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ABSTRACT

DOMAIN DECOMPOSITION METHODS FOR THE SOLUTION OF
MULTIPLE SCATTERING PROBLEMS

by
Michael Pedneault

This presents a Schur complement Domain Decomposition (DD) algorithm for the

solution of frequency domain multiple scattering problems. Just as in the classical

DD methods,(1) the ensemble of scatterers is enclosed in a domain bounded by an

artificial boundary, (2) this domain is subdivided into a collection of nonoverlapping

subdomains so that the boundaries of the subdomains do not intersect any of

the scatterers, and (3) the solutions of the subproblems are connected via Robin

boundary conditions matching on the common interfaces between subdomains.

Subdomain Robin-to-Robin maps are used to recast the DD problem as a sparse

linear system whose unknown consists of Robin data on the interfaces between

subdomains—two unknowns per interface. The Robin-to-Robin maps are computed

in terms of well-conditioned boundary integral operators. Unlike classical DD, the

Domain Decomposition problem is not reformulated in the form of a fixed point

iteration, but rather solved as a linear system through Gaussian elimination of

the unknowns corresponding to inner interfaces between subdomains via Schur

complements. Once all the unknowns corresponding to inner subdomains interfaces

have been eliminated, a much smaller linear system involving solely the unknowns

on the inner and outer artificial boundary is solved. The last section of this thesis

offers numerical evidence that this Schur complement DD algorithm can produce

accurate solutions for very large multiple scattering problems that are out of reach

for other existing approaches.
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CHAPTER 1

FOUNDATIONS

Note to the reader: A lot of effort was given to make this thesis as much

self-contained as possible, but should an avid reader want to, most of the

survey material found in it can be supplemented by the excellent monographs

Colton & Kress [30] and Martin [22] which contain comprehensive accounts of

both theoretical and numerical developments in this field. I invite people to

distribute this thesis whenever they see fit to the next generations of students

who will carry on research on this specific topic, as it was written to address

a lot of the technicalities that I personally had issues with when starting to

work in the field for the first time. Also, note that for pedagogical purposes,

you will find throughout this thesis little grey boxes like this one that are

meant to encapsulate the results that are central to the development of the

theory.

The numerical simulation of interaction of acoustic, electromagnetic, and

elastic waves with large ensembles/clouds of scatterers, collectively referred to as

multiple scattering, plays an important role in a variety of applied fields such as

seismology, meteorology, remote sensing, and underwater acoustics, to name but a

few.

At the heart of acoustic scattering, the Helmholtz equation ∆u + k2u = 0

arises naturally from the wave equation ∆φ = 1
c2
∂2φ
∂t2

when the time dependence of

the function φ(x, t) is an harmonic function of circular frequency ω so that it can

be written φ(x, t) = Re(e−iωtu(x)).

An attempt at solving this equation and a proper understanding of the kind

of conditions to impose on the boundaries or at infinity calls for a basic knowledge

of the quantities involved. We briefly review the physical background needed to
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understand the scattering problem and although most of our work focuses on the

two dimensional (2D) problem, it is easier to lay the foundations in three dimensions

(3D) for sake of simplicity.

Consider an inviscid fluid medium at rest (no velocity flow v0 = 0) with

uniform pressure p0 and density ρ0. Assume further that in this fluid the speed of

sound is c. Acoustic waves are small perturbations of the medium’s pressure p(x, t),

density ρ(x, t) and velocity v(x, t) so that these can be expressed as perturbations

near their equilibrium states:

p(x, t) = p0 + p1(x, t), p1 � p0

ρ(x, t) = ρ0 + ρ1(x, t), ρ1 � ρ0

v(x, t) = v1(x, t), |v| � c =

√
∂p

∂ρ
|ρ0 .

(1.1)

In all three equations we reiterated that the perturbations are small compared

to their leading order equilibriums and that the velocity of the waves is much smaller

than the speed of sound in the medium.

Understanding the behavior of acoustic waves hence amounts to finding the

perturbations p1, ρ1 and v1. We must therefore establish a coherent system of

relationships that these quantities must obey to and this is achieved by enforcing

a set of fundamental physical laws in the underlying framework. Typically, to

understand how a given physical law applies to a system, one first considers how

it applies to a small, control volume, or ”representative volume” which simply

represents a small part of the system to which physical laws can be easily applied.

In the following we establish the general relationship for conservative quantities.

2



1.1 The Mathematical Equations of Conservation Laws

Suppose V is an arbitrary control volume that is fixed in space and that q is a

conservative quantity of interest inherent to V that can move or flow with volume

density ρ measured in amount of q per unit volume. As V is fixed, if one observes

what happens with q, the only way that it can change in time is by either fluxing

it through the boundary ∂V or by creation inside of V . The flux of q, denoted j,

can be broken down further into two possibilities: conduction without the need of

fluid transport (e.g. heat conduction in a solid) or actual transport along a fluid

velocity field (e.g. mass) that flows freely across V . Denote by d the flux of q in the

absence of transport and let v be the transport vector field so that the whole flux

is understood as j = d + ρv. In addition, let us call σ the source (or sink) per unit

of time per unit volume for q within V .

We then have that the rate of change of q in time can mathematically be

expressed as:

dq

dt
=

d

dt

∫
V

ρdV = −
∫
∂V

j · dS +

∫
V

σdV. (1.2)

In the above the minus sign accounts for the fact that the normal of ∂V , n,

is outward pointing so that quantities flowing opposite to n are actually inflows.

The surface integral is then converted into a volume integral using the

divergence theorem: ∫
∂V

j · dS =

∫
V

∇ · jdV,

where ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

) is the gradient operator. One can then reorganize and

differentiate under the integral the LHS of (1.2) to get:

∫
V

{
∂ρ

∂t
+∇ · j− σ

}
dV = 0.

3



Since V is arbitrary, it must be the case that the integrand vanishes

everywhere, and that conclusion leads to the so called continuity equation:

∂ρ

∂t
+∇ · j− σ = 0. (1.3)

The continuity equation is useful because both the mass and the momentum

are conservative quantities that ought to solve equation (1.3) and more importantly,

they involve the pressure, the density and the velocity field, which is what we seek.

For instance if we consider the mass m =
∫
V
ρdV of what lies inside of V at a given

time, as mass can only move with transport, j = ρv, and can neither be created nor

destroyed, σ = 0, we obtain the conservation of mass equation simply by replacing

the appropriate terms:

∂ρ

∂t
+∇ · (ρv) = 0. (1.4)

The handling of the momentum p =
∫
V
ρvdV is done in a similar fashion

although with the addition of a few technicalities. For example, the correct density

to use for p is ρv and as opposed to mass, momentum can flow without any transport

vector field so that in this case one has to account for both sources of flux. The

first one is being treated as before with the flux due to transport given by (ρv)v>

and one needs to look at the possible forces or stresses acting on ∂V to explain

other changes in momentum. In general this is achieved by forming a stress tensor

Σ ∈ R3×3 that captures sheer stresses (e.g. friction ) off diagonal and normal stresses

(e.g. pressure) on the diagonal making the full flux j = (ρv)v> + Σ. Last but not

least, if we want to be thorough, when gravity is accounted for there is effectively

creation of momentum due to the gravitational pull in which case one has to set

σ = ρg where is g is the net acceleration.

4



Upon replacing in equation (1.3) we obtain the momentum conservation

equation:

∂ρv

∂t
+∇ · (ρvv> + Σ)− ρg = 0. (1.5)

Both equations (1.4) and (1.5) are nonlinear but can closely be approximated

by linear ones using the order relations stated in equation (1.1) using the proxies

ρv ≈ ρ0v1 and vv> = v1v
>
1 ≈ 0. This is valid since the perturbations are assumed

to be very small to start with, so their multiplications ought to be negligible. In

addition, things can be simplified a bit further by neglecting gravity and by assuming

there is no sheer stress and that the only normal force acting on ∂V is the pressure

p so that the stress tensor reduces to Σij = pδij. This simplification gives rise to the

linearized mass conservation and momentum conservation equations:

∂ρ1

∂t
+∇ · (ρ0v1) = 0,

ρ0
∂v1

∂t
+∇p1 = 0.

This system of equations is not uniquely solvable unless we append a third

equation to close it. To do so we introduce the equation of state that ties the

pressure and the density to each others. Specifically, one can draw from classical

mechanics c =
√

dp
dρ

implying that p = p(ρ). When this relation holds, the fluid

is referred to as barotropic. If we Taylor expand p to second order around its

unperturbed state and use equation (1.1), we get:

p(ρ) = p(ρ0) +
dp

dρ
|ρ0(ρ− ρ0) +O(ρ− ρ0)2

= p0 + c2ρ1 +O(ρ2
1)

≈ p0 + c2ρ1.
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We can now use p1 ≈ c2ρ1 as a third equation for a closed system:

∂ρ1

∂t
+∇ · (ρ0v1) = 0, (1.6)

∂v1

∂t
= − 1

ρ0

∇p1, (1.7)

p1 = c2ρ1. (1.8)

This can be solved as follows: first differentiate equation (1.6) with respect to

t and use equation (1.7) in the result to get:

∂2ρ1

∂t2
= ∆p1,

where ∆ = ∇ · ∇ is the Laplace operator. Then from equation (1.8) we obtain at

once the wave equations for the density and the pressure:

1

c2

∂2p1

∂t2
= ∆p1,

1

c2

∂2ρ1

∂t2
= ∆ρ1,

and little work shows that the same equation holds for the velocity field as well

1

c2

∂2v1

∂t2
= ∆v1. (1.9)

It appears then that the behavior of acoustic waves is totally characterized

by the wave equation only, for all three quantities of interest satisfy that equation.

It is to be noted however that since the velocity is a vector field, equation (1.9)

means that each components of v satisfy the scalar wave equation like the density

6



and pressure do. In order to avoid solving for each component individually, it is

normally faster and simpler in practice to use the velocity potential φ for which

∇φ = v. The potential also solves the scalar wave equation which can be verified

upon substitution into equations (1.6), (1.7) and (1.8).

1.2 The Helmholtz Equation

From this point forward, we consider the scalar wave equation 1
c2
∂2φ
∂t2

= ∆φ, where φ

is left unspecified but for the most part should be thought of as a potential. If one

uses separation of variables by looking for a solution of the form φ(x, t) = ψ(t)u(x)

we get:

1

c2
uψ′′ = ψ∆u,

which is reorganized into:

1

c2

ψ′′

ψ
=

∆u

u
.

Clearly, the only way that this can hold everywhere is that both sides be equal

to the same constant, who we set to −k2 for reasons that will be apparent soon.

This separation of variables leads to two equations, a time dependent equation:

ψ′′ + ω2ψ = 0,

whose solution is well known to be:

ψ = αe−iωt + βeiωt,

7



and an equation describing the space component known as the Helmholtz equation:

∆u+ k2u = 0, (1.10)

where we define ω := ck as the frequency and k as the wavenumber. In general,

there is no closed-form solution to the Helmholtz equation except when it is assumed

to be spherically symmetric. When this is the case, it can be verified using spherical

coordinates that:

u = a
e−ik|x|

|x|
+ b

eik|x|

|x|

is a solution to equation (1.10).

By combining the two solutions together, we see that the full solution to the

spherical wave equation in its most general sense is:

φ(x, t) =
a1 cos(ωt+ k|x|) + a2 sin(ωt+ k|x|)

|x|
+
b1 cos(ωt− k|x|) + b2 sin(ωt− k|x|)

|x|

=
1

|x|
f(t+ |x|/c) +

1

|x|
g(t− |x|/c),

(1.11)

where f = a1 cos(ω·) + a2 sin(ω·) and g = b1 cos(ω·) + b2 sin(ω·) are used here as

reminders of the classical d’Alembert’s solution. It is well known that the function

f describes incoming waves because the wave phases are given through t+ |x|/c =

const so that the wavefronts move towards the origin as time increases. Similarly

the function g describes outgoing waves because the wave phases correspond to

t− |x|/c = const and so the wavefronts are moving away from the origin with time.

In either case these are sometimes referred to as monochromatic spherical wave.

It is important to note that we were able to distinguish between the

incoming and outgoing solutions in the above thanks to having access to the full

time-dependent solution. Yet it is generally the case, and especially for non-trivial

8



domains, that one will choose to solve independently the Helmholtz problem but will

want to keep the ability to distinguish between outgoing and incoming waves; a task

that may require some serious thinking without any insights of the time dependence.

The following, which is due to Arnold Sommerfeld, presents a condition involving

the spatial component u alone to determine whether it is outgoing or incoming.

1.2.1 The Sommerfeld Radiation Condition

The Sommerfeld Radiation Condition is a condition on the spatial component u for

|x| → ∞ that allows one to distinguish between outgoing and incoming waves. It

relies on the fact that from far away any kinds and/or configurations of sources can

be seen as a single point-source (like a distant galaxy appears to us like a single

star) so that one can draw asymptotic conclusions on general outgoing solutions by

analyzing only spherically symmetric ones.

Perhaps the easiest way to derive the Sommerfeld Radiation Condition is to

make a parallel between the d’Alembert’s solution (1.11) and the otherwise popular

Fourier transform solution. The Fourier transform comes about by choosing only one

of the two available time solutions, say ψ = 1
2π
e−iωt, together with a monochromatic

spherical wave u(x|ω) with parameter ω = ck, that is u(x|ω) solves the Helmholtz

equation with k = ω/c. One then argues that since ω was chosen arbitrarily in the

first place when we performed the separation of variables, we might as well sum over

all possible ω’s (superposition principle) in order to get the most general form:

φ(x, t) =
1

2π

∫ ∞
−∞

e−iωtu(x|ω)dω.

