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ABSTRACT

THEORETICAL STUDIES OF PHOTOINDUCED DYNAMICS AND
TOPOLOGICAL STATES IN MATERIALS WITH STRONG

ELECTRON-LATTICE COUPLINGS

by
Linghua Zhu

First, we study the nonequilibrium dynamics of photoinduced phase transitions

in charge ordered (CO) systems with a strong electron-lattice interaction and

analyze the interplay between electrons, periodic lattice distortions, and a phonon

thermal reservoir. Simulations based on a tight-binding Hamiltonian and Boltzmann

equations reveal partially decoupled oscillations of the electronic order parameter and

the periodic lattice distortion during CO melting, which becomes more energy efficient

with lower photon energy. The cooling rate of the electron system correlates with the

CO gap dynamics, responsible for an order of magnitude decrease of the cooling rate

upon the gap reopening. The work also find that the time-dependent frequency of

coherent oscillation reflects the dynamics of the energy landscape, such as transition

between single-well and double-well, which sensitively depends on the photon energy

and the pump fluence. The results demonstrate the intricate nonequilibrium dynamics

in CO materials.

Second, a model for two-dimensional electronic, photonic, and mechanical

metamaterial systems is presented, which has flat one-dimensional zero-mode energy

bands and stable localized states of a topological origin confined within twin

boundaries, antiphase boundaries, and at open edges. Topological origins of these

flat bands are analyzed for an electronic system as a specific example, using a

two-dimensional extension of the Su-Schrieffer-Heeger Hamiltonian with alternating

shift of the chains. It is demonstrated that the slow group velocities of the localized

flat band states are sensitively controlled by the distance between the boundaries and



the propagation can be guided through designed paths of these boundaries. We also

discuss how to realize this model in metamaterials.

Third, the study of topological mechanical metamaterials system made of 1D

or 2D arrays of spinners, as an experimental realization of electron models in the

second part. Compared with experimental data for 1D case and makes prediction for

2D case of ribbon with open edges. And also show how they slow group velocity of

localized edge modes depend on the width of the ribbon.
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CHAPTER 1

INTRODUCTION

Electron-lattice coupling is one of the most important topics in condensed matter

physics. In this dissertation, we theoretically and computationally study two

phenomena, in which the electron-lattice interaction plays an important role. After

that, we study a related phenomenon in a mechanical system, in which variation in

interaction between spinners results in structure-topology coupling.

First, we study the photoinduced nonequilibrium dynamics in charge ordered

materials. Recently, photoinduced insulator-metal transitions in charge ordered (CO)

or charge density wave (CDW) materials have attracted a lot of attention. [12]

Strongly correlated electron systems often exhibit very strong interactions between

structural and electronic degrees of freedom that lead to complex and interesting

phase diagrams; for example, which involve transition between charge order (CO)

phase and metallic phase [33]. Charge order means the periodic ordering of charge

state of ions in solids, for example, in Pr0.5Ca0.5MnO3 as shown in Figure 1.1

[12] observed. A classic example of CDW is the Peierls instability, explained in

Figure 1.2 [63]. More recent examples of CDW materials are layered transition-metal

dichalcogenides shown in Figure 1.3 [63], in which CDW and associated increase of

unit cells are shown in Figure 1.4 [63]. The CO or CDW transition usually involves

order of magnitude increase of resistively, as shown in Figure 1.5 [44] for perovskite

manganites. Powerful experimental probe for CDW and CO phases is the electron

diffraction, in which the appearance of superlattice peak signals the CO and CDW

transition, as shown in Figure 1.6 [44]. Recently, it is observed that ultra-short (order

of femtosecond) optical pulse can induce a partial or complete melting of CO state

as shown in Figure. 1.7 [42, 43, 53].
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Figure 1.1 MnO2 layer in Pr0.5Ca0.5MnO3. Adapted and modified from Ref. [12].

Figure 1.2 Schematic drawings showing CDW due to the Peierls instability. [63]
Dashed line, represents the uniform charge density for equally spaced 1D chain shown
in open circles. Solid line represents CDW as a result of distorted 1D chain shown in
solid circles. Adapted and modified from Ref. [63].

2



Figure 1.3 Crystal structure of the 1T and the 2H layered transition-metal
dichalcogenides. Adapted and modified from Ref. [63].

Figure 1.4 CDW transition in 1T −TaS2, 2H −TaSe2, and 1T −TiSe2. Adapted
and modified from Ref. [63].
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Figure 1.5 Representative results of temperature dependence of resistivity ρ in zero
field (solid line) and 5 T (dashed line). TCO represents the CO transition temperature.
Adapted and modified from Ref. [44].

The goal of our theoretical study is to understand the interplay between

electron and lattice during non-equilibrium photo-induced phase transitions of

CDW materials through simulations for a simple model. It has been proposed

that the dynamics of the phase transformation can be described using a single

time-dependent order parameter that depends exclusively on the electronic excitation.

However, atomic-scale, coupled dynamics of electrons and lattice has not been well

understood [74]. We will particularly focus on such transitions in charge density

materials or charge-orbital-ordered materials, because many experiments have been

done on these materials lately. We will simulate the dynamics in time and compare

with experimental observations, which will give us insights on how the electron-lattice

interaction manifests itself in non-equilibrium situation.

Second, we studied the electronic properties of structural textures in model

topological insulator with topology-lattice coupling. Topology has become a very
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Figure 1.6 Example of superlattice peaks in (b) and (d) signal CO phase. Electron
diffraction patterns showing CO transition for Nd0.65Ca0.35MnO3 taken at 250 K (a),
(c) and 170 K (b), (d). Adapted and modified from Ref. [44].
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Figure 1.7 Measured evolution of the normalized X-ray intensity for three super
lattice reflections. Adapted and modified from Ref. [12].

important concept in condensed matter physics, not just in electronic materials, but

also phononic, mechanical, and even biological materials. Research on topological

materials has been rapidly evolving over the past decade [39], two-dimensional [41].

Topological nature of certain electron systems depend on lattice distortions through

the electron-lattice coupling. A good example is the one-dimensional Su-Schrieffer-

Heeger(SSH) model. For this model, based on a topological reason, at the open edges

or the antiphase boundaries could host zero energy states [31, 10].

Third, we extend our study to mechanical meta materials. A great attention

has been focused on topological matematerials, lately. Examples include phonic,

sonic and mechanical metamaterials, as shown in Figure 1.8 [58] and 1.10 [46]. Since

widely different systems could share phenomena of the same topological origin, the

tight binding electronic Hamiltonian for the Haldane model of graphene [28] has

been translated to equations describing topological phenomena in photonic, sonic,

and mechanical metamaterials, as well as ultracold fermions [46, 58, 34, 69, 55], for

example. Therefore, we develop a model mechanical system of spinners interacting via

magnets, which can simulate the electronic model above. We compare our results for

1D system with preliminary experimental data, and make predictions for 2D system
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Figure 1.8 Example of mechanical metamaterials, made of array of spinners [9, 58].
Adapted and modified from Ref. [58].

with open edges and topological edge modes that can be tested by future experiments.

In this dissertation, we study a two-dimensional model system with strong

electron-lattice coupling. We find this particular model has a non-trivial topological

electronic property that depends on the lattice distortion. We investigate topolog-

ically protected zero energy states within structural textures, such as antiphase

boundaries and twin boundaries. We also proposed an experiment that can realize

our theoretical results in mechanic meta-materials.
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Figure 1.9 Example of sonic metamaterials. Sound waves propagate between
triangular rods. Adapted and modified from Ref. [46]

Figure 1.10 Example of ultracold fermions. Ultracold fermion gas used to
periodically modulated the optical lattice. Adapted and modified from Ref. [34]
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In broad context, the importance of our work lies in the proposal of new ways

to control of material properties through structures, either through photo-induced

insulator-metal transition or creating domain walls or open edges. Such controls

would lead new device applications, which could be technologically important.
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CHAPTER 2

PHOTOINDUCED NONEQUILIBRIUM DYNAMICS IN CHARGE

ORDERED MATERIALS

The work in this chapter was done in collaboration with Dr. Michel van Veenendaal

and Dr. Tsezar F. Seman from Advanced Photon Source at Argonne National

Laboratory and Department of Physics at Northern Illinois University, and Prof.

Keun Hyuk Ahn from Department of Physics at New Jersey Institute of Technology.

2.1 Introduction

Advances in computing and communication technology demand ultrafast switching

devices. Recently, photoinduced insulator-metal transitions in charge ordered (CO)

or charge density wave (CDW) materials have been considered as a mechanism for

future ultrafast switching devices. [62, 18, 72] In addition, studies of photoinduced

nonequilibrium dynamics have revealed properties and phases of materials inaccessible

through equilibrium thermodynamic processes. [74, 36] One class of materials of

particular interest are transition metal oxides of perovskite or Ruddlesden-Popper

structure, which include manganites, cuprates, and nickelates. [48, 57, 47, 17, 23,

73] The layers of MO2, where M and O represent a transition metal element

and oxygen respectively, play a dominant role in electronic properties of these

materials. For example, time-resolved experiments on Pr0.5Ca0.5MnO3 in a CO phase

using ultrashort optical pump and x-ray probe at or off resonance have revealed

decoupled nonequilibrium dynamics of electrons and periodic lattice distortion during

photoinduced melting of the CO phase. [12]

In spite of the recent experimental progress, theoretical and computational

studies of nonequilibrium dynamics in CO and related CDW materials have been

restricted to phenomenological Ginzburg-Landau approaches, [12] calculations of
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carrier-doping effects using density functional theory, [64] and models based on

dynamics of the electronic density of states (DOS). [67]

In this thesis work, we present simulations of the photoinduced CO insulator-

metal transitions in a model MO2 system, using a tight-binding Hamiltonian and a

coupling between the electrons on M ions and distortion of O ions. The dynamics

of the periodic lattice distortion is treated classically. The electron dynamics follows

the Boltzmann equations, as done in References. [25, 26, 59, 21, 1, 67]. The CO

phase is recovered through the coupling between the electron system and a phonon

thermal reservoir. Detailed time-domain studies of photoinduced melting of CO,

particularly dynamics of the energy landscape, are presented. The results reveal

nonequilibrium dynamics of the electronic order parameter and the periodic lattice

distortion under various conditions of the photon energy and the pump fluence.

In addition to the CO in transition metal oxides, the results are compared with

experiments on CDW materials of other structures, because both phenomena involve

coupled electron density modulation and lattice distortions.

The work is organized as follows. Section 3.2 presents the model system and

equations governing the dynamics of the model system. Results of our simulations

are shown in Section 3.3 and compared with experimental results in Section 2.6. A

summary is provided in Section 3.4.

2.2 Review of Complex Oxides with Charge and Orbital Order

Competing interactions result in diverse exciting phase is charge and orbital ordered

phase. The mixed valance character of transition metal ions often allow these ions

have average electron numbers between integer values. For example, perovskite

manganites of RE1−xAKxMnO3 have the average Mn ionic state of 3 + x. If

all Mn ions have this average ionic state, then the perovskite manganites could

have metallic phase. However, the electron-electron interaction a electron-lattice
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interaction may favor localized electron states, which gives rise to two distinct ionic

states for Mn, or transition metal ions. When this occurs, to minimize energy of

the system, these distinct charge states tend to order in certain ways, which is

called charge ordering (CO). When there exist multiple possibilities of orbital states,

orbital state could be also ordered, which is called orbital ordering (OO). Examples

of materials with CO/OO phases are high-Tc superconductor cuprates [13], colossal

magnetoresistive [20, 66, 70, 19], verwey transitional magnetite (Fe3O4) [68], and

rare earth perovskite vanvadunce oxide ReVO3 [51, 50]. Often CO/OO accompanies

magnetic ordering, because transition metal ions have magnetic moments which

interacts through superexcharge a double exchange interaction CO/OO is coupled

to magnetic order, and CO/OO patterns sometimes decide magnetic ordering

pattern [20, 66, 70, 19]. Various theoretical approaches often include the Hubbard

on-site Coulomb interaction, the Hund’s interactions with core spins, the Jahn-Teller

electron-lattice interaction, and super exchange interactions [54].

2.3 Review of Pump-probe Experiment on Complex Oxides

With multiple degrees of freedom, spin, charge, orbital, and phonons, coupling

strongly each other, transition metal oxides provides great challenges to theorists

and experimentalists [75]. In spite of arrays of probes of different length scales,

from atomic scale to mesoscopic scale, experimental data for equilibrium or near-

equilibrium states may not be useful to test competing theories. Nonequilibrium

probes, such as various time-resolved ultrafast pump-probe experiments, provide

much more detailed information on the coupling between different degrees of freedom,

which could test competing theories. Furthermore, as the speed of devices became

even faster, understanding the ultrafast noneqquilibrium dynamics has became crucial

for the development of such devices. In particular, ultrafast photo-induced transition

between CO/CDW insulating phases and metallic phases, the focus in this chapter,
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could be utilized for making ultrafast switching devices. Such photoinduced phase

transitions have been observed in V O2 [15, 38, 56, 32, 45, 11, 37, 14, 60, 16], in

La1.8−xEuSrxCuO4 (x = 0.125) [24], and Pr0.7Ca0.3MnO3 [61], just to name a few.

In this these, we focus on manganites as a specific exchange, but the results of our

simulation are relevant to photo-induced CO/CDW to metal transitions in other

transition metal oxides as well.

2.4 Model

2.4.1 Hamiltonian

We consider a model system of a N×N MO2 square lattice with periodic boundary

conditions, shown in Figure. 2.1. To capture the essential mechanism of CO transition

in a model, we consider one spinless isotropic electron orbital per M ion. The electron

creation operator on the M site at n = (nx, ny) is represented by c†n. In this model,

the CO instability arises as a result of Fermi surface nesting and electron-lattice

coupling. Therefore, we include the displacements of the O ions at n+ea/2 along the

a-direction represented by uan in the model, where a = x, y. One electron is present

per two M sites in the system, which would result in the checkerboard CO state and

the lattice distortions shown in Figure. 2.1. The periodic distortion of the O ions is

parameterized by a classical variable u, as indicated in Figure. 2.1. Motion of the M

ions is not considered because the O ions move symmetrically with respect to the M

ions. The periodic distortion of the O ions is parameterized by a classical variable u,

defined by

uxn = (−1)nx+nyu, (2.1)

uyn = (−1)nx+nyu. (2.2)
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M

O

u

Figure 2.1 The model system of an MO2 square lattice with periodic boundary
conditions. The size of the solid circles schematically represents the variation of
electron density on M ions in CO state. Arrows show the displacements of the O
ions, represented by u. Adapted from Ref. [77].

The Hamiltonian for electrons has two terms. The first term represents the

electron hopping between the nearest neighbor M sites, given by

Hhop = −th
∑
n

(
c†ncn+ex + c†ncn+ey + H.c.

)
, (2.3)

where th is the electron hopping constant. The second term represents the coupling

between the electron at M site and the distortion of the surrounding negatively-

charged O ions, given by

Hel-latt = −λ
∑
n

uxn − uxn−ex + uyn − u
y
n−ey

4
c†ncn, (2.4)

where λ is the electron-lattice coupling constant. The potential and the kinetic

energies of the O ions are treated classically, and represented by the Hamiltonian
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term

Hlatt =
∑
n

[
K

2

(
uxn

2 + uyn
2
)

+
m

2

(
vxn

2 + vyn
2
)]
, (2.5)

where K is the force constant associated with the O ion displacements, m is the mass

of the O ion, and van = duan/dt (a = x, y) is the velocity.

The total Hamiltonian is the sum of the above terms,

Htot = Hhop +Hel-latt +Hlatt, (2.6)

which results in the electron energy levels,

εlk = (−1)l
√

4t2h(cos kx + cos ky)2 + λ2u2, (2.7)

with the band index l = 0, 1 and k = (kx, ky) in the first Brillouin zone Ω1BZ =

{k| |kx|+ |ky| ≤ π}. The distribution function for the state |lk〉 is represented by flk.

