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Chapter 1 

Introduction 

1.1 An Overview 

The oxidation of Silicon is necessary during the entire process of fabricating modern 

integrated circuits. The production of high-quality ICs requires not only an under-

standing of the basic oxidation mechanism, but the ability to form in a controlled 

and repeatable manner a high quality oxide. Thus, the growth of Silicon dioxide 

by thermal oxidation has been a critical step in semiconductor processing since the 

very inception of the microelectronics industry. The ability to reliably obtain a uni-

form dielectric layer of virtually any thickness that can be patterned as necessary 

is crucial to the production of every modern Silicon based device, 

With devices approaching submicrometer dimensions, production and charac-

terization of highly reliable ultrathin Silicon dioxide films are assuming major im- 
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portance in very large-scale integration (VLSI) technology. The thermal oxidation 

of Silicon in the thin regime ( < 500 A) is of vital importance to VLSI device design-

ers because thin layers of SiO2 are exclusively used as the gate oxides, requiring 

a low thermal budget, compatible with the rest of the processing steps involved 

in Silicon technology[1]. The thin gate dielectric ensures high performance MOS 

devices. This regime has received much attention, but. it still remains unexplained 

with respect to the oxidation mechanism. 

1.1.1 Importance of Thin and Native Oxides 

As already mentioned, recent developments have a continuing impetus to reduce the 

dimensions of semiconductor devices which is motivated both by the attraction of 

further miniaturization in high-technology applications and by the economic incen-

tive of producing a large number of more powerful circuits with the same amount of 

raw material, The philosophy underneath the very-large-scale and ultra-large-scale 

integration (VLSI and ULSI) lies in assimilation of many components on a single 

solid-state chip. and thus require that each individual device be made as small as 

possible, Thus, the dielectric layer has to be scaled down accordingly. Current. gate 

oxides for MOS technology are approaching thicknesses of 10 nm or less. Thin-

ner oxides are also necessary for some memory applications including erasable and 

electrically erasable read- only memories (EPROMs and EEPROMs, respectively). 

Reliable production of thin SiO2  is therefore central to continued progress in silicon 

device fabrication. The uniformity of the thin film and interface structures is critical 

in device operations; deviations can cause premature oxide breakdown, reductions 

in efficiency, and impairment of the solid-state circuits' function. 

Native oxide layers are formed when Silicon wafers are exposed to air at room 

temperature. They provide the starting point. for Silicon oxidation, and an un- 
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derstanding of them is necessary to unravel the details of the initial oxide growth 

kinetics and interface structure. Further. the intentional or inadvertent presence of 

a native oxide layer can affect subsequent processing steps. For instance, the gain 

available through polysilicon emitter transistor structures may be enhanced by the 

addition of a thin interfacial oxide layer [2,31, although speed and transconductance 

are ordinarily sacrificed [4]. Metal deposition rates can be substantially affected by 

the thickness of an existing native oxide layer [5]. 

1.1.2 Thin oxide growth kinetics 

The oxidation of single-crystal silicon was first described by Deal and Grove in 1965 

[61, They developed a linear-parabolic governing equation that successfully fit. the 

existing data, and is given by, 

where, X0  is oxide thickness, t is oxidation time, B and B/A are process-

dependant rate constants, and T is a correction factor that. adjusts for the native 

oxide thickness or initial growth, that is not accounted for by the model. This 

model is based on some arguable physical assumptions e.g steady state is possible 

in solid state diffusion, and linear and diffusion specific rate constants can be rate 

limiting at the same time. More important is the fact that this model does not 

provide even an approximate fit to oxidation data below about 350A, giving rise to 

a so-called "anomalous oxidation region", Deal and Grove found that there was an 

initial accelerated growth rate when oxidation was performed in a dry 02  ambient. 

The physical reasons for this were not clear and therefore they simply used the 

parameter T to correct for this effect without attempting to specify a mathematical 

expression describing the initial regime, 
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Figure 1.1: The fit of the linear-parabolic relationship to oxidation data in dry 

oxygen 

As Silicon technology has progressed to smaller and smaller dimensions (and 

accordingly thinner oxides), this anomalously fast growth regime has assumed con-

siderable practical importance, The primary initial oxidation data currently avail-

able are from ellipsometry as well as from High Resolution Transmission Electron 

Microscopy( HRTEM ). 

A number of different forms and mechanisms have been suggested for the ini-

tial thin oxide growth relationship. The proposals in the literature have included 

schemes based on enhanced oxidant. diffusion (7], reduced oxidant diffusivity in the 

oxide (8], fixed charge effects on the interface reaction rate (9). Linear, parabolic and 

several other relationships for the initial growth have been proposed. Rather than 

surveying the various possibilities here, a review of current models are included in 

the subsequent. chapters. 
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1.2 Objectives of the current work 

This study focuses on the growth kinetics of SiO2  layers in the thin regime ( < 500A) 

in order to achieve a better understanding of the oxidation process, particularly in 

the thin oxide region. The present thesis describes the experimental procedures 

used to study the oxidation kinetics and the data analysis techniques used to fit. the 

best model to a set. of experimental data and subsequently arrive at new constants 

for further interpretation. With the help of the newly obtained constants, a com-

puter program has been coded to simulate the proposed model and the output was 

compared with the actual experimental data. 

The intention in this research is also to remark on the implications of the current. 

oxide thickness measurements after measuring the absolute thicknesses of the oxide 

layers by HRTEM and compare these measurements to that. obtained by ellipsom-

etry. The study also aims at finding the reasons for the larger discrepancies in the 

reported rate constants. 

1.3 Organization of the Thesis 

Although a variety of models were discussed, the main part of the research was to 

throw light on the initial regime, with the help of the experimental data available 

from both ellipsometry as well as HREM measurements, The theory behind oxi-

dation and the pioneering model set by Deal and Grove is described in Chapter 2. 

Chapter 3 discusses the different oxidation techniques, but the specific procedures 

for particular experiments are given in the subsequent chapters. Chapter 4 reviews 

models for the anomalously fast initial growth of oxide in dry oxygen with special 

light on the experimental procedures followed by different researchers. Chapter 5 

contains the experimental techniques involved in this research along with the data 
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analysis procedures followed. Chapter 6 details the results, the analysis of data 

and their fit to different models and the rate constants. Chapter 7 narrates the 

Conclusion of the analysis and scope of further development. 

A program with the calculated constants, obtained from the fit written in C, to 

simulate the proposed model. The source code along with the output is presented 

in the Appendix. 
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Chapter 2 

Silicon Oxidation 

2.1 Introduction 

Semiconductors can be oxidized by various methods, These include thermal oxi-

dation in both dry and wet environment, electrochemical anodization and plasma 

reaction. Among these methods thermal oxidation is by far the most important for 

Silicon devices. It is the key process in modern Silicon integrated circuit technology 

110]. Oxide layers in Silicon IC technology provide the following : 

(1) Surface passivation for a silicon device. 

(2) Serve as a diffusion mask. 

(3) Serve to isolate one device from another. 

(4) Serve to insulate the gate electrode from the Silicon in field effect devices. 

(5) Serve to isolate multiple levels of device interconnection in an IC. 
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For gate oxides in field effect. devices such as the MOSFET and the CCD, the 

oxide-semiconductor interface again must have a minimum. stable density of oxide 

fixed charge and interface traps, but now stability is especially important 	The 

oxide that meets these requirements best. is thermally grown oxide. For these rea-

sons, thermal growth is the key oxidation process in integrated circuit. technology, 

2.2 Oxide Formation 

The basic oxidation process is the sharing of valence electrons between Silicon and 

Oxygen to form four Silicon-oxygen bonds. Each bond is largely covalent with a 

small ionic component at room temperature. 

It is shown (Marker experiments)[11] that. an  oxidizing species and not silicon 

moves across the oxide layer and that the oxidation reaction occurs at the silicon-

oxide interface. During oxidation the top surface of the SiO2  film will not. be  

coplanar with the original silicon surface because a volume expansion occurs dur-

ing oxidation. This expansion occurs because the density of SiO2  (2.21 g/cm3 ) is 

slightly less than the density of Silicon (2.33 g/cm3). Growth of an oxide of thick-

ness Xo,, will consume a layer of Silicon about. 0.45Xo  thick, as can be calculated 

from the density and molecular weight, of Silicon and SiO2  [10], Fig 2.1 gives a 

rough idea of the mentioned phenomonea. 

