traditional filters along with 

additional microbial suppression/removal, which will reduce daily cost for water 

treatment industries and other pure water production facilities such as beverage, food 

processing companies;  

(2) REM filtration system provides high selective filtration that is needed for 

separating specific compounds or biomolecules from the biomass feedstock, which will 

increase the production efficiency and lower the risk of defective products for chemical 

separation industries such as petroleum processing and pharmaceutical industries.  

(3) REM filtration system could provide high purity water for semi-conductor and 

electronic device manufacturers, which reduce the product defect and recall cost. Later a 
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major pivot was made after the initial 30 customer interviews with local water treatment 

plants, pharmaceutical factory and beverage companies in Dallas, Texas in January 2017. 

The interview results indicate that our major value proposition did not meet the pain point 

of the customer segments.  

The new segment of swimming pools and landscape water treatment markets 

were found and validated in the following interviews. A new value proposition  for this 

new segment was that  the REM filtration system could increase water quality and safety 

(reduce toxic chemical usage such as Cl2 and also eliminate odor issues) and will reduce 

daily cost in backwash or chemical cleaning by at least 50% for swimming pools and 

landscape water. Over 50 interviews with swimming pools owners validated the 

hypothesis that our product could solve the safety and odor issues coming from the use of 

chlorine as their major disinfection chemical. The other 20 interviews were conducted 

with the aquarium suppliers in San Francisco, the USA, invalidated the hypothesis on the 

potential use in aquarium equipment markets. The ecosystems in the aquarium fish tanks 

require proper microbes that could be totally removed or inactivated by the reactive 

filtration systems. The rest of the interviews were focused on channels, key partners and 

customer relationships. Based on these interview activities, we have pinpointed the most 

possible areas of industries that may find value propositions from our presented 

technology. These industries we will focus on the future commercialization process 

include landscape water quality management, swimming pools and small water treatment 

facilities (e.g., residential end-point water filtration devices).  

We have successfully developed partnership with a technology transfer company 

(Brisea Group Inc.), located in New Jersey, to jointly promote the commercialization 
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process (e.g. product design, investment). We have filed non-disclosure agreement (NDA) 

between NJIT and Brisea. Meanwhile, we have submitted a SBIR type proposal to Shell 

Company in June, 2017 and also actively prepare another SBIR proposal (see section 5.4 

above) to be submitted to NSF and other agencies. Several internal small grants at NJIT 

(e.g., URI phase I and phase II grants) were raised for building three demo units.  

Intellectual Merit. Our current NSF research project (Award Number: 1603609) 

investigates the multifunctional REM and its synergies in separation of algae as a model 

microorganism, fouling mitigation, water purification, and cell destabilization and 

pretreatment. Scientific merits include (1) development and testing of a suite of tailored 

REMs for efficient biomass separation; (2) evaluation of permeate water quality and 

removal of water contaminants; (3) elucidation of underlying mechanisms of 

electrochemical oxidation and contribution to antifouling and high flux properties. The 

results will not only provide fundamental guidelines as to the rational design of REMs 

with controlled and efficient performance, flexible structure, and durability of operation 

for algal separation, but also leads to an avenue for the development of a new generation 

of reactive membranes. This NSF I-Corps project further enabled us to explore the 

industrial applications, identify current challenges, problems, and alternative solutions 

from customer interviews. A number of value proposition hypotheses were proposed and 

tested through interactions with customers from different industrial segments to achieve 

new insight into the development of next-generation membrane filtration technologies: 

for example, a matrix of economic tradeoffs between existing capital and operating costs 

versus capital and operating costs of REM specifically for different source waters.   
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Broader Impacts. Membrane filtration is one of the most efficient processes for 

separations and water purification. However, traditional membrane separations suffer 

from membrane fouling due to the formation of foulant layers that may consist of organic 

matters, biomass debris, salt, and various trapped substances. On the other hand, water 

disinfection are highly rely on Chlorine or similar chemicals (e.g., hypochlorite and 

bromine) especially for drinking water plants and swimming pools, which may have 

hidden safety issue and harm human health. We designed, optimized, and constructed a 

novel filtration technique to mitigate membrane surface fouling through electrochemical 

oxidation powered by anodic filter polarization under a DC current. This invention was 

built upon existing research, making water purification and disinfection system that is 

more safe, eco-friendly and cost effective. The reactive electrochemical membrane (REM) 

technology holds a great potential to upgrade current membrane filtration systems that 

simply rely on physical separation and catalyze many other transformative industrial 

applications. For example, REM offers a novel approach to small scale water purification 

and disinfection without using chlorine, which could be useful for swimming pools, 

landscape water and small water treatment facilities without access to the capital needed 

for more traditional means of physical purification and chemical disinfection.  

In the pursuit of more safe, efficient, flexible, durable, and sustainable membrane 

technologies, this work will greatly extend REM technologies to many potential areas or 

fields where high purity water is produced; biomass or biomolecules need to be separated. 

