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ABSTRACT

WORKLOAD ALLOCATION IN MOBILE EDGE COMPUTING
EMPOWERED INTERNET OF THINGS

by
Qiang Fan

In the past few years, a tremendous number of smart devices and objects, such as

smart phones, wearable devices, industrial and utility components, are equipped with

sensors to sense the real-time physical information from the environment. Hence,

Internet of Things (IoT) is introduced, where various smart devices are connected

with each other via the internet and empowered with data analytics. Owing to the

high volume and fast velocity of data streams generated by IoT devices, the cloud

that can provision flexible and efficient computing resources is employed as a smart

”brain” to process and store the big data generated from IoT devices. However, since

the remote cloud is far from IoT users which send application requests and await the

results generated by the data processing in the remote cloud, the response time of the

requests may be too long, especially unbearable for delay sensitive IoT applications.

Therefore, edge computing resources (e.g., cloudlets and fog nodes) which are close

to IoT devices and IoT users can be employed to alleviate the traffic load in the core

network and minimize the response time for IoT users.

In edge computing, the communications latency critically affects the response

time of IoT user requests. Owing to the dynamic distribution of IoT users (i.e.,

UEs), drone base station (DBS), which can be flexibly deployed for hotspot areas,

can potentially improve the wireless latency of IoT users by mitigating the heavy

traffic loads of macro BSs. Drone-based communications poses two major challenges:

1) the DBS should be deployed in suitable areas with heavy traffic demands to serve

more UEs; 2) the traffic loads in the network should be allocated among macro

BSs and DBSs to avoid instigating traffic congestions. Therefore, a TrAffic Load



baLancing (TALL) scheme in such drone-assisted fog network is proposed to minimize

the wireless latency of IoT users. In the scheme, the problem is decomposed into two

sub-problems, two algorithms are designed to optimize the DBS placement and user

association, respectively. Extensive simulations have been set up to validate the

performance of the proposed scheme.

Meanwhile, various IoT applications can be run in cloudlets to reduce the

response time between IoT users (e.g., user equipments in mobile networks) and

cloudlets. Considering the spatial and temporal dynamics of each application’s

workloads among cloudlets, the workload allocation among cloudlets for each IoT

application affects the response time of the application’s requests. To solve this

problem, an Application awaRE workload Allocation (AREA) scheme for edge

computing based IoT is designed to minimize the response time of IoT application

requests by determining the destination cloudlets for each IoT user’s different types

of requests and the amount of computing resources allocated for each application in

each cloudlet. In this scheme, both the network delay and computing delay are taken

into account, i.e., IoT users’ requests are more likely assigned to closer and lightly

loaded cloudlets. The performance of the proposed scheme has been validated by

extensive simulations.

In addition, the latency of data flows in IoT devices consist of both the

communications latency and computing latency. When some BSs and fog nodes

are lightly loaded, other overloaded BSs and fog nodes may incur congestion. Thus,

a workload balancing scheme in a fog network is proposed to minimize the latency of

IoT data in the communications and processing procedures by associating IoT devices

to suitable BSs. Furthermore, the convergence and the optimality of the proposed

workload balancing scheme has been proved. Through extensive simulations, the

performance of the proposed load balancing scheme is validated.
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CHAPTER 1

INTRODUCTION

Recently, a tremendous number of smart devices and objects, such as smart phones,

wearable devices, industrial and utility components, have been equipped with sensors

to sense the real-time physical information from the environment [1]. Hence, Internet

of Things (IoT) has been introduced as a concept, where various smart devices are

connected with each other via the internet and empowered with data analytics.

However, as the data streams generated from IoT devices are transmitted to the

remote cloud, the latency for processing data streams may be too long. The concept

of edge computing (e.g., cloudlet and fog node) has thus been employed to reduce

the network delay by moving the remote cloud resources to the network edge. Since

cloudlets and fog nodes are generally placed at access points that are close to IoT

devices, IoT devices can access the computing resources with a lower network delay.

In the edge computing empowered IoT, there are several challenging issues to be

addressed. As the latency of IoT tasks consists of both the communications latency

and computing latency, it is critical to jointly balance the traffic loads at BSs and

computing loads at fog nodes to minimize the latency. On the other hand, owing to

heterogeneity of various IoT applications, how to allocate various applications’ tasks

among cloudlets and allocate the computing resources for different applications in

each cloudlet remains to be a challenging issue. Meanwhile, given the cloudlet or fog

node, the communications latency becomes an important factor. Thus, we can apply

drone-mounted base stations (DBSs) to facilitate the data transfer between IoT users

and BSs.

In a fog network, data flows sensed by IoT devices are transmitted to respective

BSs and then processed by fog nodes that are co-located with the BSs. Thus, the

1



latency of each data flow consists of both the communications latency towards the

corresponding BS and the computing latency incurred by the respective fog node.

The communications latency of IoT devices’ data flows is jointly determined by IoT

devices’ channel conditions and their BSs’ traffic workload status. As the traffic load

increases, a BS tends to be congested and thus data flows of IoT devices have to

wait for more time to be transmitted. As a result, the traffic load allocation among

BSs will significantly affect the delivery time (i.e., communications latency) of data

flows. On the other hand, at the side of fog nodes, the computing latency of data

flows is directly determined by the computing loads allocated to these fog nodes. The

heavy computing load of a fog node translates to a longer computing latency. Thus,

provided with the dynamic distribution of computing workloads, the load allocation

among fog nodes critically impacts the computing latency of all data flows in the

network. As each fog node is assumed to be attached to a specific BS, the workload

of a fog node is related to the number of IoT devices associated with its corresponding

BS. In other words, when one IoT device is associated with one BS, its data flows are

also offloaded to the BS’s co-located fog node.

Since adjacent BSs always have overlapped coverage areas, IoT devices in these

areas can be associated to suitable BSs in order to balance the loads among BSs; this

association critically impacts both the traffic loads of BSs and computing loads of

fog nodes. As the latency of each data flow consists of the communications latency

and computing latency, both the traffic loads of BSs and computing loads of fog

nodes should be taken into consideration in the load balancing process, in order to

minimize the latency of data flows. Specifically, owing to the dynamic distribution of

IoT devices, when some BSs are overloaded, they will become the bottleneck of the

fog network, thus making the communications latency the dominating factor of the

latency of data flows; in this case, traffic loads of some IoT devices associated with

these BSs should be offloaded to other neighboring BSs to mitigate their congested

2



traffic loads. Meanwhile, when some fog nodes are congested, the computing load

balancing is more critical, and thus some IoT devices of the BSs co-located with

these fog nodes can be assigned to neighboring BSs in order to reduce the computing

workloads of these fog nodes. In this case, the computing load balancing may

increase the traffic loads of the neighboring BSs, which may in turn degrade the

communications latency of all data flows to a certain extent. To solve the above

problem, we design a LoAd Balancing (LAB) scheme for the fog network to minimize

the latency of IoT data flows, by taking into account of both the communications

latency and computing latency.

In addition, in consideration of various IoT applications, when the workload of a

cloudlet is too heavy, the computing resources available for an application is limited,

and thus the response time of the corresponding tasks is degraded correspondingly.

In this case, although the cloudlet in the proximity yields the minimum network

delay, the bulk of the response time is attributed to the computing delay. Thus,

the workload allocation of different types of requests greatly impacts the response

time of requests of user equipments (UEs). On the other hand, for each cloudlet,

the resource allocation for different types of applications also affects the computing

delay of different types of requests. Since the computing size per request is different

for different applications, the computing capacity of a cloudlet should be optimally

allocated for different types of applications in order to reduce the computing delay of

all Apps of UEs.

To solve the above problem, we design an Application awaRE workload

Allocation (AREA) scheme for edge computing based IoT to minimize the total

response time of UEs’ Apps, where both the network delay and computing delay

are taken into account. Below are major contributions of the scheme. Specifically, we

formulate the problem of minimizing the average response time of different types of

IoT Apps by offloading UEs’ different types of requests among distributed cloudlets

3



and allocating optimal computing resources for different applications in each cloudlet.

The response time of each type of requests consists of both the network delay and

computing delay. On one hand, to reduce the network delay, different types of

requests of a UE are favorably assigned to closer cloudlets. On the other hand,

each application is assumed to be handled by a dedicated virtual machine in each

cloudlet, the capacity of which can be dynamically allocated in each time slot [2];

when a cloudlet is overloaded, the computing resources available for each application

are not enough to handle the type of requests, and thus the computing delay becomes

the dominating factor of the response time. Hence, different types of requests of a

UE should be assigned to other lightly loaded cloudlets to reduce their computing

delays.

Moreover, the wireless latency between IoT users (i.e., UEs) and macro base

stations (MBSs) where the fog nodes are co-located is a key factor in determining the

response time of user requests. Recently, drones have been incorporated into mobile

networks to improve the quality of service (QoS) of UEs. Owing to the fast and

flexible deployment feature, a DBS can be dynamically placed at hotspot areas as a

relay to deliver UEs’ IoT tasks to MBSs, and thus improve the channel quality and

QoS of UEs.

To improve the wireless latency from UEs to the MBS (i.e., uplink) in the

DBS-assisted fog network, several critical issues should be considered. First, as the

traffic demands among different locations exhibit spatial and temporal dynamics, the

deployment of DBSs to suitable locations critically affects the wireless latency of IoT

users. Specifically, if DBSs are placed over areas with higher UE densities, they can

provide good channel conditions for more UEs, and thus are more likely to mitigate

traffic congestion of the MBS. In contrast, if DBSs are placed over areas with lower UE

densities, the traffic loads that can be offloaded from the MBS will be limited (i.e., the

utilizations of these DBSs become limited), the wireless latency of all UEs cannot be
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significantly reduced. Second, since each DBS serves as a relay to deliver IoT requests

from UEs to the MBS, the latency of UEs served by the DBS will be determined by

both the access link (between UEs and the DBS) and the backhaul link (between

the DBS and the MBS). In particular, the favorable channel conditions of the access

links may attract a large number of UEs to associate with the DBS; however, if the

capacity of the backhaul link of the DBS is limited, the wireless latency of these UEs

will be degraded by the traffic congestion of the corresponding backhaul link. Third,

the latency of user requests is impacted by UEs’ channel conditions and the traffic

loads of their BSs simultaneously. Increase in a BS’s traffic load (either a DBS or

the MBS) tends to congest the BS such that the corresponding IoT requests have

to wait for a longer time to be transmitted. In this case, the traffic load allocation

among BSs will have a critical impact on the delivery time of IoT requests. To tackle

the problem, a TrAffic Load baLancing (TALL) scheme is designed to minimize the

communications latency of IoT requests in such DBS-assisted fog network.

The rest of the dissertation is organized as follows. In Chapter 2, we briefly

review the related works. In Chapter 3, IoT users are associated to suitable BSs to

balance the traffic load at BSs and computing loads at fog nodes simultaneously. In

Chapter 4, we design the AREA scheme to assign tasks of different applications among

cloudlets and allocate computing resources to various application in each cloudlet to

minimize the response time of these IoT tasks. In Chapter 5, we design the TALL

scheme to place DBSs and associate IoT users among different DBSs to facilitate the

task offloading from IoT users to fog nodes. The simulation results and future work

are presented in Chapter 6 and 7, respectively. The conclusion is made in Chapter 8.
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CHAPTER 2

RELATED WORK

Owing to the proximity of edge computing resources to IoT devices and IoT users,

some studies have focused on integrating IoT with edge computing. Bonomi et al. [3]

elicited how fog computing may be applied in various IoT applications. Chiang et al.

[4] summarized the opportunities and challenges of fog computing in the networking

context of IoT and advocated that fog computing can fill the technology gaps in

IoT. Sun and Ansari [5] designed the IoT architecture (EdgeIoT) to handle the data

streams from IoT devices at the fog nodes. Moreover, Jutila [6] proposed adaptive fog

computing solutions for IoT networking in order to optimize traffic flows and network

resources.

To optimize different objectives such as latency and energy consumption of

the network, many studies have focused on allocating computing workloads among

edge computing resources (fog nodes or cloudlets) without considering the traffic load

balancing in mobile networks [7]. Gu et al. [8] integrated fog computing and medical

cyber-physical system, and then designed a cost efficient resource management

scheme by jointly considering BS association, task distribution and virtual machine

placement. Zeng et al. [9] jointly considered the task scheduling and image placement

in a fog computing based software-defined embedded system to minimize the response

time of task requests. Tong et al. [10] proposed a workload placement algorithm in

a hierarchical edge cloud network in order to optimize the response time of all tasks.

The algorithm allocates tasks among different tiers of fog nodes and allocates the

computing resources of each fog node for their assigned tasks. Fan et al. [11] migrated

mobile users’ virtual machines (VM) among distributed cloudlets to reduce the brown

energy consumption of cloudlets by jointly considering the green energy generation
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among cloudlets and energy consumption of VM migrations. Fan and Ansari [12]

proposed a workload allocation scheme, referred to as WALL, in a hierarchical cloudlet

network to optimize the response time of user tasks. This workload allocation scheme

assigns user tasks among different tiers of cloudlets and then allocates computing

resources of each cloudlet to their associated users. Moreover, some works [13, 14]

look into placing a certain number of edge computing resources among a given set of

available sites and then assigning workloads to the edge computing resources based

on the real-time requirement. Note that all the above works only consider the wired

communications latency, where the wireless delay is neglected. In contrast, other

works also consider the impact of wireless delay on the latency of tasks while allocating

workloads among edge computing resources. Jia et al. [15] designed a model to

place cloudlets in the network and realize the load balancing among the cloudlets to

minimize the response time of users. In this paper, the wireless delay for each user is

assumed to be constant. Some works have been proposed to control the transmission

power of BSs to adjust the data rate of users in the communications links as well as

the workloads among edge computing resources, thus reducing the response time of

users [16, 17].