A gap ∆gap = 2λ |u| occurs at the boundary of Ω1BZ. The metallic state with u = 0

has a Peierls instability with the Fermi surface nesting vector Q = (π, π). Therefore,

the CO insulating phase develops, as |u| becomes finite. An example of the electron

DOS per site De(ε) in the CDW phase is shown in Figure. 2.2(a). 1

The order parameter for the CO state is defined as the Q = (π, π) component

of the charge density modulation at the M ion sites that is,

δn =
1

N2

∑
n

eiQ·n〈c†ncn〉. (2.8)

We choose the size of our system N = 512. The hopping constant th = 0.5 eV,

the electron-lattice coupling constant λ = 0.936 eV Å−1, and the force constant

K = 0.85 eV Å−2 are chosen similar to the values used for perovskite manganites. [5, 6]

The mass of the oxygen ion is m = 1.66 meV ps2 Å−2. While the dynamics of a

1In our simulations, the size of the energy bin is about 1.7 meV, which would result in large
fluctuations in the electron DOS due to finite size effects. Therefore, for clarity, we apply a
Gaussian smoothing to the electron DOS plotted here

15



-2
 ε (eV)

0

1

2

eD
 (s

ite
  e

V
  )

-1
-1

0.06 0.08
ω (eV) 

0

50

100

150

200
(a) (b)

-1 0 1 2 0.040.020

pD
 (s

ite
  e

V
  )

-1
-1

Figure 2.2 (a) Example of DOS per site for electrons De versus energy ε. The band
gap is 58.9 meV. (b) DOS per site for phonons Dp versus phonon energy ω. Adapted
from Ref. [77].

particular phonon mode directly coupled to the CO is coherent and parameterized

by u, the rest of phonon system is assumed to be incoherent and play the role of a

thermal reservoir to the electron system excited by the optical pump, because the

phonon system has a much greater specific heat than the electron system.

The phonon system has a much greater specific heat than the electron system

and plays the role of a thermal reservoir to the electron system excited by the optical

pump. We describe the state of the incoherent phonon system by the Bose-Einstein

distribution function bω with the temperature fixed at the initial temperature Ti as

done in Reference. [25, 26]. To simulate such a role, we include the phonon system in

the model and consider the scattering between electrons and phonons. The phonon

DOS per site Dp(ω) is obtained by modifying the Debye model. Below the Debye

energy ωD, Dp(ω) is proportional to ω2. Above ωD, a Gaussian function is assumed

with the peak at ωD matched to Dp(ω) of the Debye model,

Dp(ω) =

 ζω2 for 0 ≤ ω ≤ ωD,

ζω2
De
−(ω−ωD)2/η2 for ω > ωD,

(2.9)
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where ζ and η are fitting parameters. We choose ωD = 60 meV, ζ = 3.63 ×

10−5 meV−3, and η = 15 meV. The total number of phonon modes per site is chosen

as 5 to match to the number of longitudinal phonon modes per transition metal ion in

perovskite transition metal oxides. The DOS for phonons for the simulations is shown

in Figure. 2.2(b). The state of the phonon system is described by the Bose-Einstein

distribution function bω,

bω =
1

eω/kBTi − 1
, (2.10)

with the temperature fixed at the initial temperature Ti.

Then, we describe how the dynamics of the model system is simulated, after the

electron system is excited by the optical pump. Electron-lattice interactions specified

by Eq. (2.4) result in intricately coupled nonequilibrium electron-lattice dynamics,

which is the focus of the current study. At each time step of the computation, lattice

and electron dynamics are considered and various quantities are calculated as follows.

2.4.2 Lattice Dynamics

In the model, the coherent lattice distortion parameterized by u is treated classically

and follows Newtonian dynamics. The corresponding potential energy per site is given

by

U(u) =
1

N2

∑
lk

εlk(u)flk +Ku2. (2.11)

The Lagrangian per site L = mv2 − U(u) with v = du/dt and the damping lead to

the equation for the dynamics of the distortion u,

2m
d2u

dt2
= −2Ku− 1

N2

∑
lk

∂εlk(u)

∂u
flk − γ

du

dt
, (2.12)

where a value of damping constant γ = 9 meV ps Å−2 is chosen, so that the decay

rate of the oscillation is similar to experiments. [12]
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The lattice and electron dynamics are coupled through the potential energy U(u)

in Equations (2.11) and (2.12). The lattice dynamics depends on the electronic state,

because the potential energy U(u) depends on flk. The electron dynamics depends

on the lattice dynamics, because the electron energy levels εlk(u), the electron DOS

De(ε, u), and the size of the gap ∆gap = 2λ|u| depend on the lattice distortion u

and affect electron-electron and electron-phonon scattering. The Lagrangian per site,

L = Mv2 − U(u), and the damping lead to the equation for the dynamics of the

distortion u,

2.4.3 Electron Dynamics

Dynamics of electrons in the model is governed by the Boltzmann equations

that describe electron-electron and electron-phonon scattering. For the Boltzmann

equations, the electron distribution function flk with band and momentum indices,

used for the lattice dynamics, is converted into an electron distribution function fε

with an energy index. The transformation between flk and fε is carried out according

to

De(ε)fε =
1

N2

∑
lk

flkδ(εlk − ε) (2.13)

As done in References. [21, 59, 25, 26, 1], the momentum conservation is integrated

out under the approximation of isotropic Debye phonons and electrons with isotropic

parabolic dispersion relation. This gives rise to the following equations

dfε
dt

=

(
dfε
dt

)
ee

+

(
dfε
dt

)
ep

, (2.14)

where (
dfε
dt

)
ee

=
Kee

2

∫ [
− fεfε′(1− fε′′)(1− fε+ε′−ε′′)

+(1− fε)(1− fε′)fε′′fε+ε′−ε′′
]

×De(ε
′)De(ε

′′)De(ε+ ε′ − ε′′)dε′dε′′ (2.15)
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represents the electron-electron scattering, and(
dfε
dt

)
ep

= Kep

∫ {[
fε+ω(1− fε)(bω + 1)

−fε(1− fε+ω)bω
]
Dp(ω)De(ε+ ω)

+
[
fε−ω(1− fε)bω − fε(1− fε−ω)(bω + 1)

]
×Dp(ω)De(ε− ω)} dω (2.16)

represents the electron-phonon scattering, in terms of electron and phonon distri-

bution functions, fε and bω, and corresponding DOS, De(ε) and Dp(ω). The number

of energy bins is chosen as Ne = 2400, which results in an energy bin size of about

1.7 meV. The constants for the electron-electron and the electron-phonon scattering

are Kee = 1953 eV ps−1 and Kep = 0.2325 eV ps−1, chosen with the same order of

magnitude as the values used in References. [21, 1].

2.4.4 Approximations Used

We list some of the approximations chosen for the model and discuss why they are

reasonable. In the simulations, the electron DOS plays a dominant role in dynamics.

Electron hopping amplitudes beyond the nearest neighbors are not only small, but

also have a negligible effect on the electron DOS, which justifies the approximation of

including only the nearest neighbor hopping. An approximation has been also made

for the effect of the optical pump. The main focus of the simulations is the dynamics

after the optical pump, not during the optical pump. Further, the typical width of the

optical pulse, ∼10 fs, is much shorter than the period of coherent oscillation, ∼500 fs.

Therefore, the dynamics during the optical pump is irrelevant for the simulation

and we approximate the effect of the optical pump as an instantaneous electronic

excitation, [1, 21] as described in Section 3.3 A.

Finally, all phonon modes, except one primary coherent distortion mode

parameterized by u, have no memory of the phonons emitted or absorbed by electrons,
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and are treated as a thermal reservoir at a fixed temperature. The effect of dynamic

incoherent phonon distribution is expected to be small, because the phonons have a

much greater specific heat than the electrons. Excitations of other coherent phonon

modes coupled to the primary coherent phonon mode could be incorporated in the

model by including anharmonic coupling between various coherent phonon modes, as

postulated for perovskite manganites. [12]

With these reasonable approximations, we capture essential features of CO and

its photoinduced dynamics in a simple model, and obtain results which could spur

future experiments. The model also provides a computational framework, upon which

more realistic models could be built.

2.5 Results

2.5.1 Equilibrium States and Excitations by Optical Pump

Before presenting the results for the nonequilibrium dynamics, we discuss the

equilibrium properties of the system and the effects of the optical pump. To ensure

consistency, the dynamics simulation itself is used to obtain the equilibrium states

f eq
ε and ueq, which show a second order phase transition with a critical temperature

of Tc ≈ 217 K and ueq(T ≈ 0) = 0.035 Å. With the periodic distortion u treated

classically and its quantum fluctuations neglected, the equilibrium properties of the

model are similar to the predictions made by mean field theories. [27] To ensure

consistency with the simulations on nonequilibrium states, the dynamics simulation

itself is used to obtain the equilibrium states. Starting from various initial states,

simulations are run until the distortion u and the distribution function fε reach

the equilibrium ueq and f eq
ε . By fitting f eq

ε to the Fermi-Dirac distribution, the

temperature T is obtained. The red line in Figure. 2.3 shows ueq versus T , which

indicates a second order phase transition with a critical temperature of Tc ≈ 217 K.

The ratio between the CDW gap at T ≈ 0 K, ∆gap(T ≈ 0 K) = 65.5 meV, and
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Figure 2.3 (Color online) The red line shows the equilibrium distortion ueq of the
B ions versus temperature T . The critical temperature is about Tc ≈ 217 K. The
blue dots represent the renormalized frequency Ωren for the oscillation of u at T > Tc.
The blue line represents the fit to the mean field theory predictions near Tc.

kBTc = 18.7 meV is 3.50, consistent with the mean field value of 3.52 (Reference. [27]).

Of relevance for the nonequilibrium dynamics is the Kohn anomaly, [27, 71] a

softening of the phonon mode responsible for the CDW when approaching Tc from

above. The renormalized angular frequencies Ωren are obtained by introducing a small

perturbation u from equilibrium. 2 The results (blue dots in Figure. 2.3) are consistent

with the mean field square-root temperature dependence,
√
T − Tc, for T & Tc (blue

line in Figure. 2.3).

As mentioned in Section 3.2 D, the effect of the optical pump is considered as an

instantaneous electron excitation. Therefore, the distribution function for the upper

and lower bands at t = 0, right after the optical pump, is altered from the equilibrium

2The size of the perturbation in u is chosen as 0.005 Å.
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distribution f eq
ε by a Gaussian function,

fε(t = 0) = f eq
ε ± δf exp

[
−(2ε∓ Ephoton)2

8W 2

]
, (2.17)

where Ephoton is the median photon energy in the optical pump, and δf is the

maximum change in the distribution function. The fluence per site F of the optical

pump is calculated as the change in electronic energy at t = 0. For most results in this

thesis work, we take an initial temperature of Ti = 135 K, for which the equilibrium

distortion, order parameter, and CO gap are ueq = 0.031 Å, δneq = 0.056, and

∆gap = 58.9 meV, respectively. The width of the pump beam is fixed as W = 0.02 eV

for most simulations.

2.5.2 Nonequilibrium Dynamics Induced by Photons with Ephoton � ∆gap

Since the early-time dynamics and the energy efficiency of melting the CO depend

sensitively on the photon energy, the results for Ephoton � ∆gap and Ephoton = ∆gap

are presented separately in this and the next Sections. The results for Ephoton =

2 eV, much greater than ∆gap = 58.9 meV, and fluences large enough to melt the

CO are presented in Figures 2.4 and 2.5. In Figure 2.4, the electron distribution

functions for selected times are shown to demonstrate the evolution of f(ε). Video

simulations of f(ε, t) for the Ephoton � ∆gap and Ephoton = ∆gap cases are provided

in the supplementary material. In Figure 2.5, the evolution of various quantities are

shown. To reveal the fast early dynamics and slow late dynamics in the same figure,

the dynamics during −0.1-2 ps and 2-50 ps are displayed in different time scales. To

parameterize the energy of the electron system at time t, the effective temperature

Teff(t) in the nonequilibrium state is defined by matching the total energy between

the actual and the Fermi-Dirac distributions, that is,∫ ∞
−∞

εf(ε, t)De(ε, t)dε =

∫ ∞
−∞

εfFD(ε, Teff(t))De(ε, t)dε, (2.18)
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where fFD(ε, Teff(t)) is the Fermi-Dirac distribution function with the temperature

Teff(t) and the chemical potential zero. Figure 2.5(a) shows the difference between

Teff and the initial temperature Ti before the pump, which is a measure of the excess

energy in the electron system. The effective electron temperature Teff increases to

907 K right after the optical pump. The semilogarithmic plot of Teff − Ti versus time

t reveals three distinct exponential decay rates, r = 0.202 ps−1 up to around 16 ps,

r = 0.013 ps−1 between 16 ps and 21 ps, and r = 0.053 ps−1 after around 21 ps, which

correspond to three stages of the relaxation process, that is, stages of CO melting, CO

gap reopening, and thermal relaxation. Such multistage relaxation has been observed

in CO or CDW materials. [22] We now discuss these different stages in more detail.

As shown in Figure. 2.4(a), initial electron-hole excitations for Ephoton � ∆gap

occur far away from the CO gap, but fast electron-electron scattering removes the

Gaussian peak features at ε = ±Ephoton/2 within 0.15 ps, initiating the stage of CO

melting. As mentioned in Section 3.2, the CO accompanies periodic lattice distortions.

Such electronic and lattice modulations would produce superlattice peaks in x-ray

and neutron scattering. Their normalized intensities are approximately squares of

the displacement u or the CO density δn normalized to the equilibrium values at

temperature Ti before the optical pump,

ū2(t) = [u(t)/ueq(Ti)]
2 ,

δn̄2(t) = [δn(t)/δneq(Ti)]
2 . (2.19)

In equilibrium, u and δn are directly related to each other via

ueq =
λ

2K
δneq. (2.20)

Therefore, we define

d̄(t) = ū2(t)− δn̄2(t) (2.21)
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clearly. (a) Teff − Ti, the difference between the effective temperature of the electron
system defined by Eq. (2.18) and the initial temperature before the pump, (b) the
square of periodic lattice distortion ū2, the square of electronic order parameter δn̄2,
and the square of equilibrium distortion ū2

eq at Teff(t), normalized to their values
before the optical pump, (c) d̄ = ū2 − δn̄2, which parameterizes the decoupling
between the CO and the periodic lattice distortion, (d) ∆f , the average deviation
of the electron distribution function f(ε) from the Fermi-Dirac distribution function
fFD(ε, Teff), defined by Eq. (2.22), (e) ∆Nupper defined by Eqs. (2.23) and (2.24),
that is, the number of excess electrons per site in the upper band with respect to
the equilibrium state before the optical pump. The horizontal arrow indicates the
number of electrons excited by the optical pump. For clarity, d̄ and ∆f between 2 ps
and 50 ps are multiplied by constant factors indicated in the figure. Adapted from
Ref. [77].
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to characterize the decoupling between the CO and periodic lattice distortion in

nonequilibrium. Figure 2.5(b) shows that substantial electron-hole excitations near

the gap created by the electron-electron scattering reduce the order parameter δn

and initiate the coherent oscillation in u, which damps out by around 1 ps. The

result further reveals a difference between ū2 and δn̄2, up to approximately 15%

at t ≈ 0.13 ps, as shown more clearly for d̄ = ū2 − δn̄2 in Figure 2.5(c), which

indicates a partial decoupling of the electrons and lattice distortions. The O ion has

about thirty thousand times greater mass than an electron, which results in lattice

dynamics lagging behind the electron dynamics and d̄ > 0. The oscillation amplitude

of the normalized lattice distortion is larger than that of the normalized electronic

order parameter for the same reason. The average difference ∆f(t) between f(ε, t)

and fFD(ε, Teff(t)), calculated according to

∆f(t) =

√∫ ∞
−∞

[f(ε, t)− fFD(ε, Teff(t))]2De(ε, t)dε, (2.22)

is shown in Figure 2.5(d), which indicates that the electronic state deviates

substantially from the Fermi-Dirac distribution during the CO melting. To track

the transfer of electrons between the upper and the lower bands, we calculate the

number of electrons per site in the upper band at time t,

Nupper(t) =

∫ ∞
0

f(ε, t)De(ε, t)dε, (2.23)

and find the change from the number before the optical pump,

∆Nupper(t) = Nupper(t)−Nupper(t < 0), (2.24)

shown in Figure 2.5(e). The number of photoexcited electrons in the upper band is

0.002 per site, as indicated by a horizontal arrow in Figure 2.5(e), while the number of

electrons excited through the subsequent thermalization up to ∼ 1 ps is 0.021 per site,

an order of magnitude greater, because many low energy electrons are excited near
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the gap as photoexcited high energy electrons decay through the energy-conserving

electron-electron scattering.