The research findings will lead to rational designs of REMs with controlled and efficient 

performance, flexible design, and durability of operation, which therefore radically 

change and advance the fields of biomass separation and water treatment. Moreover, the 
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project trains and mentors graduate students and a large number of undergraduate and 

senior high school students from female and underrepresented groups in STEM. Students 

represent the future leaders of engineering and science, and their participation in this 

project will help prepare them for careers in sustainable engineering and establish 

business development skills. Finally, the substantial commercial impacts are expected on 

end users or markets in, but not limited to, membrane manufacturers and users for 

swimming pools, landscape water and small water treatment facilities. In the long term, 

reactive ceramic membranes have the advantage of higher disinfection safety, higher 

separation efficiency and lower fouling potential comparing with the traditional filtration-

disinfection method. Additionally, due to their flexible surface modifications and a longer 

lifetime compared to widely used polymer membranes, they will reduce filtration 

operational cost and increase process sustainability.      

The broader impact/commercial potential of this I-Corps project is the 

commercialization of a potentially game-changing filtration technology based on the 

synergistic electrochemical reactions created on membrane surfaces. Membrane filtration 

is indispensable for a wide spectrum of industrial applications such as swimming pools, 

landscape water and small water treatment facilities.. This project will provide filtration 

users the value propositions in increasing safety, decreasing the use of hazardous 

chemicals (chlorine and others) and saving capital costs on membrane cleaning, 

maintenance, replacement as well as high quality products (e.g., filtered water). This 

project will also impact membrane manufacturers by increasing the demand for 

multifunctional and reactive membranes in the global market of membrane filtration, 

which is estimated to reach $2.64 billion by 2018. Therefore, the ultimate goal of this 
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project is to upgrade and transform current membrane industries from traditional physical 

filtration into advanced and chemically reactive membrane systems. This process will 

also lead to new business opportunities and foster workforce development. 
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APPENDIX 

A.1 MATLAB CODE FOR CALCULATIONS 

A.1.1. Matlab Code for Figure 3.17 (calculation and simulation of permeate flow 
rate, Q and cake layer resistance, Rc, under different experimental conditions) 

A.1.1.1  Calculation of  ExpQ by linear interpolation method from experimental 
data 
%  GetEXPQ is a function based on Interpolation fitting (spline function) to calculate the 

derivative of discrete points at any point. 

% Example: 

%   n = length(t); 

%   for i=1:n 

%   EXPQ(i) = GetEXPQ (t, V_t, t(i)); 

%   end 

%   Typing the code above, will get a row vector with experimental flow rate (EXPQ), 

the input parameters, t and V_t,  . 

  

function EXPQ=GetEXPQ(t,V_t,T) 

% T is the time points that users are interested to determine the flow rates at.  

 

% creat two points, M(1) & M(2) with tiny distance 

M(1)=T-0.001;  

M(2)=T+0.001; 

  

% calulate the slop of two points, and obtain the final value we wanted. 

diffy=spline(t,V_t,M(1))-spline(t,V_t,M(2)); 
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diffx=M(1)-M(2); 

  

EXPQ=diffy./diffx; 

 

A.1.1.2  Calculation of  Cw 

% findCw is a function to calculate one of the unknown parameter C_w. 

  

% Example: 

% C_w=findCw (t, V_t, EXPQ, DeltaP, R_ir, mu, R_m, C_b, A); 

% Typing the code above, will get a row vector with Volume concentration of particles at 

the membrane surface (C_w) with the input parameters as defined in file "model equation 

for deadend" . 

  

  

function C_w=findCw(t,V_t,EXPQ,DeltaP, R_ir, mu, R_m, C_b, A) 

  

% n: the number of data. 

 n = length(t); 

  

% initialize vecter k_c, R_c and C_w with zero value in 1 row and n column 

% mixtra 

  

% k_c: Specific resistance per unit of cake thickness (m^?2) 
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% R_c: Reversible fouling resistance or resistance of the cake layer (m^?1) 

% C_w: Volume concentration of particles at the membrane surface (%) 

 k_c = zeros(1,n);  

 R_c = zeros(1,n);  

 C_w = ones(1,n);  

  

 % step 1 : get k_c vector, corresponds to equation (4-1) in file "model equation for 

deadend" 

  

for loopp=1:n 

     k_c(loopp) = 2*DeltaP*A^2*(t(loopp)/V_t(loopp) - 

(R_m*mu)/(DeltaP*A))/(C_b*mu*V_t(loopp)); 

end 

% step 2 : get R_c vector, corresponds to equation (3-1) in file "model equation for 

deadend" 

for loopp=1:n 

     R_c(loopp)=(A*DeltaP)/(mu*EXPQ(loopp))-R_m-R_ir; 

end 

%step 3: get C_w vecter, corresponds to equation (4-2) in file "model equation for 

deadend" 

for loopp=1:n 

    C_w(loopp)=(2*k_c(loopp)*DeltaP*C_b*t(loopp)/mu)/((R_c(loopp)+R_m)^2-

R_m^2); 
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end 

A.1.1.3 Calculation and simulation of permeate flow rate 

% Experimental data of permeate volume (V_t), expressed as cubic meter, and time (t), 

expressed as second, must be 

% entered in excel in column vectors. "filename" in the code refers to the name of excell 

dataset of V_t and t. 