Moreover, many existing works on mobile networks have addressed traffic

workload balancing among BSs. Kim et al. [18] proposed an iterative distributed

user association algorithm to balance the traffic loads among BSs based on different

performance metrics. Han and Ansari [19] designed a traffic workload balancing

scheme to make a tradeoff between the traffic delivery time and brown energy

consumption in a cellular network. Fan et al. [20] designed a user association

algorithm to improve the flow level throughput and green energy utilization in

heterogeneous cellular networks.

Meanwhile, drone based communications provisions many advantages over

current terrestrial wireless communications, such as flexible deployment, flexible
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reconfiguration, and better channel conditions for user equipments. Many studies

have been done to deploy the DBS in the network and improve the QoS of UEs. Sun

and Ansari [21] designed a heuristic two-dimensional DBS placement algorithm to

deploy a DBS in the network and improve the downlink communications of UEs.

Bor-Yaliniz et al. [22] designed a 3-D placement algorithm in order to cover as

many UEs as possible. Fotouhi et al. [23] proposed to place the DBS to increase its

spectral efficiency. Al-Hourani et al. [24] designed an analytical approach to derive the

optimal altitude of a DBS to maximize its coverage. Lyu et al. [25] designed a DBS

placement algorithm to cover a certain area with the minimum number of DBSs.

Wang et al. [26] optimally deployed DBSs in order to minimize the transmission

power required to serve UEs. Zeng et al. [27] introduced the network architecture

and challenges of UAV-aided wireless communications. Shi et al. [28] optimized

the drone-cell deployment to maximize the user coverage while keeping the channel

qualities of backhaul links.
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CHAPTER 3

WORKLOAD BALANCING IN FOG COMPUTING EMPOWERED
IOT

Figure 3.1 Fog network architecture.

A fog network architecture is illustrated in Figure 3.1, where fog nodes are

attached to BSs and neighboring BSs have overlapped coverage areas. Note that all

BSs adopt the NB-IoT interface to offer communications services for all IoT devices

[5]. In the network, since the workload allocation among fog nodes requires the data

flows to go through the mobile cellular core, which incurs additional delay for the IoT

flows, the IoT flows are generally preferred to be processed at the local BS’s fog node.

On the other hand, in the workload allocation among fog nodes, a central controller

is required to collect all workload information of both fog nodes and IoT devices in

order to execute a centralized algorithm in real time, the complexity of which will

be unbearable for large scale networks, e.g., metropolitan area network. Thus, we

assume that data flows of an IoT device are processed by the fog node attached to

the IoT device’s BS instead of other fog nodes. Based on the similar concerns, other

existing researches such as [17] also adopt the same assumption. Note that in this case,

the computing loads can still be balanced among fog nodes by adjusting IoT device

associations among BSs. As the IoT device association is determined by a distributed
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algorithm run by both the BS and IoT devices, the algorithm has low complexity and

is scalable to different networks. Therefore, in this chapter, the IoT device association

among BSs not only determines the traffic loads among BSs, but also determines the

computing loads among fog nodes. Meanwhile, adjacent macrocells employ different

frequency spectrum, and thus we do not consider the inter-cell interference [29]. In

the fog network, data flows sensed by an IoT device are transmitted to its associated

BS, and then processed by the fog node co-located with the BS. Thus, to calculate

the latency of data flows, we will focus on the uplink communications of IoT devices

and the data processing in fog nodes.

3.1 Traffic Load Model

As each BS is assigned with a specific fog node, J can be used, in this chapter, to

represent either the set of BSs or the set of fog nodes. Denote A as the coverage

area of all BSs, and x as a location within A. We assume that IoT data flows

arrive according to a Poisson Point Process with an average rate per unit area, λ(x),

at location x. The traffic loads are spatially dynamic. Key notations used in this

chapter are summarized in Table 3.1.

Denote P (x) as the transmission power of the IoT device at location x, gj(x)

as the uplink channel gain from location x to BS j and σ2 as the noise power. Then,

the signal to noise ratio (SNR) of the IoT device at location x towards BS j can be

derived as

γj(x) =
P (x)gj(x)

σ2
. (3.1)

Since the uplink data rate of an IoT device depends on the channel condition, IoT

devices at different locations may have different data rates. Therefore, if an IoT device

at location x is associated with BS j, the capacity of the IoT device (data rate) rj(x)

can be generally expressed as a logarithmic function of its γj(x), according to the
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Table 3.1 List of Symbols in Workload Balancing in Fog Computing

Symbol Definition

ηj(x) Binary indicator of location x being associated to BS j.

Cj Computing capacity of fog node j.

rj(x) Data rate of an IoT device at location x towards BS j.

P (x) Transmission power of IoT devices at location x.

λ(x) The flow arrival rate at location x.

l(x) The average traffic size of a flow at location x.

ν(x) The average computing size of a flow at location x.

J Set of BSs/fog nodes.

A The coverage area of all BSs.

ρj Traffic load of BS j.

ρ̂j Computing load of fog node j.

µj Communications latency ratio of BS j.

µ̂j Computing latency ratio of fog node j.

L(η) Latency ratio of the fog network.

ρmax Maximum traffic load threshold of BS j.

ρ̂max Maximum computing load threshold of fog node j.

Shannon Hartley theorem,

rj(x) = Wj log(1 + γj(x)), (3.2)
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where Wj is the total bandwidth of the jth BS [19].

As mentioned above, the traffic (data flows) arrival at location x follows a

Poisson distribution with average arrival rate λ(x). Assume that the lengths of all

data flows follow an exponential distribution with the average value of l(x). Then, the

average traffic load density of the IoT device at location x in BS j can be expressed

as [30]

%j(x) =
λ(x)l(x)ηj(x)

rj(x)
, (3.3)

where ηj(x) is a binary variable indicating whether location x is associated with the

jth BS (1 if so; 0, otherwise).

The average traffic load ρj of BS j is obtainted by aggregating traffic load

densities of all locations covered by BS j. In particular, the value of ρj refers to the

fraction of time during which BS j is busy (i.e., the utilization of BS j) [18].

ρj =
∑
x∈A

%j(x). (3.4)

In mobile communications, based on different metrics such as the network

capacity and user fairness, various scheduling algorithms have been designed to help

IoT devices properly share the radio resources of a BS [31]. For analytical tractability,

in this chapter, we assume that IoT devices at different locations associated with

a BS can schedule their uplink transmissions in a round-robin fashion, in which

multiple IoT devices can access the uplink channel sequentially. In addition, the

traffic arrival rate of location x follows the Poisson Process. Meanwhile, since the

traffic sizes of data flows follow the exponential distribution while the data rate

at each location is given, the service time of data flows at location x satisfies an

exponential distribution [19], where the average service time of data flows at location

x can be expressed as sj(x) = l(x)
rj(x)

. As a result, the uplink communications of a BS

realizes a M/M/1-processor sharing (PS ) queue [32]. In the model, as different IoT
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devices have different data rates due to their channel conditions and they will fairly

share the radio resources of a BS, it is a feasible model to emulate the practical data

transmission. Moreover, to keep the queue stable, we always need to guarantee that

ρj is smaller than 1.

Given the M/M/1-processor sharing queue of a BS, the average delivery time

of data flows at location x can be expressed as [32]:

tj(x) =
l(x)

rj(x)(1− ρj)
. (3.5)

Meanwhile, the average waiting time for each data flow at location x is

wj(x) = tj(x)− sj(x) =
ρjl(x)

rj(x)(1− ρj)
. (3.6)

Denote µj(x) as the latency ratio of the waiting time to the service time in BS j for

data flows at location x. Then,

µj(x) =
wj(x)

sj(x)
=

ρj
1− ρj

. (3.7)

It is easy to observe that µj(x) is only dependent on the traffic load of BS j. Therefore,

all the IoT devices associated with BS j have the same latency ratio. Hence, we define

the communications latency ratio of BS j as

µj =
ρj

1− ρj
. (3.8)

From Equation (3.8), we can see that increasing traffic load ρj of BS j will increases

µj. When µj is high, IoT devices associated with BS j have to wait for a long time

to access the transmission channel. Hence, µj is used to reflect the average delivery

delay of BS j.
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3.2 Computing Load Model

Aside from the communications latency, the latency of data flows in the fog network is

also related to the computing latency in the fog nodes. As the flow arrival at location

x follows a Poisson process with the average arrival rate of λ(x), the flow arrival rate

of fog node j, which is the sum of the flow arrivals at different locations covered

by fog node j, also constitutes a Poisson process. On the other hand, we assume

that the computing sizes of data flows follow an exponential distribution, where the

average computing size (in CPU cycles) of a data flow at location x is expressed as

ν(x). Meanwhile, as we are focusing on the coarse grained computing load balancing

among fog nodes by IoT device association, we consider a fog node as a computing

unit (like a server). Since the computing capacity of a fog node (in CPU cycles per

second) is fixed, the service time of a data flow in a fog node, which equals to the

computing size of the data flow divided by the capacity of the fog node, also follows

an exponential distribution. By considering a fog node as an entity, it is therefore

appropriate to model the processing of IoT flows from IoT devices by a fog node as

an M/M/1 queueing model.

Denote Cj as the computing capacity (in CPU cycle/second) of fog node j. In

fog node i, the average service time of data flows at location x can be expressed as

ŝ(x) =
ν(x)

Cj
. (3.9)

In addition, the average computing load density of data flows at location x in fog

node j can be expressed as

%̂j(x) =
λ(x)ν(x)ηj(x)

Cj
. (3.10)
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Aggregating the computing load densities at different locations covered by BS j results

in the computing load of fog node j:

ρ̂j =
∑
x∈A

%̂j(x). (3.11)

Based on queuing theory regarding the M/M/1 model, the average waiting time of

data flows at location x in fog node j can be derived as

ŵj(x) =
ρ̂jν(x)

Cj(x)(1− ρ̂j)
. (3.12)

Denote µ̂j(x) as the computing latency ratio, which equals the ratio between the

average waiting time and the average service time. In other words, it shows the

required waiting time per unit service time in fog node j.

µ̂j(x) =
ŵj(x)

ŝj(x)
=

ρ̂j
1− ρ̂j

. (3.13)

Since µ̂j(x) is only dependent on the computing load of fog node j, all IoT devices

have the same latency ratio in fog node j. Hence, we define the computing latency

ratio of fog node j as:

µ̂j =
ρ̂j

1− ρ̂j
. (3.14)

Here, a smaller µ̂ means that fog node j incurs less delay to its associated IoT devices.

Hence, µ̂j is adopted to reflect the average computing latency in fog node j.

Considering the M/M/1 processor-sharing queue in a BS and M/M/1 queue in

the corresponding fog node, we can model the flow processing in a pair of BS and fog

node as a queuing system as shown in Figure 3.2. In order to minimize the latency

of IoT devices’ data flows in the fog network, we adopt µj + µ̂j (latency ratio) to

represent the average latency of processing data flows via the pair of BS j and fog

node j.
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Figure 3.2 Queuing system of the fog network.

3.3 Problem Formulation

In this chapter, we aim to improve the latency of all data flows by balancing workloads

among BSs/fog nodes. Considering both the communications latency and computing

latency, we denote the latency ratio of the fog network as L(η) =
∑
j∈J

µj + µ̂j. Our

problem is to optimally associate IoT devices to BSs (i.e., balancing loads among

BSs/fog nodes) in order to minimize the latency ratio of the fog network. Therefore,

the problem can be formulated as follows:

P1 : min
η
L(η) (3.15)

s.t.
∑
j∈J

ηj(x) = 1,∀x ∈ A; (3.16)

0 ≤ ρj ≤ ρmax, ∀j ∈ J ; (3.17)

0 ≤ ρ̂j ≤ ρ̂max, ∀j ∈ J ; (3.18)

ηj(x) ∈ {0, 1}, ∀x ∈ A,∀j ∈ J . (3.19)

Here, Constraint (3.16) indicates that each location can be associated with only one

BS. Constraint (3.17) imposes the traffic load in BS j not to exceed the maximum

load threshold of the BS. Constraint (3.18) imposes the computing load in fog node

i to be less than the maximum load threshold of the fog node.
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In the load balancing process, the traffic load allocation and computing load

allocation may affect each other. When the heavy workloads of some BSs are the

main constraints of the fog network, the new scheme pays more attention on balancing

the traffic loads among BSs. As a result, the potential traffic congestions in the

overloaded BSs will be mitigated, thus reducing the latency of data flows. However,

in the above process, IoT devices are allocated to balance the traffic loads among

BSs that may incur the uneven computing loads among the fog nodes to a certain

extent. In contrast, when some fog nodes become the bottleneck due to their heavy

computing loads, the computing latency becomes the dominating factor of data flows’

latency. Hence, our scheme will focus on balancing the computing loads among fog

nodes by adjusting the IoT device associations among BSs. In this case, although the

communications latency may increase owing to the uneven traffic load allocations, the

significant reduction of computing latency can still improve the latency of all data

flows in the fog network.

