
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 1994

On issues of equalization with the decorrelation algorithm : fast On issues of equalization with the decorrelation algorithm : fast

converging structures and finite-precision converging structures and finite-precision

Andrew James Bateman
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Bateman, Andrew James, "On issues of equalization with the decorrelation algorithm : fast converging
structures and finite-precision" (1994). Theses. 1611.
https://digitalcommons.njit.edu/theses/1611

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1611?utm_source=digitalcommons.njit.edu%2Ftheses%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ON ISSUES OF EQUALIZATION
WITH THE DECORRELATION ALGORITHM:

FAST CONVERGING STRUCTURES
AND FINITE-PRECISION

by
Andrew James Bateman

To increase the rate of convergence of the blind, adaptive, decision feedback

equalizer based on the decorrelation criterion, structures have been proposed which

dramatically increase the complexity of the equalizer. The complexity of an algorithm

has a direct bearing on the cost of implementing the algorithm in either hardware or

software. In this thesis, more computationally efficient structures; based on the fast

transversal filter and lattice algorithms, are proposed for the decorrelation algorithm

which maintain the high rate of convergence of the more complex algorithms.

Furthermore, the performance of the decorrelation algorithm in a finite-precision

environment will be studied and compared to the widely used EMS algorithm.

ON ISSUES OF EQUALIZATION
WITH THE DECORRELATION ALGORITHM:

FAST CONVERGING STRUCTURES
AND FINITE-PRECISION

by
Andrew James Bateman

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 1994

APPROVAL PAGE

ON ISSUES OF EQUALIZATION
WITH THE DECORRELATION ALGORITHM:

FAST CONVERGING STRUCTURES
AND FINITE-PRECISION

Andrew James Bateman

Dr. Yeheskel Bar-Ness, Thesis Advisor 	 Date
Director of the Center for Communicationsand Signal Processing Research
Distinguished Professor of Electrical and Computer Engineering.
NJIT

Dr. Alexander Haimovich, Committee Member 	Date
Associate Professor of Electrical and Computer Engineering,
NJIT

Dr. Zoran Siveski, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering,
NJIT

BIOGRAPHICAL SKETCH

Author: 	Andrew James Bateman

Degree: 	Master of Science in Electrical Engineering

Date: 	May 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Electrical Engineering,
Cornell University, Ithaca, NY, 1990

Major: 	Electrical Engineering

Presentations and Publications:

A.J. Bateman, Y. Bar-Ness, and R.E. Kamel, "Decorrelation Algorithm for Blind
Decision Feedback Equalizer with Lattice Structures," to he presented at Sixth
Digital Signal Processing Workshop, Yosemite Lodge, Yosemite National Park,
California, October 1994.

iv

This thesis is dedicated to
my parents, Ken and Jane,

without whose unconditional love and support
this, and all my work, would not be possible

V

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Dr. Yeheskel

Bar-Ness, for his guidance, help, and consultation throughout this research. I have

learned much from his knowledge and expertise.

Extended thanks to Dr. Alexander Haimovich and Dr. Zoran Siveski for serving

as members of the thesis committee.

Special thanks to Lisa Fitton for providing timely help and suggestions

during the editing of the thesis, Gratitude is also due to Dr. Joseph Strano,

Dr. Kenneth Sohn, and Ms. Brenda Walker of the Electrical and Computer

Engineering Department at NJIT for providing funding, as well as moral support,

during the last few years.

The author deeply appreciates the love and continuous encouragement from his

parents, Ken and Jane, his brother, Mark, and his aunt and uncle. Jean and Tom

Seery, as well as the rest of his extended family.

Special thanks to the staff and management of Star Semiconductor for the

donation, and subsequent upgrade, of the SPROClab Development System, on which

much of this work is based. Special thanks to Mr. Frank Sgmatto, Senior Applications

Engineer, for his timely and consistent help and advice on the intracacies of working

with the SPROC system.

Finally, the author wishes to acknowledge his colleagues at the Center

for Communications and Signal Processing Research at NJIT, especially Raafat

Edward Kamel, whose friendship, support, and remarkable patience were invaluable

throughout this research.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 THE SYSTEM 	 11

2,1 Channel Model 	 11

2.2 The Decision Feedback Equalizer and the LMS Algorithm 	 13

2.3 The Decorrelation Algorithm 	 20

2.3.1 Real-Time Hardware Implementation of the Decorrelation
Algorithm 	 22

	

3 THE DECORRELATION ALGORITHM AND FINITE-PRECISION 32

3.1 Quantization Effects in Adaptive Algorithms 	 32

3.2 Model and Statistical Properties of the Quantization Error 	 35

3.3 Performance of the Decorrelation Algorithm in the Presence of
Roundoff Errors: Digital Residual Error 	 38

3.3.1 Simulation Results for the Digital Residual Error 	 40

4 RAPIDLY CONVERGING ALGORITHMS FOR DECORRELATION 	 45

4.1 The Kalman Algorithm for Decorrelation 	 45

4.2 The Fast Kalman Algorithm for Decorrelation 	 51

4.2.1 Reformulation of the RLC Algorithm 	 52

4.2.2 Derivation of the Algorithm 	 53

4.2.3 Updating the Kalman Gain Vector 	 56

4.2.4 Updating the Auxiliary Variables 	 58

4.2.5 The Algorithm 	 63

4.2.6 Proof 	 64

4.2.7 Alternative Declaration of the Algorithm 	 64

4.3 The Fast Transversal Filter for Decorrelation 	 67

4.3.1 Derivation of the Algorithm 	 67

vii

Chapter 	 Page

4.3.2 The Algorithm 	 78

4.4 Simulation Results for the Fast Algorithms 	 80

1.5 Numerical Properties of the Fast Kalman and FTF Algorithms 	 85

5 LATTICE STRUCTURES WITH DECORRELATION 	 91

5.1 Recursive Least-Squares Lattice-Ladder with Decorrelation 	 92

5.2 Gradient Lattice-Ladder with Decorrelation 	 97

5.3 Simulation Results for the Lattice-Ladder Algorithms 	 101

5.4 Numerical Properties of the Decorrelation-Based Equalizers 	 103

6 CONCLUSIONS AND AREAS FOR CONTINUED WORK 	 106

APPENDIX A PROOF OF EQUATIONS 4.46 AND 4.47 	 110

APPENDIX B PROOF OF EQUATION 4.51 	 111

APPENDIX C PROOF OF EQUATION 4.53 	 112

APPENDIX D THE COVARIANCE FAST KALMAN ALGORITHM FOR
DECORRELATION 	 113

REFERENCES 	 118

viii

LIST OF TABLES

Table 	 Page

3.1 Digital Residual Errors of the LMS DEE. 	 44

	

3.2 Digital Residual Errors of the Decorrelation DFE 44

5.1 Comparison of the Computational Complexities of the Decorrelation-
Based Algorithms 	 104

ix

LIST OF FIGURES

Figure 	 Page

2.1 Model of Baseband Binary PAM System (without Equalization). 	 11

2.2 Discrete Channel Model 	 12

2.3 Decision Feedback Equalizer 	 14

2.4 Revised Structure of the Decision Feedback Equalizer. 	 15

2.5 Model of an Adaptive Filter. 	 17

2.6 Decorrelation-Based DFE 	 22

2.7 SPROC Implementation of Decorrelation-Based DFE. 	 25

2,8 Learning Curve of the Tap Weights of SPROC-Based Decorrelation DFE. 26

2.9 Learning Curve of MSE of SPROC-Based Decorrelation DFE 98

2.10 Learning Curve of Non-zero Initialized Tap Weights. 	 29

2.11 Learning Curve of MSE of SPROC-Based Decorrelation DFE 	 30

2.12 Learning Curve of the Tap Weights of SPROC-Based Decorrelation DFE
with AWGN. 	 31

2.13 Learning Curve of MSE of SPROC-Based Decorrelation DFE with AWGN. 31

3.1 Model of the Quantization Process. 	 36

3.2 Graphical Representation of the Quantization Process 	 37

3.3 Probability Density Function of the Quantization Error 	 37

4.1 Decision Feedback Equalizer 	 46

4.2 Decision Feedback Equalizer Used for Simulations 	 81

4.3 MSE of the Fast Kalman DEE with W=3.1. 	 82

4.4 MSE of the FTF DFE with \V=3 1 83

4.5 MSE of the RLC Algorithm with W=3.1 	 84

4.6 Performance Comparison of the FRLC, FTF, and RLC Algorithms with
W=3.1. 	 85

4.7 MSE of the Fast Kalman DFE with W=3.6. 	 86

Figure 	 Page

4.8 	MSE of the FTF DFE with W=3 6 89

4.9 MSE of the RLC Algorithm with W=3.6. 	 89

4.10 Performance Comparison of the FRLC, FTF, and RLC Algorithms with
W=3.6. 	 90

51 Structure of Lattice-Based Decorrelation DEE. 	 93

5.2 	Stage m of the RLS Lattice. 	 94

5.3 Lattice DEE Incorporating the Decorrelation Algorithm. 	 97

5.4 Lattice Structure for the Decorrelation Algorithm 	 98

5.5 Stage m of the Gradient Lattice 	 98

5.6 Comparison of Gradient, RLS, Decorrelation, and Kalman Equalizers 	102

5.7 Computational Complexity of Decorrelation-Based Equalizers. 	 104

xi

CHAPTER 1

INTRODUCTION

To transmit data over conventional telephone lines, many systems and devices convert

the data into symbols for transmission at the signaling rate. In pulse modulation

systems, such as pulse-amplitude modulation (PAM) and quadrature-amplitude

modulation (QAM), each symbol corresponds to a different amplitude level. Time

dispersion results when the frequency characteristics of the channel deviate from the

ideal of constant. amplitude and constant delay (linear phase) [38]. In both PAM

and QAM systems, transmission over time-dispersive channels causes each pulse to

extend beyond the time interval used to represent that symbol. The distortion that

results from this overlap is called intersymbol interference (ISI). ISI can also be

caused by multipath propagation in radio or undersea channels. Multipath propa-

gation can be viewed as the transmission through a group of channels with differing

relative amplitudes and delays [38]. This distortion is one of the major obstacles to

reliable high-speed data transmission over low background noise channels of limited

bandwidth. Therefore, it is necessary to devise structures which effectively remove

the ISI from the incoming signal. Devices which perform such a filtering task are

referred to as equalizers.

These PAM- and QAM-based systems must effectively transmit data through

communication channels that have different frequency response characteristics and,

hence, result in different distortion effects. In such transmission systems, the

coefficients of the channel equalization filter cannot be specified a priori since the

statistical characteristics of the signals to be filtered are either unknown or, in some

case, slowly time-variant (nonstationary). The only way the channel equalizer can

compensate for the channel distortion is if the channel equalizer has adjustable

coefficients that, in many cases, can be optimized to minimize some measure of the

1

2

distortion. Typically, this is done by performing measurements on the characteristics

of the channel. Such an equalizer with adjustable parameters is referred to as an

adaptive equalizer. Throughout this work, the words filter and equalizer will be used

interchangeably.

Although both infinite-impulse response (IIR) and finite-impluse response

(FIR) filters have been considered for adaptive equalization, the linear FIR filter is

the most practical and widely used. The reason for this preference is because the

FIR filter has only adjustable zeros and, hence, it is free of the stability problems

associated with IIR filters that have both adjustable poles and zeros. The FIR

equalizer, which will also he referred to as a tapped-delay-line, nonrecursive, or

moving-average equalizer, is comprised of both current and delayed samples of the

received signal, which are weighted by the equalizer coefficients (tap weights) and

summed to produce the output.

To cancel the ISI in the unknown channel, these linear transversal filters

attempt. to approximate the inverse of the channel. Equalizers of this type are

referred to as zero-forcing (ZF) equalizers [38]. If the length of the ZF equalizer

is increased without bound, the resulting infinite-length equalizer would perfectly

invert the channel and, therefore, have zero ISI at its output. However, since a

finite-length ZF equalizer can only approximate the inverse of the channel, such

filters have been shown to enhance noise at frequencies where the channel spectrum

has high attenuation [38]. Furthermore, for non-minimum phase channels (channels

whose transfer functions consist of zeros outside the unit circle in the z-plane), the

inverse filter can he unstable.

To overcome these difficulties with the zero-forcing equalizer, a nonlinear

equalizer can be used. Such an equalizer, referred to as a decision feedback equalizer

(DFE), feeds back (subtracts) a weighted sum of the decisions on previously detected

symbols in order to remove, from the current channel output, the interference

3

contributed from these past symbols. The DFE can compensate for amplitude

distortion with much less' noise enhancement than the linear equalizer [32].