% Input: DeltaP: Transmembrane pressure (Pa) 

% Input: r: Backwash efficiency (bewteen 0-1) 

% Input: R_ir: Backwash irreversible resistance (m^-1) 

% output: Q, which is the data of fitted flow rates by varying Cw 

% output: EXPQ, which is  MATLAB-calculated flow rate from the Vt data 

% output: C_W, which is the Cw parameter   

% output: Rmax is the correlation coefficient, R2 

 

%Typing the code below in MATLAB will yield several row vectors with simulated flow 

rate (Q), experimental flow rate (EXPQ), and input data: time& Permeate volume (t, V_t). 

 

 

function [t,V_t,Q,EXPQ,C_w,Rmax]=Membrane_deadend(filename, DeltaP, r, R_ir, mu, 

R_m, C_b, A, C_w) 

  

% the following three lines are to determine if it is a first round of filtration without prior 

membrane filtration (R_ir=0), if not, we need to change the value of R_ir 
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if R_ir ~= 0 

    R_ir = (1-r)/r*R_m+R_ir; 

end                         

  

% read experimental data of V and t from excel file; number is the matrix exported from 

excel file with a name of "filename" 

number=xlsread(filename); 

 

% Extract variables t and V_t from number matrix 

t=number(:,1)';              

V_t=number(:,2)'; 

  

% n is the number of data 

n = length(t);               

  

% Use the fitted function of V and t to derive a smooth function of flow rate Q and t. 

EXPQ=zeros(1,n); % Define the EXPQ vector with value of 0 in the first row and n 

column matrix. 

for loopp=1:n 

   EXPQ(loopp)=GetEXPQ(t,V_t,t(loopp)); % the function (GetEXPQ) could calculate 

the value of the experimental flow rate at point time =t(loopp) 

end 
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if strcmp(C_w,'unknown') 

% findCw is a function to determine the value of C_w; see details in the findCw code. 

    VecterC_w=findCw(t,V_t,EXPQ,DeltaP, R_ir, mu, R_m, C_b, A); %VecterC_w is a 

matrix or vector for all possible C_w  

 

% In the following ten lines we find the best value of C_w by fitting experimental and 

calculated V_t at different t 

Rmax=0; % Rmax is the variable to memorize the value of R^2, when meet a best value 

of C_w. 

flag=1; % flag is the subscript of the best C_w value. 

for loopp=1:n 

    R=compare(t,V_t,EXPQ,DeltaP, R_ir, VecterC_w(loopp),mu, R_m, C_b, A, n); % R 

is the correlation coefficient, R^2 

% compare the calculated R with Rmax. 

    if R>Rmax 

        Rmax=R; 

        flag=loopp; 

    else R=0; 

    end 

end 

C_w = VecterC_w(flag); % the best value of C_w 

end 

% get the value of Q vecter, the fitted flow rates with t. 
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Q = formula_deadend(t,V_t,DeltaP, R_ir, C_w, mu, R_m, C_b, A,n); 

R=R_Coefficient(Q,EXPQ); 

 

A.1.2. Matlab Code for Figure 3.26 (calculation and simulation of cake layer 

resistance, Rc, under different experimental conditions) 

clc;clear; 

 

number =  xlsread('datafile');%read expeirmental data from excel file named 'datafile' 

t = number(3:80:10000,1 );%filtration time (s) 

V_t = number(3:80:10000,6); %accumulative volume of filtrate or permeate (m3) 

J_0= number(3,11); % Initial flux (m3·m-2·s-1) 

J_s=number(120,11); %Flux at steady state (m3·m-2·s-1) 

 

%enter experimental data below 

TMP = 68947.6;%TMP (Pa)   

A = 4 * 10^-3;%the membrane surface areas (4×10-3 m2).  

mu = 8.9 * 10^-4;% dynamic viscosity of water at 25 oC (0.8937 ×10-3 Pa·s).  

R_ir = 0; %irreversible fouling resistance 

R_m = 3 * 10^11;% the intrinsic resistance of the membrane  ,(m-1)  

C_b = 0.001; %Cb is the algal concentration in the bulk suspension (%).  

 

for i = 1: length(t) 

    %Calculation of Q(m3·s-1) 
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    M1(i)=t(i)-0.001; 

    M2(i)=t(i)+0.001; 

    diffy1(i)=spline(t,V_t,M1(i))-spline(t,V_t,M2(i)); 

    diffx1(i)=M1(i)-M2(i); 

     

    Q(i)=diffy1(i)/diffx1(i); 

     

    %calculate the cake resistance R_c 

    R_c1(i) = A * TMP / (mu*Q(i)) - R_m - R_ir; 

     

    %calculate the specific resistance per unit of cake thickness (m-2)  

    k_c1(i) = (t(i)/V_t(i) - mu * R_m / (A * TMP)) * (2 * A^2 * TMP) / (mu * C_b * 

V_t(i));  

     

    %calculate the cake layer thickness delta_c 

    delta_c1(i)= R_c1(i)/k_c1(i); 

     

    %calculate the cake growth rate constant (m·s-1)  

    k_cr1(i)=-TMP/(J_s*mu*k_c1(i)*t(i))*log(1-(J_s*mu*k_c1(i)*delta_c1(i)/(TMP-

J_s*mu*R_m)))-delta_c1(i)/t(i); 

     

     %the wall concentration of algal, Cw, (%).  

