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ABSTRACT 

ON ISSUES OF EQUALIZATION 
WITH THE DECORRELATION ALGORITHM: 

FAST CONVERGING STRUCTURES 
AND FINITE-PRECISION 

by 
Andrew James Bateman 

To increase the rate of convergence of the blind, adaptive, decision feedback 

equalizer based on the decorrelation criterion, structures have been proposed which 

dramatically increase the complexity of the equalizer. The complexity of an algorithm 

has a direct bearing on the cost of implementing the algorithm in either hardware or 

software. In this thesis, more computationally efficient structures;  based on the fast 

transversal filter and lattice algorithms, are proposed for the decorrelation algorithm 

which maintain the high rate of convergence of the more complex algorithms. 

Furthermore, the performance of the decorrelation algorithm in a finite-precision 

environment will be studied and compared to the widely used EMS algorithm. 
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CHAPTER 1 

INTRODUCTION  

To transmit data over conventional telephone lines, many systems and devices convert 

the data into symbols for transmission at the signaling rate. In pulse modulation 

systems, such as pulse-amplitude modulation (PAM) and quadrature-amplitude 

modulation (QAM), each symbol corresponds to a different amplitude level. Time 

dispersion results when the frequency characteristics of the channel deviate from the 

ideal of constant. amplitude and constant delay (linear phase) [38]. In both PAM 

and QAM systems, transmission over time-dispersive channels causes each pulse to 

extend beyond the time interval used to represent that symbol. The distortion that 

results from this overlap is called intersymbol interference (ISI). ISI can also be 

caused by multipath propagation in radio or undersea channels. Multipath propa-

gation can be viewed as the transmission through a group of channels with differing 

relative amplitudes and delays [38]. This distortion is one of the major obstacles to 

reliable high-speed data transmission over low background noise channels of limited 

bandwidth. Therefore, it is necessary to devise structures which effectively remove 

the ISI from the incoming signal. Devices which perform such a filtering task are 

referred to as equalizers. 

These PAM- and QAM-based systems must effectively transmit data through 

communication channels that have different frequency response characteristics and, 

hence, result in different distortion effects. In such transmission systems, the 

coefficients of the channel equalization filter cannot be specified a priori since the 

statistical characteristics of the signals to be filtered are either unknown or, in some 

case, slowly time-variant (nonstationary). The only way the channel equalizer can 

compensate for the channel distortion is if the channel equalizer has adjustable 

coefficients that, in many cases, can be optimized to minimize some measure of the 

1 
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distortion. Typically, this is done by performing measurements on the characteristics 

of the channel. Such an equalizer with adjustable parameters is referred to as an 

adaptive equalizer. Throughout this work, the words filter and equalizer will be used 

interchangeably. 

Although both infinite-impulse response (IIR) and finite-impluse response 

(FIR) filters have been considered for adaptive equalization, the linear FIR filter is 

the most practical and widely used. The reason for this preference is because the 

FIR filter has only adjustable zeros and, hence, it is free of the stability problems 

associated with IIR filters that have both adjustable poles and zeros. The FIR 

equalizer, which will also he referred to as a tapped-delay-line, nonrecursive, or 

moving-average equalizer, is comprised of both current and delayed samples of the 

received signal, which are weighted by the equalizer coefficients (tap weights) and 

summed to produce the output. 

To cancel the ISI in the unknown channel, these linear transversal filters 

attempt. to approximate the inverse of the channel. Equalizers of this type are 

referred to as zero-forcing (ZF) equalizers [38]. If the length of the ZF equalizer 

is increased without bound, the resulting infinite-length equalizer would perfectly 

invert the channel and, therefore, have zero ISI at its output. However, since a 

finite-length ZF equalizer can only approximate the inverse of the channel, such 

filters have been shown to enhance noise at frequencies where the channel spectrum 

has high attenuation [38]. Furthermore, for non-minimum phase channels (channels 

whose transfer functions consist of zeros outside the unit circle in the z-plane), the 

inverse filter can he unstable. 

To overcome these difficulties with the zero-forcing equalizer, a nonlinear 

equalizer can be used. Such an equalizer, referred to as a decision feedback equalizer 

(DFE), feeds back (subtracts) a weighted sum of the decisions on previously detected 

symbols in order to remove, from the current channel output, the interference 
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contributed from these past symbols. The DFE can compensate for amplitude 

distortion with much less' noise enhancement than the linear equalizer [32]. 

An important consideration in the use of an adaptive equalizer is the criterion 

for optimizing the adjustable filter parameters. The criterion must not only provide a 

meaningful measure of equalizer performance, hut it must also result in a practically 

realizable algorithm. In some cases, a performance index that is a nonlinear function 

of the filter parameters possesses many relative minima (or maxima), so that there 

may he doubt as to whether the adaptive equalizer has converged to the optimal 

solution or to one of the relative minima (or maxima). For these reasons, some 

desirable performance indices, such as.. the average probability of error in a digital 

communication system, must be rejected on the grounds that they are impractical 

to implement [37]. 

One criterion that provides a good measure of performance in adaptive filtering 

applications is the least-squares (LS) criterion, and its counterpart in a statistical 

formulation of the problem; namely, the mean-square-error (MSE) criterion. The LS 

and MSE criteria both result in quadratic performance indices as a function of the 

filter coefficients and, therefore, each possesses a single minimum. 

Using the method of steepest descent, the MSE criterion has been used to 

develop a recursive algorithm to update the tap weights of the adaptive equalizer. 

The resulting algorithm, known as the least-mean-square (LMS) algorithm uses 

instantaneous estimates of the gradient vector of the performance surface to update 

the tap weights of the transversal filter [44]. The widespread use and popularity of 

the LMS algorithm stems from its inherent simplicity. However, the LMS suffers from 

a relatively slow rate of convergence (convergence to the correct channel parameters) 

and is affected by the eigenvalue spread of the channel correlation matrix. 

To improve on the rate of convergence of the LMS, Godard, using an LS 

criterion, cast the equalizer adjustment problem as an estimation of a stationary state 
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vector in Gaussian noise [14]. The resulting recursive least-squares (RLS) algorithm 

can be considered as a special case of the Kalman algorithm for adaptive transversal 

filters. Subsequently, the RLS algorithm has been shown to be the fastest known 

converging adaptive algorithm [38]. Furthermore, the rate of convergence of the 

RLS algorithm does not depend on the eigenvalue spread of the channel correlation 

matrix. 

Typically, in adaptive equalizers, such as those based on the LMS and RLS 

algorithms, a training sequence is used to adapt the equalizer to the unknown 

channel. During the training period, a known signal is transmitted and a. synchronized 

version of this signal is generated in the receiver to acquire information about the 

channel characteristics. After the training period, the coefficients of the adaptive 

equalizer may then be continuously adjusted is a decision-directed mode. However, 

in many applications, such as remote site receivers in a multipoint telephone modem 

network, the adaptive equalizers are required to bootstrap in a. decision-directed 

mode without the help of a training sequence [38]. By decision-directed, it is meant 

that the outputs of a. decision (threshold) device—not a training sequence—are used 

by the equalizer to update the tap weights [31]. Equalizers which do not require a 

training sequence are referred to as blind equalizers. Conventional blind equalizers, 

like their non-blind counterparts, are typically of the linear, FIR type. 

There are several classes of blind equalization algorithms. The first, known as 

Bussgang algorithms, consists of an iterative process that uses some form of zero-

memory nonlinear estimator to make decisions on the output of the transversal filter 

[18]. These decisions are then subtracted from the output of the transversal filter 

to form the error signal by which the LMS algorithm, for example, can be updated. 

Once the algorithm has converged in the mean, the resulting equalized sequence has 

been shown to assume Bussgang statistics [2] . Special cases of the Bussgang class 

of algorithms include the Sato algorithm [39] and the Godard algorithm [15]. Both 
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of these algorithms involve the minimization of some nonconvex cost function. A 

special case of the Godard algorithm, known as the constant, modulus algorithm 

(CMA), is considered the most widely used of the blind equalization algorithms [18]. 

The Bussgang class of algorithms is characterized by low computational complexity 

and an initially slow rate of convergence, which increases as equalization progresses. 

The second class of blind equalization algorithms is based on the use of higher-

order statistics (higher than second-order correlation functions) of the distorted 

received signal. These higher-order statistics and their Fourier transforms are 

referred to as cumulants and polyspectra, respectively [18]. The tricepstrum-based 

algorithm for blind equalization uses the fourth-order cumulant of the received signal 

to extract phase information about the channel in order to perform the required 

blind equalization [16]. This class of algorithms is characterized by a high computa-

tional complexity and an initially fast rate of convergence that slows as equalization 

progresses. 

Recently, another blind equalization algorithm was introduced, known as the 

decorrelation algorithm [24]. The algorithm is based on decorrelating the input to the 

decision or threshold device (slicer) [24]. By doing so, the decision which is fed back to 

control the tap weights is gradually improved and, hence, bootstrap the performance 

of the equalizer. Therefore, for a zero-mean, independent identically distributed 

(i.i.d.) data source, the channel introduces ISI (correlation), thus decorrelating the 

input to the slicer will reduce the ISI at the equalizers output [24]. 

To increase the rate of convergence of the decorrelation algorithm, it  was 

shown in [24] that by minimizing the time-average weighted correlations, the  decorre-

lation algorithm (in a decision feedback configuration) could be implemented  using a 

Kalman, or recursive least, algorithm. However, a disadvantage of this  decorrelation-

based RLS algorithm, as with all RLS algorithms, is its complexity. For  both the 

traditional and decorrelation-based RLS algorithms, an M x M matrix must  be 
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adapted and stored once per iteration, where Al is the number of equalizer tap coeffi-

cients. Thus, O (M2 ) operations (multiplications and divisions) must be performed 

per iteration, where O (•) denotes order of. By contrast, both the LMS and decor-

relation algorithms have O (M) complexity in that their computational complexities 

increase linearly with M. 

The computational complexity of a given algorithm has a direct relationship 

to the cost of constructing microprocessor-based hardware for use in the practical 

implementation of these algorithms. When this cost is an issue of primary concern, 

there is motivation to develop what are called fast algorithms for solving the recursive 

least problem. A fast algorithm is one which conforms to following definition [18]: 

An algorithm, is said to be fast if its computational complexity increases 
linearly with the dimension of the adjustable weight vector. 

A fast algorithm, then, would be one whose computational requirements are similar 

to the LMS algorithm or the decorrelation DFE, for example. 

With this definition in mind, it is both desirable and possible to reduce the 

number of operations per iteration of the RLS-type algorithms to be proportional to  

M

, while still maintaining its rapid rate of convergence. The mathematical basis of 

the resulting fast recursive least algorithms is the exploitation of the shifting property 

inherent in most sequential estimation (prediction) problems. In equalization, this 

property expresses the fact that at each iteration the number of new samples entering 

and old samples leaving the equalizer is not M, but a much smaller integer p. Falconer 

and Ljung [10] were the first to recognize this and subsequently developed the Fast 

Kalman algorithm. The fast Kalman, or fast RLS, algorithm provides a means for 

the recursive updating of the Kalman gain vector used in the RLS algorithms without 

explicit computation of the inverse correlation matrix of the channel. 

Carayannis, et al. [5]  and Cioffi and Kailath [7] took the fast Kalman algorithm 

one step further and derived another member of this class of fast algorithms, referred 

to as the fast transversal filter (FTF). The FTF structure, like the fast Kalman, 
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was originally derived as a means of reducing the computational complexity of the 

traditional RLS algorithm. In fact, it has been shown that the FTF algorithm is 

approximately forty percent more computationally efficient than the fast Kalman 

algorithm [5, 7]. This class of algorithms differs from the fast Kalman in that it is 

based, primarily, on an a posteriori error formulation. Furthermore, the FTF makes 

better use of the relationships between the a priori and a posteriori errors. It is 

through an exploitation of these relationships that the FTF algorithm is able to 

further reduce the complexity of the fast Kalman algorithm. However, it should be 

noted that both algorithms are classified as members of the same group—transversal 

filter-based fast algorithms [7]. 

The FTF class of algorithms gets its name from the fact that the algorithms use 

four separate transversal filters that share a common input. Like the fast Kalman, the 

FTF algorithm uses a combination of a recursive forward linear predictor, a recursive 

backward linear predictor, and a recursive computation of the Kalman gain vector 

to recursively compute the desired tap weight vector. 

Using a similar methodology, the decorrelation algorithm can be applied to 

both the fast Kalman and FTF algorithms in order to reduce the computational 

complexity of the decorrelation-based RLS algorithm. It will be shown in this work 

that both the fast Kalman and FTF algorithms for decorrelation offer a comparable 

reduction in complexity, while maintaining the high rate of convergence of the more 

computationally complex decorrelation RLS. 

A basic property of the fast transversal-based filters is that the algorithms are 

recursive in time only. The length of the transversal filter is fixed. Any change 

in the length of the filter results in a new set of filter coefficients that is totally 

different from the previous set. Furthermore, the disadvantage of the fast Kalman 

and fast transversal type algorithms is that they suffer from numerical instability in 

finite precision environments. This is caused by the long-term accumulation of finite  
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precision errors which eventually makes the algorithms unstable and cause them to 

diverge. 

Several approaches to improve the resistance of these recursive least algorithms 

to such instabilities have been proposed [18]. However, one possible solution is to 

define an alternative structure for the filter. It is possible to develop an RLS lattice 

filter by formulating the LS estimation problem in terms of linear prediction [41]. A 

beneficial result of the development of the fast Kalman structure is the derivation 

of the forward and backward prediction coefficients and prediction errors, typical of 

those in a Levinson-Durbin type recursion. There is a direct relationship between 

the Levinson-Durbin recursions for the linear predictor coefficients and the reflection 

coefficients in the lattice filter. The lattice structure for adaptive equalization offers 

several advantages over the fast transversal structures. First, the lattice filter is 

order recursive. As a consequence, the number of sections that it contains can 

be easily increased or decreased without affecting the reflection coefficients of the 

remaining sections. Furthermore, the lattice coefficients have been found to have a 

low sensitivity to the effects of finite precision [41]. However, a disadvantage of the 

lattice structure is in its increased complexity. There is approximately a two-fold 

increase in computational complexity over the fast Kalman algorithm, although the 

lattice still maintains an O[M] complexity. 

Like the fast transversal family of algorithms, there are many implementational 

forms of the basic lattice filter structure, each differing in several ways. The two main 

forms that will be dealt with are the application of the decorrelation algorithm to 

the RLS lattice-ladder algorithm and the gradient lattice-ladder algorithm of [41] 

and [40], respectively. Although the structure of the filter is the same in both cases, 

the computational complexity of the gradient lattice-ladder is less than the RLS 

lattice-ladder. The reason for this is that the reflection coefficients for the gradient 
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lattice are identical, while the forward and backward reflection coefficients for the 

RLS lattice have to be updated separately. 

The numerical stability problems of the fast transversal-based algorithms reveal 

a problem that is not always evident in an analog, or infinite precision, environment. 

The issue of finite-precision and the effect it has on the performance of an algorithm 

(in terms of both numerical stability and numerical accuracy) is of direct concern if an 

algorithm is to be eventually implemented in real-time hardware. The performance of 

an algorithm is not truly known until an attempt is made to implement an algorithm 

in real-time in a finite-precision environment. An algorithm that performs well in 

simulation may, in fact, diverge when actually implemented in hardware [43]. In this 

work, the decorrelation-based DFE will be implemented in real-time using a new 

microprocessor-based system. Therefore, it will be necessary to better understand 

the effect of a finite-precision environment on the decorrelation algorithm. In order 

to do so, models for the quantization error will have to be studied and relevant 

results applied to the decorrelation algorithm. To facilitate this study, the effects 

of finite-precision on the decorrelation algorithm will be compared in relation to the 

LUIS algorithm, for which much work on finite-precision modeling has been done 

[4]. The SPROCIab Development System has, at its heart. a 24-bit, fixed-point 

arithmetic microprocessor. Since fixed-point arithmetic is used in all implemen-

tations in the SPROC environment, it is within this context that the LMS and 

decorrelation algorithms will be considered. 

The thesis will be organized in the following manner: In Chapter 2, the system 

parameters will be introduced. Namely, the DFE, the channel model, and the decor-

relation algorithm will be reviewed. In addition, the decorrelation-based DFE will 

be implemented on the SPROC digital signal processor. In Chapter 3, a study of the 

effects of finite-precision on the decorrelation algorithm will be made. To facilitate 

the study, a review of the necessary finite-precision -models will be performed and a 
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comparison will be made with the limited-precision LMS. In Chapter 4, a review of 

the Recursive Least Correlation (RLC) algorithm will be made. Then, two new fast 

decorrelation  algorithms will be proposed, derived, and simulated

-the fast Kalman algorithm for decorrelation (FRLC) and the fast transversal filter (FTF) for decorre-

lation. The performance (rate of convergence) of these new, fast algorithms will be 

compared to that of the RLC. In Chapter 5, alternative fast structures for the decor-

relation algorithm will be discussed. The decorrelation algorithm will be incorporated 

into existing RLS and gradient lattice structures in order to update the tap weights. 

Simulation results and comparisons to the RLC algorithm are provided. Finally, in 

Chapter 6, conclusions on the work presented in this thesis will be discussed, along 

with areas of possible future research. 



CHAPTER 2 

THE SYSTEM 

Before discussion of the main topics can begin, the problem statement must first 

be formulated and background theory reviewed. Therefore, in this chapter, the 

characteristics of the system and channel model under consideration will be proposed. 

The effect of ISI in high-speed data communication systems and its removal through 

the use of DFE's will be reviewed. As a means of comparison that will be used 

throughout this work, background theory on the LMS algorithm will be presented. 

Finally, a discussion of the decorrelation algorithm and its implementation in a blind, 

decision feedback configuration using real-time hardware will be performed. 

2.1 Channel Model 

To better understand ISI from a mathematical perspective, consider the baseband 

binary PAM system of Figure 2.1 [17], which will be the basic transmission system 

considered in  this work. 

Figure 2.1 Model of Baseband Binary PAM System (without Equalization). 

A binary data sequence {b(n)}, with each bit having a duration of T seconds, 

is applied to the input of the system. The resulting output pulse waveform of the 

11  
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pulse generator is 

I (n) Σ  a(k)p(n — kT)                                  (2.1)  
k 

where p(n) is the shaping pulse of the pulse generator. The quantity a(n) is an 

amplitude that corresponds to the identity of the input bit, b(n). For the PAM system 

under consideration, polar or nonreturn-to-zero (NRZ) signalling will be assumed. 

Therefore, a(n) is defined as 

	a(n) = { +1, b(n) = 1                                        (2.2)  

	

	
	{ -1, b(n) = 0 

The modulated signal I (n) is then passed through a transmitting filter, with transfer 

function, HT (f), to be sent over-a channel with transfer function, Hc(f). At the 

input to the receiving filter, random noise, g(n), which can be modelled as zero-mean, 

additive, white Gaussian noise (AWGN), is added to the output of the channel. The 

received signal is passed through a receiving filter, with transfer function HR(f), 

which is then sampled at multiples of the bit duration, kT. For purposes of this 

work, the cascade of the transmit filter, channel, and receive filter can be modelled 

as in Figure 2.2 (see [38] and [17]). 

Figure 2.2  Discrete Channel Model. 

In Figure 2.2, h(n) is a fading dispersive channel which can itself be modelled 

as a non-recursive (moving-average) finite impulse response (FIR) filter with impulse 

response 

h(n) = Σ  h(k)S(n — kT )                                     (2.3)  
k 
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where 6(•) is the Kronecker delta. The resulting signal is then passed through a 

decision device (memoryless detector) to slice (threshold) the signal in order to 

retrieve the original amplitude levels of a(n). In this work, the slicer will make 

decisions on the received signal in the following manner: 

x(n) = { 1 if 
x(n) 

> 0                                     (2.4) 

{-1 if x(n) > 0 
 

 

Therefore, the output of the receiving filter can be written as 

x(n j) = Σ I(k)h(n — kT) + g(n) 	(2.5)  

If the output of the channel, x(n), is sampled at instant nj=jT, (where j is an integer 

for symbol-rate equalizers), then 

x(n j) = Σ I(k)h( jT — kT) g(n j) 

 

= I(j) + Σ I(k)h(j — k)T) + g(n j) 	(2.6) 

 

The first term. I(j), represents the desired signal, since it can be used by the decision 

device to identify the transmitted amplitude level. The second term represents the 

residual effect of all other transmitted symbols. This residual effect is the ISI as 

discussed earlier. The last term is the noise at instant nj. Note that in the absence 

of ISI and noise, 

x(nj) = I(j) 	(2.7) 

and the jth  transmitted symbol can be decoded correctly. However, the presence of 

ISI and noise will introduce errors, in the form of incorrect decisions, at the slicer. 

The purpose of the equalizer, therefore, is to remove the ISI and noise so that correct 

decisions on the symbols can be made. 

2.2 The Decision Feedback Equalizer and the LMS Algorithm  

To remove the ISI from the received signal, several equalization structures have 

been proposed [38]. One, simple, nonlinear equalizer that is particularly effective for 
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channels with severe amplitude distortion is the DFE [32]. The general structure of 

the DFE is shown in Figure 2.3. Notice that the DFE consists of both a feedforward 

and feedback filter.  

Figure 2.3  Decision Feedback Equalizer. 

The basic idea behind the DFE is to use the previous decisions on the incoming 

data to cancel the interference contributed by symbols which have already been 

detected. Therefore, if the values of the previously detected symbols are known 

(where the past decisions are assumed to be correct), then the ISI contributed by 

these symbols can be canceled exactly by subtracting weighted values of the past 

symbols from the current channel output [38]. Note that if an incorrect decision 

is fed back, the output of the DFE will reflect this error during the next several 

symbols as the incorrect decision traverses the feedback line. As a result, there is a 

greater likelihood of more incorrect decisions following the first one. This situation 

is known as error propagation, and can have potentially catastrophic consequences 

for the equalizer. Fortunately, on most typical channels, errors usually occur in short 

bursts, which only degrade performance slightly [38]. 

For the purposes of this work, given the channel discussed in the previous 

section, it can be shown (see [24] and [32]) that, in the absence of precursors, the 

forward filter of Figure 2.3 is not needed. The feedback filter, W(z), will be sufficient  
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to cancel the ISI. Therefore, the DFE under consideration for this thesis is shown in 

Figure 2.4. 

Figure 2.4  Revised Structure of the Decision Feedback Equalizer. 