An important consideration in the use of an adaptive equalizer is the criterion

for optimizing the adjustable filter parameters. The criterion must not only provide a

meaningful measure of equalizer performance, hut it must also result in a practically

realizable algorithm. In some cases, a performance index that is a nonlinear function

of the filter parameters possesses many relative minima (or maxima), so that there

may he doubt as to whether the adaptive equalizer has converged to the optimal

solution or to one of the relative minima (or maxima). For these reasons, some

desirable performance indices, such as.. the average probability of error in a digital

communication system, must be rejected on the grounds that they are impractical

to implement [37].

One criterion that provides a good measure of performance in adaptive filtering

applications is the least-squares (LS) criterion, and its counterpart in a statistical

formulation of the problem; namely, the mean-square-error (MSE) criterion. The LS

and MSE criteria both result in quadratic performance indices as a function of the

filter coefficients and, therefore, each possesses a single minimum.

Using the method of steepest descent, the MSE criterion has been used to

develop a recursive algorithm to update the tap weights of the adaptive equalizer.

The resulting algorithm, known as the least-mean-square (LMS) algorithm uses

instantaneous estimates of the gradient vector of the performance surface to update

the tap weights of the transversal filter [44]. The widespread use and popularity of

the LMS algorithm stems from its inherent simplicity. However, the LMS suffers from

a relatively slow rate of convergence (convergence to the correct channel parameters)

and is affected by the eigenvalue spread of the channel correlation matrix.

To improve on the rate of convergence of the LMS, Godard, using an LS

criterion, cast the equalizer adjustment problem as an estimation of a stationary state

4

vector in Gaussian noise [14]. The resulting recursive least-squares (RLS) algorithm

can be considered as a special case of the Kalman algorithm for adaptive transversal

filters. Subsequently, the RLS algorithm has been shown to be the fastest known

converging adaptive algorithm [38]. Furthermore, the rate of convergence of the

RLS algorithm does not depend on the eigenvalue spread of the channel correlation

matrix.

Typically, in adaptive equalizers, such as those based on the LMS and RLS

algorithms, a training sequence is used to adapt the equalizer to the unknown

channel. During the training period, a known signal is transmitted and a. synchronized

version of this signal is generated in the receiver to acquire information about the

channel characteristics. After the training period, the coefficients of the adaptive

equalizer may then be continuously adjusted is a decision-directed mode. However,

in many applications, such as remote site receivers in a multipoint telephone modem

network, the adaptive equalizers are required to bootstrap in a. decision-directed

mode without the help of a training sequence [38]. By decision-directed, it is meant

that the outputs of a. decision (threshold) device—not a training sequence—are used

by the equalizer to update the tap weights [31]. Equalizers which do not require a

training sequence are referred to as blind equalizers. Conventional blind equalizers,

like their non-blind counterparts, are typically of the linear, FIR type.

There are several classes of blind equalization algorithms. The first, known as

Bussgang algorithms, consists of an iterative process that uses some form of zero-

memory nonlinear estimator to make decisions on the output of the transversal filter

[18]. These decisions are then subtracted from the output of the transversal filter

to form the error signal by which the LMS algorithm, for example, can be updated.

Once the algorithm has converged in the mean, the resulting equalized sequence has

been shown to assume Bussgang statistics [2] . Special cases of the Bussgang class

of algorithms include the Sato algorithm [39] and the Godard algorithm [15]. Both

5

of these algorithms involve the minimization of some nonconvex cost function. A

special case of the Godard algorithm, known as the constant, modulus algorithm

(CMA), is considered the most widely used of the blind equalization algorithms [18].

The Bussgang class of algorithms is characterized by low computational complexity

and an initially slow rate of convergence, which increases as equalization progresses.

The second class of blind equalization algorithms is based on the use of higher-

order statistics (higher than second-order correlation functions) of the distorted

received signal. These higher-order statistics and their Fourier transforms are

referred to as cumulants and polyspectra, respectively [18]. The tricepstrum-based

algorithm for blind equalization uses the fourth-order cumulant of the received signal

to extract phase information about the channel in order to perform the required

blind equalization [16]. This class of algorithms is characterized by a high computa-

tional complexity and an initially fast rate of convergence that slows as equalization

progresses.

Recently, another blind equalization algorithm was introduced, known as the

decorrelation algorithm [24]. The algorithm is based on decorrelating the input to the

decision or threshold device (slicer) [24]. By doing so, the decision which is fed back to

control the tap weights is gradually improved and, hence, bootstrap the performance

of the equalizer. Therefore, for a zero-mean, independent identically distributed

(i.i.d.) data source, the channel introduces ISI (correlation), thus decorrelating the

input to the slicer will reduce the ISI at the equalizers output [24].

To increase the rate of convergence of the decorrelation algorithm, it was

shown in [24] that by minimizing the time-average weighted correlations, the decorre-

lation algorithm (in a decision feedback configuration) could be implemented using a

Kalman, or recursive least, algorithm. However, a disadvantage of this decorrelation-

based RLS algorithm, as with all RLS algorithms, is its complexity. For both the

traditional and decorrelation-based RLS algorithms, an M x M matrix must be

6

adapted and stored once per iteration, where Al is the number of equalizer tap coeffi-

cients. Thus, O (M2) operations (multiplications and divisions) must be performed

per iteration, where O (•) denotes order of. By contrast, both the LMS and decor-

relation algorithms have O (M) complexity in that their computational complexities

increase linearly with M.

The computational complexity of a given algorithm has a direct relationship

to the cost of constructing microprocessor-based hardware for use in the practical

implementation of these algorithms. When this cost is an issue of primary concern,

there is motivation to develop what are called fast algorithms for solving the recursive

least problem. A fast algorithm is one which conforms to following definition [18]:

An algorithm, is said to be fast if its computational complexity increases
linearly with the dimension of the adjustable weight vector.

A fast algorithm, then, would be one whose computational requirements are similar

to the LMS algorithm or the decorrelation DFE, for example.

With this definition in mind, it is both desirable and possible to reduce the

number of operations per iteration of the RLS-type algorithms to be proportional to

M

, while still maintaining its rapid rate of convergence. The mathematical basis of

the resulting fast recursive least algorithms is the exploitation of the shifting property

inherent in most sequential estimation (prediction) problems. In equalization, this

property expresses the fact that at each iteration the number of new samples entering

and old samples leaving the equalizer is not M, but a much smaller integer p. Falconer

and Ljung [10] were the first to recognize this and subsequently developed the Fast

Kalman algorithm. The fast Kalman, or fast RLS, algorithm provides a means for

the recursive updating of the Kalman gain vector used in the RLS algorithms without

explicit computation of the inverse correlation matrix of the channel.

Carayannis, et al. [5] and Cioffi and Kailath [7] took the fast Kalman algorithm

one step further and derived another member of this class of fast algorithms, referred

to as the fast transversal filter (FTF). The FTF structure, like the fast Kalman,

7

was originally derived as a means of reducing the computational complexity of the

traditional RLS algorithm. In fact, it has been shown that the FTF algorithm is

approximately forty percent more computationally efficient than the fast Kalman

algorithm [5, 7]. This class of algorithms differs from the fast Kalman in that it is

based, primarily, on an a posteriori error formulation. Furthermore, the FTF makes

better use of the relationships between the a priori and a posteriori errors. It is

through an exploitation of these relationships that the FTF algorithm is able to

further reduce the complexity of the fast Kalman algorithm. However, it should be

noted that both algorithms are classified as members of the same group—transversal

filter-based fast algorithms [7].

The FTF class of algorithms gets its name from the fact that the algorithms use

four separate transversal filters that share a common input. Like the fast Kalman, the

FTF algorithm uses a combination of a recursive forward linear predictor, a recursive

backward linear predictor, and a recursive computation of the Kalman gain vector

to recursively compute the desired tap weight vector.

Using a similar methodology, the decorrelation algorithm can be applied to

both the fast Kalman and FTF algorithms in order to reduce the computational

complexity of the decorrelation-based RLS algorithm. It will be shown in this work

that both the fast Kalman and FTF algorithms for decorrelation offer a comparable

reduction in complexity, while maintaining the high rate of convergence of the more

computationally complex decorrelation RLS.

A basic property of the fast transversal-based filters is that the algorithms are

recursive in time only. The length of the transversal filter is fixed. Any change

in the length of the filter results in a new set of filter coefficients that is totally

different from the previous set. Furthermore, the disadvantage of the fast Kalman

and fast transversal type algorithms is that they suffer from numerical instability in

finite precision environments. This is caused by the long-term accumulation of finite

8

precision errors which eventually makes the algorithms unstable and cause them to

diverge.

Several approaches to improve the resistance of these recursive least algorithms

to such instabilities have been proposed [18]. However, one possible solution is to

define an alternative structure for the filter. It is possible to develop an RLS lattice

filter by formulating the LS estimation problem in terms of linear prediction [41]. A

beneficial result of the development of the fast Kalman structure is the derivation

of the forward and backward prediction coefficients and prediction errors, typical of

those in a Levinson-Durbin type recursion. There is a direct relationship between

the Levinson-Durbin recursions for the linear predictor coefficients and the reflection

coefficients in the lattice filter. The lattice structure for adaptive equalization offers

several advantages over the fast transversal structures. First, the lattice filter is

order recursive. As a consequence, the number of sections that it contains can

be easily increased or decreased without affecting the reflection coefficients of the

remaining sections. Furthermore, the lattice coefficients have been found to have a

low sensitivity to the effects of finite precision [41]. However, a disadvantage of the

lattice structure is in its increased complexity. There is approximately a two-fold

increase in computational complexity over the fast Kalman algorithm, although the

lattice still maintains an O[M] complexity.

Like the fast transversal family of algorithms, there are many implementational

forms of the basic lattice filter structure, each differing in several ways. The two main

forms that will be dealt with are the application of the decorrelation algorithm to

the RLS lattice-ladder algorithm and the gradient lattice-ladder algorithm of [41]

and [40], respectively. Although the structure of the filter is the same in both cases,

the computational complexity of the gradient lattice-ladder is less than the RLS

lattice-ladder. The reason for this is that the reflection coefficients for the gradient

9

lattice are identical, while the forward and backward reflection coefficients for the

RLS lattice have to be updated separately.

The numerical stability problems of the fast transversal-based algorithms reveal

a problem that is not always evident in an analog, or infinite precision, environment.

The issue of finite-precision and the effect it has on the performance of an algorithm

(in terms of both numerical stability and numerical accuracy) is of direct concern if an

algorithm is to be eventually implemented in real-time hardware. The performance of

an algorithm is not truly known until an attempt is made to implement an algorithm

in real-time in a finite-precision environment. An algorithm that performs well in

simulation may, in fact, diverge when actually implemented in hardware [43]. In this

work, the decorrelation-based DFE will be implemented in real-time using a new

microprocessor-based system. Therefore, it will be necessary to better understand

the effect of a finite-precision environment on the decorrelation algorithm. In order

to do so, models for the quantization error will have to be studied and relevant

results applied to the decorrelation algorithm. To facilitate this study, the effects

of finite-precision on the decorrelation algorithm will be compared in relation to the

LUIS algorithm, for which much work on finite-precision modeling has been done

[4]. The SPROCIab Development System has, at its heart. a 24-bit, fixed-point

arithmetic microprocessor. Since fixed-point arithmetic is used in all implemen-

tations in the SPROC environment, it is within this context that the LMS and

decorrelation algorithms will be considered.

The thesis will be organized in the following manner: In Chapter 2, the system

parameters will be introduced. Namely, the DFE, the channel model, and the decor-

relation algorithm will be reviewed. In addition, the decorrelation-based DFE will

be implemented on the SPROC digital signal processor. In Chapter 3, a study of the

effects of finite-precision on the decorrelation algorithm will be made. To facilitate

the study, a review of the necessary finite-precision -models will be performed and a

10

comparison will be made with the limited-precision LMS. In Chapter 4, a review of

the Recursive Least Correlation (RLC) algorithm will be made. Then, two new fast

decorrelation algorithms will be proposed, derived, and simulated

-the fast Kalman algorithm for decorrelation (FRLC) and the fast transversal filter (FTF) for decorre-

lation. The performance (rate of convergence) of these new, fast algorithms will be

compared to that of the RLC. In Chapter 5, alternative fast structures for the decor-

relation algorithm will be discussed. The decorrelation algorithm will be incorporated

into existing RLS and gradient lattice structures in order to update the tap weights.

Simulation results and comparisons to the RLC algorithm are provided. Finally, in

Chapter 6, conclusions on the work presented in this thesis will be discussed, along

with areas of possible future research.

CHAPTER 2

THE SYSTEM

Before discussion of the main topics can begin, the problem statement must first

be formulated and background theory reviewed. Therefore, in this chapter, the

characteristics of the system and channel model under consideration will be proposed.

The effect of ISI in high-speed data communication systems and its removal through

the use of DFE's will be reviewed. As a means of comparison that will be used

throughout this work, background theory on the LMS algorithm will be presented.

Finally, a discussion of the decorrelation algorithm and its implementation in a blind,

decision feedback configuration using real-time hardware will be performed.