    C_w1(i) = (J_s*C_b*J_0/(J_0-J_s))/k_cr1(i); 
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        i = i+1; 

         

end 

 

% Subtract the real numbers of the calculated k_c and C_w and designated as new 

vectors realk_c and realC_w 

realk_c=k_c1(imag(k_c1)==0); 

realC_w=C_w1(imag(C_w1)==0); 

 

%calculate the mean value of output realk_c and realC_w; 

k_c = mean(realk_c(16:110)); % Specific resistance per unit of cake thickness (m-2) 

C_w = mean(realC_w(31:95)); % Volume concentration of algae at the membrane 

surface (%) 

 

 

% Calculate k_cr using given C_w 

k_cr=J_s*C_b*J_0/((J_0-J_s)*C_w);% Cake growth rate constant (m·s-1)  

 

 

% Denote complex terms 

AT = TMP/(J_s*mu*k_c*k_cr); 

BT = J_s*mu*k_c/(TMP-J_s*mu*(R_m+R_ir)); 
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% Denote delta_c as a matrix  

Delta_c = zeros(length(t),2); 

% Use solve function to calculate the delta_c; 

for i = 1:1:length(t) 

 

ti = t(i); 

syms delta_c 

delta_c = solve((ti + AT*log(1-BT*delta_c) + delta_c/k_cr) == 0,delta_c); 

Delta_c(i,:) = double(delta_c); 

end 

 

R_c = k_c * Delta_c(:,2); 

 

plot(t,R_c);title('R_c vs t');xlabel('t');ylabel('R_c');grid; 

 

%manually change the file name output (Rc, kc and Cw): 

 

csvwrite('R_c10psi-100mA.csv',R_c); 

csvwrite('k_c10psi-100mA.csv',k_c); 

csvwrite('C_w10psi-100mA.csv',C_w); 
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Detailed explanations for each line 

Line 1: Clear all data 

Line 3: Read experimental data from excel file named ‘datafile’ that contains the volume 

of permeate at time t. 

Line 4: t is the filtration time (s) that is extracted from in the excel ‘datafile’; 1 means 

data was extracted from the first column; 3 means the vector t started from 3rd cell 

because the 1st and 2nd row were left for item name and units; 10,000 means the data 

ended in 10,000 unit cell because the experiment ends in 2500s and each cell was 0.25s; 

80 means the data was selected from each 80 cell to avoid too much similar data in short 

time interval.    

Line 5: V_t is the accumulative volume of filtrate or permeate (m3) under different DC 

conditions extracted from column 2 to 6; so the number 6 in (3:80:10000,6) may vary 

depending which column data is to be extracted. 

Line 6: J_0 is the initial permeate flux value (m3·m-2·s-1), (3,11) means the 3rd cell in the 

11th column, which may vary depending which column data is to be extracted. 

Line 7: J_s is the permeate flux value at steady state (m3·m-2·s-1), (120,11) means the 

120th cell in the 11th column, which may vary depending which column data is to be 

extracted 
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Line 9 to line 15: enter experimental data: 

Line 10: Input transmembrane pressure value (TMP, 68947.6 Pa in this study), 

Line 11: Input membrane surface area value (A, 0.004 m2 in this study) 

Line 12: Input dynamic viscosity of water at 25 oC (mu, 8.90 × 10−4 Pa∙s in this study) 

Line 13: Input irreversible fouling resistance (R_ir = 0 in this study, because only single 

cycle was tested) 

Line 14: Input the intrinsic resistance of the membrane (R_m = 1 × 1011 m-1 from the 

experiment data in 3.3.2.1)  

Line 15: Input the algal concentration in the bulk suspension (C_b = 0.001% in this 

study).  

Line 19 to line 24: Calculation of permeate flow rate (Q in m3∙s-1), where spline function 

was used to obtain the derivation from the relation of t and V_t. 

 Line 27: Calculate the reversible resistance (R_c1) directly from experimental data (Q, 

TMP, R_m and R_ir) without fitting. 

Line 30: Calculate a set of specific resistance per unit (k_c1) of cake thickness (m-2) from 

R_c1. 

Line 33: Calculate a set of cake layer thickness delta_c from k_c1 and R_c1. 

Line 36: Calculate a set of cake growth rate constant k_cr1 (m∙s-1)  

Line 39: Calculate a set of cake (algal) concentration on the membrane wall, C_w1, (%).  