This equality indicates that there is a correspondence between u and φ through

the Fourier transform. Indeed, using Fourier transforms terminology, if φ is the

solution to the wave equation in the time domain, then it seems that u ought to

9



solve the wave equation in the frequency domain, that is; the Helmholtz equation is

the wave equation in the frequency domain.

Of course, if we assume that we can perform the forward Fourier transform

mapping the frequency domain to the time domain, then we could equally consider

the inverse transform:

u(x|ω) =

∫ ∞
−∞

eiωtφ(x, t)dt.

Being able to convert the solution from the frequency domain to the time

domain by a simple Fourier transform is a key observation for a few reasons. Clearly

solving Helmholtz as opposed to the wave equation reduces the dimensionality of

the problem by one degree and recovering the full solution in time is done very

efficiently with the fast Fourier transform methods that are widely available.

If we now replace φ(x, t) by its D’Alembert solution in the Fourier transform

and letting r = |x|, we get:

u(r|ω) =
1

r

(∫ ∞
−∞

eiωtf(t+ r/c)dt+

∫ ∞
−∞

eiωtg(t− r/c)dt
)

=
1

r

(∫ ∞
−∞

eiω(τ−r/c)f(τ)dτ +

∫ ∞
−∞

eiω(τ+r/c)g(τ)dτ

)
=

1

r
e−ikr

∫ ∞
−∞

eiωτf(τ)dτ +
1

r
eikr

∫ ∞
−∞

eiωτg(τ)dτ

=
1

r
e−ikrf̂(ω) +

1

r
eikrĝ(ω), k = ω/c.

(1.12)

Looking at equation (1.12) we see that the general solution is the superposition

of incoming waves, characterized by e−ikrf̂(ω), and outgoing waves characterized by

eikrĝ(ω). We seek to impose a condition on u alone that does not call for time insight

and ensures that the solution be outgoing at infinity. The key is to consider linear

combinations of r ∂u
∂r

= −u− ike−ikrf̂ + ikeikrĝ and ikru = ike−ikrf̂ + ikeikrĝ giving
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the following relations:

r(
∂u

∂r
+ iku) = −u+ 2ikeikrĝ,

r(
∂u

∂r
− iku) = −u− 2ikeikrf̂ .

With the observation that u→ 0 with r →∞ it follows that indeed:

f = 0 ⇐⇒ lim
r→∞

r(
∂u

∂r
− iku) = 0,

g = 0 ⇐⇒ lim
r→∞

r(
∂u

∂r
+ iku) = 0.

The condition limr→∞ r(
∂u
∂r
− iku) = 0 at infinity is known as the Sommerfeld

Radiation Condition and ensures that the waves are outgoing and it needs to be

imposed in the scattering problems for that reason. Similarly, a wave satisfying

limr→∞ r(
∂u
∂r

+ iku) = 0 will be an incoming wave. Note also that had we chosen

ψ = eiωt earlier, the signs would have to be swapped in the condition in order to

yield the same conclusion.

For other dimensions of interest, d ∈ {1, 2, 3}, a similar approach would show

that the Sommerfeld condition reads limr→∞ r
d−1
2 (∂u

∂r
− iku) = 0.

A function that satisfies the Sommerfeld Radiation Condition is referred to as

radiating, and from (1.12) we see that 3D radiating solutions satisfy u ∼ 1
r
eikrĝ(ω)

when r gets large. We will later introduce the notion of far field behavior of us

where we reserve a special name for the function ĝ, noting for now that it does not

depend on r. For d ∈ {1, 2, 3} we have the estimate u ∼ r
1−d
2 eikrĝ(ω) as r →∞.

With the exception of an isotropic point scatterer problem, u will not obey

(1.12) in bounded neighborhoods containing the origin, called the near field, since

that equation was obtain from radially symmetrical problems (e.g. a unique source

that radiates equally in all directions). The cases that we will consider in this work
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are mostly for heterogeneous scatterers randomly arranged in space, meaning that

in the surroundings of the arrangement, equation (1.12) will have little value to

us. It will nonetheless retains its relevance in the far field for the intuitive reason

recounted above.

1.3 The Boundary Conditions

This monograph is concerned with the behavior of scattered waves : waves that

carry information away from a source (henceforth labelled us ) in response to an

incoming wave making contact with obstacles in space. This means that we will

assume the knowledge of (1) the incoming wave, (also known as incident field or

excitation source) and (2) the physical position of the obstacles (scatterers) making

the unknown the quantity us.

So far, we have merely introduced the idea that scattered waves are those waves

that are created at a source and then carry information away from it as time passes.

Nothing has been said about the nature of the source and how it comes about.

We have briefly mentioned the presence of objects called scatterers in the space in a

misleading way that may have led the reader to believe that the scatterers themselves

are sources, which would be inaccurate. Technically, for scattering waves to form

on the surface of scatterers, we need the presence of an incident field (incoming,

excitation wave) that impinges upon their boundary, which at this precise moment

becomes the source that we have so far neglected to specify. In scattering problems

this excitation field is assumed to be known by the observer, for in practice he is

probably the one having control over it - an observer sends a pulse in the hope of

reading whatever comes back to him from the scatterers. That incident field will

henceforth be called uinc.

Whether the shapes and locations of the scatterers are known give rise to

two distinct problems: direct versus inverse. Inverse problems are concerned with

reconstructing the scatterers and their properties from the readings of the far

12



field. Different scatterers have different signatures. A trivial example could be

that someone wants to map the sea floor by emitting acoustic pulses and taking

measurements of the time it takes the signal to come back so that the depth can be

measured.

In direct problems, it is the acoustic response that is unknown but all the

information regarding the scatterers, like their location, composition and shape is

available. Once again one would have the task to emit an acoustic signal and record

the readings. This work will be dedicated only to direct acoustic scattering, meaning

that we will always have all the information regarding the scatterers readily available.

This also means that we will have to mathematically describe the behavior that is

expected from the excitation field once it makes contact with the boundaries of the

scatterers. Different types of boundary composites ought to yield different responses

in both phases and magnitude. Indeed, if an object’s boundary allows the wave to

be partially absorbed, then the reflected field won’t be as strong as one that would

be totally reflected. Hence, two scatterers can share the same shape, and yet reflect

the incident field in different manners due to having different materials properties.

This is because sound waves can be reflected in essentially two ways depending on

whether the boundary is soft or hard.

Boundaries that are made of sound-soft material have a very low acoustic

impedance compared to the acoustic impedance of the carrier medium, (i.e. [ρc]− �

[ρc]+). When an incident wave impinges on them, a scattered wave of the same

magnitude but with opposite polarity is instantaneously created. Mathematically,

this is easily expressed as:

us = −uinc on Γ,

or equivalently as:

u := us + uinc = 0 on Γ,

13



where Γ is an arbitrary soft-sound boundary, us is the scattered response and uinc

is the excitation field. Note that this notation will be used extensively in this work

from now on and that by u = us + uinc we will imply the total field.

Whenever there is no ambiguity, we may occasionally refer to these boundary

conditions as Dirichlet Boundary Condition . As an example, sound travels at 343

m/s in air with density 1.204 kg/m3 while it travels at 5,000 m/s in steel with density

of 8,050 kg/m3. This accounts for an acoustic impedance of 413.3 Pa · s/m for the

air and 40,250,000 Pa· s/m for the steel and consequently one would have to use

Dirichlet boundary conditions to study the sound propagation inside of a metallic

object that is surrounded by air.

Cases where the surrounding medium has a much lower acoustic impedance

compared to the boundary of the object are called sound-hard ([ρc]− � [ρc]+).

When this happens the correct boundary formulation to impose is:

∂us

∂n
= −∂u

inc

∂n
on Γ,

or equivalently

∂u

∂n
= 0 on Γ,

and is known as Neumann Boundary Condition. As the incident field undergoes a

jump from low speed (or low potential) to high speed (potential), this results in an

instantaneous opposite loss in the response and that is what the condition entails.

In general, one can impose the so called Robin Boundary Condition, or

Impedance ; a condition that is somewhat between the sound-hard and sound-soft
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one by introducing an admittance parameter λ ∈ R:

∂u

∂n
+ iλu = 0 on Γ.

It is easy to see that the limiting cases λ→∞ and λ→ 0 yield the Dirichlet

and Neumann cases, respectively. In Chapter 2, we officially begin studying the

exterior scattering problem in 2D.
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CHAPTER 2

SCATTERING REVIEW IN 2D

In this chapter, we briefly review the theory that is essential to understanding and

solving the simple case of acoustic scattering in the exterior of a simply connected

region in 2D. We would expect anyone who has completed a first semester in PDEs

and Numerical Methods to know that there are several solution techniques to most

problems, both theoretically and numerically. We hereby provide a solution in terms

of boundary integral equations as we believe it to be the best suited method for our

needs in exterior domains. More will be said later regarding that choice when we

enter the gist of Domain Decomposition.

2.1 The Scattering of Acoustic Waves

Let S be a closed, bounded and simply connected region in R2 with a soft-sound

boundary Γ. We wish to compute the scattered wave us in the exterior domain

R2 − S̄ that is formed when an incoming plane wave uinc(x) = eikx·d travelling

in direction d with wavenumber k impinges upon Γ. Following the discussion of

Chapter 1, the problem is formulated as:

The Scattering Problem

(∆ + k2)us = 0 in R2 − S̄,

us = −uinc on Γ,

r
1
2

(
∂us

∂r
− ikus

)
→ 0 as r = |x| → ∞.

(2.1)

For a proof of existence and uniqueness of the solution to the Helmholtz

problem, we refer to Colton & Kress [30].

16



As we will employ boundary integral representations of the solution, we now

present the relevant integral kernels that will be used throughout this thesis.

2.1.1 The Fundamental Solution

The radiating fundamental solutionGk(x− y) (or Green’s function) to the Helmholtz

equation in 2D is the function that solves:

∆xGk + k2Gk = −δ(x− y), x,y ∈ R2,

r
1
2

(
∂Gk

∂r
− ikGk

)
→ 0 as r = |x− y| → ∞,

where ∆x is the Laplacian with respect to x and δ is the Dirac delta distribution.

It is given by the expression

Gk(x− y) :=
i

4
H

(1)
0 (k|x− y|),

where H
(1)
0 = J0 + iY0 is the Hankel function of the first kind and J0, Y0 are the

Bessel functions of order 0 given by:

J0(x) :=
∞∑
m=0

(−1)m
1

22m(m!)2
x2m,

Y0(x) :=
2

π

(
ln
x

2
+ γ
)
J0(x)− 2

π

∞∑
m=1

a2mHmx
2m.

Hm :=
∑m

j=1
1
j

is the mth harmonic number, a2m := (−1)m 1
22m(m!)2

and γ =

limm→∞ (Hm − lnm) = 0.5772... is the Euler Mascheroni constant. The details

of the construction of the Green’s function can be found in Appendix A at the end

of this thesis.
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For the asymptotic behaviors of the fundamental solution as x→ y and x→

∞, it can be showed that:

Gk(x− y) =
1

2π
log

1

|x− y|
+O(1) as x→ y

and that:

Gk(x− y) =
eiπ/4√
8πk

eik|x−y|√
|x− y|

+O
(
|x− y|−3/2

)
as x→∞.

This estimate can equally be expressed in terms of |x| alone using the polar

coordinates x ∼ (|x|, θ) and y ∼ (|y|, φ), ψ := θ−φ and the fact that |y| cosψ = x̂ · y

where we have set x̂ = x
|x| :

|x− y| =
√
|x|2 − 2|x||y| cosψ + |y|2

= |x|

√
1− 2

|y|
|x|

cosψ +
|y|2
|x|2

= |x| − |y| cosψ +O(|x|−1)

= |x| − x̂ · y +O(|x|−1).

Using this expansion and the fact that |x − y| ∼ |x| in the above asymptotic for

|x| → ∞ gives the following expression that should be reminiscent from Section 1.2.1

and will be used again shortly for the far field pattern.

Gk(x− y) =
eik|x|√
|x|

eiπ/4√
8πk

e−ikx̂·y +O
(
|x|−3/2

)
as x→∞. (2.2)

We next cite the integral operators that are inherent to the Green’s function.
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2.1.2 The Layer Potentials and Boundary Operators

Let Γ be a closed curve in R2 that encloses a bounded domain Ω. For a given density

ϕ defined on Γ we define the single layer potential in the form:

[SLΓϕ](x) :=

∫
Γ

Gk(x− y)ϕ(y)ds(y), x ∈ R2\Γ,

and the double layer potential:

[DLΓϕ](x) :=

∫
Γ

∂Gk(x− y)

∂n(y)
ϕ(y)ds(y), x ∈ R2\Γ,

where n denotes the unit normal to Γ pointing toward the exterior domain R2 \ Ω.