2.1 Channel Model

To better understand ISI from a mathematical perspective, consider the baseband

binary PAM system of Figure 2.1 [17], which will be the basic transmission system

considered in this work.

Figure 2.1 Model of Baseband Binary PAM System (without Equalization).

A binary data sequence {b(n)}, with each bit having a duration of T seconds,

is applied to the input of the system. The resulting output pulse waveform of the

11

12

pulse generator is

I (n) Σ a(k)p(n — kT) (2.1)
k

where p(n) is the shaping pulse of the pulse generator. The quantity a(n) is an

amplitude that corresponds to the identity of the input bit, b(n). For the PAM system

under consideration, polar or nonreturn-to-zero (NRZ) signalling will be assumed.

Therefore, a(n) is defined as

	a(n) = { +1, b(n) = 1 (2.2)

	

	
	{ -1, b(n) = 0

The modulated signal I (n) is then passed through a transmitting filter, with transfer

function, HT (f), to be sent over-a channel with transfer function, Hc(f). At the

input to the receiving filter, random noise, g(n), which can be modelled as zero-mean,

additive, white Gaussian noise (AWGN), is added to the output of the channel. The

received signal is passed through a receiving filter, with transfer function HR(f),

which is then sampled at multiples of the bit duration, kT. For purposes of this

work, the cascade of the transmit filter, channel, and receive filter can be modelled

as in Figure 2.2 (see [38] and [17]).

Figure 2.2 Discrete Channel Model.

In Figure 2.2, h(n) is a fading dispersive channel which can itself be modelled

as a non-recursive (moving-average) finite impulse response (FIR) filter with impulse

response

h(n) = Σ h(k)S(n — kT) (2.3)
k

13

where 6(•) is the Kronecker delta. The resulting signal is then passed through a

decision device (memoryless detector) to slice (threshold) the signal in order to

retrieve the original amplitude levels of a(n). In this work, the slicer will make

decisions on the received signal in the following manner:

x(n) = { 1 if
x(n)

> 0 (2.4)

{-1 if x(n) > 0

Therefore, the output of the receiving filter can be written as

x(n j) = Σ I(k)h(n — kT) + g(n) 	(2.5)

If the output of the channel, x(n), is sampled at instant nj=jT, (where j is an integer

for symbol-rate equalizers), then

x(n j) = Σ I(k)h(jT — kT) g(n j)

= I(j) + Σ I(k)h(j — k)T) + g(n j) 	(2.6)

The first term. I(j), represents the desired signal, since it can be used by the decision

device to identify the transmitted amplitude level. The second term represents the

residual effect of all other transmitted symbols. This residual effect is the ISI as

discussed earlier. The last term is the noise at instant nj. Note that in the absence

of ISI and noise,

x(nj) = I(j) 	(2.7)

and the jth transmitted symbol can be decoded correctly. However, the presence of

ISI and noise will introduce errors, in the form of incorrect decisions, at the slicer.

The purpose of the equalizer, therefore, is to remove the ISI and noise so that correct

decisions on the symbols can be made.

2.2 The Decision Feedback Equalizer and the LMS Algorithm

To remove the ISI from the received signal, several equalization structures have

been proposed [38]. One, simple, nonlinear equalizer that is particularly effective for

14

channels with severe amplitude distortion is the DFE [32]. The general structure of

the DFE is shown in Figure 2.3. Notice that the DFE consists of both a feedforward

and feedback filter.

Figure 2.3 Decision Feedback Equalizer.

The basic idea behind the DFE is to use the previous decisions on the incoming

data to cancel the interference contributed by symbols which have already been

detected. Therefore, if the values of the previously detected symbols are known

(where the past decisions are assumed to be correct), then the ISI contributed by

these symbols can be canceled exactly by subtracting weighted values of the past

symbols from the current channel output [38]. Note that if an incorrect decision

is fed back, the output of the DFE will reflect this error during the next several

symbols as the incorrect decision traverses the feedback line. As a result, there is a

greater likelihood of more incorrect decisions following the first one. This situation

is known as error propagation, and can have potentially catastrophic consequences

for the equalizer. Fortunately, on most typical channels, errors usually occur in short

bursts, which only degrade performance slightly [38].

For the purposes of this work, given the channel discussed in the previous

section, it can be shown (see [24] and [32]) that, in the absence of precursors, the

forward filter of Figure 2.3 is not needed. The feedback filter, W(z), will be sufficient

15

to cancel the ISI. Therefore, the DFE under consideration for this thesis is shown in

Figure 2.4.

Figure 2.4 Revised Structure of the Decision Feedback Equalizer.

Referring to Figure 2.4, it will be assumed that the input sequence, 1(n), is

a binary, white sequence with zero-mean, consisting of the elements {1,-1}, each

occurring with equal probability. Normalizing the impulse response of Equation 2.3

relative to the first cursor (h0), the output of the channel is given by

N

x(n) = I(n) + Σ hk (n)I(n — k). (2.

8)

k=1

The channel weights (post-cursors) { hi (n), h2 (n),..., hm(n)} introduce ISI on the

correct data. symbol, I(n). For the feedback filter, W(z), the impulse response is

given by

N

w(n) = I(n) + Σ hk (n)δ(n - kT) (2.

9)

k=1

where N is the number of taps. As can be seen from Figure 2.4, the input to the

slicer, yen), is give by,

N

y(n) = x(n) - Σ wk (n) y(n - k) (2.

10)

k=1

In vector form,

y(n) = x(n)Ŷ'N(n)WN(n) (2.11)

where Ŷ'N

(n)

= [ŷk-1, ŷk-2,, ŷk-N] is the vector of the past N decisions, W'

[wi(n), w2(n), • • . ,w/v(n)] is the vector of equalizer tap weights, and the superscript

16

(') denotes transposition. The question now concerning the DFE of Figure 2.4 is

how to update the tap weights of Equation 2.11 in an adaptive manner to cancel

the ISI from the current output of the channel. Perhaps the most popular of the

adaptive equalization algorithms is the LMS algorithm [44]. A review of the LMS

will be given, since comparisons between the LMS and the decorrelation algorithm,

discussed in subsequent sections, will become necessary throughout this work. The

following discussion is based on that presented in [44] and [18].

As a review, the LMS algorithm is a member of a larger family of stochastic

gradient-based algorithms which are capable of searching a multidimensional

performance surface for some desired global minimum. Its widespread use in adaptive

filtering stems from its inherent simplicity. As will he shown, the LMS requires

neither measurements of relevant correlation functions nor matrix inversions, which

are characterized with the steepest-descent algorithm. In the method of steepest

descent, changes in the tap weight vector WN(n) are made in a direction opposite to

that of the gradient vector, which is calculated according to the MSE performance

surface. Due to these corrections, the tap weight vector WN(n) will move down the

error-performance surface and eventually reach a stationary minimum, which is the

Wiener solution, Wopt = R-1p [18].

Since it is difficult to get an exact measure of the gradient vector at any point

on the performance surface, the LMS uses noisy estimates of the gradient vector in

order to update the tap weight vector WN (n). Therefore, instead of terminating on

the Wiener solution, Wopt, the estimate of the tap weight vector,

WN(n

). exhibits

a random motion around the minimum of the error-performance surface. An imple-

mentation of an adaptive filter is depicted in Figure 2.5.

Notice that the transversal filter of Figure 2.5 consists of an adaptive process by

which the set of tap weights is automatically adjusted. Furthermore, it consists of a

filtering process which involves the generation of an estimate of the desired response

Figure 2.5 Model of an Adaptive Filter.

formed from the inner product of the tap inputs and the corresponding tap weights.

An estimate of the error is also calculated by comparing the estimate of the desired

response with the actual value of the desired response. This estimate will, in turn,

he used in the adaptive process to update the tap weights. In Figure 2.5, the desired

response, d(n), is usually a data sequence known to the equalizer that is used to

train it. Once trained, the equalizer operates in a. decision-directed mode, using the

estimates of the desired response, d(n), in the calculation of the tap weights.

Let X(n) = [x (n), x(n - 1), . . , x(n — N + 1)]' denote the vector of length

N containing the N most recent samples of a single input sequence. Let W(n) =

[ω0(n), ω0(n),ω1(n),....ωN-1(n)]' denote, at time n, the N-length vector of tap weights.

Therefore, the output y(n), at any time n, of the transversal filter is given by

 N-i

y(n) = Σ ωk (n)x(n - k) = W'(n)X(n) = X'(n)W(n) .

(2.12)

k=0

Denoting the desired response at time n as d(n), the estimation error between the

desired response and the output of the filter (which is an estimate of the desired

17

18

response) is

e(n) = d(n) — y(n) = d(n) — W'(n)X(n) = d(n.) — X.'(n)W (n) 	(2.13)

If the estimation error is squared,

e2(n) = {d(n) — W'(n)X(n)}2

=

d2 (n) — d(n)XI (n)W(n) — d(n)

 W'

(n)X(n)W'(

n

)X(n)X'(

n

)W(

n

)

= d2 (

n

) — 2

W'(n)X(n

)d(n) +

 W'(

n

)X(

n

)X'(

n

)W (

n

) . (2.14)

Taking the expectation of both sides of Equation 2.14 yields the MSE,

J (W) = ε[e2

(n

) = ε[d2(n)] — 2W'(n)ε [X(n)d(n)]

	+

W

'(n)ε[X(n)

X

'(n)]W(n) 	(2.15)

where ε (.) represents expectation. Define the autocorrelation matrix R of the input

signals as

R = ε[X(n)X'(n)] 	 (2.16)

and the cross-correlation vector p between the input signal vector and the desired

response as

p = ε [X(n)d(n)] . 	(2.17)

Thus, the MSE can he written as follows (where, for convenience, the time-index n

has been dropped)

	

J (W) = σd2 -- 2W'p + W'RW 	(2.18)

where σd

2

 is the variance of the desired response, d(n). Notice from Equation 2.18

that the MSE is a quadratic function of the tap weights. Therefore, the dependence

of the cost function J on the tap weights can be visualized as a bowl-shaped surface

with a unique minimum [44, 18]. This surface is referred to as the error performance

surface of the transversal filter of Figure 2.5. As discussed previously, the adaptive

process will continuously adjust the tap weights in order to seek out the bottom

19

(minimum) of the bowl. In other words, the adaptive process seeks to minimize the

MSE [18].

If the MSE function of Equation 2.18 is differentiated with respect to the tap

weight vector, the gradient of the error performance surface can be obtained. Conse-

quently,

V (J (W)) --2p + 2RW . 	 (2.19)

Recall that according to the method of steepest descent, updates to the tap weight

vector are proportional to the negative of the gradient vector. Accordingly, the tap

update equation for the steepest-descent can be written as

W(n + 1) = W(n) + 1/2µ [- V (J (W))] 	(2.20)

where it is a scalar quantity which controls both the stability and rate of adaptation

(convergence) of the equation. Substituting Equation 2.19 into Equation 2.20 gives

the algorithm for the method of steepest descent:

W(n + 1) = W(n) + µ [p — RW] 	(2.21)

To derive the LMS algorithm, an estimate of the gradient vector will be used.

From Equation 2.21, substituting instantaneous estimates of R and p would result

in one form of estimate for the gradient vector [44]. Define,

Ȓ(

n

) = X(

n

)X'(

n

) 	 (2.22)

and

p(n) = X(n)d(n) 	 (2.23)

Therefore, the instantaneous estimate of the gradient vector would be

	

V (J (W)) = —2X(

n

)d(

n

) + 2X(n)X'(n)Ŵ(n) 	 (2.24)

where, again, VV(n) is the estimate of the tap weight vector. From Equation 2.21,

	Ŵ(

n

 + 1) = Ŵ (

n

) + µ (n) [d(n) — X'(

n

)Ŵ (

n

)] 	 (2.25)

Ŵ(n + 1) = Ŵ (n) + µX(n)e(n) (2.26)

20

Substituting the estimation error, as defined in Equation 2.13, into Equation 2.25,

the LMS algorithm can be written as follows:

where the second term on the right-hand side of Equation 2.26, µX(n)e(n), is the

correction or update term applied to the current estimate of the tap weight vector,

Ŵ (

n

). The term X(n)e(n

)

 of the update expression is the noisy estimate of the

gradient vector. Because of this noisy estimate, the LMS algorithm will exhibit a

random walk motion around the minimum of the error-performance surface [44].

The rate of convergence of the LMS algorithm is highly sensitive to variations in

the step size parameter, µ. If the step size is too small, the algorithm is said to be

overdamped in that the trajectory of the tap weight vector follows a continuous path

[18]. However, if the step size is too large, the algorithm is said to be underdamped

in that the trajectory of the tap-weight vector exhibits an oscillatory behavior [18].

As a final note, recall that the use of the LMS-based adaptive equalizer requires

the need for a training sequence to allow the equalizer to learn the characteristics

of the channel. It is this reason that distinguishes equalizers of this type from their

blind counterparts. Blind equalizers, as previously mentioned and for which the

decorrelation-based DFE will be discussed, are able to adapt to the given channel

without any such training.