Referring to Figure 2.4, it will be assumed that the input sequence, 1(n), is 

a binary, white sequence with zero-mean, consisting of the elements {1,-1}, each 

occurring with equal probability. Normalizing the impulse response of Equation 2.3 

relative to the first cursor (h0), the output of the channel is given by 

N 

x(n) = I(n) + Σ hk (n)I(n — k).                                                      (2.

8) 

k=1  

The channel weights (post-cursors) { hi (n), h2 (n),..., hm(n)} introduce ISI on the 

correct data. symbol, I(n). For the feedback filter, W(z), the impulse response is 

given by 

N 

w(n) = I(n) + Σ hk (n)δ(n - kT)                                                                (2.

9) 

k=1 

 

where N  is the number of taps. As can be seen from Figure 2.4, the input to the 

slicer, yen), is give by,                                    

                                                     

 

N 

y(n) = x(n) - Σ wk (n) y(n - k)                                            (2.

10) 

 
k=1 

In vector form, 

y(n) = x(n)Ŷ'N(n)WN(n)                             (2.11)  

where Ŷ'N

(n) 

= [ŷk-1, ŷk-2, ...., ŷk-N]  is the vector of the past N decisions, W' 

[wi(n), w2(n), • • . ,w/v(n)] is the vector of equalizer tap weights, and the superscript 
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(') denotes transposition. The question now concerning the DFE of Figure 2.4 is 

how to update the tap weights of Equation 2.11 in an adaptive manner to cancel 

the ISI from the current output of the channel. Perhaps the most popular of the 

adaptive equalization algorithms is the LMS algorithm [44]. A review of the LMS 

will be given, since comparisons between the LMS and the decorrelation algorithm, 

discussed in subsequent sections, will become necessary throughout this work. The 

following discussion is based on that presented in [44] and [18]. 

As a review, the LMS algorithm is a member of a larger family of stochastic 

gradient-based algorithms which are capable of searching a multidimensional 

performance surface for some desired global minimum. Its widespread use in adaptive 

filtering stems from its inherent simplicity. As will he shown, the LMS requires 

neither measurements of relevant correlation functions nor matrix inversions, which 

are characterized with the steepest-descent algorithm. In the method of steepest 

descent, changes in the tap weight vector WN(n) are made in a direction opposite to 

that of the gradient vector, which is calculated according to the MSE performance 

surface. Due to these corrections, the tap weight vector WN(n) will move down the 

error-performance surface and eventually reach a stationary minimum, which is the 

Wiener solution, Wopt  = R-1p [18]. 

Since it is difficult to get an exact measure of the gradient vector at any point 

on the performance surface, the LMS uses noisy estimates of the gradient vector in 

order to update the tap weight vector WN (n ). Therefore, instead of terminating on 

the Wiener solution, Wopt, the estimate of the tap weight vector, 

WN(n

). exhibits 

a random motion around the minimum of the error-performance surface. An imple-

mentation of an adaptive filter is depicted in Figure 2.5. 

Notice that the transversal filter of Figure 2.5 consists of an adaptive process by 

which the set of tap weights is automatically adjusted. Furthermore, it consists of a 

filtering process which involves the generation of an estimate of the desired response 



 

Figure 2.5  Model of an Adaptive Filter. 

formed from the inner product of the tap inputs and the corresponding tap weights. 

An estimate of the error is also calculated by comparing the estimate of the desired 

response with the actual value of the desired response. This estimate will, in turn, 

he used in the adaptive process to update the tap weights. In Figure 2.5, the desired 

response, d(n), is usually a data sequence known to the equalizer that is used to 

train it. Once trained, the equalizer operates in a. decision-directed mode, using the 

estimates of the desired response, d(n), in the calculation of the tap weights. 

Let X(n) = [x (n), x(n - 1), . . , x(n — N + 1)]'  denote the vector of length 

N containing the N most recent samples of a single input sequence. Let W(n) = 

[ω0(n), ω0(n ),ω1(n ),....ωN-1(n)]' denote, at time n, the N-length vector of tap weights. 

Therefore, the output y(n), at any time n, of the transversal filter is given by 

 N-i 

y(n) =  Σ ωk (n)x(n - k) = W'(n)X(n) = X'(n)W(n)  .                                            

(2.12) 

k=0 

  

Denoting the desired response at time n as d(n), the estimation error between the 

desired response and the output of the filter (which is an estimate of the desired 

17 
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response) is 

e(n) = d(n) — y(n) = d(n) — W'(n)X(n) = d(n.) — X.'(n )W (n) 	(2.13) 

If the estimation error is squared, 

e2(n) = {d(n) — W'(n)X(n)}2  

= 

d2 (n) — d(n)XI (n)W(n) — d(n) 

 W'

(n)X(n)W'(

n

)X(n)X'(

n

)W(

n

) 

= d2 (

n

) — 2

W'(n)X(n

)d(n) + 

 W'(

n

)X(

n

)X'(

n

)W (

n

) .                              (2.14) 

Taking the expectation of both sides of Equation 2.14 yields the MSE, 

J (W) = ε[e2

(n

) = ε[d2(n)]  — 2W'(n)ε  [X(n)d(n)] 

	+

W

'(n)ε[X(n)

X

'(n)]W(n) 	(2.15) 

where ε (.) represents expectation. Define the autocorrelation matrix R of the input 

signals as 

R  = ε[X(n)X'(n)] 	 (2.16) 

and the cross-correlation vector p  between the input signal vector and the desired 

response as 

p = ε  [X(n)d(n)]  . 	(2.17) 

Thus, the MSE can he written as follows (where, for convenience, the time-index n 

has been dropped) 

	

J (W) = σd2 -- 2W'p + W'RW 	(2.18) 

where σd

2 

 is the variance of the desired response, d(n). Notice from Equation 2.18 

that the MSE is a quadratic function of the tap weights. Therefore, the dependence 

of the cost function J on the tap weights can be visualized as a bowl-shaped surface 

with a unique minimum [44, 18]. This surface is referred to as the error performance 

surface of the transversal filter of Figure 2.5. As discussed previously, the adaptive 

process will continuously adjust the tap weights in order to seek out the bottom 
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(minimum) of the bowl. In other words, the adaptive process seeks to minimize the 

MSE [18]. 

If the MSE function of Equation 2.18 is differentiated with respect to the tap 

weight vector, the gradient of the error performance surface can be obtained. Conse-

quently, 

V (J  (W)) --2p + 2RW  . 	 (2.19) 

Recall that according to the method of steepest descent, updates to the tap weight 

vector are proportional to the negative of the gradient vector. Accordingly, the tap 

update equation for the steepest-descent can be written as 

W(n + 1) = W(n) + 1/2µ [- V  (J (W))] 	(2.20) 

where it is a scalar quantity which controls both the stability and rate of adaptation 

(convergence) of the equation. Substituting Equation 2.19 into Equation 2.20 gives 

the algorithm for the method of steepest descent: 

W(n + 1) = W(n) + µ [p — RW] 	(2.21) 

To derive the LMS algorithm, an estimate of the gradient vector will be used. 

From Equation 2.21, substituting instantaneous estimates of R and p would result 

in one form of estimate for the gradient vector [44]. Define, 

Ȓ(

n

) = X(

n

)X'(

n

) 	 (2.22) 

and 

p(n) = X(n)d(n) 	 (2.23) 

Therefore, the instantaneous estimate of the gradient vector would be 

	

V (J  (W ))  = —2X(

n

)d(

n

) + 2X(n)X'(n)Ŵ(n) 	 (2.24) 

where, again, VV(n) is the estimate of the tap weight vector. From Equation 2.21, 

	Ŵ(

n 

 + 1) = Ŵ (

n

) + µ (n) [d(n) —  X'(

n

)Ŵ (

n

)] 	 (2.25) 



Ŵ(n  + 1)  = Ŵ (n ) + µX(n)e(n) (2.26)   
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Substituting the estimation error, as defined in Equation 2.13, into Equation 2.25, 

the LMS algorithm can be written as follows: 

where the second term on the right-hand side of Equation 2.26, µX(n)e(n ), is the 

correction or update term applied to the current estimate of the tap weight vector, 

Ŵ (

n

). The term X(n)e(n

) 

 of the update expression is the noisy estimate of the 

gradient vector. Because of this noisy estimate, the LMS algorithm will exhibit a 

random walk motion around the minimum of the error-performance surface [44]. 

The rate of convergence of the LMS algorithm is highly sensitive to variations in 

the step size parameter, µ. If the step size is too small, the algorithm is said to be 

overdamped in that the trajectory of the tap weight vector follows a continuous path 

[18]. However, if the step size is too large, the algorithm is said to be underdamped 

in that the trajectory of the tap-weight vector exhibits an oscillatory behavior [18]. 

As a final note, recall that the use of the LMS-based adaptive equalizer requires 

the need for a training sequence to allow the equalizer to learn the characteristics 

of the channel. It is this reason that distinguishes equalizers of this type from their 

blind counterparts. Blind equalizers, as previously mentioned and for which the 

decorrelation-based DFE will be discussed, are able to adapt to the given channel 

without any such training. 

2.3 The Decorrelation Algorithm  

The algorithm under consideration in this work is a new, blind adaptive equalization 

algorithm that is based on decorrelating the input to the slicer of Figure 2.4 [24]. In 

doing so, the decisions which are fed back to control the tap weights are gradually 

improved and, hence, bootstrap the performance of the equalizer. Therefore, for a 

zero-mean, i.i.d. data source, since the channel introduces ISI (i.e., correlation), then 

decorrelating the input to the slicer will reduce the ISI at the equalizer's output [24]. 



wk (n + 1) = wk (n) + µε [y(n)y(n -- k)]  (2.27)   
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In order to cancel the ISI, at the input of the slicer y(n)=I(n) and the sequence 

{Y(n)} will be uncorrelated. In other words, ε [ y(n)y (n  — k )]=0 for k ≠ 0 at the input 

to the slicer. It was shown in [24] that decorrelation of the slicer's input is a necessary 

and sufficient condition for the ideal cancellation of ISI. Therefore, the decorrelation 

of the slicer's input can be used as a criterion for controlling the update algorithm 

for the tap weight vector W [24]. 

Using the method of steepest descent, as discussed in the previous section, and 

the aforementioned decorrelation criterion, the tap weights of the feedback filter can 

be updated according to 

where k=1,2,......N. The step size parameter, µ, controls the stability and rate of 

adaptation (convergence) of the algorithm, in a manner similar to that discussed with 

the LMS algorithm. For a digital implementation of Equation 2.27, an instantaneous 

estimate of the expectation can be used. Therefore, the update equation given in 

Equation 2.27 can be realized as 

 wk (n + 1)  = wk(n) +  µy(n)y(n -k)] (2.28)  

where, again, k=1, 2, 	N. It was shown in [24] that Equation 2.28 will converge in 

the mean, so that the mean value of wk will converge to the corresponding channel 

parameter hk . Furthermore, an extensive discussion of the transient and steady-state 

performance, convergence in the mean, sufficiency, and the global admissability of 

the decorrelation algorithm can also be found in [24]. Bounds on the probability of 

error of the decorrelation-based DFE were derived in [23]. The derivation and proof 

of the transient and steady-state performance, as well as the error performance, of the 

blind decorrelation-based DFE are beyond the scope of this work and the interested 

reader is referred to the respective references. 



Equation 2.28 can be written in vector form as follows:                                         

 

 WN(n + 1) = WN(n) + µy(n)YN(n)                    (2.29)  

where YN(n) = [yn-1, yn-2,....., yn-N] is the vector of past inputs to the slicer, 

WN(n) = [w1(n),  w2(n), , WN(n)] is the vector of tap weights, and y(n ) is the 

current input to the slicer, given  by Equation 2.11. A representation of the decorre-

lation algorithm of Equation 2.29  implemented in a decision feedback configuration 

is shown in Figure 2.6. 

Figure 2.6  Decorrelation-Based DFE. 

2.3.1 Real-Time Hardware Implementation of the Decorrelation Algorithm  

In [24], numerous simulations with a blind, decorrelation-based DFE were performed 

and shown to effectively remove the ISI imposed by the channel. Therefore, further 

simulations in this work will not be performed. However, using a new microprocessor- 
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based system, the decorrelation-based DFE of the previous section will be imple-

mented in real-time hardware. 

In traditional approaches to the implementation of signal processing algorithms 

in hardware using digital signal processing (DSP) chips, lengthy software code must 

he written. The effect of the sometimes arduous coding effort is the lengthy extension 

of the product development period. A way to circumvent many of the drawbacks of 

DSP's is to use a system-level design approach. Star Semiconductor's SPROC (Signal 

PROCessor) digital signal processor follows this approach. The SPROCIab Devel-

opment System allows the engineer to enter a design at the system level via signal-flow 

diagrams, using cells from a cell library of hundreds of system building blocks. Once 

the signal flow diagram has been entered, the SPROC system analyzes the diagram 

and produces executable code for the SPROC DSP. Since the SPROC DSP is a RAM-

based DSP (essentially, an erasable, programmable, read-only-memory (EPROM)), 

the executable code generated by the development system is used to dynamically 

program (burn) the actual SPROC chip. The advantage to using an EPROM DSP 

is that modifications to the system design can be made quickly, easily, and in an 

extremely efficient manner. Multiple hardware configurations can be tested and 

judged without the need for the creation of separate, dedicated ROM-based DSPs. 

Consequently, the SPROC chip can reduce production time from many months to, 

quite literally, a few minutes. 

The microprocessor at the heart of the SPROClab Development System is a 

24-bit, fixed-point arithmetic machine. Fixed-point numbers;  x (n), in the SPROC 

environment are defined by the limit, — 2.0 ≤  x(n) < 2.0. As will be discussed in 

Chapter 3, this restriction poses several problems to the successful implementation 

of the decorrelation-based DFE of Figure 2.6. Overflow and the accumulated effects 

of the finite-precision environment can affect the convergence of the tap weights 

catastrophically (i.e., divergence). In any fixed-point, finite-precision machine, the 
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finite register lengths can create severe overflow problems in performing basic mathe-

matical operations such as addition and multiplication if care is not taken to properly 

scale all relevant data. More on this subject will be discussed in Chapter 3. 

To test the real-time performance of the decorrelation algorithm, the decorrelation-

based DFE of Figure 2.6 was implemented in SPROC. The SPROC-based decorre-

lation DFE is shown in Figure 2.7. 



Figure 2.7  SPROC Implementation of Decorrelation-Based DFE. 2
5
  



H(z) = 1 + 0.5z-1 — 1.44z-2 (2.30)  

 

Figure 2.8  Learning Curve of the Tap Weights of SPROC-Based Decorrelation DFE. 

In this particular system-level design, the i.i.d. source, channel, and equalizer 

were all implemented together on chip in order to facilitate experimentation. For the 

decorrelation DFE under study, the following non-minimum phase channel was used 

where the step size parameter, IL, was set equal to 0.001. Note from Figure 2.7 

that each icon represents one piece of assembly-language code. The SPROCIab 

Development System is able to take these individual pieces of code and generate a 

complete program, which it then burns into the actual SPROC chip. Notice from 

Figure 2.7 that a scaling factor of 0.25 has been included in order to prevent overflow. 

The selection of the proper scaling factor will be discussed extensively in Chapter 3. 

In the first several examples of the SPROC-based decorrelation DFE, the white, 

Gaussian noise pictured in Figure 2.7 will not be added to the output of the channel. 

Consequently, the learning curve of the tap weights of the SPROC-based decorre

lation algorithm is shown in Figure 2.8. As can be seen in Figure 2.8, both tap 
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weights converge to the appropriate values of w1 =0.5 and w2 =-1.44, respectively. In 

Figure 2.8, as well as in the other learning curves presented in this chapter, the high 

rate of speed at which the SPROC-based algorithm converged for µ=0.001 (less than 

one second) precluded the taking of relevant data. Therefore, it was necessary to 

decrease the step size to µ=0.0001 in order to generate the necessary learning curves. 

Lastly, since the SPROC chip is rated at a clock speed of 50 MHz, there is a large 

discrepancy between the clock speed of the microprocessor and the rate at which the 

computer receives samples of the data through its serial port (9600 hits per second). 

Since the computer only receives a fraction of the total number of data samples from 

the SPROC's output, the actual number of iterations before convergence is much 

higher. The learning curves of the SPROC-based DFE are meant to show that the 

decorrelation DFE is able to converge; not how fast nor how long it takes to do so. 

For the SPROC implementation, an appropriate measure of the algorithm's 

performance is given by considering the learning curve of the MSE between the 

equalized data signal, y (n), and its estimate (decision), y(n). The estimate of the 

residual ISI power is obtained by passing the sequence of instantaneous squared errors 

( y(n) — y(n))2  (see Figure 2.6) through a smoothing filter whose transfer function is 

given by 0.05/(1 — 0.95z-1) [20]. According to [20], this will provide a sense of recent 

average performance of the decorrelation-based DFE. Figure 2.9 shows the learning 

curve of the MSE of the SPROC-based decorrelation algorithm of Figure 2.7. 

Notice from Figure 2.9 that the error does indeed appear to converge to zero. In 

actuality, the residual MSE oscillates around zero at a proximity that varies anywhere 

between ±10 -4  and ± 10-5. This residual MSE occurs as a result of implementation 

in a finite-precision environment. In infinite-precision simulations of the decorrelation 

algorithm, the MSE has been shown to decay to true zero [24]. For purposes of 

discussion of the real-time implementation of the decorrelation algorithm, references 

to convergence to zero will mean effectively to zero. 
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Figure 2.9  Learning Curve of MSE of SPROC-Based Decorrelation DFE. 

In performing the previous tests, the tap weights were initialized to zero. The 

question arises as to whether the algorithm can still converge if the tap weights are 

initialized to any finite value, not including zero. To study this question, the same 

non-minimum phase channel was used, but with the first tap weight initialized to -0.5 

and the second tap weight to +1.44. This can be done in the SPROClab environment 

by writing the initial values to the appropriate data locations prior to running the 

algorithms. The learning curve of the tap weights for non-zero initial conditions is 

shown in Figure 2.10. 

Notice in Figure 2.10 that even with arbitrary initial conditions, the decor-

relation algorithm is still able to converge to the correct tap weights, although the 

convergence time appears longer than that in Figure 2.8. The corresponding learning 

curve of the MSE for non-zero initial conditions is shown in Figure 2.11. 

From Figure 2.11 it is again evident that the error does indeed converge to zero, 

as before. However, this convergence appears to take longer than in the corresponding 

MSE of Figure 2.9. In comparing the convergence rate performance of Figures 2.9 
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Figure 2.10  Learning Curve of Non-zero Initialized Tap Weights. 

and 2.11, the algorithm converges for any given initial state, thus the algorithm is 

said to be globally convergent [20]. This agrees well with the findings and simulations 

of [24]. 

As a final demonstration of the SPROC-based implementation of the decorre-

lation algorithm, white, zero-mean, Gaussian noise with variance 0.001 (a signal-to-

noise ratio (SNR) of 30 dB) will be added to the output of the channel. The learning 

curve of the tap weights, which are both initialized to zero, is shown in Figure 2.12 

and the corresponding MSE is shown in Figure 2.13. In comparison with 

the previous learning curves, the addition of AWGN does not pose a burden for the 

decorrelation algorithm. Convergence of the DFE still occurs, although it appears 

to take longer than in the non-noise case. Furthermore, close inspection of Figure 

2.13 reveals that the MSE does exhibit a small oscillation around zero. This is a 

direct consequence of the addition of the AWGN to the channel. It should be noted 

that the feedback filter is effectively removing the ISI, since the MSE does converge 

to zero. However, because no forward filter is being used, the AWGN is not being 
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Figure 2.11  Learning Curve of MSE of SPROC-Based Decorrelation DIVE. 

effectively removed and its residual presence is the cause for the minor fluctuations 

in the MSE after the MSE has converged. 



Figure 2.12  Learning Curve of the Tap Weights of SPROC-Based Decorrelation 
DFE with AWGN. 

Figure 2.13  Learning Curve of MSE of SPROC-Based Decorrelation DFE 
with AWGN. 
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CHAPTER 3 

THE DECORRELATION ALGORITHM AND FINITE-PRECISION 

Throughout the main body of this thesis, the derivations of all the relevant algorithms 

are considered in an analog, or infinite precision, environment. However, in any 

digital realization, whether hardware or software, the effects of the finite word-

length of the registers can alter the performance (i.e., convergence) of the algorithm. 

Therefore, in this chapter, the effect of a finite-precision environment on the decor-

relation algorithm will be discussed.  Models for the decorrelation quantization error 

will be studied. In the previous chapter, the decorrelation algorithm was imple-

mented in real-time using the SPROC digital signal processing microprocessor. As 

discussed, the SPROC chip is a 24-bit, fixed-point arithmetic machine. Since fixed-

point arithmetic is used in all implementations in the SPROC environment, it is 

within this context that the LMS and decorrelation algorithms will be considered. 

To facilitate this study, the effects of finite-precision on the decorrelation algorithm 

will be compared in relation to the LMS algorithm, for which much work on finite-

precision modelling has been done [4]. 

3.1 Quantization Effects in Adaptive Algorithms 

In implementing an algorithm in a finite-precision environment, there are several 

areas in which the effects of finite-precision can introduce errors. Suppose that a 

number can be represented by b-bits. If two b-bit numbers are multiplied together, the 

product will be a number which is 2b  bits long. Therefore, for fixed-point arithmetic, 

the product of two fixed-point fractions will remain a fraction, but to maintain a 

limited register length the least-significant bits of the result must he either rounded 

or truncated. Furthermore, the addition of two fixed-point fractions will not need 
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rounding or truncation. However, the magnitude of the resulting sum may exceed the 

maximum allowable fixed-point number. This overflow can be prevented by properly 

scaling the incoming data. Note that in the SPROC environment, all numbers and 

results of arithmetic operations are rounded to fit the 24-bit registers. Consequently, 

only the quantizing errors due to rounding will be studied. 

Specifically, considering the implementation of adaptive algorithms in finite-

precision environments such as SPROC, the error in the steady-state output of either 

the LMS or decorrelation algorithms due to the effects of finite word-lengths can be 

confined to three areas. First, there will be an error due to the quantization of 

the input data.. In the implementation of the decorrelation algorithm considered 

in this thesis, since the input data is binary (consisting of +1, each occurring with 

equal probability), this quantization error will not present any appreciable problem. 