3.4 LAB: A Distributed IoT Device Association Scheme

In this section, we present the LAB scheme, where the communications latency in BSs

and the computing latency in fog nodes are taken into account simultaneously. The

LAB scheme consists of a BS side algorithm and an IoT device side algorithm. The

former one iteratively estimates the traffic loads of BSs and the computing loads of

fog nodes, and then broadcasts them to IoT devices. In the latter algorithm, each IoT

device selects the suitable BS based on both the updated advertised load information

and its uplink data rates towards different BSs such that the latency ratio of the fog

network L(η) is minimized.
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3.4.1 The IoT Device Side Algorithm

At the beginning of the kth iteration, all BSs broadcast their estimated traffic loads

ρj and computing loads ρ̃j to IoT devices. Based on the definition of L(η), we have

∂L(η)

∂ηj(x)
= λ(x)

Cjl(x)(1− ρ̂j(k))2 + rj(x)ν(x)(1− ρj(k))2

Cjrj(x)(1− ρ̂j(k))2(1− ρj(k))2
. (3.20)

Based on the broadcast message, each IoT device can select the suitable BS by

pk(x) = arg max
j∈J

Cjrj(x)φj(k), (3.21)

where

φj(k) =
(1− ρ̂j(k))2(1− ρj(k))2

Cjl(x)(1− ρ̂j(k))2 + rj(x)ν(x)(1− ρj(k))2
. (3.22)

Here, pk(x) is the index of the BS selected by the user at location x, and thus

ηkj (x) =

 1, if j = pk(x),∀x ∈ A

0, if j 6= pk(x), ∀x ∈ A.

3.4.2 The BS Side Algorithm

At the side of a BS, it needs to estimate its traffic load and the computing load of its

corresponding fog node in each iteration. Thus, it has to estimate an intermediate

IoT association η̃kj (x) for each IoT device in the iteration. Then, based on the

estimated load information among BSs, IoT devices select their BSs/fog nodes by

the IoT device side algorithm, and then the current IoT device association in the kth

iteration becomes ηkj (x). Therefore, based on the intermediate η̃kj (x) (estimated by

a BS) and the current IoT device association ηkj (x) (decided by IoT devices) in the

kth iteration, BS j can estimate the intermediate IoT association η̃k+1
j (x) for the IoT

device at location x in the next iteration as follows:

η̃k+1
j (x) = (1− β)ηkj (x) + βη̃kj (x), (3.23)
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where 0 ≤ β ≤ 1 is a system parameter. Consequently, with the intermediate IoT

device association in iteration k+1, the advertised traffic load of BS j can be estimated

as

ρj(k + 1) =

∫
x∈A

λ(x)l(x)η̃k+1
j (x)

rj(x)
dx. (3.24)

Similarly, the next advertised computing load of fog node j can be estimated as

ρ̂j(k + 1) =

∫
x∈A

λ(x)ν(x)η̃k+1
j (x)

Cj(x)
dx. (3.25)

The detailed procedure of the BS side algorithm is illustrated in Algorithm 1.

Algorithm 1 The BS side algorithm

Input: IoT devices’ BS selection: pk(x),∀x ∈ A. The intermediate IoT device

association vector η̃k in the kth iteration.

Output: The estimated traffic loads of BSs ρ(k+1) and the estimated computing

loads of fog nodes ρ̂(k + 1) in the (k + 1)th iteration.

1: Update the intermediate IoT device association for different locations based on:

η̃k+1
j (x) = (1− β)ηkj (x) + βη̃kj (x), x ∈ A, j ∈ J ;

2: Calculate ρj(k + 1) and ρ̂j(k + 1) based on Equations (3.24) and (3.25);

return ρ(k) and ρ̂(k + 1).

As we know, the feasible set of Problem P1 can be expressed as

F = {η|ρj =

∫
x∈A

λ(x)l(x)ηj(x)

rj(x)
dx, (3.26)

ηj(x) ∈ {0, 1}, 0 ≤ ρj ≤ ρmax,∑
j∈J

ηj(x) = 1,∀j ∈ J ,∀x ∈ A}.

As ηj(x) ∈ {0, 1}, F is not a convex set. In order to derive suitable intermediate IoT

associations to gradually reduce the average latency ratio L(η) in each iteration, we
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first relax the constraint to make 0 ≤ ηk ≤ 1, and then prove that the traffic load

and computing load vectors can finally converge in the feasible set. Then, the relaxed

feasible set of Problem P1 can be expressed as:

F̂ = {η|ρj =

∫
x∈A

λ(x)l(x)ηj(x)

rj(x)
dx, (3.27)

0 ≤ ηj(x) ≤ 1, 0 ≤ ρj ≤ ρmax,∑
j∈J

ηj(x) = 1,∀j ∈ J ,∀x ∈ A}.

Lemma 1. The relaxed feasible set F̂ is a convex set.

Proof. Since the set F̂ includes any convex combination of η, it is a convex set.

Lemma 2. The objective function L(η) is a convex function of η, when η is defined

in F̂ .

Proof. This lemma can be easily proved by showing that ∇2L(η) > 0 when η is

defined in F̂ .

3.4.3 Analysis of the Algorithm

In this section, we will analyze the convergence and optimality of the LAB scheme in

the feasible set of Problem P1.

Lemma 3. When η̃k+1 6= η̃k, η̃k+1 provides a descent direction for L(η̃) at η̃k.

Proof. As 0 ≤ η̃kj (x) ≤ 1, L(η̃) is defined in F̂ . As shown in Lemma 2, L(η̃) is a

convex function of η̃, and thus we need to prove
〈
∇L(η̃k), η̃k+1 − η̃k

〉
< 0. Thus, we

have 〈
∇L(η̃k), η̃k+1 − η̃k

〉
(3.28)

=

∫
x∈A

∑
j∈J

λ(x)v(x)
η̃k+1
j (x)− η̃kj (x)

Cjrj(x)φj(k)

=

∫
x∈A

λ(x)v(x)
∑
j∈J

η̃k+1
j (x)− η̃kj (x)

Cjrj(x)φj(k)
.
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Based on Equation (3.23), we have

η̃k+1
j (x)− η̃kj (x) = (1− β)(ηkj (x)− η̃kj (x)). (3.29)

As we know,

ηkj (x) =

 1, if j = pk(x)

0, if j 6= pk(x).

Owing to the BS selection rule at the user side in the kth iteration, i.e., pk(x) =

arg max
j∈J

Cjrj(x)φj(k), we can derive

∑
j∈J

(1− β)
ηkj (x)− η̃kj (x)

Cjrj(x)φj(k)
≤ 0. (3.30)

Since η̃k+1 6= η̃k, ∑
j∈J

(1− β)
ηkj (x)− η̃kj (x)

Cjrj(x)φj(k)
< 0. (3.31)

Hence, we have proved
〈
∇L(η̃k), η̃k+1 − η̃k

〉
< 0.

Meanwhile, as the LAB scheme is executed iteratively, we will also analyze if

the BS selection rule at the IoT device side in each iteration is the best option by

proving the following theorem.

Theorem 1. Given the advertised traffic loads of BSs and computing loads of fog

nodes, the optimal IoT device association rule to minimize the latency ratio of the

network at the IoT device side is:

pk(x) = arg max
j∈J

Cjrj(x)φj(k).

Proof. In the kth iteration, ηk is the IoT device association achieved by the IoT device

side algorithm: pk(x) = arg max
j∈J

Cjrj(x)φj(k). Meanwhile, let η
′

denote any other

possible IoT device association vector in the iteration. Thus, to prove this theorem,
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we just need to prove that η
′

cannot reduce L(η) any more as compared to ηk, i.e.,〈
∇L(ηk),η

′ − ηk
〉
≥ 0.

〈
∇L(ηk),η

′ − ηk
〉

(3.32)

=

∫
x∈A

∑
j∈J

λ(x)ν(x)(η
′

j(x)− ηkj (x))
1

Cjrj(x)φj(k)
dx

=

∫
x∈A

λ(x)ν(x)
∑
j∈J

(η
′

j(x)− ηkj (x))
1

Cjrj(x)φj(k)
dx.

Since

pk(x) = arg max
j∈J

Cjrj(x)φj(k), (3.33)

ηkj (x) =

 1, if j = pk(x)

0, if j 6= pk(x).

Then, we have

∑
j∈J

η
′

j(x)
1

Cjrj(x)φj(k)
≥
∑
j∈J

ηkj (x)
1

Cjrj(x)φj(k)
. (3.34)

Hence,
〈
∇L(η),η

′ − ηk
〉
≥ 0. Therefore, ηk is the optimal IoT device association in

the kth iteration.

As we know, all BSs will estimate and broadcast the traffic load vector ρ and

the compuitng load vector ρ̂ iteratively, which can be employed by IoT devices to

select the suitable BSs. Thus, we need to prove the convergence of ρ and ρ̂ for the

LAB scheme.

Theorem 2. At the BS side, the estimated traffic load vector ρ and computing load

vector ρ̂ converge to the optimal load vectors ρ∗ and ρ̂∗, respectively, such that L(η̃)

is minimized.

22



Proof. As shown in Lemma 3, η̃k+1−η̃k provides a decent direction of L(η̃) at η̃k, and

hence L(η̃) gradually decreases in each iteration. Since L(η̃) > 0, η̃ will eventually

converge when L(η̃) is minimized.

According to Equations (3.24) and (3.25), the traffic loads of BSs ρ and the

computing loads of fog nodes ρ̂ are determined by η̃. Thus, when the intermediate

IoT device association η̃ converges, the advertised traffic load vector ρ and computing

load vector ρ̂ also converge at the same time.

Lemma 4. Based on the optimal advertised traffic load vector ρ and computing load

vector ρ̂, the IoT device side algorithm yields the optimal IoT device association for

the load balancing problem in the feasible set F .

As LAB is a gradient algorithm, which is a classic algorithm for convex problems,

the number of iterations required to ensure convergence can be found in [19].

23



CHAPTER 4

APPLICATION AWARE EDGE COMPUTING FOR IOT

Figure 4.1 Cloudlet network architecture.

A distributed cloudlet network architecture is illustrated in Figure 4.1, where

cloudlets are co-located with some base stations (BSs). The software defined network

(SDN), which consists of a SDN controller and open flow switches, is employed as

the cellular core network, thus enabling flexible routing and communications resource

among BSs. All BSs are equipped with two interfaces (i.e., NB-IoT and LTE) to offer

the seamless coverage for both IoT devices and IoT users (UEs). Thus, the sensed

data of IoT devices can be stored at their closest cloudlets and the remote cloud,

which act as brokers. Meanwhile, a Resource Directory (RD) is located at the SDN

controller to help each IoT application discover the location of its required IoT data.

On the other hand, each UE can access different cloudlets through its BS and the

SDN based cellular core network. Within one cloudlet, we assume that each virtual

machine (VM) only processes the workloads of one application, i.e., each application

is mapped to a dedicated VM. Note that each IoT application has only one VM in a

cloudlet. Considering the diversity of applications, the computing capacities of VMs

are heterogeneous in a cloudlet and can be adjusted dynamically [2]. We define an
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IoT App as the software program running on a UE that requests the specific type of

application service. As a UE may run multiple IoT Apps, each type of application

requests of the UE can be offloaded to a cloudlet having the corresponding type of

VMs. Thus, when an application VM in a cloudlet receives an application request, it

quickly retrieves the required IoT data from other brokers under the direction of RD

and then processes the request to get the result.

Note that each UE may have several types of IoT Apps. As each App in a UE is

assigned to only one cloudlet individually, the size of the set of Apps in the network

can be derived as: |Z| =
∑
j∈J
|Kj|, in which the variables are defined in the list of

symbols shown in Table 4.1.

4.1 System Model

4.1.1 Computing Delay

Assume that type k requests of UE j are generated according to a Poisson Process

with the average arrival rate λjk. Thus, the workload of type k VM in cloudlet i can

be expressed as:

λik =
∑
j∈J

xijkλjk, (4.1)

and it also follows a Poisson Process. On the other hand, the computing capacity (in

terms of CPU cycles per second) of type k VM in cloudlet i (i.e., µik) is fixed in each

time slot; the computing size of a type k application request (in terms of the CPU

cycles) follows an exponential distribution with the average value of lk. Thus, we can

derive the service time for type k requests running in a cloudlet’s VM as lk/µik, which

also follows an exponential distribution. Since the arrival rate of each VM of a cloudlet

follows a Poisson Process while the corresponding service time follows an exponential

distribution, each VM of a cloudlet can form an M/M/1 queuing model to process its

corresponding application requests. Note that to keep the queue stable, the average
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Table 4.1 List of Symbols in Application Aware Edge Computing for IoT

Symbol Definition

I Set of distributed cloudlets.

J Set of UEs.

K Set of different IoT applications.

R Set of BSs.

xijk Binary indicator of UE j’s App k being assigned to cloudlet i.

yrj Binary indicator of UE j being covered by BS r.

Kj Set of Apps run by UE j.

µik Computing capacity of type k VM in cloudlet i.

τri E2E delay between BS r and cloudlet i.

λjk Average request arrival rate of type-k App in UE j.

λik Average request arrival rate of type k VM in cloudlet i.

lk Average computing size of a type-k request.

dij Network delay between UE j and cloudlet i.

Dk Maximum allowed computing delay of Application k.