As the effective electron temperature Teff drops below Tc around t = 12 ps,

indicated by the vertical dot-dashed blue line in Figure 2.5, the electron system

enters the stage of CO gap reopening, and loses the internal equilibrium up to

approximately t = 30 ps. Figure 2.5(b) shows that the squares of electronic order

parameter and periodic lattice distortion, δn̄2 and ū2, increase from zero. The square

of the normalized lattice distortion that the system would have, if the system is in

the equilibrium state at Teff ,

ū2
eq(t) =

[
ueq(Teff(t))

ueq(Ti)

]2

, (2.25)

is also shown in Figure 2.5(b) for t > 2 ps. The strong reduction of the normalized

actual distortion ū(t) compared to the normalized equilibrium distortion ūeq(t) clearly

shows the effect of nonequilibrium dynamics. The electronic ordering precedes the

lattice ordering again and therefore, d̄ = ū2 − δn̄2 < 0 [Figure 2.5(c)]. Furthermore,

rapid opening of the gap pushes electron and hole energies up, which causes a very

slow decay of Teff [Figure 2.5(a)], a substantial deviation of f(ε) from fFD(ε) near the

gap [Figure 2.4(b)], and enhanced ∆f [Figure 2.5(d)]. We discuss this in more detail

in Section 2.5.5.

Finally, the stage after around 30 ps is characterized as the thermal relaxation

stage, because the electron system and the periodic lattice distortion gradually

approach the initial state before the optical pump, while maintaining internal

equilibrium between them.

To compare the photoinduced and thermodynamic CO-metal transitions, we

calculate the thermodynamic CO melting energy ∆Eeq
tot(Ti) [∆Eeq

el+u(Ti)] for the whole

system including [excluding] the phonon thermal reservoir according to

∆Eeq
tot(Ti) = Eeq

tot(Tc)− E
eq
tot(Ti), (2.26)

27



∆Eeq
el+u(Ti) = Eeq

el+u(Tc)− Eeq
el+u(Ti), (2.27)

where the thermodynamic energy for electrons and periodic lattice distortion is

Eeq
el+u(T ) =

∫ ∞
−∞

εfFD(ε, T )De(ε, ueq(T ))dε+Ku2
eq(T ), (2.28)

the energy for the phonon thermal reservoir is

Eeq
phonon(T ) =

∫ ∞
0

ωbω(T )Dp(ω)dω, (2.29)

and the total thermodynamic energy is

Eeq
tot(T ) = Eeq

el+u(T ) + Eeq
phonon(T ). (2.30)

For ultrafast photoinduced transitions, there is insufficient time to heat the phonons,

and ∆Eeq
el+u(Ti) is the more relevant melting energy.

The critical fluence Fc for the insulator-metal transition versus the initial

temperature Ti before the pump for Ephoton � ∆gap is shown in blue dots in

Figure. 2.6. To compare the photoinduced and thermodynamic insulator-metal

transitions, we calculate the thermodynamic CO melting energy ∆Etot(Ti) at

temperature Ti < Tc for the whole system including the phonon thermal reservoir

according to

∆Etot(Ti) = Etot(Tc)− Etot(Ti), (2.31)

where

Etot(T ) =

∫ ∞
−∞

εfFD(ε, T )De(ε, ueq(T ))dε+Ku2
eq(T )

+

∫ ∞
0

ωbω(T )Dp(ω)dω. (2.32)

The result shown in purple line in Figure 2.6 indicates that the energy required for the

photoinduced phase transition Fc(Ti) is substantially lower than the energy required
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for the thermodynamic phase transition ∆Etot(Ti) for the model system, because

for the photoinduced transitions there is insufficient time to heat the incoherent

phonons. We also find the thermodynamic melting energy without the incoherent

phonons ∆Ee+u(Ti) shown in orange line in Figure 2.6, by excluding the last term

in Equation (2.32) and calculating the difference between Tc and Ti. The critical

fluence Fc(Ti) is greater than ∆Ee+u(Ti), indicating that a part of the energy initially

deposited to the electron system leaks to the phonon thermal reservoir before the high

energy electron and hole pairs cascade down to the states near the gap and initiate

the insulator-metal transition.

2.5.3 Nonequilibrium Dynamics Induced by Photons with Ephoton = ∆gap

In this subchapter, the results of the simulations with Ephoton = ∆gap are presented,

particularly before 1.5 ps when the dynamics shows a behavior different from the

case of high photon energy Ephoton � ∆gap. The dynamics of the square of the

normalized distortion ū2 and the square of the normalized order parameter δn̄2 are

shown in Figures 2.7(c)-2.7(e) for three values of the fluence F = 0.97, 1.83, and

5.65 meV/site, all above the critical fluence Fc = 0.91 meV/site. At t = 0, while

ū2 still decreases continuously, the electronic parameter δn̄2 jumps abruptly by the

amount that increases with the fluence F . This jump in δn̄2 occurs because the

electrons with energies right at the gap, which are relevant to the CO, are directly

excited by the optical pump. Figure 2.7(e) shows that the electronic order virtually

vanishes and remains close to zero for a high enough fluence with Ephoton close to

∆gap. The energy of the electrons and holes excited by the optical pump near the gap

is strongly coupled to ū and gives rise to oscillating effective electron temperature

Teff , as shown in Figure. 2.7(a) for F = 0.97 meV/site. With the low energy

of the photoexcited electrons, the initial electron thermalization reduces ∆Nupper,

as indicated in Figure 2.7(b), very different from Ephoton � ∆gap case shown in
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Figure 2.5(e). Figures 2.7(c)-2.7(e) also show that the period of oscillation depends

sensitively on time and the fluence, which will be analyzed in more detail in the next

subchapter.

Red dots in Figure. 2.6 show the critical fluence Fc versus the initial temperature

Ti for Ephoton = ∆gap and the inset in Figure. 2.6 displays Fc versus Ephoton at Ti =

135 K. As the photon energy decreases from Ephoton � ∆gap to Ephoton = ∆gap,

the critical fluence Fc(Ti) reduces by about 60%, toward the thermodynamic melting

energy ∆Ee+u(Ti) without incoherent phonons. The melting of the CO is greatly

facilitated by exciting the electrons close to the gap, because photons in the optical

pump directly alter the CO and more energy is used for the CO melting.

2.5.4 Dynamics of Energy Landscape and Coherent Oscillation Frequency

The energy landscape plays an important role in both thermodynamic and photoinduced

phase transitions. We calculate the dynamic energy landscape U(u, t) according to

U(u, t) =
1

N2

∑
lk

εlk(u)flk(t) +Ku2, (2.33)

where the first term, the electron energy summed over the occupation, represents the

electron-lattice coupling, and the second term represents the vibrational potential

energy from ion-ion interactions. In the first term, the electron distribution flk in the

band and momentum indices is independent of the distortion u, because u is varied

adiabatically. Strikingly different early-time energy landscape dynamics are found for

different photon energies, as shown in Figure 2.8. Video simulations of U(u, t) are

provided in the supplementary material. Figures 2.8(a) and 2.8(c) display the results

for Ephoton � ∆gap. The energy landscape right after the optical pump at t = 0 [red

line in Figure 2.8(a)] is close to a vertical shift of the energy landscape before the

pump at t < 0 (black line), because the electronic excitations far away from the gap do

not couple strongly to the periodic distortion u. Subsequently, the energy landscape
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peak in Eq. (2.17). Adapted from Ref. [77].
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changes from a double-well (red and orange lines) to a single-well potential (green and

cyan lines), and as the effective temperature Teff drops below Tc the energy landscape

becomes double-well again (dark blue and purple lines). Figure 2.8(c) shows the full

energy landscape dynamics in U -u-t space, along with the dynamics of the distortion

u. Energy landscape changes from a double-well to a single-well during the first

oscillation in u, resulting in a slow first oscillation, as discussed in more detail later

in this subchapter.

The energy landscape dynamics for the Ephoton = ∆gap case in Figures 2.8(b)

and 2.8(d) show a behavior very different from the Ephoton � ∆gap case, particularly

during t < 3 ps. With the CO state directly destroyed by the optical pump, the

energy landscape right after the optical pump [red line in Figure 2.8(b)] already

has a metallic single-well potential. Comparison between Ephoton � ∆gap case and

Ephoton = ∆gap case in Figure 2.8 reveals that, when the pump energy is tuned at the

gap, the change in the shape of the energy landscape occurs in the time scale of the

pump pulse width, resulting in much faster and more energy efficient melting of the

CO phase, which could be important in using such phenomena for ultrafast switching

devices.

The energy landscape dynamics for the Ephoton = ∆gap case in Figure 2.9 shows

a behavior very different from the Ephoton � ∆gap case in Figure 2.8, particularly

during t < 3 ps. Figures 2.9(a) and 2.9(b) display the dynamics of the energy

landscape for the pump fluence F above and below the critical fluence respectively,

with Figure 2.9(a) corresponding to the case shown in Figure 2.7(a). With the CDW

state directly destroyed by the optical pump for Figure 2.9(a), the energy landscape

right after the optical pump (red line) already has a metallic single-well potential. The

harmonic coefficient of this energy landscape right after the optical pump increases

with the pump fluence F , consistent with the photoinduced stiffening of the phonon

mode coupled to the CDW [red dots in Figure. 2.10(b)] and the Kohn anomaly [blue
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dots in Figure 2.3]. Even for the case of F < Fc shown in Figure 2.9(b), the energy

landscape right after the optical pump (red line) is not a simple vertical shift of that

before the pump (black line), but becomes shallower with the minimum distortion

closer to zero because the energy landscape is strongly tied to the states near the

gap. Comparison between Figures 2.8 and 2.9 reveals that, when the pump energy

is tuned at the CDW gap, the change in the shape of the energy landscape occurs in

the time scale of the pump pulse width, resulting in much faster and more efficient

melting of the CDW phase, which could be important in using such phenomena for

ultrafast switching devices.

Energy landscape dynamics can be experimentally observed through the time-

dependent frequency of coherent oscillations. To analyze the correlation between the

energy landscape and the frequency of the oscillation for the model, we first find the

angular frequency Ω = π/(tn+1−tn) versus time t = (tn+1+tn)/2, where tn is the time

for the n-th local maximum of ū2(t). Figure 2.10(a) displays the results for two cases

of Ephoton = ∆gap [cases of Figures 2.7(c) and 2.7(d)] and two cases of Ephoton � ∆gap

(including the case in Figure 2.5). For comparison, Figure 2.10 also shows the bare

angular frequency Ωbare without electron-lattice coupling and the equilibrium angular

frequency Ωeq for the equilibrium double-well potential before the pump [see dotted

black lines in Figures 2.8(a) and 2.8(b)]. The results reflect the rapidly changing

energy landscape, as the excited electrons and holes redistribute in ways that depend

on the photon energy and the fluence. For Ephoton = ∆gap shown in red symbols

in Figure 2.10(a), instantaneous melting of CO leads to Ω either close to or higher

than Ωeq right after the optical pump, depending on whether F ≈ Fc or F � Fc.

When the energy landscape is about to change from a single-well to a double-well

around 2 ps, the energy landscape becomes highly anharmonic with the flat bottom

of potential well [see the curve for t = 2 ps in Figure 2.8(b)], reflected in a small

Ω < Ωeq around 2 ps in Figure 2.10(a). In contrast, for Ephoton � ∆gap shown in blue
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symbols in Figure 2.10(a), the situation is reversed. The energy landscape starts out

with a double-well that turns into a single-well, reflected in a small Ω < Ωeq right

after the pump. The angular frequency Ω increases after melting of CO and remains

almost constant for t = 1 ∼ 2 ps because the energy landscape remains single-well

till much later t ≈ 12 ps.

From the first half-oscillation we take the initial angular frequency Ω1st and plot

with respect to the fluence F in Figure 2.10(b) for Ephoton = ∆gap and Ephoton = 2 eV

� ∆gap. The corresponding critical fluences Fc are also shown in vertical dashed lines.
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Much faster increase in Ω1st with the fluence for Ephoton = ∆gap reflects the dominant

effect of the states near the gap on the energy landscape. Transient stiffening of

the phonon mode by the optical pump has been identified in a CDW phase of CeTe3

(Reference. [29]), and is consistent with the Kohn anomaly, [27, 71] that is a softening

of the phonon mode responsible for the CO or CDW when approaching Tc from above.

2.5.5 Nonthermal Electron Distribution and Electron Energy Relaxation

Nonthermal electron distribution could give rise to dynamic behaviors significantly

different from the predictions of models based on thermal electron distribution, such

as the absence of divergent electron relaxation time at low temperatures in metals

that contradicts the prediction from the two-temperature model. [25, 26, 1, 8, 35] In

this subchapter, we discuss the character and the origin of the nonthermal electron

distribution during the photoinduced insulator-metal transition and the reopening of

the gap. The high photon energy case shown in Figures 2.4 and 2.5 is analysed as a

specific example.

The distribution function f(ε, t = 0) right after the optical pump and the

equilibrium Fermi-Dirac distribution function fFD(ε, Teff(t = 0)) with the same energy

are schematically drawn in Figure 2.11(a). Two typical electron-electron scattering

processes that would change f(ε, t = 0) closer to fFD(ε, Teff(t = 0)) are also shown

in green and blue arrows in Figure 2.11(a), which indicates the net electron transfer

from the lower to the upper band responsible for the rapid rise of ∆Nupper during the

first 1 ps [Figure 2.5(e)].

The reopening of the CO gap results in another stage with nonthermal electron

distribution [Figure 2.5(d)]. As shown in Figure 2.4(b) for t = 18 ps, the difference

between the actual distribution and the thermal distribution is largest near the gap.

Figure 2.11(b) explains schematically why this happens. The distortion u affects

energy levels near the gap most sensitively. Adiabatic opening of the gap pushes
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Figure 2.11 (a) Schematic diagram showing electron transfer from the lower to
the upper band through two typical electron-electron scattering processes (blue and
green arrows) right after the optical pump with Ephoton � ∆gap. The black and
the red lines represent the actual electron distribution and the corresponding Fermi-
Dirac distribution, respectively. (b) Schematic diagram showing the effects of the gap
reopening on fε. The gray line shows the actual distribution one time step ∆t earlier.
The black and the red lines represent the actual and the Fermi-Dirac distributions.
Adapted from Ref. [77].
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electron and hole energy levels up without changing the occupation flk of the state

|lk〉, as indicated by arrows in Figure 2.11(b). This shift contributes to the increase

of the effective temperature Teff and competes against the cooling by the phonon

thermal reservoir, which gives rise to a particularly slow electron energy relaxation of

exponential decay rate r ≈ 0.013 ps−1. [Figure 2.5(a)].

The dynamics of the CO gap plays an essential role for the relaxation of the

electronic energy shown in Figure 2.5(a) in two aspects. First, the size of the CO gap

directly affects the energy transfer from the electron to the phonon system, because

phonons with energy smaller than the CO gap cannot participate in electron energy

decay across the gap, limiting the thermal conductivity between the electron and the

phonon system. This explains the order-of-magnitude increase of the relaxation time

at the onset of the CO gap reopening. Second, the reopening of the CO gap pushes

up the energy of the excited electrons and holes adiabatically, competing against the

cooling of the electron system by the phonon thermal reservoir. The rapid increase of

the CO gap makes the energy relaxation particularly slow right after Teff drops below

Tc.

2.6 Comparison with Experiments

We make comparisons between our results and experimental data. The photon

energy of 1.55 eV used to melt CO in Reference [12] corresponds to the CO gap

energy in Pr0.5Ca0.5MnO3, and, therefore, the experimental results can be compared

with our results for Ephoton = ∆gap. Approximately, the normalized off-resonance

structural superlattice peak intensity and the normalized on-resonance charge order

peak intensity in Figure. 2 in Reference [12] correspond to ū2 and δn̄2 in our model.

Large oscillation of the structural superlattice peak intensity and almost complete

suppression of the CO peak intensity in the experiments are consistent with the

evolution of ū2 and δn̄2 shown in Figure 2.7(e) for Ephoton = ∆gap case for our model.
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Experimentally, unlike our simulation results, the energy for the photoinduced

transition is not necessarily smaller than the energy for the thermodynamic transition.