By letting x→ Γ, we introduce an additional four boundary integral operators

associated with the Helmholtz equation. These are formally understood through the

applications of Dirichlet and Neumann traces on Γ to the single and double layer

operators defined above. We note the exterior Dirichlet and Neumann traces on Γ

by γD,1Γ and γN,1Γ and the interior Dirichlet and Neumann traces on Γ, respectively by

γD,2Γ and γN,2Γ (both Neumann traces are taken with respect to the exterior normal

n). Applying these traces to the single and double layer potentials we obtain:

γD,1Γ SLΓϕ = γD,2Γ SLΓϕ = VΓϕ,

γN,jΓ SLΓϕ = (−1)j
ϕ

2
+K>Γ ϕ, j = 1, 2,

γD,jΓ DLΓϕ = (−1)j+1ϕ

2
+KΓϕ, j = 1, 2,

γN,1Γ DLΓϕ = γN,2Γ DLΓϕ = DΓϕ.
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The operators KΓ and K>Γ , usually referred to as double and adjoint double

layer operators, are defined for a given wavenumber k and density ϕ as:

[KΓϕ](x) :=

∫
Γ

∂Gk(x− y)

∂n(y)
ϕ(y)ds(y), x on Γ,

and:

[K>Γ ϕ](x) :=

∫
Γ

∂Gk(x− y)

∂n(x)
ϕ(y)ds(y), x on Γ.

Furthermore, for a given wavenumber k and density ϕ, the hypersingular

operator 1 DΓ denotes the Neumann trace of the double layer potential on Γ given in

terms of a Hadamard Finite Part (FP) integral which can be re-expressed in terms

of a Cauchy Principal Value (PV) integral that involves the tangential derivative ∂s

on the curve Γ:

[DΓϕ](x) :=FP

∫
Γ

∂2Gk(x− y)

∂n(x)∂n(y)
ϕ(y)ds(y)

=k2

∫
Γ

Gk(x− y)(n(x) · n(y))ϕ(y)ds(y)+

PV

∫
Γ

∂sGk(x− y)∂sϕ(y)ds(y).

Finally, the single layer operator VΓ is defined as:

[VΓϕ](x) :=

∫
Γ

Gk(x− y)ϕ(y)ds(y), x on Γ,

for a density function ϕ defined on Γ.

1Given an integral of the form
∫
Rn K(x, y)f(y)dy for some smooth function f that is

compactly supported and a kernel K. If |K(x, y)| ∼ |x − y|−α as x → y, α > 0, the
kernel is said to be singular because it tends to infinity on the diagonal. Singular kernels
are further classified into either weakly singular (α < n) as their integrand is absolutely
summable (i.e. ∈ L1(Rn)), or hypersingular (α > n) when the estimate on |K| does not
guaranty convergence. When this happens, the integrals are understood in the sense of
principal value.
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2.2 The Green’s Identities and the Representations of Solutions

We briefly review the Green’s identities as these will come handy for the reminder

of this thesis.

Let Ω be a simply connected and bounded region in R2 with a C2 boundary

Γ and let F(x) ∈ C1(Ω̄)3 be a vector-valued function. If n is the outward pointing

unit normal vector to Γ, the divergence theorem states that:

∫
Ω

divF(x)dx =

∫
Γ

F(x) · n(x)ds(x).

If for u, v ∈ C2(Ω̄) we let F(x) = u(x)∇v(x), the divergence theorem gives Green’s

first identity: ∫
Ω

(u∆v +∇u · ∇v)d(x) =

∫
Γ

u
∂v

∂n
ds(x).

Similarly, for F(x) = v(x)∇u(x),

∫
Ω

(v∆u+∇v · ∇u)d(x) =

∫
Γ

v
∂u

∂n
ds(x).

The Green’s second identity is obtained from a simple subtraction of the last two

equations: ∫
Ω

(u∆v − v∆u)d(x) =

∫
Γ

(
u
∂v

∂n
− v ∂u

∂n

)
ds(x).

The following theorem is extremely valuable as it allows solutions to the

Helmholtz equation to be represented using boundary integrals. For a proof we

refer to Colton & Kress [30].
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Theorem 1. (Green’s formula). Let S be as before with boundary Γ and

us ∈ C2(R2\S̄) ∩ C1(R2\S) be a radiating solution of the Helmholtz equation

in the exterior of S and Gk(x − y) be the corresponding Green’s function.

Then for x ∈ R2\S̄,

us(x) =

∫
Γ

(
us(y)

∂Gk(x− y)

∂n(y)
−Gk(x− y)

∂us(y)

∂n(y)

)
ds(y). (2.3)

In particular if us is a solution to equation (2.1), then this expression reduces

to:

us(x) = −[SL∂S∂nu
s](x), x ∈ R2 \ S. (2.4)

Applying the exterior Dirichlet and Neumann traces (the latter we denote

simply by ∂n) to equation (2.4) we obtain the classical boundary integral equation

of the first kind:

V∂S∂nu
s = uinc, (2.5)

and respectively the boundary integral equation of the second kind:

1

2
∂nu

s +K>∂S∂nu
s =

1

2
∂nu

inc. (2.6)

Unfortunately, neither formulation (2.6) nor (2.5) is equivalent to the original

scattering problems for all wavenumbers k. Classical Fredholm arguments can be

used to show that these equations fail to be invertible for values of the wavenumber

k that coincide with eigenvalues of the Laplacian in the domain S with Dirichlet

or Neumann vanishing boundary conditions on ∂S. The fix is to use a linear
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combination of equations (2.6) and (2.5) of the form:

[I + 2K>∂S − 2iηV∂S]∂nu
s = ∂nu

inc − 2iηuinc, η ∈ R, η 6= 0, (2.7)

that is referred to as the Combined Field Integral Equation (CFIE). The CFIE

formulation is uniquely solvable for any wavenumber k. The complex value iη in

equation (2.7) is related to impedance boundary value problems in the domain S

which, unlike Dirichlet or Neumann boundary value problems for the Helmholtz

equation, are uniquely solvable for all wavenumbers k.

For the case when S is an open arc, the formulas above have to be modified

accordingly. In that case there are two normals n+ and n− on S, and it can be

shown that the scattered field can be represented as:

us(x) = −[SLS(∂n+u
s − ∂n−us)](x), x ∈ R2 \ S,

leading to the boundary integral equation of the first kind:

VS(∂n+u
s − ∂n−us) = uinc on S. (2.8)

The integral equation (2.8) is uniquely solvable for all wavenumbers k. We

note that it is not possible to derive integral equations of the second kind in the

case when the scatterer S is an open arc.

For asymptotic estimates on the solution of the Helmholtz problem, we can

combine equations (2.2) and (2.3) to get the following far field leading order term:

us(x) =
eikr√
r
u∞(x̂; d) +O(r−3/2),
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where r = |x|, x̂ = x
|x| and where the quantity u∞(x̂; d) is defined here:

Definition: We define the quantity:

u∞(x̂; d) =
eiπ/4√
8πk

∫
Γ

(
us(y)

∂e−ikx̂·y

∂n(y)
− ∂us(y)

∂n(y)
e−ikx̂·y

)
ds(y)

as the far field pattern of us corresponding to the incident field eikx·d.
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Note: From a practical standpoint, one may opt for the use of an ansatz:

us(x) = [(DL∂S − iηSL∂S)ϕ](x), x ∈ R2 \ S,

when dealing with closed obstacles.

An application of the Dirichlet trace to it yields the boundary integral equation

of the second kind:

(I + 2K∂S − 2iηV∂S)ϕ = −2uinc on ∂S.

This equation is equivalent to (2.7) since σ(K) = σ(K>) over the eigenvalues

of the Laplacian operator (for being real), making this equation uniquely

solvable for all wavenumbers k.

Similarly, for open obstacles the use of the representation:

us(x) = −[SLSϕ](x), x ∈ R2 \ S,

works just as well with corresponding equation:

VSϕ = uinc on S,

which is clearly equivalent to equation (2.8).
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CHAPTER 3

DOMAIN DECOMPOSITION METHODS FOR MULTIPLE
SCATTERING PROBLEMS IN 2D

3.1 The Challenges Associated with Multiple Scattering

While the direct extension of single scatterer solvers to multiple scatterers is in

principle straightforward, solvers in the latter case are confronted by considerably

larger-sized problems that exhibit increasingly worse conditioning properties which

can be attributed to the need to resolve complicated multiple reflections between

scatterers. The level of difficulty associated with the problem is also highly

dependent on the configuration of the computational domain and in many cases

proves to become increasingly challenging to solve for non-Lipschitz objects.

In addition to being greatly affected by the smoothness attributes of the

boundary alone, the exterior variant of the Helmholtz problem renders most classical

volumetric methods such as finite differences and finite elements at best inefficient

on account of the size of the unknown’s vector, regardless of how nice the scatterers

may be. These methods further handicap themselves in having to deal with the

Sommerfeld radiation condition on the boundary of the truncated domain. This

requires using on the edge of the truncated domain local boundary operators such as

the Absorbing Boundary Conditions (ABC) or the Perfectly Matched Layers (PML)

to mimic a phenomenon that only holds true at infinity, introducing approximation

errors in addition to the aforementioned issue of choking on large domains.

Boundary Integral Equations (BIE) effectively reduce the dimensionality of the

problem in addition to automatically enforcing the radiation condition through the

Green’s function. They enjoy no drawback with respect to unbounded domains

and for that reason it should not be surprising that these are greatly favored

over the classical volumetric discretization methods. But while BIE methods

certainly present some cost savings, they too can easily be bottlenecked for multiple
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scattering configurations where the computational domain potentially comprises a

large number of scatterers. The number of unknowns N can often go north of

104 and the CPU cost of solving such a system via a direct method like LU or

QR decomposition is O(N3) which exceeds, or heavily constrains, what personal

computers can handle. This then drives users to settle for iterative scheme like

Krylov subspaces solvers.

Krylov subspace iterative solvers for the associated linear algebra problems

can be fast in some cases (e.g., Laplace with k = 0) but their performance is well

known to deteriorate as k gets larger and are rarely used on their own in high

frequency regime problems as they typically require very large numbers of iterations.

Although certain preconditioning strategies can alleviate this issue to some extent in

the diffuse case (e.g. when the distances between scatterers are large with respect to

the wavelength of the probing incident wave) [2, 3], general purpose preconditioners

that work effectively throughout the frequency range are difficult to construct for

boundary integral solvers for multiple scattering problems.

On account of these limitations, the solution of multiple scattering problems

involving large ensembles of scatterers has been approached through various

approximations that render the computations tractable yet do not control the errors

incurred. One of the most popular approaches is the Lax-Foldy method [11, 21] in

which a multiple scattering scheme is set up to account for contributions on any one

of the scatterers by the rest of the scatterers wherein the scatterers are replaced by

point isotropic scatterers.

Another widely used algorithm for solution of multiple scattering problems is

the T-matrix method pioneered by Waterman [29]. The main idea in this method

is to use particular solutions of Helmholtz equation to construct functional bases

for incoming fields and outgoing (i.e., radiative) fields and to assign an operator

between incoming fields impinging on a given scatterer and fields scattered by it

using decompositions in those incoming/outgoing bases. This operator describes
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completely the geometrical and material properties of a single scatterer. Using

the T-matrix framework, the solution of multiple scattering problems consists of

combining the T-matrices for each individual scatterer in the ensemble in a large

linear system. Truncated T-matrices can be computed by null-fields methods [29] or

more reliably and whenever possible by boundary integral equation methods [17, 22,

20]. However, the T-matrix method that uses spherical multipole expansions suffers

from numerical instabilities associated with fast growth of Hankel functions [22],

and it was only recently that robust bases functions for T-matrix methods have

been proposed and analyzed [13].

Our approach to the multiple scattering problem is to use Domain Decomposition

Methods (DDM), a divide and conquer strategy for solution of large-sized problems

whose direct solutions is too costly or out of reach to existing resources.

3.2 The Domain Decomposition Method

Figure 3.1 Domain decomposition steps.

In a nutshell, DDM decompose the original problem (typically associated to a PDE)

to be solved in a certain computational domain into subproblems associated to

subdomains, so that each subproblem can be solved efficiently with existing methods.
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Although in this text we will decompose the domain into a collection of non-

overlapping subdomains, it is worth pointing out that this need not be the case, and

as a matter of fact did not originated as such. Hermann Schwarz was the first to

allude the idea in 1869 while working on a way to prove the Dirichlet’s Principle,

which in turn was key to Riemann for proving his mapping theorem for complex

analytic functions. Schwarz developed an alternating iterative method to solve the

Dirichlet problem in the union of two overlapping domains, as shown by his original

sketch of a domain decomposition depicted below. The idea was rather simple: solve

each original PDE in its own domain successively while passing the Dirichlet data

as updated boundary conditions at each step between subdomains.

Figure 3.2 Original idea of overlapping domain decomposition.

The method was specifically designed to solve the Laplace equation:

∆un+1
1 = 0 in Ω1, ∆un+1

2 = 0 in Ω2,

un+1
1 = un2 on Γ1, un+1

2 = un+1
1 on Γ2.

It is important to note that this example is only of theoretical interest. By now

people are well aware of the limitations of the classical Schwarz alternating scheme

stated above for the Helmholtz problem with high wave numbers, not to mention

that the rate of convergence is tied to the size of the overlap, leading to redundant

effort in most cases.
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In light of this observation, a good amount of attention has been given to

finding new methods based on non-overlapping subdomains in the late 1980s. The

most notorious one is due to Pierre-Louis Lions in his 1989 paper On the Schwarz

Alternating Method III: A Variant for Nonoverlapping Subdomains. At around the

same time Bruno Despres independently proposed the same method in his PhD

thesis. In there he suggested a variant of the classical Schwarz alternating method

that had two key distinctions: No more overlapping was required and Robin data

∂uni
∂ni

+ λuni , (i = 1, 2), λ > 0 was now used instead of Dirichlet ui in the boundary

conditions at each step. Beside the obvious reasons for wanting to ditch the

overlapping, they were now able to prove the convergence of the algorithm using

energy estimates.