Z Set of Apps of all UEs.

jz Index of the UE where App z ∈ Z is located.

diz Network delay between App z and cloudlet i.
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arrival rate of the VM (i.e., λik) should be smaller than its average service rate (i.e.,

µik/lk), and thus we can derive that µik/lk − λik > 0. We define the computing delay

of type k requests in cloudlet i, tik, as the average system delay of type k VM’s queue

(i.e., including the waiting delay and service time):

tik =
1

µik/lk −
∑
j∈J

xijkλjk
,∀i ∈ I, k ∈ K. (4.2)

4.1.2 Network Delay

When a request of a UE is sent to a cloudlet, the request goes through its BS and

the SDN-based cellular core network. Therefore, the E2E delay between a UE’s App

and its cloudlet consists of two parts: first, the E2E delay between the UE and its

associated BS, i.e., the wireless delay; second, the E2E delay between its BS and

its assigned cloudlet. However, the cloudlet selection for a UE does not affect its

wireless delay, which only depends on the UE’s service plan and the mobile provider’s

bandwidth allocation strategy [31]. Thus, we just consider the E2E delay between

the BS and cloudlet. Denote τri as the E2E delay between BS r and cloudlet i, and Y

as a given indicator matrix to reflect the UE-BS association at the beginning of each

time slot, in which yrj ∈ Y represents whether UE j is covered by BS r or not. Note

that the value of τri can be measured and recorded by the SDN controller [33, 34].

Thus, the network delay between UE j and cloudlet i ∈ I can be expressed as

dij =
∑
r∈R

yrjτri, ∀i ∈ I, j ∈ J . (4.3)

4.2 Problem Formulation

The response time of a UE’s App consists of both the computing delay and network

delay. In the workload allocation, both of them should be taken into account. On

one hand, owing to the dynamic distribution of workloads among different cloudlets,

the overloaded cloudlets incur remarkably higher computing delay than other lightly

loaded cloudlets. Thus, if the closest cloudlet of a UE is overloaded, the requests of
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each App of the UE should be allocated to alternative cloudlets to reduce the response

time. On the other hand, offloading an App’s requests from its closest cloudlet to

other cloudlets will increase the network delay. The main goal is to minimize the

response time of all IoT Apps in the network by assigning the requests of each App

among cloudlets and flexibly allocating the computing resource of each cloudlet to

different types of VMs to serve the assigned Apps. Thus, we can formulate the

application aware workload allocation problem in each time slot as follows:

P1 : min
xijk,µik

∑
i∈I

∑
j∈J

∑
k∈Kj

xijk

dij +
1

µik/lk −
∑
j∈J

xijkλjk

 (4.4)

s.t.
∑
k∈K

µik ≤ Ci,∀i ∈ I, (4.5)

∑
i∈I

xijk = 1,∀j ∈ J ,∀k ∈ Kj, (4.6)

xijk(
1

µik/lk −
∑
j∈J

xijkλjk
) ≤ xijkDk, (4.7)

∀i ∈ I,∀j ∈ J , ∀k ∈ Kj,

µik/lk −
∑
j∈J

xijkλjk > 0,∀i ∈ I,∀k ∈ K, (4.8)

xijk ∈ {0, 1},∀i ∈ I,∀j ∈ J ,∀k ∈ Kj, (4.9)

µik ∈ [0, Ci] ,∀i ∈ I,∀k ∈ K. (4.10)

Here, the objective function is to minimize the total response time of UEs

Apps in the network. Ci is the computing capacity of cloudlet i and Dk is the

maximum allowed computing delay of application k. Constraint (4.5) indicates that

the aggregated computing resources of all VMs in a cloudlet should be no larger than

the cloudlet’s computing capacity. Constraint (4.6) ensures that each App of a UE is

assigned to only one cloudlet. Constraint (4.7) imposes the computing delay for each

UE’s type k APP to meet the QoS requirement of the application in terms of the
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maximum allowed computing delay Dk. Constraint (4.8) imposes the average service

rate of VM k in a cloudlet to be smaller than the VM’s average task arrival rate, in

order to keep the queue of the VM stable.

Lemma 5. The problem of application aware workload allocation (i.e., P1) is NP-

hard.

Proof. Suppose there is only one IoT application; the capacity of VM k equals to

the capacity of a cloudlet, i.e., µik = Ci. Meanwhile, we assume that the computing

delay threshold Dk = +∞. Therefore, both Constraints (4.5) and (4.7) can be relaxed

from P1. Then, to prove that P1 is a NP-hard problem, we can demonstrate that

its corresponding decision problem is NP-complete. The decision problem of P1 can

be expressed as: given a positive value of b, is it possible to find a feasible solution

X = {xijk|i ∈ I, j ∈ J } such that
∑
i∈I

∑
j∈J

xijk

(
dij + 1

µik/lk−
∑
j∈J

xijkλjk

)
≤ b, and

Constraints (4.6), (4.8) and (4.9) are satisfied?

In order to prove that the above decision problem is NP-complete, only two

cloudlets are considered and the average service rate of either cloudlet is set to

be the same, i.e., µ1/lk = µ2/lk = 1
2

∑
j∈J

λjk + ε, where ε is a very small positive

value, i.e., ε � 1
2

min{λjk|j ∈ J }. Moreover, assume that b → +∞. Thus,∑
i∈I

∑
j∈J

xijk

(
dij + 1

µik/lk−
∑
j∈J

xijkλjk

)
≤ b is always satified for all solutions of X and

can be relaxed. To satisfy Constraint (4.8) (i.e., µik/lk −
∑
j∈J

xijkλjk > 0,∀i ∈ I ),

we need to guarantee that
∑
j∈J

λjkx1jk =
∑
j∈J

λjkx2jk = 1
2

∑
j∈J

λjk. Consequently, the

decision problem can be transformed into a partition problem, i.e., whether the UEs

can be partitioned into two sets to make the average request arrival rates of the two

sets the same. Hence, the partition problem is reducible to the decision problem of

P1. As the partition problem is a well-known NP-complete problem, the decision

problem of P1 is also NP-complete, and thus P1 is NP-hard.
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4.3 The AREA Algorithm

Since P1 is NP-hard, which is challenging to achieve the optimal solution, we design

the heuristic Application awaRE workload Allocation (AREA) algorithm to effectively

allocate different types of workloads among cloudlets as well as flexibly allocate

computing resources for different VMs in each cloudlet, with low computational

complexity. Note that the major challenge of solving P1 is that µik depends on

the App assignment xijk. To solve P1 more efficiently, we decompose the original

problem into two sub-problems: the App assignment sub-problem and the resource

allocation sub-problem. We will first assign different types of Apps among cloudlets

(i.e., determining xijk), and then try to optimally allocate the computing resources

to different types of VMs in each cloudlet (i.e., µik) based on the given xijk.

4.3.1 App Assignment

When assigning Apps’ workloads among cloudlets, the priority of assigning each

App to its closest cloudlets should be considered to reduce the total network delay.

Therefore, we will initialize the App assignment by allocating all Apps to their closest

cloudlets; then, the algorithm will iteratively select a suitable App with the highest

response time and reallocate it to an alternative cloudlet which minimizes its response

time, until each App cannot find a better cloudlet.

Given the capacities of cloudlets, the initial App assignment is determined by the

network delay between UEs that host Apps and cloudlets, and thus can be obtained

by solving the following problem, which aims to minimize the total network delay
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between UEs’ Apps and their cloudlets:

P2 : min
xijk

∑
i∈I

∑
j∈J

∑
k∈Kj

xijkdij (4.11)

s.t.
∑
i∈I

xijk = 1, ∀j ∈ J ,∀k ∈ Kj, (4.12)

∑
j∈J

∑
k∈Kj

λjklkxijk ≤ Ci,∀i ∈ I (4.13)

xijk ∈ {0, 1},∀i ∈ I, ∀j ∈ J ,∀k ∈ K. (4.14)

As each App of a UE is assigned among cloudlets individually, we denote Z1

as the set of Apps of all UEs which are waiting to be assigned among cloudlets, and

I1 as the set of cloudlets which have excess computing resources. At the beginning,

all UEs’ Apps have not be assigned and are included in Z1 (i.e., Z1 = Z), while all

cloudlets are empty without any assigned Apps, i.e., all cloudlets are included in I1.

Denote diz as the network delay between an App z (i.e., z ∈ Z1) and cloudlet i, jz as

the UE where App z is located. Hence, we have diz = dijz ,∀i ∈ I,∀z ∈ Z1.

In the initialization, for App z, the optimal cloudlet i∗ ∈ I1 is the one that incurs

the lowest network delay, i.e., i∗ = arg min{diz|i ∈ I1}; the suboptimal cloudlet i
′

is

the one that incurs the second lowest network delay among the cloudlets in I1, i.e.,

i
′
= arg min

i
{diz|i ∈ {I1\i∗}}.

As shown in P2, the capacity of each cloudlet is limited, and thus it is impossible

to allocate all Apps to their corresponding optimal cloudlets. The basic idea of the

initialization is to iteratively select a suitable App, whose suboptimal cloudlet i
′

incurs a significant network delay degradation as compared to the optimal cloudlet

i∗, and then allocate the App into its optimal cloudlet. It is easy to observe that

the network delay degradation incurred by the suboptimal cloudlet determines the

priority of assigning App z to its optimal cloudlet. For example, if App z’s suboptimal

cloudlet B leads to a remarkably higher delay than its optimal cloudlet A as compared
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to other Apps, assigning App z to the suboptimal cloudlet will significantly impact

the total network delay of all Apps. In this case, App z is given a higher priority

than other Apps to be assigned into its optimal cloudlet A.

Denote ∆dz as the network delay degradation by allocating App z from the

optimal cloudlet i∗ to the suboptimal cloudlet i
′
, i.e.,

∆dz = di′z − di∗z,∀z ∈ Z1. (4.15)

Thus, as shown in Algorithm 1, in each iteration of the initialization, the algorithm

will select and allocate a suitable App z, which has the highest network delay

degradation (i.e., z = arg max{∆dz|z ∈ Z1}), to its optimal cloudlet. Afterwards, if

the workload of a cloudlet exceeds its capacity, the cloudlet is removed from I1. Note

that once I1 is updated, the algorithm has to recalculate i∗, i
′

and ∆dz for each App

z ∈ Z1. The above procedure is repeated until all Apps are assigned among cloudlets,

i.e., Z1 = ∅.

Lemma 6. Algorithm 1 terminates after a finite number of iterations, yielding a

feasible IoT App assignment.

Proof. Let ξ = |I1| = N initially, i.e., ξ > 0. Then, for each iteration, since the

algorithm chooses a suitable App z, where z = arg max
z
{∆dz|z ∈ Z1}, and allocates

it to its optimal cloudlet i∗ (i.e., i∗ = arg min
i
{diz|i ∈ I1}), ξ is decremented by one.

As a result, ξ will become zero after a finite number of iterations, and thus I1 = ∅.

As shown in Algorithm 1, the complexity of Step 2 is |Z|. After Step 2, the

complexity of Steps 4-5 is O(|Z|+ |I|) in the worst case; as they repeat for |Z| times,

the corresponding complexity is O(|Z|(|Z| + |I|)). Meanwhile, as Steps 9-10 repeat

for at most |I| times, the corresponding complexity is O((|Z| + 1)|I|). Aggregating

all these steps, the complexity of Algorithm 1 becomes O(|Z|(|Z|+ |I|)).
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Algorithm 2

Input: The UE-BS association vector Y = {yrj|r ∈ R, j ∈ I}. The matrix of

E2E delay between BSs and cloudlets T = {τri|r ∈ R, i ∈ I}. The vector of the

average task arrival rate for UEs’ Apps Λ = {λjk|j ∈ J , j ∈ Kj}.

Output: The initial App assignment matrix, i.e., X = {xijk|i ∈ I, j ∈

J , k ∈ Kj}.

1: Set Z1 = Z and I1 = I based on their definitions;

2: ∀z ∈ Z1, calculate ∆dz based on Equation (4.15);

3: while Z1 6= ∅ do

4: Find App z, where z = arg max
z
{∆dz|z ∈ Z1};

5: Allocate App z to its optimal cloudlet i∗ (i.e., i∗ = arg min
i
{dij|i ∈ I1});

6: Let xijzkz = 1;

7: Update the App set Z1, i.e., Z1 = Z1\z .

8: if cloudlet i∗ is full then

9: Remove i∗ from I1, i.e., I1 = I1\i∗;

10: ∀z ∈ Z1, recalcuate ∆dz based on Equation (4.15);

11: end if

12: end while

return X .
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After the initialization, the AREA algorithm, as shown in Algorithm 2,

iteratively selects a suitable App with the highest response time, and reallocates it to

an alternative cloudlet. At the beginning, all Apps are unmarked and we define Z2

as the set of unmarked Apps. Then, in each iteration, the AREA algorithm finds the

App with the highest response time among all unsigned Apps, and searches for a new

cloudlet for the App to minimize its response time. Note that in each iteration, the

computing resource for each application in a cloudlet is determined by the percentage

of the application’s workload in the total workloads in the cloudlet, and thus we can

derive the response time of Apps in different cloudlets. If a new cloudlet is found,

AREA proceeds to the next iteration. Otherwise, the algorithm marks the App (i.e.,

removing the App from Z2) and continues to the next iteration. The AREA algorithm

repeats the iterations until Z2 = ∅.