Second, an error can occur due to the rounding of the arithmetic (summation) 

operations in calculating the output of the equalizer. Since only fixed-point numbers 

are being added, the result will also be a fixed-point number. However, care must 

be taken to prevent overflow from occurring in these arithmetic operations. In the 

SPROC environment, for example, this is a critical issue in any design implemen-

tation. Overflow can catastrophically affect the performance of any algorithm in that 

convergence of the tap weights will never occur. A scaling factor for the decorrelation 

algorithm will now be derived so that errors due to overflow can be neglected in the 

forthcoming quantization model. 

The requirement for scaling in the SPROC environment, and, therefore, any 

similar fixed-point environment, for an adaptive equalizer has been found to be 

dependent on the channel. As noted earlier, the cascade of the transmit, channel, 

and receive filters is modelled as an FIR filter with impulse response 

h(n) ΣN  h(k )σ(n — k ) (3.1)  
k=0 

 



Taking h(0)=1, 
N                              

0 ≤  Σ │h(k)│< 1.0 .                                                                               (3.8) 
k=1 
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where 6(.) is the Kronecker delta and h.(0)=1 can be taken without loss of generality. 

The input to the channel, 1(n), is assumed to be a binary white sequence with 

zero-mean. Therefore, the output of the channel, x(n), is given by 

N 

x(n) = 	Σ h(k)I (n — k) .                                      (3.2)  
k=0 

Given the representation of fixed-point numbers in the SPROC environment, overflow 

will be prevented so long as the channel output lies within the following limits: 

— 2.0 ≤  x(n) < 2.0 .                               

(3.3) 

 

Therefore, for the magnitude of the channel output 

0.0 ≤ │ x(n)│< 2.0 .                                      

(3.4) 

 

Since 
 

N                          N  

x(n) = 	│Σ │ h(k)I (n — k)│≤ Σ │ h(k)││ I (n — k) │ (3.5) 
k= 0 k=0 

 
 

the channel output is bounded by 

N                              

0 ≤  Σ │h(k)│< 2.0 (3.6) 
k= 0 

 

As has been done in the literature [13], to a first-order approximation, 1/(n — 	1 

can be replaced by its RMS value, Irms. Since the input sequence is binary (polar), 

the RMS value of the input data stream is unity. Accordingly, 

N                              

0 ≤  Σ │h(k)│< 2.0 .                                                                               (3.7) 
k=0 

 

 

Now, suppose that the sum of the channel weights does not meet the bound given 

in Equation 3.8. Then a scaling factor, B, must be included in the bound to ensure 

compliance. Therefore, 
 

N                              

0 ≤  β  Σ │ h(k)│< 1.0 . (3.9) 
k=1 

  



 
N                            

β < 1.0 / 	│Σ │h(k)│ .                                                                   (3.10) 
k=1 
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Consequently, an upper bound on the scaling factor for the SPROC, or any similar 

finite-precision, implementation of the decorrelation algorithm is 

This is a necessary and sufficient condition to prevent overflow. It should again he 

emphasized that although this bound was derived in lieu of the decorrelation 

algorithm implemented using SPROC, this bound will apply to any adaptive 

equalizer implemented in a similar fixed-point environment using the aforementioned 

channel and input. It should also be mentioned that through experimentation it was 

found that the use of a scaling factor which was about one-half that calculated in 

Equation 3.10 worked best. 

With the channel output assumed to be properly scaled so as to prevent 

overflow, the third possible area in which quantization errors can result is in the calcu-

lation of the tap weight coefficients. The error clue to the deviation of the equalizer's 

coefficients from the values taken when infinite precision is used will directly affect 

the performance of the adaptive algorithm. It is for this reason that the quantization 

effects in the calculation of the tap weights will be studied for both the LMS and 

decorrelation algorithms. 

3.2 Model and Statistical Properties of the Quantization Error  

As discussed previously, when two fixed-point numbers are multiplied together, 

the result must he rounded to fit the designated register length. In the following 

discussion, each data sample and filter coefficient is to he considered as being repre-

sented by B bits, including sign (in SPROC, for example, 23 bits plus one for sign). 

Therefore, the least significant bit (LSB) is 2-B. Note that 2-B  is referred to as 

the width of quantization, ∆, since the fixed-point numbers are quantized in steps 

of 2

-B 

 [34]. Since rounding involves choosing the closest quantization level, the 



er (n) = Q[x (n)]  - x(n)                                             (3.11)   

-1/2 * 2-B  < er(n) < 1/2* -B                                                         (3.12)   

36 

maximum error has a. magnitude of 1/2 *2-B=2-B-1. In order to study the effects of 

this rounding error, the quantization error is usually modelled as an additive noise 

to the unquantized value of the input quantity [34]. 

Denote Q[x(n)] as the number after quantization and x(n) as the number before 

quantization. Therefore, the rounding error, er (n), is given by 

The model of the quantization process is shown in Figure 3.1. 

Figure 3.1  Model of the Quantization Process. 

Since er (n) can be either positive or negative, the rounding error is in the range 

The quantization process is depicted graphically in Figure 3.2. 

It is assumed that if a number lies exactly in the middle of a quantization level, 

the number is rounded up. It can be readily seen from Figure 3.2 that one of the 

effects of the quantization error is the introduction of nonlinearities in the system, 

which, in some cases, can cause the system to become unstable [34]. The quantity 

x(n) can fall into any of the quantizer levels of Figure 3.2. Therefore, the rounding 

error is usually modelled as a random variable that is uniformly distributed in the 

ranges given by Equation 3.12 [34]. With ∆=2-B, the probability density function 

of the quantization error is shown in Figure 3.3. With reference to Figure 3.3, the 



 

Figure 3.2 Graphical Representation of the Quantization Process. 

Figure 3.3  Probability Density Function of the Quantization Error. 

mean of the error due to rounding is 

me = er [ er (n)] = ∫ ∆/2-∆-2 eper(n) (e ) de = 1/∆ ∫ ∆/2-∆-2 e de =  1/∆ e2/2] ∆/2-∆-2  = 0 .     (3.13) 

 

 

 

The variance of the error due to rounding is 

σ2e  = ε [ er (n )-me)2] = ε [ e2r (n)] = ∫ ∆/2-∆-2 e2per(n) (e ) de = 1/ ∆ ∫ ∆/2- ∆-2 e2 de 

= 1/∆ e3/33] ∆/2-∆-2  = ∆2/12 = 2-2B/12 .         (3.14)  

 

As a summary of the previous discussion, it should be noted that in the 

literature (see [34], [37]) several other assumptions on er (n) are made in order to 
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simplify the analysis of the effect of the quantization error due to rounding. These 

assumptions are: 

1. The error sequence er(n ) is a stationary white noise sequence. In other words, 

the random variables of the error process are uncorrelated. 

2. The error sequence er(n ) is uncorrelated with the signal sequence x(n). 

These statements are made in conjunction with the previous assumption that the 

error sequence er(n) is uniformly distributed in the range given by Equation 3.12. 

Although these assumptions do not hold for many cases, the assumptions do hold if 

the signal is sufficiently complex and the quantization steps are sufficiently small so 

that the signal sequence z(n) traverses several quantization levels between successive 

samples [34]. 

3.3 Performance of the Decorrelation Algorithm in the 
Presence of Roundoff Errors: Digital Residual Error  

One of the most important aspects of the limited precision implementation of 

an adaptive filter is the numerical accuracy of the algorithm. The accuracy of a 

given adaptive algorithm, implemented in a finite-precision environment, is given 

in terms of the magnitude of the deviation from infinite-precision performance 

[6]. Therefore, the smaller the deviation, the more accurate the implementation. 

Numerical accuracy is strongly a function of the number of bits used in the imple-

mentation [6]. To compare the numerical accuracy of the LMS and decorrelation 

algorithms, it will be necessary to introduce the concept of digital residual error. 

Recall that the tap weight update equation of the LMS algorithm is given by 

W(n+1) = W(n) µX(n)e(n) . 	 (3.15) 

In a finite-precision environment, the tap weights will stop adapting when the 

correction term, µX(n)e(n), is less than one-half the LSB of the registers. This is  
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referred to as the stalling phenomenon of the LMS algorithm [18]. As was stated 

earlier, it is assumed that numbers falling exactly in the middle of a quantization 

interval are rounded up. Referring to n = no  as the time the it h  tap stops adapting, 

the following inequality will hold 

│µe(n0)

x(n0-- i)│< 1/2 * 2-B = 2-B-1 	 (3.16) 

where B is the total number of bits used to represent a number. Therefore, 

│ µe(n0)

│ < 2-B

-1 /µ│ x( n0-- i)│ ≡ e d (µ) .                                               (3.17) 

 
 

The term ed (µ) is called the digital residual error (DRE) [13]. To a first approxi- 

mation, │x

(n

0-- i

)

│ can be represented by its RMS value, Xrms [13]. Accordingly, 

│ µe(n0 )

│ < 2

-B-1/ µXrms ≡ ed (µ) .                                                   (3.18) 
 

 

The DRE provides an upper bound on the magnitude of the deviation from the 

ideal (infinite-precision). As can he seen from Equation 3.18, the DRE for the LMS 

algorithm is inversely proportional to the step size parameter, it. Therefore, if tap 

weight adoption ceases due to digital effects, the step size should be made as large 

as possible (while still guaranteeing convergence) in order to minimize the DRE. 

An equivalent result can also he derived for the decorrelation algorithm. Given 

the tap weight update expression, 

	

W(n+1) = W(n) µy (n)Y(n) . 	

(3.19) 

the decorrelation algorithm will stall when the correction term, py(n)Y(n), is less 

than one-half the LSB of the register. Referring to n = no  as the time the ith  tap 

stops adapting, the following inequality for the decorrelation algorithm will hold: 

 
│y(n0) y(n0-i)

│< 2

-B-1/µ ≡ ed (µ) .                                         (3.20)  

Note that since Xrms  is bounded by unity, the expressions for the DRE of the LMS 

and decorrelation algorithms are equivalent. To make the finite-precision analysis of 



40 

the LMS and decorrelation algorithms more tractable, the digital residual error will 

offer a reasonable means of comparison of the finite-precision performance (numerical 

accuracy) of the LMS and decorrelation algorithms. 

3.3.1 Simulation Results for the Digital Residual Error  

In order to experimentally confirm the previous findings concerning the performance 

of the LMS and decorrelation algorithms in a finite-precision environment, a model 

of the rounding (quantization) process occurring in the respective tap weight update 

equations was developed. This model was used to simulate the quantization process 

in a fixed-point environment, such as SPROC, via a computer program that would 

allow the user to decrease the word-length used by the equalizer. The SPROClab 

development system was not used to study finite-precision effects for the simple 

reason that the system is already quantized to 24 bits. Consequently, if the bit-length 

used in the SPROC-based equalizer was lowered, one would be studying the quanti-

zation of quantized numbers, not the quantization of infinite precision numbers. 

Since the computer program allows the use of double precision arithmetic (effec-

tively infinite precision), all experimental results (except where noted) are gathered 

from computer-based simulations. Results will be referred back to the SPROC-based 

implementations when necessary. 

As discussed previously, with proper scaling assumed, a finite-precision 

environment will have the greatest effect on the tap weights. Therefore, any 

quantization effects that occur as a consequence of the calculation of the tap weight 

correction term (µX(n)e(n ) and µy(n)Y(n ), respectively) would be caused by 

the corresponding multiplications that are rounded to fit the B-bit length of the 

registers. The process to be studied can be represented mathematically for the LMS 

and decorrelation algorithms, respectively, as follows: 
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Ŵ(n + 1)  =  W(n) + Q[µX(n)e(n)]  

WM(n  + 1) = WM(n ) 

+ Q [µX(n)YM(n)

]  

where the process Q[.]  is defined by Equation 3.11. 

In the simulations, a program was written to implement the LMS and decor-

relation algorithms in a decision feedback configuration. The tap weight correction 

terms were rounded according to the following algorithm: 

cq  =  
INT [c* 2k  + 0.5] 

/ 2
k (3.21) 

 
 

where c is the unquantized (infinite precision) tap weight coefficient, cg  is the 

quantized tap weight coefficient, and k is the desired bit-length of the registers. 

The INT[.] 

 

notation indicates the rounding to the nearest integer. All arithmetic 

(summation) operations in the program were left unquantized since, as noted 

previously, proper scaling is assumed. In the following simulations, the bit-length 

used in computing the correction term will be decreased in order to determine the 

digital residual error of the LMS and decorrelation equalizers. The equalizer being 

studied is a simple one-tap implementation using a channel with a post-cursor of 

h1 =0.67. The experimental results will be compared to the theoretical limits as 

expressed in Equations 3.18 and 3.20. The step size parameter, µ, will then be 

changed in order to determine the variation in the magnitude of the DRE and its 

compliance to the aforementioned limits. 

For ease of comparison, the results of the LMS DFE have been summarized 

in Table 3.1. For the implementation of the LMS DFE, it was found that the tap 

weight, w1 , was able to converge and settle on a particular value. The experimental 

DRE is then the magnitude of the deviation of the converged tap weight from the 

actual value of w1 =0.67. As can be seen in Table 3.1, the theoretical DRE provides 

a good upper bound on the finite-precision performance (accuracy) of the LMS DRE. 
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As the bit-length is decreased, the DRE of the LMS DFE increases. Notice that at 

very small bit lengths (less than ten bits), the DRE can indeed be made smaller by 

increasing the step size. This agrees well with theory. 

The results of the decorrelation DFE have been summarized in Table 3.2. It 

should be stated that the tap weight of the decorrelation DFE performs differently 

than the LMS, due to the nature of the decorrelation algorithm. The decorre-

lation tap weight, w1, does not settle on a particular value. Rather, it exhibits a 

random fluctuation around ω1  = 0.67, as discussed in Chapter 2. Therefore, to 

study the numerical accuracy of the decorrelation algorithm in a finite-precision 

environment, several provisions had, to be made. First, the decorrelation DFE was 

run for 15,000 iterations. To determine numerical accuracy, given a particular bit-

length, all tap weight values that fell within a given interval around 0.67 were summed 

and their average value determined. For all hit lengths in Table 3.2, this interval was 

0.67±(1000/∆). For 24 bits, the interval was 0.67+(10000/∆). The desired DRE 

for the decorrelation algorithm, of Table 3.2, was then computed using a Monte-

Carlo averaging of 100 independent trials of the experiment. The DRE was then 

calculated as the magnitude of the difference between this average DRE and the 

actual tap weight value. Notice in Table 3.2 that even with infinite precision, the 

decorrelation algorithm still exhibits a deviation from the actual tap weight value of 

ω1  = 0.67. 

 

From Table 3.2, it can he seen that the decorrelation algorithm performs in a 

manner very similar to the LMS. As the bit-length of the environment is decreased 

the DRE subsequently increases. Furthermore, the theoretical DRE also provides a 

good upper bound on the residual error. Notice that at low bit-lengths (less than ten 

bits), the DRE of the decorrelation algorithm, like that of the LMS, can be decreased 

by increasing the step size. This agrees well with theory. 
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By comparing the results of Tables 3.1 and 3.2, it can be seen that the decor-

relation algorithm is at least as robust as the LMS algorithm in the presence of 

a finite-precision environment. The effect of the quantization error can, in both 

algorithms, he reduced by increasing the step size. This concept seems to contradict 

the conventional notion that the step size should be decreased in order to improve 

the performance of the algorithm [6]. However, in a digital implementation, it is 

necessary to achieve a balance between performance and numerical accuracy that is 

not usually required in an infinite-precision environment. 



Table 3.1  Digital Residual Errors of the LMS DFE. 

WORD LENGTH 
(BITS) 

STEP SIZE DRE 
(experimental) 

DRE 
(theoretical) 

∞  0.1 0.0 0.0 
24 0.1 2.8133392 x 10-7  2.9802322 x 10-7  
22 0.1 1.1157989 x 10-6  1.1920928 x 10-6  
20 0.1 4.6920776 x 10-6   4.7683715 x10-6            
18 0.1 1.7089843 x10-5  1.9073486 x 10-5  
16 0.1 6.2866211 x 10-5  7.6293945 x 10-5  

14 0.1 2.6123046 x 10-4  3.0517578 x 10-4  
12 0.1 0.0010546875 0.0012207031       
10 0.1 0.003984375 0.0048828125      
8 0.1 0.01765625 0.01953125        
8 0.05 0.0371875 0.0390625         
8 0.5 0.00203125 0.00390625        
6 0.1 0.07625 0.078125         
6 0.05 0.154375 0.15625          
6 0.5 0.01375 0.015625         

Table 3.2  Digital Residual Errors of the Decorrelation DFE. 

WORD LENGTH 
(BITS) 

STEP SIZE DRE 
(experimental) 

DRE 
(theoretical) 

∞  0.001 1.8897554 x 10-5  0.0 

24 0.001 3.7844416 x 10-5  2.9802322 x 10-5  
22 0.001 3.2527589 x 10-5  1.1920928 x 10-4  

20 0.001 5.4807156 x 10-5  4.7683715 x 10' 

18 0.001 2.1144686 x 10-4  1.9073486 x 10-3  
16 0.001 1.4475860 x 10-3  7.6293945 x 10-3  

14 0.001 7.4792925 x 10-3  3.0517578 x 10-2  
12 0.001 0.02309694 0.12207035 

10 0.001 0.17090000 0.48828125 

8 0.001 0.39714725 1.953125 
8 0.005       0.0134619 0.390625 

8 0.01   0.006340341 0.1953125 
6 0.001 0.67 7.8125 6 

0.005 0.2429903 1.5625 

6 0.01 0.0116528 0.78125 
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CHAPTER 4 

RAPIDLY CONVERGING ALGORITHMS FOR DECORRELATION  

In the design of blind, adaptive equalizers, there are many criteria by which the 

equalizers are judged and compared. The two of most interest to this work are 

complexity and speed of convergence. In the previous chapter, it was shown that 

the decorrelation-based DFE converges, in the mean, to the correct tap weights. 

The DFE of Figure 2.6 offers implementational simplicity at the cost of the rate at 

which the equalizer converges. The complexity of this equalizer, and others like it, 

is linear in that the number of operations (multiplications and divisions) that are 

needed to update the tap weights is proportional to M, where M is the number of 

tap weights. It is possible to dramatically increase the rate of convergence of the 

equalizer by increasing the complexity of the implementation. This particular class 

of Kalman, or RLS, algorithms has a complexity proportional to M2 . However, it is 

possible to retain the speed of the Kalman algorithm, while maintaining an order of 

M complexity. Two of the members of a computationally efficient class of algorithms 

that will be dealt with in this chapter are referred to as the fast Kalman and FTF 

algorithms. It will be shown in this chapter how the decorrelation algorithm can 

be formulated and implemented in terms of an RLS equalizer and how this theory 

forms the basis for the more computationally efficient fast Kalman and FTF type 

equalizers. 

4.1 The Kalman Algorithm for Decorrelation  

To improve the convergence speed of the classical LMS equalizer, Godard [14] 

suggested the use of the Kalman algorithm with equalization. The Kalman algorithm, 

or RLS algorithm, minimizes the time-average exponentially weighted squared error, 
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where the error was defined as the difference between some desired signal (data) and 

its estimate (see Figure 2.5). The exponential weighting factor was used to allow the 

filter coefficients to adapt to the time-varying statistical characteristics of the data. 

In other words, the most recent data points are given a heavier weight than the past 

samples, which are eventually forgotten. 

Referring to the blind DFE structure of Figure 4.1, the input to the slicer is 

given by                                        

y( n) = x(n) —  Σn  wk(n)ŷ(n — k),                                      (4.1)  
k=0 

where x(n) is the input to the equalizer (output of the channel) at time n and the 

wk(n)'s are the equalizer's weights. Equation 4.1 can be written in matrix form as 

y(n) = x(n) — Ŷ'M

(n)WM (n)

, 

] (4.2) 

 

where Ŷ'M

( n) = [ŷn-1

, 

ŷn-2 ...ŷn-M] and W' = [ω1( n) , ω2 (n) ,...ω 2

(n),....

,ωM

(n

)].  

Figure 4.1  Decision Feedback Equalizer. 

Using a philosophy similar to that expressed in [14], it was shown in [24] that 

is possible to use the time-average exponentially weighted correlations as the cost 

function to be minimized. It should he emphasized that this is possible due to the 

inherent simplicity of the error function of the decorrelation algorithm. Therefore, 

instead of decorrelating instantaneous realizations of the input to the slicer of 
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Figure 4.1 , the time-average weighted input is decorrelated, i.e., solve:  

Σk=0λn-ky(n)YM(k) = 0 

 

where Y'M(k)  = [yk-1

, 

yn-2 ...yk-M] and λ  is a positive constant close to, but 

less than, one. The quantity (1 — λ)-1  can be considered the memory of the 

algorithm, where A=1 corresponds to infinite memory. An alternative approach 

to the exponential weighting would be to use a finite-duration sliding window with 

uniform weighting over the window length [37]. However, this method will not be 

considered here. Therefore, proceeding as in [24], substituting for y(n) from Equation 

4.2 and setting the weighted correlation time average to zero results in n    

Σ λn-kYM(k)(x(k) — Ŷ'M(k)WM(n)) = 0 . k=0 
 

Expanding the above equation and collecting terms yields 

 

Σk=0 λn-kYM(k)Ŷ'M(k)

WM(n) = Σλn-kx(k)YM (k) .  