In this thesis, we apply the DD strategy to multiple scattering problems by

enclosing the ensemble/cloud of scatterers in a domain bounded by an artificial

boundary, and we proceed by subdividing this domain into a collection of nonover-

lapping subdomains so that the (artificial) boundaries of the subdomains do not

intersect any of the scatterers. The original scattering problems is thus decomposed

into a sequence of multiple scattering subproblems in each of the subdomains. Once

the domain has been partitioned into non-overlapping subregions, the corresponding

subproblems are solved independently in terms of unknowns pertaining to the

interface boundaries, which are then coupled in a global system. In the context

of non-overlapping methods, the coupling between adjacent subproblems is realized

via transmission conditions imposed on the artificial interfaces separating them and

the choice of transmission conditions and their implementation is central to the

success of the method. Following the prior discussion, it is now common practice in

DD to go for Robin data as the choice of transmission conditions on the common

interfaces between subdomains [7].

The central component of our algorithm is the use of Robin-to-Robin isometric

operators that map outgoing Robin information to incoming information for
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subdomain problems that involve a collection of scatterers enclosed by an artificial

boundary. The Robin data is exchanged through the maps on the artificial boundary

and physically relevant boundary conditions are imposed on the scattererss. We

use these Robin-to-Robin maps associated to each of the subdomains to recast

the DD formulation for the solution of the multiple scattering problem into the

form of a linear system whose unknown consists of global Robin data defined on

the interfaces between subdomains—two unknowns per each interface. The idea of

using Robin-to-Robin maps as robust alternative to the more popular Dirichlet to

Neumann maps can be traced back to the work [18] where it was used to good effect

for calculations involving periodic waveguides containing defects/perturbations; see

also [10] for a more recent application to computation of guided modes in photonic

crystal waveguides.

Once each subdomain Robin-to-Robin map is computed, we proceed with

the hierarchical Schur complement elimination procedure that involves computing

inverses of small and well-conditioned matrices. When all the unknowns corre-

sponding to inner subdomains interfaces have been eliminated, we reduce the

original linear system of equations to a much smaller one involving unknowns

on the inner and outer artificial boundary. Basically, if O(N) unknowns are

needed for the solution of the global multiple scattering problem, our final stage

linear system requires only O(N1/2) unknowns. The matrix corresponding to

this linear system has a block-sparse structure, the distributions of the populated

blocks in the global matrix corresponding to the interconnectivity between the

subdomains. Harkening back to ideas pertaining to nested dissection methods [14]

and multifrontal methods [9] for the solution of sparse linear algebra problems related

to finite difference/finite element discretizations, we solve the ensuing linear system

by Gaussian elimination of the unknowns corresponding to inner interfaces between

subdomains via Schur complements.
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The Schur complement elimination procedure that is central to our algorithm

is equivalent to a hierarchical merging of the subdomains Robin-to-Robin maps

to compute the global interior Robin-to-Robin map of the domain that contains

inside the cloud of scatterers. The ideas of using Schur complements for solution

of DDM for wave propagation problems was presented in [4] in the context of

scattering by deep cavities. The same idea was used in [16] for the solution of

scattering problems in variable media, where subdomain spectral solvers are merged

via Robin-to-Robin maps. This idea harkens back to the multidomain spectral

solvers introduced in [26, 19, 27]. Similar ideas were used recently for multiple

scattering problems [23] by random arrays of circular scatterers where the authors

merge subdomain (slabs in their case) solutions via Dirichlet-to-Neumann operators.

The authors in [23] refer to their algorithm as slab-clustering technique, and solve

each slab (subdomain) problems with addition theorem multipole techniques for

circular scatterers. Another application of DD Schur complement techniques can be

found in computing in a stable manner the impedance of layered elastic media [25].

In the final stage of our algorithm, we solve directly a linear system that

involves interior and exterior Robin-to-Robin maps on the boundary of the domain

that encloses the ensemble of scatterers. This last inversion turns out to be

the dominant contributor to the computational cost of our algorithm: if O(N)

discretization points are needed on the scatterers, the cost of our Schur complement

DD algorithm is O(N3/2). More importantly, since we essentially construct a direct

solver for multiple scattering problems, multiple incidences can be treated with

virtually no additional overhead.

We present later a robust boundary integral operators based representation of

the Robin-to-Robin maps that uses the regularization ideas developed in [6, 1]. We

will show that the polynomially graded mesh Nyström method introduced in [1, 8, 28]

for discretization of Helmholtz boundary integral operators in Lipschitz domains
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leads to efficient calculations via direct solvers of subdomain Robin-to-Robin maps

for two-dimensional multiple scattering problems.

We will present numerical evidence that our Schur complement DD algorithm

gives rise to important computational savings over direct methods for the solution

of multiple scattering problems. The solutions of each of these subproblems are

interconnected via boundary conditions that reflect properties of the solution of the

original problem. The latter solution is typically retrieved through a fixed-point

iterative procedure from the subproblem solutions [7, 24]. However, the rate of

convergence of the fixed-point iterations is very slow [5]. In order to accelerate the

speed of convergence of iterative DD algorithms, carefully designed transmission

operators have been incorporated in the Robin data [12, 5].

3.3 The Mathematical Formalization of Domain Decomposition

For the sake of brevity, the details that follow will focus on the case of two

scatterers, noting that the general case of larger collections can be treated similarly

by sequentially repeating the procedure for adjacent subdomains, although we will

advise for an optimal order of mergers towards the end of this chapter that will

result in the lowest possible computational cost.

In terms of creating the artificial interface (i.e., the partitioning of the domain),

the simplest geometry we can think of is a collection of non-overlapping boxes

(rectangular regions) that are connected so as to produce a bigger box that encloses

the whole collection of scatterers. Similarly, one could work in polar or spherical to

embed a growing collection of circles so that subproblems are solved in each annulus.

There are surely cases where the geometry of a given problem would not easily allow

for partitioning but for the purposes of multiple acoustic scattering, we will suppose

that the scatterers are well separated and the geometry of the subdomains resulting

from partitioning is easily trackable in terms of parametrization. See below for the

simplest case of two soft-sound scatterers.
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Figure 3.3 Two scatterers in the plane.

The corresponding problem should be well known by now: Find the acoustic

field us that results as an incident plane wave uinc(x) = eikx·d travelling in direction

d with wavenumber k impinges upon the boundary Γ := ∂S of an impenetrable

multiple scatterer S = SL ∪SR, so that any wave propagation occurs in the exterior

of S:

∆us + k2us = 0 in Ω := R2\SL ∪ SR,

us = −uinc on Γ,

lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0, r = |x|.

We split the unbounded domain by enclosing the two scatterers in two adjacent

box shaped domains BL, BR with respective boundaries ∂BL and ∂BR that have an

edge in common—see below. It should be stressed that these boxes are purely

artificial and do not alter the nature of the problem. Next, let us introduce the

following notations which can also be read from the graphical aid provided below:
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Figure 3.4 Partition of the plane into three subdomains.

Notations

• DL := BL\SL :: Left Interior Subdomain

• DR := BR\SR :: Right Interior Subdomain

• DO := R2\BL ∪BR :: Exterior Subdomain

• ΓC := ∂BL ∩ ∂BR :: Shared innterface between DL and DR

• ΓL := ∂BL\ΓC :: Shared interface between DL and DO

• ΓR := ∂BR\ΓC :: Shared interface between DR and DO

• ΓO := ΓL ∪ ΓR :: Boundary of the exterior subdomain DO

For each subdomain Dj, j ∈ {L,R,O}, we denote by nj the outward pointing

unit normal and by uj the solution to the Helmholtz equation in that domain. Given

that we introduce boundaries not present in the original multiple scattering problem,

we have to define new boundary conditions on these. Following the approach

introduced by P.L. Lions for elliptic problems and by B. Despres for the Helmholtz

problems, we enforce the continuity of Robin data across the interfaces ΓC , ΓL and

ΓR. More specifically, the DDM consist of the following suite of coupled Helmholtz

problems:
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Left Subproblem

∆uL + k2uL = 0 in DL

uL = 0 on ∂SL

∂nL
uL − ikuL = −

(
∂nR

uR + ikuR
)

on ΓC

∂nL
uL − ikuL = −

(
∂nO

uO + ikuO
)
− ∂nO

uinc − ikuinc on ΓL

Right Subproblem

∆uR + k2uR = 0 in DR

uR = 0 on ∂SR

∂nR
uR − ikuR = −

(
∂nL

uL + ikuL
)

on ΓC

∂nR
uR − ikuR = −

(
∂nO

uO + ikuO
)
− ∂nO

uinc − ikuinc on ΓR

Exterior Subproblem

∆uO + k2uO = 0 in DO

∂nO
uO − ikuO = −

(
∂nL

uL + ikuL
)
− ∂nO

uinc + ikuinc on ΓL

∂nO
uO − ikuO = −

(
∂nR

uR + ikuR
)
− ∂nO

uinc + ikuinc on ΓR

lim
r→∞

r
1
2

(
∂uO

∂r
− ikuO

)
= 0

DDM solve for unknowns that are the outgoing Robin boundary data gj :=

(∂nu
j − ikuj)|Γj

for j ∈ {L,R,O}. Clearly the Robin data features explicitly on

the left-hand side of each subproblem’s statement. The dependence of the righ-

hand side expressions on the aforementioned Robin data can be expressed via the

so-called Robin-to-Robin (RtR) boundary operators Sjgj := (∂nu
j + ikuj)|Γj∪ΓC

,
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which acts as a correspondence between incoming and outgoing data and where

we may interchangeably refer to interior( j = L,R) and exterior (j = O) maps.

For j ∈ {L,R}, we also make use of a pair of Robin-to-Neumann (RtN) maps

T jgj := ∂nu
j|∂Sj

that link the Robin data on a subdomain to the Neumann data on

the scatterer included in that subdomain. All the details regarding the computation

of these maps can be found in Chapter 4.

We further split the Robin data gj, j ∈ {L,R,O} according to subdomain

interfaces and we effect similar splittings of the RtR and RtN maps:

• SLgL =:

SLll SLcl
SLlc SLcc


 gLl

gLc

 =

 (∂nu
L + ikuL)|ΓL

(∂nu
L + ikuL)|ΓC



• SRgR =:

SRrr SRcr
SRrc SRcc


 gRr

gRc

 =

 (∂nu
R + ikuR)|ΓR

(∂nu
R + ikuR)|ΓC



• SOgO =:

SOll SOrl
SOlr SOrr


 gOl

gOr

 =

 (∂nu
O + ikuO)|ΓL

(∂nu
O + ikuO)|ΓR



• T LgL =:

[
T Ll T Lc

] gLl

gLc

 = ∂nu
L|∂SL

• T RgR =:

[
T Rr T Rc

] gRr

gRc

 = ∂nu
R|∂SR

.

For the sake of simplicity of notations, the notation n in equations above

refers to the exterior unit normal to the corresponding subdomain. Assuming that

all these maps have been computed, the three part problem above can equivalently
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be written in the form of the following linear system:



I SRcc 0 SRrc 0 0

SLcc I SLlc 0 0 0

0 0 I 0 SOll SOrl

0 0 0 I SOlr SOrr

SLcl 0 SLll 0 I 0

0 SRcr 0 SRrr 0 I





gLc

gRc

gLl

gRr

gOl

gOr


=



0

0

−(∂nu
inc + ikuinc)|ΓL

−(∂nu
inc + ikuinc)|ΓR

−(∂nu
inc − ikuinc)|ΓL

−(∂nu
inc − ikuinc)|ΓR


(3.1)

or in compact notation:

(I + S)g = b.

The equivalence of the DDM formulation to the original scattering problems

is proved rigorously in our paper [31] using arguments that were borrowed from

Collino [15], a key ingredient being the fact that the RtR maps Sj are isometries.

Once having solved for the Robin data gL, gR, we compute ∂nu
L|∂SL

= T LgL and

∂nu
R|∂SR

= T RgR with the help of the RtN maps, from which the scattered field is

computed in turn from a simple application of Green’s formula:

u(x) =
∑

j∈{L,R}

∫
∂Sj

Gk(x− y)∂n(y)u
j(y)ds(y), x ∈ Ω.

We focus our attention in the sequel to solving efficiently the linear system

(3.1). In practice, the size of the DDM linear system can get large, and thus iterative

linear algebra methods were historically preferred over direct ones. The most popular

iterative solver candidates include the Jacobi (fixed point) method and the GMRES

(Krylov Subspace) method. As it turns out, the Jacobi iterative scheme amounts
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to:

g(n+1) = b− Sg(n).

which is equivalent to find the solution uL,(n+1) of the Helmholtz equation in the

domain DL satisfying the Robin boundary condition:

(
∂nu

L − ikuL
)(n+1)

= −
(
∂nu

R + ikuR
)(n)

on ΓC .

We note that subdomains exchange information via Robin boundary conditions

in this version of DDM. In this form the DDM is referred to non-overlapping

Schwarz iteration. Jacobi iterative methods for Helmholtz DDM methods have

been well documented to yield a slow convergence rate due to the fact that the

eigenvalues corresponding to high-frequency modes of the matrix S converge to one.