2.3 The Decorrelation Algorithm

The algorithm under consideration in this work is a new, blind adaptive equalization

algorithm that is based on decorrelating the input to the slicer of Figure 2.4 [24]. In

doing so, the decisions which are fed back to control the tap weights are gradually

improved and, hence, bootstrap the performance of the equalizer. Therefore, for a

zero-mean, i.i.d. data source, since the channel introduces ISI (i.e., correlation), then

decorrelating the input to the slicer will reduce the ISI at the equalizer's output [24].

wk (n + 1) = wk (n) + µε [y(n)y(n -- k)] (2.27)

21

In order to cancel the ISI, at the input of the slicer y(n)=I(n) and the sequence

{Y(n)} will be uncorrelated. In other words, ε [y(n)y (n — k)]=0 for k ≠ 0 at the input

to the slicer. It was shown in [24] that decorrelation of the slicer's input is a necessary

and sufficient condition for the ideal cancellation of ISI. Therefore, the decorrelation

of the slicer's input can be used as a criterion for controlling the update algorithm

for the tap weight vector W [24].

Using the method of steepest descent, as discussed in the previous section, and

the aforementioned decorrelation criterion, the tap weights of the feedback filter can

be updated according to

where k=1,2,......N. The step size parameter, µ, controls the stability and rate of

adaptation (convergence) of the algorithm, in a manner similar to that discussed with

the LMS algorithm. For a digital implementation of Equation 2.27, an instantaneous

estimate of the expectation can be used. Therefore, the update equation given in

Equation 2.27 can be realized as

 wk (n + 1) = wk(n) + µy(n)y(n -k)] (2.28)

where, again, k=1, 2, 	N. It was shown in [24] that Equation 2.28 will converge in

the mean, so that the mean value of wk will converge to the corresponding channel

parameter hk . Furthermore, an extensive discussion of the transient and steady-state

performance, convergence in the mean, sufficiency, and the global admissability of

the decorrelation algorithm can also be found in [24]. Bounds on the probability of

error of the decorrelation-based DFE were derived in [23]. The derivation and proof

of the transient and steady-state performance, as well as the error performance, of the

blind decorrelation-based DFE are beyond the scope of this work and the interested

reader is referred to the respective references.

Equation 2.28 can be written in vector form as follows:

 WN(n + 1) = WN(n) + µy(n)YN(n) (2.29)

where YN(n) = [yn-1, yn-2,....., yn-N] is the vector of past inputs to the slicer,

WN(n) = [w1(n), w2(n), , WN(n)] is the vector of tap weights, and y(n) is the

current input to the slicer, given by Equation 2.11. A representation of the decorre-

lation algorithm of Equation 2.29 implemented in a decision feedback configuration

is shown in Figure 2.6.

Figure 2.6 Decorrelation-Based DFE.

2.3.1 Real-Time Hardware Implementation of the Decorrelation Algorithm

In [24], numerous simulations with a blind, decorrelation-based DFE were performed

and shown to effectively remove the ISI imposed by the channel. Therefore, further

simulations in this work will not be performed. However, using a new microprocessor-

22

23

based system, the decorrelation-based DFE of the previous section will be imple-

mented in real-time hardware.

In traditional approaches to the implementation of signal processing algorithms

in hardware using digital signal processing (DSP) chips, lengthy software code must

he written. The effect of the sometimes arduous coding effort is the lengthy extension

of the product development period. A way to circumvent many of the drawbacks of

DSP's is to use a system-level design approach. Star Semiconductor's SPROC (Signal

PROCessor) digital signal processor follows this approach. The SPROCIab Devel-

opment System allows the engineer to enter a design at the system level via signal-flow

diagrams, using cells from a cell library of hundreds of system building blocks. Once

the signal flow diagram has been entered, the SPROC system analyzes the diagram

and produces executable code for the SPROC DSP. Since the SPROC DSP is a RAM-

based DSP (essentially, an erasable, programmable, read-only-memory (EPROM)),

the executable code generated by the development system is used to dynamically

program (burn) the actual SPROC chip. The advantage to using an EPROM DSP

is that modifications to the system design can be made quickly, easily, and in an

extremely efficient manner. Multiple hardware configurations can be tested and

judged without the need for the creation of separate, dedicated ROM-based DSPs.

Consequently, the SPROC chip can reduce production time from many months to,

quite literally, a few minutes.

The microprocessor at the heart of the SPROClab Development System is a

24-bit, fixed-point arithmetic machine. Fixed-point numbers; x (n), in the SPROC

environment are defined by the limit, — 2.0 ≤ x(n) < 2.0. As will be discussed in

Chapter 3, this restriction poses several problems to the successful implementation

of the decorrelation-based DFE of Figure 2.6. Overflow and the accumulated effects

of the finite-precision environment can affect the convergence of the tap weights

catastrophically (i.e., divergence). In any fixed-point, finite-precision machine, the

24

finite register lengths can create severe overflow problems in performing basic mathe-

matical operations such as addition and multiplication if care is not taken to properly

scale all relevant data. More on this subject will be discussed in Chapter 3.

To test the real-time performance of the decorrelation algorithm, the decorrelation-

based DFE of Figure 2.6 was implemented in SPROC. The SPROC-based decorre-

lation DFE is shown in Figure 2.7.

Figure 2.7 SPROC Implementation of Decorrelation-Based DFE. 2
5

H(z) = 1 + 0.5z-1 — 1.44z-2 (2.30)

Figure 2.8 Learning Curve of the Tap Weights of SPROC-Based Decorrelation DFE.

In this particular system-level design, the i.i.d. source, channel, and equalizer

were all implemented together on chip in order to facilitate experimentation. For the

decorrelation DFE under study, the following non-minimum phase channel was used

where the step size parameter, IL, was set equal to 0.001. Note from Figure 2.7

that each icon represents one piece of assembly-language code. The SPROCIab

Development System is able to take these individual pieces of code and generate a

complete program, which it then burns into the actual SPROC chip. Notice from

Figure 2.7 that a scaling factor of 0.25 has been included in order to prevent overflow.

The selection of the proper scaling factor will be discussed extensively in Chapter 3.

In the first several examples of the SPROC-based decorrelation DFE, the white,

Gaussian noise pictured in Figure 2.7 will not be added to the output of the channel.

Consequently, the learning curve of the tap weights of the SPROC-based decorre

lation algorithm is shown in Figure 2.8. As can be seen in Figure 2.8, both tap

26

27

weights converge to the appropriate values of w1 =0.5 and w2 =-1.44, respectively. In

Figure 2.8, as well as in the other learning curves presented in this chapter, the high

rate of speed at which the SPROC-based algorithm converged for µ=0.001 (less than

one second) precluded the taking of relevant data. Therefore, it was necessary to

decrease the step size to µ=0.0001 in order to generate the necessary learning curves.

Lastly, since the SPROC chip is rated at a clock speed of 50 MHz, there is a large

discrepancy between the clock speed of the microprocessor and the rate at which the

computer receives samples of the data through its serial port (9600 hits per second).

Since the computer only receives a fraction of the total number of data samples from

the SPROC's output, the actual number of iterations before convergence is much

higher. The learning curves of the SPROC-based DFE are meant to show that the

decorrelation DFE is able to converge; not how fast nor how long it takes to do so.

For the SPROC implementation, an appropriate measure of the algorithm's

performance is given by considering the learning curve of the MSE between the

equalized data signal, y (n), and its estimate (decision), y(n). The estimate of the

residual ISI power is obtained by passing the sequence of instantaneous squared errors

(y(n) — y(n))2 (see Figure 2.6) through a smoothing filter whose transfer function is

given by 0.05/(1 — 0.95z-1) [20]. According to [20], this will provide a sense of recent

average performance of the decorrelation-based DFE. Figure 2.9 shows the learning

curve of the MSE of the SPROC-based decorrelation algorithm of Figure 2.7.

Notice from Figure 2.9 that the error does indeed appear to converge to zero. In

actuality, the residual MSE oscillates around zero at a proximity that varies anywhere

between ±10 -4 and ± 10-5. This residual MSE occurs as a result of implementation

in a finite-precision environment. In infinite-precision simulations of the decorrelation

algorithm, the MSE has been shown to decay to true zero [24]. For purposes of

discussion of the real-time implementation of the decorrelation algorithm, references

to convergence to zero will mean effectively to zero.

28

Figure 2.9 Learning Curve of MSE of SPROC-Based Decorrelation DFE.

In performing the previous tests, the tap weights were initialized to zero. The

question arises as to whether the algorithm can still converge if the tap weights are

initialized to any finite value, not including zero. To study this question, the same

non-minimum phase channel was used, but with the first tap weight initialized to -0.5

and the second tap weight to +1.44. This can be done in the SPROClab environment

by writing the initial values to the appropriate data locations prior to running the

algorithms. The learning curve of the tap weights for non-zero initial conditions is

shown in Figure 2.10.

Notice in Figure 2.10 that even with arbitrary initial conditions, the decor-

relation algorithm is still able to converge to the correct tap weights, although the

convergence time appears longer than that in Figure 2.8. The corresponding learning

curve of the MSE for non-zero initial conditions is shown in Figure 2.11.

From Figure 2.11 it is again evident that the error does indeed converge to zero,

as before. However, this convergence appears to take longer than in the corresponding

MSE of Figure 2.9. In comparing the convergence rate performance of Figures 2.9

29

Figure 2.10 Learning Curve of Non-zero Initialized Tap Weights.

and 2.11, the algorithm converges for any given initial state, thus the algorithm is

said to be globally convergent [20]. This agrees well with the findings and simulations

of [24].

As a final demonstration of the SPROC-based implementation of the decorre-

lation algorithm, white, zero-mean, Gaussian noise with variance 0.001 (a signal-to-

noise ratio (SNR) of 30 dB) will be added to the output of the channel. The learning

curve of the tap weights, which are both initialized to zero, is shown in Figure 2.12

and the corresponding MSE is shown in Figure 2.13. In comparison with

the previous learning curves, the addition of AWGN does not pose a burden for the

decorrelation algorithm. Convergence of the DFE still occurs, although it appears

to take longer than in the non-noise case. Furthermore, close inspection of Figure

2.13 reveals that the MSE does exhibit a small oscillation around zero. This is a

direct consequence of the addition of the AWGN to the channel. It should be noted

that the feedback filter is effectively removing the ISI, since the MSE does converge

to zero. However, because no forward filter is being used, the AWGN is not being

30

Figure 2.11 Learning Curve of MSE of SPROC-Based Decorrelation DIVE.

effectively removed and its residual presence is the cause for the minor fluctuations

in the MSE after the MSE has converged.

Figure 2.12 Learning Curve of the Tap Weights of SPROC-Based Decorrelation
DFE with AWGN.

Figure 2.13 Learning Curve of MSE of SPROC-Based Decorrelation DFE
with AWGN.

31

CHAPTER 3

THE DECORRELATION ALGORITHM AND FINITE-PRECISION

Throughout the main body of this thesis, the derivations of all the relevant algorithms

are considered in an analog, or infinite precision, environment. However, in any

digital realization, whether hardware or software, the effects of the finite word-

length of the registers can alter the performance (i.e., convergence) of the algorithm.

Therefore, in this chapter, the effect of a finite-precision environment on the decor-

relation algorithm will be discussed. Models for the decorrelation quantization error

will be studied. In the previous chapter, the decorrelation algorithm was imple-

mented in real-time using the SPROC digital signal processing microprocessor. As

discussed, the SPROC chip is a 24-bit, fixed-point arithmetic machine. Since fixed-

point arithmetic is used in all implementations in the SPROC environment, it is

within this context that the LMS and decorrelation algorithms will be considered.

To facilitate this study, the effects of finite-precision on the decorrelation algorithm

will be compared in relation to the LMS algorithm, for which much work on finite-

precision modelling has been done [4].

3.1 Quantization Effects in Adaptive Algorithms

In implementing an algorithm in a finite-precision environment, there are several

areas in which the effects of finite-precision can introduce errors. Suppose that a

number can be represented by b-bits. If two b-bit numbers are multiplied together, the

product will be a number which is 2b bits long. Therefore, for fixed-point arithmetic,

the product of two fixed-point fractions will remain a fraction, but to maintain a

limited register length the least-significant bits of the result must he either rounded

or truncated. Furthermore, the addition of two fixed-point fractions will not need

32

33

rounding or truncation. However, the magnitude of the resulting sum may exceed the

maximum allowable fixed-point number. This overflow can be prevented by properly

scaling the incoming data. Note that in the SPROC environment, all numbers and

results of arithmetic operations are rounded to fit the 24-bit registers. Consequently,

only the quantizing errors due to rounding will be studied.