For oxidation in pure oxygen, which produces "dry" oxides, the stoichiometric 

chemical reaction producing the oxide film is 

The stoichiometric chemical reaction for producing the oxide film in water 

vapour "wet oxides" is 

8 



Figure 2,1: Growth of Silicon dioxide by thermal oxidation 

Reaction (2.1) describes the overall reaction between oxygen and Silicon, and 

reaction (2.2) describes that between water vapour and Silicon, 

The basic structural unit of thermally grown Silicon dioxide is a Silicon ion 

surrounded tetrahedrally by four oxygen ions as illustrated in Fig 2.2(a). The 

Silicon-to-oxygen internuclear distance is 1.6.4 and the oxygen -to -oxygen internu-

clear distance is 2.27 A. These tetrahedra are joined together at their corners by 

oxygen bridges in a variety of ways to form the various phases or st.ruct.ures of Sili-

con dioxide (also called silica). Silica has several crystalline structures (e.g quartz) 

and an amorphous structure. Silicon dioxide structure is amorphous, when pro-

duced through thermal oxidation. The crystalline structure is periodic in nature, 

extending over many molecules, while the amorphous has a non-periodic structure. 

Fig 2.2(b) is a two-dimensional schematic diagram of a quartz crystalline structure 

made up of rings with six silicon atoms. Fig 2.2(c) is a two-dimensional schematic 
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Figure 2.2: (a)Basic structural unit. of silicon dioxide. (b) Two dimensional rep-
resentation of a quartz crystal lattice. (c) Two dimensional representation of the 
amorphous structure of silicon dioxide[10]. 

diagram of an amorphous structure for comparison, In the amorphous structure 

there is a tendency to form characteristic rings with six silicon atoms. It can be 

noted that the amorphous structure in Fig 2.2(c) is quite open because only 43% 

of the space is occupied by silicon-dioxide molecules.[10] 

2.2.1 Oxidation Kinetics - Classical Theory 

The macroscopic oxidation process was first. suggested by Deal and Grove through 

a phenomological model developed by them. The model is schematically illustrated 

in Fig 2.3. This model is valid for oxide thicknesses above 300 Å, oxidation in dry 

oxygen, oxidant partial pressure of 1 atm or less, and temperatures between 700 

and 1300°C. 

10 



Figure 2.3: Cross section of silicon with a growing Si02  layer illustrating the model 
for thermal oxidation of silicon. The three fluxes, F1  into the silica, F2 through the 
silica, and F3 at the Si-SiO2 interface, are shown[6]. 
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Let the silicon be covered initially by an oxide layer of thickness 2.o, as shown in 

Fig 2.3. The overall process is divided in three consecutive stages : 

(1) Molecules from the oxidant are transported from the gas atmosphere to the 

outer surface of the already formed oxide layer, through the gas-oxide interface with 

flux F3 . (Flux is defined as the number of atoms or molecules crossing a. unit area 

per unit. time). As the gas-phase mass-transfer coefficient. is high, one can assume 

that the concentration of oxidant. Co  in the top layer of the oxide to be given by the 

equilibrium concentration of the oxidant at the oxidation temperature. It should 

be kept. in mind that this equilibrium concentration of the oxidant in the oxide, C*, 

i.e, the concentration in the oxide per cubic centimeter is linearly related to the 

partial pressure of the oxidant. in the oxidizing gas by referring to Henry's Law and 

Ideal Gas laws 

and, 

where ps, is the partial pressure in the gas adjacent to the oxide surface, p9  is 

the partial pressure in the bulk of the gas, and H is Henry's law constant. Using 

Henry's law along with ideal gas law, 

(2) The oxidant moves through the oxide layer towards the silicon surface. The 

diffusive flux of any part, x in the oxide layer is given by Fick's law, 
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and, 

where, D is the diffusion coefficient and dC/dx is the concentration gradient 

of the oxidizing species within the oxide. The diffusion constant strongly depends 

on the structure (atomic, molecular or ionic) of the oxidant. Under steady state 

conditions, F2 is constant throughout the oxide layer and a linear concentration 

profile is obtained. This means that F2 is also given by, 

where, C, is the concentration of oxidation at Si - SiO2  interface. 

(3) The oxidant reacts at. the Silicon surface to form a new layer of Silicon 

dioxide. The rate of this interface reaction is assumed to be proportional to the 

oxidant concentration at the interface, so that the resulting flux F3 becomes, 

where, K3 is the chemical surface-reaction rate constant for Silicon oxidation. 

Under steady state conditions, the fluxes F1 , F2 and F3 must be equal and 

solving the two simultaneous equations, F1=F2  and F2 =F3, expressions for Ci  and 

Co  can be obtained. Thus, 
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and, 

There are two limiting cases, which may arise, when the diffusivity is either 

very small or very large ( i.e D 	K5 r. 1 so that from eqn (2,9) and eqn (2.10), 

— 0 and Co  — C*. This case is called the diffusion-controlled case. because the 

diffusion flux, governed by D, becomes small compared to Silicon surface reaction 

flux governed by K . Here the rate of oxidation is limited by the availability of 

oxidant at. the Si-SiO2  interface, and the oxidation rate is controlled by the reaction 

rate constant, Ks and by Ci  (which equals C0 ). 

Substituting eqn (2.9) into eqn (2.8), the flux of oxidant. reaching the Si-SiO2  

interface is 

The solution of this differential equation subject to boundary conditions that an 

oxide may be present. initially from previous processing steps or may grow before 

the assumptions in the model are valid, that is xo  = 	at t = 0 is, 

where, 
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The quantity T, represents a shift in the time co-ordinate to account for the 

presence of the initial oxide layer x i . 

Equation :2.12 is the general relationship for thermal oxidation of Silicon 11. 

13], 

Solving the quadratic relationship of Eqn. 2.12 for x o  as a function of time 

we obtain, 

There are two limiting cases of eqn 2.12. For long oxidation time (i.e thick 

oxides) when t » A2 /4B and t » r, eqn 2.13 becomes, 

Equation 2.17 is called the parabolic law and B is called the parabolic rate con-

stant. This limiting case is the diffusion-controlled case (discussed previously). 

For short times (i.e thin oxides) when (t + τ) » A2 /4B, eqn 2.13 becomes, 

This reaction is called the linear law and the quantity B/A is called the linear 

rate constant. This case is the reaction controlled case, discussed previously. 

The general oxidation equation is a good fit for thick oxides and oxidation in 

wet oxidizing atmosphere, but for dry oxidation, the fit of eqn 2.12 to the oxidation 

data does not extrapolate to zero initial thickness but instead to a value that equals 

about 250A, for data spacing a range of 700 to 1200°C. As stated before, Deal and 

Grove found, in fact, that there was an initial accelerated growth during oxidation 

in dry 02. 
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A number of different forms and mechanisms have been suggested for the ini-

tial thin oxide growth relationship. The proposals in the literatures have included 

schemes based on enhanced oxidant diffusion, reduced oxidant diffusivity in the ox-

ide, fixed charge effect on the interface reaction rate and micropore diffusion 14. 

Rather than surveying the various possibilities here, the thesis aims at. reviewing 

the current models and arrive at the best possible relationship in the light of the 

available experimental data, The next. section is devoted to explain, some of the 

possibilities, which might account for the oxidation mechanism. 

2.3 Oxidation Mechanism 

2.3.1 Atomic Reactions 

As indicated in Section 2.2,1, the thermal oxidation of Silicon in either dry oxygen 

or steam can be characterized by the general relationship equation 2.12. However 

the actual atomic reactions at the Si-SiO2 interface during thermal oxidation have 

not been well understood in the past.. More recently, efforts have been made to char-

acterize these reactions, especially the mechanism associated with the rate constant K 

 in eqn, 2.12. It. has been proposed that. at least. three individual phenomonea 

occur at the Si-SiO2 interface as oxidation proceeds [15]. These are shown in Fig. 

2.4. 