Unfortunately, GMRES solvers do not fare particularly well [15]. This shortcoming

can be attributed to the choice of Robin boundary conditions and the outflow/inflow

of information from a subdomain to its neighboring subdomains associated with it.

Ideally, the subdomain boundary conditions have to be chosen so that information

flows out of the subdomain and no information is reflected back into the subdomain.

This can be achieved if the term −ik is replaced by the adjacent subdomain Dirichlet

to Neumann (DtN) operator restricted to the common interface—in this way the

Jacobi scheme converges in precisely two iterations [24]. Since DtN maps are not

always well defined and expensive to compute even when properly defined, easily

computable approximations of DtN maps can be employed effectively to lead to

faster convergence rates of GMRES solvers for DDM algorithms [5]. However,

these approximations lead to non-standard boundary conditions and the analysis

of the ensuing DDM is hard. To the best of our knowledge, there are no boundary
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conditions that work well in practice and at the same time are amenable to rigorous

analysis for general subdomains.

The further splitting of Robin data gives rise to sparser matrices whose sparsity

pattern resembles that of matrices corresponding to finite differences (more precisely

five-point Laplacians). We harken back to ideas from multifrontal methods and

nested dissection that amount to an efficient Gaussian elimination through Schur

complements of the Ronin unknowns corresponding to the inner interfaces. For

example, in the simplified setting of two subdomains, in the first step we eliminate

the unknowns gLc and gRc on the interior interface ΓC and in the second step we

recover the exterior Robin data on ΓO. Investigating the nature of the matrix

resulting after the application of the Schur complement in the first step above

we conclude that the first step is essentially a form of algebraic merging of RtR

maps corresponding to the interior subdomains. This observation proves particularly

useful when dealing with larger subdomain configurations where the first step can

simply be applied recursively and hierarchically until all interior unknowns have

been eliminated and then the second step is carried out, at the end, only once.

3.3.1 The Merging of Interior Subdomains

Figure 3.5 Sequential elimination of the interior partition.

Given the matrix in equation (3.1), let us consider only those equations that involve

the interior quantities gLc and gRc . Doing so we get the reduced system corresponding
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to the first step of eliminating the data that is shared on the interior skeleton:



I SRcc 0 SRrc

SLcc I SLlc 0

SLcl 0 SLll 0

0 SRcr 0 SRrr





gLc

gRc

gLl

gRr


=



0

0

−(∂nu
inc − ikuinc)|ΓL

− gOl

−(∂nu
inc − ikuinc)|ΓR

− gOr


=



0

0

(∂nu
L + ikuL)|ΓL

(∂nu
R + ikuR)|ΓR


where we used −(∂nu

inc − ikuinc)|Γj
− gOj = (∂nu

j + ikuj)|Γj
for j = L,R.

Equivalently, the last equation can be written in block notation in the following

form: A B

C D


 gC

gL∪R

 =

 0

(∂nu
L∪R + ikuL∪R)|ΓO

 ,
where we defined:

A :=

 I SRcc

SLcc I

 , B :=

 0 SRrc

SLlc 0

 , C :=

SLcl 0

0 SRcr

 , D :=

SLll 0

0 SRrr

 ,
and

gC :=

 gLc

gRc

 , gL∪R :=

 gLl

gRr

 .

Our goal in this first step is to eliminate the interior data gC . From AgC +

BgL∪R = 0 we have that gC = −A−1BgL∪R and upon substitution in the second

equation we derive the following equation:

(D − CA−1B)gL∪R = (∂nu
L∪R + ikuL∪R)|ΓO

. (3.2)
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Denoting:

M :=

A B

C D

 ,
we recognize on the left-hand side of the equation above the familiar Schur

complement M/A = D − CA−1B, and on the right-hand side the expression

(∂nu
L∪R + ikuL∪R)|ΓO

. The insight in the equation above is that it relates two

quantities in a manner reminiscent of RtR operators:

gL∪R
M/A−−→ (∂nu

L∪R + ikuL∪R)|ΓO
. (3.3)

The map in equations (3.2) and (3.3) is an effective means to merge two RtR

operators SL and SL acting on the boundaries of two adjacent boxes BL and BR,

respectively, to form the RtR operator SL∪R of the merged box BL∪BR. The latter

operator maps the Robin data gL∪R = (∂nu
L∪R − ikuL∪R)|ΓO

related to a solution

uL∪R of the Helmholtz equation in the domain BL∪BR with zero Dirichlet boundary

conditions on ∂SL and ∂SR to the corresponding quantity (∂nu
L∪R+ikuL∪R)|ΓO

. The

merging procedure can be easily extended to produce the merged RtN map for the

domain BL ∪BR. Indeed, recall the definition of subdomain RtN maps:

T LgL =:

[
T Ll T Lc

] gLl

gLc

 = ∂nu
L|∂SL

, T RgR =:

[
T Rr T Rc

] gRr

gRc

 = ∂nu
R|∂SR

.

Denoting:

C :=

T Lc 0

0 T Rc

 , D :=

T Ll 0

0 T Rr

 , and ∂nu
L∪R|∂SL∪∂SR

:=

 ∂nu
L|∂SL

∂nu
R|∂SR


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we can write the two RtN maps compactly as:

CgC +DgL∪R = ∂nu
L∪R|∂SL∪∂SR

. (3.4)

Upon replacing the previously derived expression gC = −A−1B in equation (3.4) we

obtain the merged RtN map we were looking for:

(D − CA−1B)gL∪R = ∂nu
L∪R|∂SL∪∂SR

. (3.5)

We note that computing the merged RtN map according to formula (3.5) requires

little additional computational cost, as we already computed A−1 in the RtR merging

procedure. Accordingly, the merging of interior RtR and RtN maps can be performed

simultaneously. Another natural question arises: when is it more advantageous

to compute the RtR map of the domain BL ∪ BR through algebraic merging of

subdomain RtR maps rather than directly?

Given that the RtR maps encode information about all of the scatterers

included in each subdomain, it would appear natural that the merging approach

could be more profitable when there is a large number of scatterers included in each

subdomain. To encapsulate all the work done to this point and to further emphasize

that the merging happens simultaneously, we have the following theorem.
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Theorem 2. Given a pair of boundary operators:

SL
T L

 : L2(∂BL)→ L2(∂BL)× L2(∂SL),

gL 7→

(∂nu
L + ikuL)|∂BL

(∂nu
L)|∂SL

 ,

and SR
T R

 : L2(∂BR)→ L2(∂BR)× L2(∂SR),

gR 7→

(∂nu
R + ikuR)|∂BR

(∂nu
R)|∂SR

 ,

defined on two adjacent boxes BL and BR, there exists a unique merged map:

SL∪R
T L∪R

 : L2(ΓO)→ L2(ΓO)× L2(∂SL ∪ ∂SR),

gL∪R 7→

(∂nu
L∪R + ikuL∪R)|ΓO

(∂nu
L∪R)|∂SL∪∂SR

 ,

given by: SL∪R
T L∪R

 =

D
D

−
C
C

A−1B,

where A,B,C,D, C,D are all recounted above.

44



As a corollary, if we carry out the algebra from the last theorem, we get explicit

representation of the aforementioned operators:

Corollary

SL∪R = D − CA−1B =


SLll − SLclW−1SRccSLlc SLclW−1SRrc

SRcr(SLccW−1SRcc − I)SLlc SRrr − SRcrSLccW−1SRrc

 ,

and

T L∪R = D − CA−1B =


T Ll − T Lc W−1SRccSLlc T Lc W−1SRrc

T Rc (SLccW−1SRcc − I)SLlc T Rr − T Rc SLccW−1SRrc

 ,

where W = SRccSLcc − I represents the only quantity that needs to be inverted

during the merging procedure.

To conclude this section, we remind that the general treatment of bigger

configurations is easily achieved by repeating the process. Indeed, one could

simply apply in a sequential fashion the merging of two adjacent subdomains over

and over again until the whole interior partition has been eliminated. However,

some care is advised as a naive approach to performing the interior merging can

easily lead to a sub optimal performance. While partitions that consist only of

a single row or column of subdomains do not allow for any choice of sequence in

the merging strategy, we advise to choose the sequence in the remaining cases so

as to minimize the overall number of large mergings that occur towards the last

steps. To motivate the idea, let’s consider an example in which we assume for
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convenience that a box domain B is to be partitioned into a collection of smaller

boxes {Bij}, i = 1, ..., 2k, j = 1, ..., 2l. Figure 3.6 below exposes a case in which

the chosen merging sequence is not optimal, since the CPU is being taxed with the

biggest matrix inversion not only in the last step, but two other times in previous

step, for a total of three times.

Figure 3.6 Sub optimal merging sequence.

The optimal strategy for domains whose edges are powers of 2 in both

directions is to proceed in a quadtree fashion so that at every other step the

partitioning preserves square subdomains. This strategy is done by alternating

between left-right and up-down mergings between steps as shown in Figure 3.7. The

procedure goes on for as long as both i > 1 and j > 1. When either i = 1 or j = 1,

one is left with a strip of subdomains that no longer requires a choice of merging

order, unless perhaps when the subdomains are identical then it is still advisable to

preserve the configuration of subdomains as powers of two since at each step only

one map needs to be computed. The same obviously goes for the whole procedure

- if the whole domain was divided into a collection of identical subdomains, then a

lot of effort can be saved by computing the augmented RtR map only once per step.

Figure 3.7 Quadtree optimal merging sequence.
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3.3.2 The Merging of Interior and Exterior Subdomains

Figure 3.8 Interior-exterior merging.

If we go back to the linear system (3.1) after eliminating the interior unknown

quantities gLc and gRc , we obtain a reduced system only in terms of maps defined on

ΓO:  I SO

SL∪R I


 gL∪R

gO

 =

 −(∂nu
inc + ikuinc)|ΓO

−(∂nu
inc − ikuinc)|ΓO

 .

As pointed out earlier, the merging procedure yields a map SL∪R that is

equivalent to one that we would get should we compute it directly without any

interior partitioning. This system, therefore, shows an alternative method for

solving the Helmholtz problem with a two subdomains partition, namely exterior

and interior. This of course is only of theoretical interest, since the numerical cost

of computing an interior map is always greater than solving the boundary integral

equation on the scatterers within its underlying box. Nonetheless, this is not just

a mere observation as it reinforces the importance of being able to compute the

final interior map as efficiently as possible. It should also be clear from this that

the bigger the problem (in terms of number of scatterers), the more competitive the

method will prove to be when compared with a classical solver that does not take

advantage of domain partitioning.

Going back to the reduced system, since both gO and gL∪R involve the same

quantities, it suffices to solve for gO alone, which gives:
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gO = (I − SL∪RSO)−1
(
SL∪R(∂nu

inc + ikuinc)|ΓO
− (∂nu

inc − ikuinc)|ΓO

)
.

The Dirichlet and Neumann data is then easily recovered from linear combi-

nations of:

∂nu
s|ΓO
− ikus|ΓO

=gO,

∂nu
s|ΓO

+ ikus|ΓO
=SOgO,

and give:

us|ΓO
=

1

2
(SO − I)gO,

∂nu
s|ΓO

=
1

2
(SO + I)gO.

It is important to note that for the purpose of exterior computations alone,

one could stop there and use a Green’s representation on ΓO with us|ΓO
and ∂nu

s|ΓO
.

For a solution everywhere, one would need to append the extra step:

∂n(us + uinc)|∂SL∪∂SR
= −T L∪R

(
∂n(us + uinc) + ik(us + uinc)

)
|ΓO

,

where the minus sign is to account for the fact that the solution is given in terms

of exterior quantities ( gO) and T is an interior map, so the normal n needs to be

inverted.
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3.4 The Cost Analysis of Domain Decomposition

If you followed the discussion closely up until this point, you may have noticed that

the cost of the merging procedure is dominated by that of solving for the unknowns

pertaining to the exterior boundary ΓO.

Figure 3.9 Direct vs DDM costs.

If the objective is to design a more efficient algorithm than the direct solver,

we need to find a way to relate the choice of discretization of ∪i∂Si to the choice of

discretization of ΓO so that we can readily compare | ∪i ∂Si| and |Γ|. Let us argue

with the help of an example to motivate the relationship that we seek. Consider the

following choices of configurations, all representing a single box domain enclosing a

collection of arc segments.

Figure 3.10 Different choices of discretizations.
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We note that in the first two cases the choice of precision on the box is

inconsistent with the one chosen on the scatterers. This is problematic for either

one or the other following reasons. In the first case, we observe that a coarse mesh

is used on the scatterers, (which ought to be dictated by the wave number) and a

finer one is used on the box. This is a scenario where one is wasting resources by

computing the RtR map with more points than it is actually needed because these

maps do not add information to the given problem.

The second case is the opposite scenario where a fine mesh is employed on

the scatterer, but all that precision is then lost once encoded by the map who does

not use enough points on the box. In essence, what we want here is to be able to

encode all the information for as cheaply as possible without loosing any precision.

This is achieved by ensuring that the amount of points per wavelength used on the

scatterers and the box be roughly the same.

Finally, we note that in the last two presented choices, the mesh precision on

the scatterers and the box is consistent, but the last case is seen to encode a lot

more information because most of its interior is occupied while the third case has a

lot of empty space in its interior and so does not seem to take full advantage of the

method.

When one opts to enclose as many scatterers as possible such as in the fourth

case, then we see from the picture that the limiting relationship is to allocate
√
n

on each side of the box whenever n points densely occupy its interior.