Specifically, considering the implementation of adaptive algorithms in finite-

precision environments such as SPROC, the error in the steady-state output of either

the LMS or decorrelation algorithms due to the effects of finite word-lengths can be

confined to three areas. First, there will be an error due to the quantization of

the input data.. In the implementation of the decorrelation algorithm considered

in this thesis, since the input data is binary (consisting of +1, each occurring with

equal probability), this quantization error will not present any appreciable problem.

Second, an error can occur due to the rounding of the arithmetic (summation)

operations in calculating the output of the equalizer. Since only fixed-point numbers

are being added, the result will also be a fixed-point number. However, care must

be taken to prevent overflow from occurring in these arithmetic operations. In the

SPROC environment, for example, this is a critical issue in any design implemen-

tation. Overflow can catastrophically affect the performance of any algorithm in that

convergence of the tap weights will never occur. A scaling factor for the decorrelation

algorithm will now be derived so that errors due to overflow can be neglected in the

forthcoming quantization model.

The requirement for scaling in the SPROC environment, and, therefore, any

similar fixed-point environment, for an adaptive equalizer has been found to be

dependent on the channel. As noted earlier, the cascade of the transmit, channel,

and receive filters is modelled as an FIR filter with impulse response

h(n) ΣN h(k)σ(n — k) (3.1)
k=0

Taking h(0)=1,
N

0 ≤ Σ │h(k)│< 1.0 . (3.8)
k=1

34

where 6(.) is the Kronecker delta and h.(0)=1 can be taken without loss of generality.

The input to the channel, 1(n), is assumed to be a binary white sequence with

zero-mean. Therefore, the output of the channel, x(n), is given by

N

x(n) = 	Σ h(k)I (n — k) . (3.2)
k=0

Given the representation of fixed-point numbers in the SPROC environment, overflow

will be prevented so long as the channel output lies within the following limits:

— 2.0 ≤ x(n) < 2.0 .

(3.3)

Therefore, for the magnitude of the channel output

0.0 ≤ │ x(n)│< 2.0 .

(3.4)

Since

N N

x(n) = 	│Σ │ h(k)I (n — k)│≤ Σ │ h(k)││ I (n — k) │ (3.5)
k= 0 k=0

the channel output is bounded by

N

0 ≤ Σ │h(k)│< 2.0 (3.6)
k= 0

As has been done in the literature [13], to a first-order approximation, 1/(n — 	1

can be replaced by its RMS value, Irms. Since the input sequence is binary (polar),

the RMS value of the input data stream is unity. Accordingly,

N

0 ≤ Σ │h(k)│< 2.0 . (3.7)
k=0

Now, suppose that the sum of the channel weights does not meet the bound given

in Equation 3.8. Then a scaling factor, B, must be included in the bound to ensure

compliance. Therefore,

N

0 ≤ β Σ │ h(k)│< 1.0 . (3.9)
k=1

N

β < 1.0 / 	│Σ │h(k)│ . (3.10)
k=1

35

Consequently, an upper bound on the scaling factor for the SPROC, or any similar

finite-precision, implementation of the decorrelation algorithm is

This is a necessary and sufficient condition to prevent overflow. It should again he

emphasized that although this bound was derived in lieu of the decorrelation

algorithm implemented using SPROC, this bound will apply to any adaptive

equalizer implemented in a similar fixed-point environment using the aforementioned

channel and input. It should also be mentioned that through experimentation it was

found that the use of a scaling factor which was about one-half that calculated in

Equation 3.10 worked best.

With the channel output assumed to be properly scaled so as to prevent

overflow, the third possible area in which quantization errors can result is in the calcu-

lation of the tap weight coefficients. The error clue to the deviation of the equalizer's

coefficients from the values taken when infinite precision is used will directly affect

the performance of the adaptive algorithm. It is for this reason that the quantization

effects in the calculation of the tap weights will be studied for both the LMS and

decorrelation algorithms.

3.2 Model and Statistical Properties of the Quantization Error

As discussed previously, when two fixed-point numbers are multiplied together,

the result must he rounded to fit the designated register length. In the following

discussion, each data sample and filter coefficient is to he considered as being repre-

sented by B bits, including sign (in SPROC, for example, 23 bits plus one for sign).

Therefore, the least significant bit (LSB) is 2-B. Note that 2-B is referred to as

the width of quantization, ∆, since the fixed-point numbers are quantized in steps

of 2

-B

 [34]. Since rounding involves choosing the closest quantization level, the

er (n) = Q[x (n)] - x(n) (3.11)

-1/2 * 2-B < er(n) < 1/2* -B (3.12)

36

maximum error has a. magnitude of 1/2 *2-B=2-B-1. In order to study the effects of

this rounding error, the quantization error is usually modelled as an additive noise

to the unquantized value of the input quantity [34].

Denote Q[x(n)] as the number after quantization and x(n) as the number before

quantization. Therefore, the rounding error, er (n), is given by

The model of the quantization process is shown in Figure 3.1.

Figure 3.1 Model of the Quantization Process.

Since er (n) can be either positive or negative, the rounding error is in the range

The quantization process is depicted graphically in Figure 3.2.

It is assumed that if a number lies exactly in the middle of a quantization level,

the number is rounded up. It can be readily seen from Figure 3.2 that one of the

effects of the quantization error is the introduction of nonlinearities in the system,

which, in some cases, can cause the system to become unstable [34]. The quantity

x(n) can fall into any of the quantizer levels of Figure 3.2. Therefore, the rounding

error is usually modelled as a random variable that is uniformly distributed in the

ranges given by Equation 3.12 [34]. With ∆=2-B, the probability density function

of the quantization error is shown in Figure 3.3. With reference to Figure 3.3, the

Figure 3.2 Graphical Representation of the Quantization Process.

Figure 3.3 Probability Density Function of the Quantization Error.

mean of the error due to rounding is

me = er [er (n)] = ∫ ∆/2-∆-2 eper(n) (e) de = 1/∆ ∫ ∆/2-∆-2 e de = 1/∆ e2/2] ∆/2-∆-2 = 0 . (3.13)

The variance of the error due to rounding is

σ2e = ε [er (n)-me)2] = ε [e2r (n)] = ∫ ∆/2-∆-2 e2per(n) (e) de = 1/ ∆ ∫ ∆/2- ∆-2 e2 de

= 1/∆ e3/33] ∆/2-∆-2 = ∆2/12 = 2-2B/12 . (3.14)

As a summary of the previous discussion, it should be noted that in the

literature (see [34], [37]) several other assumptions on er (n) are made in order to

37

38

simplify the analysis of the effect of the quantization error due to rounding. These

assumptions are:

1. The error sequence er(n) is a stationary white noise sequence. In other words,

the random variables of the error process are uncorrelated.

2. The error sequence er(n) is uncorrelated with the signal sequence x(n).

These statements are made in conjunction with the previous assumption that the

error sequence er(n) is uniformly distributed in the range given by Equation 3.12.

Although these assumptions do not hold for many cases, the assumptions do hold if

the signal is sufficiently complex and the quantization steps are sufficiently small so

that the signal sequence z(n) traverses several quantization levels between successive

samples [34].

3.3 Performance of the Decorrelation Algorithm in the
Presence of Roundoff Errors: Digital Residual Error

One of the most important aspects of the limited precision implementation of

an adaptive filter is the numerical accuracy of the algorithm. The accuracy of a

given adaptive algorithm, implemented in a finite-precision environment, is given

in terms of the magnitude of the deviation from infinite-precision performance

[6]. Therefore, the smaller the deviation, the more accurate the implementation.

Numerical accuracy is strongly a function of the number of bits used in the imple-

mentation [6]. To compare the numerical accuracy of the LMS and decorrelation

algorithms, it will be necessary to introduce the concept of digital residual error.

Recall that the tap weight update equation of the LMS algorithm is given by

W(n+1) = W(n) µX(n)e(n) . 	 (3.15)

In a finite-precision environment, the tap weights will stop adapting when the

correction term, µX(n)e(n), is less than one-half the LSB of the registers. This is

39

referred to as the stalling phenomenon of the LMS algorithm [18]. As was stated

earlier, it is assumed that numbers falling exactly in the middle of a quantization

interval are rounded up. Referring to n = no as the time the it h tap stops adapting,

the following inequality will hold

│µe(n0)

x(n0-- i)│< 1/2 * 2-B = 2-B-1 	 (3.16)

where B is the total number of bits used to represent a number. Therefore,

│ µe(n0)

│ < 2-B

-1 /µ│ x(n0-- i)│ ≡ e d (µ) . (3.17)

The term ed (µ) is called the digital residual error (DRE) [13]. To a first approxi-

mation, │x

(n

0-- i

)

│ can be represented by its RMS value, Xrms [13]. Accordingly,

│ µe(n0)

│ < 2

-B-1/ µXrms ≡ ed (µ) . (3.18)

The DRE provides an upper bound on the magnitude of the deviation from the

ideal (infinite-precision). As can he seen from Equation 3.18, the DRE for the LMS

algorithm is inversely proportional to the step size parameter, it. Therefore, if tap

weight adoption ceases due to digital effects, the step size should be made as large

as possible (while still guaranteeing convergence) in order to minimize the DRE.

An equivalent result can also he derived for the decorrelation algorithm. Given

the tap weight update expression,

	

W(n+1) = W(n) µy (n)Y(n) . 	

(3.19)

the decorrelation algorithm will stall when the correction term, py(n)Y(n), is less

than one-half the LSB of the register. Referring to n = no as the time the ith tap

stops adapting, the following inequality for the decorrelation algorithm will hold:

│y(n0) y(n0-i)

│< 2

-B-1/µ ≡ ed (µ) . (3.20)

Note that since Xrms is bounded by unity, the expressions for the DRE of the LMS

and decorrelation algorithms are equivalent. To make the finite-precision analysis of

40

the LMS and decorrelation algorithms more tractable, the digital residual error will

offer a reasonable means of comparison of the finite-precision performance (numerical

accuracy) of the LMS and decorrelation algorithms.

3.3.1 Simulation Results for the Digital Residual Error

In order to experimentally confirm the previous findings concerning the performance

of the LMS and decorrelation algorithms in a finite-precision environment, a model

of the rounding (quantization) process occurring in the respective tap weight update

equations was developed. This model was used to simulate the quantization process

in a fixed-point environment, such as SPROC, via a computer program that would

allow the user to decrease the word-length used by the equalizer. The SPROClab

development system was not used to study finite-precision effects for the simple

reason that the system is already quantized to 24 bits. Consequently, if the bit-length

used in the SPROC-based equalizer was lowered, one would be studying the quanti-

zation of quantized numbers, not the quantization of infinite precision numbers.

Since the computer program allows the use of double precision arithmetic (effec-

tively infinite precision), all experimental results (except where noted) are gathered

from computer-based simulations. Results will be referred back to the SPROC-based

implementations when necessary.

As discussed previously, with proper scaling assumed, a finite-precision

environment will have the greatest effect on the tap weights. Therefore, any

quantization effects that occur as a consequence of the calculation of the tap weight

correction term (µX(n)e(n) and µy(n)Y(n), respectively) would be caused by

the corresponding multiplications that are rounded to fit the B-bit length of the

registers. The process to be studied can be represented mathematically for the LMS

and decorrelation algorithms, respectively, as follows:

41

Ŵ(n + 1) = W(n) + Q[µX(n)e(n)]

WM(n + 1) = WM(n)

+ Q [µX(n)YM(n)

]

where the process Q[.] is defined by Equation 3.11.

In the simulations, a program was written to implement the LMS and decor-

relation algorithms in a decision feedback configuration. The tap weight correction

terms were rounded according to the following algorithm:

cq =
INT [c* 2k + 0.5]

/ 2
k (3.21)

where c is the unquantized (infinite precision) tap weight coefficient, cg is the

quantized tap weight coefficient, and k is the desired bit-length of the registers.

The INT[.]

notation indicates the rounding to the nearest integer. All arithmetic

(summation) operations in the program were left unquantized since, as noted

previously, proper scaling is assumed. In the following simulations, the bit-length

used in computing the correction term will be decreased in order to determine the

digital residual error of the LMS and decorrelation equalizers. The equalizer being

studied is a simple one-tap implementation using a channel with a post-cursor of

h1 =0.67. The experimental results will be compared to the theoretical limits as

expressed in Equations 3.18 and 3.20. The step size parameter, µ, will then be

changed in order to determine the variation in the magnitude of the DRE and its

compliance to the aforementioned limits.

For ease of comparison, the results of the LMS DFE have been summarized

in Table 3.1. For the implementation of the LMS DFE, it was found that the tap

weight, w1 , was able to converge and settle on a particular value. The experimental

DRE is then the magnitude of the deviation of the converged tap weight from the

actual value of w1 =0.67. As can be seen in Table 3.1, the theoretical DRE provides

a good upper bound on the finite-precision performance (accuracy) of the LMS DRE.