Firstly each SiO2  molecule produced occupies considerably more volume than 

that of Silicon reacted. Thus appreciable strain results at the interface region as is 

indicated by the upper box in the Fig 2.4. This compressive stress accounts in part 

of the excellent passivation property of thermal Silicon Oxide, but can also lead to 

lattice mismatch and other defects, if some mechanism does not permit the stress 

to be relieved. 
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Figure 2.4: Proposed Mechanism occuring at Si-SiO2  interface during Silicon Ther-
mal Oxidation[15]. 
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One of the ways of relieving this stress is shown in the lower box of Fig 2,4, which 

the generation and diffusion away from the interface of Silicon interstitials. Silicon 

interstitials are produced by the oxidation process have been proposed to cause 

enhanced diffusion of dopants in the Silicon during thermal oxidation - OED(oxidant 

enhanced diffusion) as well as to promote stacking fault formation - OISF(oxidation 

induced stacking fault), It. has been proposed that they contribute to charges such 

as QF  (Fixed oxide charge) or Qit  (Interface trapped charge) in the oxide. For 

the enhanced dopant diffusion effect, a relationship relating the oxidation rate and 

effective diffusion coefficient has been developed, which agrees reasonably well with 

experimental data : 

where, 	= the normal diffusion coefficient. due to vacancy mechanism and 

K(dx/dt)n = Silicon interstitial contribution, The value of n has been determined to 

range from 0.2 to 1.0. An expression for stacking fault, generation and retrogrowth 

has also been proposed : 

where, dl/dt=  growth/retrogrowth rate, K2 = the shrinkage rate in the absence 

of oxidation and K1(dx/dt)n = the interstitial contribution to the growth rate. A 

number of process variables in addition to oxidation rate dx/dt, such as ambient 

type, silicon orientation, HCl presence and mechanical damage have been shown 

to affect oxidation-enhanced diffusion and stacking fault generation through the 

formation of Silicon interstitials during oxidation, 

The third reaction or mechanism proposed to occur at the Si-SiO2  interface, 
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indicated by the middle portion of Fig. 2,4, involves the possible contribution of 

Silicon vacancies to the oxidation reaction. Under normal conditions (lightly doped 

Silicon) the vacancy concentration is reasonably low and oxidations proceeds giving 

rise to the mechanism, already discussed (strain generation and silicon interstitial 

effects). However, for heavier dopant concentration ( CB  =≥ 10"cm') enough 

silicon vacancies are present so as to provide additional free volume which can 

accommodate additional interstitials and as a result., the oxidation rate increases [15]. 

An understanding of the detailed mechanisms of reactions occuring at the Si-

SiO2 interface during thermal oxidation, such as those described above, and the 

relationship to associated reactions occuring during the oxidation process,should 

provide the basis for producing and controlling the thin oxides required for VLSI 

circuits. 
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Chapter 3 

Oxidation Techniques 

3.1 Introduction 

In this chapter, the most. commonly used techniques for thermal oxidation of silicon 

will be discussed, and some equipment and processing related consider ations will 

be made. 

From a practical point of view, thin oxide growth must be slow enough to ob-

tain uniformity and reproducibility. Various growth techniques include dry oxida-

tion, dry oxidation with HCl, sequential oxidations using different temperatures 

and ambient, wet oxidation, reduced pressure techniques and high pressure/low 

temperature oxidations. The oxidation rate will, of course, be lower at lower tem-

peratures and at reduced pressures. Ultra-thin oxides(< 50A) have been produced 

using very hot. nitric acid, boiling water, and air at room temperatures. New thin 
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oxide growth techniques have also recently been developed using Rapid Thermal 

Oxidation (RTO). 

This chapter will give an overview of the thin oxide growth techniques as well 

as the different oxidation techniques and 'its implementation, along with with the 

procedures for measurement. of oxide thicknesses. 

3.2 Thin Oxide Growth Techniques 

Much work has been done to achieve uniform, thin oxides under controlled process-

ing conditions. In order to controllably grow thin oxides, the growth rate must be 

reduced so that the process entails a reasonable time of growth. Various techniques 

have been used t.o achieve this reduced growth rate. They include : 

a) Dry oxidation 

b) Dry oxidation with HCl, trichloroethylene(TCE) or, trichloroethane (TCA) 

c) Reduced pressure oxidation 

d) Low temperature, high pressure oxidation 

e) Rapid thermal processing(RTP) under oxidizing conditions, 

Thin oxides ( ≤ 400A) have been successfully grown by a number of methods. 

Irene [161 has grown thin oxides (≤ 200A) in the temperature range of 780 — 980°C 

dry O2 . He reported that controlled oxides of 100A could be grown in 30 mins. 

at 893°C. Adams,et al., described the growth of thin oxides prepared in LPCVD 

system at. reduced pressures (0.25 - 2 Torr) in the temperature range of 900-1000°C. 

It was found that. the properties of the oxides were comparable to those grown 

at 1 atm, but with the additional benefit of excellent thickness control down to 

30 Å. Oxides grown at higher pressure (10 atm) and low temperatures (750°C) have 

produced 300A films in 30 minutes. When these films were used as gate oxides in 

NMOS devices (DRAMs), the devices showed significantly improved refresh cycle 
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times [181 when compared with devices with films grown at 1 atm. Rapid Thermal 

Oxidation (RTO) performed in a controlled oxygen ambient with heating produced 

by tungsten-halogen lamps [13] have also produced oxides with good uniformity and 

breakdown field. Oxides of 40 — 130 Å (1150°C, 5 to 30 seconds) with breakdown 

fields of 13.8 MV/cm for 100A oxides has been produced with this method, More 

recently it has also been announced (AC Associates) that RTP has produced oxides 

in the range of 50 — 250A having well controlled thickness and electrical properties. 

Another more complicated technique utilizes ultraviolet. pulsed laser excitation in 

an oxygen environment. 

3.3 Processing Techniques 

The processing techniques have an important impact. on oxide properties. It has 

been noticed by some researchers that. oxide density[19] increases as the oxidation 

temperature is reduced. Additionally, HCl ambients have typically been used to 

passivate ionic sodium, improve the breakdown voltage, and gather impurities and 

defects in the Silicon. 

The oxidation technique chosen depends upon the thickness and oxide properties 

required. Oxides that are relatively thin and those that require low charge at. the 

interface are typically grown in dry oxygen. When Sodium ion contamination is 

of concern, HCl — O2  is the preferred technique as mentioned above. Where thick 

oxides (i.e > 0.5p.m) are desired, steam is used 	1 atm or an elevated pressure up 

to 25 atm). Higher pressure allows thick oxide growth to be achieved at moderate 

temperatures in reasonable amounts of time. 
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3.3.1 Pre-Oxidation Cleaning Procedure 

Before putting the Silicon wafers in an oxidation furnace. they are thoroughly 

cleaned in order to remove all traces of organic materials and/or metallic impu-

rities, arising from previous processing steps and handling. Such contamination, 

if not. removed, can degrade the electrical characteristics of the devices and can 

contribute to reliability problems, 

Particulate matter is removed by either mechanical or ultrasonic scrubbing. 

Immersion processing techniques were the preferred cleaning methods, until the 

development of centrifugal spray methods, which eliminate the building up of con-

taminants as cleaning progresses. The chemical cleaning procedure usually involves 

removing the organic. contamination, followed by inorganic ion and atom removal. 

A typical cleaning procedure is the so-called RCA Cleaning in which hot aqueous 

solutions of H2O  — 112O9 — NH4 OH and H2O — 117O2  — HCl are used to remove 

respectively, the organic and heavy metal contamination. The former solution acts 

by the solvating action of ammonium hydroxide and the oxidizing effect of the 

peroxide, This process can also complex some Group I and Group II metals, The 

latter solution prevents replating by forming soluble complexes with the removed 

ion, and the process is performed between 75 and 85°C for 10 to 20 minutes, followed 

by a quench, rinse, and spin dry[13]. It is also noticed that during most wafer 

cleaning procedures, a chemical SiO2  layer of about 2 - 3 nm is formed. This 

oxide can be stripped in a diluted (e,g 5%) HF bath, followed by an extended rinse 

in a continuous flow of deionized water. Prolonged exposure of the bare silicon 

wafers to air also leads to the growth of a thin native oxide. It should be clear 

that reproducible growth of thin oxides requires careful control of the overall wafer 

handling before oxidation. Furthermore it has been reported that the cleaning 
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Figure 3.1: The effect. of the pre-oxidation cleaning procedure on the oxidation rate 

[201 

procedure itself has an effect. on the oxidation kinetics as illustrated in Fig 3.1[201. 

Wafers taken from the container as supplied by the Silicon vendor and indicated by 

"no clean" showed a considerable thinner oxide than wafers treated in a Sulfuric-

peroxide mixture before oxidation. On the contrary, wafers cleaned in an ammonium 

hydroxide - peroxide mixture gave a somewhat thinner oxide. 