For a general domain decomposed into a collection of l1× l2 subdomains, each

containing n points in their inside, the cost of merging is dominated by O((4(l1 +

l2)
√
n)3), and for square configurations, (l1 = l2 = l), this becomes O((8l

√
n)3).

In order to get the total cost of the DD procedure, one also has to account for

the cost of obtaining the individual maps in the first place. A quick overview of the

next chapter reveals that this cost is O(l2(n + 4
√
n)3) = O(l2n3). We encapsulate

these results in the following:
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Result: The total cost of the DDM procedure for a square domain

decomposed into a collection of l × l square subdomains, each enclosing a

uniform and dense distribution of n collocation points in their interior is :

O(l2n3) +O((8l
√
n)3).

By comparison, the direct cost of solving this configuration of N := l2n points

is O(l6n3), hence the optimal strategy is to choose a partition that maximizes

l and minimizes n.

We close this chapter with the results of an experiment that was carried out

for a box configuration containing a total of 10, 240 collocation points in its interior

for different choices of partitioning. As expected, the reported times (in seconds)

are best for smaller subdomains.

Figure 3.11 Time comparisons of DDM vs direct approach.
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CHAPTER 4

CONSTRUCTION OF THE RTR AND RTN BOUNDARY
OPERATORS

4.1 The Interior Robin-to-Robin and Robin-to-Neumann Operators

Figure 4.1 The setting for computing the interior map.

In this section, we go over the details of computing the RtR and RtN maps. In order

to keep the notations simple, we consider the case of one closed Lipschitz scatterer S

inside of a box subdomain B and the following Helmholtz boundary value problem:

∆u+ k2u = 0, in B \ S,

u = 0, on ∂S,

∂nu+ zu = gint, on Γ := ∂B,

(4.1)

where the wavenumber k is assumed to be positive, gint is the data defined on Γ, and

z = iη, η ∈ R is an impedance coefficient. In equation (4.1), the normal derivative is

taken with respect to the unit normal pointing outside of the domain B. We recall
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that the RtR map for this configuration was defined as:

SInt(∂nu+ zu)|Γ = ∂nu|Γ − zu|Γ.

Since ∂nu|Γ − zu|Γ = gint − 2zu|Γ, we can alternatively write:

SIntgint = gint − 2zu|Γ.

Hence, we observe that if we can find a Robin-to-Dirichlet operator AΓ that satisfies

u|Γ = AΓg
int, then we could conclude that SInt = IΓ − 2zAΓ. The following

proposition settles the question of obtaining SInt by showing how to jointly compute

the Robin-to-Dirichlet and the Robin-to-Neumann maps.

Theorem 3. The pair of interior RtR and RtN boundary operators SInt and

T are jointly obtained through:

SInt =IΓ − 2z AΓ,

T =AΓ,∂S,

where:

A :=

 AΓ

AΓ,∂S

 =

[1
2
I + zV +K

]
Γ

SL∂S,Γ

[zSL+DL]Γ,∂S VΓ


−1  VΓ

SLΓ,∂S

 .
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Proof. From gint := (∂nu + zu)|Γ we see that ∂nu|Γ = gint − zu|Γ and from Green’s

representation of the solution in the domain B \ S:

u(x) = [SLΓ∂nu|Γ −DLΓu|Γ − SL∂S∂nu|∂S] (x), x ∈ B \ S,

then taking the limit as x → Γ−, we obtain a first set of equations (we drop the x

dependence)

u|Γ = VΓ∂nu|Γ −KΓu|Γ +
1

2
u|Γ − SL∂S,Γ∂nu|∂S,

↔
1

2
u|Γ = VΓ(gint − zu|Γ)−KΓu|Γ − SL∂S,Γ∂nu|∂S.

Taking the limit as x→ ∂S+, we obtain a second equation in the form:

0 = SLΓ,∂S∂nu|Γ −DLΓ,∂Su|Γ − V∂S∂nu|∂S,

= SLΓ,∂S(gint − zu|Γ)−DLΓ,∂Su|Γ − V∂S∂nu|∂S.

Upon reorganizing the equations above in the form of a linear system of equations,

we obtain the following:

[1
2
I + zV +K

]
Γ

SL∂S,Γ

[zSL+DL]Γ,∂S VΓ


 u|Γ

∂nu|∂S

 =

 VΓ

SLΓ,∂S

 gint,

which completes the derivation.

We remark that the derivations above remain valid in the case when S in an

open arc. As one can observe, the calculation of interior RtR and RtN maps requires

the inversion of a system of size the number of unknowns on Γ and on ∂S, which
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depending on the size of the box can be considerably more demanding than solving

directly on a ”small” configuration of scatterers included in the box. Hence, both

the choice of box size and of partitioning (i.e., the number of scatterers to enclose

per box) have to be done with care. While there is no doubt to us that the method

is extremely efficient for very large configurations of scatterers (e.g., order of 10,000

scatterers have been performed), we still need to investigate the size requirements

for which the DDM is preferable over the direct BIE approach.

Having established how to compute the interior RtR operator SInt, we move

on to show in a similar fashion how the exterior map is computed.
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4.2 The Exterior Robin-to-Robin Operator

Figure 4.2 The setting for computing the exterior map.

Assume the same setup as before. We want to compute an exterior RtR operator

SExt that maps the exterior data gext := (∂nu
s + zus)|Γ to (∂nu

s − zus)|Γ.

Theorem 4. The exterior RtR boundary operator SExt can be expressed

explicitly as:

SExt = IΓ − 2z

(
KΓ + zVΓ −

1

2
IΓ

)−1

VΓ.

Proof. As before we will start by expressing the solution with a Green’s represen-

tation in the exterior of the box B and will make use of ∂nu
s|Γ = gext − zus|Γ.

us(x) = [DLΓu
s|Γ − SLΓ∂nu

s|Γ] (x), x ∈ R2 \B

=
[
DLΓu

s|Γ − SLΓ(gext − zus|Γ)
]

(x)y x→ Γ+

KΓu
s|Γ +

1

2
us|Γ + zVΓu

s|Γ − VΓg
ext, x ∈ Γ.
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This can be compactly expressed in terms of set equality on Γ by dropping the x

dependence and reorganizing:

(
KΓ + zVΓ −

1

2
IΓ

)
us|Γ = VΓg

ext,

and so we have that:

us|Γ =

(
KΓ + zVΓ −

1

2
IΓ

)−1

VΓg
ext.

From the last equation, we can identify SExt as being:

SExt = IΓ − 2z

(
KΓ + zVΓ −

1

2
IΓ

)−1

VΓ.
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CHAPTER 5

NUMERICAL TREATMENT OF BOUNDARY INTEGRAL
EQUATIONS

5.1 A Brief Review of Quadrature Rules

Adopting a BIE approach to solve the Helmholtz problem is most likely paired with

a choice of quadrature rule for the underlying integral, a process called Nystrom

discretization. From the Green’s representation, or more generally from acoustic

layer potentials combinations, one obtains second-kind BIEs of the form:

ϕ(t) +

∫ T

0

K(t, τ)ϕ(τ)dτ = f(t), t ∈ [0, T ],

where K(t, τ) is a doubly periodic kernel with always at least a logarithmic

singularity about the diagonal t = τ . For the most part, the resulting weakly singular

integrals do not pose any issue in practice as there are quite a few methods available

to deal with them and even offer provision for the more sensitive hypersingular case.

These methods essentially fall into two categories depending on whether the kernel

is splitted so that the log singularity is exposed explicitly or not. Amongst the

popular methods that address this singularity, we have:

1. Kapur-Rokhlin (No split) : A trapezoid rule method where only the weights
are modified near the diagonal.

2. Alpert (No split) : A trapezoid rule method where the equidistant nodes
location near the diagonal are carefully replaced by optimal ones.

3. Modified Gaussian (No split) : A Gauss-Legendre panels rule where
auxiliary nodes are added to each target nodes. These new nodes are selected
using the Kolm-Rokhlin algorithm.

4. Kress (Explicit split) : This spectrally convergent method is the one we use
in this work and consist of creating a kernel split so as to expose explicitly the
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logarithmic singularity:

K(t, τ) = K1(t, τ) ln

(
4 sin2

(
t− τ

2

))
+K2(t, τ),

for some K1, K2 smooth functions. The two quantities are then integrated
using a periodic trapezoid rule and a product quadrature rule, respectively.

In Chapter 2, we have derived expressions to the radiative solution for the

exterior scattering problem, both for open and closed boundary. Furthermore, it

was established that in order to evaluate that solution at a given field point x, one

first needs to solve a boundary integral equation for an unknown density ϕ. We

recall here that the two integral equations that need to be solved are of the form:

ϕ(x) + 2

∫
∂S

{
∂Gk(x− y)

∂n(x)
− iηGk(x− y)

}
ϕ(y)ds(y) = b(x), x ∈ ∂S,

when the boundary is closed and:

∫
Γ

Gk(x− y)ϕ(y)ds(y) = b(x), x ∈ Γ,

for an open boundary. Of particular interest to us is the fact that in both cases,

the kernels are weakly singular with logarithmic singularities as x→ y of the form

ln k|x−y|
2

. With that in mind, we choose to develop the numerical procedure for a

general kernel K(x,y) with the same kind of singularity. We will, however, need to

treat the case for open boundary in its own right since the results for closed boundary

are not readily applicable, mostly due to the fact that the high order accuracy that

we will claim relies exclusively on the assumed periodicity of the quantities involved.
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5.2 The Quadrature Rule for Integrals with Periodic Boundaries

Let ∂S be the 2π-periodic boundary of a closed scatterer S with parametrization

y(t) = (y1(t), y2(t)) such that y([0, 2π)) = ∂S. Noting that for x ∈ ∂S, there must

be a t ∈ [0, 2π) satisfying x = y(t), we shall abuse notation slightly in the following

by letting K(x,y) = K(y(t),y(τ)) =: K(t, τ) and similarly ϕ(y) =: ϕ(τ) and so

forth, should we encounter other such quantities. Our goal is to solve numerically

the following Fredholm equation of the second type:

ϕ(t) +

∫ 2π

0

K(t, τ)ϕ(τ)dτ = b(t), t ∈ [0, 2π), (5.1)

where the kernel is assumed to be weakly singular as t→ τ with decomposition:

K(t, τ) = K1(t, τ) ln
k|y(t)− y(τ)|

2
+K2(t, τ),

for some (doubly) periodic and analytic functions K1, K2.

While in general, there is no closed-form solution to the integral equation (5.1),

we can nonetheless find a good (convergent) numerical approximation. Nyström

method consists of selecting a quadrature rule to evaluate the integral and then

solving the resulting square system.

To be precise, if we let {tj = jπ/n : j = 0, ..., 2n − 1} be an equi-spaced

partition of [0, 2π), ϕi := ϕ(ti), and bi := b(ti) for i = 0, ..., 2n − 1, the Nyström

method consists of constructing a matrix A such that:

Aϕ(n) = b with b, ϕ(n) ∈ R2n, A ∈ R2n×2n,
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where the action of the square matrix A is ”close” to that of the integral operator

I +
∫
K(·)dτ . The matrix A will be determined by our choice of quadrature rule to

evaluate equation (5.1) numerically. In a general setting, if we choose the following

quadrature rule:

∫ 2π

0

K(ti, τ)ϕ(τ)dτ ≈
2n−1∑
j=0

(wijK(ti, tj))ϕj,

then the matrix A is:

[A]ij = 1 + wijK(ti, tj).

When we can construct such a matrix A, the numerical approximation of ϕ is given

by:

ϕ(n) = A−1b,

and for any t that is not contained on the partition, interpolation can be used.

In order to derive a high order quadrature rule, we need to deal with the

singularity of the kernel. For that purpose, we review the Nyström quadrature rule

presented in Colton & Kress [30] with additional insights and explanations, which I

hope will benefit the reader. We still wish to solve the following BIE:

ϕ(t) +

∫ 2π

0

(
K1(t, τ) ln

k|y(t)− y(τ)|
2

+K2(t, τ)

)
ϕ(τ)dτ = b(t), t ∈ [0, 2π).
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For reasons that will be soon apparent, we proceed with a so-called kernel split:

ln

(
k

2
|y(t)− y(τ)|

)
= ln

(
k

2

|y(t)− y(τ)|
|t− τ |

)

+ ln

 |t− τ |

2 sin
(
|t−τ |

2

)


+
1

2
ln

(
4 sin2

(
t− τ

2

))
.

The first two terms on the right-hand side are not singular as t → τ and have

combined limit ln
(
k
2
|y′(t)|

)
, and the last quantity is a 2π-periodic quantity. In light

of the last development, the following updated, but totally equivalent, kernel split

will be used.

K(t, τ) = K̃1(t, τ) ln

(
4 sin2

(
t− τ

2

))
+ K̃2(t, τ),

We identify K̃1 = 1
2
K1 and K̃2 = K − K1 ln

(
4 sin2

(
t−τ

2

))
with limiting value

K̃2(t, t) = K2(t, t) + K1(t, t) ln
(
k
2
|y′(t)|

)
. Hence the problem is now reduced to

evaluating the following two integrals:

• I1 :=
∫ 2π

0
ln 4 sin2

(
t−τ

2

)
f(τ)dτ ,

• I2 :=
∫ 2π

0
f(τ)dτ ,

for some smooth and 2π-periodic function f .