42

As the bit-length is decreased, the DRE of the LMS DFE increases. Notice that at

very small bit lengths (less than ten bits), the DRE can indeed be made smaller by

increasing the step size. This agrees well with theory.

The results of the decorrelation DFE have been summarized in Table 3.2. It

should be stated that the tap weight of the decorrelation DFE performs differently

than the LMS, due to the nature of the decorrelation algorithm. The decorre-

lation tap weight, w1, does not settle on a particular value. Rather, it exhibits a

random fluctuation around ω1 = 0.67, as discussed in Chapter 2. Therefore, to

study the numerical accuracy of the decorrelation algorithm in a finite-precision

environment, several provisions had, to be made. First, the decorrelation DFE was

run for 15,000 iterations. To determine numerical accuracy, given a particular bit-

length, all tap weight values that fell within a given interval around 0.67 were summed

and their average value determined. For all hit lengths in Table 3.2, this interval was

0.67±(1000/∆). For 24 bits, the interval was 0.67+(10000/∆). The desired DRE

for the decorrelation algorithm, of Table 3.2, was then computed using a Monte-

Carlo averaging of 100 independent trials of the experiment. The DRE was then

calculated as the magnitude of the difference between this average DRE and the

actual tap weight value. Notice in Table 3.2 that even with infinite precision, the

decorrelation algorithm still exhibits a deviation from the actual tap weight value of

ω1 = 0.67.

From Table 3.2, it can he seen that the decorrelation algorithm performs in a

manner very similar to the LMS. As the bit-length of the environment is decreased

the DRE subsequently increases. Furthermore, the theoretical DRE also provides a

good upper bound on the residual error. Notice that at low bit-lengths (less than ten

bits), the DRE of the decorrelation algorithm, like that of the LMS, can be decreased

by increasing the step size. This agrees well with theory.

43

By comparing the results of Tables 3.1 and 3.2, it can be seen that the decor-

relation algorithm is at least as robust as the LMS algorithm in the presence of

a finite-precision environment. The effect of the quantization error can, in both

algorithms, he reduced by increasing the step size. This concept seems to contradict

the conventional notion that the step size should be decreased in order to improve

the performance of the algorithm [6]. However, in a digital implementation, it is

necessary to achieve a balance between performance and numerical accuracy that is

not usually required in an infinite-precision environment.

Table 3.1 Digital Residual Errors of the LMS DFE.

WORD LENGTH
(BITS)

STEP SIZE DRE
(experimental)

DRE
(theoretical)

∞ 0.1 0.0 0.0
24 0.1 2.8133392 x 10-7 2.9802322 x 10-7
22 0.1 1.1157989 x 10-6 1.1920928 x 10-6
20 0.1 4.6920776 x 10-6 4.7683715 x10-6
18 0.1 1.7089843 x10-5 1.9073486 x 10-5
16 0.1 6.2866211 x 10-5 7.6293945 x 10-5

14 0.1 2.6123046 x 10-4 3.0517578 x 10-4
12 0.1 0.0010546875 0.0012207031
10 0.1 0.003984375 0.0048828125
8 0.1 0.01765625 0.01953125
8 0.05 0.0371875 0.0390625
8 0.5 0.00203125 0.00390625
6 0.1 0.07625 0.078125
6 0.05 0.154375 0.15625
6 0.5 0.01375 0.015625

Table 3.2 Digital Residual Errors of the Decorrelation DFE.

WORD LENGTH
(BITS)

STEP SIZE DRE
(experimental)

DRE
(theoretical)

∞ 0.001 1.8897554 x 10-5 0.0

24 0.001 3.7844416 x 10-5 2.9802322 x 10-5
22 0.001 3.2527589 x 10-5 1.1920928 x 10-4

20 0.001 5.4807156 x 10-5 4.7683715 x 10'

18 0.001 2.1144686 x 10-4 1.9073486 x 10-3
16 0.001 1.4475860 x 10-3 7.6293945 x 10-3

14 0.001 7.4792925 x 10-3 3.0517578 x 10-2
12 0.001 0.02309694 0.12207035

10 0.001 0.17090000 0.48828125

8 0.001 0.39714725 1.953125
8 0.005 0.0134619 0.390625

8 0.01 0.006340341 0.1953125
6 0.001 0.67 7.8125 6

0.005 0.2429903 1.5625

6 0.01 0.0116528 0.78125

44

CHAPTER 4

RAPIDLY CONVERGING ALGORITHMS FOR DECORRELATION

In the design of blind, adaptive equalizers, there are many criteria by which the

equalizers are judged and compared. The two of most interest to this work are

complexity and speed of convergence. In the previous chapter, it was shown that

the decorrelation-based DFE converges, in the mean, to the correct tap weights.

The DFE of Figure 2.6 offers implementational simplicity at the cost of the rate at

which the equalizer converges. The complexity of this equalizer, and others like it,

is linear in that the number of operations (multiplications and divisions) that are

needed to update the tap weights is proportional to M, where M is the number of

tap weights. It is possible to dramatically increase the rate of convergence of the

equalizer by increasing the complexity of the implementation. This particular class

of Kalman, or RLS, algorithms has a complexity proportional to M2 . However, it is

possible to retain the speed of the Kalman algorithm, while maintaining an order of

M complexity. Two of the members of a computationally efficient class of algorithms

that will be dealt with in this chapter are referred to as the fast Kalman and FTF

algorithms. It will be shown in this chapter how the decorrelation algorithm can

be formulated and implemented in terms of an RLS equalizer and how this theory

forms the basis for the more computationally efficient fast Kalman and FTF type

equalizers.

4.1 The Kalman Algorithm for Decorrelation

To improve the convergence speed of the classical LMS equalizer, Godard [14]

suggested the use of the Kalman algorithm with equalization. The Kalman algorithm,

or RLS algorithm, minimizes the time-average exponentially weighted squared error,

45

46

where the error was defined as the difference between some desired signal (data) and

its estimate (see Figure 2.5). The exponential weighting factor was used to allow the

filter coefficients to adapt to the time-varying statistical characteristics of the data.

In other words, the most recent data points are given a heavier weight than the past

samples, which are eventually forgotten.

Referring to the blind DFE structure of Figure 4.1, the input to the slicer is

given by

y(n) = x(n) — Σn wk(n)ŷ(n — k), (4.1)
k=0

where x(n) is the input to the equalizer (output of the channel) at time n and the

wk(n)'s are the equalizer's weights. Equation 4.1 can be written in matrix form as

y(n) = x(n) — Ŷ'M

(n)WM (n)

,

] (4.2)

where Ŷ'M

(n) = [ŷn-1

,

ŷn-2 ...ŷn-M] and W' = [ω1(n) , ω2 (n) ,...ω 2

(n),....

,ωM

(n

)].

Figure 4.1 Decision Feedback Equalizer.

Using a philosophy similar to that expressed in [14], it was shown in [24] that

is possible to use the time-average exponentially weighted correlations as the cost

function to be minimized. It should he emphasized that this is possible due to the

inherent simplicity of the error function of the decorrelation algorithm. Therefore,

instead of decorrelating instantaneous realizations of the input to the slicer of

47

Figure 4.1 , the time-average weighted input is decorrelated, i.e., solve:

Σk=0λn-ky(n)YM(k) = 0

where Y'M(k) = [yk-1

,

yn-2 ...yk-M] and λ is a positive constant close to, but

less than, one. The quantity (1 — λ)-1 can be considered the memory of the

algorithm, where A=1 corresponds to infinite memory. An alternative approach

to the exponential weighting would be to use a finite-duration sliding window with

uniform weighting over the window length [37]. However, this method will not be

considered here. Therefore, proceeding as in [24], substituting for y(n) from Equation

4.2 and setting the weighted correlation time average to zero results in n

Σ λn-kYM(k)(x(k) — Ŷ'M(k)WM(n)) = 0 . k=0

Expanding the above equation and collecting terms yields

Σk=0 λn-kYM(k)Ŷ'M(k)

WM(n) = Σλn-kx(k)YM (k) .

Equation 4.3 can be written in matrix form as

WM(n) = R-1M.M(n)DM (n) 	 (4.4)

where the cross-correlation matrix of the vector of inputs and vector of outputs of

the slicer is given by

R

M.M =∆ Σk=0 λn-kYM(k)Ŷ'M(k) (4.5)

and the cross-correlation matrix of the current output of the channel and the vector

of inputs to the slicer is given by

DM(n) =∆ A Σk=0 λnn-k x(k)YM(k). 	(4.6)

Equation 4.4 involves the inversion of an M x M matrix, Rm,m(n). In the

following derivation, it will be convenient to develop a recursive relation for the cross-

correlation matrix,

R

M.M (n). Isolating the term corresponding to k=n from the rest

of the summation on the right-hand side (RHS) of Equation 4.5,

R

M.M = λ [Σλn-1-k Ŷ'M(k)] + YM(n)Ŷ'M(n) . (4.7)

However, by the definition of Equation 4.5, the expression inside the brackets of the

above equation is equal to the old cross-correlation matrix,

R

M.M(n-1) . Therefore,

the recursion for updating the value of the cross-correlation matrix is

R

M.M (n) = λRM.M(n-1) + YM(n)Ŷ'M(n) . (4.8)

Similarly, a recursive equation can be derived for the cross-correlation matrix,

DM(n), of Equation 4.6

DM(n) = λDM(n-1) + x(n)YM(n) . (4.9)

It is known that for any nonsingular matrix, A, and vectors u and v, the following

definition of the inverse of a matrix holds (assuming that A + uv' is nonsingular)

(A + uv')-1 = A-1 - A-1 - A-1uv'A-1/1+v'A-1u . (4.10)

Therefore, using Equation 4.10 in Equation 4.8, it is possible to derive a recursive

formula for R-1M.M (n) as follows:

R-1M.M (n) = 1/λ (R-1M.M (n-1) - R-1M.M (n-1)YM(n)R-1M.M (n-1)/λ + Ŷ'M(n)R-1M.M (n-1)YM(k) (4.11)

For convenience of computation, let

PM(n) =∆

R

-1M,M(n). (4.12)

It is also convenient to define the M x 1 vector, KM(n), referred to as the Kalman

gain vector, as

KM(n) = 1/λ + µM(n) PM(n-1)YM(n) (4.13)

49

where the scalar µM(n) is given by

µM(n) = Ŷ'M(n)

R

-1M.M(n-1)YM (n) .

(4.14)

Using the previous definitions, Equation 4.11 can he written as

PM(n)= 1/λ(PM(n-1)-KM(n)Ŷ'M(n)PM(n-1)) . (4.15)

In comparison with traditional Kalman filter theory, Equation 4.15 can be considered

the Riccati equation for the RLS with the decorrelation algorithm [18). Using

Equations 4.4 and 4.12, it is possible to write

WM(n)=PM(n)DM(n) . (4.16)

It is now necessary to develop an expression that solves Equation 4.16 recursively.

Therefore, substituting Equation 4.6 for DM(n) in the above equation results in

WM(n)=λ(PM(n)DM(n-1)+z(n)PM(n)YM(n) .

Substitute Equation 4.15 into only the first term on the REIS of the above equation.

WM(n)=λ [1/λ (PM(n-1) - KM(n)Ŷ'M(n)PM(n-1)]DM(n-1)
+x(n)PM(n)YM(n)

= PM(n-1)DM(n-1)- KM(n)Ŷ'M(n)PM(n-1)DM(n-1)
+x(n)PM(n)YM(n)

= WM(n-1) - KM(n)Ŷ'M(n)WM(n-1)+x(n)PM(n)YM(n)

It will be shown in the derivation of the fast Kalman algorithm that the Kalman

gain vector, KM(n), equals PM(n)YM(n). Using this fact in the last equality of the

above equation

WM(n) = WM(n-1)- KM(n)Ŷ'M(n)WM(n-1)+x(n)WM(n)KM(n)

= WM(n-1)- KM(n)(x(n)-Ŷ'M(n)WM(n-1)) . (4.17)

50

Define the a priori estimation error for decorrelation as

ηM(n) = x(n) - Ŷ'M(n)WM (n-1) (4.18)

since it has a form similar to that expressed in [18]. Consequently, substituting

Equation 4.18 into Equation 4.17 results in the desired recursive relationship for the

tap weight vector

WM (n-1) + ηM(n)KM (n) . (4.19)

The order that constitutes the time-average exponentially weighted decorrelation

algorithm is summarized below:

ΓM(n) = Ŷ'M(n)PM(n-1) (4.20) µM(n) = ΓM(n)PM(n) (4.21) KM (n) = PM(n-1)YM (n) / λ + µM(n) (4.22) µM(n) = x(n) - Ŷ'M(n)WM(n-1) (4.23) WM (n) = WM (n-1) + ηM(n)KM (n) (4.24) PM(n-1) = KM (n)ΓM(n) (4.25) PM(n) = 1/λ PM(n-1) - PM(n-1)) (4.26)

The algorithm can he initialized by setting WM(0)=0M and PM(0)=σIM, where

σ > 0. The algorithm of the previous section will subsequently be referred to in this

thesis as the Recursive Least Correlation algorithm (RLC), since it is based on the

application of the decorrelation algorithm to a recursive-least-type criterion [24].