Line 46 to line 47:  Subtract the real numbers of the calculated k_c and C_w and 

designated as new vectors realk_c and realC_w. (Because there were imaginary numbers 

in k_c1 and C_w1 sets) 
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Line 50 to line 51:  Calculate the mean value of output realk_c and realC_w sets. The 

output value of  k_c and C_w were used as model parameters. 

Line 55 Calculate cake growth rate k_cr using given C_w 

Line 59 to line 60:  Denote complex terms 

AT = TMP/(J_s*mu*k_c*k_cr); 

BT = J_s*mu*k_c/(TMP-J_s*mu*(R_m+R_ir)); 

Line 62:   Denote delta_c as a matrix  

Line 65 to line 70:  Use solve function to calculate the delta_c 

Line 73: Calculate fitted R_c; 

Line 75: plot t verse R_c relationship; 

Line 79 to 81: output csv files for t verse R_c relationship, fitted C_w and k_c, file names 

were manually changed. 

 

A.2 Certification requirement 

A.2.1 National Sanitation Foundation (NSF) and American National Standards 
Institute (ANSI) 
 

A.2.1.1 NSF/ANSI 61. If we manufacture, sell or distribute water treatment or 

distribution products in North America, our products are required to comply with 

NSF/ANSI 61: Drinking Water System Components – Health Effects by most 

governmental agencies that regulate drinking water supplies. NSF will assign us a project 

manager as a single point of contact to guide us through the certification process and 

oversee our certification project every step of the way. 

Certification Process: 

1. Our company submits an application. 
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2. We provide product formulation, toxicology and product use information. 

3. NSF toxicology department reviews formulations. 

4. NSF performs a plant audit and sample collection. 

5. NSF laboratory conducts testing. 

6. NSF completes a final toxicology evaluation. 

7. NSF grants certification for compliant products and we can use the NSF mark 

on products, packaging and marketing materials. 

A.2.1.2 NSF/ANSI 419. NSF/ANSI 419 (Public Drinking Water Equipment 

Performance – Filtration) is an NSF/ANSI national standard for microfiltration (MF) and 

ultrafiltration (UF) membrane modules, as well as bag and cartridge filter systems. This 

standard establishes performance testing protocols that are consistent with the product-

specific microbial challenge testing requirements for Cryptosporidium removal credits 

under the U.S. EPA Long-Term 2 Enhanced Surface Water Treatment Rule (LT2 Rule). 

NSF/ANSI 419 allows for a Cryptosporidium removal performance certification 

to accompany certification to NSF/ ANSI 61, which covers health effects certification for 

wetted materials. 

A.2.2 American Society of Mechanical Engineers (ASME)  

The purpose of the review/survey is to evaluate the applicant's quality manual and the 

implementation of the quality program. The extent of the review/survey will be 

determined by ASME based on a review of the applicant's intended scope of activities as 

described in the application. 

This assessment ensures that the applicant's quality program has been adequately 

implemented and that it complies with the requirements in the associated ASME 
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standard. When the assessment has been completed, the review/survey team leader will 

submit a written report to ASME. A certificate will be granted by ASME only after the 

applicant successfully demonstrates the implementation of their quality program to the 

ASME review/survey team. After ASME reviews the report submitted by the 

review/survey team, the Society will either authorize the issuance of the certificate or 

request additional action by the applicant. Certificate holders may request changes to 

their certificate(s) after issuance. Certification Process is shown in Figure 6.1. 

 

 

Figure A.1 Certification Process and timeline. 
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A.3 Interviewee information 

The information of some major interviewees is summarized in Table A.1.  

Table A.1 Interviewee information 

Interviewee’s 
name and title Company’s name Contact (phone or email; 

address) Segment 

Kelli Armstrong, 
owner 

JBC Water Treatment 
Company 

support@jbcwatertreatment.co
m 

(972)-740-7153 

Water 
Treatment 
Company 

Emily Osta, 
Administrative 

Coordinator 

Pharmaceutical 
Research & Consulting, 

Inc. 

emily.osta@daac-prc.com 
(214) 361-5555 

Pharmaceutic
al Company 

Bill, Vanassa 
Joseph, 

Chris, Engineer 

Trinity River Authority 
of Texas, Central 

Regional Wastewater 
System 

(817) 467-4343 
Wastewater 
Treatment 

Plant 

Mark Hughes, 
Engineer 

Aqua-Aerobic Systems, 
Inc. mhughes@aqua-aerobic.com 

Water 
Treatment 
Company 
(Supplier) 

Peter Stencel Dallas water utilities 

peter.stencel@dallascityhall.co
m 

(214)670-0906 

Water 
Treatment 
Company 

Pablo Perez,  
Engineer,  Sr. 