We now analyze the computational complexity of Algorithm 2. In each iteration,

the algorithm checks cloudlets for an App, and the number of related cloudlets can

be |I| in the worst case. Therefore, the complexity of each iteration is O(|I|). Then,

we analyze the required number of iterations for the algorithm to optimally place all

Apps among the cloudlets. Each App has a choice of up to |I| cloudlets. In each

cloudlet, the App can have at most |Z| different response times owing to the different

number of Apps allocated to the cloudlet. As a result, the number of improvements for

the App is limited by |I||Z|. Thus, considering the number of Apps is |Z|, the total

number of iterations in the worst case is |I||Z|2. So, the computational complexity of

Algorithm 2 is O(|I|2|Z|2). When we fix the number of cloudlets |I|, the complexity

of Algorithm 2 is polynomial with respect to the number of the Apps.
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Algorithm 3

1: Initialize App assignment by Algorithm 1 and obtain X ;

2: Set Z2 based on its definition, i.e., Z2 = {z|z ∈ Z}

3: while Z2 6= ∅ do

4: Find App z ∈ Z2 with the highest response time;

5: Obtain the current cloudlet i of App z;

6: Find the suitable cloudlet i∗ for App z, i.e., i∗ =

arg min

(
dij + 1

µik/lk−
∑
j∈J

xijkλjk

)
;

7: if i∗ 6= i then

8: Assign App z to the new cloudlet i∗ and update X ;

9: else

10: Mark App z and let Z2 = Z2\z;

11: end if

12: end while

return X .
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4.3.2 Resource Allocation

After all UEs’ Apps are assigned to different cloudlets, the primary problem P1 can

be transformed into a resource allocation problem for each cloudlet i as follows:

P3 : min
µik

∑
j∈J

∑
k∈K

xijk

dij +
1

µik/lk −
∑
j∈J

xijkλjk

 (4.16)

s.t. Constraints(4.5), (4.7), (4.8), (4.10).

We can then prove the following lemma:

Lemma 7. When each xijk is determined, P3 is a convex optimization problem.

Proof. For brevity, let f =
∑
j∈J

∑
k∈K

xijk

(
dij + 1

µik/lk−
∑
j∈J

xijkλjk

)
, and we use µk to

substitue µik in cloudlet i. Thus, we have

∂2f

∂µk∂µk′
=


∑
j∈J

2xijkl
−2
k (µk/lk −

∑
j∈J

xijkλjk)
−3, ifk = k′,

0, otherwise.

(4.17)

Since (µk/lk−
∑
j∈J

xijkλjk) > 0, the Hessian matrix H = ∂2f
∂µk∂µk′

of f is a positive

definite matrix. As a result, function f is convex. Moreover, since Constraints (4.5),

(4.7), (4.8), (4.10) are linear, the optimization problem P3 is a convex optimization

problem.

As P3 is a convex problem, we can derive the optimal solution of P3 by solving

the KKT condition of P3 [35]. Therefore, the computing resource of each cloudlet is

optimally allocated to different VMs to minimize the response time. Consequently,

the suboptimal solution of P1 is achieved.
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CHAPTER 5

LOAD BALANCING IN DRONE-ASSISTED COMMUNICATIONS
FOR IOT

5.1 System Model

Figure 5.1 DBS-assisted edge computing architecture.

In the network as shown in Figure 5.1, each MBS is attached with a fog node

and two interfaces (i.e., LTE and NB-IoT) that offer seamless coverage for IoT users

and IoT devices. Considering the large number of heterogeneous IoT devices, IoT

devices can employ NB-IoT interfaces to communicate with the MBS. Hence, the

data of IoT devices can be transfered to and stored at their local fog nodes, which

work as brokers. Meanwhile, a Resource Directory (RD) is deployed at the mobile

core network [36]. Upon receiving an IoT request, the IoT application in the fog node

can promptly process the request by retrieving and operating on data from other

brokers under the supervision of RD. In addition, as IoT requests are processed in

their local fog nodes, DBSs can be placed over particular hotpot areas in the coverage

region of the MBS to reduce the latency of delivering IoT requests from IoT users

to the fog node (i.e., uplink). For each DBS, both the access link and backhaul link

share the same in-band frequency spectrum.
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In this chapter, the whole radio coverage region of an MBS is divided into a

number of locations, each with a small coverage. Denote I as the set of all of these

locations, and i as the index of a location within I. Denote J as the set of potential

locations for BSs (note that J ⊂ I), in which s ∈ J is the predefined location of the

MBS and J \s represents the potential locations that DBSs can be placed. Note that

if yj = 0, ηij will always be zero. We assume that IoT requests arrive in each location

according to a Poisson Point Process having an average arrival rate λi at location i.

The key notations used in this chapter are listed in Table 5.1.

Table 5.1 List of Symbols in Drone-assisted Communications for IoT

Symbol Definition

ηij Indicator of UEs at location i being assigned to BS j.

yj Indicator of a DBS being placed at candidate location j ∈ {J \s}

plos Probability of LoS channel.

ϕlosij Path loss of the LoS channel between location i and DBS j.

ϕnlosij Path loss of the NLoS channel between location i and DBS j.

rij Data rate of a UE at location i towards DBS j.

ρj BS j’s traffic load.

µj Communications latency ratio of BS j.

N Number of DBSs that can be placed in the network.

λi Average request arrival rate at location i.

ρmax Maximum allowed traffic load of each BS.
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5.1.1 Communications Model

The Average Path Loss between UEs and A DBS The communications

channel between a DBS and UEs at location i is assumed to be a probabilistic Line of

Sight (LoS) channel, where the probability of the LoS channel between them is [24]

plos =
1

1 + ae−b(θij−a)
. (5.1)

Here, a and b are dependent on the specific environment (rural, urban, etc.) and

are constant parameters that can be measured proactively. Meanwhile, θij is the

elevation angle (in degree) between DBS j and location i, and can be expressed as

θij = arctan
(
hd
δij

)
in which hd is the DBS’s altitude and δij is the horizontal distance

between the DBS and location i. Note that we assume that the altitudes of DBSs are

predefined (i.e., hd).

Denote ϕlosij and ϕnlosij as the path loss between UEs at location i and DBS j

with the LoS connection and non-LoS (NLoS) connection, respectively [37].

ϕlosij = ξlos + τ loslog10

(√
(δij)

2 + (hd)
2

)
, (5.2)

ϕnlosij = ξnlos + τnloslog10

(√
(δij)

2 + (hd)
2

)
. (5.3)

Here, ξlos and ξnlos indicate the path loss at the reference distance for the LoS and

NLoS connections; τ los and τnlos represent the path loss exponents for the LoS and

NLoS connections, respectively. Note that the parameters can be measured in specific

areas. Moreover, the 3D distance between DBS j and location i is calculated by√
(δij)

2 + (hd)
2. Therefore, we can derive the average path loss between UEs at

location i and DBS j as:

ϕij = plosϕlosij + (1− plos)ϕnlosij . (5.4)
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The Average Path Loss from DBS to MBS Assuming the altitude of a DBS

is high enough to enable the LoS channel from the DBS to the MBS, the path loss

between DBS j and the MBS can be expressed as

ϕsj = ξlos + τ loslog10

(√
(δsj)

2 + (hd − hs)2
)
, (5.5)

where hs is the altitude of the MBS and δsj is the horizontal distance from DBS j to

the MBS.

Data Rate of UEs Denote gij as the uplink channel gain from location i to BS j

and Pi as the transmission power of the UE at location i. Let σ2 be the noise power.

Hence, we can model the signal to noise ratio (SNR) of location i towards BS j (the

access link) as γij =
Pigij
σ2 , j ∈ J , where gij = 10

−ϕij
10 . Therefore, the data rate of the

access link at location i can be modeled as

rij = Wj log(1 + γij), (5.6)

where Wj is the bandwidth exclusively used by BS j [38].

Meanwhile, denote gdj s as the channel gain from DBS j to the MBS and P d
j

as the transmission power of DBS j. Thus, the signal to noise ratio (SNR) of the

backhaul link from DBS j to MBS s is

γdjs =
P d
j g

d
js

σ2
, j ∈ J \s. (5.7)

When a DBS is used as a relay between the MBS and UEs, either the Decode-

and-Forward (DF) [39] or Amplify-and-Forward (AF) [40] cooperative communication

mode can be adopted. We assume that each DBS employs the DF cooperative

communication mode to relay the data towards the MBS. In the DF mode, the time

domain for a UE is divided into two parts (two slots). In the first slot, the UE

broadcasts its data, and thus both the DBS and MBS act as receivers. Then, in the
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second time slot, the DBS decodes the received data and forwards it to the MBS [41].

Based on the DF mode, considering both the access and backhaul link, the data rate

of UEs at location x towards the MBS via the DBS j ∈ J \s is expressed as [42]

rdij =
Wj

2
min(log2(1 + γij), log2(1 + γdjs + γis)). (5.8)

Thus, the data rate of a UE can be summarized as

rij =

 ris, if j = s

rdij, if j 6= s.
(5.9)

5.1.2 Traffic Load Model

We assume that IoT requests arrive at location i based on a Poisson Process having

the average request arrival rate λi. The traffic sizes of all IoT requests follow an

exponential distribution with the average value of li. Therefore, the traffic load density

of location i in BS j can be derived as [38]

%ij =
λiliηij
rij

, (5.10)

where ηij is a binary indicator representing whether location i is associated with BS

j.

The average traffic load ρj of BS i can be expressed as the sum of traffic load

densities of its associated locations. In particular, ρj represents the utilization of the

BS (i.e., how much time BS j is busy): ρj =
∑
i∈I

%ij.

For the uplink channel, many scheduling algorithms have been designed to

enable UEs to properly share ratio resources of a BS. To be analytically tractable,

we assume that UEs of a BS schedules the transmissions of its associated UEs in a

round robin fashion, i.e., different UEs can access the uplink channel sequentially.

Meanwhile, as mentioned above, the request arrival rate of each location satisfies a

Poisson Process, and thus the aggregated request arrival rate of a BS also satisfies
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a Poisson Process. In addition, the traffic size of IoT requests follows a general

distribution such that the service time of IoT requests also satisfies a general

distribution. The average service time of location i’s IoT requests can be expressed

τij = li
rij

. Thus, based on queuing theory, the uplink communications of a BS can

realize an M/G/1 processor sharing queue [30]. Note that each BS’s traffic load should

always be smaller than 1 to maintain stability of the queuing system.

With the M/G/1 processor sharing queue of a BS, we can model the average

delivery time of IoT requests at location i as [32]: tij = li
rij(1−ρj) . At the same time,

the average waiting time for each IoT request at location i is expressed as

wij = tij − τij =
ρjli

rij(1− ρj)
. (5.11)

Let µij be the latency ratio of the waiting time to the service time in BS j for IoT

requests at location i:

µij =
wij
τij

=
ρj

1− ρj
. (5.12)

It is obvious that µij is determined by the traffic load of BS j. Hence, all locations

covered by BS j will have the same latency ratio. Therefore, the communications

latency ratio of BS j can be defined as

µj =
ρj

1− ρj
. (5.13)

It can be seen from Equation (5.13) that when traffic load ρj of BS j increases, µj

also increases. Increasing µj implies that it takes a longer time for UEs at locations

covered by BS j to access the transmission channel. Hence, µj is used to reflect the

average delivery delay of BS j.
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5.2 Problem Formulation

The goal of this is to improve the latency of all UEs by placing DBSs to suitable

locations and balancing the traffic loads among BSs. Let the latency ratio of the

network be L =
∑
j∈J

ρj
1−ρj . Thus, the problem is to optimally place DBSs in the

network and associate UEs to BSs so as to minimize the latency ratio of the network.

Therefore, we can formulate the problem as follows

P1 : min
yj ,ηij

∑
j

ρj
1− ρj

(5.14)

s.t.
∑
j

ηij = 1,∀i ∈ I, (5.15)

0 ≤ ρj ≤ ρmax, (5.16)

ηij ≤ yj, ∀i ∈ I,∀j ∈ J , (5.17)∑
j

yj = N, ∀j ∈ J \s, (5.18)

yj ∈ {0, 1}, ys = 1, ηij ∈ {0, 1},∀i ∈ I,∀j ∈ J . (5.19)

The objective of this problem is to minimize the latency ratio of the network. ρmax is

the maximum allowed traffic load of each BS and N is the number of DBSs that can

be placed in the network. Constraint (5.15) imposes each location to be associated

to only one BS. Constraint (5.16) imposes the traffic load of each BS not to be larger

than the maximum allowed traffic load ρmax. Constraint (5.17) represents that IoT

requests at location i can be assigned to a DBS at location j only if the DBS has

been placed at location j in advance. Constraint (5.18) indicates that the number of

DBSs is N .

5.3 The TALL Scheme

Since P1 is an interger non-linear programming problem which is challenging to

solve, we design the TrAffic Load baLancing (TALL) scheme to effectively tackle
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the problem. Note that the user association ηij is dependent on the DBS placement

yj. Consequently, the original problem is decomposed into two sub-problems: the

DBS placement and the user association.

5.3.1 DBS Placement

In the DBS placement, DBSs are preferred to be placed over locations with high user

densities so that they can provide LoS channels for more UEs and offload more traffic

loads from the MBS. Thus, we will select some locations for DBSs such that the total

distance between UEs and BSs is minimized. Then, the DBS placement problem is

formulated as follows:

P2 : min
yj ,ηij

∑
j

∑
i

λiηijδij (5.20)

s.t.
∑
j∈J

ηij = 1,∀i ∈ I, (5.21)

ηij ≤ yj, ∀i ∈ I,∀j ∈ J , (5.22)∑
j

yj = N, ∀j ∈ J \s, (5.23)

yj ∈ {0, 1}, ys = 1, ηij ∈ {0, 1},∀i ∈ I,∀j ∈ J , (5.24)

where δij is the distance between location i and DBS j and λi is the weight of the

distance. For simplicity, let dij = λiδij be the weighed distance between DBS j and

location i.

Lemma 8. The DBS deployment problem P2 is NP-hard.