[12, 30, 65] It has been proposed that the observed high critical fluence is related to

the long wavelength distortions, or the changes in unit cell symmetry present in these

materials, which cannot fully relax during the short time scale of photoinduced phase

transitions. This discrepancy between simulation results and experimental results

indicates that the long wavelength distortions, which are not included in the model,

may indeed play an important role in the increase of the critical fluence, competing

against the opposite effect from transient decoupling of incoherent phonons.

Increased energy efficiency of the photoinduced phase transition with a lower

Ephoton found from the simulations (Figure 2.6) has been also observed in exper-

iments. For example, in the CDW phases of 1T -TaS2 (Reference [30]) and VO2

(Reference [65]), as Ephoton is reduced from 1.5 eV to 0.5 eV, the energy required

for the photoinduced transition drops by about 75% and 50% respectively, which are

comparable to about 60% drop of the critical fluence between Ephoton � ∆gap and

Ephoton = ∆gap cases in the simulations.

2.7 Summary

In summary, we have simulated photoinduced melting of charge order using a model

of MO2 square lattice and a phonon thermal reservoir. The stages of CO melting, CO

gap reopening, and thermal relaxation have been identified. During the stage of CO

melting, the dynamics of the periodic lattice distortion is partially decoupled from

and lags behind the dynamics of electronic order parameter due to large inertia of

ions. As the effective electron temperature Teff drops below Tc, electron system enters

the stage of CO gap reopening and its state changes from thermal to nonthermal.

The dynamics during the first few ps after the optical pump has been found

to be sensitively dependent on the photon energy of the optical pump. For the
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photon energy much greater than the CO gap, the dynamics of the lattice distortion

lags behind the dynamics of the electronic CO order parameter during the first few

ps due to the large mass of the ions. For large enough fluences, the CDW phase

melts and refreezes as the phonon thermal reservoir cools the initially hot electron

system. During around 12 – 25 ps in the simulations, the reopening of the CO gap

reduces the electron-phonon scattering channels, hinders the electron transfer from

the upper to the lower band, slows down electron energy relaxation, and gives rise

to a nonthermal electron distribution. Even for fluences too small to melt the CO

phase, we have found qualitatively similar nonequilibrium phenomena as large fluence

cases. Because the initial excitation occurs far away from the CO gap, the energy

landscape shifts vertically along the energy axis without changing the double-well

potential shape at the moment of the optical pump, which becomes shallower and a

single-well potential, if the fluence is large enough, and eventually falls back to the

original energy landscape.

For the photon energy tuned at the CO gap, the CO order parameter is

suppressed immediately due to the direct modification of the CO by the photons,

followed by much slower lattice dynamics. The frequency of the coherent oscillation

shows a strong dependence on time. The simulations have further shown an increase

of the oscillation frequency with the fluence due to the partial decoupling between

the electrons and the lattice distortion. Because the initial excitation occurs right at

the CO gap, the shape of the energy landscape changes in the time scale of the pump

pulse width, for example, into a single-well potential for a large enough fluence.

For our model system, which does not include long wavelength lattice distortions,

it has also been found that the critical fluence for the photoinduced CO-metal

transition is smaller than the energy required to melt the CO thermodynamically,

because only the electron system and a particular mode of the lattice distortion are

primarily involved without much involvement of incoherent phonons with a large
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specific heat. In particular, the critical fluence decreases, making photoinduced

transitions more energy efficient, as the photon energy is lowered. If the photon

energy is tuned at the CO gap, almost all energy given to the electron system by the

optical pump is used to melt the CO, leading to a critical fluence very close to the

energy needed to heat just electrons and the periodic lattice distortion to Tc.

The results have shown intricately coupled dynamics of electrons, periodic

lattice distortions, and incoherent phonons in nonequilibrium states excited by the

optical pump in CO materials. Our approach can be extended in various ways, in

particular by including more basis states in the tight-binding Hamiltonian. Inclusion

of multiple orbitals would allow the study of the dynamics of orbital ordering in

addition to the dynamics of charge ordering, as found in Reference. [12]. Adding spin

degrees of freedom and on-site Coulomb interaction [52] would allow the simulations

of dynamics of magnetic ordering found in some CO or CDW materials. The study of

such extended models would shed insight on how to make ultrafast switching devices

out of CO or CDW materials.

2.8 Supplementary Material

See supplementary material for video simulations of the dynamics of electron distri-

bution function f(ε) together with the energy landscape U(u) for Ephoton � ∆gap

and Ephoton = ∆gap cases.

[ftp://ftp.aip.org/epaps/journ_appl_phys/E-JAPIAU-123-022812]
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CHAPTER 3

ELECTRONIC PROPERTIES OF STRUCTURAL TEXTURES IN

MODEL TOPOLOGICAL INSULATOR WITH

TOPOLOGY-STRUCTURE COUPLING

The work in this chapter was done in collaboration with Prof. Emil Prodan, from

Department of Physics at Yeshiva University, and Prof. Keun Hyuk Ahn from

Department of Physics at New Jersey Institute of Technology.

3.1 Introduction

Research on topological materials has been rapidly progressed over the past decade. [39,

31, 40] One of the oldest models of topological insulator is the one-dimensional (1D)

Su-Schrieffer-Heeger (SSH) model [10, 49, 41], for which zero energy states could be

present at the open edges or at the antiphase boundaries due to topological reasons.

Depending on the sign of distortions, 1D SSH system could be either a topological

or a regular insulator, which can be called ’topology-structure coupling’. For two-

dimensional (2D) or three dimensional (3D) cases, more interesting structural textures

are possible, for example, twin and antiphase boundaries and their mixtures. [4, 7]

In this dissertation work, we investigate topologically protected zero energy states

within structural textures for model 2D insulator with topology-structure coupling.

We analyze electronic properties of twin boundaries (TB) and antiphase boundaries

(APB) and their mixtures, using both numerical and topological approaches. We

propose an experiment that can realize our results in meta-materials.
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Figure 3.1 (a) 2D square lattice; (b) Vertical rectangle with x-distortion; (c)
Horizontal rectangle with y-distortion.

3.2 Model

3.2.1 Model 2D structure

As a model structure, we consider a 2D structure with a uniform and staggered

distortion shown in Figure 3.1. Starting from a square lattice, a rectangular uniform

distortion is considered, on top of which a staggered distortion with a wave vector

(π, π) is superimposed either along y axis for horizontal rectangle or along x axis

for vertical rectangle. Change of the phase for the staggered distortion gives rise

to antiphase boundaries, while the change of orientation for uniform rectangular

distortion gives rise to twin boundaries. More complicated structural textures can also

arise by mixing antiphase and twin boundaries in various patterns. For convenience,

we introduce two different ways of indexing atoms. For the lattice distortions,

i = (ix, iy) designates the atom originally at (ix, iy) in the square lattice, with x

and y axes chosen along the nearest neighbors. For electronic properties, which will

be discussed in the next subchapter, a two-atom unit cell is chosen with the unit cell

index n = (n1, n2), which represents the unit cell at n1a1 + n2a2 (a1, a2: primitive

vectors). Two atoms in the unit cell are represented by atom A and B.
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Figure 3.2 The model system of an AB2 square lattice with periodic boundary
conditions. Arrows show the displacements, represented by dx and dy in different
directions. 1 + e and 1− e represent the distance between neighbor A and B sites, in
vertical and horizontal direction, respectively. The displacement parameters, dx and
dy represent the displacement of A ion in unit cell at 0 · ~a1 + 0 · ~a2.

3.2.2 Electron Hamiltonian, Chirality, and Band Structure for Uniform

States

In this subchapter, we present the electronic Hamiltonian for distorted lattice

without antiphase or twin boundaries. To include both distorted configurations of

Figure 3.1(b) and 3.1(c) in a single Hamiltonian, we consider the distortions shown in

Figure 3.2, in which e and dx [dy] parameterize uniform and staggered distortion along

x [y] direction. To be specific, we choose unit cell and primitive vectors, a1 and a2,

as shown in Figure 3.2, which is suitable for the analysis of 135◦ or 45◦ direction

APB/TB/open edge as explained further in the next subchapter. By assuming

one spinless electron state at each site and electron hopping that linearly depends

on inter-atomic distance, we obtain the following Hamiltonian, in which hopping

amplitude for undistorted lattice and the linear coefficient of hopping amplitude
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versus distance are chosen as 1 and -1, respectively.

H =
∑
n

− (1− e+ 2dx)C
†
n,ACn,B + H.c.

− (1− e− 2dx)C
†
n,BCn+(1,1),A + H.c.

− (1 + e+ 2dy)C
†
n,ACn+(−1,0),B + H.c.

− (1 + e− 2dy)C
†
n,BCn+(0,1),A + H.c. (3.1)

By Fourier transformation to k-space, we obtain

H =
∑
k

C†k,A
C†k,B


T  0 h(k1, k2)

h∗(k1, k2) 0


Ck,A

Ck,B

 (3.2)

where

h(k1, k2) = − (1− e+ 2dx)− (1− e− 2dx)e
−i(k1+k2)

− (1 + e+ 2dy)e
−ik1 − (1 + e− 2dy)e

−ik2 (3.3)

The Hamiltonian is chiral with respect to the Pauli matrix σ3, that is,

σ3H(k1, k2)σ3 = −H(k1, k2), (3.4)

which indicates that the system could have non-trival topological properties in

insulating phase.

The band structure is given by

εlk(k1, k2) = (−1)l |h(k1, k2)| (3.5)

with the first Brillouin zone Ω1BZ = {k| − π < k1 ≤ π,−π < k2 ≤ π} and l = 0, 1 For

dy = 0[dx = 0], we obtain a metal-insulator phase diagram in e− dx[(−e)− dy] plane

shown in Figure 3.3, where insulating phase arises when e < 0, dx 6= 0[e > 0, dy 6=

0]. This indicates a possible topological insulator phase and zero-energy gap states,

similar to graphene or 1D SSH model.
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Figure 3.3 The phase diagram for the system.Red regions are the insulator phase,
blue regions are the metal phase. dark green line is the semi-metal phase.
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Table 3.1 Winding Number ν for Figure. 3.2

e3 s̃x s̃y ν

+ 0 + 0

+ 0 − -1

− + 0 0

− − 0 -1

3.2.3 Winding Number ν and Topology

With the chiral symmetry, the Hamiltonian is of type III A in the classification of

topology. The Chern number is zero, but winding number could be non-zero. For the

topological analysis of antiphase/twin/edge states, the unit cell and primitive vectors

should be chosen as follows. First, APB, TB, and open edges should not cut through

the unit cell. Second, one of the primitive vectors, for example a2 in Figure 3.2 for

135◦ boundaries, should be parallel to the direction of APB, TB, and open edges.

With such choices, the winding number ν is defined as:

ν =
1

2πi

∫ 2π

0

dk2
∂

∂k2

lnh(k1, k2) (3.6)

which depend on the direction of antiphase/twin/edge boundaries.

The choice of unit cell and primitive vectors in Figure 3.2 is suitable for the

analysis of APB/TB/open edge along 135◦ direction. The calculated winding number

ν’s for four possible degenerate distorted states in Figure 3.1 are shown in Table 3.1.

It reveals that winding number depends on the sign of e3 and s̃x, s̃y, which indicates

the possibility of zero energy gap states for certain TB/APB/open edge along 135◦

direction, as discussed in more detail later.
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Figure 3.4 Atomic scale distortion modes for a square lattice. [7] Signs of dx and
dy are the same with the signs of s̃x & s̃y. Sign of e coincides with sign of e3.

3.2.4 Lattice Energy for Relaxed Structural Textures

Lattice distortion field should satisfy the compatibility, that is, the bonds between

atoms should not be broken or overlap with each other. Further, abrupt charge

of distortion is likely to cost a lot of lattice energy. Therefore, gradual change of

distortion field would be more realistic. To take both effects into account, structural

textures are obtained by relaxing an energy expression Elattice, written in terms of

modes that represent the lattice distortions. Specifically, distortion of square lattice

can be expressed in terms of five distortion modes, e1, e2, e3, sx, and sy, shown in

Figure 3.4, as proposed by Ahn et al. [4, 7, 3, 2]

We further define s̃x and s̃y:

s̃x(ix, iy) = (−1)ix+iysx(ix, iy)

s̃y(ix, iy) = (−1)ix+iysy(ix, iy) (3.7)

The simplest energy expression Elattice, which gives rise to the states in Figure. 3.1 as

ground states, is as follows.
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Elattice = Es + El + Ec, (3.8)

Es =
∑
n

[
B

2
(s2
x + s2

y) +
G1

4
(s4
x + s4

y) +
G2

2
s2
xs

2
y)

]
n

(3.9)

El =
∑
n

[
A1

2
e2

1 +
A2

2
e2

2 +
A3

2
e2

3

]
n

(3.10)

Ec =
∑
n

[
C3(s2

x − s2
y)e3

]
n

(3.11)

where Es is the energy for short-wavelength modes includes all symmertry-allowed

terms up to the fourth order. El represents the energy for long-wavelength modes,

and Ec represents the coupling between the long- and short-wavelength modes.[7]

With e1 = e2 = 0 and e3 = −C3(s2
x−s2

y)/A3, we find the expression of minimum

total energy per site for the homogeneous state. [7]

Eh,min
tot

N2
=

B

2
(s2
x + s2

y) +
1

4
(G1 −

2C2
3

A3

)(s4
x + s4

y)

+
1

2
(G2 +

2C2
3

A3

)s2
xs

2
y. (3.12)

With B < 0, G1 − 2C2
3

A3
> 0, G2 +

2C2
3

A3
> 0, and G2 +

2C2
3

A3
> G1 − 2C2

3

A3
, the global

minimum occurs at sx = ±s0, sy = 0 and sx = 0, sy = ±s0, where s0 =
√

−B

G1−
2C2

3
A3

.

We choose the parameters A1 = 7, A2 = 4, A3 = 6, B = −5, C3 = 20, G1 = 180,

G2 = 100, which satisfy such conditions.

3.3 Results

In this chapter, we present the results obtained by both numerical method and

topological analysis for various antiphase and twin boundaries and their mixed

structural textures.
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3.3.1 Antiphase boundaries along 135◦

First, we consider the APB along 135◦ for e3 < 0, which is obtained by relaxing

appropriately chosen initial state of lattice distortion. The distortion pattern is

schematically shown in Figure 3.5. As mentioned earlier, the unit cell and the

primitive vectors are chosen as identical to those in Figure 3.2. With e3 < 0, s̃x <

0, s̃y = 0 for the bottom left domain and e3 < 0, s̃x > 0, s̃y = 0 for the top

right domain in Figure 3.5, the winding number ν is −1 and 0, respectively [see

Table 3.1], and the antiphase boundaries separates domains of different winding

numbers. Therefore, zero energy states are expected within APB when APBs are

separated by infinite distance. By solving electronic Hamiltonian numerically, we

obtain band structure εm(k1) for a lattice with 32×32 unit cells and periodic boundary

condition. The results are shown in Figure 3.6, in which the APB states and bulk

states are marked. As expected, bulk band has a gap. The energies of APB states

approach zero, as the system size increases, consistent with the topological analysis.

Real space plot of APB states further show that these states are localized on A-site

for one APB and on B-site for the other APB, which we also prove analytically.

Winding number in Table 3.1 indicate that APB along 135◦ between e3 >

0, s̃y < 0, s̃x = 0 domain and e3 > 0, s̃y > 0, s̃x = 0 would also host zero energy

APB states, because the winding numbers are ν = 0 and ν = −1, respectively. From

symmetry, APB along 45◦ would also host zero energy APB states.

3.3.2 Antiphase Boundaries Along 90◦ and 0◦

Next, we consider APB along 90◦ and 0◦. Because 90◦ line would cut through unit

cell in Figure 3.2, a different unit cell and primitive vectors should be chosen for

90◦ APB/open edges, as shown in Figure 3.7. Table 3.2 shows winding number ν

calculated for different cases of degenerate ground states in Figure. 3.1. Relaxed

APB structure is obtained using Elattice. An example of APB between two domains

52



Figure 3.5 APB along 135◦. Red line shows the APB, and blue circles show the
unit cell.
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Figure 3.6 Band structure for APB along 135◦ with the relaxed distortion.

with e3 < 0, s̃x > 0, s̃y = 0 and e3 < 0, s̃x < 0, s̃y = 0 is shown schematically in

Figure 3.7. The two domains have different winding number, as indicated in Table 3.2.

Therefore, zero energy states are expected within APB. Numerical results of the band

structure εm(k1) shown in Figure 3.9(a) are consistent with the topological analysis.