Equation 4.3 can be written in matrix form as 

WM(n) = R-1M.M(n)DM (n) 	 (4.4) 

where the cross-correlation matrix of the vector of inputs and vector of outputs of 

the slicer is given by 

R

M.M  =∆  Σk=0 λn-kYM(k)Ŷ'M(k)                                      (4.5) 
 

and the cross-correlation matrix of the current output of the channel and the vector 

of inputs to the slicer is given by 

DM(n) =∆ A Σk=0 λnn-k x(k)YM(k). 	(4.6)  
 

Equation 4.4 involves the inversion of an M x M matrix, Rm,m(n). In the 

following derivation, it will be convenient to develop a recursive relation for the cross-

correlation matrix, 

R

M.M (n). Isolating the term corresponding to k=n from the rest 



of the summation on the right-hand side (RHS) of Equation 4.5, 

R

M.M  = λ [ Σλn-1-k Ŷ'M(k)] + YM(n)Ŷ'M(n) .                                (4.7) 
 

However, by the definition of Equation 4.5, the expression inside the brackets of the 

above equation is equal to the old cross-correlation matrix, 

R

M.M(n-1) . Therefore, 

the recursion for updating the value of the cross-correlation matrix is 

R

M.M (n)  = λRM.M(n-1) + YM(n)Ŷ'M(n) . (4.8) 

 

 

Similarly, a recursive equation can be derived for the cross-correlation matrix, 

DM(n), of Equation 4.6 

DM(n) = λDM(n-1) + x(n)YM(n) . (4.9) 

It is known that for any nonsingular matrix, A, and vectors u and v, the following 

definition of the inverse of a matrix holds (assuming that A + uv' is nonsingular) 

 

(A + uv')-1 = A-1 - A-1 - A-1uv'A-1/1+v'A-1u .                 (4.10) 

Therefore, using Equation 4.10 in Equation 4.8, it is possible to derive a recursive 

formula for R-1M.M (n) as follows:  

 

R-1M.M (n) = 1/λ (R-1M.M (n-1) - R-1M.M (n-1)YM(n)R-1M.M (n-1)/λ + Ŷ'M(n)R-1M.M (n-1)YM(k)     (4.11) 

For convenience of computation, let 

PM(n) =∆ 

R

-1M,M(n).                                                         (4.12) 

It is also convenient to define the M x 1 vector, KM(n), referred to as the Kalman 

gain vector, as 

KM(n) = 1/λ  + µM(n) PM(n-1)YM(n)                                                (4.13) 
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where the scalar µM(n)  is given by 

µM(n) = Ŷ'M(n)

R

-1M.M(n-1)YM (n ) .                                                       

(4.14) 

Using the previous definitions, Equation 4.11 can he written as 

PM(n)= 1/λ(PM(n-1)-KM(n)Ŷ'M(n)PM(n-1)) .                                        (4.15) 

In comparison with traditional Kalman filter theory, Equation 4.15 can be considered 

the Riccati equation for the RLS with the decorrelation algorithm [18). Using 

Equations 4.4 and 4.12, it is possible to write 

WM(n)=PM(n)DM(n) .                                                         (4.16) 

It is now necessary to develop an expression that solves Equation 4.16 recursively. 

Therefore, substituting Equation 4.6 for DM(n)  in the above equation results in 

WM(n)=λ(PM(n)DM(n-1)+z(n)PM(n)YM(n) . 

Substitute Equation 4.15 into only the first term on the REIS of the above equation. 

WM(n)=λ [1/λ (PM(n-1) - KM(n)Ŷ'M(n)PM(n-1)]DM(n-1) 
+x(n)PM(n)YM(n)  

= PM(n-1)DM(n-1)- KM(n)Ŷ'M(n)PM(n-1)DM(n-1) 
+x(n)PM(n)YM(n)  

= WM(n-1) - KM(n)Ŷ'M(n)WM(n-1)+x(n)PM(n)YM(n)                             

It will be shown in the derivation of the fast Kalman algorithm that the Kalman 

gain vector, KM(n), equals PM(n)YM(n). Using this fact in the last equality of the 

above equation 

WM(n) = WM(n-1)- KM(n)Ŷ'M(n)WM(n-1)+x(n)WM(n)KM(n) 

= WM(n-1)- KM(n)(x(n)-Ŷ'M(n)WM(n-1)) .                                  (4.17) 
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Define the a priori estimation error for decorrelation as 

ηM(n) = x(n) - Ŷ'M(n)WM (n-1)                                      (4.18) 

since it has a form similar to that expressed in [18]. Consequently, substituting 

Equation 4.18 into Equation 4.17 results in the desired recursive relationship for the 

tap weight vector 

WM (n-1) + ηM(n)KM (n) .                                                      (4.19) 

The order that constitutes the time-average exponentially weighted decorrelation 

algorithm is summarized below: 

ΓM(n) = Ŷ'M(n)PM(n-1)                                                            (4.20) µM(n) = ΓM(n)PM(n)                                                               (4.21) KM (n) = PM(n-1)YM (n) / λ + µM(n)                                                   (4.22) µM(n) = x(n) - Ŷ'M(n)WM(n-1)                                                          (4.23) WM (n) = WM (n-1) + ηM(n)KM (n)                                                     (4.24) PM(n-1) = KM (n)ΓM(n)                                                             (4.25) PM(n) = 1/λ PM(n-1) - PM(n-1))                                                   (4.26) 

The algorithm can he initialized by setting WM(0)=0M and PM(0)=σIM, where 

σ > 0. The algorithm of the previous section will subsequently be referred to in this 

thesis as the Recursive Least Correlation algorithm (RLC), since it is based on the 

application of the decorrelation algorithm to a recursive-least-type criterion [24].  



51 

The increased rate of convergence of the blind, adaptive, decorrelation DFE 

based on the Kalman algorithm compared with the conventional decorrelation blind 

DFE was shown in [24]. The RLC will be used as a measure by which the rate 

of convergence of other rapidly converging algorithms may be gauged. Note that 

the increased rate of convergence of the modified Kalman/Godard algorithm comes 

at a cost of greater complexity, since the M x M  matrix PM(n) must be adapted 

and stored at each iteration. A measure of a particular algorithm's complexity is 

usually given in terms of the number of multiplications and divisions per iteration 

(MADPI) that are needed in order to update the tap weight vector [7]. Therefore, 

the RLC algorithm of Equations 4.20 through 4.26 requires approximately 4M 2 

+ ∆M + 2 MADPI. Thus, the RLC algorithm is said to have an order M2 (i.e., 

O (M2)) complexity. As a consequence of this trade-off between complexity and 

speed, there has been a heavy emphasis on the search for rapidly converging, less 

complex structures. The results derived in this section will form the basis by which 

the more computationally efficient fast Kalman algorithm for decorrelation (FRLC) 

and fast transversal filter (FTF) with decorrelation will be derived. 

4.2 The Fast Kalman Algorithm for Decorrelation  

In the last section, it was shown that by minimizing the time-average weighted 

correlations, the decorrelation algorithm (in a decision feedback configuration) could 

be implemented using a Kalman, or recursive least, algorithm, thereby significantly 

improving the rate of convergence of the equalizer. However, a disadvantage of the 

RLC algorithm, as with all recursive least-squares algorithms, is its complexity. For 

the RLC, O (

M2

) operations (multiplications and divisions) must be performed per 

iteration. 

To reduce the complexity of the RLC algorithm, while still maintaining its 

high rate of convergence, the decorrelation criterion will be applied to the more  
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computationally efficient family of fast transversal-based algorithms. The first of 

these algorithms to be studied is the fast Kalman algorithm, originally derived 

by Falconer and Ljung [10]. The mathematical basis of the resulting fast recursive least 

algorithms is the exploitation of the shifting property inherent in most sequential 

estimation (prediction) problems. In equalization, this property expresses the fact 

that at each iteration the number of new samples entering and old samples leaving 

the equalizer is not M, but a much smaller integer p. For this particular equalizer 

application, p  = 1. In referring to Figure 4.1, this shifting property corresponds to 

the fact that at any time n the most recent output of the slicer, ŷ(n), enters the 

feedback filter while the oldest slicer output, ŷ

(

n-M+1), leaves. The fast Kalman 

(fast RLS) algorithm will provide a means for the recursive updating of the Kalman 

gain vector of Equation 4.13 without explicit computation of the inverse correlation 

matrix of Equation 4.15. 

4.2.1 Reformulation of the RLC Algorithm  

In order to show how the decorrelation algorithm ca.n be implemented in a fast 

Kalman form, it. is necessary to reformulate the problem as expressed in the previous 

section. Referring to the previous section, in order to update the tap-weight coeffi-

cients using the RLC algorithm, it is necessary to solve the following equation at 

each iteration: 

WM (n) = + R-1M,M(n)DM (n) .  	(4.27) 

In the previous section, it was shown that the inverse autocorrelation matrix, 

R-1M,M(n), can be obtained recursively as 

R-1M,M(n) = 1/λ (R-1M,M(n-1) - KM (n)Ŷ'M(n)R-1M,M(n-1))                  (4.28) 
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where KM(n) is the Kalman gain vector and Ŷ'M(n) = [ŷn-1, ŷn-2, ... , ŷn-M]. Postmultiplying Equation 4.28 by YM(n) = [ŷn-1, ŷn-2, ... , ŷn-M],   R-1M,M(n) =  

= 1/λ (R-1M,M(n-1)YM (n) - KM (n)Ŷ'M(n)R-1M,M(n-1)YM(n)).                   (4.29) 

Recall that the Kalman gain vector was defined as (collecting terms) 

R-1M,M(n-1)YM (n) = (λ + µM(n))KM (n).                                          (4.30) 

Substituting Equations 4.14 and 4.30 into Equation 4.29 yields 

R-1M,M(n)YM (n) = 1/λ ((λ + µM(n))KM (n)µM(n))   =  KM (n). 

Therefore, as alluded to in the previous section, the Kalman gain vector can also be 

defined as 

KM (n) = R-1M,M(n)YM (n).                                                        (4.31) 

The following sections will provide a recursive algorithm to calculate the 

sequence of vectors 

KM (n) = [Σnk=0 λn-kYM (k)Ŷ'M(n)]-1 YM (n)                                         (4.32) 

using a. number of operations proportional to M. The fast Kalman gain vector of 

Equation 4.32 can then be used in place of the Kalman gain vector in the algorithm 

presented in the previous section. The derivation of the algorithm is based on the 

work done in [29]. 

4.2.2 Derivation of the Algorithm 

Rewriting Equation 4.31 as 

R-1M,M(n-1) = KM(n-1) = YM(n-1) 

y( n) = x(n) —  Σn  wk(n)ŷ(n — k), 

 

 

R-1M,M(n) = 1/λ (R-1M,M(n-1) - KM (n)Ŷ'M(n)R-1M,M(n-1))                           (4.33) 
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suppose that Km( / ), j = 0, . • • ,n - 1, have been determined. To find Km(n);  define 

RM,M(n)KM(n) = YM (n).                                                  (4.34) 

To take advantage of the shifting properties of ŶM(n) and YM(n), it will be 

convenient to introduce the augmented vectors 

Ῡ(n) = YM+1(n) = [y(n-1)] =[YM(n)  ]                               (4.35) 

                                                        YM(n-1  [y(n-M-1) 

and 

Ŷ(n) = ŶM+1(n) = [ŷ(n-1)]=[ŶM(n)     ]                               (4.36) 

                                                          ŶM(n-1 [ŷ(n-M-1)        

Consequently, the augmented cross-correlation matrix can be defined as 

R(n)=RM+1,M+1(n) = Σnk=0 λn-kῩ(k)Ŷ'(k) .                                         (4.37) 

It should he noted that the augmented cross-correlation matrix can be represented 

in matrix form as 

R(n) = [ π(n)  S'M(n) ]   = [RM,M(n) QM(n)  ]                               (4.38) 

                                                       QM(n) RM,M(n-1)]   [ŠM(n)    π(n)    

where 

π(n) = Σnk=0λn-kŷ(k-1) (4.39) SM(n) = Σnk=0λn-kŶM(k-1)y(k-1) (4.40) QM(n) = Σnk=0λn-kYM(k-1)ŷ(k-1) (4.41) RM,M(n-1) = Σnk=0λn-kYM(k-1)Ŷ'M(k-1) (4.42) 

and 

π(n) = Σnk=0λn-k (k-M-1)ŷ(k-M-1) (4.43) ŠM(n) = Σnk=0λn-kŶM(k)y(k-M-1) (4.44) 
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QM(n) Σnk=0 λn-kYM( k)ŷ( k - M - 1) (4.45) 

 
 

and RM,M(n) is given by Equation 4.5. Using the previous notation, it is shown in 

Appendix A that Equations 4.33 and 4.34 are contained in the following expressions: 

R(n) [ 0 ] = [ p(n) ] = Ῡ(n) + [p(n)-y(n-1)]      (4.46) KM(n - 1) 

 YM(n - 1)                     0M 
and 

R(n) [ KM(n - 1) ] = YM(n) = Ῡ(n) + [    0M     ]      (4.47) 0 

 β(n)                      β(n) - y(n - M - 1) 

where 0M  is the M-dimensional null vector. The scalars p(n) and β (n) are given by 

p(n) = S'M(n)KM(n - 1) and  β(n) = S'M(n)KM(n) .                                               (4.48) 

 

 

Before proceeding with the derivation, an important remark must be made 

concerning the augmented correlation matrix of Equation 4.38. In the traditional 

proofs of the fast. Kalman algorithm, i.e., those not based on the decorrelation 

criterion, the derivation of the fast Kalman algorithm is much simpler (see [10], 

[25], and [35]). The reason for this simplicity sterns from the fact that the aforemen-

tioned shifting property need only be applied to a single vector, comprised of the 

input signal, X'M(n) = [x(n),x(n-1),.......,x(n-M+1). As result, in these more 

traditional proofs, the augmented correlation matrix of Equation 4.38 is symmetric. 

By using an identity for the inverse of a symmetric matrix which is itself composed 

of square matrices on its diagonal, the derivation of the inverse of the augmented 

(auto)correlation matrix becomes straightforward. In fact, most proofs first derive 

order update recursions for the needed quantities and then fix the length of the filter 

to get. the desired fast Kalman algorithm. However, since the current fast Kalman 

derivation is based on the decorrelation criterion, the necessary symmetry of the 

augmented correlation matrix is not present in Equation 4.38. Because the proof 

given in this section cannot rely on this symmetry, it is necessary to derive the fast  



Ṝ(n)K(n) = Ῡ(n) (4.49)   Ṝ(n) [     1     ]  = [  FM(n) ]                     (4.50) 

 

FM( n)           0M 
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Kalman in a manner which avoids it, hence, the need for an inductive proof of all 

relevant quantities. This lack of symmetry will also play a major role in devel-

opment of lattice-based structures for the decorrelation algorithm. The use of lattice 

structures with the decorrelation criterion will be covered in detail in Chapter 5. 

4.2.3 Updating the Kalman Gain Vector  

In view of the expressions given in the last section, a. vector K(n.) = KM+1(n) with 

properties 

will be calculated as an intermediate step before determining KM(n). From 

Equations 4.46 and 4.47, it can be seen that it is only necessary to modify 

0 [   KM(n - 1)  ] 
 

so that. 

[ p(n.) — y(n. — 1) 
0M  

on the right-hand side of Equation 4.46 is eliminated. To accomplish this, it will be 

assumed that an M x 1 vector FM(n) is known, such that 

where, it should be noted, Ym(n) is a scalar. Consequently, using the above 

expression, it is shown in Appendix B that the following equality holds: 

Ṝ(n) ∆=  [     1     ]  = FM-1(n)[ρ(n)-y(n-1)] = [ρ(n) - y(n-1) ]               (4.51) FM(n) 0M 

Therefore, using the following definition 

Ṝ(n) ∆= [       -FM-1 (n )[ρ(n ) - y(n - 1)                              ] 
KM(n — 1) — FM (n )

-FM-1 (n )[ρ(n ) - y(n 

- 1)                                 (4.52) 
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it is proved in Appendix C that it follows from Equations 4.46 and 4.51 that 

 

 Ṝ(n)K(n ) = Ῡ (n )                                (4.53)  

Now, partition K(n ) so that 
K(n

)  = [ CM(n

) ]                             (4.54) 

cM (n ) 
 

where, it should be noted, cm (n) is a scalar. To go from Equation 4.49 to 4.47, it 

will be necessary to eliminate cm(n) in Equation 4.54 without. affecting the upper 

part of Y(n). In order to do this, a. vector D(n) = DM+1 (n) is required with the 

following properties: 

Ṝ(n )D(n)  = [ 

0M  ]                               (4.55)    

1 

 

where 

D(n

) 

∆=  [ DM (n ) ]                              βM-1 (n ) 

 

 

 

and where βM-1(n) is a scalar. Then, subtracting D (n)βM

(n )

cM

(n

) from K (n) in 

Equation 4.54 results in 

[K (n) - D (n)βM

(n )cM (n )]  = [[ CM (n ) ] - [ DM (n )βM (n )cM (n ) ]] CM (n ) βM-1 (n )βM (n )cM (n ) =  [ CM (n ) - DM (n )βM (n )cM (n) ] 

0                                         (4.56) 

 

Postmultiplying Ṝ(n) by K(n)-D(n )βM

(n )cM (n ) 

and using the relation of Equation 

4.55. 

	
Ṝ(n) [K(n

) 

 — D(

n)βM (n)cM

(n )

] = Ῡ (n) - [     0M       ]   .   	(4.57) 
 

β M(n) cM(n

)            

It follows, then, from the second expression for Ṝ

(n) 

 in Equation 4.38, together with 

the definition in Equation 4.35, that 



Ṝ(n) = λṜ(n — 1) + Ῡ(n)Ŷ1(n).                            (4.62)   
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Ṝ(n ) [K(n) — D(n)βM(n)cM(n)] 

= [RM.M(n) QM(n)] [CM(n ) - DM (n )βM (nM  (72)D
M(

n
)βM (n)cM(

n
)] 

[ŠM(n)    π(n)  ] [                       0                      ] 

=  [RM.M(n) CM(n) - DM (n )βM (

n)cM(
n

) ]] 
[ŠM(n)[CM(n) - DM (n )βM (

n)cM(
n

) ]] 

=  [   YM(n) ] ] = ῩM(n) .  

[  y(n — M — 1) ]   

Inspection of the first row of the vector of Ῡ(n) in the last line of the above equation 

reveals that 

 

RM.M(n)[CM(n) 

 — 

D

M

(n )βM (

n)cM(
n

)] = YM (

n

).                             (4.58) 

 

Furthermore, comparing Equations 4.58 and 4.34, it can be seen that 

KM ( n ) = CM

(n ) 

 — DM (n )βM (n )cM (n )                                   (4.59)   

which completes the inductive step from n  — 1 to n . 

4.2.4 Updating the Auxiliary Variables  

The matrices FM(n ) and D(n ) with the properties of Equations 4.50 and 4.55, respec-

tively, will now be determined. This will be done by means of induction. Therefore, 

assume that the vectors FM (n — 1) and D(n — 1) are given, such that 

Ṝ(n)  [      1      ]  =  [ FM(n — 1)  ]                                         (4.60) ṜM(n — 1)                 0M  

ṜM

(n — 1)D(n — 1) = [  0M  ] .                                             (4.61) 1 

 

 

 

With the method used to derive Equation 4.8, Ṝ(n), as defined in Equation 4.37, 

can be written using a recursive expression: 
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Therefore, together with Equations 4.35 and 4.36 

[        1        ]  	[        1         ] 
Ṝ(n) [ FM(n-1) ] = [λṜ(n-1) + Ῡ(n - 1) + Ῡ( n )Ŷ1(n )] [ FM(n-1)] 

 

=  λṜ ( n-1) 

[     1     ] 	

[ FM ( n-1) ] + Ῡ(n) [ŷ ( n)Ŷ'M(n - 1)] [     1       ] [   FM ( n-1) ] 

 =  

λ [ FM ( n-1) ] 

0M 

+ [ y( n-1) ]   (ŷ(n - 1) + Ŷ'M( n

)FM

( n

-1) .                              (4.63) 

[ YM(n-1) ] 

 

Postmultiplying both sides of Equation 4.46 by (ŷ(n. - 1) 

Ŷ'M ( n-1) FM ( n-1)

) yields 

Ṝ ( n) [     0       ] (ŷ (n - 1)  +  Ŷ'M(n - 1)FM(n - 1)) [  KM ( n-1) =    [  ρ ( n

)  ]  (ŷ(n. - 1) 

Ŷ'M ( n-1) FM ( n-1)) 

[   Y

( n

) ]                                                            (4.64) 

Consequently, subtracting Equation 4.64 from both sides of Equation 4.63: 

Ṝ ( n) [                      1                                       ] [  FM ( n-1) - KM ( n-1) 

(ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1))   ] =    Ṝ ( n

) [ [    1      ]  -  [     0       ]   (ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1))   ] [  FM ( n-1) ]     [  KM ( n-1) ] =    λ  [ FM ( n-1) 

]   +   [  y (n. - 1) ]    (ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1))    [    0M         ]        [ YM ( n-1) ]  -  [      ρ ( n

)    ]    (ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1)) [   YM ( n-1) ] =   [  λFM ( n-1) 

+ (y (n. - 1) -  ρ

( n

)) (ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1))   ]  .               (4.65) 

[                                                    0M                                                    ]                          

Therefore, if Equation 4.50 is satisfied for n-1, then it will be satisfied for n provided 

FM  =  FM ( n-1) - KM ( n-1)

(ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1)) .                                (4.66)        
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Furthermore, it will also be satisfied for n provided 

FM ( n) = λFM ( n-1) + y ( n-1) - ρ ( n

)) (ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1)) .                

(4.67) 

Ṝ(n) [ FM ( n-1) ] = [λṜ ( n-1) + Ῡ(n - 1) + Ῡ ( n)Ŷ1 ( n)] [ FM ( n-1)] λFM ( n-1) 

+ (y (n. - 1) -  ρ

( n

)) (ŷ (n. - 1) 

+ Ŷ'M ( n-1) FM ( n-1))   

For simplicity, define the following scalar 

fM ( n

) 

 = 

ŷ (n. - 1) 

+ F'M ( n-1)

ŶM

( n

-1) (4.68)   

which will be used in Equations 4.66 and 4.67. Equation 4.68 will he referred to as 

the a. priori forward prediction error for decorrelation, since it has a form similar to 

that expressed in [18]. Furthermore, Equation 4.67 has a form similar to the sum of 

weighted forward a posteriori prediction-error squares, as seen in [18). Equations 4.66 

and 4.67 define the updating process for the matrix FM(n) and the scalar FM(n). 

Now postmultiply Equation 4.62 by D(n — 1): 

Ṝ(n)[D(n - 1) = λṜ(n  - 1)D (n  - 1)+Ῡ

( n)Ŷ' ( n)]D ( n-1) = λ[0M]+Ῡ( n)Ŷ' ( n

)D(n - 1)  . (4.69) 

1     

To obtain Equation 4.55, it will be necessary to eliminate the last vector on the right-hand side Equation 4.69 that is proportional to Ῡ (

n

). Therefore, subtracting 	

Ṝ(n)K(n)Ŷ'(

n

)D(n - 1) 

from both sides of Equation  4.69: 

Ṝ(n)[D(n  - 1) - K(n)Ŷ'

( n

)D(n - 1)]                                            

= λ[0M] + Ῡ( n )Ŷ'(n

)D(n - 1) - Ῡ(

n )Ŷ'(n

)D(n - 1) [ 1 ] 

= λ[0M].                                                                    [ 1 ]                                                                          (4.70) 

Therefore, if Equation 4.55 is satisfied for n — 1 then it will be satisfied for n provided 

D(

n) = 1/λ 

(

D (n  - 1) - K(n)Ŷ'

( n

)D(n - 1)  (4.71) 

Equation 4.71 represents the updating algorithm for 

D (n). 
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The elements of D(n) are used only in the combination BM (n) Dm(n)/3m(n). 