Program 
Manager 

Nestle waters 

Pablo.perzteshima1@waters.nes
tle.com 

(972)7804066 

Beverage 
companies 

Evan,  Project 
manager 

City of The Colony 
Wastewater Treatment 

Plant 
(972)624-4412 

Wastewater 
Treatment 

Plant 
Elizabeth Yarus,  

Supervisor 
Cook/Douglass 

Recreational Centre (848)932-0711 Swimming 
pool owner 

Frank,  Engineer Hilton garden inn (855)618-4697 
Swimming 
pool owner 

(Hotel) 

Wilson,  Pool 
supervisor Hilton/Princeton (609)720-0550 

Swimming 
pool owner 

(Hotel) 

Kevin,  Chief 
engineer 

Courtyard 
Marriott/Princeton (800)207-5499 

Swimming 
pool owner 

(Hotel) 

Alpa Desai,  
General Manager 

Hampton Inn, New 
Brunswick  

Swimming 
pool owner 

(Hotel) 
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Table A.1 Continued 

Gary Burrow, 
Manager Monarch Dental (214) 361-2227 Medical 

(Dental) 
Jerry Pressley, 

Registered 
Engineering 
Manager and 

water reclamation 
and reuse 
division 

Village Creek Waste 
Water Treatment Plant 

jerry.pressley@fortworthtexas.
gov 

Wastewater 
Treatment 

Plant 

Ovi Meret, Chief 
Engineer Hightland Dallas Hotel ovi.meret@thehighlanddallas.c

om 

Swimming 
pool owner 

(Hotel) 

Kui Zhou, 
President 

Nanjing Suhuan 
Environmental 

Technology 
Development Co., Ltd 

511356452@qq.com 

Water 
Treatment 
Company 
(Supplier) 

John Woodworth, 
Water Quality 

Control Officer 
Mansfield water utilities john.woodworth@mansfieldtex

as.gov 

Water 
Treatment 
Company 

Sanjav Varma, 
General Manager 

Wingate by Wyndham 
DFW North varmazrus@gmail.com 

Swimming 
pool owner 

(Hotel) 

Juan Hurmdo, 
Chief Engineer 

Fairfield Inn&Suites 
Marriott (908)938-1550 

Swimming 
pool owner 

(Hotel) 

Daryl Coleman, 
Chief Engineer 

Courtyard Marriott 
(Edison) 

daryl.coleman@concordhotels.
com 

Swimming 
pool owner 

(Hotel) 

Mihir Trivedi, 
General Manager Holiday Inn mtrivedi@friendwell.com 

Swimming 
pool owner 

(Hotel) 

Ismael Rivera, 
Chief Engineer Hilton Garden Inn ismael.rivera@hhmlp.com 

Swimming 
pool owner 

(Hotel) 

Jon Fuentes, 
Chief Engineer Sheraton Hotel (Edison) jo.fuentes@sheratonedison.co

m 

Swimming 
pool owner 

(Hotel) 
Brain F. Carr, 
Senior Project 

Engineer 

Middlesex Water 
Company bcarr@middlesexwater.com 

Water 
Treatment 
Company 

Jayantha, Chief 
Engineer Crown Plaza (Edison)  

Water 
Treatment 
Company 

Clifton Pressley, 
Chief Engineer Hilton Woodcliff Lake clifton.pressley@columbiasuss

ex.com 

Swimming 
pool owner 

(Hotel) 
Phil Lamberti, 
Chief Engineer 

Westminster Hotel 
(Livingston) 

plamberti@westminsterhotel.n
et 

Swimming 
pool owner  
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Scott Woodruff, 

Director of 
Facilities 

Hilton Pearl River scott.woodruff@hilton.com 
Swimming 
pool owner 

(Hotel) 

Robert Smith, 
Chief Engineer 

Hilton Garden Inn 
(Wayne) RSmith@BuffaloLodging.com 

Swimming 
pool owner 

(Hotel) 

Hermes, Chief 
Engineer 

Sheraton Mahwah 
Hotel (201)529-1660 

Swimming 
pool owner 

(Hotel) 

Ron Hellwig, 
Chief Engineer 

Courtyard Marriott 
(Wast Orange) Ronald.Hellwig@marriott.com 

Swimming 
pool owner 

(Hotel) 

Luis Balderas, 
General Manager 

The Club@HQ 
Plaza(Morristown) (973)644-9590 

Swimming 
pool owner 

(Fitness) 
Ekatrina, pool 
supervisor and 

operator 

Hilton Inn, New 
Brunswick  

Swimming 
pool owner 

(Hotel) 

Edda Arata, 
General Manager 

Holiday Inn Express & 
Suites, New Brunswick  

Swimming 
pool owner 

(Hotel) 

Brian Kosa, 
General Manager 

Glenpointe Spa & 
Fitness 

bkosa@GlenpointeSpaandFitne
ss.com 

Swimming 
pool owner 

(Fitness) 

Don Cosman, 
Chief Engineer 

Hilton Garden Inn 
Ridgefield Park 

Dcosman@hgiridgefieldpark.co
m 

Swimming 
pool owner 

(Hotel) 
Rachel Walker, 
Guest Services 

Manager 

Hampton Inn by Hilton 
(Ridgefield Park) RFPNJ.Hampton@gmail.com 

Swimming 
pool owner 

(Hotel) 

Carlos Alvarez, 
Chief Engineer 

Crowne Plaza 
(englewood) (201)871-2020 

Swimming 
pool owner 

(Hotel) 