Table 3.2 further indicates that while 90◦ APB between e3 > 0, s̃x 6= 0, s̃y = 0

domains host zero energy gap states, 90◦ APB between e3 > 0, s̃x = 0, s̃y 6= 0

domains have the same winding number ν and would not host zero energy states.

We further study 0◦ APB between s̃x > 0 and s̃x < 0 domains with e3 < 0

and s̃y = 0. The lattice distortion is again obtained by relaxing Elattice from

an appropriately chosen initial lattice distortion, and is schematically shown in

Figure 3.8. 90◦ rotation of 0◦ APB in Figure 3.8 corresponds 90◦ APB with e3 > 0,

s̃y 6= 0, s̃x = 0 listed in Table 3.2, and therefore, the domains would have the same
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Figure 3.7 When APB parallel y-axis, circle show the way how to choose unit cell.

Figure 3.8 When APB parallel x-axis, circle show the way how to choose unit cell.
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Figure 3.9 (a) Band structure for APB at 90◦ in Figure 3.7; (b) Band structure for
APB at 0◦ in Figure 3.8 .

Table 3.2 Winding Number ν that Applied to 90◦ Boundaries in Figure. 3.7

e3 s̃x s̃y ν

+ 0 + 0

+ 0 − 0

− + 0 1

− − 0 -1
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Table 3.3 Winding Number ν for Figure. 3.8

e3 s̃x s̃y ν

+ 0 + 1

+ 0 − -1

− + 0 0

− − 0 0

winding number and zero energy states are not expected. The topological analysis

is consistent with the band structure εm(k1) in Figure 3.9(b), which shows no zero

energy states. Winding numbers for the unit cell and primitive vectors in Figure 3.8

are listed in Table 3.3.

3.3.3 Twin Boundaried Along 135◦

We also study electronic properties of twin boundaries. First, it is well known that TB

along either 45◦ or 135◦ direction has a lower elastic energy cost at the TB. Therefore,

we focus on TB along 135◦. Both Figures 3.10 and 3.11, show a domain with e3 < 0

at the lower left corner and a domain with e3 > 0 at the upper right corner, separated

by 135◦ TB. The difference is the relative sign of s̃x and s̃y. In Figure 3.10, s̃x and s̃y

have the same sign, for example, s̃x > 0 and s̃y > 0 for the two domains, as indicated

in Figure 3.10. In this case, relaxation of the lattice energy Elattice, leads to the TB

structure as schematically shown in Figure 3.10, for which the center of TB profile is

at the center of the bonds. In contrast, s̃x and s̃y have the opposite signs s̃x > 0 and

s̃y < 0 for the two domains, shown in Figure 3.11. In this case, we find the center of

TB lies at sites when the lattice energy Elattice is relaxed, as indicated in Figure 3.11.

From Table 3.1, the winding numbers of domains separated by TB are identical

for Figure 3.10 case, while different for Figure 3.11 case. The band structure shown
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Figure 3.10 TB along 135◦, and beside the TB, s̃x, s̃y have the same sign.
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Figure 3.11 TB along 135◦, and beside the TB, s̃x, s̃y have the opposite sign.
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Figure 3.12 (a) Band structure for TB along 135◦ which separates domains with s̃x,
s̃y of the same sign, (b) Band structure for TB along 135◦, which separates domians
with s̃x, s̃y of opposite signs.

in Figure 3.12(b) reveals the presence of zero energy TB states for Figure. 3.11 case,

while Figure 3.12(a) reveals the absence of zero energy TB states for Figure 3.10,

consistent with the topological analysis.

3.3.4 Texture of Mixed Twin and Antiphase Boundaries

We further study the electronic properties of structural textures with mixed APB and

TB. Specifically, we consider the texture schematically, shown in Figure 3.13(a), in

which 45◦-APB and two kinds of 135◦ TB coexist. From the winding number analysis,

zero energy gap states are expected only along the thick black line in Figure 3.13(a).

We verify that by calculating local DOS at zero energy shown in Figure 3.13(b).

Indeed, the zero energy states are localized only particular APB and TB, as predicted

by the topological analysis.

As mentioned at the beginning, the flat bands found for the system could be

useful to create stable or slowly moving localized states. While the 2D Lieb lattice

provides bands that are flat in the 2D Brillouin zone, our 2D lattice provides bands

that are flat in the 1D subspace of the 2D Brillouin zone for states localized within

the TB/APB/OE. Such difference gives a unique possibility to our lattice, that is,
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Figure 3.13 (a) Schematic drawing of structural texture with both APB and TB.
Blue regions have e3 > 0 and s̃x < 0, red region have e3 < 0 and s̃y < 0, and green
region have e3 > 0 and s̃x > 0. Thick black lines indicate the boundaries where
zero-energy states are expected from topological analysis. (b) Local DOS at E = 0.

the tunability of the band dispersion or the group velocity of localized states by the

distance between TB/APB/OE. As a demonstration, we consider a pair of 135◦ APB,

similar to Figure 3.14(b), but with a varying distance D measured along the horizontal

direction, for 64 × 64 unit cells, and find that the dispersion of zero-mode states

increases as D decreases. The approximate average group velocity is calculated as

cg = [εmax
APB(k2 = 0)− εmax

APB(k2 = −π)] /π, where εmax
APB(k2) is the largest among the four

zero-mode APB state energies. The result of cg versus D is shown in Figure 3.14(g),

which reveals rapid increase of cg as D decreases below around 15. This tunability

could be useful to design devices with controlled speed of propagation of localized

states.

To examine whether the propagation of such localized zero-mode states could

change its directions without current loss, a pair of zig-zag APB schematically shown

in Figure 3.15(a) for 64×64 atoms are considered, where three domains with a vertical

rectangular distortion have the phase of the staggered distortion dx positive, negative

and positive from left to right. The actual distortion pattern for the lower half is

shown in Figure 3.15(b). Electronic energy spectrum for the whole distorted lattice is
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Figure 3.14 (color online) (a), (b), (c) Band structures for the lattices with APB
shown in (d), (e) and (f), respectively. APB zero-mode bands are present in (a) and
(b), but are absent in (c). Highly dispersive bands inside the gap in (c) are not of
topological origin. (d), (e), (f) Lattices with APB in 135◦ direction for (d) and 0◦

direction for (e) and (f). In (f), the colors represent the integrated electron density
for the states within εm = ±0.1. (g) Average group velocity cg versus the number
of bonds δ in the horizontal direction between 135◦ direction APB. Adapted from
Ref. [76]
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Figure 3.15 (color online) (a) Schematic sketch showing a pair of zig-zag APB with
e < 0 and dy = 0 for 64× 64 atoms with periodic boundary conditions. From left to
right, the phase of dx changes from positive to negative back to positive for the three
domains; (b) Actual distortion and integrated electron density of zero mode states
for the lower half of (a); (c) Plot of energy for eigenstates, εm, versus the index m for
the states in the order of increasing energy. Adapted from Ref. [76]
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found numerically and energy eigenvalue εm versus the index of energy eigenstates m

in the order of increasing energy is displayed in Figure 3.15(c), which shows that the

zero-mode APB states are well separated from bulk states in energy in spite of kinks.

The integrated electron density for these zero-mode states shown in Figure 3.15(b)

indicates that these modes are confined at APB and the current would not be lost at

kinks. Such patterned metamaterials, for example, optical crystals, could be used to

guide slowly propagating localized states along desired paths.

Although we have used electronic Hamiltonian as a specific example, our model

can be applied to other systems, such as photonic or mechanical metamaterials or cold

atom lattices. Because chirality symmetry is essential, the metamaterials should have

identical on-site energies, or resonances, at all sites, including TB/APB/OE, and the

nearest neighbor coupling should have the variations of weakly coupled shifted SSH

chains as studied here.

We discuss what kinds of electronic materials would have topological properties

of the Hamiltonian discussed here. First, the materials need to have dimerization,

as our 2D model has. Second, the dimerized chain shift alternatively in a direction

perpendicular to the chain. Unfortunately, we are not aware of such 2D electronic

materials, and perhaps such 2D electronic materials do not exist. However, 3D

materials may exist. Then, how could we extend our 2D model to 3D space. Because

it is important that the nearest neighbor SSH chains are shifted from each other, the

3D configuration that would have flat topologically protected surface bands might

be the configuration in which x-direction SSH chain are shifted and stacked in y

and z-directions. The materials which have such dimerized ground states would have

topological properties of our Hamiltonian. Although we could not provide explicit

chemical formula for such materials, we hope our work motivates experimentalists to

search such materials and topologically protected flat energy bands localized within

twin and antiphase boundaries and at the open surface.

64



3.4 Summary

In summary, using a 2D lattice with topology-structure coupling, we have demon-

strated the presence of flat zero-mode energy bands in the entire 1D Brillouin zone for

states localized within TB/APB/OE. It has been found that the slow group velocity

of these localized zero-mode states could be controlled by the distance between the

boundaries and guided through a zig-zag pattern. We propose our model can be

realized in various metamaterials.
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CHAPTER 4

FLAT FREQUENCY BANDS AT OPEN EDGES OF TWO

DIMENSIONAL SPINNER SYSTEMS

The work in this chapter was done in collaboration with Prof. Camelia Prodan, David

Apigo, Kai Qian, and Prof. Keun Hyuk Ahn from Department of Physics at New

Jersey Institute of Technology, and Prof. Emil Prodan, from Department of Physics

at Yeshiva University.

4.1 2D Spinner system and effective Hamiltonian

In this chapter, we propose possible experimental realization of our model in Section 3.

Although 2D materials with distorted ground state like Figure 3.1 and associated

electronic Hamiltonian like Equation [3.1] are not known, 2D meta-materials with

Hamiltonians like Equation [3.1] could be fabricated. As a specific example, spinner

model Hamiltonian like the ones studied in References [9, 58] are presented here.

With four-armed spinners schematically shown in Figure. 4.1(a) that have magnets

of different color-coded strengths, a pattern like Figure. 4.1(b) can be generated. The

Lagrangians for three pairs of interacting spinners in Figure. 4.1(c)–4.1(e) are written

as

Lgg =
1

2
I(ϕ̇2

1 + ϕ̇2
2)− 1

2
αg(ϕ

2
1 + ϕ2

2)− βgϕ1ϕ2,

Lbb =
1

2
I(ϕ̇2

1 + ϕ̇2
2)− 1

2
αb(ϕ

2
1 + ϕ2

2)− βbϕ1ϕ2,

Lrr =
1

2
I(ϕ̇2

1 + ϕ̇2
2)− 1

2
αr(ϕ

2
1 + ϕ2

2)− βrϕ1ϕ2, (4.1)

where subscripts g, b, and r represent magnets at the places of green, blue, and red

dots, and αg, αb, αr, βg, βb, and βr are all positive.The Lagrangian for the whole
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A B
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Figure 4.1 (a) The four-armed spinners; (b) A pattern made by the four-armed
spinners; (c) Spinners interacting with green pairs; (d) Spinners interacting with
blue pairs; (e) Spinners interacting with red pairs. Magnets’ south and north poles
are aligned, so that all nearest neighbor interactions are attractive. For example,
A spinner’s all four magnets have north poles pointing outward, whole B spinner’s
magnets have south poles pointing outward.

infinite system can be written as:

L =
∑
n

1

2
I(ϕ̇2

nA + ϕ̇2
nB)− 1

2
αtot(ϕ

2
nA + ϕ2

nB)

− βbϕnAϕnB − βrϕnBϕn+(1,1)A − βgϕnAϕn+(−1,0)B

− βgϕnBϕn+(0,1)A (4.2)

where αtot = 2αg +αr +αg, n = (n1, n2) is the index of unit cell at R = n1a1 + n2a2,

and a1, a2 are promitive vectors shown in Figure 4.1. To make our spinner system

like Figure 1 in Reference [9], we replace one of green magnets by yellow magnet with

strengths αy and βy, as shown in Figure 4.2. The dynamics of the system can be
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Figure 4.2 A pattern made by the four-armed spinners, with magnets of four
different strengths, represented by red, blue, green, and yellow colors. Similar with
Figure 4.1, replace one of green magnets by yellow magnet.
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described by the following Hamiltonian,

4π2If 2 |Ψ〉 = H |Ψ〉 (4.3)

with

Hspinner =
∑
n

αtot |n, A〉 〈n, A|+ αtot |n, B〉 〈n, B|

− βb |n, A〉 〈n, B| − βr |n, B〉 〈n + (1, 0), A|

− βg |n, A〉 〈n + (0, 1), B|

− βy |n, B〉 〈n + (1, 1), A|+ H.c, (4.4)

with αtot = αb + αr + αg + αy. The first two terms represent a constant shift of

energy levels, which do not affect the topological analysis. Comparison between the

remaining four terms and Equation [3.1] reveals the following relations would make

the spinner system and the electron system on distorted lattice with dy = 0 equivalent,

βb = t0(1− e+ 2dx),

βr = t0(1− e− 2dx),

βg = t0(1 + e+ 2dy),

βy = t0(1 + e− 2dy), (4.5)

where the hopping amplitude without any distortion is chosen as t0, a positive number.

By inverting these relations, we obtain

t0 =
βr + βb + βg + βy

4
,

dx =
βb − βr

βr + βb + βg + βy
,

dy =
βg − βy

βr + βb + βg + βy
,

e =
βg + βy − βb − βr
βr + βb + βg + βy

, (4.6)
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Table 4.1 Winding Number ν(135◦) and ν(0◦) Depend on βg, βy, βr, βb.

βg + βy − βb − βr βb − βr βg − βy ν(135◦) ν(0◦)

+ 0 + 0 -1

+ 0 - 1 +1

- + 0 0 0

- - 0 1 0

that is βr + βb + βg + βy > 0. For the electron system studied in Ref [76], the

conditions of dy = 0, e < 0, dx 6= 0 or dy 6= 0, e > 0, dx = 0 result in the gap between

bulk bands. From the above relations between t0, dx, dy, e and (βb, βr, βg, βy),

these conditions for the gap opening are translated to βg = βy,
βr+βb

2
> βg, βr 6= βb

or βr = βb,
βg+βy

2
> βb, βg 6= βy. Antiphase boundary either along 135◦ or 90◦

would host topologically protected oscillation modes. Unlike lattice distortion model

in Figure 3.10 and 3.11, the direction of twin boundary for spinner system is not

restricted to 45◦ and 135◦, but could have 0◦ and 90◦ also and meandering TBs are

also possible. Other meta materials, such as the lattice of semiconductor pillars or

holes, could also simulate the Hamiltonian in Equation 3.1. The winding number

ν(135◦) and ν(0◦) depend on βg, βy, βr, βb as shown in Table 4.1, or equivalently

Table 4.1, obtained from Table I in Ref. [76]. So far, infinite 2D systems with periodic

boundary conditions are considered. Before analyzing 2D systems with open edges,

infinite and finite 1D spinner systems are analyzed in the following subsection.

4.2 1D SSH Spinner System with Open Edges

We first study a 1D spinner system to gain insights on spinner systems, partic-

ularly with open edges. Here, we consider a 1D spinner chain that simulations

Su-SchriefferHeeger Hamiltonian. Following the analogy explored in the previous

subsection and the studies in Refs. [9, 58], we consider 1D chain shown in Figures 4.3
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Table 4.2 Winding Number ν(135◦) and ν(0◦) Depend on βg, βy, βr, βb.

βg + βy − βb − βr βb − βr βg − βy ν(135◦) ν(0◦)

βb = βr <
βg+βy

2
βb = βr βg > βy 0 +1

βb = βr <
βg+βy

2
βb = βr βg < βy 1 +1

βg = βy <
βb+βr

2
βb > βr βg = βy 0 0

βg = βy <
βb+βr

2
βb < βr βg = βy 1 0

and 4.4. The set up in Figure 4.4 has been also used for experiments, which will be

discussed below. The long and short distances (or wide and narrow gap) between

magnets are 8 mm and 5 mm and corresponding α and β parameters are indicated

by subscript L and S in the equations below.