3.3.2 Dry or Wet Oxidation 

As already mentioned in Chapter 2, most of today's oxidation process are carried 

out at atmospheric pressure in oxidation furnaces. Thin gate oxides are very often 

grown in dry oxygen for reasons of reproducibility and oxide quality. Recently a 

lot of attention goes to the use of double-walled quartz tubes, allowing to maintain 
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a flow of oxygen with a small amount of HC1 or another chlorine additive between 

inner and outer tube. Thicker or less demanding oxide layers such as field oxides 

or masking layers are mostly produced in a wet or steam ambient. To obtain a wet 

oxidation atmosphere, oxygen is bubbled through deionized water kept at 95-97°C. 

However, as the water bubblers easily get. contaminated, wet. oxides very often suffer 

from stability problems. To overcome this problem, it has been suggested to use a 

mixture of O2  and H2 gas to form water vapor in the oxidation tube. In practice, 

hydrogen is injected in the oxygen stream at the gas inlet of the furnace. These 

"hydrox" oxides are very stable under elevated temperature and bias conditions. 

3.3.3 Chlorine Oxidation 

The addition of chlorine containing additives to the oxidizing gas, has found widespread 

use for a number of reasons, related to oxide quality. Many production lines use 

HC1, which can be fed directly into the furnace tube. However if stainless steel 

tubing is used, great care should be taken to avoid contamination of the HCl with 

traces of H2O. This indeed would lead to a very corrosive mixture, which is known 

to severely attack the tubing system. For the same reason, a small leak in the 

HCl gas system will also damage the surrounding equipments. This problem can 

be overcome by using a liquid chlorine compound like trichloroethylene (TCE) or 

111-trichloroethane (TCA, also called C33), For safety reasons, TCA has been given 

the preference. Prolonged contact to TCE can lead to liver, kidney and heart. in-

juries.For the sake of completeness, it should be reminded here that the addition 

of 1% TCA to the oxidizing ambient corresponds to the addition of 3% HCl[21]. 

One should also be aware that very small concentrations of phosgene (COCl2 ) can 

be formed when the reacted gases reach the cold end of the furnace tube. Hence 

an efficient exhaust system is mandatory when chlorine containing compounds are 
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used. 

3.3.4 High Pressure Oxidation 

Thermal oxidation of Silicon at pressures higher than 1 atm. have received con-

siderable attention over the last years, as it. offers a technique t.o grow thermal 

oxides at. lower temperatures and at faster rates than can be achieved by means 

of conventional oxidation at atmospheric pressure. This interest has to do with 

the general trend towards lower temperature processing, required to reduce dopant 

diffusion and to maintain shallow junctions needed in VLSI processing. Another ad-

vantage is that oxidation-induced defects are suppressed. For higher-temperature, 

high pressure oxidation, the oxidation time is reduced significantly. 

The oxidation is in principle done inside a quartz reaction vessel, which is sur-

rounded by a nitrogen-containing region within the outer pressure shell. The pres-

sure in the quartz tube can be as high as 25 atm. The high-pressure technique 

has been used mostly in bipolar applications, although some companies have ap-

plied it. to MOS products. Fig 3.2 shows oxide thickness versus time data [22] for 

steam oxidation at various pressures and 900°C. The substantial acceleration in 

the oxidation rate caused by the increased pressure is apparent. 

3.3.5 Plasma Oxidation 

The anodic plasma-oxidation process offers the possibility of growing high qual-

ity oxides at temperatures even lower than those achieved with the high-pressure 

technique[13]. This process has all the advantages associated with low-temperature 

processing, such as minimized movement of previous diffusions and suppression of 

defect formation. Anodic plasma oxidation can grow reasonably thick oxides (of the 

order of 1µm) at low temperatures (< 600°C) at. growth rates up to about 1µm/h. 
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Figure 3.2: Oxidation thickness versus oxidation time for pyrogenic steam at 900°C 
for <100> and<111 > Silicon and pressures upto 20 atm, 

Plasma oxidation is a low-temperature vacuum process. usually carried out in 

a pure oxygen discharge. The plasma is produced either by a high-frequency dis-

charge or a DC electron source. Placing the wafer in a uniform density region of 

the plasma and biasing it positively below the plasma potential allows it to collect 

active charged oxygen species. The growth rate of the oxide typically increases with 

increasing substrate temperature, plasma density. and substrate dopant concentra-

tion. 

3.3.6 Other Oxidation Techniques 

A variety of new techniques is being explored in order to grow high quality thin 

Silicon dioxide layers in a reproducible way. The use of double walled oxidation 

tubes *as already mentioned in Section 3.3.2 has beneficial effect on the breakdown 

characteristics of the oxides. 

The reduced pressure oxidation (0.25 - 2,0 Torr) by Adams et al. in a low 

pressure reactor at 900 — 1000°C lead t.o a good control of the thin oxide growth 
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due to lower oxidation rate. 

It is also interesting to note that two-step process have been  proposed to take full 

advantage of the HC1 oxidation technique[23]. First a low temperature oxidation. re-

sulting in a good control of the oxide thickness, is performed in a chlorine-containing 

ambient. The oxide is then annealed at. a higher temperature in a mixture of N2, 

HCl and O2  in order to improve oxide quality without losing control over oxide 

thickness. Such oxides were shown to have reduced defect density. 

3.4 Implementation 

In industrial practice today, silicon dioxide films are grown in a reactor such as that 

illustrated in Fig, 3.3. The reactor consists of a resistance heated furnace held 

at a temperature around 1000°C by a temperature controller, a cylindrical fused 

quartz tube in which the silicon wafers are placed, and a source of either dry oxygen 

or pure water vapor. In production furnaces, temperatures can be held for short 

times(days) to within ±0.1°C over the length of the flat. zone (up to 2 ft long), and 

for long terms (months) to within ±0.5°C. 

The loading end of the furnace tube protrudes into a vertical laminar flow (Whit.-

field) hood where a filtered flow of air is maintained. Flow is in the direction of the 

arrows shown in Fig 3.3. The purpose of the hood is to reduce dust and particulate 

matter in the air surrounding the wafer to negligible levels. Such particulate matter 

is undesirable because it can adhere, by electrostatic forces, to the silicon wafers 

prior to oxidation and contaminate either the oxide layer subsequently grown on the 

underlying silicon. Sodium contamination which is very critical from the point of 

device characteristics and supposed to be produced from furnace lining is minimized 

by the furnace manufacturer in the type shown in Fig 3.3. 
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Figure 3.3: Schematic cross section through a stack of two resistance heated oxida-
tion furnaces, The silicon wafer loading area is shown in a Whitfield-type hood 

Cases coming out of the furnace during oxidation are not exhausted into the 

Whitfield hood but are passed through a scavenger (not shown in Fig, 3.3) and 

then exhausted into the atmosphere, The scavenger is made up of stainless steel 

or coated with Kynar to retard corrosion. When anhydrous HCI or C/2  is mixed 

with oxygen, which is sometimes done to produce sodium free oxides, the exhaust 

gases flow through a water spray scrubber, to remove chlorine from the gas stream 

by forming HCl. 

Distilled water, or deionized water passed through filters to remove particulate 

matter and organics are the sources of steam or water vapor for wet oxidation. To 

prevent room air (which may contain impurities that adversely affect film quality) 

from entering the oxidation zone, the ambient gases in the furnace tube are held at 

a pressure just slightly above 1 atm. The oxidant gas flows at. the rate of about 1 

cm/sec past the wafers in the furnace at oxidation temperature. 

For growing wet. oxides, water vapor can be steamed at slightly above 1 atm or 
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can be mixed with a neutral gas like argon. The use of carrier gas provides better 

thickness control because growth is slower, 

Most modern furnace systems utilize either microprocessors or minicomputers 

to control the operation of the furnace. The desired insertion and withdrawal rates, 

ramp rates, gas flows, and temperatures are all programmable. For wet. oxidation 

the microprocessor controls the H2/O2  mixture. 

3.5 Latest Trends 

As VLSI devices continue to be scaled-down in size, they will require gate and tunnel 

dielectric thicknesses in the range of 100A or less. In spite of the fact of that very 

thin oxides can be grown by a number of techniques as described in the preceeding 

sections, very thin layers of SiO2 are known to have high defect. densities, and 

do not serve as an effective diffusion mask against impurity diffusion.[18] Recent 

studies show that direct thermal nitridation of Si and thin SiO2  appears to he a 

viable alternative method of growing a good quality dielectric film in this very thin 

regime, 

Thermally grown films of silicon nitride (Si3N4 ) have a number of advantages 

over SiO2, easily including : 

a) they tend to have self-limiting growth kinetics and therefore their thickness 

is easily controllable 

and, b) they are effective barriers to impurity diffusion. 