Therefore, it is more convenient to rewrite Equations 4.55, 4.71, and 4.59 in terms 

of 
B( n)=∆ D̳ ( n)βM ( n)∆ [̳BM ( n)] (4.72)   1 

which obeys 

R ( n)B ( n) = [  0M    ]                                                    (4.73)           [ βM(n)]                                                                                                                                

Then, as in Equation 4.70 

R(n ) [B(n-1) - KM(n

)Ŷ'(n)

B(n-1)] =  = [R(n )  [ B(n-1)-CM(n

)Ŷ'(n)

B(n-1) ]                                                           [   1 - cM(n )Ŷ'(n )B(n-1) ]                                (4.74)  

where Equations 4.54 and 4.72 were used, along with the relation between D(n ) and B(n )

. Consequently, 

R(n ) [ B(n-1) -K(n

)Ŷ'(n)

B(n-1) ] = λ [   0M    ]           (4.75)                                        [  βM(n -1)  ] 

Therefore, postmultiplying Equation 4.75 with [1 — cM

( n )Ŷ'(n))B(n

-1) ]-1  . 

R( n )[[BM(n-1) [1-cM(n

)Ŷ'(n)

B(n-1) /1-cM(n

)Ŷ'(n)B(

n

-1) ]]                             1  

=  [                     0M                                    ]  

[   λβ(n-1) [1-cM(n

)Ŷ'(n)

B(n-1) ]-1       ]                                         (4.76) 

Therefore, if Equation 4.72 is satisfied for n — 1 then it is satisfied for 

n 

 provided 

BM(n ) = BM(n-1) - CM(n

)Ŷ'(n)

B(n-1) / 1-cM(n

)Ŷ'(n)

B(n-1) (4.77)  

and 

BM(n ) = λβM(n-1) / 1-cM(n

)Ŷ'(n)

B(n-1) .                                        (4.78)    
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Using the definitions of Equations 4.36 and 4.72, Equation 4.77 can be written 

as 
BM ( n-1)-CM ( n)(

ŷ (
n-M)+)Ŷ'M ( n

)BM (
n-1))/1-cM ( n)( ŷ(n-M)+Ŷ'M ( n)BM ( n-1) (4.79) 

 

Define the scalar 

bM

( n) 

 = 

ŷ (
n-M) + Ŷ'M ( n)BM

(
n-1) .                              (4.80) 

 

Equation 4.80 will be referred to as the a. priori backward prediction error for decor-

relation, since it has a form similar to that expressed in [18]. Therefore, Equation 

4.77 can he written as 

BM(n -1)-- CM(n )bM(n) 

 

βM(
n

) = 	 (4.81)  
1 —cM

( n )bM(n

) 	 
 

and, following a. similar methodology with the expression for /.3m(n), Equation 4.78 

can be written as 

 

BM(
n

) = λ BM(n
-1) /1 — c M(

n )bM(n

) .   	(4.82)  

The algorithm is now complete. Given FM

(
n

-1) , 

BM (
n
-1)

,FM

(
n

-1) , and 

KM(n — 1), a computation is performed in the order of Equations 4.66, 4.67, 4.52, 

4.77, 4.54, and 4.59 in order to generate FM

(
n

) , BM

(

n), FM

(

n),  and KM

(

n) . 

As a final note on the derivation of the fast Kalman algorithm for decorrela.tion, 

it should he mentioned that. the variables y

(
n

-1) . ŷ

(
n

-1) , YM

(
n

-1) , 

Ŷ'M ( n) 

 

and so forth appearing in these equations are known. However, because of the 

asymmetry present in the augmented correlation matrix SM

(

n)  of Equation 4.38, it, 

will be necessary to store S(n) and update it at each iteration. With the method 

used to derive the recursive expression for Equation 4.5, a similar technique yields 

the following recursive expression for SM

(
n

) : 

 

SM (
n

) 

 = 

λSM (n — 1)+Ŷ'M(

n-1)y(n

-1) .                          (4.83)   

SM (
n

)  will then be used to update p(n) in Equation 4.67.  
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4.2.5 The Algorithm  

Let 

 

 

y(n  — 1) ŷ(n — 1)   - 	(n — 1) 
YM (

n

) = [           :    	] and Ŷ M
(

n

) = [        :                 

y (n  — M  — 1) 	 ŷ( n.  — M  — 1)  

Then the quantity 

n 

 

YM(
n

) 

= [ Σ λn-kYM
(

k)]-1 = YM(

n

)  

k=0 

can he determined recursively as follows: 

f M(n) = ŷ(n  — 1) + F'M(

n 

— 1)Ŷ

M

(

n 

— 1) 	 (4.84) 

FM(
n

) = FM(

n 

 — 1) — KM(

n 

— 1)fM(n) 	(4.85) 

SM(
n

) = λSM(n — 1) +ŶM(n-1)y(n — 1) 	(4.86) 

FM(
n

) = y (n — 1) — S'M(n)KM(n — 1) 	(4.87)  

FM(
n

) = λFM(n — 1)+ gM(n)f M(n) 	(4.88) 

F-1M(n)gM(n) 
 

 KM+1

(
n

) = [ KM(n — 1) + FM(n)F-1M (

n

)

gM(n) ] 

	

(4.89) 

 

Partition 

K

M+1

(
n

) as 

 

KM+1(

n

) ∆̳[ CM(n ) ]   

[ cM(n)   ]  .                             (4.90) 
 
	

 

Let 

bM(n) = ŷ(n — M — 1) + B'M(n — 1)Ŷ

M

(n

) 	 (4.91) BM (n) (n — 1) 

 — CM(

n

— 1)

CM(n

) BM

(n

) = 	(4.92) 
1 — cM

(n)

)bM(n) 

	

KM

(
n

) = 

CM (n) 

 — BM

(n

)cM(n) . 	(4.93) 

The tap weight vector, WM

(
n

) , used in the RLC algorithm can then he updated 

using the fast Kalman gain vector of Equation 4.93 according to 



ηM = x(n) - Ŷ' M

(

n)W
M

(

n

-1) 

 

WM

(

n
)  = W

M

(

n 
 — 1) + ηM(n)KM

(

n

) 

 

The initial conditions can be taken as 

KM

(0)=0

M

, 

FM

(0)=0

M

, 

SM

(0)=0

M

, 

BM

(0)=0

M

, 

WM

(0)=0

M

, and 

FM

(0) = δ > 0. 

4.2.6 Proof  

The algorithm of Equations 4.84 through 4.93 follows the derivations given in 

this section. Given 

FM

(

n 

 — 1), 

BM

(

n 

 — 1), 

FM

(

n 

 — 1), and 

KM

(

n 

 — 1), perform 

Equation 4.66 = 4.84 ±  4.85 to determine 

FM

(

n

). Then Equation 4.67 restores 

FM

(

n

)

, which, by the use of Equations 4.86, 4.87, and 4.84 can be written as Equation 

4.88. With 

F M

(

n

) 

 and .TAi (n.), 

FM

(

n

) 

 can be determined from Equation 4.52 = 

4.91 + 4.92. Finally, updating 

KM

(

n

) 

 by Equation 4.59 is carried out in Equation 

4.93, where it is again noted that 

BM

(

n

) 

 = 

BM

(

n

)B1l (n). 

4.2.7 Alternative Declaration of the Algorithm  

Given the algorithm of the previous section, it is possible to rewrite the algorithm 

into a form which can be condsidered as a type of Levinson-Durbin recursion. In 

fact, Equation 4.85 can be considered as the declaration of the forward prediction 

coefficients of a Levinson-Durbin recursion. Consequently, Equation 4.84 can be 

considered as the forward prediction error and Equation 4.91 as the backward 

prediction error of the same Levinson-Durbin-type recursion. All that is necessary 

is to generate an equation, of the same form as Equation 4.85, that will describe the 

backward prediction coefficients. 
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f M(n) = ŷ(n  — 1) + F'M(

n 

— 1) Ŷ'M(

n 

— 1) 
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To accomplish this, recall from Equation 4.50 that the forward prediction coeffi-

cients can he written in matrix form as  

[  π(n)       P'M(n) ]   [    1      ]            [    FM(n)  ]                      (4.94)  =     [  QM(n) 
 RM,M(n — 1) ]   [  FM(n)  ]             [     0M ]                                    	  

 

In a completely analogous development (as will be shown in subsequent sections). 

the backward prediction coefficients can be written in a similar form to that seen in 

Equation 4.94. Using the second equality for the augmented autocorrelation matrix 

in Equation 4.38, the backward prediction coefficients can be written in matrix form 

as follows: 

[  R'M,M (n ) 

Q
M (n ) ]   [    BM (n ) 

]       [  0M ( n)  ]                       
=                                                  (4.95) 
	

[Š'M (n ) π (n )   ]    [  1  ]     [  BM (n )  ] 

 

 

From Equation 4.95, the backward prediction coefficients can be defined as 

BM(n) =   - -  R-1M,M(n) 

Q

M

(n ) 

	

(4.96) 

  

A recursive expression for the Mx1-dimensional vector Om(n) of Equation 4.45 can 

be derived in a manner similar to that employed in the derivation of Equation 4.8. 

Therefore, 

QM

(n ) 

= 

λQM(n-1) 

+ ŷ(n - M - 1)YM

(n

). (4.97) 

 

Substituting Equations 4.28 and 4.97 into Equation 4.96, 

 

BM (n ) 

=   -   1/ λ  R-1M,M

(n 

 — 1) 

- KM (n )Ŷ'M (n )R-1M,M (n-1))QM(n

) =    BM (n — 1) 

-    1/ λ (λ + µM(n)) ŷ(n - M - 1)KM(n). KM(n) 

— K

M (n ) KM(n)Ŷ'M(n)BM(n-1) +  1/ λµM(n - M - 1)KM(n

) 

=  BM

(n 

— 1) — K M (

n

)[ŷ(

n 

- M - 1)  + ŶMBM

(n 

— 1)]  =  BM

(n 

— 1) — K M (

n

)[ŷ(

n 

- M - 1)  + B'M(

n 

— 1)ŶM

(n

)]  

where Equations 4.14 and 4.30 were used in the second equality. Using Equation 

4.91, B(n) can be written as 

BM(n ) 

 = BM

(n 

— 1) 

 — 

KM

(n )bM 

(n

)                                             (4.98)   
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This is the desired form for the equation for the backward prediction coefficients. 

With Equation 4.98 now established, it is possible to restate the algorithm given in 

the previous section. The revised algorithm is summarized below: 

fm(n) = ŷ(n — 1) + F'M (n — 1)ŶM (n — 1) 	 (4.99) 

bM (n) = ŷ(

n 

— M — 1) + KM (n  — 1)ŶM(n)  	(4.100) FM(n) 

 = 

FM(n 

 — 1) — KM

(n 

 — 1)fM 

(n

) 	 (4.101) 

FM(n) 

 = λS

M

(n — 1) + ŶM

(n — 1)

y

(n  — 1) 

	 (4.102) 

g

M

(n) = y(n 

— 1) 

 — S'M(n)KM(n — 1) 	(4.103) 

FM(n) 

 = λFM(n — 1) + 

g

M

(n) fM(n)                                                 (4.104) 

[ CM(n) / cM(n) 

]  = 

KM+1(n) = 

[ 

0 / KM(n - 1) ] + gM(n) / FM(n) 

[ 1 FM(n) ]      (4.105) 

KM(n) 

= 

CM(n) - cM(n)BM(n - 1) / 1 - cM(n)

bM(n)                                 (4.106) 

BM(n) 

= 

BM(n - 1) - KM(n)bM(n) (4.107) 

 

where, in the derivation of Equation 4.106, Equation 4.93 was used together with 

Equation 4.98. Thus, as can be seen by the equations of the previous two sections, 

the fast Kalman algorithm uses forward and backward predictors to update the 

Kalman gain vector as a new input decision ŷ(n  — 1) enters the equalizer and the 

oldest decision  ŷ(n  — M  — 1) is discarded. A count on the number of MADPI of 

the fast Kalman algorithm necessary to update the tap weight vector reveals that 

the fast Kalman for decorrelation requires approximately 10M  + 6 MADPI. This 

is a substantial savings over the O( M2 ) complexity of the RLC algorithm. In the 

subsequent discussions, the fast. Kalman algorithm for decorrelation will also be 

referred to as the FRLC (Fast Recursive Least Correlation) algorithm. The terms 

fast Kalman and FRLC will be used interchangeably to refer to the same algorithm. 
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4.3 The Fast Transversal Filter for Decorrelation  

In the previous section, it was shown that it is possible to decrease the complexity 

of the RLC algorithm while still maintaining its high rate of convergence. A simple 

inspection of the algorithm definition for the fast Kalman shows that the algorithm 

is mainly based on the a priori error formulation. Carayannis, et al. [5] and Cioffi 

and Kailath [7]  took the fast Kalman algorithm one step further and derived another 

member of this class of transversal filter-based fast algorithms, referred to as the fast 

transversal filter (FTF). This particular fast structure differs from the fast Kalman 

in. that it is based, primarily, on an a posteriori error formulation. Furthermore, 

the FTF makes better use of the relationships between the a priori and a posteriori 

errors. It is through exploitation of these relationships that the FTF algorithm is 

able to further reduce the complexity of the fast Kalman algorithm. The inherent 

similarity between the fast Kalman and FTF algorithms will become apparent in the 

derivation that. follows. 

In this section, as a. natural extension of the derivation of the fast Kalman 

algorithm with decorrelation, the decorrelation criterion will be applied to the 

fast transveral structure. It will be shown that the FTF for decorrelation offers 

a comparable reduction in complexity as compared with the FRLC. In one of the 

original derivations of the FTF algorithm, Cioffi and Kailath [7] used a geometrical 

approach to derive the FTF. However, for the following derivation of the FIT with 

decorrelation, an algebraic approach, similar to that presented in [5], will be used. 

4.3.1 Derivation of the Algorithm  

The key to the development of the FTF with decorrelation is the use of the so- 

called alternative Kalman gain vector. Multiplying the numerator and denominator 

of Equation 4.30 by the Kalman gain vector defined in Equation 4.30 can be 



α

M

(n) =  [   1    ]  

.                                                         (4.112) 

 

[   F M(n)   ] 
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written as 

K M(n ) = 1/λ R-1M,M(n - 1)Y M(n ) / 1 + 1/λµ M(n)                                           (4.108) 

 

Therefore, considering the above expression, let 

 

αM

(n) = 1 +

1/λµM(n ) 

= 1 +

1/λŶ'M(n )R-1M,M

(

n - 1)Y M(n ) .                             (4.109) 

               

Given the above definition and the definition of the Kalman gain vector of Equation 

4.108, the alternative Kalman gain vector for decorrelation, KM(n), is given as 

KM(n

) = α

M

(n

)K M(n ) = 1/λR-1M,M(n - 1)Y M(n) .                        (4.110) 

  

Equation 4.110 is similar in form to the alternative Kalman gain vector used by 

Proakis and Manolakis [37] and is similar to the form of an exponentially weighted 

version of the alternative Kalman gain vector used by Carayannis, et al. [5]. However, 

as should be noted, the difference in the forms lies in the fact that the alternative 

Kalman gain vector of Equation 4.110 is based on the decorrelation criterion, where 

that used in [37] and [5] is not. 

It will be useful to define the following scalar quantity, 

γM(n

) = 1/α

M

(n

) = 1-Ŷ'M(n )K M(n ) = λ/λ+µM(n) .                                            (4.111) 

 

  

It should be noted that if the derivation of the FTF for decorrelation followed 

the approach given by Haykin in [18], the alternative Kalman gain vector defined 

using 

γ M(n ) 

 in Equation 4.111 would be used instead of 

αM(n ) 

 in Equation 4.109. 

Although this derivation of the FTF with decorrelation will follow the approach used 

in [5], to some extent, the need for the quantity 

γM(n

) will become apparent in the 

following proof. 

The first step in the proof of the FTF will be to redefine the extended Kalman 

gain vector of Equation 4.105 in terms of the alternative Kalman gain vector and the 

a priori estimate of the forward prediction coefficients, FM  (n). Therefore, let 



Rewriting Equation 4.101 accordingly, gives 

aM(n

) = 

aM(n - 1) - [       0     ] fM(n)                                     (4.113) 

 
 

[ KM(n - 1) 

] 

Substituting Equation 4.113 into Equation 4.105 and collecting terms: 

KM+1(n

) = 

[     0       ]    +   gM(n )/F M(n )a M(n ) [ KM(n - 1) ] 

= 

[     0       ]   +  gM(n)/FM(n)aM(n - 1) -  gM(n)/ f M(n) aM(n - 1) [     0      ]                                                                                      [ KM(n - 1) ]                                                                [KM(n - 1) 

] 

[1 -  gM(n) / f M(n) / FM(n) ]  =  [     0       ]   +  gM(n) /FM(n) aM(n - 1) -  gM(n) / f M(n) aM(n - 1) [            [ KM(n - 1) 

]  

λFM(n - 1) / FM(n) = αM(n - 1) / αM+1(n) .                (4.114) Consequently, in order to write Equation 4.114 in terms of the alternative Kalman gain vector, KM(n ), it will be necessary to show that [1 -  gM(n) / f M(n) / FM(n) ]  =  λFM(n - 1) / FM(n) = αM(n - 1) / αM+1(n) .                (4.115) 

Thus, using Equation 4.105 and the first expression for ŶM+1 in Equation 

4.36 as   

γM+1(n) = 1 - Ŷ'M+1(n )KM+1(n) = 1 - Ŷ'M+1(n ) {  [     0 ]  +   gM(n ) / FM(n) [     1 ]   }                                                                                      {  [ KM(n - 1) ]                          [  FM(n) ]   } =  1 - Ŷ'M+1(n - 1) KM(n - 1)                                                               (4.116) - g M( n) /FM(n) (ŷ - 1) + Ŷ'M(n - 1)F M( n)) .                                   (4.117) 

Define the a posteriori forward prediction error for decorrelation as 

fM(n , n) = ŷ(n - 1) + Ŷ'M(n - 1)F M( n)                                                      (4.118) 

where, it should be noted, fm(n, n) is a scalar. Comparing Equation 4.118 with 

Equation 4.99, to determine the basic relationship between fm(n, n) and 

fM(n), 

 



substitute Equation 4.101 for FM (n) in Equation 4.118: 

f M (n, n) =  ŷ (n - 1) + Ŷ' M (n - 1)F M(n) - K M (n - 1) f M (n) 

 

=  ŷ (n - 1) + Ŷ' M (n - 1)F M(n - 1) - f M (n)Ŷ' M (n - 1)K M (n - 1) f M (n) 

 

= f M(n

[1 

- Ŷ'M(n - 1)KM(n - 1)] 

 

= 

γ M(n - 1) fM(n ) = fM(n ) / αM(n -1) 	(4.119) 
 

Using Equations 4.111, 4.118, and 4.119 in Equation 4.117 yields 

γ M+1(n )       =  γ M(n -1) - gM(n )f M(n ,n)/FM(n ) = γ(n -1) [1 - gM(n )f M(n ,n)/ FM(n)]                                            (4.120) 

Thus, according to Equations 4.111 and 4.120 

1 -  gM(n )f M(n )/FM(n )  =  γ M+1(n )/γ M(n -1) = αM(n -1)/αM+1(n )  

Furthermore, substituting Equation 4.104 into the left-hand side (LHS) of Equation 

4.121,  

1 -  gM(n )f M(n )/FM(n )  = FM(n ) - gM(n ) f M(n )/FM(n )   = λFM(n -1) + gM(n ) f M(n ) - gM(n ) f M(n )/FM(n ) = λ FM(n -1) /F M(n)                                                     (4.122) 

 

Thus, Equation 4.115 is proved. Next, substitute the results of Equation 4.121 into 

Equation 4.114 and then premultiply both sides of Equation 4.114 by α M+1(n) to 

get 

 

αM+1(n )KM+1(n ) =  [         0           ]     +   gM(n )αM+1(n )/FM(n )aM(n-1)  . 

 

[ α (n-1)K M (n-1)  ]    

 

Noting from Equation 4.115 that 

αM+1(n )FM(n ) = αM(n -1)/λ FM(n-1)                                               (4.123) 
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and using the definition of Equation 4.110, the extended fast Kalman gain vector of 

Equation 4.105 can be rewritten in terms of the FTF alternative Kalman gain vector 

as 

KM+1(n ) 

= 

[         0           ]     +  gM(n )αM(n

-1)/λFM(n-1)    [       1         ]        (4.124) 

[       K M (n-1)    ]   [   FM(n-1)     ] where KM+l (n) can be partitioned as KM+1(n ) 

= [   CM(n) ]      .                                                           (4.125) 

[     cM (n) ]   

 

At this point, to proceed with the proof it will be necessary to derive the extended 

Kalman gain vector of Equation 4.105 in terms of the backward prediction coefficients 

of Equation 4.107. To do this, a process similar to that followed for the derivation of 

the fast Kalman gain vector, KM(n), will be used, but now reformulated in terms of 

BM(12) and not FM(n). Therefore, in lieu of Equations 4.47, 4.48, and 4.49, it can 

be seen that it will be necessary to modify 

[  KM(n) ]  

[    0     ] 

 

so that 

[             0M (n)            ]  [    β(n) - y(n - M - 1)    ] 

 

 
 

 

on the RHS of Equation 4.47 is eliminated. To accomplish this, it will be assumed 

that an M x 1 vector BM(n) is known, such that 

R(n)     [ βM(n

) ]    =   [ 0M(n)  ]       (4.126) 

[      1        ] [     βM(n)    ]  

 
 

where, it should be noted, B m  (n) is a scalar. Consequently, using the above 

expression and a method similar to that shown in Appendix B, 

R(n ) [  BM(n) ]   BM-1(n ) [β(n) - y(n 

- M - 1) =  [ 0M (4.127) 

[    1     ] [β(n) - y(n - M - 1)] 

 
 

Therefore, with a method similar to that expressed in Appendix C, using the 

following definition, 

	

 



R ( n )K ( n ) 

 = Ῡ (n)                                      (4.129)   

72 

K(n ) 

= 

KM+1(n ) ∆̳ [ KM(n ) - BM(n )BM-1(n )[β(n ) - y(n - M - 1)  ]                                         [    -BM-1(n )[β(n

) - y(n) - (n - M - 1)          ]                     (4.128) 

 

with Equations 4.47 and 4.127 and the second expression for R( n) in Equation 

4.38, it can be shown that  

where 

K ( n ) 

 can be partitioned as in Equation 4.54. 