There is an impotent difference between electron systems studied in Chapter. 3

and spinner systems studied here. While the onsite energy at TB/APB/OE is equal

to that inside bulk for electron system, the on-site energy, or resonant energy at

TB/APB/OE may not be the same as that inside bulk for spinner system. That is

because interactions between magnets give both resonant energy parameterized by

α’s and the interaction energy parameterized by β’s. So if we have terminate of

spinners like Figure 4.3, αtot for the spinners at both edges will be different from

spinners inside, which would break the chiral symmetry of the system and invalidate

all topological arguments. To fix this problem, we should add spinners at the end that

are immobile but have magnets like other spinners like Figure 4.4. In that way, all

spinners, inside and at the edges, have the identical resonant energy αtot and the chiral

symmetry is restored, which allows the application of topological arguments. With

these fixed spinners, the Lagrangian for spinner systems like Figure 4.4 is written as:
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Figure 4.3 The 1D spinner system with the open edge. Grey line demonstrated
unit cells.

Figure 4.4 The 1D spinner system with the two fixed side spinners. Grey line
demonstrated unit cells.

L =
1

2
Iϕ̇2

l +
1

2
Iϕ̇2

r +
∑
n

1

2
Iϕ̇2

n

− 1

2
αlϕ

2
l −

1

2
αrϕ

2
r −

1

2

N−2∑
n=1

(α(dn−1) + α(dn))

− 1

2
(αl + α0)ϕ2

0 −
1

2
(αN−2 + αr)ϕ

2
N−1

−
N−2∑
n=0

β(dn)ϕnϕn+1 − βlϕlϕ0 − βrϕN−1ϕr. (4.7)

If we fix the left and right spinner, ϕ̇l, ϕ̇r, ϕl, ϕr are zero. The Lagrangian for the

’fixed two side’ spinner system:

L =
N−1∑
n=0

1

2
Iϕ̇2

n +
N−2∑
n=1

[
−1

2
(α(dn−1) + α(dn))ϕ2

n − β(dn)ϕnϕn+1

]
− 1

2
(αl + α0)ϕ2

0 −
1

2
(αN−2 + αr)ϕ

2
N−1. (4.8)

The dynamics of the system can be described by the Hamiltonian:

f 2 |Ψ〉 = H |Ψ〉 . (4.9)
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where the Hamiltonian as follow:

H =
M−1∑
m=0

(αL + αR)(|m, A〉 〈m, A|+ |m, B〉 〈m, B|)

+ βL(|m, A〉 〈m, B|+ |m, B〉 〈m, A|)

+ βS(|m + 1, A〉 〈m, B|+ |m, B〉 〈m + 1, A|), (4.10)

where m represents the index of unit cell, and α’s and β’s are normalized by 4π2I as

done in Ref. [9].

From Ref. [9], αL = 160, αL = 350, βL = 130, βS = 280 for 5 mm and 8 mm

gaps. From the Hamiltonian, we can get the frequency, and the results are shown in

Table 4.3, in Figure 4.5.

For the ’edge’ states (f = 22.57 Hz and f = 22.59 Hz), we plot the eigenvector

in Figure. 4.6. It shows that only A spinners are oscillating near the left edge while B

spinners are oscillating near the right edge, consistent with the results for electronic

SSH model and topological argument. For easier comparison with experiments, we

also show absolute values of eigenvectors in Figure 4.7.

Professor Camelia Prodan group carried out preliminary measurements, shown

in Figures 4.8 and 4.9.

The label 1-16 in Figure 4.8 represent the index of the spinner, n. Spinner

(n=1) is put into oscillation by actuator and the oscillations of other spinners are

measured by sensors and RMS voltage output from the sensors are plotted versus

frequency of the actuator for different spinners, n = 1, · · · , 16. Although this data

is preliminary, important features are consistent with our theoretical calculations in

Table 4.3, Figure 4.5, 4.6, and 4.7. First, the frequency range of bulk modes is

about 10-18 Hz and 27-31 Hz in experimental data in Figures 4.8, consistent with

calculation foe 10-18 Hz and 26-30 Hz. The frequencies of edge modes in side the

bulk gap are about 21-23 Hz in experiments in Figure 4.8, consistent with about 22.6

Hz predicted in calculation in Table 4.3. Professor Prodan group plotted edge mode
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Frequency (Hz)

Frequency for system with periodic boundary condition

Frequency for system with open edges

Figure 4.5 The frequency for the spinner system with period boundary condition
and with open edges.
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Table 4.3 Frequency (Hz) for 1D Spinner System with Eight Unit Cells

Calculated Frequencies (Hz) for Calculated Frequencies (Hz) for

System with Period Boundary Condition System with Open Edges

10.00 10.30

11.26 11.18

11.26 12.45

14.18 13.96

14.18 15.58

17.33 17.13

17.33 18.41

18.93 22.57

25.69 22.59

26.82 26.09

26.82 26.95

28.61 27.88

28.61 28.72

29.88 29.41

29.88 29.91

30.33 30.23
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Figure 4.6 The values of eigenvector component for the edge modes at each site.

76



0 5 10 15
Index for sites, n

0

0.3

0.6

A
b

so
lu

te
 v

al
u

es
 o

f 
ei

g
en

v
ec

to
r 

co
m

p
o

n
en

ts f = 22.57
f = 22.59

Figure 4.7 The absolute value of eigenvector component for the edge modes at each
site.
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Figure 4.8 Preliminary experimental data for the frequency for the spinner system
with eight unit cells and open edges. This data has been obtained by Prof. Camelia
Prodan, David Apigo, and Kai Qian at New Jersey Institute of Technology.
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Figure 4.9 The experimental movement for edge mode of the spinner system with
open edge. his data has been obtained by Prof. Camelia Prodan, David Apigo, and
Kai Qian at New Jersey Institute of Technology.
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strength versus spinner index n from the RMS voltage measured for the actuator

frequency around 21 Hz, and have shown in Figure 4.9. Comparison with theoretical

prediction in Figure 4.6 show simulating, that is, large components on A-spinners for

the edge mode on left. However, in experimental data, B-spinners also have small but

finite amplitude, unlike the theoretical prediction. Movie of the edge mode oscillation

confirms that spinner 1 and spinner 3 rotate in opposite directions, consistent with

Figure 4.6. The agreements between theory and preliminary experimental data show

the model and topological and numerical analyses describe experiments reasonably

well. We now present our calculation for 2D system with open edges.

4.3 Experimental Model 2D Ribbon Spinner System with 135◦ Open

Edge

Finally, we consider 2D spinner systems with open edges. Specifically, we focus on

the ’spinner ribbon’ along 135◦ with the open edges at the two sides, as show in

Figure. 4.10. The spinners with black arms are rotatable, while the spinner with

orange arms at the both edges are fixed, so that the system has the chiral symmetry,

just like 1D case in the previous section.

With βg <
βb+βr

2
and βb < βr, the system has a winding number ν(135◦) = 1

for 135◦ direction open edges and the flat frequency band is expected on each edge.

The goals of our study are how the flatness of the edge mode bands and the slow

group velocity of localized edge states would depend on the width of the ribbon.

Experimental set up is not ready yet, and we use typical values of βr, βb, βg, αtot for

demonstrations. Specifically, we use βr = 250.0, βb = 150.0, βg = 120.0, and αtot =

750.0. The plots of f 2 versus k2 and f versus k2 are shown in Figures. 4.11 and 4.12,

where the number of unit cells in the horizontal direction is 4, 8, and 12. The results

show the edge states in the gap, with dispersion decreases are the ribbon becomes

wider. An example of the map of integrated mode strengths for these edge modes is
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a1

a2

Figure 4.10 Four-armed spinner ribbon system along 135◦ with the open edges.

shown in Figure 4.13 for a 16 unit cell wide ribbon, where the red and blue colors

represent A and B sites, respectively. The results are consistent with predictions

based on topological analysis, in particular, bulk-boundary correspondence.

From the dispersion, we estimate the group velocity cg of the localized edge

excitation as cg = ∆ω
∆k

= 2π∆fa where a is the axis-to-axis distance between the

nearest neighbor spinners, and ∆f is the charge of edge mode frequency between

zone boundary and zone center. The results are shown in Figure 4.14 for ribbon with

the unit cell number 4, 8, 12, 16 and 20, which shows the sensitive dependence of the

group velocity cg with the width of the spinner ribbon. With cg ranging from less

than 1 cm/s to 10 cm/s, the slow propagation of the edge mode and its dependence

on the ribbon width will be studied experimentally by Professor Prodan group and

compared with the theory results shown here. It is clear, for this case, we choose the

primitive vectors a1 and a2 as before, and the boundaries along a2 direction. From

Equation 4.3, we can plot the f 2 for different k2. In the Figure 4.11, we show an

example when we have 16 unit cells (32 spinners), the relation between f 2 and k2.
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Figure 4.11 With different unit cells (4,8, and 12), the relation between f 2 and
k2/a.
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Figure 4.12 With different unit cells (4,8, and 12), the relation between f and
k2/a.
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We can see the edge states in the gap, as we expected. Also, we plot the f for this

case in Figure. 4.12. For the ’spinner ribbon’ system, when we change D (the number

of spinners we set), we can get the group velocity and show in Figure.4.14.
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Figure 4.13 Map of Integrated mode strengths for the edge bands for a spinner
ribbon with 16 unit cell width. The red and blue colors represent A and B sites,
respectively.

85



Figure 4.14 The group velocity of edge modes versus the width of the spinner
ribbon. Results for 4, 8, 12, 16, and 20 unit cell wide ribbons are shown here.
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CHAPTER 5

SUMMARY

First, we studied photoinduced nonequilibrium dynamics in CO materials, with

coupled electrons, periodic lattice distortions, and incoherent phonons. Our simulation

shows a damped oscillation of coherent lattice distortion after the electronic excitation

by the optical pulse. By studying the stages of CO melting, we identified the CO gap

reopening, and thermal relaxation. During the stage of CO melting, the dynamics

of the periodic lattice distortion is partially decoupled from and lags behind the

dynamics of electronic order parameter due to large inertia of ions. When the

effective electron temperature drops below the critical temperature, CO gap open

again and the electronic state changes from thermal to nonthermal. During the

stage of thermal relaxation, the electron system and the periodic lattice distortion

maintain internal equilibrium, as they relax back to the initial state. The energy

efficiency of photoinduced switching from insulator to metal increases, as the photon

energy is reduced towards the CO gap. The frequency of coherent oscillation depends

sensitively on time, fluence, and photon energy, which correlates with the energy

landscape dynamics.

Second, we using a 2D model in the weak AIII/BDI topology class with

topology-structure coupling, we have demonstrated the presence of flat zero-mode

energy bands in the entire 1D Brillouin zone for states localized within TB/APB/OE.

It has been found that the flatnesses of these bands and the slow group velocities

for the localized zero-mode states could be controlled by the distance between the

boundaries and the slow motion of the localized excitations can be guided through a

zig-zag path. We propose our model can be realized in various metamaterials, which

would open possibilities for unique device applications.
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Third, we analyzed a model for topological mechanical metamaterials made

of spinners interacting through magnets. The model serves as a test for topological

electron Hamiltonian developed in Chapter 3. We showed how the results for electron

system can be used to predict the results for mechanical system. We first studied

1D system with open edges and compared with the preliminary experimental data,

which reveals consistency between theory and experiments, in particular the frequency

and vibrational mode of edge modes. Encourages by the agreement, we carried

out calculations for 2D systems, which correspond to 2D electron system studied

in Chapter. 3, and made predictions. From the calculations, flat frequency bands

are found in the bulk frequency band gap, localized at open edges of a ribbon. We

calculated how the group velocity for these bands depend on the width of the ribbon,

which can be compared with future experiments.

The significance of our work lies in the enhancement of our understanding how

the structure of materials affect the electronic states or excitation modes. Our study

on dynamics may help the development of energy efficient ultrafast switching devices.

Our study on topological flat bands localized within boundaries could be used to trap

photons and slow move along designed paths in photonic crystals. Our work on

spinner systems showed the same phenomena could be found diverse metamaterials,

where slowly moving localized state could be used for unique device applications.

In future, our dynamics work could be expanded to include other degrees of

freedom, such as spin degrees of freedom. More realistic band structure could be

incorporated into the tight-binding Hamiltonian, which would allow more quantitative

comparison with experimental data. Our work on topological boundary modes with

flat bands could be expanded to compare with experimental data, and geometry

other than ribbons. The approach could be also expanded to other photonic,

phononic, mechanical, sonic, water wave, and ultracold fermion systems, where the
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same topological arguments would predict the presence of topologically-protected flat

energy bands localized within twin and antiphase boundaries and at open edges.
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CHAPTER 6

CODE DEVELOPED FOR NUMERICAL CALCULATIONS

6.1 C++ Code for the Simulations of Photoinduced Nonequilibrium

Dynamics in Charge Order Materials

Listing 6.1 An example of main codes used for the results in Chapter. 2

1 #inc lude <s t d i o . h>

2 #inc lude <math . h>

3 #d e f i n e NN 512

4 #d e f i n e Pi 3 .14159265

5 #d e f i n e PP 2801

6 void Set Elk ( double Elk [ 2 ] [NN] [NN] , double kx [ ] , double ky [ ] ,

7 i n t N, double t , double lm , double u0 )

8 {

9 f o r ( i n t i = 0 ; i < N; i++)

10 {

11 kx [ i ]=2∗Pi/N∗( i +1)−Pi ;

12 }

13 f o r ( i n t i = 0 ; i < N; i++)

14 {

15 ky [ i ]=2∗Pi/N∗( i +1)−Pi ;

16 }

17 f o r ( i n t q=0; q<2; q++)

18 {

19 f o r ( i n t i =0; i<N; i++)

20 {
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21 f o r ( i n t j =0; j<N; j++)

22 {

23 Elk [ q ] [ i ] [ j ]=pow(−1 ,q )∗ s q r t (4∗ t∗ t ∗( cos ( kx [ i ] )

24 +cos ( ky [ j ] ) )

25 ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) )+ lm∗lm∗u0∗u0 ) ;

26 }

27 }

28 }

29 }

30 void Set Elkp ( double Elkp [ 2 ] [NN] [NN] , double kx [ ] , double ky [ ] ,

31 i n t N, double t , double lm , double u0 )

32 {

33 f o r ( i n t i = 0 ; i < N; i++)

34 {

35 kx [ i ]=2∗Pi/N∗( i +1)−Pi ;

36 }

37 f o r ( i n t i = 0 ; i < N; i++)

38 {

39 ky [ i ]=2∗Pi/N∗( i +1)−Pi ;

40 }

41 f o r ( i n t q=0; q<2; q++)

42 {

43 f o r ( i n t i =0; i<N; i++)

44 {

45 f o r ( i n t j =0; j<N; j++)

46 {

47 Elkp [ q ] [ i ] [ j ]=pow(−1 ,q )∗ s q r t (4∗ t∗ t ∗( cos ( kx [ i ] )
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48 +cos ( ky [ j ] ) )

49 ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) )+ lm∗lm∗u0∗u0 ) ;

50 }

51 }

52 }

53 }

54 void g i v e p r i n t ( double En [ ] , double g [ ] ,

55 double Dos [ ] , i n t Ne , char ∗Str )

56 {

57 FILE ∗ fp=fopen ( Str , ”w” ) ;

58 f o r ( i n t i =0; i<Ne ; i++)

59 {

60 i f ( Dos [ i ] ! = 0 . 0 )

61 {

62 f p r i n t f ( fp , ”%13.12 f %13.12 f \n” ,En [ i ] , g [ i ] ) ;

63 }

64 }

65 f c l o s e ( fp ) ;

66 }

67

68 i n t main ( )

69 {

70 i n t i , j , k , q , p ,Np,N=NN,Nk=1500 ,Npt , Ne=2400 ,P=PP;

71 i n t j1 , j2 , j3 , j4 , jmax , jmin ;

72 i n t Flag [ Ne ] ;

73 double m, t , lm ,K;

74 double gm=0.009 ,gm0 , gm3 , gm4 , eps ;
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75 double kb =0.000086173324;

76 double Emax, Emin , IDos [ Ne ] , Dos [ Ne ] , delE ;

77 double dt , Tt ,Sum;

78 double v0 , v ,w, w0 , u00 ;

79 double kx [N] , ky [N ] ;

80 double Elk [ 2 ] [NN] [NN] , En [ Ne+1] ;

81 double f e [ Ne+1] , fk [ 2 ] [N ] [ N] , Elkp [ 2 ] [NN] [NN] ;

82 double f e o l d [ Ne ] , f k o l d [ 2 ] [N ] [ N] , f r [ Ne ] ;

83 double u0 , u , u eq , dn0 ;

84 double d0 ,DE,W, dfmax , g e e con s t ;