Proof. Suppose the bandwidth allocated to the MBS is zero; all UEs are served by

the DBSs. In this case, P2 becomes a p-median problem which is a classical NP-hard

problem. Since p-median problem is reducible to P2, the DBS placement problem P2

is also NP-hard.
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To solve the DBS placement problem, we design a heuristic algorithm to obtain

the sub-optimal solution. We will initialize the DBS deployment by placing DBSs

sequentially, and then adjust the locations of DBSs iteratively until each DBS cannot

find a better location.

In the initialization, we will place a new DBS in each iteration until all DBSs

are placed. Denote J1 as the set of selected locations for DBSs, and J2 as the set

of remaining candidate locations (i.e., J2 = J \J1). At the beginning, let J1 = ∅

and J2 = J . In the nth iteration, Cj is the total wighted distance between UEs and

DBSs (i.e., the objective function of P2) if the new DBS is placed at the candidate

location j; thus, we have Cj = min
ηij

∑
k∈J1∪j

∑
i

ηikdik,∀j ∈ J2. As shown in Algorithm

1, the basic idea of the initialization is to iteratively choose a suitable location j ∈ J2

for the new DBS such that Cj is minimized in each iteration. Specifically, in the nth

iteration, (n− 1) DBSs have already be placed; thus, we need to select the candidate

location with the minimum Cj for the nth DBS.

After the initialization, all DBSs are deployed in the network; then, the

algorithm will iteratively adjust the locations of DBSs to approach the optimal

solution. Denote j1i as the optimal (closest) BS for UEs at location i, and d1i as

the corresponding weighted distance between location i and BS j1i . Denote j2i as the

sub-optimal BS for UEs at location i, and d2i as the sub-optimal weighted distance.

Denote I1j as the set of locations whose optimal DBS is j (i.e., {i|i ∈ I, j1i = j}).

Denote j′ ∈ J2 as a candidate location for DBSs. Then, the interchange benefit by

placing DBS j ∈ J1 to location j′ ∈ J2 can be derived as

∆Cjj′ =
∑
i∈I\I1j

max(0, (d1i − dij′))−
∑
i∈I1j

(min(d2i , dij′)− d1i ),

∀j ∈ J1,∀j′ ∈ J2, (5.25)
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where the first term represents the distance reduction incurred by moving DBS j to

location j′ while the second term is the distance increment due to the redeployment.

As shown in Algorithm 1, from Step 8, the DBS placement algorithm iteratively

selects a suitable DBS and moves it to a better location such that the interchange

benefit is maximized. When all candidate locations of J2 have been checked or each

DBS cannot find a better location, the algorithm stops.

The complexity of Algorithm 1 is analyzed as follows. The complexity of Steps

4-6 is |J |+ 2; as they repeat for N times, the corresponding complexity is O(|J |N).

In addition, the complexity of Step 10 is |J1||J | (i.e., |J1| = N) while Step 11 has

the same complexity. As Steps 10-17 repeat for at most |J | times, the corresponding

complexity is O(2N |J |2 + 2|J |). Summarizing all the steps, the total complexity of

Algorithm 1 can be expressed as O(N |J |2).

5.3.2 User Association

After DBSs have been deployed in the coverage area of the MBS, the locations of

all DBSs are determined. Denote the set of both the MBS and DBSs as J0. Then,

problem P1 can be transformed into:

P3 : min
ηij

∑
j∈J0

ρj
1− ρj

(5.26)

s.t.
∑
j∈J0

ηij = 1,∀i ∈ I, (5.27)

0 ≤ ρj ≤ ρmax, ∀j ∈ J0. (5.28)

In this section, we design a user association algorithm to enable all BSs to

iteratively estimate their traffic loads until the latency ratio of the network is

minimized. At the beginning, all UEs report their data rates towards BSs to the

MBS; then the MBS will execute the algorithm to achieve the optimal user association.
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Algorithm 4 The DBS placement algorithm

1: Start the initializaion; set J1 = ∅; let n = 0;

2: Place the MBS to its predefined location s;

3: while (n ≤ N) do

4: Set n = n+ 1;

5: Find the candidate location j ∈ J2 with the minimum Cj for the new DBS;

6: Let J1 = J1 ∪ j and J2 = J2\j

7: end while

8: Start the deployment adjustment; set J2 = J\J1;

9: while J2 6= ∅ do

10: Calculate ∆Cjj′ ,∀j ∈ J1,∀j′ ∈ J2;

11: Find j, j′ and ∆C∗jj′ by {j, j′} = arg max
j∈J1,j′∈J2

∆Cjj′ ;

12: if ∆C∗jj′ > 0 then

13: Let J1 = J1\j and J1 = J1 ∪ j′;

14: Let J2 = J2\j′;

15: else

16: break;

17: end if

18: end while

return J1.
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Specifically, in each iteration, the algorithm running in the MBS consists of two parts:

the BS selection for UEs at different locations and traffic load estimation for BSs.

The BS selection At the beginning of the kth iteration, the algorithm selects the

optimal BS for each UE based on estimated traffic loads of BSs and the UEs’ data

rates towards BSs. Specifically, according to the definition of L, we have

∂L(ρ)

∂ρj
= (φj(k))−1 =

1

(1− ρj)2
. (5.29)

Consequently, the suitable BS for UEs at location i is

pi
k = arg max

j∈J0
rijφj(k), (5.30)

where pki is the BS’s index selected by UEs at location i.

The traffic load estimation Once the BS for each UE is selected in iteration k,

the perceived traffic load of BS is

ρkj = min(
∑
i∈I

λiliη
k
ij

rij
, ρmax). (5.31)

Denote ρ̃kj as the estimated traffic load of BS j in the kth iteration. After obtaining

the perceived traffic loads, the user association algorithm estimates the traffic load of

each BS in the next iteration as:

ρ̃k+1
j = (1− β(k))ρkj + β(k)ρ̃kj , (5.32)

where β(k) is a system parameter to enable

L(ρ̃k+1) 6 L(ρ̃k) + ζ(1− β(k))
∑
j∈J0

φj(k)−1(ρkj − ρ̃kj ). (5.33)

Here, 0 ≤ ζ ≤ 0.5 is a constant. The detailed procedure of the user association

algorithm is illustrated in Algorithm 2.
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Note that the feasible set of P3 is:

F ={ρ|ρj =
∑
i∈I

λiliηij
rij

, ηij ∈ {0, 1}, 0 ≤ ρj ≤ ρmax,

∑
j∈J0

ηij = 1,∀j ∈ J0,∀i ∈ I}.

Algorithm 5 The user association algorithm

1: Initialize the estimated traffic loads ρ̃j,∀j ∈ J1;

2: Let k = 0;

3: while (1) do

4: Set k = k + 1;

5: Find the suitable BS for all UEs based on:

6: pki = arg max
j∈J0

Cjrijφj(k);

7: Calculate the perceived traffic loads ρj,∀j ∈ J1 based on Equation (5.31);

8: if L(ρk)− L(ρk−1) ≤ ε then

9: break;

10: end if

11: Assign β(k) = 0;

12: while (33) is not true do

13: β(k) = 1− ξ(1− β(k)), where 0 ≤ ξ ≤ 1;

14: end while

15: Update the estimated traffic load for each BS based on:

16: ρ̃k+1
j = (1− β)ρkj + βρ̃kj , j ∈ J0;

17: end while

return ρ.
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As ηij ∈ {0, 1}, ρ is not continuous such that F is not a convex set. To gradually

decrease the average latency ratio L(ρk) by estimating the optimal traffic loads in

each iteration, we relax the constraint to make 0 ≤ ρk ≤ 1, and then show that the

traffic load vector can finally converge in the feasible set. Thus, the relaxed feasible

set of P3 is expressed as:

F̂ ={ρ|ρj =
∑
i∈I

λiliηij
rij

, 0 ≤ ηij ≤ 1, 0 ≤ ρj ≤ ρmax,

∑
j∈J0

ηij = 1,∀j ∈ J0,∀i ∈ I}.

Lemma 9. The objective function L(ρ) is convex, when ρ is defined in F̂ .

Proof. The proof of this lem can be easily made by showing that ∇2L(ρ) > 0 where

ρ is defined in F̂ .

Analysis of the algorithm In this section, the convergence and optimality of the

user association algorithm in the feasible set F is analyzed.

Lemma 10. When ρk 6= ρ̃k, ρk provides a descent direction for L(ρ̃) at ρ̃k.

Proof. As 0 ≤ η̃kj (x) ≤ 1, L(ρ̃) is defined in F̂ . As shown in lem 2, L(ρ̃) is a convex

function of ρ̃. Therefore, we need to prove
〈
∇L(ρ̃k),ρk − ρ̃k

〉
< 0. Hence, we have〈

∇L(ρ̃k),ρk − ρ̃k
〉

(5.34)

=
∑
i∈I

λili
∑
j∈J0

ηkij − η̃kij
rijφj(k)

Note that η∗ij =

 1, if j = pk(x)

0, if j 6= pk(x).

Considering the BS selection rule at the user side in the kth iteration, i.e.,

pki = arg max
j∈J0

rijφj(k), we can derive

∑
j∈J0

ηkij − η̃kij
rijφj(k)

≤ 0. (5.35)
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Since ρk 6= ρ̃k, ∑
i∈I

λili
∑
j∈J0

ηkij − η̃kij
rijφj(k)

< 0. (5.36)

Hence, we have proved
〈
∇L(ρ̃k),ρk − ρ̃k

〉
< 0.

Theorem 3. The estimated traffic load vector ρ̃ converges to the optimal load vectors

ρ̃∗ ∈ F .

Proof. As shown in lem 4, ρk provides a descent direction for L(ρ̃) at ρ̃k when

ρk 6= ρ̃k, and hence L(ρ̃k+1) < L(ρ̃k) in each iteration. Since L(ρ̃) > 0, ρ̃ will

eventually converge to ρ̃∗ when L(ρ̃) is minimized. Considering

ρ̃k+1 = βρ̃k + (1− β)ρk = ρ̃k + (1− β)(ρk − ρ̃k), (5.37)

ρ and ρ̃ will converge to ρ̃∗. As ρ is obtained by user association (i.e., ηij = {0, 1}),

ρ̃∗ is in the feasible set F .

Theorem 4. Suppose the traffic loads of BSs converge to ρ∗, the user association

corresponding to ρ∗ minimizes L(ρ).

Proof. Denote η∗ as the user association for the traffic load vector ρ∗. Meanwhile,

let η
′

be the user association corresponding to any other possible traffic load vector

ρ
′
. Therefore, we just need to prove that ρ

′
cannot get a smaller L(ρ) than ρ∗, i.e.,〈

∇L(ρ∗),ρ
′ − ρ∗

〉
≥ 0. 〈

∇L(ρ∗),ρ
′ − ρ∗

〉
(5.38)

=
∑
i∈I

λili
∑
j∈J0

(η
′

ij − η∗ij)
1

rijφj(k)
dx.

Since pki = arg max
j∈J

rijφj(k),

η∗ij =

 1, if j = pk(x)

0, if j 6= pk(x).
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Then, we have

∑
j∈J0

η
′

ij

1

rj(x)φj(k)
≥
∑
j∈J0

η∗ij
1

rijφj(k)
. (5.39)

Hence,
〈
∇L(ρ),ρ

′ − ρ∗
〉
≥ 0.

As the user association algorithm is a gradient algorithm (i.e., a classic algorithm

to solve convex problems), the number of iterations used to achieve convergence

of L(ρ), which reflects the computational complexity, has been provided by other

existing works [38]. Following the same procedure outlined in Ref. [38], the required

number of iterations is at most
⌈
log((L(ρ(1))−L(ρ∗))/ε)

log 1/z

⌉
, where ρ(1) is the initial traffic

load vector, L(ρ∗) is the optimal solution, and ε > 0 is a small real number. Since

L(ρ) is a convex function, there exist q and Q such that qI 6 ∇2L(ρ) 6 QI. Thus,

z = 1−min{2qζ, 2qζξ/Q} < 1.
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CHAPTER 6

SIMULATION RESULTS

6.1 Performance of the LAB Algorithm

In this section, we set up simulations of the LAB scheme to evaluate its performance.

We select two other algorithms for comparison: α-distributed algorithm [18] and the

Best SNR algorithm. The basic idea of the α-distributed algorithm is to optimally

allocate traffic workloads among BSs in order to minimize the communications latency

ratio (i.e.,
∑

j∈J µj) without considering the load distribution of fog nodes. On the

other hand, the Best SINR algorithm is to associate IoT devices to the BSs that

provide the best channel conditions.

Figure 6.1 Network topology.

In the simulation, six BSs are randomly deployed in a 3000×2000 m2 area as

shown in Figure 6.1. The area is divided into 15,000 locations, where each location

represents a 20 m×20 m area. The flow arrival at different locations follows the

Poisson point process where the average arrival rate per unit area is set as 0.50
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flows/second. As the traffic sizes of data flows follow an exponential distribution, we

set the average traffic size as 0.05 Mbits. The computing sizes of data flows also follow

an exponential distribution; we set the average computing size of each flow as 5000

CPU cycles. Then, the location-based traffic load density and computing load density

can be derived based on Equation (3.4) and (3.11), respectively. Meanwhile, we set

the maximum traffic load threshold of each BS as 0.99 and the maximum computing

load threshold of each fog node as 0.99. In the simulation, the transmission power of

each IoT device is set as 100 mW while the uplink frequency bandwidth of each BS

is 10 MHz. We employ COST 231 Walfisch-Ikegami [43] as the propagation model

with 9 dB rayleigh fading and 5 dB shadowing fading. The carrier frequency is 2110

MHz, the antenna feeder loss is 3 dB, the transmitter gain is 1 dB, the noise power

level is -104 dBm, and the receiver sensitivity is -97 dBm.