MOS devices fabricated with these films show large values of gain. 

Thermal silicon nitride films are generally grown by the high temperature (950 — 

1200°C) nitridation of silicon in pure ammonia (NH3) or an ammonia plasma [18]. 

They can also be prepared by plasma anodic nitridation using a nitrogen-hydrogen 

plasma in the temperature range of 700 — 900°C. An additional and somewhat 
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novel technique for producing nitride films on silicon is to use direct. nitrogen ion 

implantation at a close of 5X 1016  cm  -2 , in the energy range of 5-60 Eel- , followed 

by an anneal at 1000°C. in a 	ambient. 

3.6 Measurement Techniques 

The accurate measurement of oxide film thickness is an important process control 

tool used during VLSI wafer fabrication. For example, the thickness of gate oxides 

in VLSI MOS devices (which is typically ≤ 250A) must be tightly controlled, as it 

is one of the parameters that directly determines the device threshold voltage, V-. 

Various techniques are available for measuring oxide thickness, the most important 

being : 

a) Optical interference 

b) Ellipsometry 

c) Capacitance 

d) Use of Color chart 

All the above are non-destructive optical techniques. Since, ellipsometry is em-

ployed in this research, a brief idea of the method is described below. 

The ellipsometry technique makes use of the change of state of the polarization of 

light when it is reflected from a surface (in this case the oxidized Si/SiO2  interface). 

The state of polarization is determined by the relative amplitude of the parallel and 

perpendicular components of the radiation, and by the phase difference between 

these two components. The polarization change depends on the optical constants 

of the silicon, the angle of incidence of the light, the optical constants of the film (i.e 

ni  and the extinction coefficient, k), and the film thickness. If the optical constants 

k) of the substrate are known and the film is non-absorptive at the wavelength 

being used (k = 0), the state of polarization of the reflected beam depends on ni 
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and the thickness of the transparent film. 

High Resolution Electron Microscopy (HUM), :is also a powerful technique 

in characterizing very thin oxide films. In this research. Transmission Electron Mi-

croscopy (TEM) has been employed. It. was quite interesting to note the discrepancy 

between the ellipsometric measurements and that obtained by TEM. This poses a 

question regarding the reliability of ellipsometric measurements. This is further 

discussed in Chapter 6. 
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Chapter 4 

Existing Models - in the thin 
oxide regime 

4.1 Introduction 

Extensive research efforts have been employed to model the oxidation kinetics of sili-

con in the thin oxide regime. It. is already described in Chapter 1, that the oxidation 

of single-crystal silicon is, for the most part, accurately characterized by the Deal-

Grove formalism[6]. Many authors, however, have reported considerable deviation 

from the linear-parabolic oxidation theory when the thin oxide films are grown in a 

dry oxygen ambient. The deviation from this model consists of anomalously rapid 

initial oxidation for the first 20-40 nm of growth in dry O2 . The standard linear-

parabolic formulation accounts for this regime empirically by the incorporation of 

a time constant T in the expression for oxide growth, 
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A wide variety of functional relationships have been proposed. In this section 

several possibilities are considered in light of oxide thickness data obtained by el-

lipsometry and HRTEM. 

4.2 Background 

The oxidation of silicon appears, at. first, to be a simple problem. Oxygen reacts with 

the surface layer, with reaction continuing at. the interface between the substrate 

silicon and the oxide as the film grows in thickness. Oxygen must diffuse in through 

the film to reach the interface. 

Although the basic situation is summarized in these simple statements, the 

number of complicating factors and difficult issues is disturbingly large. A number 

of the questions that. are relevant to a study of this anomalously rapid initial regime 

are listed below, 

- Does oxygen diffuse through the oxide in molecular or atomic form ? If it 

diffuses molecularly, does the interface reaction involve the molecular form or is 

dissociation required prior to reaction? 

- Is the transported oxygen a charged species? If not, is an ionization reaction 

necessary at or near the interface? 

- Is there, in fact, a single oxidant species, or do several species simultaneously 

make a significant contribution to diffusion and/or interface reaction? 

- Is the rapid oxidation a diffusion-controlled phenomenon or an interface-controlled 

one? 

The oxidation of silicon to form silicon dioxide requires a large volume change 

(per silicon atom). Large planar stresses are generated. What are the effects of these 

stresses? Are they capable of giving rise to the observed growth rate enhancement? 

- Silicon interstitials are likely to be released at the surface, al: d vacancies in the 
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silicon consumed there. How do these point defects relate to initial oxidation? 

Some of these questions have clear answers: most do not . The major diffusing 

species for thicker oxides is almost certainly molecular oxygen, as inferred from the 

pressure dependance of the parabolic rate constant. and the agreement between the 

measured activation energy and that seen for O2  molecules diffusing in fused silica. 

It had originally been thought that the application of an electrical potential across 

the oxide film affected oxidation rate, implying the involvement of ions. However, 

more recent. works conclude that silicon oxidation is dominated by neutral species. 

The latter conclusion applies strictly to thicker oxides: the participation of charged 

species in the initial oxidation has not yet been ruled out[14]. 

Although oxide films grown above the viscous flow point of silicon (950 — 975°C) 

appear to remain stress-free during oxidation, thermal growth of SiO2  at lower 

temperatures, does give rise to larger compressive stresses in the oxide[24]. However 

the effect of stress on diffusion or on the interface reaction are still unclear. The 

role of point defects has also not been elucidated in the early stages of oxidation. 

Many of the other mechanisms in this list. have been invoked to explain or model the 

rapid initial oxidation. It is disconcerting to realize that. sometimes the assumption 

of the same model has led to dissimilar expressions for oxide growth. 

In this research, the various models are categorized by the functional forms that 

they give rise to for the initial oxidation regime. The different forms considered by 

the former researchers are listed below : 
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In these equations. I represents oxidation time, x is oxide thickness. and Ao, Al  

and A2 are fitting constants that may or may not be thermally activated or pres-

sure dependant. Although several models may give rise to similar expressions, it 

should be possible to at least eliminate some of the alternatives by determining 

what functional form the data follow. 

4.2.1 Linear modeling of initial oxidation 

There are numerous reports that the early regime of rapid oxidation in dry O2  can 

be well fit. to a linear relationship. In some of these cases, the initial growth is con-

sidered to be the linear part of the Deal-Grove description which is controlled by the 

interfacial reaction rate and governed by the linear rate constant B/A (sometimes 

also designated by Klin).  This implies a more gradual and perhaps more complex 

transition between the linear and parabolic kinetics than that proposed by Deal 

and Grove[6]. Other formulations give rise to an initial linear regime that precedes 
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the linear-parabolic behavior, Two separate linear rate constants corresponding to 

different physical processes are then obtained. 

Growth kinetics for thin oxide layers on both (100) and (111) substrates were 

examined by Van der Meulen. The range of oxide thicknesses examined was re-

stricted to 1-30 nm. Relatively low temperatures (700 — 1000°C) were used, and 

diluted ambients of dry O2  in N2 at 1 atm, total pressure were investigated. Wafer 

cleaning involved unspecified organic and inorganic rinses using ultrasonic agita-

tion, following the procedures of Deal and Grove. The results obtained by him, 

were also characterized by a linear-time-thickness relationship that. was thought. to 

be the interface-controlled linear portion of the typical linear-parabolic growth, At 

the higher values of temperature and pressure that were examined, the transition 

to parabolic behavior was also evident for the thickest oxides measured. The linear 

rate constant data exhibited some curvature in an Arrhenius plot, prompting him 

to speculate that a complex interface reaction mechanism was necessary. From the 

pressure dependancies of B/A at different temperatures, it. was suggested that the 

oxygen species involved in the rate-limiting step is not. the same for the two orien-

tations. A general expression for oxidation was obtained that consists of a mixed 

linear-parabolic expression with a logarithmic correction at large oxide thicknesses. 

Irene appears to be the first to suggest that the initial rapid oxidation regime in 

dry O2  is a separate linear region which is not encompassed by a linear-parabolic 

sort of description[16]. Oxidation kinetics in the initial linear region are described 

by an expression similar to eqn. 4.2. Wafers in his experiment were cleaned by RCA 

process and given a final HF dip and deionized water rinse. Data were collected 

during the early stages of oxidation in dry O2  by automated in-situ ellipsometry, 

at oxidation temperatures of 780, 893, and 980°C. Irene indicates that the pres-

ence of micropores in the oxide would provide an explanation for the initial rapid 
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oxidation behavior in dry O2. Accelerated lateral diffusion of oxidants that were 

supplied directly to the silicon silicon dioxide interface via pores would result in 

linear kinetics. 