85 double df [ 2 ] [N ] [ N ] ;

86 double T, Te ,bw [ 5 0 0 ] , x , y , z ;

87 double WD, Ep [ 5 0 0 ] ,Dpb [ 5 0 0 ] ,Dp[ 5 0 0 ] ,GM, Alf , Sp , gep [ Ne ] , g [ Ne ] ;

88 double gee [ Ne ] , Kee , Kep ;

89 double dE2 , dE1 , dE0 , Etot ;

90 double a , b ;

91 double dn , eve [NN] [NN] ;

92 double up , Eel0 , Nlkupper , Nlklower , Neupper , Nelower ;

93 char ∗Str ;

94 char Name [ 1 2 ] ;

95 double Eel , Eel up , E e l l o ;

96 FILE ∗ fp ,∗ fp2 ,∗ fp3 ,∗ fp1 ;

97

98 i n i t i a l k x ( kx ,NN) ;

99 i n i t i a l k y ( ky ,NN) ;

100 m=0.0033212; dt =0.025; t =0.5 ; lm =1.2∗0 .78 ; K=0.85; DE=2.0;

101 Kee =651 .0∗3 .0 ; Kep=0.93∗0 .25 ; WD=0.1∗0 .6 ; GM=0.015; Npt=20;
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102 T=132.601; W=0.02; dfmax =0.20; Te=kb∗T;

103 eps =0.00001;

104 u0 =0.031225504481243; v0 =0.0 ;

105 u00 =0.031225504481243; dn0 =0.056712964098;

106 fp=fopen ( ”/home/ l / l z242 /Dynamic Window Method/SaveData/

107 NN512 Ne2400 Al l Distr ibut ion k ForSave . txt ” , ” r t+” ) ;

108 f o r ( q=0;q<2;q++)

109 {

110 f o r ( i =0; i<N; i++)

111 {

112 f o r ( j =0; j<N; j++)

113 {

114 f s c a n f ( fp , ”%l f \n” ,& fk [ q ] [ i ] [ j ] ) ;

115 }

116 }

117 }

118 f c l o s e ( fp ) ;

119 f o r (p=−1;p<P; p++)

120 {

121 Tt=p∗dt ;

122 Set Elk ( Elk , kx , ky ,NN, t , lm , u0 ) ;

123 i f (p==0)

124 {

125 f o r ( q=0;q<2;q++)

126 {

127 f o r ( i =0; i<N; i++)

128 {
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129 f o r ( j =0; j<N; j++)

130 {

131 df [ q ] [ i ] [ j ]=pow(−1 ,q )∗dfmax

132 ∗exp(−(Elk [ q ] [ i ] [ j ]

133 −pow(−1 ,q )∗DE/2)∗ ( Elk [ q ] [ i ] [ j ]

134 −pow(−1 ,q )∗DE/2)/

135 (2∗W∗W) ) ;

136 }

137 }

138 }

139 f o r ( i =0; i<N; i++)

140 {

141 f o r ( j =0; j<N; j++)

142 {

143 fk [ 0 ] [ i ] [ j ]+=df [ 0 ] [ i ] [ j ] ;

144 fk [ 1 ] [ i ] [ j ]+=df [ 1 ] [ i ] [ j ] ;

145 }

146 }

147

148 }

149 Eel =0.0 ;

150 f o r ( q=0;q<2;q++)

151 {

152 f o r ( i =0; i<N; i++)

153 {

154 f o r ( j =0; j<N; j++)

155 {
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156 Eel+=Elk [ q ] [ i ] [ j ]∗ fk [ q ] [ i ] [ j ] / ( 2∗N∗N) ;

157 }

158 }

159 }

160 E e l l o =0.0 ;

161 f o r ( i =0; i<N; i++)

162 {

163 f o r ( j =0; j<N; j++)

164 {

165 E e l l o+=Elk [ 1 ] [ i ] [ j ]∗ fk [ 1 ] [ i ] [ j ] / ( 2∗N∗N) ;

166 }

167 }

168 Nlkupper =0.0;

169 f o r ( i =0; i<N; i++)

170 {

171 f o r ( j =0; j<N; j++)

172 {

173 Nlkupper+=fk [ 0 ] [ i ] [ j ] / ( 2∗N∗N) ;

174 }

175 }

176 Nlklower =0.0 ;

177 f o r ( i =0; i<N; i++)

178 {

179 f o r ( j =0; j<N; j++)

180 {

181 Nlklower+=fk [ 1 ] [ i ] [ j ] / ( 2∗N∗N) ;

182 }
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183 }

184

185 dn =0.0;

186 f o r ( i =0; i<N; i++)

187 {

188 f o r ( j =0; j<N; j++)

189 {

190 eve [ i ] [ j ]=−lm∗u0∗(2∗ t ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) )

191 +Elk [ 0 ] [ i ] [ j ] ) /

192 (8∗ t∗ t ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) ) ∗ ( cos ( kx [ i ] )

193 +cos ( ky [ j ] ) )

194 +2∗lm∗lm∗u0∗u0+4∗t∗Elk [ 0 ] [ i ] [ j ] ∗ ( cos ( kx [ i ] )

195 +cos ( ky [ j ] ) ) ) ∗ fk [ 0 ] [ i ] [ j ]

196 −lm∗u0∗(2∗ t ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) )

197 −Elk [ 0 ] [ i ] [ j ] ) /

198 (8∗ t∗ t ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) )

199 ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) )

200 +2∗lm∗lm∗u0∗u0−4∗t ∗( cos ( kx [ i ] )

201 =cos ( ky [ j ] ) ) ∗ Elk [ 0 ] [ i ] [ j ] ) ∗ fk [ 1 ] [ i ] [ j ] ;

202 }

203 }

204 f o r ( i =0; i<N; i++)

205 {

206 f o r ( j =0; j<N; j++)

207 {

208 dn+=eve [ i ] [ j ] / (N∗N) ;

209 }
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210 }

211 dE0=0.0;

212 f o r ( i =0; i<N; i++)

213 {

214 f o r ( j =0; j<N; j++)

215 {

216 dE0+=lm∗lm∗u0/Elk [ 0 ] [ i ] [ j ]∗ fk [ 0 ] [ i ] [ j ]

217 −lm∗lm∗u0/Elk [ 0 ] [ i ] [ j ]∗ fk [ 1 ] [ i ] [ j ] ;

218 }

219 }

220 dE1=2∗K∗u0+dE0/N/N/2 ;

221 dE0=0.0;

222 f o r ( i =0; i<N; i++)

223 {

224 f o r ( j =0; j<N; j++)

225 {

226 dE0+=(lm∗lm∗Elk [ 0 ] [ i ] [ j ]−lm∗lm∗lm∗lm∗u0∗u0

227 /Elk [ 0 ] [ i ] [ j ] ) /

228 (4∗ t∗ t ∗( cos ( kx [ i ])+ cos ( ky [ j ] ) ) ∗ ( cos ( kx [ i ] )

229 +cos ( ky [ j ] ) )+ lm∗lm∗u0∗u0 )

230 ∗( fk [ 0 ] [ i ] [ j ]− fk [ 1 ] [ i ] [ j ] ) ;

231 }

232 }

233 dE2=2∗K+dE0/N/N/2 ;

234 a=dE2 ;

235 b=dE1−a∗u0 ;

236 u eq=−b/a ;
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237 d0=gm∗gm/(4∗m∗m)−2.0∗a/m;

238 i f ( d0<0.0)

239 {

240 w0=s q r t ( a/2/m) ;

241 gm0=gm/4/m;

242 w=s q r t (w0∗w0−gm0∗gm0 ) ;

243 u=s i n (w∗dt )/w∗exp(−gm0∗dt )∗v0+(gm0/w∗ s i n (w∗dt )

244 +cos (w∗dt ) )∗ exp(−gm0∗dt )∗ ( u0−u eq)+u eq ;

245 v=(−gm0/w∗ s i n (w∗dt)+cos (w∗dt ) )∗ exp(−gm0∗dt )∗v0

246 −(gm0∗gm0/w+w)∗ exp(−gm0∗dt )∗ s i n (w∗dt )∗ ( u0−u eq ) ;

247 }

248 i f ( d0==0.0)

249 {

250 w0=s q r t ( a/2/m) ;

251 gm0=gm/4/m;

252 u=exp(−gm0∗dt )∗(1+gm0∗dt )∗ ( u0−u eq)+exp(−gm0∗dt )

253 ∗v0∗dt+u eq ;

254 v=−gm0∗gm0∗dt∗exp(−gm0∗dt )∗ ( u0−u eq)+(1−gm0∗dt )

255 ∗exp(−gm0∗dt )∗v0 ;

256 }

257 i f ( d0>0.0)

258 {

259 gm3=−gm/4/m+s q r t (gm∗gm−4∗a∗2∗m)/4/m;

260 gm4=−gm/4/m−s q r t (gm∗gm−4∗a∗2∗m)/4/m;

261 u=(−gm4/(gm3−gm4)∗ ( u0−u eq )+1/(gm3−gm4)∗v0 )

262 ∗exp (gm3∗dt )

263 +(gm3/(gm3−gm4)∗ ( u0−u eq )−1/(gm3−gm4)∗v0 )
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264 ∗exp (gm4∗dt)+u eq ;

265 v=(−gm3∗gm4/(gm3−gm4)∗ ( u0−u eq)+gm3/(gm3−gm4)

266 ∗v0 )∗ exp (gm3∗dt )

267 +(gm3∗gm4/(gm3−gm4)∗ ( u0−u eq)−gm4/(gm3−gm4)

268 ∗v0 )∗ exp (gm4∗dt ) ;

269 }

270 Emax=s q r t (16∗ t∗ t+lm∗lm∗u0∗u0 ) ; /∗Density o f S ta t e s ∗/

271 Emin=−Emax ;

272 delE=(Emax−Emin )/ (Ne−1);

273 Np=i n t (WD/delE ) ;

274 f o r ( k=0;k<Np; k++)

275 {

276 Ep [ k]=delE ∗(k+1);

277 Dpb [ k]=Ep [ k ]∗Ep [ k ] ;

278 }

279 f o r ( k=Np; k<Np+Npt ; k++)

280 {

281 Ep [ k]=delE ∗(k+1);

282 Dpb [ k]=WD∗WD∗exp(−(Ep [ k]−WD)∗ (Ep [ k]−WD)/(2∗GM∗GM) ) ;

283 }

284 Sp =0.0;

285 f o r ( k=0;k<Np+Npt ; k++)

286 {

287 Sp+=Dpb [ k ]∗ delE ;

288 }

289 Al f =5.0/Sp ;

290
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291 f o r ( k=0;k<Np; k++)

292 {

293 Dp[ k]= Alf ∗Ep [ k ]∗Ep [ k ] ;

294 }

295 f o r ( k=Np; k<Np+Npt ; k++)

296 {

297 Dp[ k]= Alf ∗WD∗WD∗exp(−(Ep [ k]−WD)∗ (Ep [ k]−WD)/(2∗GM∗GM) ) ;

298 }

299 f o r ( k=0;k<Np+Npt ; k++)

300 {

301 Sum+=Dp[ k ]∗ delE ;

302 }

303 f o r ( k=0;k<Ne ; k++)

304 {

305 //En [ k]=Emin+k∗delE−0.5∗delE ;

306 En [ k]=Emin+k∗delE ;

307 }

308 f o r ( i =0; i<Ne ; i++)

309 {

310 IDos [ i ] = 0 . 0 ;

311 }

312 f o r ( q=0;q<2;q++)

313 {

314 f o r ( i =0; i<N; i++)

315 {

316 f o r ( j =0; j<N; j++)

317 {
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318 k=i n t ( ( Elk [ q ] [ i ] [ j ]−Emin+0.5∗delE )/ delE ) ;

319 IDos [ k]+=1/delE ;

320 }

321 }

322 }

323 f o r ( k=0;k<Ne ; k++)

324 {

325 Dos [ k]=IDos [ k ] / ( 2∗N∗N) ;

326 }

327 f o r ( i =0; i<Ne ; i++)

328 {

329 f e [ i ] = 0 . 0 ;

330 }

331 f o r ( q=0;q<2;q++)

332 {

333 f o r ( i =0; i<N; i++)

334 {

335 f o r ( j =0; j<N; j++)

336 {

337 k=i n t ( ( Elk [ q ] [ i ] [ j ]−Emin+0.5∗delE )/ delE ) ;

338 f e [ k]+=fk [ q ] [ i ] [ j ] / ( Dos [ k ]∗N∗N∗delE ) / 2 ;

339 }

340 }

341 }

342

343 E e l l o =0.0 ;

344 f o r ( i =0; i<Ne/2 ; i++)
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345 {

346 E e l l o+=En [ i ]∗ f e [ i ]∗Dos [ i ]∗ delE ;

347 }

348 Eel up =0.0 ;

349 f o r ( i=Ne/2 ; i<Ne ; i++)

350 {

351 Eel up+=En [ i ]∗ f e [ i ]∗Dos [ i ]∗ delE ;

352 }

353 Nelower =0.0 ;

354 f o r ( i =0; i<Ne/2 ; i++)

355 {

356 Nelower+=f e [ i ]∗Dos [ i ]∗ delE ;

357 }

358 Neupper =0.0;

359 f o r ( i=Ne/2 ; i<Ne ; i++)

360 {

361 Neupper+=f e [ i ]∗Dos [ i ]∗ delE ;

362 }

363 i =0;

364 whi le ( i<Ne)

365 {

366 i ++;

367 jmin=i ;

368 i f ( Dos [ i ] ! = 0 . 0 && fabs (1.00− f e [ i ])> eps )

369 break ;

370 }

371 jmax=Ne−jmin−1;
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372 f o r ( i =0; i<Np+Npt ; i++)

373 {

374 bw [ i ]=1 .0/( exp (Ep [ i ] / Te)−1 .0) ;

375 }

376 f o r ( i =0; i<Ne ; i++)

377 {

378 i f ( Dos [ i ]<0.000000000000001)

379 Flag [ i ] = 0 ;

380 e l s e

381 Flag [ i ] = 1 ;

382 }

383 f o r ( i =0; i<Ne ; i++)

384 {

385 g [ i ] = 0 . 0 ;

386 gee [ i ] = 0 . 0 ;

387 gep [ i ] = 0 . 0 ;

388 }

389 gee con s t = delE ∗ delE ∗ Kee ∗ 0 . 5 ;

390 f o r ( j 1=jmin ; j1<jmax+1; j 1++)

391 {

392 f o r ( j 2=jmin ; j2<jmax+1; j 2++)

393 {

394 f o r ( j 3=jmin ; j3<jmax+1; j 3++)

395 {

396 j4 = j1 + j3 − j 2 ;

397 i f ( j4>=jmin&&j4<jmax+1)

398 {
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399 i f ( j 1==j2 | | j 1==j4 ) cont inue ;

400 i f ( Flag [ j 1 ]==1 && Flag [ j 2 ]==1

401 && Flag [ j 3 ]==1 && Flag [ j 4 ]==1)

402 {

403 gee [ j 1 ]+=gee cons t ∗Dos [ j 2 ]

404 ∗Dos [ j 3 ]∗Dos [ j 4 ]

405 ∗( f e [ j 1 ]∗ f e [ j 3 ]∗

406 ( f e [ j 2 ]+ f e [ j 4 ]−1.0) −f e [ j 2 ]

407 ∗ f e [ j 4 ] ∗ ( f e [ j 1 ]+ f e [ j 3 ] −1 . 0 ) ) ;

408 }

409 }

410 }

411 }

412 }

413 f o r ( k=0;k<Np+Npt ; k++)

414 {

415 f o r ( i=jmin ; i<jmax+1; i++)

416 {

417 j=i+k+1;

418 i f ( j<jmax+1&&Flag [ i ]==1&&Flag [ j ]==1)

419 {

420 y=f e [ i ]∗(1− f e [ j ] ) ∗bw[ k ] ;

421 x=f e [ j ]∗(1− f e [ i ] ) ∗ ( bw [ k ]+1) ;

422 z=x−y ;

423 gep [ i ]+=Kep∗z∗Dos [ j ]∗Dp[ k ]∗ delE ;

424 gep [ j ]+=−Kep∗z∗Dos [ i ]∗Dp[ k ]∗ delE ;

425 }
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426 }

427 }

428 f o r ( i =0; i<Ne ; i++)

429 {

430 g [ i ]= gee [ i ]+gep [ i ] ;