Figure 6.2 Average latency ratio L(η) with respect to the number of iterations
(λ = 0.5, Ci = 7.1 ∗ 106).

As shown in Figure 6.2, the average latency ratios of both LAB and α-

distributed algorithms do converge. Meanwhile, Figure 6.3 shows that LAB achieves

a much lower average latency ratio than the other two schemes. As we know,

the α-distributed algorithm only focuses on the wireless communications latency by
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Figure 6.3 Average latency ratio L(η) for different algorithms (λ = 0.5, Ci =
7.1 ∗ 106).

allocating the traffic loads among BSs. In this case, the computing loads of fog nodes

may be unbalanced (i.e., while some fog nodes are lightly loaded, other fog nodes are

overloaded). Similarly, the Best SINR algorithm aims to assign IoT devices to BSs

that provide the best channel conditions, and thus both the traffic loads among BSs

and the computing loads among fog nodes may be unbalanced. In contrast, as the

latency of a data flow consists of both the communications latency and computing

latency, LAB takes into account of both the traffic loads and the computing loads

in the load balancing process. As a result, although the communications latency is

slightly sacrificed as compared to the α-distributed algorithm, LAB optimizes the

average latency ratio of the network by significantly reducing the computing latency

in fog nodes.

We also investigate the communications latency of different schemes. From

Figure 6.4, we can see that LAB incurs a higher average communications latency

than the α-distributed algorithm. It is attributed to the fact that the α-distributed

algorithm optimally balances the traffic loads among BSs to reduce the commu-

nications latency without considering the computing load allocation. In contrast,
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Figure 6.4 Average communications latency ratio with respect to the number of
iterations (λ = 0.5, Ci = 7.1 ∗ 106).

besides the traffic load balancing, LAB also adjusts the IoT device association to

offload the computing loads from overloaded fog nodes to lightly loaded fog nodes.

Thus, the adjusted IoT device association cannot guarantee the optimal traffic load

balancing, which slightly degrades the performance of communications latency.

Figure 6.5 Computing loads of different fog nodes.

To further study the load balancing process in the fog network, we also compare

the computing loads among fog nodes and the traffic loads among BSs for different
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Figure 6.6 Traffic loads of different BSs.

Figure 6.7 Average latency ratio with respect to the capacity of each fog node
(λ = 0.5).

schemes. Figure 6.5 shows that the differences of computing loads among fog nodes

achieved by LAB are smaller than those by the α-distributed algorithm and the Best

SINR algorithm. While balancing the traffic loads, LAB also balances the computing

loads among different fog nodes, thus reducing the computing latency in fog nodes. In

contrast, both α-distributed and Best SINR do not consider the computing latency,

which is an important factor of the final latency of data flows, and thus incur

unbalanced computing loads among fog nodes. Meanwhile, Figure 6.6 shows the

57



Figure 6.8 Average latency ratio with respect to flow arrival rate λ(x) (Ci = 7.1∗106).

traffic loads among BSs for different schemes. The differences of traffic loads among

BSs for both LAB and α-distributed are smaller than that of the Best SINR algorithm.

In other words, the traffic loads of the two schemes are balanced, and thus no BS is

congested. Furthermore, since the traffic loads among BSs in LAB and α-distributed

are similar, it indicates that LAB only slightly sacrifices the communications latency

in the load balancing process, as compared to the α-distributed algorithm.

The capacities of fog nodes can critically impact the computing latency.

Specifically, based on Equation (3.10), when the capacities of fog nodes increase,

the computing load density ρ̂j will decrease correspondingly. Therefore, we need to

study the impact of the capacities of fog nodes on the average latency of all data

flows. As shown in Figure 6.7, the average latency ratios of both α-distributed and

LAB decrease with the increase of fog nodes’ capacities. When the capacities of fog

nodes are relatively low, LAB achieves a much lower average latency as compared to

the α-distributed algorithm because the computing latency becomes the dominating

factor of the average latency when fog nodes’ capacities are limited. In this case, since

LAB can balance the computing loads among fog nodes via the suitable IoT device

association, its average latency ratio is remarkably lower than that of the α-distributed
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algorithm. However, when fog nodes’ capacities keep increasing, all fog nodes become

lightly loaded and thus the computing latency is no longer the dominating factor of

the average latency. In this case, the average latency of the α-distributed algorithm

decreases quickly and gets close to that of LAB.

We also investigate the impact of the average traffic arrival rate λ(x) on the

average latency ratio of the network. As shown in Figure 6.8, when the average traffic

arrival rate increases, the average latency ratios of both the α-distributed algorithm

and LAB increase, where the value of LAB is lower than that of the α-distributed

algorithm. When the average arrival rate is relatively low, the average latency ratios

of the two schemes are similar because both the BSs and fog nodes in the network are

lightly loaded. As a result, the computing load balancing of LAB cannot significantly

improve the average latency as compared to the α-distributed algorithm. However, as

the average traffic arrival rate increases, the average latency ratio of LAB grows slowly

while the performance of the α-distributed algorithm degrades quickly because both

the traffic load and computing load in the network become heavy with the increase

of the average traffic arrival rate. In this case, the traffic loads among BSs and

computing loads among fog nodes jointly impact the average latency ratio. As LAB

takes into account of both the traffic load balancing and computing load balancing,

it can still maintain low average latency. However, the α-distributed algorithm only

focuses on balancing the traffic loads among BSs, in which case some fog nodes are

congested especially when the computing loads in the networks are very heavy.

6.2 Performance of the AREA Algorithm

In this section, we set up simulations of the AREA algorithm to evaluate its

performance. We select two other workload allocation strategies for comparison:

the density-based clustering (DBC) strategy [44] and the latency-based strategy [45].

The basic idea of DBC is to offload UEs’ workloads to suitable cloudlets until the
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workloads of the cloudlets exceed the average workload among cloudlets. On the other

hand, the latency-based strategy is to minimize the network delay between Apps and

cloudlets by assigning Apps to suitable cloudlets. In the above two strategies, the

computing resource of each cloudlet is allocated to different types of VMs according

to the percentage of different types of workloads in the cloudlet.

The simulation environment consists of 25 BSs within an area of 25 km2, where

the coverage of each BS is 1 km2 and each BS is attached with a cloudlet. Meanwhile,

1000 UEs are uniformly distributed among the BSs and assumed to be associated with

their closest BSs. There are 10 types of IoT applications in the cloudlet network, and

we randomly choose three types of Apps for each UE (i.e., the total number of Apps

in the network is 3000). The length of each time slot is set as 5 mins. As each App’s

task arrival rate follows a Poisson distribution, we randomly choose the average task

arrival rate of each App between 0 and λmax. As the computing sizes of application k’s

requests follow an exponential distribution with the average value of lk, the average

size of different types of requests is chosen according to the Normal distribution with

an average of 106 CPU cycles and a variance of 2 ∗ 105 cycles, i.e., N(106, 2 ∗ 105).

Moreover, we assume the network delay between a BS and a cloudlet is a linear

function of the distance between them [21, 46], i.e., τri = α × d + β, where d is the

distance between BS r and cloudlet i, and α and β are set as 5 and 22.3, respectively.

In addition, the maximum allowed computing delay for different types of applications

is chosen according to N(60, 20) (ms).

Figure 6.9 shows the average response time per App, in which AREA achieves

lower response time as compared to the other two strategies. Specifically, the

latency-based strategy always assigns Apps’ requests to their closest cloudlets without

considering the workload in each cloudlet; DBC assigns Apps to the closest cloudlets

until the workload of each cloudlet exceeds the average workload among cloudlets,

without considering the diversity of applications in each cloudlet. Thus, both DBC
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Figure 6.9 Average performance of an App for different algorithms (λmax = 1.5,
Ci = 2 ∗ 108).

and the latency-based strategy lead to a lower network delay and a higher computing

delay than AREA. AREA considers both the network delay of each App and the

different types of workloads for each cloudlet in the workload allocation. To reduce

the computing delay of all Apps, it tends to assign Apps with small computing sizes

to the lightly loaded cloudlets. Furthermore, it also optimally allocates computing

resources for different types of VMs based on their corresponding workloads, and

thus significantly reduces the average response time per App. Meanwhile, as shown

in Figure 6.10, the average response time for different types of applications in AREA

is significantly smaller than those of DBC and the latency-based strategy.

We further analyze how the workloads of Apps affect the performance of the

three algorithms. Note that the value of λmax reflects the workloads of Apps, i.e.,

increasing λmax increases workloads of Apps. As shown in Figure 6.11, with the

increase of λmax, the average response time of the three algorithms increases gradually.

However, the average response time of AREA is much lower and increases more

slowly as compared to those of the other two algorithms. When the workloads of

Apps are heavy, AREA can always offload the App with the highest response time
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Figure 6.10 Average response time for different types of IoT applications (λmax =
1.5, Ci = 2 ∗ 108).

Figure 6.11 Average response time with respect to λmax (Ci = 3.8 ∗ 108).

to an alternative cloudlet, and thus iteratively minimize the maximum response time

among Apps. Meanwhile, AREA also optimally allocates the computing resources

of each cloudlet to different types of applications based on their workloads and their

corresponding computing sizes, and thus further reduces the computing delay.

Moreover, we investigate the impact of cloudlets’ capacities on the average

response time. Figure 6.12 shows that the response time of the three algorithms when

the capacities of cloudlets increase. It can be seen that AREA achieves much lower
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Figure 6.12 Average response time with respect to the capacity of each cloudlet
(λmax = 1.5).

average response time when the capacities of cloudlets change. When the capacities

of cloudlets are small, since DBC and the latency-based algorithm do not balance the

workloads among cloudlets based on different types of applications (i.e., considering

all task requests are homogeneous), AREA leads to a remarkably lower computing

delay, and thus incurs lower response time. However, when the capacities of cloudlets

are very high, the computing delay is no longer a dominating factor for the average

response time, and thus the average response time of DBS and the latency-based

algorithm get close to that of AREA.

We also analyze the impact of the number of UEs on the average response time

of Apps. As shown in Figure 6.13, the average response time of AREA increases much

slower than those of the other two algorithms. Since AREA considers the difference

between applications, it tends to assign Apps with smaller task sizes to lightly loaded

cloudlets and allocates more computing resources to them, thus minimizing the

average response time of all UEs’ Apps. Therefore, as the number of UEs increases

where the computing delay is the dominating factor in the average response time,

AREA is able to achieve a lower computing delay than the other two algorithms,

thus improving the performance of the average response time.
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Figure 6.13 Average response time with respect to different number of UEs (λmax =
1.5, Ci = 3.8 ∗ 108).

6.3 Performance of the TALL Algorithm

In this section, the performance of the TALL algorithm has been evaluated by

simulations. In the simulation, the coverage area of a MBS is 1000×1000 m2 where

the MBS is at the center and three DBSs can be deployed in the MBS’s coverage area

to facilitate communications. After randomly selecting two locations (x1 and x2)

within this area, we place 180 UEs around the two locations according to the normal

distributions N(x1, 150 m) and N(x2, 150 m); thus, some hotspot areas are created.

The task arrivals of each UE follow a Poison process in which the average task arrival

rate is 0.9 requests/s. The traffic sizes of IoT tasks follow the general distribution

with the average traffic size equaling to 200 kb. The heights of the MBS and DBSs

are set as 10 m and 50 m, respectively. The total bandwidth is 20 MHz in which each

BS (either the MBS or a DBS) exclusively utilizes 5 MHz. The transmission powers

of a UE and a DBS are set as 200 mW and 2 W, respectively. The maximum allowed

traffic load ρmax is 0.99. In addition, ξlos and τ los of the LoS channel are set as 103.4

dB and 24.2 dB/km; ξnlos and τnlos of the NLoS channel are set as 131.4 dB and 42.8
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dB/km. The parameters of the LoS probability model (a and b) are set as 11.95 and

0.136.

We also consider three other schemes for comparison, i.e., Best SINR scheme

[47], Max-Coverage scheme [48], and single MBS (S-MBS) scheme [21]. In Best SINR,

DBSs are optimally deployed in hotspot areas with high user densities while UEs are

associated to the BS based on the best channel condition of the access link. The basic

idea of Max-Coverage is to maximize the number of IoT users covered by DBSs in

the DBS deployment, where the coverage ranges of DBSs are given (i.e., 100m). For

S-MBS, only the MBS is placed with the whole bandwidth (20 MHz). To express the

gap between our scheme and optimal solution, we divide the coverage of the MBS

into 36 locations to reduce the running time of the brute-force search. Based on this

small-scale network, the optimal solution is obtained through the brute-force search

when the average arrival rate is set as 0.95 requests/s. As shown in Figure 6.14, the

average latency ratio per BS of TALL is only 0.4% higher than the optimal solution,

which demonstrates the effectiveness and efficiency of TALL.

Figure 6.14 Average latency ratio per BS of different schemes.
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To better demonstrate the performance of TALL as compared to other schemes,

we further divide the MBS’s coverage area into 2500 locations, each representing a

small area of 20 m × 20 m for the following simulations.

Figure 6.15 Average latency ratio per BS v.s. number of iterations.

In Figure 6.15, the average latency ratio per BS of TALL does converge.