The determination of the time update recursion for 

BM

(n) will be done by 

means of induction. The time-update equation for 

BM

(n) 

was previously given in 

Equation 4.107. Therefore, assume that the vector 

BM

(n 

 — 1) is given such that 

R( n ) 

[ BM(n — 1)  ]   =    [ 	

BM ] .                         (4.130) 

 
[         1           ]         [ 	

BM(n - 1) ] 

 

Therefore;  together with Equations 4.35, 4.36, and 4.62, 

R ( n ) 

[ B

M

(n — 1) 

]   =    [  λRM(n - 1) 

+ Ῡ (n)Ŷ' (n)

]   [  B

M

(n - 1) 

]                                                                                              [         1           ]                                                           [ 	1        ] 

=  λ [       0M ]    [    BM(n - 1) ]             +     [ YM( n

) ]    (ŷ (n - M - 1) +  Ŷ'M BM(n - 1))                             (4.131) 

[  y(n - M - 1)  ] 

 
	  

 

where, from Equation 4.100, 

b

M

(n

) = ŷ(n — M — 1) 

+ B

M

(n 

— 1)Ŷ'

M

(n

). Postmul-

tiplying both sides of Equation 4.47 by 

b

M

(n

) yields 

R ( n ) 

[ KM(

n

)     ]   =   bM( n)   = [  YM( n

)  ]  bM(n)  . (4.132) 
[        0        ]                           [   β(n) ]      

 
 

 

Consequently, subtracting Equation 4.132 from both sides of Equation 4.131 
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R(n ) 

= 

[   BM(n - 1) - KM(n )bM(n )  ] 

= 

R(n )   [ BM(n - 1)  ]    -   [   KM(n )   ]    bM(n )     ] [     1    )   ]        [    0        ]                ] =  λ     [    0M                ]  + [ Y(n )        ]  bM(n )      [ bM(n )  1) ] [ y(n - M - 1)  ]               -    [       YM        ]   bM(n )                                        [       β(n )   ] =  λ     [     0M                ]                                              [ λBM(n - 1) + (y(n - M - 1) - β(n ))bM(n)   ]   .   (4.1

33) 

Comparing Equation 4.133 with Equation 4.130, the time update expression for 

BM(n) is   BM(n )  =  λBM(n - 1) + (y(n - M - 1) - β(n ))bM(n )                            (4.134) 

where 

β(n) 

 is given by Equation 4.48. For simplicity, let 

hM( n )  = y(n - M - 1) - β( n )  .                                                   (4.135) 

Therefore, with the previously defined quantities in mind, the extended Kalman gain 

vector defined by Equation 4.128 can be written as 

K

( n) = ∆ ̳ [ KM( n) ]    +    hM(n )/BM(n )    [ BM(n ) ]                  (4.136)                                         [     0   ] [   1   ]          

Now that the extended Kalman gain vector has been defined in terms of the 

backward prediction coefficients, it will be necessary to formulate the extended alter-

native Kalman gain vector using Equation 4.136. To do this, let 

bM(n )  =  [     BM( n) ]                                                                         [       1         ]    .                                                      (4.137)    

Rewriting Equation 4.107 accordingly, gives 

bM(n )  =  bM(n - 1) -  [     KM( n) ]                                                                                      [       0         ]     bM(n) .                                 (4.138)   

 



Substituting Equation 4.138 into Equation 4.136 and collecting terms: 

KM+1(n) =  [ K(n - 1)  ] + hM (n)/B M (n) b M (n - 1)  hM (n)b M (n) / B M (n)  [ K M (n)   ]                         [      0      ] [      0    ]     = [1 -  hM(n )bM(n ) / BM(n ) ] [ KM(n ) ] + hM(n )/BM(n )bM(n - 1) .                 (4.139) 

[    0    ]                          

Therefore, in order to write Equation 4.139 in terms of the alternative gain vector, 
KM+1(n

) , it will be necessary to show that 
= [1 -  hM(n )bM(n ) / BM(n ) ]  ≡  λBM(n - 1)/BM(n ) ≡ αM(n )/αM+1(n)                (4.140) 

Thus, using Equation 4.136 and the second expression for 

Ŷ

M+1(n) in Equation 4.36 

as follows 

γM+1(n ) =  1 - Ŷ'M+1(n )KM+1(n )                                                                                                                             =  1 - Ŷ'M+1(n ) { [ KM(n ) ]   +  hM(n )/BM(n )   [  BM(n )  ]  }                                                                                                                 { [   0      ]                        [    1      ]  }                                                                      = 1 - Ŷ'M(n )KM(n)                                                                 (4.141) - hM(n )/BM(n ) (ŷ(n - M - 1) + Ŷ'M(n )BM(n))  .                              (4.142) 

Define the a posteriori backward prediction error for decorrelation as 

bm(n ,n) = ŷ(n - M - 1) + Ŷ'M(n )BM(n)                                                      (4.143) 

where, it should be noted, bm (n, n) is a. scalar. Comparing Equation 4.143 wit

h Equation 4.100, to determine the basic relationship between bm(n,n) and 

bM(n) 

 

substitute Equation 4.107 for BM(n) in Equation 4.143: 

bm(n ,n)   =    ŷ(n - M - 1) + Ŷ'M(n )BM(n - 1) - KM(n )bM(n )] =    ŷ(n - M - 1) + Ŷ'M(n )BM(n - 1) - bM(n )Ŷ'M(n )KM(n ) =   bM(n ) [1 - Ŷ'M(n )KM(n )] =   γM(n )bM(n )  =  bM(n

)/αM(n)                                                               (4.144) 

 



Using Equations 4.111, 4.143, and 4.144 in Equation 4.142 yields 

γM+1(n) 

= 

γM (n) - hM (n)/bM (n,n) / BM (n)   

= 

γ M (n) [ 1 - hM (n)/b M (n,n) / BM (n) ]  .                                     

(4.145) 

Thus, according to Equations 4.111 and 4.145 1 - hM(n )/bM(n ) / BM(n ) =  BM(n ) - hM(n )/bM(n ) / BM(n ) =  λBM(n - 1) + hM(n )/bM(n ) - hM(n )bM(n ) / BM(n ) =  λBM(n - 1) / BM(n ) 

and using the definition of Equation 4.110, the extended fast Kalman gain vector of 

Equation 4.136 can be rewritten in terms of the FTF alternative Kalman gain vector 

as 

KM+1(n ) 

= 

[KM(n )]   +  hM(n )αM(n )/λBM(n - 1)  [ BM( n - 1) ]                                                                                       [   0    ]                                    [     1      ]                        (4.147) 
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All that remains in the proof of the FTF with decorrelation is to write 

Equations 4.19, 4.101, 4.106, and 4.107 in terms of Km (n) and derive a time-update 

recursion for the scalar am(n). First., substitution of Equation 4.119 into Equation 

4.101 and using the definition of Equation 4110, the forward prediction coefficients 

can be written in terms of the alternative Kalman gain vector as 
FM (n) 

= FM(n — 1) — 
KM(n 

— 1) fM(n,n) 	(4.148) 

Next, substitution of Equation 4.144 into Equation 4.107 and using the definition of 

Equation 4.110, the backward prediction coefficients can be written as 

BM (n) 

= BM(n — 1) — 

KM(n

)bM(n,n) . 	(4.149) 

To write the tap weight update recursion of Equation 4.19, it will first be necessary 

to define the a. posteriori estimation error for decorrelation as 

	ηM(n,n) 

= x(n) 

— 

ŶM(n

)

WM(n) 	(4.1.50) 

where, again, 7) M  (n, n) is a scalar. Comparing Equation 4.150 with Equation 4.18, 

to determine the basic relationship between 71M (n, n) and 7)M  (n) substitute Equation 

4.19 for W M (n) in Equation 4.150: 

	η

M

(n,n) 

= x

(n

) 

— 

ŶM (n

) 

[WM(n 

— 1) + ηM(n )

KM (n

)] 

	= 

x(n

) 

— 

ŶM (n

)

WM(n 

— 1) - ηM(n )

Ŷ'M (n

)

KM (n

)] 

 =  

ηM(n) [1 — 

Ŷ'M(n

)

KM (n

)]   

=   

γM(n )ηM(n

) = ηM(n )/αM(n

) 	 (4.151) 

Consequently, substituting Equation 4.151 into Equation 4.19 and using the 

definition of Equation 4.110, the tap weight recursion can he written as 

W

M (n) 

 = W

M (n 

— 1) + 

ηM (n

,n)KM(n) .                                      (4.152) 
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A comparison of Equations 4.124 and 4.147 with the partitioning of Equation 

4.125 reveals the following useful identity: 

c M (n) 

= 

h M

(n)

α M (n)/λB M (n 

 — 1)                                             

(4.153) 

where 

cM (n

) is a scalar. Equation 4.153 will be used to formulate the necessary time-

update recursion for KM

(n)

. An inspection of Equation 4.147 with the partitioning 

of Equation 4.125 reveals that CM(n) can be written as 

C M (n) 

= 

K M

(n) + h

M

(n)

α M (n)/λB M (n 

 — 

1) B

M

(n)                                 
(4.154) 

The final step in the derivation of the FTF with decorrelation is to determine 

the necessary time-update recursion for 

CM (n

) To do so, note that using the 

definition of Equation 4.110 in the definition of Equation 4.109, α M+1(n) can be 

written as 

α M+1(n) = 1 + Ŷ M+1

(n)
K M+1

(n)                                                    
(4.155) 

Therefore, using the first expression for 

Ŷ

M+1

(n) 

 in Equation 4.36 and using 

Equation 4.124 for KM+1

(n)

, Equation 4.155 can be written as 

αM+1(n)   =  =  1 + [ŷ (n)Ŷ' M (n 

 — 

1)]   {[        0      ]     +    g M (n)α M (n 

 — 

1)/λF M (n 

 — 1) [     1     ]} 
{[K M (n 

 — 

1)]                                                {[FM(n 

 - 1)]}    

=  1 + Ŷ'M (n 

 — 

1)K M (n 

 — 1) 
+  gM (n)α M (n 

 — 

1)/λF M (n 

 — 1)   (ŷ
(n) + Ŷ' M (n 

 — 1) 
=  α M (n 

 — 

1) + g M (n)α M (n 

 — 

1)/λF M (n 

 — 

1) f

M (n

) (4.156) 
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where Equation 4.99 was used in the last line. To determine the current realization 

of am (n), using the second expression for Ŷ' M+1  in Equation 4.36, and Equation 

4.147 for K M+1 (n), Equation 4.155 can he written as 

αM+1

(n) =   1  +  [Ŷ'

M

(n)

ŷ (n 

 — 

M)] {[ K M

(n) ]  + h

M

(n)

α M (n)/λB M (n 

 — 

1)  [ B M (n 

 — 1) ]} 

[    0    ]                                  [      1       ]} 

=    1  +  Ŷ'

M

(n)K

M

(n) + h

M

(n)

α M (n)/λB M (n 

 — 1) (ŷ
(n 

 — 

M) + Ŷ' M

(n)

B M (n 

 — 1)) 

=  α

M

(n) + h

M

(n)

α M (n)/λB M (n 

 — 

1)b

M

(n) 
(4.157) 

where Equation 4.100 was used in the last line. Substituting the identity of Equation 

4.153 and isolating 

αM (n) 

 on the RHS of Equation 4.157, the desired time-update 

recursion for α

M (n

) is 

α M (n) = α M+1(n) - c M (n

)b

M

(n) 
.                                             (4.158) 

Therefore, 

α

M+1(

n

)  must first be calculated according to Equation 4.156 and then α

(n

)  can be updated using Equation 4.158. 

4.3.2 The Algorithm 

The algorithm which defines the fast transversal filter with decorrelation is now 

complete. The order which constitutes the fast transversal filter with &correlation 

is given below: 

f M (n) = ŷ (n 

 — 

1) + F' M (n 

 — 

1)Ŷ M (n 

 — 1)                                                      

(4.159) 

f M (n,n) = f M (n)/α M (n 

 — 1)                                                                           

(4.160) 

F' M (n) = F M (n 

 — 

1) - K M (n 

 — 

1) f M (n,n

).                                                        (4.161) 

S M (n) = λS M (n 

 — 

1) - K M (n 

 — 

1) f M (n,n

).                                                        (4.162) 

Š M (n) = S M (n)/α M (n 

 — 1)                                                                             

(4.163) 

g M (n) = y(n 

 — 

1) - S M (n)K M (n 

 — 1)                                                               

(4.164) 
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FM(n ) = λ FM(n 

— 

1) + gM(n ) fM( n)                                               (4.165) 

KM+1(n) = [       0      ]  +  gM(n)

αM(n )/λ FM(n — 1) [       1      ]                  (4.166) [ KM(n 

— 

1)  ] [ FM(n 

— 1) ] 

Partition K M+1

(n

) according to 

KM+1(

n
) ≡  [    CM(n) ]   .                                    (4.167) 

[ cM(n )       ] 

Let 

FM(n) 

= 

KM(n) 

+ hM(n)

αM(n )/λBM(n 

— 

1) BM(n — 1) (4.168) αM+1(n ) = αM(n 

— 

1) + gM(n)αM(n )/λFM(n 

— 

1) fM(n)                                    (4.169) 

bM(n) 

= ŷ(n - M - 1) + B'M(n 

— 

1)ŶM(n

) (4.170) 

α M(n ) = αM+1(n ) - cM(n)

b M(n)                                                      (4.171) bM(n,n) =   bM(n)
/α M(n)                                                            (4.172) 

BM(n) 

= BM(n 

— 

1) - KM(n

)
b M(n,n)                                                 (4.173) ηM(n) = x(n) - Y'M(n)

W'M(n — 1)                                                     (4.174) 

ηM(n,n) = ηM(n)
/α M(n)                                                                     (4.175) 

WM(n) 

= WM(n 

— 

1) + ηM(n,n

)
KM(n) .                                             (4.176) 

To initialize the FTF for decorrelation algorithm, set all vectors and quantities to 

zero, except let F

M

(

-1

) 

= δ > 0 and αM (-1)=1 [37]. A count on the number of 

MADPI of the FTF algorithm necessary to update the tap weight vector reveals that 

the FTF requires approximately 10M  +16 MADPI. The modest increase in MADPI 

over the fast Kalman algorithm is a direct result of the asymmetry present in the 
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augmented correlation matrix of Equation 4.38. However, this is still a substantial 

savings over the O (M2 ) complexity of the RLC algorithm. 

Several remarks need to he made regarding the algorithm of Equations 4.159 

through 4.176. First, a simple inspection of Equation 4.166 reveals that there is no 

longer any coupling between the computation of the extended Kalman gain vector 

and the calculation of the forward prediction coefficients. This comes as a result of 

the fact that 

FM (

n - 1) and not F

M

(n) appears in Equation 4_166. 

Finally, an interesting result becomes apparent when the expressions defining 

the relationships between the a priori and a posteriori errors are compared. A 

remarkable consequence of Equations 9.160, 4.172, and 4.175 (comparing them to 

Equations 4.118, 4.143, and 4.150, respectively) is that the a. posteriori errors at 

time a can be computed before the filter parameters producing them, i.e., before the 

computation of 

 

FM (

n) , B

M (

n), and W

M (

n), respectively [5]. It is for this reason 

that α

M (

n) is referred to in the literature a.s a. conversion factor [18]. In either 

its regular or delayed form, am (a) converts the a priori forward, backward, and 

estimation errors into the corresponding a posteriori errors. 

4.4 Simulation Results for the Fast Algorithms  

In this section, the rate of convergence of the fast Kalman (FRLC) algorithm, given 

by Equations 4.99 through 4.107, and the FTF, given by Equations 4.159 through 

4.176, will be compared to each other and to the Kalman (R.LC) algorithm given in 

the first section. Both the blind, decorrelation fast Kalman and FTF in a decision 

feedback configuration were simulated for two channels representing pure, heavy 

amplitude distortion. The model of the DFE used in these simulations is shown in 

Figure 4.2. 
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Figure 4.2  Decision Feedback Equalizer Used for Simulations. 

For each simulation of each of the respective structures, a nine-tap equalizer 

with a weighting factor of λ=0.999 was used. The particular channel sampled impulse 

response used in all of the simulations was the raised-cosine pulse, defined by 

h(k) = { 1/2√h'h  [1 + cos (2π/W(k — 3)],        k = 1, 2, 3, 4, 5,                 (4.177) 

{   0                                               otherwise         

  

and h = h1 + h2 + h3 + h4 + h4 + h5]' where W in Equation 4.177 was set equal to either 3.1 

or 3.6 to provide for an eigenvalue ratio of 11 or 49, respectively. Note that the 

first cursor, h0, is chosen to be 1 so that the channel satisfies the criterion for 

intersymbol interference. The channel's impulse response is normalized such that 

h2

1 

+ h22 + h23 + h24 + h24 + h25 = 1 for all values of the bandwidth parameter W. Additive 

white Gaussian noise of zero-mean and variance 0.001 was added to the output of the 

channel to form the received waveform x(n). The channel model is similar to the one 

used by Sa.torius and Alexander in [401, where the normalization was added by Axford 

in [11. To provide a bound on which to judge the convergence rate performance of 

these rapidly converging algorithms, the decorrelation DFE presented in Chapter 

2 was also implemented. The performance of the fast Kalman and decorrelation 

equalizers for W=3.1 is shown in the learning curve of Figure 4.3.  
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Figure 4.3  MSE of the Fast Kalman DFE with W=3.1. 

The performance of the fast transversal filter-based and decorrelation equalizers 

for W=3.1 is shown in the learning curve of Figure 4.4. In these figures, the 

estimate of the residual ISI power is obtained by passing the sequence of the squared 

error (I(n) — ŷ(n — 1))2  through a smoothing filter whose transfer function is given 

by 0.05/(1 — 0.95z-1 ) [20]. This particular definition of the MSE is the same as used 

by Satorius and Pack [41], Satorius and Alexander [40], and Haykin [18]. Each curve 

was obtained by the Monte-Carlo averaging of the MSE over 100 independent trials. 

In these simulations, the length of the delay of the element, z-k , of Figure 4.2 was 

chosen to produce the smallest MSE for the algorithms being considered [40]. Unless 

specified, this delay was chosen to be z-1 . 

As mentioned previously, the speed of convergence of the fast, Kalman and 

FTF algorithms will be compared with the Kalman-based (RLC) algorithm given in 

the first section of this chapter. The reason for this comparison is that the Kalman 

algorithm, as shown by Godard [14] and modified in [24], has been recognized to be 

the fastest known equalizer adaption algorithm [38]. The Kalman algorithm is an  
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Figure 4.4  MSE of the FTF DFE with W=3.1. 

ideal self-orthogonalizing algorithm in that the received equalizer input. signals are 

used to build up the inverse of the input correlation matrix which is applied to the 

coefficient adjustment process [12]. Consequently, the algorithm of Equations 4.20 

through 4.26 was also implemented using the channel given by Equation 4.177. The 

learning curve of the mean squared error for the Kalman (RLC) algorithm (compared 

with the decorrelation DFE) is shown in Figure 4.5. 

By comparing Figures 4.3, 4.4, and 4.5, it can be seen that the fast Kalman and 

FTF algorithms offers virtually identical performance to the Kalman algorithm—all 

algorithms converge in approximately 100 iterations. This is a substantial increase 

over the convergence rate of the corresponding decorrelation DFE. The intimate 

relationship between the convergence rates of the three rapidly converging algorithms 

is more readily apparent when the three separate curves are overlayed on one another, 

as done in Figure 4.6. 	It should he emphasized that the fast Kalman for decor- 

relation and FTF for decorrelation algorithms are mathematically equivalent to the 

RLC algorithm, resulting in their comparable performance. 
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Figure 4.5 MSE of the RLC Algorithm with W=3.1. 

The learning curves of the fast. Kalman- and FTF-based equalizers (using the 

convergence rate of the decorrelation DFE as a reference) with W=3.6 in Equation 

4.177 are shown in Figures 4.7 and 4.8, respectively. Again, to compare the 

performance of the fast Kalman and FTF algorithms, the Kalman (RIC) algorithm 

is implemented with W=3.6, as shown in Figure 4.9. By comparing Figures 4.7 and 

4.8 with Figure 4.9, it can be seen that the fast Kalman and FTF algorithms again 

offer virtually identical performance to the RLC algorithm, offering a substantial 

increase in performance as compared with the decorrelation DFE. As had been done 

previously, this conclusion becomes more readily apparent when the three separate 

curves are overlayed on one another, as done in Figure 4.10. It should be noted 

that the comparable performance characteristics of the FRLC and FTF algorithms 

to the RLC algorithm are a. direct result of the mathematical equivalence of the three 

algorithms. 

One final remark concerning the learning curves of Figures 4.6 and 4.10 is 

necessary. A comparison of the two curves reveals that the convergence rate of the 



85 

Figure 4.6  Performance Comparison of the FRLC, FTF, and RLC Algorithms 
with W=3.1. 

fast Kalman (FRLC), PTF, and Kalman (RLC) algorithms are reasonably insensitive ive 

to the eigenvalue spread of the channel. This agrees well with theory. Since all three 

algorithms are types of self-orthogonalizing equalizers, the convergence rates of the 

respective equalizers do not depend on the eigenvalue spread of the channel [18]. 

4.5 Numerical Properties of the Fast Kalman and FTF  Algorithms  

As mentioned throughout this chapter, the fast Kalman and FTF algorithms offer the 

advantage of rapid convergence with a substantial decrease in the overall complexity, 

compared with the RLC algorithm. However, a disadvantage to the fast Kalman 

and FTF structures is that they have a tendency to become unstable in finite-

precision environments and have exhibited numerical instability (25, 8J. To overcome 

these problems, several remedies have been proposed which are applicable to the 
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Figure 4.7  MSE of the Fast Kalman DFE with W=3.6.  

decorrelation-based implementations of the algorithms presented in this chapter. 

Two of the most widely used solutions will be discussed. 