51

The increased rate of convergence of the blind, adaptive, decorrelation DFE

based on the Kalman algorithm compared with the conventional decorrelation blind

DFE was shown in [24]. The RLC will be used as a measure by which the rate

of convergence of other rapidly converging algorithms may be gauged. Note that

the increased rate of convergence of the modified Kalman/Godard algorithm comes

at a cost of greater complexity, since the M x M matrix PM(n) must be adapted

and stored at each iteration. A measure of a particular algorithm's complexity is

usually given in terms of the number of multiplications and divisions per iteration

(MADPI) that are needed in order to update the tap weight vector [7]. Therefore,

the RLC algorithm of Equations 4.20 through 4.26 requires approximately 4M 2

+ ∆M + 2 MADPI. Thus, the RLC algorithm is said to have an order M2 (i.e.,

O (M2)) complexity. As a consequence of this trade-off between complexity and

speed, there has been a heavy emphasis on the search for rapidly converging, less

complex structures. The results derived in this section will form the basis by which

the more computationally efficient fast Kalman algorithm for decorrelation (FRLC)

and fast transversal filter (FTF) with decorrelation will be derived.

4.2 The Fast Kalman Algorithm for Decorrelation

In the last section, it was shown that by minimizing the time-average weighted

correlations, the decorrelation algorithm (in a decision feedback configuration) could

be implemented using a Kalman, or recursive least, algorithm, thereby significantly

improving the rate of convergence of the equalizer. However, a disadvantage of the

RLC algorithm, as with all recursive least-squares algorithms, is its complexity. For

the RLC, O (

M2

) operations (multiplications and divisions) must be performed per

iteration.

To reduce the complexity of the RLC algorithm, while still maintaining its

high rate of convergence, the decorrelation criterion will be applied to the more

52

computationally efficient family of fast transversal-based algorithms. The first of

these algorithms to be studied is the fast Kalman algorithm, originally derived

by Falconer and Ljung [10]. The mathematical basis of the resulting fast recursive least

algorithms is the exploitation of the shifting property inherent in most sequential

estimation (prediction) problems. In equalization, this property expresses the fact

that at each iteration the number of new samples entering and old samples leaving

the equalizer is not M, but a much smaller integer p. For this particular equalizer

application, p = 1. In referring to Figure 4.1, this shifting property corresponds to

the fact that at any time n the most recent output of the slicer, ŷ(n), enters the

feedback filter while the oldest slicer output, ŷ

(

n-M+1), leaves. The fast Kalman

(fast RLS) algorithm will provide a means for the recursive updating of the Kalman

gain vector of Equation 4.13 without explicit computation of the inverse correlation

matrix of Equation 4.15.

4.2.1 Reformulation of the RLC Algorithm

In order to show how the decorrelation algorithm ca.n be implemented in a fast

Kalman form, it. is necessary to reformulate the problem as expressed in the previous

section. Referring to the previous section, in order to update the tap-weight coeffi-

cients using the RLC algorithm, it is necessary to solve the following equation at

each iteration:

WM (n) = + R-1M,M(n)DM (n) . 	(4.27)

In the previous section, it was shown that the inverse autocorrelation matrix,

R-1M,M(n), can be obtained recursively as

R-1M,M(n) = 1/λ (R-1M,M(n-1) - KM (n)Ŷ'M(n)R-1M,M(n-1)) (4.28)

53

where KM(n) is the Kalman gain vector and Ŷ'M(n) = [ŷn-1, ŷn-2, ... , ŷn-M]. Postmultiplying Equation 4.28 by YM(n) = [ŷn-1, ŷn-2, ... , ŷn-M], R-1M,M(n) =

= 1/λ (R-1M,M(n-1)YM (n) - KM (n)Ŷ'M(n)R-1M,M(n-1)YM(n)). (4.29)

Recall that the Kalman gain vector was defined as (collecting terms)

R-1M,M(n-1)YM (n) = (λ + µM(n))KM (n). (4.30)

Substituting Equations 4.14 and 4.30 into Equation 4.29 yields

R-1M,M(n)YM (n) = 1/λ ((λ + µM(n))KM (n)µM(n)) = KM (n).

Therefore, as alluded to in the previous section, the Kalman gain vector can also be

defined as

KM (n) = R-1M,M(n)YM (n). (4.31)

The following sections will provide a recursive algorithm to calculate the

sequence of vectors

KM (n) = [Σnk=0 λn-kYM (k)Ŷ'M(n)]-1 YM (n) (4.32)

using a. number of operations proportional to M. The fast Kalman gain vector of

Equation 4.32 can then be used in place of the Kalman gain vector in the algorithm

presented in the previous section. The derivation of the algorithm is based on the

work done in [29].

4.2.2 Derivation of the Algorithm

Rewriting Equation 4.31 as

R-1M,M(n-1) = KM(n-1) = YM(n-1)

y(n) = x(n) — Σn wk(n)ŷ(n — k),

R-1M,M(n) = 1/λ (R-1M,M(n-1) - KM (n)Ŷ'M(n)R-1M,M(n-1)) (4.33)

54

suppose that Km(/), j = 0, . • • ,n - 1, have been determined. To find Km(n); define

RM,M(n)KM(n) = YM (n). (4.34)

To take advantage of the shifting properties of ŶM(n) and YM(n), it will be

convenient to introduce the augmented vectors

Ῡ(n) = YM+1(n) = [y(n-1)] =[YM(n)] (4.35)

 YM(n-1 [y(n-M-1)

and

Ŷ(n) = ŶM+1(n) = [ŷ(n-1)]=[ŶM(n)] (4.36)

 ŶM(n-1 [ŷ(n-M-1)

Consequently, the augmented cross-correlation matrix can be defined as

R(n)=RM+1,M+1(n) = Σnk=0 λn-kῩ(k)Ŷ'(k) . (4.37)

It should he noted that the augmented cross-correlation matrix can be represented

in matrix form as

R(n) = [π(n) S'M(n)] = [RM,M(n) QM(n)] (4.38)

 QM(n) RM,M(n-1)] [ŠM(n) π(n)

where

π(n) = Σnk=0λn-kŷ(k-1) (4.39) SM(n) = Σnk=0λn-kŶM(k-1)y(k-1) (4.40) QM(n) = Σnk=0λn-kYM(k-1)ŷ(k-1) (4.41) RM,M(n-1) = Σnk=0λn-kYM(k-1)Ŷ'M(k-1) (4.42)

and

π(n) = Σnk=0λn-k (k-M-1)ŷ(k-M-1) (4.43) ŠM(n) = Σnk=0λn-kŶM(k)y(k-M-1) (4.44)

55

QM(n) Σnk=0 λn-kYM(k)ŷ(k - M - 1) (4.45)

and RM,M(n) is given by Equation 4.5. Using the previous notation, it is shown in

Appendix A that Equations 4.33 and 4.34 are contained in the following expressions:

R(n) [0] = [p(n)] = Ῡ(n) + [p(n)-y(n-1)] (4.46) KM(n - 1)

 YM(n - 1) 0M
and

R(n) [KM(n - 1)] = YM(n) = Ῡ(n) + [0M] (4.47) 0

 β(n) β(n) - y(n - M - 1)

where 0M is the M-dimensional null vector. The scalars p(n) and β (n) are given by

p(n) = S'M(n)KM(n - 1) and β(n) = S'M(n)KM(n) . (4.48)

Before proceeding with the derivation, an important remark must be made

concerning the augmented correlation matrix of Equation 4.38. In the traditional

proofs of the fast. Kalman algorithm, i.e., those not based on the decorrelation

criterion, the derivation of the fast Kalman algorithm is much simpler (see [10],

[25], and [35]). The reason for this simplicity sterns from the fact that the aforemen-

tioned shifting property need only be applied to a single vector, comprised of the

input signal, X'M(n) = [x(n),x(n-1),.......,x(n-M+1). As result, in these more

traditional proofs, the augmented correlation matrix of Equation 4.38 is symmetric.

By using an identity for the inverse of a symmetric matrix which is itself composed

of square matrices on its diagonal, the derivation of the inverse of the augmented

(auto)correlation matrix becomes straightforward. In fact, most proofs first derive

order update recursions for the needed quantities and then fix the length of the filter

to get. the desired fast Kalman algorithm. However, since the current fast Kalman

derivation is based on the decorrelation criterion, the necessary symmetry of the

augmented correlation matrix is not present in Equation 4.38. Because the proof

given in this section cannot rely on this symmetry, it is necessary to derive the fast

Ṝ(n)K(n) = Ῡ(n) (4.49) Ṝ(n) [1] = [FM(n)] (4.50)

FM(n) 0M

56

Kalman in a manner which avoids it, hence, the need for an inductive proof of all

relevant quantities. This lack of symmetry will also play a major role in devel-

opment of lattice-based structures for the decorrelation algorithm. The use of lattice

structures with the decorrelation criterion will be covered in detail in Chapter 5.

4.2.3 Updating the Kalman Gain Vector

In view of the expressions given in the last section, a. vector K(n.) = KM+1(n) with

properties

will be calculated as an intermediate step before determining KM(n). From

Equations 4.46 and 4.47, it can be seen that it is only necessary to modify

0 [KM(n - 1)]

so that.

[p(n.) — y(n. — 1)
0M

on the right-hand side of Equation 4.46 is eliminated. To accomplish this, it will be

assumed that an M x 1 vector FM(n) is known, such that

where, it should be noted, Ym(n) is a scalar. Consequently, using the above

expression, it is shown in Appendix B that the following equality holds:

Ṝ(n) ∆= [1] = FM-1(n)[ρ(n)-y(n-1)] = [ρ(n) - y(n-1)] (4.51) FM(n) 0M

Therefore, using the following definition

Ṝ(n) ∆= [-FM-1 (n)[ρ(n) - y(n - 1)]
KM(n — 1) — FM (n)

-FM-1 (n)[ρ(n) - y(n

- 1) (4.52)

57

it is proved in Appendix C that it follows from Equations 4.46 and 4.51 that

 Ṝ(n)K(n) = Ῡ (n) (4.53)

Now, partition K(n) so that
K(n

) = [CM(n

)] (4.54)

cM (n)

where, it should be noted, cm (n) is a scalar. To go from Equation 4.49 to 4.47, it

will be necessary to eliminate cm(n) in Equation 4.54 without. affecting the upper

part of Y(n). In order to do this, a. vector D(n) = DM+1 (n) is required with the

following properties:

Ṝ(n)D(n) = [

0M] (4.55)

1

where

D(n

)

∆= [DM (n)] βM-1 (n)

and where βM-1(n) is a scalar. Then, subtracting D (n)βM

(n)

cM

(n

) from K (n) in

Equation 4.54 results in

[K (n) - D (n)βM

(n)cM (n)] = [[CM (n)] - [DM (n)βM (n)cM (n)]] CM (n) βM-1 (n)βM (n)cM (n) = [CM (n) - DM (n)βM (n)cM (n)]

0 (4.56)

Postmultiplying Ṝ(n) by K(n)-D(n)βM

(n)cM (n)

and using the relation of Equation

4.55.

	
Ṝ(n) [K(n

)

 — D(

n)βM (n)cM

(n)

] = Ῡ (n) - [0M] . 	(4.57)

β M(n) cM(n

)

It follows, then, from the second expression for Ṝ

(n)

 in Equation 4.38, together with

the definition in Equation 4.35, that

Ṝ(n) = λṜ(n — 1) + Ῡ(n)Ŷ1(n). (4.62)

58

Ṝ(n) [K(n) — D(n)βM(n)cM(n)]

= [RM.M(n) QM(n)] [CM(n) - DM (n)βM (nM (72)D
M(

n
)βM (n)cM(

n
)]

[ŠM(n) π(n)] [0]

= [RM.M(n) CM(n) - DM (n)βM (

n)cM(
n

)]]
[ŠM(n)[CM(n) - DM (n)βM (

n)cM(
n

)]]

= [YM(n)]] = ῩM(n) .

[y(n — M — 1)]

Inspection of the first row of the vector of Ῡ(n) in the last line of the above equation

reveals that

RM.M(n)[CM(n)

 —

D

M

(n)βM (

n)cM(
n

)] = YM (

n

). (4.58)

Furthermore, comparing Equations 4.58 and 4.34, it can be seen that

KM (n) = CM

(n)

 — DM (n)βM (n)cM (n) (4.59)

which completes the inductive step from n — 1 to n .