George Hondros, 
Club Manager 

24 hour fitness 
(Hasbrouck Heights) cmclub654@24hourfit.com 

Swimming 
pool owner 

(Fitness) 
Brain Stevens, 
certified pool 

operator 

YMCA of Greater 
Bergen County  

Swimming 
pool owner 

(Fitness) 

Gordon, Engineer 
(state certified) 

Holiday Inn/Rahway-
NJ (732)541-9500 

Swimming 
pool owner 

(Hotel) 

Dewey M., shift 
engineer Hilton Meadowlands (201) 896-0500 

Swimming 
pool owner 

(Hotel) 

Karen P. LA fitness (Kearny)  
Swimming 
pool owner 

(Fitness) 
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Ryan Scott, Front 

office manager 
Home2suites by 

Hilton/Rahway-NJ (732)388-5500 
Swimming 
pool owner 

(Hotel) 

Ronnie, Pool 
supervisor 

RJW Rahway fitness & 
wellness center at 

Carteret/Rahway-NJ 
(732)541-2333 

Swimming 
pool owner 

(Fitness) 

Representative In the Swim (800)288-7946 Swimming 
pool supplier 

Representative Eco-lab (800)352-5326 Swimming 
pool supplier 

Helen Flores, 
Executive 
Director 

YMCA / Livingston hflores@metroymcas.org 
Swimming 
pool owner 

(Fitness) 

Bob Hansen, 
Asst. HVAC 

manager 

New Jersey Institute of 
Technology robert.l.hansen@njit.edu 

Swimming 
pool owner 

(School/Colle
ge) 

Roberto Cardona, 
Chief Engineer 

Homewood Suites by 
Hilton / East 
Rutherford 

(201)460-9030 
Swimming 
pool owner 

(Hotel) 

Jimmy Cruz, 
Chief Engineer 

Hampton Inn & Suites / 
Newark-Harrison 

Riverwalk 
tony.cartagena@hilton.com 

Swimming 
pool owner 

(Hotel) 

Dwayne Cronce, 
General Manager 

Wyndham Garden 
Hotel, Newark (973) 824-4000 

Swimming 
pool owner 

(Hotel) 

Tom Lee, 
Aquatics 

Coordinator 
Rutgers University tomlee@newark.rutgers.edu 

Swimming 
pool owner 

(School/Colle
ge) 

Bin Wang, 
Owner, designer Private pool woobin811@126.com 

Swimming 
pool Owner 
and designer 

Bob, 
Maintenance 

technician 

Stay bridge 
suites/Princeton-NJ (732)940-2250 

Swimming 
pool owner 

(Hotel) 

Kevin, Chief 
engineer 

Courtyard 
Marriott/Princeton-NJ (800)207-5499 

Swimming 
pool owner 

(Hotel) 

Wilson, Pool 
supervisor 

Home suites by 
Hilton/Princeton-NJ (609)720-0550 

Swimming 
pool owner 

(Hotel) 

Jose, chief 
engineer 

Double tree by 
Hilton/Princeton-NJ (855)275-4790 

Swimming 
pool owner 

(Hotel) 

Frank, engineer Hilton garden 
inn/Trenton-NJ (855)618-4697 

Swimming 
pool owner 

(Hotel) 
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Megan White, 
administrator Ruthorford High School  

Swimming 
pool owner 

(School/Colle
ge) 

Thomas 
Dobrowolski, 

Owner 
Action Pools & supplies (732) 855-0044 Swimming 

pool supplier 

Jimmy, 
Salesman 

Leslie's pool 
supplies/Springfield (973)258-9696 Swimming 

pool supplier 

Jeff, Owner Woodbridge Pools (732)636-0061 Swimming 
pool supplier 

Carol, Manager Leslie's/Edison NJ (732)632-2080 Swimming 
pool supplier 

Janet, Pool 
manager Five Star Swim School (732)902-2267 

Swimming 
pool owner 

(School/Colle
ge) 

Jack, 
Maintenance 

Engineer 

Sheraton Brooklyn New 
York Hotel  

Swimming 
pool owner 

(Hotel) 
Madhur Patel, 

Aquatic 
Director 

YMCA Mcburney NYC (212)912-2300 
Swimming 
pool owner 

(Fitness) 
Richard Kosty, 

General 
Manager 

The Heldrich (732)729-4670 
Swimming 
pool owner 

(Fitness) 

Rana kamel 
Robert wood Johnson 
fitness and wellness 

centre 
(732)873-1222 

Swimming 
pool owner 

(Fitness) 
Jeff 

Zeszotarski, 
Aquatics 

Coordinator 

Werblin Recreational 
Centre (848)445-1336 

Swimming 
pool owner 

(Fitness) 

James Crist, 
Store Manager 

Leslie Pool Supplies/East 
Brunswick (732)257-5704 Swimming 

pool supplier 
Andrew Smith, 

Recruiting 
Director 

American Pool (732)-423-3870 Swimming 
pool supplier 

Brian Bergeski, 
President American Pool  Swimming 

pool supplier 

Winnie Shih, 
Application 
Engineering 

Manager 

Nanostone water (310)869-6977 

Water 
Treatment 
Company 
(Supplier) 