Murali and Murarka's model incorporates an oxygen-diffused zone in the silicon 

substrate in the vicinity of the interface and predicts an initial linear region before 

the linear-parabolic regime[26]. They noted that in the early stages of oxidation, it 

is likely that oxidizing species are supplied to the interface more rapidly than they 

can he consumed by the interfacial reaction. As a result, excess oxygen will diffuse 

into the near-interface silicon t.o an extent determined by the oxygen diffusivity and 

solubility in silicon, oxygen partial pressure, temperature, orientation, and oxide 

thickness. A "reactive zone" is thus formed. Oxidation of silicon then occurs 

partially within this zone rather than entirely at the Si — SiO2  interface, 

4.2.2 Parabolic modeling of initial oxidation 

The anomalously rapid initial oxidation has also been characterized by a parabolic 

expression. Experimental data that corresponded to a separate parabolic regime 

at oxide thicknesses under 12 nm were obtained by Adams, Smith and Chang l7]. 

Wafers of (100) orientation received an RCA type clean followed by a dilute HF etch 

and water rinse, Oxidations were performed at low oxygen pressures of 0.25-2.0 Torr 

of dry O2  and at temperatures between 900°C and 1000°C. The seven different rate 

laws listed earlier as Eqns. 4.1 to 4.7 were fitted to the oxide thicknesses measured by 

ellipsometry. The parabolic expression was determined to be the most appropriate 

representation. Linear, logarithmic, and inverse-logarithmic expressions followed 

the data poorly compared to the parabolic fit, and cubic and variable-power laws 

were discarded because there were no relevant physical mechanisms associated with 

them. 
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4.2.3 Linear-parabolic modeling of initial oxidation 

In several cases, the initial anomalously-rapid oxidation regime has been modeled by 

another linear-parabolic expression. Adams et al.[17] examined the fit of their data 

to such an additional linear-parabolic equation (Eqn. 4.1) but determined that it. 

provided only a marginally better description than a parabolic term alone, and that 

the slight improvement. could be attributed solely to the presence of an additional 

fitting parameter, Both prior and subsequent work has been done that. argues in 

favour of a separate complete linear-parabolic regime during early oxidation in dry 

Extensive data on oxidation of (111) Si surfaces, along with some data on (100) 

surfaces, were collected in a relatively early study by Hooper et al.[27]. Samples 

were cleaned by the RCA method (discussed in Chap,3) with a final HF dip, but 

a subsequent 1200°C treatment. for 30 seconds in a high vacuum was instrumental 

in removing native oxide prior to thermal oxidation, Oxide growth was carried 

out. at. pressures from 50 to 1200 Torr (0.066 to 1,58 atm.) and at temperatures 

in the 650 — 950°C range. Simple Deal-Grove kinetics or its modifications did not. 

serve as appropriate descriptions of the thickness vs time data obtained from in situ 

ellipsometry. The linear-parabolic equation gave an excellent fit. to the experimental 

data, 

4.2.4 Variable-power law modeling of initial oxidation 

A recent report by A. Reisman et al.[28] showed their data to be modeled accurately 

over a wide thickness range by the variable power law of the form given by Eqn. 4.4. 

Their study was conducted at 800°C and 20 atm. in dry O2  for (100) silicon. In each 

oxidation experiment, 25 wafers were oxidized, and twenty points were measured on 

each wafer, using an IBM film thickness analyzer. For the shorter time oxidations, 
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thicknesses were measured with an ellipsometer as well as the FTA. They actually 

proposed a general equation of the form given below : 

where, x is the final measured thickness, a and b are constants, tg is the time 

for growth measured in an oxidation experiment, and t o  is the time to grow an 

oxide of thickness xo, already present on the silicon surface, and/or formed as a 

consequence of furnace ramp-up and ramp-down sequence. The values for xo  and 

to are determined readily from x-t data. Employing this model, they found that 

there is no evidence of anomalous oxidation region at small thicknesses. It was also 

found that all of the published data, including that published by Deal and Grove 

in 1965, could be modeled precisely and simply by the expression 4.8. 

4.2.5 Other models in the initial regime 

Of the other functional forms that have been advocated for explaining initial ox-

idation data, the most commonly mentioned possibility is the inverse-logarithmic 

expression (Eqn. 5.5). Although Deal and Grove did not specifically mention such a 

form, it was implicit in their speculation on the possible origins of the early growth 

rate enhancement in dry oxidation[12]. Rapid initial film growth is expected if an 

ionic species participates in the early stages of oxidation. If ionic transport does 

take place as suggested by them, very thin oxides will be grown approximately 

according to an inverse-logarithmic law. 

Massoud et al.[29] have worked extensively in the thin oxide regime and it has 

been recently demonstrated by them that in the initial oxidation phase, a much 

better fit can be accomplished by adding an additional term to the oxidation rate 

stated by Deal and Grove, and which decays exponentially with thickness. The 
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expression formulated by them is shown below : 

where. C2 is a pre-exponential constant and L 2  is a characteristic decay length. 

For dry oxidation of lightly doped substrates in the 800 — 1000°C range, L2 was 

found to be 70 Å 10 Å, independent of substrate orientation. 

4.3 Summary 

A detailed evaluation and discussion of the various physical models to explain 

the initial rapid oxidation phase, can categorize the models essentially into four groups [29]. 

(i) Models based on space-charge effects where the oxidation enhancement in the 

thin regime is due to field-assisted oxidant diffusion. 

(ii) Models dealing with the presence of structural defects in the oxide, providing 

additional channels or micropores for diffusion of the oxidant. 

(iii) Stress effects in the thin oxide can lead to a different diffusivity of the 

oxidizing species. 

(iv) Increased solubility of the oxidant. in the thin oxide could affect the growth 

rate by its influence on the oxidant concentration at the silicon surface. 

Finally Massoud et al. proposed a new model based on the presence of a thin 

surface layer in the silicon where additional reaction sites are available, The con-

centration of these sites decays exponentially with a characteristic length of ~40Å, 

corresponding with the 70 Å of oxide thickness observed for the characteristic length, 

L2 in expression 4.10, 
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Chapter 5 

Experimental Procedure 

5.1 Introduction 

Routine measurements of oxide thickness have been an integral part of silicon wafer 

for many years. Fabrication of thin film devices requires an accurate knowledge of 

both lateral and vertical film dimensions. Oxide thicknesses are commonly deter-

mined by nondestructive optical techniques such as interferometry and ellipsometry. 

For most purposes, these methods are sufficiently accurate. Very thin oxides, how-

ever, are more difficult to characterize by such measurements. The experimental 

data shown in the next section have been obtained earlier, using high-resolution 

transmission electron microscopy (HRTEM) and ellipsometry techniques. 

In this chapter, the experimental methods, to obtain the above mentioned data, 

is discussed, alongwith the data analysis procedure adopted, to arrive at the best 

42 



model formulation. 

5.2 -Experimental Method 

5.2.1 Pre-Cleaning and Oxide formation 

The oxides were grown at 800°C on single crystal silicon wafers (p-type Czochralski). 

The wafer had an orientation of < 100 > and 2Ω— cm resistivity. The Silicon wafers 

were cleaned using conventional RCA technique (discussed in Sec 3.3.1) followed by 

a hydrogen fluoride (HF) dip and a thorough rinsing with deionized (DI) water. 

Oxides were thermally grown at the said temperature for time durations of 1 - 300 

minutes. Ultra high purity oxygen (H2 O < 0.5 ppm) was used in the oxidation 

process. Typically the oxide thickness used in the measurement of the electrical 

properties was —20 mai. This thickness is typical of the present day gate oxides for 

a 1p CMOS process. 

5.2.2 Measurements 

Oxide thickness measurements were carried out using a carefully aligned Gaertner 

manual and automatic ellipsometer[1,12]. The agreement in the thickness obtained 

from both the ellipsometers was within 0.5 nm. Thickness measurement was carried 

out at nine position of the wafer. The mean deviation of the thickness was found to 

be ~ 2%, For determination of the oxide thickness, a refractive index of 1.465 (at 

632.8 nm corresponding to the He-Ne laser) for SiO2  was used. In this technique, 

polarization angles of reflected light are measured and converted to film thicknesses. 