The simplest of the procedures is a periodic reinitialization of the respective 

algorithms [25, 9]. Through experimentation, it has been shown [25] that a certain 

quantity derived for the fast Kalman and FTF algorithms goes negative just before 

the algorithms diverge. Let 

ζ

M

(n) = αm (n)/ α M+1 (n)                                                   (4.178) 

 

which is merely a redeclaration of Equation 4.140. It has been shown that ( 1(n) 

is the ratio of two non-negative quantities, and, therefore, is itself a non-negative 

quantity [25]. For the ideal case of infinite precision, 0 ≤ ζ

M

(n) 

≤  1. A violation 

on this hound of the value of 

ζ M

(n) 

 is a direct result of finite-precision effects. Due 

to the accumulation of finite-precision errors, this quantity becomes negative just 

before divergence occurs. Therefore, 

ζ M

(n) 

 has been termed the rescue variable [25]. 
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Using Equation 4.140, Equation 4.178 can be written as 

ζM(n) = λBM(n - 1) /BM(n) 

.                                (4.179) 

 

This will be considered the rescue variable pertaining to the fast. Kalman algorithm 

for decorrelation. For the FTF, substitution of the identity of Equation 4.153 into 

Equation 4.140 yields 
ζ M

(N) = 1 - cM (n)bM (n)/αM+1 (n)  . (4.1

80) 

 

 

Equation 4.180 will be the corresponding rescue variable for the FTF algorithm for 

decorrelation. 

When either of the rescue variables becomes negative, the algorithm must be 

restarted. However, this now poses a. problem. The original fast. Kalman and FTF 

algorithms were derived for what is termed the prewindowed data case. In other 

words, the relevant input data sequences were considered zero for n  < 0. If and 

when these algorithms are restarted, this condition is no longer true. Consequently, 

the algorithms must be modified for the unwindowed or covariance data. case. In 

Appendix D, the covariance fast Kalman algorithm for decorrelation (CFRLC) has 

been derived. The algorithm consists of a slight modification to the fast Kalman 

algorithm of Equations 4.99 through 4.107 and is shown to reduce to the actual 

fast Kalman algorithm as n → ∞ . A corresponding covariance FTF algorithm is 

not necessary, since an elaborate initialization scheme, derived in [18] and [7], can be 

used in the case of unwindowed data.. The initialization scheme of [18] can be directly 

applied to the FTF for decorrelation derived in this chapter. The interested reader 

is referred to either [18] or [7] for details on the initialization. However, it should be 

noted that a derivation of a corresponding covariance FTF for decorrelation can be 

made by following the procedure as expressed in [22]. The proof in [22] is similar to 

that presented in this work, and the appropriate extensions can be readily made. 

Therefore, if, at time n  =  n0, the quantity ζM

(n

) , of Equations 4.179 and 4.180, 

respectively, is observed going negative, to restart the two fast algorithms of this 
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chapter the following procedure must be performed. First, save the current. estimate 

of the tap weight vector, WM ( n0), as its initial condition. Then, allow another equal-

ization algorithm to perform the adaptive process while reinitialization is occurring. 

Following the conventional approach, the decorrelation DFE presented in Chapter 2 

could be used to update the tap weights as reinitialization is occurring. Note that 

since the reinitialization process lasts for only a short time (approximately M  to 1.5M  

iterations), virtually no degradation in the performance of the fast algorithms has 

been found [7]. Reinitialize all other relevant quantities in the respective algorithms. 

For the fast Kalman algorithm, the covariance structure will he used after the reini-

tialization process is complete. According to Appendix D, this will require the use of 

unwindowed data, so the appropriate non-zero input vectors, 

YM

(

n0

) and 

ŶM

(

n0

) , 

must also be stored. For the FTF, the initialization procedure as outlined in [18] is 

to be followed. After completion of the procedure, transfer adaptive control back to 

the CFRLC or FTF algorithms and proceed with normal operation. 

As remarked earlier, this is the simplest of the procedures to deal with 

accumulated finite-precision errors. Another approach is to use the so-called 

normalized. or stabilized versions of the respective algorithms (see [3], [8], and 

[43]). In summary, these normalized/stabilized algorithms incorporate square-roots, 

error feedback, and inherent redundancies in order to limit any effects of a finite 

word-length environment. However, the disadvantage to these algorithms is in the 

dramatic increase in complexity that they incur. In some cases, this can result in 

a two- to three-fold increase in MADPI over the original fast Kalman and FTF 

algorithms [43]. 
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Figure 4.8  MSE of the FTF DFE with W=3.6. 

Figure 4.9  MSE of the RLC Algorithm with W=3.6. 
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Figure 4.10  Performance Comparison of the FRLC, FTF, and RLC Algorithms 
with W=3.6. 



CHAPTER 5 

LATTICE STRUCTURES WITH DECORRELATION  

The fast, transversal-based equalizers of Chapter 4 were shown to exhibit several 

advantageous properties, including low computational complexity and high rate 

of convergence. However, as was discussed, these algorithms can behave catas-

trophically in environments governed by a finite word length. Several remedies to 

overcome these difficulties were proposed. Another approach to solving the finite-

precision performance problem is to use an alternative structure for the decorre-

lation algorithm. Lattice-based structures offer many preferable properties, among 

them fast convergence rates and the modularity inherent in their implementation. 

However, the property that is of the most interest is that of their resistance to 

the accumulated effects of quantization errors in a finite-precision environment. 

Consequently, in this chapter, the decorrelation algorithm will be applied to several 

different formulations of the lattice structure. 

There are many different implementational forms of the basic lattice filter 

structure, including both normalized and non-normalized, a priori and a posteriori, 

and error-feedback realizations (see [11], [26] and [37], for example). In this chapter, 

the conventional recursive least-squares lattice, originally developed by Satorius and 

Pack [41], and the gradient lattice algorithm, originally developed by Satorius and 

Alexander [40], will be modified to incorporate the decorrelation algorithm. Both 

structures will be implemented in a decision feedback configuration. As will be 

discussed, the main structural difference between the RLS and gradient lattices is in 

the type of computation required of the respective reflection coefficients. 

91 
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5.1 Recursive Least-Squares Lattice-Ladder with Decorrelation  

It has been shown extensively in the literature that it is possible to derive an alter-

native solution to the direct-form RLS algorithm by incorporating a lattice filter 

structure [41, 37]. The derivation of the lattice structure is still based on the 

minimization of the exponentially weighted sum of the output squared error, which 

results in a form that is mathematically equivalent to the direct-form RLS [37]. It 

is this relation to the direct-form RLS from which the RLS lattice inherits its fast 

convergence rate [18]. Although the RLS lattice does maintain this mathematical 

equivalence, the structure itself is no longer based on a transversal filter. 

Unlike the RLC, FRLC, and FTF for decorrelation, derivation of the least-

squares lattice based on the decorrelation criterion is not possible, at least not in any 

conventional sense. As mentioned in Chapter 4, the asymmetry of the decorrelation-

based augmented cross-correlation matrix, R(n ), of Equation 4.38 prevents the appli-

cation of the expression for the inverse of a square matrix, which is itself comprised 

of square matrices on its diagonal. The invertibility of this matrix is a necessary 

component to the derivation of the order-update recursions which define the RLS 

lattice [37, 18]. Consequently, because the RLS lattice formulated in this section will 

not be derived based on the decorrelation algorithm, the mathematical equivalence 

between the RLC and the RLS lattice for decorrelation will be lost. A direct result 

of this will be the decrease in the rate of convergence of the decorrelation lattice, 

compared with the conventional RLS lattice and its relation to the direct-form RLS. 

The RLS lattice-ladder equalizer has many desirable properties which make 

it ideal for adaptive equalization. As discussed, these include its convergence rate, 

order-recursive nature, and its modest computational complexity (compared with 

the direct-form RLS). Therefore, it is desirable to formulate the RLS lattice in terms 

of the decorrelation algorithm. Following the methodology expressed in [1], it is 

possible to retain the existing RLS lattice structure and incorporate the decorrelation 
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criterion to update the tap weights. The modified algorithm follows the form of the 

RLS lattice as presented by Satorius and Pack in [41], with the explicit formulation 

based on that presented in [33]. Since the RLS lattice will not be derived based on 

the decorrelation criterion, the lengthy proof which comprises the derivation of the 

RLS lattice structure is unnecessary, and will not be presented in this work. The 

interested reader is referred to [37], [18], or [33] for the complete derivation. 

The RLS lattice with decorrelation will be implemented in a decision feedback 

configuration. Traditional approaches to the lattice DFE use a multi-channel config-

uration, with the forward filter comprised of a single channel lattice and the feedback 

filter comprised of a two-channel lattice [28, 27, 42, 36]. The signal which is fed back 

is actually the estimation error at each stage of the feedback (two-channel) portion 

of the DFE lattice [28]. Since this particular formulation is not applicable to the 

decorrelation algorithm, an alternative scheme for the lattice DFE will be used. The 

structure of the adaptive least-squares lattice/joint-process (ladder) estimator using 

decorrelation is shown in Figures (5.1) and (5.2), where Figure (5.2) represents one 

stage of the lattice equalizer. 

Figure 5.1  Structure of Lattice-Based Decorrelation DFE. 

As noted in Chapter 2, since the channels under consideration do not require 

the use of a forward filter, a feedforward lattice is not used in Figure 5.1. Unlike 

the lattice DFE of [28], the lattice structure of Figure 5.1 uses the output of the 
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Figure 5.2  Stage m  of the RLS Lattice.  

slicer as the quantity to be fed back. Note from the previous figures that in distin-

guishing the RLS lattice-ladder from the gradient lattice-ladder equalizer, the forward 

and backward reflection coefficients are not equal. Each is independently updated 

to minimize the weighted sum of squared forward and backward prediction errors, 

respectively. 

The algorithmic formulation of the RLS lattice with decorrelation is as follows. 

At time n, the inputs to the first lattice stage are set to the newly received output 

of the slicer (see Figure 5.1): 

f0 (n) = b0 (n) 

= 

ŷ (n) . 

 

The order-update recursions for the estimated sum of the squared forward and 

backward prediction errors Ef m  (n) and a Ebm (n) , respectively, at stage m ) are 

initialized as follows: 

	Ef 0 (n) 

= E0b(n) = λEf0(n)(n — 1) + ŷ

(n

)ŷ

(n

)  . 	 (5.1) 

For stages in = 1, 2, ... ,M — 1 the order updates for the RLS lattice-ladder 

recursions are performed in the following manner. Referring to Figure 5.2, the 

forward prediction errors are updated according to 

	fm (n) = fm-1(n) -- Fm(n - 1)

bm-1 (n - 1) 	(5.2) 
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and the backward prediction errors according to 

bm (n) 

= bm-1

(
n — 1

) 
— Bm

(
n — 1

)
fm-1

(n).                                                  
(5.3) 

 

Calculate the scalar I (n) according to the time-update recursion 

Km (n) 

= λKm

(
n — 1

) + tm (
n — 1

)
fm-1

(n) 
(5.4)  

 

where the scalar tm

(n) 

 is referred to as the adaptive step-size parameter [18]. The 

quantity, Km

(n)

, is used in both of the update equations for the forward and 

backward reflection coefficients. The forward reflection coefficients of Figure 5.2 

are updated in the following manner: 

Fm (n) 

= 

Km (n) 

/ Ebm-1(n — 1)                                                       (5.5) 

 

while the backward reflection coefficients are updated according to 

Bm (n) 

= 

Km (n) 

/ Ef m-1 (n)  .   
	
	 (5.6) 

 

The estimated sum of the squared forward and backward prediction errors are 

updated according to the following order recursions: 

Efm(n) 

= 

Efm-1 (n) - Fm(n)

Km(n)                                              (5.7) 

 

Ebm(n) 

= 

Ebm-1 (n) - Bm(n)

Km(n)                                            (5.8) 

 

respectively. The adaptive step size parameter, tm

(n)

, used in the update equation 

for K (n) is itself updated according to 

tm(n) = [1 - γm-1(n)]bm-1(n) 

. 	(5.9) 

The estimation error or conversion factor, 7m-3 (n.), is updated according to 

 

γm(n) = γm-1(n) + │tm(n)

│2 / Eb m-1(n) 	(5.10) 
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It should be noted that this parameter enables the RLS lattice algorithm to adapt 

rapidly to sudden changes in the input data [18]. The output of the RLS lattice- 

ladder is formed by z (n) 

= 

ΣN-1k=1 ωk (n)

bk (n) .   (5.11) 
 

 
 

Finally, update the tap weight coefficients in the following manner using the decor-

relation criterion: 

ωm (n + 1) = ωm (n) + µy (n)

y

(

n - m) (5.12) 

 

 

where µ  is the step size which controls the speed of adoption of the tap weight 

algorithm. The components can be initialized as follows 

fm(-1) = bm(-1) = 0 

Fm(-1) = Bm(-1) = 0 Km(-1) = tm(-1) = γm(-1) = 0 

 

Ef m(-1) = Ebm(-1)= δ > 0 

wm(0) = 0 . 

z(0) = 0 . 

The lattice DEE based on the decorrelation criterion is shown in Figure 5.3. 

One important property of the lattice structure in the context of channel 

equalization is its ability to transform {ŷm(m), ŷm(m - 1),....,ŷm(m - M + 1)}, the cor 

related input sequence, into {b0(m), b1(m),......, bM(m)}, the uncorrelated sequence 

of backward prediction errors. This process may be viewed as a deterministic 

form of the  Gram-Schmidt orthogonalization procedure [18]. The increased rate 

of convergence of the  decorrelation algorithm using a lattice structure is related to 

the self-orthogonalizi.ng nature  of the RLS-lattice [13,14 This assertion will become 

more apparent in the simulations to  follow. 
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Figure 5.3  Lattice DFE Incorporating the Decorrelation Algorithm. 

5.2 Gradient Lattice-Ladder with Decorrelation  

In an attempt to simplify the computational aspects of this particular class of 

algorithms, while still retaining many of their optimal qualities, it is possible 

to introduce an alternative lattice-ladder structure in which the number of filter 

parameters is significantly reduced. In keeping with the methodology as expressed 

in the previous section and in [1], the existing gradient lattice structure will be 

retained, with the decorrelation criterion used to update the tap weights. The 

gradient lattice-ladder structure under consideration is shown in Figures 5.4 and 5.5. 

Each stage of the lattice is characterized by the following input-output relations:  

f m (n) = fm-1(n)

- km(n — 1)bm-1(n — 1) 	(5.13) 

and 

bm (n) = bm-1 (n — 1) — km

(n — 1)

fm-1(n) 	(5.14)  
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Figure 5.4  Lattice Structure for the Decorrelation Algorithm. 

Figure 5.5  Stage m of the Gradient Lattice. 

where km (n) is the reflection coefficient and fm (n) and bm (n) are the forward and 

backward prediction errors, respectively, of the rnth stage of the lattice. It should 

be noted that this form of the lattice filter is identical to that obtained from the 

Levinson-Durbin algorithm, except that now km (n) is allowed to vary with time so 

that the lattice filter can adapt the the time variations in the signal statistics [37]. In 

comparison with the RLS lattice filter, the lattice described by Equations 5.13 and 

5.14 are more restrictive in that the forward and backward predictors have identical 

reflection coefficients. 

The reflection coefficients, 

km (n)

, may be optimized according to either an 

MSE criterion or by employing the method of least squares. In an adaptive filtering 

application, since the statistical properties of the signal are unknown, the least- 



99 

squares criterion will be adopted for determining km (n). The performance index 

to he minimized will consist of a weighted sum of the squares of the forward and 

backward prediction errors. The derivation to follow is similar to that presented in 

[37]. Therefore, 

εLS m = Σnt=0 λn-1[│ f m-1

(n)│2 + │ b

m

(n)]2 

	

= Σnt=0 λn-1 [│ fm-1

(n) 

- km (n — 1)bm-1 (n — 1)2 + 

+ │

bm-1 (n — 1) - km (n — 1)fm-1 (n )│2 ]  .  (5.15) 

Minimization of εLSm  with respect to km(n) yields the solution km(n) = -2Σnt=0 λn-1f m-1

(n)

bm-1 (n — 1) 

/ Σnt=0 λn-1f m-1

(

n)│b

m

(n) 

2 + │]  . (5.16) 

Equation 5.16 can he computed recursively, where the numerator and denominator 

may be updated as follows: 

	

um (n) 

= λum (n — 1) + 2 f m-1

(n)

bm-1 (n — 1)                                    (5.17) 

vm (n) 

= λvm (n — 1) + │ f m-1

(n)

│2 + │bm-1 (n — 1)2 . (5.18) 

Then 

km(n) = -um(n) 

/ vm (n)  .                                                           (5.19) 

Accordingly, km (n) may he updated recursively in time according to the relation 

km(n) 

= km (n — 1) + f m-1

(n)bm (n) 

+ bm-1 (n — 1)f m-1

(n) 

/ vm

(n)                     

(5.20) 

It should be noted that this particular lattice structure is referred to as a gradient 

lattice- ladder, because the traditional implementation of the lattice uses a gradient 

algorithm to  update the tap weight coefficients. Although this is no longer the case 

for the  decorrelation criterion, in order to distinguish this structure from the RLS 

lattice, this  notational description will be continued.  
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The algorithm is now complete. At time n, the backward and forward 

prediction errors are updated according to 

f0(n) = f0(n) = ŷ (n ) 

 

 

and for stages in = 1, 2, ..., M-1 the order-update recursions for the gradient lattice-

ladder are performed as follows. Update the forward and backward prediction errors 

according to 

	fm(n) = f m-1(n) 

— km(n — 1) — bm-1(n — 1)                            (5.21) 

	bm(n) 

= bm-1(n — 1) — km(n — 1) — 

fm-1(n) .                          (5.22) 

Update the adaptive step size as 

vm(n) 

= λvm(n — 1) + │ fm-1(n)│2 + │bm-1(n — 1)│2   .                     (5.23) 

The reflection coefficients are updated according to 

km(n) 

= km(n — 1) + f m-1(n)

bm(n) 

+ bm-1(n — 1)fm(n) 

/ vm(n)                              (5.24) 

Form the output of the gradient lattice-ladder as 

z(n) = ΣN-1k=1ωk(n)bk(n) (5.25) 

Finally, update the tap weight coefficients in the following manner using the decor- 

relation criterion: 

wm(n + 1) 

= wm(n) + µy(n)

y(n — m) .                                                       (5.26) 

The components can be initialized as follows: 

fm (-1) = bm (-1) = 0 vm (-1) = km (-1) = 0 wm (0) = 0   

z (0) 

= 0 . 
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5.3 Simulation Results for the Lattice-Ladder Algorithms  

For the purpose of examining the convergence of the RLS lattice-ladder and gradient 

lattice-ladder algorithms with decorrelation, the blind, decorrelation lattice in the 

configuration of Figure (5.3) was simulated for a channel which introduces severe 

intersymbol interference. In the simulation, four-stage lattices were used. The step 

size for the tap-weight updates was chosen to be g=0.05 and the weighting factor 

was chosen as A=0.99. The particular channel sampled impulse response used in all 

of the simulations is the same as used by Proakis in [35] and is given by 

H(z) = 0.407 + 0.815z-1  + 0.407z-2  . 	 (5.27) 

The correlation matrix, R, of the channel of Equation 5.27 has an eigenvalue spread 

of 

 x(R) = λmax  / λmin = 436.6379 . 	(5.28) 
 

This can be effectively considered an infinite eigenvalue spread. The channel's 

impulse response is normalized such that h

20 + h 2

1 

+ 

h

2

2 = 1. Zero-mean, white, 

Gaussian noise with variance 0.001 was added to the output of the channel. As 

a means to compare the relative speeds of the two lattice algorithms, the RLC 

algorithm given in Chapter 4 (with M=4) and a four-tap version of the conventional 

decorrelation DFE of Chapter 2 were also implemented using the channel given by 

Equation 5.27. For the decorrelation DFE, the step size was chosen to be µ=0.05 

in order to offer the best possible comparison to the lattice algorithms. These 

two structures will provide upper and lower bounds, respectively, on the rate of 

convergence of the lattice-based decorrelation DFEs. 

The model of the DFE used in the simulation is similar to that presented in 

Figure 4.2. In the simulations to follow, the length of the delay of the element, 

Z -k , of Figure 4.2 was chosen to produce the smallest MSE for the algorithms being 

considered. Unless specified, this delay was chosen to be z-1. Figure (5.6) shows the  
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comparison of the rates of convergence for the various algorithms using the channel 

of Equation 5.27.  

Figure 5.6  Comparison of Gradient, RLS, Decorrelation, and Kalman Equalizers. 

In this figure, the estimate of the residual ISI power is obtained by passing the 

sequence of the squared error (I(n) — ŷ(n))2  through a smoothing filter whose transfer 

function is given by 0.05/(1 — 0.95z-1). As mentioned in Chapter 4, this particular 

definition of the MSE is the same as used by Satorius and Pack [41], Satorius and 

Alexander [40], and Haykin [18]. Each curve was obtained by Monte-Carlo averaging 

the MSE over 100 independent trials. 

From Figure 5.6, it can be seen that the RLS and gradient lattice algorithms 

converge in approximately 450 iterations, while the conventional decorrelation DFE 

requires almost 700 iterations. Notice, however, there is a decrease in the rate of 

convergence of the lattice-based structures compared with the RLC algorithm. This  
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is a direct result of the fact that the lattice structures have not been derived based 

on the decorrelation criterion. Rather, only the tap weights are updated according 

to the decorrelation algorithm. The increase in the rate of convergence of the lattice 

algorithms over the decorrelation DFE is due to the self-orthogonahzing nature of 

the lattice algorithms. 

As was mentioned earlier, the RLS lattice algorithm offers a slightly faster 

rate of convergence than the gradient lattice. Notice from Figure 5.6 that there is 

only a negligible increase in convergence of the RLS over the gradient lattice. From 

Figure 5.6, it can be seen that the rate of convergence of the two lattice algorithms 

is virtually identical. In fact, in numerous simulations with channels of varying 

complexity, it was found that the differences between the convergence rates of the 

two algorithms was almost negligible. For simple channels, the speed of convergence 

of the two adaptive lattice equalizers was found, in most cases, to be identical. 

Again, it should be emphasized that although there is a decrease in the speed 

of convergence, the RLS and gradient lattice-ladder equalizers offer a greater savings 

in computational complexity (compared with the RLC algorithm) and exhibit better 

numerical stability and robustness to finite-precision errors (compared with the fast 

Kalman and FTF algorithms). Furthermore, since the RLS and gradient lattice 

structures are types of self-orthogonalizing equalizers, the convergence rate of the 

equalizers do not depend on the eigenvalue spread of the channel [18]. 

5.4 Numerical Properties of the Decorrelation-Based Equalizers  

As a final note on the adaptive lattice equalizers presented in this paper, a comparison 

of the computational complexity of the various algorithms should be made. Table 

5.1 shows a comparison of the number of operations needed to update the tap weight 

coefficients (in terms of the number of multiplications and divisions per iteration), 

based on the length of the filter.  
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Table 5.1  Comparison of the Computational Complexities of the Decorrelation 
Based Algorithms.  