Meanwhile, we can see that TALL significantly reduces the average latency ratio per

BS as compared to the other three schemes. In S-MBS, only the MBS is considered

to deliver traffic, and thus it will always be heavily loaded. For Best SINR, the user

association depends on the best channel conditions and thus incurs unbalanced traffic

loads among BSs, i.e., while some DBSs are lightly loaded, other DBSs at hotspot

areas may be congested owing to the heavy traffic demands around them. As the

congested DBSs incur remarkably high latency ratios, the average latency ratio of

all DBSs is significantly deteriorated owing to these congested BSs. Meanwhile, in

Max-Coverage, UEs are associated to a DBS when they are in the DBS’s coverage

area (i.e., determined by the downlink), where the channel condition and traffic load

balancing among BSs are not considered. In contrast, TALL can optimally allocate

traffic load among BSs to reduce their latency ratios.
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To better study the traffic load balancing among BSs, we also compare the

traffic loads among BSs for different schemes. As shown in Figure 6.16, TALL yields

significantly smaller differences of traffic loads among BSs than those by the Best

SINR and Max-Coverage. This is attributed to the fact that TALL tries to associate

UEs to the suitable BSs in each iteration in order to balance the traffic loads among

BSs, and thus improves the latency ratios of BSs. In contrast, Best SINR enables

UEs to associate with BSs with best channel conditions without considering the traffic

loads of these BSs, and thus incurs the unbalanced traffic loads among BSs owing to

the dynamic distribution of UEs. In Max-Coverage, the user association is determined

by the locations and downlink coverage areas of DBSs. As the user distribution is

dynamic and the coverage ranges of DBSs are given, the workloads among the MBS

and DBSs are uneven.

Figure 6.16 Comparison of Traffic load.

The average traffic arrival rate of UEs has an impact on the average latency ratio

per BS. In Figure 6.17, as each UE’s traffic arrival rate increases, the average latency

ratio per BS of the four algorithms increases, where the value of TALL is significantly

lower than other schemes. Specifically, when the average traffic arrival rates of UEs

are relatively small, the average latency ratio of S-MBS is higher than those of other

67



Figure 6.17 Average latency ratio per BS v.s. traffic arrival rate for each UE.

schemes that have similar performance. Meanwhile, when the average traffic arrival

rate increases, TALL considers the traffic loads of BSs in the user association, and

thus still keeps low average latency even if the traffic load of the network becomes

heavy. However, Best SINR only focuses on the channel conditions of UEs and some

overloaded DBSs may be congested. Although Max-Coverage focuses on maximizing

the number of UEs covered by DBSs, the workload difference between the MBS and

DBSs still exacerbates the average latency ratio. Meanwhile, for S-MBS, the traffic

load of the MBS increases due to the heavy traffic demands and bad channel, and

thus its average latency ratio degrades drastically.

To further study the performance of TALL, we also test the impact of the

number of UEs on the average latency ratio per BS. In Figure 6.18, when the number

of UEs increases, the average latency ratio per BS of TALL is significantly lower than

those of the other three schemes. In TALL, although the number of UEs increases,

it can still suitably assign UEs among BSs to avoid the severe congestion. Regarding

Max-Coverage and Best SINR, increasing the number of UEs will further degrade

the balance of traffic loads among BSs. In S-MBS, the MBS will become congested

quickly owing to the increased traffic.
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Figure 6.18 Average latency ratio per BS v.s. number of UEs.
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CHAPTER 7

OTHER CONTRIBUTIONS

In Chapter 3, to jointly minimize the communications latency and computing

latency, IoT devices are associated to suitable BSs to balance the traffic load and

computing load simultaneously. In Chapter 4, we have assigned different applications’

workloads among different cloudlets and allocated the computing resources for

different applications in each cloudlet, thus improving the response time of different

application tasks. In Chapter 5, to reduce the wireless latency for IoT tasks especially

in hotspot areas, we have placed drone base stations to facilitate the data transfer

from IoT users to fog nodes. In this chapter, some other contributions during my

doctoral study are introduced. I briefly discuss how to minimize the on-grid energy

consumption by migrating virtual machines among cloudlets that are powered by

both the green energy and on-grid energy. Meanwhile, I will also introduce how to

enhance the performance of the heterogeneous cellular networks by making a tradeoff

between the throughput and on-grid energy consumption.

7.1 Energy Driven Avatar Migration in Green Cloudlet Networks

Mobile applications are becoming computation-intensive while the computational

capacity of user equipments (UEs) remains limited owing to their sizes and battery.

Mobile Cloud Computing (MCC ) enables UEs to offload some tasks to high

performance Virtual Machines (VMs) in remote clouds, thus reducing the task

execution time and energy consumption of UEs. Existing researches mostly consider

the remote cloud as the offloading destination, due to its abundant resources.

However, long communications delay incurred by transferring data between UEs

and remote VMs has a detrimental impact on user experience of applications, such

as augmented reality and online gaming, where a short response time is required.
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The concept of cloudlet [49] has been proposed to reduce the communications delay

between UEs and their VMs. Cloudlets, as tiny versions of data centers, are generally

placed at access points in a network that are close to UEs. The physical proximity

between UEs and cloudlets leads to a shorter communications delay [44] [50].

To maintain the normal operation of these distributed cloudlets, a large amount

of on-grid energy (i.e., brown energy) is consumed, generating tremendous CO2. As

green energy technologies advance, green energy can be readily employed to reduce

the on-grid energy cost. Energy generated from solar panels can be used to power

distributed cloudlets, with on-grid energy as a backup.

Figure 7.1 GCN architecture

A Green Cloudlet Network (GCN ) architecture is illustrated in Figure 7.1 in

which each cloudlet is collocated at an eNB, and connects to the eNB via a high

speed fiber link. Distributed cloudlets are able to transfer data to each other via the

cellular core network and internet. Software Defined Network (SDN ) based cellular

network is employed to provide efficient and flexible communications paths between

eNBs. Meanwhile, LTE providers offer the seamless wireless communications between

a UE and its eNB, thereby each UE can connect to a nearby cloudlet to minimize the
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communications delay. In GCN, each UE can be mapped to a specific Avatar [51],

one VM in the cloudlet, to run its offloaded tasks. An Avatar is a software clone

of a UE and always offers service to the UE wherever it moves. Moreover, in order

to reduce on-grid energy consumption, cloudlets can be equipped with and powered

by solar panels. Note that green energy shown in Figure 7.1 can only be utilized

by cloudlets. Certainly, eNBs can be equipped with their own solar panel systems.

However, since the LTE network provider and cloudlet provider play different roles in

the network, they cannot share the same green energy source. In this work, we focus

on the available green energy for cloudlet networks.

Since UEs move in the network all the time and the workload of each UE is

dynamic, energy demands among different cloudlets are also dynamic. Therefore,

some cloudlets may have excessive green energy while the energy demands from

their hosting Avatars are light. In contrast, other cloudlets, which have more

energy demands and less green energy, have to draw on-grid energy to maintain

their Avatars’ operation. So, these unbalanced energy demands among cloudlets

intensify the on-grid energy consumption of GCNs. In order to reduce the on-grid

energy consumption, we need to migrate Avatars from cloudlets being lack of green

energy to cloudlets with excessive green energy, thus improving the green energy

utilization. However, during an Avatar migration process, the cloudlet provider

has to transfer the data of the Avatar from its original cloudlet to its destination,

resulting in energy consumption of the cellular core network (i.e., the migration cost),

which also contributes to the on-grid energy consumption of GCNs. In order to

minimize the on-grid energy consumption of GCNs, we design the Energy driven

AvataR migratioN (EARN) scheme in green cloudlet networks to balance the tradeoff

relationship between the migration gain (i.e., green energy utilization of cloudlets) and

the migration cost (i.e., on-grid energy consumption of the network owing to Avatar

migrations) [11]. Moreover, EARN also guarantees the Service Level Agreement
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(SLA) of Avatars i.e., the maximum propagation delay between a UE’s eNB and

its assigned cloudlet.

7.2 Throughput Aware and Energy Aware Traffic Load Balancing in
Heterogeneous Networks with Hybrid Power Supplies

Figure 7.2 Heterogeneous mobile network architecture.

Owing to the direct impact of greenhouse gases on the environment and the

climate change, curbing the energy consumption of mobile networks has attracted

much attention. Driven by the proliferation of data-hungry devices and applications,

mobile data traffic is expected to increase exponentially in the future [13,52]. In this

situation, the increasing traffic not only calls for expansion of network capacity, but

also intensifies the energy consumption [53]. Therefore, greening mobile networks is

important to mitigate the environmental problems and reduce the operating cost of

mobile operators [54], [55]. With the development of green energy technologies, green

energy such as solar energy, wind energy and sustainable biofuels is being utilized
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to power base stations (BSs). However, owing to the unstable generation of green

energy, hybrid energy supplies, consisting of both green energy and on-grid power,

are a more practical option to power BSs [56]. Thus, green energy can be utilized

to reduce the on-grid power consumption and therefore decrease the CO2 emission,

with the on-grid power as a backup power source.

Heterogeneous cellular networks (HCNs), in which the macro cells are overlaid

with small cells, are promising to increase the total capacity of cellular networks

[57]. Considering the dynamic workload distribution, small cell base stations (SCBSs)

are placed in areas with high user density to facilitate more users to connect to a

much closer BS, thus improving the channel conditions of users. Meanwhile, as the

coverage of each SCBS is very small, the transmission power required by each SCBS

is significantly smaller than those of traditional BSs [31], [58]. Therefore, the low

power of SCBSs can potentially improve the spectral efficiency and energy efficiency

of heterogeneous cellular networks [59].

In a HCN with hybrid power supplies as shown in Figure 7.2, the effective data

rate (EDR) of a user’s flow is based on both the channel condition of the user towards

its BS and the BS’s workload status [20]. As the user distribution is dynamic, if a user

tends to associate with BSs only based on the channel condition or received power,

it may connect to a congested BS, which degrades its EDR. Consequently, some

BSs may be congested by the heavy traffic loads while other BSs are lightly loaded.

The unbalanced workload distribution among BSs has a negative impact on user

Quality-of-Service (QoS) in terms of the EDR. On the other hand, the main operating

cost of mobile providers arises from the on-grid energy consumption. Owing to the

dynamic traffic workload distribution among BSs, the energy demands of BSs may

not match their available green energy, thus incurring the increment of on-grid energy

consumption. In other words, while some BSs still have excessive green energy, others

have drained their green energy and started to consume on-grid energy. To reduce
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the operating cost, traffic load balancing can be employed to reduce the gap between

the energy demands of BSs and their green energy. Moreover, as mobile providers

need to consider the gain of the aggregated EDR (sum of EDRs of all users within

the coverage area of a macro BS) and the operating cost in terms of on-grid energy

consumption simultaneously, the optimal traffic load balancing strategy should take

into consideration of the above two factors. However, in the load balancing process,

saving on-grid power is always at the cost of sacrificing an amount of EDR, i.e.,

the EDR and on-grid energy consumption exhibit a trade-off relationship. How to

balance the traffic loads among BSs to optimize the aggregated EDR of the network

and on-grid energy consumption still remains to be a critical problem.

To solve the above problem, we design a Throughput aware and Energy Aware

(TEA) traffic load balancing scheme for heterogeneous networks to satisfy mobile

providers’ requirements by balancing traffic loads [60]. The scheme not only optimizes

the utilization of green energy in order to reduce the on-grid power consumption, but

also optimizes the aggregated EDR of the network. Since the power consumption

of a macro BS (MBS) is significantly larger than that of SCBS, associating users

with SCBSs may reduce the on-grid power consumption. However, too many users

associating with SCBSs may incur traffic congestion in SCBSs and thus degrades the

EDRs of their users. The TEA algorithm makes a tradeoff between the aggregated

EDR of the network and on-grid energy consumption by assigning users to suitable

BSs. Below are the major contributions of this work.

We formulate the problem of making a tradeoff between the aggregated EDR

and on-grid energy consumption by balancing traffic workloads among heterogeneous

BSs. The mobile providers desire to improve the aggregated EDR while reducing

on-grid energy consumption of the network. Since the user association aiming to

increase the effective data rate may increase on-grid energy consumption, we need

to balance these two factors in the scheme. Thus, we define an energy-throughput
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coefficient α to make a tradeoff between the aggregated EDR and on-grid energy cost,

which can be predefined by each mobile provider based on its practical requirement.

The workload status of a BS has a critical impact on the EDRs of its associated

users. To guarantee the user QoS, we assume that the workload of each BS should

be smaller than the BS’s maximum workload threshold allowed by mobile providers.

To solve the user association problem (i.e., load balancing) in each time slot, we

design a heuristic algorithm which iteratively moves users to suitable BSs. Then, we

analyze the computational complexity of the algorithm. We also analyze some critical

issues of the proposed algorithm in order to facilitate its practical implementation.
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CHAPTER 8

CONCLUSION

We have studied the workload allocation in edge computing to optimize the response

time of IoT devices and IoT users. First, we have designed the LoAd Balancing

(LAB) scheme for the fog network to minimize the average latency of IoT devices’

data. Since the latency of IoT data consists of both the communications latency and

computing latency, LAB takes into consideration of both the traffic laod allocation

and computing load allocation by associating IoT devices to suitable BSs/fog nodes.

To solve the problem, we have designed a distributed algorithm to iteratively

achieve the optimal solution. Furthermore, we have proved the convergence and

optimality of the solution. Second, we have designed an Application awaRE workload

Allocation (AREA) scheme for edge computing based IoT that assigns different types

of workloads in each IoT user to their corresponding cloudlets and optimally allocates

the computing resources of each cloudlet to its application based virtual machines.

Third, we have designed TALL scheme to place DBSs to the locations with higher

densities, and then allocates the trafic loads among BSs to further minimize the

latency ratios of DBSs. Simulation results have verified the performance of these

above schemes.
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