An important advantage of ellipsometry as a characterization technique, is that, it 

is non-destructive. 

An automatic spectroscopic ellipsometer that has been built at Pennsylvania 

State University[30] was employed to perform SE on thin films of SiO2  (on Si) 
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in the thickness range of 2 to 20 nm. EER studies were also made on some of 

this samples. For this purpose, each wafer was cut into 4 x 20 mm strips which 

were then used as test samples. An air tight quartz vessel was used to contain 

the non-aqueous electrolyte and test samples from which the light was reflected, A 

reference electrode was used to measure the actual potential causing the field across 

the sample. The non aqueous electrolyte consisted of a 0.1 molar solution containing 

a counter ion, tetrabutylammonium tetrafluoroborate, [CH3(CH2)3]4NBF4  and a 

non conducting supporting electrolyte, acetonitrile CH3CN. Cross-section samples 

of HRTEM were prepared using combination of mechanical and ion-beam polishing 

methods. High resolution phase contrast images of the interface were taken at 

Scherzer optimum defocus value of 65 nm and < 100 > orientation using JEOL 

200CX TEM at. 200 KV with a 0.27 nm point to point resolution. The averages 

are arrived at by determining tox at regular intervals across several micrographs 

and taking the mean of the measured values. For further details please refer to the 

published work [1,32]. 

5.3 Data Analysis 

The analysis of data was done through a data analysis and graphics software, called 

GENPLOT[33]. The program has extensive analysis and data manipulation capa-

bilities with curves and variables. It includes a very powerful set of data fitting 

routines. Data may be fit to a linear function (returning standard deviations and 

error estimates), polynomial functions (up to order 6), or to a user-specified ar-

bitrary function. The last capability allows experimental data to be analyzed in 

terms of any analytic function of 10 or less independent variables. This non-linear 

fit searches the parameter space of these variables to obtain the best fit (in a least 

square sense) of the data to the analytic function. The best fit estimate and an 
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estimate of the error are returned to each parameter. 

The powerful fitting routine which attempts to fit. a user defined function to the 

experimental data, varying parameter in the function to minimize the least-squares 

deviation of the data from the function, is actually known as NLSFIT. The fits can 

be based on quantitative models. 

In brief, NLSFIT takes a function and a set of variables upon which the func-

tion depends. The numeric value of each of these variables is then modified and 

the variance between the function and the data is determined. Using the change 

in the variance, a new guess is made for each of the variables, iterating through 

the parameter space until a sufficiently good minimum is located. In this search, 

NLSFIT evaluates the derivative of the fitting function with respect to each of the 

parameters at. every point. in the experimental data set. These derivatives may ei-

ther be given analytically, or NLSFIT will determine them numerically. NLSFIT 

combines the gradient search and function linearization methods to minimize the 

number of steps required to converge to the best solution. 

In essence, NLSFIT performs a n-dimensional search for the minimum of the 

variance function. 

Residual Analysis is actually done by the following expression : 

where, N is the number of data points fitted, f(ti ) is the user defined function 

and xi 's are the experimental data points. 
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Chapter 6 

Results and Discussion 

6.1 Introduction 

This chapter summarizes the experimental results obtained from ellipsometric and 

TEM measurements and also the data analysis performed on them, to arrive at. the 

best possible model. The coefficients obtained from the fits are also presented for 

further interpretation. 

Two questions that arise are : 1 - does the obtained fit model "dry" silicon 

oxidation in general, i.e, over a wide pressure-thickness-time matrix, and 2- what 

is the best analytical approach to modelling any specific set of data ? A third 

question which no attempt has been made to answer here is whether the expression 

also models steam silicon oxidation ? 
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6.2 Experimental Results and Discussion 

A summary of the oxide thickness measurements is presented in Table 6.1. As can 

be seen from the table, the oxide thicknesses obtained by ellipsometry are within 1 

nm of those measured by TEM. 

Two very thin and two very thick samples (A through D) were chosen for 

HRTEM studies. Fig 6.1 shows the thickness versus time growth kinetics for these 

samples. From the figure it can be seen that the oxide growth data obtained from 

ellipsometry shows a non-linearity, whereas the data obtained from TEM is fairly 

linear. It may be noted here that the ellipsometry data of the oxide thickness in 

Table 6.1 and Fig. 6.1 represents an average of several nine-point measurements 

made on each wafer. The mean deviation of the oxide thickness was found to be 

within 0.3 nm. 

Similar measurements of the oxide thickness in the thin oxide regime have been 

recently reported by Carim14. It is interesting to note that our results of the 

growth rate behavior obtained from TEM and ellipsometry are similar to those 

reported by them despite the major differences in the method of growth of the 

oxide in two cases. In the present study, the oxides have been grown at 800°C in 

dry O2, while they grew [14] the oxides at 900°C in an ambient of 10% dry O2  in 

Ar. 

In this discussion, the various models are categorized by the functional forms, 

that they give rise to for the initial oxide regime. Separate linear, parabolic, linear-

parabolic, and variable power forms have been used to characterize the initial ox-

idation preceding the linear-parabolic portion of the curve that is well described 

by the Deal-Grove equation. The expressions 4.1 through 4.4 are considered in the 

work. 
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Table 6.1: Summary of the oxide thickness measurements. All thickness represent. 
average values 
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Figure 6.1: Plot of experimental data (Ellipsometry and TEM) 
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To compare possible formulations of the initial oxide growth law, it was as-

sumed that all the oxides examined here were fabricated within the initial regime 

prior to Deal-Grove linear-parabolic oxidation and that approximation of the ini-

tial oxidation by a separate limiting expression is a reasonable simplification. The 

same thickness vs time data that is presented in Fig. 6.1 has been fitted to linear, 

parabolic, linear-parabolic, and variable power equations. Graphs illustrating the 

best fit of these equations to the data. are shown in Figures 6.2 through 6.5. The 

coefficients for the fitted expressions are listed in Table 6.2. 

The TEM data is fitted to linear and linear-parabolic expressions only as the 

plot clearly shows a linear trend. The fit. to TEM data is shown in Fig 6.6 and Fig 

6.7. The coefficients for the fitted expressions are listed in Table 6.3. 

It. is' interesting to note that the linear-parabolic expression gives an excellent fit 

to the present data (Fig 6.4). The existence of the third adjustable parameter will 

always lead to a better fit. for a linear-parabolic formulation, than is possible for 

either a linear or parabolic expression. The variable power law form which also pro- 
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Figure 6.4: Linear-parabolic fit to ellipsometric data 
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Figure 6.5: Variable power fit to ellipsometric data 

Table 6.2: Calculated Values of coefficients for linear, parabolic, linear- parabolic and 
variable power best fits to oxidation data from ellipsometry 

52 



Figure 6.7: Linear-parabolic fit to TEM data 
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800 0C , DRY 02, T E M DATA 
 

LINEAR LINEAR-PARABOLIC 

A 0 A 
1 

A 
0 A 1 A 

2 

2.96 0.06 2.88 0.067 -0. 12E-04 

Table 6.3: Calculated values of coefficients for linear and linear-parabolic best fits 
to TEM data 

vided a reasonable representation of the oxide growth data, is physically unrealistic, 

since increasing growth rate is obtained. The excellence of the linear-parabolic fit. 

for both ellipsometric and TEM data was further confirmed theoretically by simu-

lating the expression by a computer program, with the coefficients obtained from 

the fit, The output. (calculated value) gave a remarkable closeness to the experi-

mental data. The results are shown in Table 6.4 and the program is shown in the 

appendix. 

Several sets of data obtained from the work of other researchers were then ana-

lyzed by the present procedure, and in all cases the excellence of fit due to linear-

parabolic model was observed. The fit to the published data is shown in figures 

6.8 to 6.12, The constants obtained after the fit are described in Table 6.5. There 

is notable difference between the constants, but this phenomenon is well known to 

workers in this field, This indicates that oxidation data is process dependant, as 

for example the pre-oxidation surface cleaning procedure, partial pressures of the 
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OXIDATION 
TIME 
(T) 

(MINS) 

OXIDE 	THICKNESS 

ELLIPSOMETRY HRTEM 

EXPERIMENTAL 
(nm) 

CALCULATED 
(nm) 

EXPERIMENTAL 
(nm) 

CALCULATED 
(nm) 

1 20 2.84 30 2.95 

5 3 	1 3,20 

10 3.7 3.65 3.5 3.55 

20 5.2 4.53 

40 6.7 6.23 

100 10.8 10.85 9.5 9.46 

200 16.6 16.99 

300 21.3 21.17 22.0 21.90 

Table 6.4: Experimental and Calculated values to demonstrate the excellence of 

linear-parabolic fit. to the experimental data 

chemical species, temperature and it.s uniformity. orientation and resistivity of the 

wafers etc, 

The linear-parabolic fits give an extrapolated 'initial" oxide thickness of 2.75 

nm prior to oxidation, This initial thickness is similar to the values of 2.7 urn and 

2.5 - 3.0 nm derived by other workersl34,35], although with different. techniques. 