 

Ryan, Pool 
supervisor 

Hampton inn by 
Hilton/Trenton-NJ (855)213-0582 

Swimming 
pool owner 

(Hotel) 
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Travis 

Nilmeyer, 
specialty 
markets 

Myron L Company (760)438-2021 

Water 
Treatment 
Company 
(Supplier) 

Jantje Johnson, 
Business 

development 
director 

Desalitech jantje@desalitech 

Water 
Treatment 
Company 
(Supplier) 

Daniel 
Stenberg, 
Design 

Engineer 

Forsta Filters (310)837-7177 

Water 
Treatment 
Company 
(Supplier) 

Stefan Strasser, 
Product 
Manager 

Lenzing Technik s.strasser@lenzing.com 

Water 
Treatment 
Company 
(Supplier) 

Takafumi 
Takeda, CFM 
& WPS sales 

section 

Meidensha Corporation takeda-ta@mb.meidensha.co.jp 

Water 
Treatment 
Company 
(Supplier) 

Min Gyoo 
Kim, Business 
Development 

Manager 

Doosan Hudro 
Technology mkim@doosanhydro 

Water 
Treatment 
Company 
(Supplier) 

Jeff Kaminski, 
Regional Sales 

Manager 
Amiad water system jeff.kaminski@amiad.com 

Water 
Treatment 
Company 
(Supplier) 

Allan Pascual, 
Sales Engineer Pure Aqua Inc allan@pureaqua.com 

Water 
Treatment 
Company 
(Supplier) 

Paul Jung, 
Executive 
Director 

Econity paul.jung@econity.com 

Water 
Treatment 
Company 
(Supplier) 

Richard 
Chmielewski Protec-arisawa RDC@protec-arisawa.com 

Water 
Treatment 
Company 
(Supplier) 

Stephen Katz, 
MBR Product 
Applications 

Leader 

GE Power & Water stephen.katz@ge.com 

Water 
Treatment 
Company 
(Supplier) 

Rabee 
Mazahreh, 

Sales Manager 
Pentair rabee.mazahreh@pentair.com 

Water 
Treatment 
Company 
(Supplier) 
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Chris Hanson,  MRI meurerresearch chanson@meurerresearch.com 

Water 
Treatment 
Company 
(Supplier) 

Dr. Jens 
Lipnizki, head 

of technical 
marketing 
membrane 

LANXESS jens.lipnizki@lanxess.com 

Water 
Treatment 
Company 
(Supplier) 

Alejandro C, 
Customer 
Service 

Associate 

Leslies pool (800)537-5437 Swimming 
pool supplier 

anonymous Leslie Pool 
Supplies/Clifton, NJ  Swimming 

pool supplier 
Megan Bado, 

Assistant 
Manager 

Leslie’s Pool 
Supplies/Pompton 

Lakes 
 Swimming 

pool supplier 

Janet Bush, 
General 
Manager 

Quality Inn Choice 
Suites (570)420-1000 

Swimming 
pool owner 

(Hotel) 
Kevin Baade, 
Maintenance 
Supervisor 

Staybridge Suites  
Poconos (570)420-2828 

Swimming 
pool owner 

(Hotel) 
Michele Kuna, 

Aquatics 
Director 

he YMCA-
Stroudsburg , PA (570)421-2525 

Swimming 
pool owner 

(Fitness) 
Ryan Hurtack, 

Assistant 
General 
Manager 

Fairfield Inn Marriot (814)238-3871 
Swimming 
pool owner 

(Hotel) 

Scott 
Mangene, 
General 
Manager 

Hampton Inn And 
Suites Williamsburg 

Square 
(814)231-1899 

Swimming 
pool owner 

(Hotel) 

Rhea, SPA 
Supervisor 

Bally’s Hotel - 
Atlantic city (609) 340-2000 

Swimming 
pool owner 

(Hotel) 
David 

Hoylman, 
General 
Manager 

University Park Inn & 
Suites (814)234-8393 

Swimming 
pool owner 

(Hotel) 

William Rojas, 
chief Engineer 

Courtyard Marriot 
Hotel -State College , 

PA 
(814)238-1881 

Swimming 
pool owner 

(Hotel) 
Corey, 

Maintenance 
Engineer 

Days Inn Hotel -State 
College, PA ettubs@centrehotel.com 

Swimming 
pool owner 

(Hotel) 
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Steven 

Barnes, Sales 
Associate 

Pocono Pools and Spa 
Retailer (570)476-0888 Swimming 

pool supplier 

Lisa, assistant 
Engineer 

The Penn stater 
Conference Center 

Hotel 
(814)863-5000 Swimming 

pool supplier 

Kelly, 
Maintenance 
Supervisor 

BERKEY FILTERS Swimming 
pool supplier 

S. Baker HAYWARD POOL 
PRODUCTS sbaker@hayward.com Swimming 

pool supplier 
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