ALGORITHM MADPI 

RLC 4M2  + 4M  + 2 
RLS-Lattice 15M  — 11 
Gradient-Lattice 13M  — 8 
Fast Transversal Filter 11M  + 16 
Fast RLC 11M  + 6 
Decorrelation DFE 2M  + 1 

To facilitate comparison, the results of Table 5.1 are plotted in Figure 5.7 to 

offer a. better comparison of the relative complexities of the various algorithms.  

Figure 5.7  Computational Complexity of Decorrelation-Based Equalizers. 

The results of Table 5.1 and the individual curves in Figure (5.7) are based on 

estimates of the count of the number of multiplications and divisions per iteration  
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for the various algorithms as described in Chapter 4, [33], [41], and Chapter 2. The 

parabolic nature of the curve for the RLC algorithm is due to its order M2  computa-

tional complexity. All other algorithms in the figure have order M complexity. The 

decorrelation algorithm presented in Chapter 2 was included as a reference on the 

lower bound of complexity. The decorrelation algorithm, like the LMS algorithm, 

can be considered as one of the simplest of the adaptive equalization algorithms in 

terms of implementation. Consequently, as can be clearly seen in the figure, the fast 

Kalman is the most efficient of the recursive least algorithms discussed in this work. 

However, its computational complexity is only slightly less than the fast transversal 

filter. Closely following is the gradient lattice algorithm, then the RLS lattice, and, 

finally, the direct-form Kalman algorithm. Note that for small values of M (equalizers 

of very short length), there is little difference in the complexity among the rapidly 

convergent algorithms. 



CHAPTER 6 

CONCLUSIONS AND AREAS FOR CONTINUED WORK  

In this work, it was shown that the rate of convergence of the decorrelation-based 

decision feedback equalizer can be increased dramatically by a subsequent increase 

in the complexity of the algorithm. However, this complexity has a direct bearing 

on the cost of implementing the algorithm in either hardware or software. It 

is this cost that provides the motivation for the development of more computa-

tionally efficient algorithms which maintain the high rate of convergence, but. at a. 

complexity that increases linearly with the length of the tap weight vector. Several 

such algorithms have been proposed and developed in this thesis which alleviate the 

O(M2 ) complexity of the RLC algorithm of [24]. 

The fast Kalman algorithm for decorrelation and the fast transversal filter 

for decorrelation both have O(M) complexity. Furthermore, since the fast Kalman 

and FTF algorithms based on decorrelation are mathematically equivalent to the 

RLC algorithm, these two fast algorithms should have a. rate of convergence which 

is comparable to that of the RLC. This was confirmed through simulation and 

comparison of the performance of the various algorithms in differing channels. 

However, a disadvantage of these fast algorithms is that they have a tendency to 

become unstable in finite-precision environments. Remedies to this problem were 

proposed, among which was the derivation of the covariance fast Kalman algorithm 

for decorrelation. The CFRLC is the unwindowed case of the fast Kalman algorithm, 

used when the fast Kalman algorithm is restarted to overcome the accumulated 

effects of the finite-precision environment. 

Two additional fast structures, which exhibit better numerical stability in 

finite-precision environments, were also proposed to deal with the complexity of the 

RLC. The RLS and gradient lattices have O(M) complexity and have been shown 

106 



107 

to be more inherently stable in environments governed by a finite word-length. To 

incorporate the decorrelation algorithm into these algorithms, the existing lattice 

structures were used, with the tap weights now updated according to the decorre-

lation algorithm. In addition, since these lattice structures were implemented in 

a decision feedback configuration, the decision on the most recent output of the 

equalizer is used as the input to the various lattice structures. This differs from 

the conventional approach taken in DFE lattice implementations, which use a two-

channel lattice and an error feedback structure. Again, through simulation with 

various channels, the rate of convergence of both the RLS and gradient lattices 

based on decorrelation was shown to offer a. substantial increase in speed over the 

decorrelation DFE. A comparison of the relative computational complexities of the 

various algorithms (given in terms of the number of multiplications and divisions per 

iteration) was also performed. In terms of linear complexity of the rapidly converging 

structures presented in this work, the fast Kalman and FTF algorithms are the least 

computationally complex, followed by the gradient and RLS lattices. 

As was discussed, the performance of the algorithms proposed in this thesis 

depends on the type of environment in which they are implemented. In other words, 

the convergence properties of a given algorithm may he dramatically different when 

that algorithm is implemented in a finite-precision environment. It is for this reason 

that a discussion on the finite-precision performance of the decorrelation algorithm 

has been made. Models for the finite word-length environment were proposed and 

an expression for the quantization error of the correction term of the decorrelation 

algorithm, referred to as the digital residual error, was calculated and shown to be 

similar to the corresponding LMS. These results were compared with those of the 

LMS algorithm, on which much work has been done in the area of limited-precision 

environments. It was shown that the decorrelation algorithm offers comparable finite-

precision performance to the LMS. 
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The work proposed in this thesis may progress into many areas. The most 

obvious extension of this work would be studying the performance of the fast 

algorithms for decorrelation in finite-precision environments. Methods similar to 

that proposed in [18] and [30] could be used. Furthermore, to truly understand 

the performance of the decorrelation algorithm in a finite-precision environment, 

more complex models of the decorrelation quantization error will need to be derived. 

In the context of finite-precision, the fast algorithms could also be modified into 

their corresponding normalized or stabilizing forms, as proposed in [8], [3], and 

[43]. Recall that this would entail a relative increase in the complexities of the 

fast algorithms due to the inclusion of square-root computations. Moreover, the 

decorrelation algorithm, itself, could be modified so as to offer better performance 

in finite-precision environments. The application of the technique known as leakage 

to the decorrelation algorithm would help to stabilize the digital implementation of 

the algorithm in that occurence of overflow would be prevented [6]. Consequently, 

the scaling factor derived in Chapter 2 would no longer be needed. 

Next, with the channel model used for this thesis, there was subsequently no 

need for a forward filter in the decision feedback equalizer. Consequently, only single 

channel forms of the fast algorithms were derived. Therefore, another area. into which 

this work may progress is the creation of multichannel representations of the FRLC 

and FTF algorithms. This extension is quite straightforward and could easily follow 

the derivations given in this work, since all that is required is a new declaration of 

the augmented vectors of the input and output of the slicer. 

The decorrelation algorithm can also be extended to many other fast structures. 

There are literally dozens of competing fast algorithms that have been proposed in 

the literature, in both fast Kalman/FTF and lattice manifestations (see [38] for an 

extensive bibliographical listing of fast algorithms). Since most of these other fast 

algorithms are based on much of the same theory that has been proposed in this 
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thesis, the further application of the decorrelation algorithm to other computational 

efficient structures is very possible. 

Finally, if better numerical stability and rapid initial convergence of the 

decorrelation algorithm is desired without regard to complexity, a decorrelation-

based structure using square-root Kalman filtering can be developed. This class of 

algorithms, like the RLS, has an O(M2 ) complexity, hut has been /shown to be the 

most numerically stable of all rapidly converging algorithms [19].  



APPENDIX A 

PROOF OF EQUATIONS 4.46 AND 4.47 

It will now be shown that Equations 4.33 and 4.34 are contained in the expressions 

of Equations 4.46 and 4.47. To prove Equation 4.46, substitute the first matrix 

representation of Equation 4.38 for R(n) in Equation 4.33 and multiply out all terms, 

as shown: 

[  π (n) =    S'

M

(n) ]   [       0      ]    =                                                                 [  Q M(n) 

R M.M(n 

— 

1) ] [ KM (n 

 — 1)  ] 

=  [ S'

M

(n)

K M (n 

 — 1)           ] 

[    R M.M(n 

— 1)K

M (n 

 — 1)   ] 

=   [  ρ (n) ] 

[  Y M (n 

 — 1)    ] 
=   [    y (n 

 — 

1)   ]   +    [  S M (n 

 — 

1)K M (n 

 — 1) - y

(n 

 — 1) ] 
[ Y M (n 

 — 1)   ] [                  0

M                                        

] 

=       Y M (n)     +    [  ρ

(n) 

— y

(n 

 — 1)    ]    . [             0

M ] 

To prove Equation 4.47, substitute the second matrix representation of 

Equation 4.38 for R(n) in Equation 4.34 and multiply out. all terms, as shown: 

[  R M.M (n) Ǭ

M

(n) ]   [ K

M

(n) ] = [ R M.M (n) K

M

(n) ]                          [     S'

M

(n) π (n) ] [ 0 ] [ S'

M

(n)K

M

(n) ] =  [  YM(n) ] [     β(n) ] =  [  YM(n) 

] +   [  0M  ] [    y(n — M — 1) ] [  S'M(n)

KM(n ) 

— y(n — M — 1) ] 

=  YM(n) +     [ 0M                                   ] .                                                                 [ β(n) 

— y(n — M — 1) ] 
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APPENDIX B 

PROOF OF EQUATION 4.51  

In order to prove Equation 4.51, it will first be necessary to substitute the first matrix 

representation of Equation 4.38 for 

R(n) 

 in Equation 4.50. Thus, 

R (n) [    1      ] =  [   π (n) S'

M

(n) ]   [       1    ]                                                                          [   FM(n) 

] [ QM(n)  R M.M(n 

— 

1) ] [   FM(n

) ]   =  [   π(n) + S'M(n ) + FM(n ) ]                                                                            [   QM(n) 

+ RM.M(n 

— 

1)FM(n

) ] =  [   FM(n) ] .                                                                           [      0

M ] 

Consequently, according to the above equations, the following two equalities hold: 

F-1M(n) = 1 / π(n) + S'M(n) + FM(n) (B.1) 

and 

QM(n) 

+ RM.M(n 

— 

1)FM(n

) = 0

M . (B.2) 

Therefore, taking these two equalities into account, postmultiply both sides of 

Equation 4.50 by F-1

M

(n) (ρ(n) 

— 

y(n — 1)). Expanding terms yields: 

R(n) [    π(n) +  S'M(n) FM(n) ]   F-1M(n) (ρ(n) 

— y(n — 

1)) = [  QM(n ) + RM.M(n 

— 

1)FM(n

) ]    =    [    {π(n) +  S'M(n) FM(n) }  {F-1M(n) (ρ(n) 

— y(n — 

1))}  ]                                                                      [ {QM(n ) + RM.M(n 

— 

1)FM(n

) } {F-1M(n) (ρ(n) 

— y(n — 1))}     ] 

=    [  (ρ(n) 

— y(n — 

1) ]  .                                                                                [         0M(n)           ] 
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APPENDIX C 

PROOF OF EQUATION 4.53 

In order to prove Equation 4.53, it will first be necessary to substitute the first matrix 

representation of Equation 4.38 for 

R(n) 

in Equation 4.53 and use the definition of 

K(n) 

 given in Equation 4.52. Thus, 

R(n)K(n) 

 = 

= [   π (n) S'

M

(n) ]   [        -F-1

M

(n)[ρ (n) 

— y

(n 

 — 

1)] ]                                                                                                                             [ QM( n)  R M.M(n 

— 1) ] [   K

M (n 

 — 1) — 

F-1 M

(n)[ρ (n) 

— y

(n 

 — 1)] ]     

= [ - {{π (n) + S'

M

(n)F

M

(n)}-F-1

M

(n)[ρ (n) 

— y

(n 

 — 

1))} + S M

(n)

K M (n 

 — 1) ]   .                                                                                                                          [ - Q(

n) + R (n 

 — 1)

F

(n)}-F-1

M

(n)[ρ (n) 

— y

(n 

 — 1))} + R

(n 

 — 1)K

(n 

 — 1) ]   

 

Using Equations 4.33 and 4.35, the identities derived in Appendix B for F-1

M

(n) 

and 

Q M (n) + RM.M(n 

— 

1)F M

(n) 

 and the definition of ρ

(n) 

 in Equation 4.48, the above 

equation can be simplified as follows: 

R (n)K (n) 

 = 

[ - ρ (n) 

— 

y (n  — 1)) + ρ

(n) 

]   .                                                                                                                            =  [ 0M + RM.M(n 

— 

1)K M (n 

 — 1)  ] 
= [        y(n 

— 1)       ] =  [   y(n — 

1) ]  =  ῩM(n

) 

.                                                                                                                          [ RM.M(n 

— 

1)KM (n 

 — 1)  ]      [   YM(n — 1)   ] 
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APPENDIX D 

THE COVARIANCE FAST KALMAN ALGORITHM FOR 
DECORRELATION  

In this appendix, a modification to the fast Kalman algorithm for decorrelation 

will be made so that the FRLC can accomodate the case of unwindowed data, as 

discussed in Chapter 4. The covariance fast Kalman algorithm for decorrelation 

(CFRLC) assumes that the input data vectors 

YM (n) 

 and 

ŶM (n) 

 are not zero for 

n < 0. The proof of the algorithm closely parallels that presented in Chapter 4 for 

the prewindowed fast Kalman. Therefore, similar steps in the proof will be omitted 

for sake of brevity and only relevant and necessary results presented. The derivation 

is based on the work done in [25]. 

For the covariance fast Kalman, like the fast Kalman, it will be necessary 

to derive a set of equations to compute the covariance Kalman gain vector, 

ΩM (n) 

 = 

R-1 M.M(n

)Y

M (n

)  recursively in time. The modified cross-correlation 

matrix, Rm,m(n) is given by 

R-1M.M(n ) = Σn  λn-kYM( k)Ŷ'M(

k) + δWM(n), 	(D.1) 
k=0 

where 

WM (

n)  = diag [λn , λn-1,...., λn-M+1] 	 (D.2) 

and δ  is a small, positive constant. The constant A is chosen close to, but less than, 

one. This inclusion of the weighting factor in Equation D.1 is to insure the initial 

nonsingularity of the cross-correlation matrix, 

R

M.M(n) [18]. It has been shown in 

the literature [25] that the modification will not affect the time-update recursions 

for the fast Kalman algorithm, only the starting value. Furthermore, the additional 

weighting term will decay to zero as n --> oo. To go from 

Ω M (n 

 — 1) to Ω
M

(n

), 

 it  
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is possible to write 

RM.M(n 

— 

1)ΩM(n — 1) = 

YM(n — 1) 	(D.3) 

and 

RM.M(n )ΩM(n) = 
YM(n), 	(D.4) 

The matrices 
R

M.M(n 
— 

1) and R M.M(n) can be related through the augmented 

correlation matrix (see [25]) 

R(n

) = 

RM+1.M+1(n) = Σn k=1 

 λn-kῩ(k)Ῡ'

(

k) + δWM(n) (D.5) 
k=1 

where 

Ῡ(

n) and Ῡ'

(

n) are given by Equations 4.35 and 4.36, respectively, and 

δWM(n) = λn  λn-1,.....,λn-M] 	(D.6) 

as follows 

R( n) =  [   π(n) 

S'M(n ) 

]                                                                                                         [    QM( n) RM.M(n 

— 1) ] 

 =  [ RM.M(

n) λnYM (0)Y'M (0) QM(n) ]   .                                 (D.7) [            S'M(n

) 

π( n) ] 

 

 

The quantities which comprise Equation D.7 are defined according to 

π(n

) = Σn k=1λn-ky(k —1)ŷ(k —1) + λnδ  
k=1 

S'M(n ) 

= Σn k=1λn-kY'M(k—1)y ( k  —1) 

QM

(n) 

= Σn k=1λn-kY'M(k—1)y(k —1)  

k=1 

QM

(n) = 

 Σn k=1λn-kYM(k —1)ŷ(k —1) 
 

	RM.M (n —1) 

 = 

Σn k=0λn-kYM(k —1)Y'

M

(k —1) 

+ δWM(n —1) 

 
 

and 

π( n

)  = Σn k=1λn-k y ( k  — M)ŷ ( k  — M) + λn-Mδ                                  

(D.8) 

SM(n ) 

 = 

Σn k=1λn-kY'M( k

)y ( k  — M)           

(D.9) 
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QM

(n) 

= Σn k=1λn-kYM(k) ŷ(k — M) 	(D.10) 

 

and RM,M

(

n)  is given by Equation D.1. Referring to Equation 4.54, the augmented 

Kalman gain vector, K

(

n), can be partitioned as 

K

( n)= [ CM(n ) ] [ QM(n )  ] RM.M(n — 1)  ] 

 
 

Substituting Equation D.11, the second expression for 11(n) in Equation D.7, and 

the second expression for 17- (n) in Equation 4.35 into Equation 4.49, 
 

[  R M.M

(

n) - λnYM(0)

Ŷ'

M

(0) 

Q M(n)  ] = K(n) = [  CM(n)  ] =  [ YM(n

) ]                                                                            [         S'M(n) 

π(n) ] [ cM(n

)   ] [  y

(n 

 — M — 1)  ]  

 

it can be seen from the first line of the above equation that 

R M.M

(

n ) — λnY

M

(0)Ŷ'

M

(0)

] C M(n

) 

+Q M(n)c M(n

) = Y

M

(

n ) . 	(D.12) 

Recall from Chapter 4 that following expression for the backward prediction coeffi-

cients holds 

R

(

n) [ BM

(

n) ]  =  [ 0M ] [      1      ]          [ BM(n) ] 	(D.13)    
 

Substitution of the second expression for the augmented cross-correlation matrix of 

Equation D.7 into the above equation results in 
 

[  R M.M

(

n) - λnY

M

(0)Ŷ'

M

(0) 

Q M(n)  ] = [ BM

(

n) ] = [  0

M(n)   ] [         S'M(n) π(n) ]     [    1 ] [ BM(n)  ] .               (D.14) 

 
 

Therefore, expanding Equation D.14 and collecting terms, it can be seen that 

QM(n

) = - [RM.M

(

n) — 

λnYM(0)Ŷ'M(0)

]BM(n) . 	(D.15) 

With a workable definition for QM(n) now established, Equation D.12 can be 

rewritten according to 

[RM.M

(

n) - λnYM(0)

Ŷ'

M

(0)

] [C M(n) - B M

(

n)cM(

n)] = = R M.M

(

n)[IM-λnR-1M.M

(n)YM(0)Ŷ'

M

(0)

]C M(n)-B M

(

n)cM(

n)] =YM

(

n)                                                                                         (D.16)                                                   
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where IM  is the identity matrix. Let 

dM(n) = λnR-1M.M

( n)

Y

M

(0) . 	 (D.17) 

Note that, since λ  < 1, as n --> ∞ , d

M(n

) --> 0. Therefore, comparing Equation D.16 

with Equation D.4, it can readily be seen that the covariance Kalman gain vector 

can be defined as Ω M(n

) = [I

M 

 — 

d M(n)Ŷ' M

(0)

] [C

M(n

) — 

B M(n

)c

M

(n)] . 	(D.18) 

Inspection of Equation D.18 reveals that it will be necessary to derive a time-

update recursion for dM (n.). Therefore, rewrite Equation D.17 as 

λn

Y

M

(0) 

 = RM.M

(

n)dM(n) . 	(D.19) 

Equation D.19, at time n — 1, correponds to 

 

λn

Y

M

(0) 

= λRM.M(n 

— 

1)dM(n — 1)   . 

Equivalently, 

λn

Y

M

(0) 

= 

λRM.M(n 

— 

1)dM(n — 1) . 	(D.20) 

Substitution of the time-update recursion for Rm.m(n) of Equation 4.8 into the last 

line of the above equation yields 

RM.M(n)d M(n

) = 

R M.M(n) — 

Y

M(n)Ŷ' M

(n)

]d

M(n 

— 1) . 	(D.21) 

Rearranging terms in Equation D.21 and using the definition of ΩM

(n

) in Equation 

D.4, the time-update recursion for 

d M(n

) is 

dM(n

) 

  =  [I

M 

 — 

R-1M.M(n)

Y

M(n )Ŷ'M(n)]dM(n 

— 

1) 	  

=    [IM  — ΩM(

n )Ŷ'M(n)

]dM(n — 1)  . 	(D.22) 

Notice in Equation D.22 that the current estimate of 

dM(n

) requires the current 

estimate of ΩM

(n

)  . But from Equation D.18, ΩM

(n

) depends on dM(n). To remedy  
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this problem, use the definition of the fast Kalman gain vector of Equation 4.93, 

KM(n), and substitute Equation D.18 into the last line of Equation D.22: 

dM(n)  = [I M - [IM - dM

(n

)

Ŷ'

M

(0)]K

M

(

n)Ŷ'

M

(

n)] d

M 

(n 

 — 

1)                                                = [IM - KM

(

n)Ŷ'

M

(

n) + d

M 

(n)Ŷ'

M

(

n)K

M 

(n)Ŷ'

M

(

n)] d

M 

(

n  — 1)  .                         

 

 

Collecting terms in the last line of the above equation, the time-update recursion for d M 

(

n)  can be expressed as 

d M(n)  = [I M - KM 

(n)Ŷ'

M

(

n )d

M 

(n 

 — 

1) / 1 - Ŷ'
M

(

0)K

M 

(n)Ŷ'

M

(

n )d

M 

(

n  — 1) . (D.23) 

 

The algorithm is now complete. To perform the covariance fast Kalman algorithm 

for decorrelation, follow Equations 4.84 through 4.92. Then, let 

KM 

(

n) = CM (n) - BM(n)cM(n) 	(D.24) 

d M(n)  = 1 / 1 - Ŷ'M

(

0)KM

(n)Ŷ'

M

(n)d

M

(n 

— 1) [I

M 

- KM(n

)Ŷ'

M

(

n)]dM 

(

n — 1) 

	

 
(D.25) 

and 

ΩM

(n

) = [I

M 

 - 

dM

( n)Ŷ'M(

n)]dM 

(

n — 1) 	(D.26) 

where 

ΩM

(n

) 

 is the desired covariance Kalman gain vector. To initialize the 

algorithm, set 

FM

(0) = 0M , B

M

(0)=0M , F

M

(0) = λδ , and 

KM(0)      = dM

(

0) = R-1M.M

(0)YM(0) =   YM(0) / YM(0)Ŷ'M(0) + δWM(0) =  W-1M(0)YM(0) / δ + Ŷ'M(0)W-1M(0)YM(0)  .  

 

It should be noted that for the unwindowed, or covariance, data case, the vectors 

YM

(n) and  

 

ŶM

(n )  at time n = 0 are now comprised of the previous M data samples. 

In other words, 

Ŷ'M(0) 

=  [y(—1), y(—2),....,y(— M)]                                            (D.28) 

Ŷ'M(0) 

=  [y(—1), ŷ(—2),....,y(— M)]  .                                         (D.29) 
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