431 }

432 f o r ( i =0; i<Ne ; i++)

433 {

434 f e [ i ]+=g [ i ]∗ dt ;

435 }

436

437 f o r ( q=0;q<2;q++)

438 {

439 f o r ( i =0; i<N; i++)

440 {

441 f o r ( j =0; j<N; j++)

442 {

443 k=i n t ( ( Elk [ q ] [ i ] [ j ]−Emin+0.5∗delE )/ delE ) ;

444 fk [ q ] [ i ] [ j ]= f e [ k ] ;

445 }

446 }

447 }

448 u0=u ;

449 v0=v ;

450 }

451 Str=” New Distr ibut ion E . txt ” ;

452 g i v e p r i n t (En , fe , Dos , Ne , Str ) ;
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453 re turn ( 0 ) ;

454 }

6.2 Fortran Code for Calculation of Electronic States in Model

Topological Insulators

Listing 6.2 An example of main codes used for the results in Chapter 3

1 PROGRAM Hamilt ion

2

3 IMPLICIT NONE

4 INTEGER N,NT,m,NEMAX,SITEMAX,EFMAX,My

5 REAL∗8 EPS, PI

6 PARAMETER(N=32)

7 PARAMETER(NT=N∗N)

8 PARAMETER(m=NT∗4)

9 PARAMETER(My=32)

10 PARAMETER( PI =3.1415926)

11 PARAMETER(NEMAX=1000)

12 PARAMETER(SITEMAX=10)

13 PARAMETER(EFMAX=5)

14

15 INTEGER ix , iy , i t , i tx , i ty , ixx , iyy , ny , nE , j , i , i t t , j0 , i0 , j00 , i 00

16 INTEGER iwork (NT) , i e r r , modeD, matz

17 REAL∗8 Dde(N,N) ,Dda(N,N) ,Dy

18 DOUBLE COMPLEX ab (N) , ac (N) , bb(N) , bc (N) , cb (N) , cc (N)

19 REAL∗8 dx , ky

20 REAL∗8 e (N) , d(N) ,Ddx(N) ,Ddy(N)
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21 REAL∗8 HI(2∗N,2∗N) ,HR(2∗N,2∗N) , wr(2∗N) , wi (2∗N) , zr (2∗N,2∗N) ,

22 z i (2∗N,2∗N) , vr (N,N) , v i (N,N) , kyy (My)

23 REAL∗8 fv1 (2∗N) , fv2 (2∗N) , fv3 (2∗N)

24 DOUBLE COMPLEX H(2∗N,2∗N) , i n i

25 REAL∗8 t0 , alp , Emin

26

27 !−−−− Read in input

28 !−−−− Read in input

29 open (50 , f i l e=’ f l e . in ’ , s t a t u s=”unknown” )

30 read (50 ,∗ ) t0

31 read (50 ,∗ ) a lp

32 read (50 ,∗ ) Emin

33 read (50 ,∗ ) nE

34 read (50 ,∗ ) modeD

35 c l o s e (50)

36 !−−−− Write parameters

37 wr i t e (10 ,∗ ) ’modeD=’ ,modeD

38 !−−−− Read in and s e t Ddx and Ddy

39 i f (modeD . eq . 100 )

40 open (51 , f i l e=’ tiw . 1 0 0 . 0 . DdxDdy ’ , s t a t u s=”unknown” )

41 i f (modeD . eq . 101 )

42 open (51 , f i l e=’ tiw . 1 0 0 . 1 . DdxDdy ’ , s t a t u s=”unknown” )

43 i f (modeD . eq . 102 )

44 open (51 , f i l e=’ tiw . 1 0 0 . 2 . DdxDdy ’ , s t a t u s=”unknown” )

45 i f (modeD . eq . 103 )

46 open (51 , f i l e=’ tiw . 1 0 0 . 3 . DdxDdy ’ , s t a t u s=”unknown” )

47 i f (modeD . eq . 104 )
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48 open (51 , f i l e=’ tiw . 1 0 0 . 4 . DdxDdy ’ , s t a t u s=”unknown” )

49 do ix =1,N

50 read (51 ,∗ ) Ddx( ix ) ,Ddy( ix )

51 end do

52 c l o s e (51)

53 !−−−− Set d( iy ) and e ( iy )

54 do ix =1,N

55 e ( ix )=Ddy( ix )

56 end do

57

58 do ix =1,N

59 d( ix )=(Ddx( ix )+Ddy( ix ))∗(−1. d0 )∗∗ i x

60 end do

61 !−−−− Set and wr i t e ab ac b and c

62 do ny=(−My/2+1) ,(My/2)

63 kyy ( ny)=(ny ∗1 . d0 /(My∗1 . d0 ) ) ∗ 2 . d0∗PI

64 ky=kyy ( ny )

65 do ix =1,N

66 ab ( ix )=−(1−e ( ix ))∗(1+CMPLX(COS( ky) ,−SIN( ky ) ) )

67 ac ( ix )=−(1−e ( ix ))∗(1+CMPLX(COS( ky ) , SIN( ky ) ) )

68 bb( ix )=−(1+e ( ix ))∗(1+d( ix ) )∗CMPLX(COS( ky) ,−SIN( ky ) )

69 bc ( ix )=−(1+e ( ix ))∗(1−d( ix ) )

70 cb ( ix )=−(1+e ( ix ))∗(1−d( ix ) )

71 cc ( i x )=−(1+e ( ix ))∗(1+d( ix ) )∗CMPLX(COS( ky ) , SIN ( ky ) )

72 end do

73 !−−−− Construct the Hamilt ion matrix

74 i n i = CMPLX(0 ,0 )
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75 do i =1 ,2∗N

76 do j =1,2∗N

77 H( i , j )= i n i

78 end do

79 end do

80 do i =1 ,2∗N

81 do j =1,2∗N

82 i 0=i n t ( ( i +1)/2)

83 j0=i n t ( ( j +1)/2)

84 i f ( i 0 . eq . j 0 ) then

85 i f ( ( i +1). eq . j ) then

86 H( i , j )=ab ( i 0 )

87 e l s e i f ( ( j +1). eq . i ) then

88 H( i , j )=ac ( i 0 )

89 end i f

90 end i f

91 i f ( ( i 0 +1). eq . j 0 ) then

92 i f ( ( i +1). eq . j ) then

93 H( i , j )=bc ( i 0 )

94 e l s e i f ( ( i +3). eq . j ) then

95 H( i , j )=bb( i 0 )

96 end i f

97 end i f

98 i f ( ( j 0 +1). eq . i 0 ) then

99 i f ( ( j +1). eq . i ) then

100 H( i , j )=cb ( j0 )

101 e l s e i f ( ( j +3). eq . i ) then
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102 H( i , j )=cc ( j 0 )

103 end i f

104 end i f

105 i f ( i . eq . 1 ) then

106 i f ( j . eq . ( 2∗N) ) then

107 H( i , j )=cb (N)

108 end i f

109 end i f

110 i f ( i . eq . 2 ) then

111 i f ( j . eq . ( 2∗N−1)) then

112 H( i , j )=cc (N)

113 end i f

114 end i f

115 i f ( i . eq . ( 2∗N−1)) then

116 i f ( j . eq . 2 ) then

117 H( i , j )=bb(N)

118 end i f

119 end i f

120 i f ( i . eq . ( 2∗N) ) then

121 i f ( j . eq . 1 ) then

122 H( i , j )=bc (N)

123 end i f

124 end i f

125 end do

126 end do

127 do i =1 ,2∗N

128 do j =1 ,2∗N
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129 HR( i , j )=REAL(H( i , j ) )

130 HI ( i , j )=AIMAG(H( i , j ) )

131 end do

132 end do

133

134 !−−−− Find e igensystems o f the matrix

135 c a l l cg (2∗N,2∗N,HR, HI , wr , wi , 1 , zr , z i , fv1 , fv2 , fv3 , i e r r )

136 !−−−− Write e i g e n v e c t o r magnitude

137 c a l l qu i ck so r t (wr , 1 , 2∗N)

138 do i t =1,N∗2

139 wr i t e (18 ,∗ ) ky , wr ( i t )

140 end do

141 end do

142 END PROGRAM Hamilt ion

6.3 Fortran Code for Calculation of Flat Frequency Bands at Open

Edges of 2D Spinner Systems

Listing 6.3 An example of main codes used for the results in Chapter 4

1 PROGRAM Hamilt ion

2

3 IMPLICIT NONE

4

5 INTEGER N,NT,m,NEMAX,SITEMAX,EFMAX,My, N1 , N2 , Ns

6

7 REAL∗8 EPS, PI

8
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9 PARAMETER(N=12)

10 PARAMETER(NT=N∗N)

11 PARAMETER(m=NT∗4)

12 PARAMETER(My=32)

13 PARAMETER(N1=N)

14 PARAMETER(N2=2∗N+1)

15 PARAMETER(Ns=N2+2∗N1)

16

17 PARAMETER( PI =3.1415926)

18 PARAMETER(NEMAX=1000)

19 PARAMETER(SITEMAX=10)

20 PARAMETER(EFMAX=5)

21

22 INTEGER ix , iy , i t , i tx , i ty , ixx , iyy , im , imm, j , i , i t t , i0 , j 0

23 INTEGER iwork (NT) , i e r r , modeD, matz

24 INTEGER m1,m2, q1 , q2 , nx , ny

25 INTEGER xsA , ysA , xsB , ysB , xA, yA, xB , yB

26 REAL∗8 Nr , dx , dy , e

27 DOUBLE COMPLEX ab (N) , ac (N) , b(N) , c (N)

28 DOUBLE COMPLEX Vn(2∗N) , Valp (N) , Vbeta (N) , PsiA (N1 , N2) ,

29 PsiB (N1 , N2) , Phi (N2+2∗N1 , N2+2∗N1)

30 REAL∗8 alp , betaR , betaB , betaG , betaY , ky , k2 , kyy (My)

31 REAL∗8 HI(2∗N,2∗N) ,HR(2∗N,2∗N) , wr(2∗N) , wi (2∗N) , zr (2∗N,2∗N) ,

32 z i (2∗N,2∗N) , vr (N,N) , v i (N,N)

33 REAL∗8 fv1 (2∗N) , fv2 (2∗N) , fv3 (2∗N)

34 REAL∗8 PhiR(N2+2∗N1 , N2+2∗N1) , PhiI (N2+2∗N1 , N2+2∗N1)

35 DOUBLE COMPLEX H(2∗N,2∗N) , i n i
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36 REAL∗8 locdos (N2+2∗N1 , N2+2∗N1) ,Ew,Ewm,WF(N2+2∗N1 , N2+2∗N1) ,

37 t l o c d o s (N2+2∗N1 , N2+2∗N1)

38

39 Ew=750.0+2.0

40 Ewm=750.0−2.0

41 !−−−− Set N1 and N2

42 Nr=N2∗1 . d0

43 !−−−− Set a lp and bat

44 a lp =750.0d0

45 betaR =250.0d0

46 betaB =150.0d0

47 betaG=120.0d0

48 betaY=120.0d0

49 !−−−− Set and wr i t e ab ac b and c

50 locdos =0.d0

51 do ny=1,My

52 kyy ( ny)=((ny ∗1 . d0−16.d0 ) / ( 1 6 . d0 ) )∗PI

53 ky=kyy ( ny )

54 k2=ky

55 do ix =1,N

56 ab ( ix)=−betaB−betaG∗CMPLX(COS( k2 ) , SIN( k2 ) )

57 ac ( ix)=−betaB−betaG∗CMPLX(COS( k2) ,−SIN( k2 ) )

58 b( ix)=−betaY∗CMPLX(COS( k2 ) , SIN( k2))−betaR

59 c ( ix)=−betaY∗CMPLX(COS( k2) ,−SIN( k2))−betaR

60 end do

61 !−−−− Construct the Hamilt ion matrix

62 i n i = CMPLX(0 ,0 )
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63 do i =1 ,2∗N

64 do j =1 ,2∗N

65 H( i , j )= i n i

66 end do

67 end do

68 do i =1 ,2∗N

69 do j =1 ,2∗N

70 i 0=i n t ( ( i +1)/2)

71 j0=i n t ( ( j +1)/2)

72

73 i f ( i . eq . j ) then

74 H( i , j )=alp

75 end i f

76

77 i f ( i 0 . eq . j 0 ) then

78 i f ( ( i +1). eq . j ) then

79 H( i , j )=ab ( i 0 )

80 e l s e i f ( ( j +1). eq . i ) then

81 H( i , j )=ac ( i 0 )

82 end i f

83 end i f

84 i f ( ( i 0 +1). eq . j 0 ) then

85 i f ( ( i +1). eq . j ) then

86 H( i , j )=b( i 0 )

87 end i f

88 end i f

89
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90 i f ( ( j 0 +1). eq . i 0 ) then

91 i f ( ( j +1). eq . i ) then

92 H( i , j )=c ( j 0 )

93 end i f

94 end i f

95

96 end do

97 end do

98 do i =1 ,2∗N

99 do j =1,2∗N

100 HR( i , j )=REAL(H( i , j ) )

101 HI ( i , j )=AIMAG(H( i , j ) )

102 end do

103 end do

104

105 !−−−− Find e igensystems o f the matrix

106 c a l l cg (2∗N,2∗N,HR, HI , wr , wi , 1 , zr , z i , fv1 , fv2 , fv3 , i e r r )

107 do i t =1,N∗2

108 wr i t e (16 ,∗ ) ky , wr ( i t )

109 end do

110 do i t =1,N∗2

111 wr i t e (18 ,∗ ) ky , s q r t (wr ( i t ) )

112 end do

113 do m1=1,Ns

114 do m2=1,Ns

115 Phi (m1,m2)= i n i

116 end do
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117 end do

118 do im=1,2∗N

119 i f ( ( wr ( im ) . l t .Ew) . and . ( wr ( im ) . gt .Ewm) ) then

120 wr i t e (40 ,∗ ) im , wr ( im)

121

122 do i t =1 ,2∗N

123 Vn( i t )=CMPLX( zr ( i t , im ) , z i ( i t , im ) )

124 end do

125

126 do i t =1,N

127 Valp ( i t )=Vn(2∗ i t −1)

128 Vbeta ( i t )=Vn(2∗ i t )

129 end do

130

131 do m1=1,N1

132 do m2=1,N2

133 PsiA (m1,m2)=(1. d0/SQRT(Nr ) )∗Valp (m1)∗

134 CMPLX(COS( k2∗m2) , SIN( k2∗m2) )

135 PsiB (m1,m2)=(1. d0/SQRT(Nr ) )∗Vbeta (m1)∗

136 CMPLX(COS( k2∗m2) , SIN( k2∗m2) )

137 end do

138 end do

139

140 do m1=1,N1

141 do m2=1,N2

142 xA=2∗m1−m2

143 yA=m2
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144

145 xB=2∗m1−m2+1

146 yB=m2

147

148 xsA=xA+N2

149 ysA=yA

150

151 xsB=xB+N2

152 ysB=yB

153

154 Phi (xsA , ysA)=PsiA (m1,m2)

155 Phi ( xsB , ysB)=PsiB (m1,m2)

156

157 wr i t e (50 ,∗ ) m1,m2, xA, yA, xB , yB , xsA , ysA , xsB , ysB

158 end do

159 end do

160 do m1=1 ,(N2+2∗N1)

161 do m2=1 ,(N2+2∗N1)

162 PhiR(m1,m2)=REAL( Phi (m1,m2) )

163 PhiI (m1,m2)=AIMAG( Phi (m1,m2) )

164 WF(m1,m2)=PhiR(m1,m2)∗∗2+ PhiI (m1,m2)∗∗2

165 locdos (m1,m2)= locdos (m1,m2)+WF(m1,m2)

166 t l o c d o s (m1,m2)= locdos (m1,m2)∗(−1)∗∗(m1+m2)

167 end do

168 end do

169

170 end i f
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171 end do

172 end do

173 do j=Ns,1 ,−1

174 do i =1,Ns

175 wr i t e (100 ,∗ ) l o cdos ( i , j )

176 wr i t e (101 ,∗ ) t l o c d o s ( i , j )

177 end do

178 end do

179 do i =1,Ns

180 do j =1,Ns

181 wr i t e (10 ,∗ ) i , j , 0 . 0 , 0 . 0

182 end do

183 end do

184 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

185

186 END PROGRAM Hamilt ion
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