This is due to the native oxide thickness and the oxide formed during the insertion 

of wafers into the furnace and ramp up of to temperature. 

The most striking facet of these work is that. although the linear-parabolic ex-

pression gives an excellent. fit to the ellipsometric data, it is less accurate when 

applied to the HRTEM data, which clearly shows a linear trend. The implica-

tion is that although the optical thickness of the oxide may develop according to 

a linear-parabolic law, the structural thickness increases linearly with time in the 

initial region. However, there are uncertainties in both techniques : (a) In single-

wavelength or spectroscopic ellipsometry, a prior knowledge of the refractive index 
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LINEAR -PARABOLIC F I T 

Reference A 
0 1 

A A 
2 

Present Work 2.75 0.0908 -0.98E-04 

Carim et a I . 2.995 0.0089 

 

-0.16E-05 

Massoud et al. 1.984 0.065 -0.41E-04 

A. Reisman et al. 7.3 
0.487 -0.31E-04 

L. N. Lie et al. 15.3 0,26 -0.58E-04 

Deal & Grove 24.21 0.039 -0.20E-05 

Table 6.5: Coefficients obtained from linear-parabolic fitting of published experi-

mental data 
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Figure 6.8: Linear-Parabolic fit to published data by Carim[14] 
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Figure 6.9: Linear-Parabolic fit to published data by Massoud et al.[30] 
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Figure 6.10: Linear-Parabolic fit to published data by A. Reisman et al.[29] 

and extinction coefficient of SiO2 is required in order to evaluate thickness. These 

values are dependent on the wavelength of the incident radiation and the oxide 

thickness, especially, for very thin films that are a few monolayers thick, (b) In 

HRTEM, the oxide thickness measurements are complicated by the very nature of 

the interface. Further, as much as the method is destructive, one needs to perform 

these measurements on many samples from each wafer in order to ma.p thickness as 

function of position on the wafer. 
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Figure 6.11: Linear-Parabolic fit to published data by L,N. Lie et al.[22] 
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Figure 6.12: Linear-Parabolic fit to published data by Deal and Grove[6] 
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Chapter 7 

Conclusion 

An analysis of the various models, proposed in the literature, for explaining the 

oxidation kinetics of silicon in the thin oxide regime, has been presented in this 

study. This analysis considers recently reported measurements of thicknesses of 

Si O2  films grown thermally on Si at 800°C for time durations of 1-300 minutes in 

dry O2, using the techniques of HRTEM and ellipsometry. The ellipsometric data 

obtained from this work as well as from other researchers, showed an excellence of 

fit to the linear-parabolic formulation of Deal and Grove. However the HRTEM 

data are somewhat different, and showed an initial linear regime. 

Direct observation of thin oxide films in cross-section by high resolution elec-

tron microscopy demonstrate that the structural thickness is somewhat less than 

that indicated by ellipsometric measurements. The discrepancy is due to the fact 

that ellipsometry measures an effective "optical thickness" and makes a number of 
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assumptions when identifying that. value with the structural thickness of the oxide 

layer. 

It may also be noted that several assumptions must be made in order to obtain 

thickness information for thin oxides by ellipsometry. The optical constants must 

be obtained from thicker oxide films, so it must. have been assumed that they are 

independent of film thickness during oxide growth. However some recent studies 

have shown, this is not the case, 

The literature in this area is voluminous and therefore this survey, should not. 

be  construed as exhaustive or complete. It now rest on readers to undergo further 

research. based on the current work and come up with solutions to the unanswered 

queries. 
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Appendix 
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C PROGRAM TO SIMULATE THE LINEAR PARABOLIC 

MODEL 
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\***********************************************************************\ 

\* PROGRAM WRITTEN BY TIRTHANKAR DUTTA AS A PART OF THE MASTERS THESIS *\ 
\***********************************************************************\ 

\* This program simulates the Linear Parabolic function with the calculated *\ 
\* constants, and the time intervals at which the actual experimental *\ 
\* observations were done for the ellipsometric data. 	 *\ 
\**********************************************************************\ 
#include <stdio.h> 
#include <math.h> 
main() 

\*************************************************************************\ 
\* The constants obtained from the linear-parabolic fit are defined here *\ 
\*************************************************************************\ 
float AO = 2.75; 
float Al = 0.0908 ; 
float A2 = -0.98E-04 ; 
\*************************************************************************\ 
\* The time intervals at which the observations were made are defined here *\ 
\*************************************************************************\ 
static int T[8] = 	1, 5, 10, 20, 40, 100, 200, 300 }; 
int 	i ; 
float x ; 

printf("\n"); 
printf("\***************************************************************\n"); 
printf(" 	 PROGRAM 	 OUTPUT 	 \n"); 
printfn***************************************************************\n");  
printf("\n"); 
printf("\n"); 
printf(" 	 LINEAR 	PARABOLIC 	 F I T \n"); 
printf(" 	 \n"); 
printf("\n"); 
printf("\n"); 
printf(" 	 (ELLIPSOMETRIC 	D A T A) \n"); 
printf("\n"); 
printf("\n"); 
printf(" 	(Calculated values with coefficients obtained from fit ) \n") ; 
printf("\n"); 
printf("\n"); 
printf(" 	 T(hrs) 	 x(nm)\n"); 
printf(" 	 \n"); 
printf("\n"); 
printf("\n"); 
for ( i = 0 ; i <= 7 ; ++i) 

x = ( 	AO 	(Al*T[i]) + (A2*T[i]*T[i]) ) ; 
printf(" 	 %3d 	 %4.2f \n", T[i], x ) ; 
printf("\n") ; 
printf("\n"); 
printf("\***************************************************************\n"); 



\***********************************************************************\ 
\* PROGRAM WRITTEN BY TIRTHANKAR DUTTA AS A PART OF THE MASTERS THESIS *\ 
\***********************************************************************\ 

\* This program simulates the Linear Parabolic function with the calculated *\ 
\* constants, and the time intervals at which the actual experimental *\ 
\* observations were done for the TEM data. 	 *\ 
\***********************************************************************\ 

#include <stdio.h> 
#include <math.h> 
main() 

\*************************************************************************\ 
\* The constants obtained from the linear-parabolic fit are defined here *\ 
\*************************************************************************\ 

float AO = 2.88; 
float Al = 0.067 ; 
float A2 = -0.12E-04 ; 

\*************************************************************************\ 
\* The time intervals at which the observations were made are defined here *\ 
\************************************************************************\ 

static int T[4] = { 1, 10, 100, 300 }; 
int 	i ; 
float x ; 
printf(" \n"); 

printf(" **************************************************************\n");  
printf(" 	 PROGRAM 	 OUTPUT\n"); 
printf(" **************************************************************\n");  
printf(" \n"); 
printf(" \n"); 
printf(" 	 LINEAR 	PARABOLIC 	F I T 	\n"); 
printf(" 	 \n"); 
printf("\n"); 
printf("\n"); 
printf(" 	 ( H R T E M 	D A T A) 	 \n"); 
printf("\n"); 
printf("\n"); 

printf("x = A0 + A1*T + A2*T*T \n"); 
printf("\n"); 
printf("\n"); 
printf(" 	( Calculated values with coefficients obtained from the fit )\n"); 
printf("\n"); 
printf("\n"); 
printf(" 	 T(hrs) 	 x(nm)\n"); 
printf(" 	 \n"); 
printf("\n"); 
printf("\n"); 
for ( i = 0 ; i <= 3 ; ++i) 

x = ( 	AO + (A1*T[i]) + (A2*T[i]*T[i]) ) ; 
printf(" 	 %3d 	 %4.2f \n", T[i], x ) ; 
printf("\n") ; 
printf("\n"); 
printf(" **************************************************************\n");  
} 
} 
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