For I2, the periodic trapezoidal rule is used due to its spectral convergence

when dealing with smooth periodic functions:

I2 ≈
π

n

2n−1∑
j=0

f(tj).
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The first integral I1 requires more work. The approximation that is detailed

next falls in the category of product quadrature rules. A product quadrature rule

approximates the integral of the product of two 2π-periodic functions g and f , where

f is assumed to be smooth and g is real and allowed to be singular, as is the case

here. ∫ 2π

0

f(τ)g(τ)dτ ≈
2n−1∑
j=0

wjf(tj).

To obtain the weights, we start by assuming that both f and g have convergent

Fourier series:

f(τ) =
∑
m∈Z

fme
inτ ,

g(τ) =
∑
m∈Z

gme
inτ ,

with Fourier coefficients:

fm =
1

2π

∫ 2π

0

e−imτf(τ)dτ and gm =
1

2π

∫ 2π

0

e−imτg(τ)dτ.

From Parseval’s theorem, we know that for such convergent representations:

∫ 2π

0

f(τ)g(τ)dτ = 2π
∑
m∈Z

fmgm ≈ 2π

′∑
−n≤m≤n

fmgm,

which holds to high accuracy for rapidly decaying coefficients. The prime on the

sum indicates that the first and last terms are being halved.

Next, the Fourier coefficients of f and g = ln 4 sin2
(
t−τ

2

)
are computed with

ease observing that for this choice of g, they are known exactly. The following

63



proposition encapsulates this result and tells us a bit more that we will need later

on.

Proposition 1.

∫ π

0

ln 4 sin2
(τ

2

)
e−imτdτ =

∫ 2π

π

ln 4 sin2
(τ

2

)
e−imτdτ =


0 m = 0

− π
|m| |m| = 1, 2, 3, ...

In particular, if any of the integrals on the LHS is from 0 to 2π, then the RHS

is multiplied by 2.

Hence, for g(τ) = ln
(
4 sin2

(
t−τ

2

))
, a change of variable gives gm = − e−imt

|m| . As

for the coefficients fm, we know that for smooth and 2π-periodic functions the best

quadrature rule that we have is the periodic trapezoid rule with spectral accuracy:

fm =
1

2π

∫ 2π

0

e−imτf(τ)dτ ≈ 1

2n

2n−1∑
j=0

e−imtjf(tj).

Having found the Fourier coefficients, we truncate the Parseval’s identity and find:

I1 ≈ 2π

′∑
0<|m|≤n

(
1

2n

2n−1∑
j=0

e−imtjf(tj)

)(
−e
−imt

|m|

)

= −π
n

2n−1∑
j=0

′∑
0<|m|≤n

e−im(tj−t)

|m|
f(tj)

=
2n−1∑
j=0

R
(n)
j (t)f(tj),
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where the coefficients R
(
jn)(t) are obtained through the use of eit+e−it = 2 cos t and

are:

R
(n)
j (t) := −2π

n

n−1∑
m=1

cos(m(t− tj))
m

− π

n2
cos(n(t− tj)).

Putting these two quadrature rules together in the integral equation gives us the

linear system:

ϕi +
2n−1∑
j=0

{
R

(n)
j (ti)K̃1(ti, tj) +

π

n
K̃2(ti, tj)

}
ϕj = b(ti) i = 0, ..., 2n− 1.

Accordingly, the matrix A that we seek is given by:

[A]ij = 1 +
{
R

(n)
j (ti)K̃1(ti, tj) +

π

n
K̃2(ti, tj)

}
.

We can now apply this method to our problem with K(t, τ) = i
4
H1

0 (k|y(t)− y(τ)|).

All is needed is to use:

• K̃1(t, τ) = − 1
4π
J0(k|y(t)− y(τ)|),

• K̃2(t, τ) = K(t, τ)− ln 4 sin2
(
t−τ

2

)
K̃1(t, τ) and

• K̃2(t, t) = i
4
− γ

2π
− 1

2π
ln k|y′(t)|

2
.

In practice, the field is evaluated using the same mesh with the trapezoid rule.
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5.3 The Quadrature Rule for Integrals with non Periodic Boundaries

In this section, we are concerned with solving a Fredholm Equation of the first kind

where as before, we will work with a general kernel K(x, y) = K(t, τ) which exhibit

a log singularity like ln k|x−y|
2

as x→ y.

∫ 2π

0

K(t, τ)φ(τ)dτ = −uinc(y(t)), t ∈ [0, 2π].

The key differences here are (1) the density ϕ is no longer smooth (it actually

blows up like
√
d where d is the distance to the end-points of the arc) and (2) the

quantities ϕ are no longer 2π-periodic (since the obstacle is open). The high order

rule that we just presented would not be of high order here, but only as fast as the

decay of the Fourier coefficients for a non-smooth/non- periodic function.

This issue is remedied by the introduction of the sigmoid transform w :

[0, 2π] → [0, 2π] which turns an equispaced mesh into a mesh with agglomerations

at the end-points of the interval on account that w′ vanishes exponentially at either

end as τ → 0+ and τ → 2π−. The one proposed in Colton & Kress is:

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p
, 0 ≤ s ≤ 2π,

where

v(s) =

(
1

p
− 1

2

)(
π − s
π

)
+

1

p

s− π
π

+
1

2
.
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The integral remains mostly unchanged although we can recognize periodic

quantities as shown in the following. Letting τ = w(s) and t = w(ξ) we have:

∫ 2π

0

K(t, τ)φ(τ)dτ =

∫ 2π

0

K(w(ξ), w(s))φ(w(s))|w′(s)|ds

=

∫ 2π

0

K(ξ, s)φw(s)ds,

where the quantity φw(s) := φ(w(s))|w′(s)| is now seen to be 2π periodic and smooth.

The quadrature rule developed in Section 5.2 can readily be applied using the new

set of points
{
w
(
jπ
n

)}2n−1

j=0
.
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CHAPTER 6

NUMERICAL RESULTS

In this section, we present a variety of numerical results that highlight the

performance of our Schur complement DDM algorithm for solution of multiple

scattering problems. All the results presented here were produced on a quad core (3.7

GHz Intel Xeon processor) Mac Pro machine with 64Gb of memory by a MATLAB

implementation of our algorithm. We present results for scattering from clouds

of sound-soft scatterers (e.g., Dirichlet boundary conditions on the scatterers). The

extension to other types of boundary conditions is straightforward. We create clouds

of scatterers by choosing a large box that we subdivide into L subdomains (boxes)

and then we place inside each subdomain P scatterers whose position is random,

while ensuring that the scatterers do not intersect each other and do not intersect

the boundary of the domain.

Our DD algorithm proceeds in two stages: an offline (precomputation) stage

whereby all the subdomain RtR maps are computed using the Nyström discretization

presented in Chapter 4, and a stage where the DDM linear system is solved via

hierarchical Schur complements. Finally, in the solution stage, we solve a linear

system involving a dense matrix that corresponds to connecting the unknowns on

the inner/outer artificial boundary through interior and respectively exterior RtR

maps. We note that although the algorithm is highly parallelizable, our current

implementation does not take advantage of these possibilities.

We comment next on the computational complexity of our Schur complement

elimination algorithm. Assuming a collection of L = `1 × `2 of identical square

subdomains, each one containing PL scatterers inside. If nP collocation points

are used per each scatterer to resolve the solution (say that these amount to 6

pts/wavelength which is typical for Nyström discretizations of boundary integral
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equations) then we argue that about P
1/2
L n

1/2
P collocation points are needed per

side of each subdomain. Since there are overall 2`1`2 + `1 + `2 common interfaces

in the DD algorithm, the discretization of the DDM linear system would require

about 2(2`1`2 + `1 + `2)P
1/2
L n

1/2
P unknowns (recall that there are two unknowns per

interface). However, the matrix corresponding to the DDM linear system, although

sparse, is never stored in practice, and the solution of that system is performed

by employing hierarchical Schur complements of small size. The cost of our Schur

complement elimination algorithm is thus dominated by that of the solution of the

DDM linear system that features a dense matrix corresponding to unknowns on

the inner/outer interface, and as such the cost is O((2(`1 + `2)P
1/2
L n

1/2
P )3). Thus,

if we denote NT = `1`2PLnP , the computational cost of our Schur complement

solver is roughly O((4NT )3/2). In addition, the precomputation/offline stage of our

algorithm requires a computational cost of O(`1`2(PLnP )3) in order to compute the

L subdomain RtR maps, assuming that the distribution of scatterers inside each box

is different. Nevertheless, in the important case of photonic crystal applications (the

centers of the scatterers occupy the vertices of a finite lattice), the distribution of

scatterers inside the subdomains is identical, in which instance the precomputation

cost can be significantly reduced. The cost of computing a single subdomain RtR

map can be further reduced if fast compression algorithms such as H-matrices are

used. In contrast, the cost of a direct boundary integral solver for the solution of

the multiple scattering problem would be O(N3
T ) with a O(N2

T ) amount of memory

needed. Consequently, in multiple scattering applications that involve very large

numbers of scatterers, the direct approach is simply too costly. In case Krylov

subspace iterative solvers are employed for the solution of the very large linear

algebra problem resulting from the direct approach, the numbers of iterations is

prohibitive. Clearly, our algorithm is competitive when the number of scatterers

per subdomain (i.e. PL) is large. We emphasize that our DD algorithm is a direct
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method, and as such multiple incidence can be treated with virtually no additional

cost.

We present in Table 6.1 a comparison between the global BIE approach and

our DD algorithm. The multiple scattering configuration in this experiment consists

of a cloud of 640 lines segment scatterers, a configuration that is challenging to

volumetric discretizations (e.g., finite differences, finite elements). More precisely,

our configuration is enclosed by a square box of size 16 by 16 which is divided in

a collection of 4 × 4 subdomains, each a square box of size 4 in which we placed a

collection of 40 line segments of length 0.4 whose centers and orientations are chosen

randomly (yet avoiding self intersections and intersections with the boundary of the

box). The distribution of scatterers is different in each subdomain, and thus the

subdomain RtR maps are different. In all the numerical results presented, we report

in the column “Unknowns” the total number of unknowns needed to discretize the

scatterers in the cloud; in the column “Unknowns DD” we report the number of

unknowns in the original DD linear system and the number of unknowns in the

reduced system where we solve for the exterior Robin data. We emphasize that the

matrix related to the DD system is not stored, it is only the matrix in the reduced

system obtained after applications of the Schur complements that is stored. Our

DD algorithm uses 4× 4 subdomains. We chose a wavenumber k = 8 such that the

scattering ensemble has size 20λ×20λ and we compared the far-field results produced

by each method, and we observe excellent agreement. As it can be seen from the

results in Table 6.1, our solver is more competitive than the solver based on the global

first kind boundary integral equation (BIE) formulation of the multiple scattering

problem, even when accounting for the offline cost. We present in Figure 6.1 a

depiction of the total field in a neighborhood of the scatterer cloud.
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Table 6.1 Comparison of Schur Complement DD Solver with a BIE Direct Solver.

Unknowns BIE solver Unknowns DD Offline DD Error far-field

Hierarchical elimination Solution Total time

5,120 13.24 2,560/512 2.00 0.12 0.22 0.34 1.0 × 10−1

10,240 66.56 3,840/768 5.90 0.18 0.47 1.05 3.1 × 10−3

20,480 419.74 5,760/1,152 21.61 0.42 1.10 1.52 9.9 × 10−5

Figure 6.1 Total field scattered by a cloud of 160 line segments.

We present in Table 6.2 an illustration of the performance of our algorithm for

large clouds of scatterers (e.g. made up of 10,240 and respectively 40,960 scatterers)

that span domains of size 80λ × 80λ and respectively 160λ × 160λ, each scatterer

being of size 0.4λ. Again, the arrangement of scatterers in the subdomains was

produced in the same manner as in Table 6.1 (there are 16 × 16 and respectively

32×32 subdomains), and the distribution of scatterers is different in each subdomain.

These configurations could model rain drops or possibly foliage. Given the large size

of the cloud, global BIE based methods are beyond the limits of the computational

resources we used in these experiments. The number of collocation points used

for the discretization of the RtR maps was chosen to be O(N
1/2
T ) where NT is the

number of discretization points needed on the scatterers. We present in Figure 6.2

Radar Cross Section (RCS) plots (in dB) for (a) the configuration used in Table 6.2

and (b) for the same geometric arrangement but doubling the frequency (this makes

the cloud of scatterers to span a domain of size 160λ × 1600λ) when a plane wave
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Table 6.2 Performance of Schur Complement DD Solver for many Configurations.

Size Unknowns Unknowns DD Offline DD Error far-field

Hierarchical elimination Solution Total time

10,240/80λ × 80λ 81,920 34,816/2,048 26.6 3.2 4.1 7.3 7.3 × 10−1

10,240/80λ × 80λ 163,840 52,224/3,072 88.9 8.9 10.6 19.5 6.5 × 10−2

10,240/80λ × 80λ 327,680 78,336/4,608 337.1 25.4 30.4 55.8 6.9 × 10−3

10,240/80λ × 80λ 655,360 117,504/6,912 1,388 79.7 85.1 164.8 4.2 × 10−6

40,960/160λ × 160λ 1,310,720 304,128/6,144 1,473 208.1 197.8 405.9 6.4 × 10−3
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Figure 6.2 Radar cross sections (RCS) from a large cloud of scatterers for a 45
degree incident field.

whose direction is making a 45◦ angle with the vertical impinges on the ensemble

of scatterers. From left to right, we detail: (a) 80λ × 80λ (left), each scatterer is

about 0.4λ; (b) 160λ × 160λ (center), each scatterer is about 0.8λ; and (c) 40,960

line segment scatterers occupying a region of size 160λ×160λ (right), each scatterer

is about 0.4λ.

If we use the DD-ABC algorithm (and thus the solution stage is no longer

needed) for the configurations presented in Table 6.2, we obtain results with relative

errors of about 7% in the far field (the boundary of the enclosing box ∂B0 is placed

about 1λ away from the collection of scatterers).

We conclude with an illustration in Figure 6.3 of the performance of our DD

solver for simulation of wave propagation in photonic crystal like structures such as

those depicted in that figure. More specifically, the geometric configuration consists
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Figure 6.3 Simulation of propagation through a channel defect.

of a finite yet large collection of circles such that the distances between them equal

their diameter in which a channel defect is created. The width of the channel equals

three times the diameter of the circles. We considered plane wave incident fields

with different directions of propagation and a wavelength such that the size of each

scatterer is 0.6λ. In such configurations the most natural DD strategy is to have

two types of subdomains, one containing precisely one scatterer inside, and one that

does not contain scatterers inside. In this manner, only two subdomain RtR maps

need be computed. Using 16 discretization points per scatterer and 64 discretization

points on the boundary of each subdomain, the computational times required by our

Schur complement DD algorithm to simulate wave propagation in structures like that

depicted in Figure 6.3 containing collections of 20×20, 40×40, 60×60, 80×80, and

100× 100 scatterers are respectively 6.1, 46.7, 234.6, 463.1 and 1075 seconds.

6.1 Validation of the Foldy-Lax Approximation

As we pointed out earlier, an approximation scheme that is well suited for the

multiple scattering problem by a large ensemble of randomly positioned arc segments

is the Foldy-Lax method. The error tracking of such methods has historically been

hard to achieve as direct solvers would choke on big configurations. Our DDM

formulation now allows to validate the approximation for such configurations that

were so far out of reach by exact methods. We briefly review what the Foldy-Lax

approximation entails and close this section with convincing results.

73



The Foldy-Lax method is a solution technique for multiple scattering problems

where the scatterers are assumed to be isotropic point scatterers. Hence, in this

setup consider a collection of m isotropic point scatterers in the plane with positions

{xj}mj=1. It is natural to expect, especially when recalling that the Green’s function

is the response to a point source of unit strength, that the field be expressed as sum

over all point sources.

us(x) =
m∑
j=1

AjGk(x− xj),

where the Aj are meant to capture in some way the intensity of each point source.

When evaluating the field on a scatterer, say us(xn), it is intuitive that the response

ought to be the sum of all other contributions, leaving out the term corresponding

to that scatterer, which is written:

un := us(xn) =
∑
j 6=n

AjGk(xn − xj), n = 1, ...,m.

This system is not uniquely solvable since there are two set of unknowns {uj}mj=1

and {Aj}mj=1. In light of this observation, the Foldy-Lax method suggests the use

of Aj = σjuj where the σj are some sort of intensity coefficients specific to each

scatterers and for more details on how to evaluate them we refer to Martin [22]. For

scatterers that have a size to them, a fair approximation is to relate their intensity

coefficient to their diameter, which loosely speaking amounts to treating them as

the smallest ball in which they can be enclosed.

The ones that were used here are given by

σj = −iλj(1 + iλj)
−1,
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where

λj = −π
2

{
ln

(
kdj
4

)
+ γ

}−1

,

and where dj is the diameter of the jth scatterer and γ = 0.5772... is the Euler

constant introduced before.

With this approximation no distinction is made between two line segments of

the same length but orthogonal to each others - which at first makes little sense

as one of the lines may reflect all the incident field while the other shouldn’t

reflect anything. However, our tests beg to differ that when the method is used

for a large ensemble of line scatterers with random positions and orientations, the

approximation is surprisingly good. As our results point out, when we double the

size of the ensemble, the error in the far field over all directions stays roughly the

same, which makes this approximation particularly attracting for very, very large

problems where only our method can cope with in an exact matter.

That this approximation gets better as the size of the ensemble of random

scatterers increases hints that some sort of averaging out is happening and further

suggests that research into probabilistic methods for this kind of problem would not

be a bad idea. When enforcing this assumption, we get the linear system for the

total field u = us + uinc:

un + uinc(xn) =
∑
j 6=n

σjujGk(xn − xj), n = 1, ...,m,
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which in matrix notation,



1 −σ2Gk(x1 − x2) · · · −σmGk(x1 − xm)

−σ1Gk(x2 − x1) 1 · · · −σmGk(x2 − xm)

...
...

. . .
...

−σ1Gk(xm − x1) −σ2Gk(xm − x2) · · · 1





u1

u2

...

um


=



uinc(x1)

uinc(x2)

...

uinc(xm)


.

The far field in direction x̂ = x
|x| can then be computed easily through

us,∞ =
eiπ/4√
8πk

m∑
j=1

σjuje
−ikx̂·xj .

We give an overview of a few tests that we have conducted using the Foldy-Lax

approximation to see how well it would cope with open arc agglomerations. As

Figure 6.4 suggests, Foldy-Lax seems to perform adequately keeping in mind that

it is an extremely simplified approximation. Most importantly is the times, not

reported here, that were the most impressive. Foldy-Lax method only uses one

point per scatterer hence reducing tremendously the computation efforts so that

in all three cases the computation times where nearly instantaneous on a personal

laptop with an i5 dual core CPU.

76



0 50 100 150 200 250 300 350 400
0

10

20

30
 1280 scatterers with k=8

0 50 100 150 200 250 300 350 400
0

20

40
 2560 scatterers with k=8

0 50 100 150 200 250 300 350 400
0

20

40

60
 5120 scatterers with k=8

Figure 6.4 Comparison of Foldy-Lax and DDM for far field readings in all
directions.
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APPENDIX

CONSTRUCTION OF THE 2D HELMHOLTZ GREEN’S FUNCTION

The fundamental solution Gk(x,y) := Gk(x− y) satisfies

∆Gk + k2Gk = δ(x− y) x,y ∈ R2

lim
|x|→∞

|x|
1
2

(
∂G

∂|x|
− ikG

)
= 0

where ∆ = ∂2

∂x21
+ ∂2

∂x22
.

We can see from the above PDE that Gk(x− y) does not depend on any

geometry in the plane, but rather seems to only be concerned with how far x is

located away from y. This should not be surprising when we recall that the physical

interpretation of the fundamental solution is the response at the field point x to a

point source located at y with unit strength. For this reason, we will seek a solution

in terms of r = |x− y|. We effect this in the following development through the use

of g(r) = Gk(x− y).

The introduction of the polar coordinate r = |x− y| requires to migrate

the operator ∆ + k2 to polar coordinates. Because there seem to be no angular

dependence, we can quite easily find the polar counterpart of ∆ = ∂2

∂x21
+ ∂2

∂x22
by

first computing, using the chain rule ∇Gk = g′∇r = g′ x−y
r

, followed by a use of the
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product rule

∆Gk = ∇ · ∇Gk

= ∇ · (g′∇r)

= ∇g′ · ∇r + g′∇ · ∇r

= g′′∇r · ∇r + g′∇ · ∇r

= g′′|∇r|2 + g′∆r

From ∇r = x−y
r

, we see that |∇r|2 = 1 and that by an application of the quotient

rule

∆r = ∇ · x− y

r

=
r∇ · (x− y)− (x− y)∇r

r2

=
2r − r2

r

r2
=

1

r
.

This shows that with no angular dependence, the Laplacian reduces to ∆ = d2

dr2
+ 1
r
d
dr

.

Putting everything together we now set to solve the following problem.

g′′ +
1

r
g′ + k2g = 0 r > 0

lim
r→∞

r
1
2

(
dg

dr
− ikg

)
= 0

This is an ODE that we can solve without any high machinery. We first note

that the differential equation has a regular singular point at r = 0, namely the

coefficient 1
r

has a first order pole there which tells us that the solution will not be

79



analytic at the origin and that in turn, we should expect at least one solution of the

Frobenius type

g1(r) = rq
∞∑
j=0

ajr
j (1)

where a0 6= 0 and q is a constant which may be complex.

This expression can be somewhat simplified by multiplying through by r2 and

then making the change of variable ρ = kr to get the following ODE, which is the

well-known 0-th order Bessel equation.

ρ2g′′ + ρg′ + ρ2g = 0 ρ > 0 (2)

The next step is to replace the Frobenius representation (1) into (2) . We

compute:

• ρ2g′′1(ρ) = ρq
∑∞

j=0(j + q)(j + q − 1)ajρ
j

• ρg′1(ρ) = ρq
∑∞

j=0(j + q)ajρ
j

• ρ2g1(ρ) = ρq
∑∞

j=0 ajρ
j+2 = ρq

∑∞
j=2 aj−2ρ

j

We can then add these three terms and divide through by ρq to obtain the

following equation:

a0q
2 + a1(1 + q)2ρ+

∞∑
j=2

(
aj(j + q)2 + aj−2

)
ρj = 0

Since the only way that this equation can hold for all ρ > 0 is if all the

coefficients are zero, we get a series of equations to solve for the coefficients. Starting

with the indicial equation q2 = 0, we readily get that q = 0 and when replaced in
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the next coefficient it tells us that a1 = 0. For j = 2, 3, ... we obtain the recurrence

relation

aj = − 1

j2
aj−2

We note that since a1 = 0, aj = 0 whenever j is odd and for j = 2m, we find that

a2m = − 1

(2m)2
a2m−2 = (−1)2 1

(2m)2(2m− 2)2
a2m−4 = ... = (−1)m

1

22m(m!)2
a0.

For convenience, let us set a0 = 1 and replace these coefficients in (1) to get

that

g1(ρ) =
∞∑
m=0

(−1)m
1

22m(m!)2
ρ2m

This is the Bessel function of the first kind of 0th order J0(ρ). Among other

things, it has the property of being analytic everywhere (entire) which follows from

an application of the ratio test, in particular at the origin. That the function is

analytic at the origin already indicates that the second solution will be singular

there.

In order to find that second solution, a good place to start is to use what we

know of the equidimensional equation when the roots are repeated and try to feed

the operator with a term like ln(ρ)g1(ρ). Letting L := ρ2 d2

dρ
+ρ d

dρ
+ρ2, straightforward

differentiation shows that:

L[ln(ρ)g1(ρ)] = ln(ρ)LB[g1] + 2ρg′1 = 2ρg′1
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We then seek an analytic function, say F (ρ), such that L[F ] = −2ρg′1,

after which using the linearity of L, our second solution will be given by g2(ρ) =

ln(ρ)g1(ρ) + F (ρ). If we let F (ρ) =
∑∞

m=0 bmρ
m and apply L to it we get to the

following:

L[F ] = b1x+
∞∑
m=2

(
bmm

2 + bm−2

)
ρm = −4

∞∑
m=1

ma2mρ
2m = −2ρg′1(ρ)

We can proceed with matching the coefficients of corresponding order and conclude

that b1 = 0 such that for odd powers of ρ,

b2m+1 = − 1

(2m+ 1)2
b2m−1 = 0 m = 1, 2, 3, ...

and for even powers of ρ,

b2m = − 1

(2m)2
b2m−2 −

1

m
a2m

= − 1

(2m)2

(
− 1

(2m− 2)2
b2m−4 −

1

m− 1
a2m−2

)
− 1

m
a2m

=
1

24(m(m− 1))2
b2m−4 +

1

m− 1

a2m−2

(2m)2
− 1

m
a2m

=
1

24(m(m− 1))2
b2m−4 − a2m

(
1

m
+

1

m− 1

)
...

=
(−1)m+1

22m(m!)2
b0 − a2m

(
1

m
+

1

m− 1
+ ...+

1

2

)
= −a2m(b0 − 1)− a2m

m∑
i=1

1

i

= −a2m(b0 − 1)− a2mHm
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where Hm is the mth harmonic number. We therefore have an expression for F (ρ):

F (ρ) = b0 +
∞∑
m=1

b2mρ
2m

= b0 − (b0 − 1)
∞∑
m=1

a2mρ
2m −

∞∑
m=1

a2mHmρ
2m

= b0 − (b0 − 1)(J0(ρ)− 1)−
∞∑
m=1

a2mHmρ
2m

= 2b0 − 1 + J0(ρ)(1− b0)−
∞∑
m=1

a2mHmρ
2m

Since b0 is arbitrary, we choose b0 = 1
2

to get rid of the constant, and we note

that the J0 term is a multiple of the first solution. Hence, the complete general

solution to the Helmholtz equation that we are looking for takes the form

Gk(x− y) = AJ0(kr) +B

(
ln(kr)J0(kr)−

∞∑
m=1

a2mHm(kr)2m

)

where A,B are constants to determine.

The particular choice of constants A = i
4
− γ

2π
+ 1

2π
ln 2 and B = − 1

2π
, where

γ = limm→∞ (Hm − lnm) = 0.5772... is the Euler Mascheroni constant, yield the

Hankel form that is used in this text:

Gk(x− y) =
i

4
H1

0 (k|x− y|) =
i

4
(J0(k|x− y|) + iY0(k|x− y|))

where

Y0(ρ) =
2

π

(
ln
ρ

2
+ γ
)
J0(ρ)− 2

π

∞∑
m=1

a2mHmρ
2m

is called the Bessel function of the second kind of 0th order.
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