4.2.4 Updating the Auxiliary Variables

The matrices FM(n) and D(n) with the properties of Equations 4.50 and 4.55, respec-

tively, will now be determined. This will be done by means of induction. Therefore,

assume that the vectors FM (n — 1) and D(n — 1) are given, such that

Ṝ(n) [1] = [FM(n — 1)] (4.60) ṜM(n — 1) 0M

ṜM

(n — 1)D(n — 1) = [0M] . (4.61) 1

With the method used to derive Equation 4.8, Ṝ(n), as defined in Equation 4.37,

can be written using a recursive expression:

59

Therefore, together with Equations 4.35 and 4.36

[1] 	[1]
Ṝ(n) [FM(n-1)] = [λṜ(n-1) + Ῡ(n - 1) + Ῡ(n)Ŷ1(n)] [FM(n-1)]

= λṜ (n-1)

[1] 	

[FM (n-1)] + Ῡ(n) [ŷ (n)Ŷ'M(n - 1)] [1] [FM (n-1)]

 =

λ [FM (n-1)]

0M

+ [y(n-1)] (ŷ(n - 1) + Ŷ'M(n

)FM

(n

-1) . (4.63)

[YM(n-1)]

Postmultiplying both sides of Equation 4.46 by (ŷ(n. - 1)

Ŷ'M (n-1) FM (n-1)

) yields

Ṝ (n) [0] (ŷ (n - 1) + Ŷ'M(n - 1)FM(n - 1)) [KM (n-1) = [ρ (n

)] (ŷ(n. - 1)

Ŷ'M (n-1) FM (n-1))

[Y

(n

)] (4.64)

Consequently, subtracting Equation 4.64 from both sides of Equation 4.63:

Ṝ (n) [1] [FM (n-1) - KM (n-1)

(ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1))] = Ṝ (n

) [[1] - [0] (ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1))] [FM (n-1)] [KM (n-1)] = λ [FM (n-1)

] + [y (n. - 1)] (ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1)) [0M] [YM (n-1)] - [ρ (n

)] (ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1)) [YM (n-1)] = [λFM (n-1)

+ (y (n. - 1) - ρ

(n

)) (ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1))] . (4.65)

[0M]

Therefore, if Equation 4.50 is satisfied for n-1, then it will be satisfied for n provided

FM = FM (n-1) - KM (n-1)

(ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1)) . (4.66)

60

Furthermore, it will also be satisfied for n provided

FM (n) = λFM (n-1) + y (n-1) - ρ (n

)) (ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1)) .

(4.67)

Ṝ(n) [FM (n-1)] = [λṜ (n-1) + Ῡ(n - 1) + Ῡ (n)Ŷ1 (n)] [FM (n-1)] λFM (n-1)

+ (y (n. - 1) - ρ

(n

)) (ŷ (n. - 1)

+ Ŷ'M (n-1) FM (n-1))

For simplicity, define the following scalar

fM (n

)

 =

ŷ (n. - 1)

+ F'M (n-1)

ŶM

(n

-1) (4.68)

which will be used in Equations 4.66 and 4.67. Equation 4.68 will he referred to as

the a. priori forward prediction error for decorrelation, since it has a form similar to

that expressed in [18]. Furthermore, Equation 4.67 has a form similar to the sum of

weighted forward a posteriori prediction-error squares, as seen in [18). Equations 4.66

and 4.67 define the updating process for the matrix FM(n) and the scalar FM(n).

Now postmultiply Equation 4.62 by D(n — 1):

Ṝ(n)[D(n - 1) = λṜ(n - 1)D (n - 1)+Ῡ

(n)Ŷ' (n)]D (n-1) = λ[0M]+Ῡ(n)Ŷ' (n

)D(n - 1) . (4.69)

1

To obtain Equation 4.55, it will be necessary to eliminate the last vector on the right-hand side Equation 4.69 that is proportional to Ῡ (

n

). Therefore, subtracting 	

Ṝ(n)K(n)Ŷ'(

n

)D(n - 1)

from both sides of Equation 4.69:

Ṝ(n)[D(n - 1) - K(n)Ŷ'

(n

)D(n - 1)]

= λ[0M] + Ῡ(n)Ŷ'(n

)D(n - 1) - Ῡ(

n)Ŷ'(n

)D(n - 1) [1]

= λ[0M]. [1] (4.70)

Therefore, if Equation 4.55 is satisfied for n — 1 then it will be satisfied for n provided

D(

n) = 1/λ

(

D (n - 1) - K(n)Ŷ'

(n

)D(n - 1) (4.71)

Equation 4.71 represents the updating algorithm for

D (n).

61

The elements of D(n) are used only in the combination BM (n) Dm(n)/3m(n).

Therefore, it is more convenient to rewrite Equations 4.55, 4.71, and 4.59 in terms

of
B(n)=∆ D̳ (n)βM (n)∆ [̳BM (n)] (4.72) 1

which obeys

R (n)B (n) = [0M] (4.73) [βM(n)]

Then, as in Equation 4.70

R(n) [B(n-1) - KM(n

)Ŷ'(n)

B(n-1)] = = [R(n) [B(n-1)-CM(n

)Ŷ'(n)

B(n-1)] [1 - cM(n)Ŷ'(n)B(n-1)] (4.74)

where Equations 4.54 and 4.72 were used, along with the relation between D(n) and B(n)

. Consequently,

R(n) [B(n-1) -K(n

)Ŷ'(n)

B(n-1)] = λ [0M] (4.75) [βM(n -1)]

Therefore, postmultiplying Equation 4.75 with [1 — cM

(n)Ŷ'(n))B(n

-1)]-1 .

R(n)[[BM(n-1) [1-cM(n

)Ŷ'(n)

B(n-1) /1-cM(n

)Ŷ'(n)B(

n

-1)]] 1

= [0M]

[λβ(n-1) [1-cM(n

)Ŷ'(n)

B(n-1)]-1] (4.76)

Therefore, if Equation 4.72 is satisfied for n — 1 then it is satisfied for

n

 provided

BM(n) = BM(n-1) - CM(n

)Ŷ'(n)

B(n-1) / 1-cM(n

)Ŷ'(n)

B(n-1) (4.77)

and

BM(n) = λβM(n-1) / 1-cM(n

)Ŷ'(n)

B(n-1) . (4.78)

62

Using the definitions of Equations 4.36 and 4.72, Equation 4.77 can be written

as
BM (n-1)-CM (n)(

ŷ (
n-M)+)Ŷ'M (n

)BM (
n-1))/1-cM (n)(ŷ(n-M)+Ŷ'M (n)BM (n-1) (4.79)

Define the scalar

bM

(n)

 =

ŷ (
n-M) + Ŷ'M (n)BM

(
n-1) . (4.80)

Equation 4.80 will be referred to as the a. priori backward prediction error for decor-

relation, since it has a form similar to that expressed in [18]. Therefore, Equation

4.77 can he written as

BM(n -1)-- CM(n)bM(n)

βM(
n

) = 	 (4.81)
1 —cM

(n)bM(n

) 	

and, following a. similar methodology with the expression for /.3m(n), Equation 4.78

can be written as

BM(
n

) = λ BM(n
-1) /1 — c M(

n)bM(n

) . 	(4.82)

The algorithm is now complete. Given FM

(
n

-1) ,

BM (
n
-1)

,FM

(
n

-1) , and

KM(n — 1), a computation is performed in the order of Equations 4.66, 4.67, 4.52,

4.77, 4.54, and 4.59 in order to generate FM

(
n

) , BM

(

n), FM

(

n), and KM

(

n) .

As a final note on the derivation of the fast Kalman algorithm for decorrela.tion,

it should he mentioned that. the variables y

(
n

-1) . ŷ

(
n

-1) , YM

(
n

-1) ,

Ŷ'M (n)

and so forth appearing in these equations are known. However, because of the

asymmetry present in the augmented correlation matrix SM

(

n) of Equation 4.38, it,

will be necessary to store S(n) and update it at each iteration. With the method

used to derive the recursive expression for Equation 4.5, a similar technique yields

the following recursive expression for SM

(
n

) :

SM (
n

)

 =

λSM (n — 1)+Ŷ'M(

n-1)y(n

-1) . (4.83)

SM (
n

) will then be used to update p(n) in Equation 4.67.

63

4.2.5 The Algorithm

Let

y(n — 1) ŷ(n — 1) - 	(n — 1)
YM (

n

) = [:] and Ŷ M
(

n

) = [:

y (n — M — 1) 	 ŷ(n. — M — 1)

Then the quantity

n

YM(
n

)

= [Σ λn-kYM
(

k)]-1 = YM(

n

)

k=0

can he determined recursively as follows:

f M(n) = ŷ(n — 1) + F'M(

n

— 1)Ŷ

M

(

n

— 1) 	 (4.84)

FM(
n

) = FM(

n

 — 1) — KM(

n

— 1)fM(n) 	(4.85)

SM(
n

) = λSM(n — 1) +ŶM(n-1)y(n — 1) 	(4.86)

FM(
n

) = y (n — 1) — S'M(n)KM(n — 1) 	(4.87)

FM(
n

) = λFM(n — 1)+ gM(n)f M(n) 	(4.88)

F-1M(n)gM(n)

 KM+1

(
n

) = [KM(n — 1) + FM(n)F-1M (

n

)

gM(n)]

	

(4.89)

Partition

K

M+1

(
n

) as

KM+1(

n

) ∆̳[CM(n)]

[cM(n)] . (4.90)

	

Let

bM(n) = ŷ(n — M — 1) + B'M(n — 1)Ŷ

M

(n

) 	 (4.91) BM (n) (n — 1)

 — CM(

n

— 1)

CM(n

) BM

(n

) = 	(4.92)
1 — cM

(n)

)bM(n)

	

KM

(
n

) =

CM (n)

 — BM

(n

)cM(n) . 	(4.93)

The tap weight vector, WM

(
n

) , used in the RLC algorithm can then he updated

using the fast Kalman gain vector of Equation 4.93 according to

ηM = x(n) - Ŷ' M

(

n)W
M

(

n

-1)

WM

(

n
) = W

M

(

n
 — 1) + ηM(n)KM

(

n

)

The initial conditions can be taken as

KM

(0)=0

M

,

FM

(0)=0

M

,

SM

(0)=0

M

,

BM

(0)=0

M

,

WM

(0)=0

M

, and

FM

(0) = δ > 0.

4.2.6 Proof

The algorithm of Equations 4.84 through 4.93 follows the derivations given in

this section. Given

FM

(

n

 — 1),

BM

(

n

 — 1),

FM

(

n

 — 1), and

KM

(

n

 — 1), perform

Equation 4.66 = 4.84 ± 4.85 to determine

FM

(

n

). Then Equation 4.67 restores

FM

(

n

)

, which, by the use of Equations 4.86, 4.87, and 4.84 can be written as Equation

4.88. With

F M

(

n

)

 and .TAi (n.),

FM

(

n

)

 can be determined from Equation 4.52 =

4.91 + 4.92. Finally, updating

KM

(

n

)

 by Equation 4.59 is carried out in Equation

4.93, where it is again noted that

BM

(

n

)

 =

BM

(

n

)B1l (n).

4.2.7 Alternative Declaration of the Algorithm

Given the algorithm of the previous section, it is possible to rewrite the algorithm

into a form which can be condsidered as a type of Levinson-Durbin recursion. In

fact, Equation 4.85 can be considered as the declaration of the forward prediction

coefficients of a Levinson-Durbin recursion. Consequently, Equation 4.84 can be

considered as the forward prediction error and Equation 4.91 as the backward

prediction error of the same Levinson-Durbin-type recursion. All that is necessary

is to generate an equation, of the same form as Equation 4.85, that will describe the

backward prediction coefficients.

64

f M(n) = ŷ(n — 1) + F'M(

n

— 1) Ŷ'M(

n

— 1)

65

To accomplish this, recall from Equation 4.50 that the forward prediction coeffi-

cients can he written in matrix form as

[π(n) P'M(n)] [1] [FM(n)] (4.94) = [QM(n)
 RM,M(n — 1)] [FM(n)] [0M] 	

In a completely analogous development (as will be shown in subsequent sections).

the backward prediction coefficients can be written in a similar form to that seen in

Equation 4.94. Using the second equality for the augmented autocorrelation matrix

in Equation 4.38, the backward prediction coefficients can be written in matrix form

as follows:

[R'M,M (n)

Q
M (n)] [BM (n)

] [0M (n)]
= (4.95)
	

[Š'M (n) π (n)] [1] [BM (n)]

From Equation 4.95, the backward prediction coefficients can be defined as

BM(n) = - - R-1M,M(n)

Q

M

(n)

	

(4.96)

A recursive expression for the Mx1-dimensional vector Om(n) of Equation 4.45 can

be derived in a manner similar to that employed in the derivation of Equation 4.8.

Therefore,

QM

(n)

=

λQM(n-1)

+ ŷ(n - M - 1)YM

(n

). (4.97)

Substituting Equations 4.28 and 4.97 into Equation 4.96,

BM (n)

= - 1/ λ R-1M,M

(n

 — 1)

- KM (n)Ŷ'M (n)R-1M,M (n-1))QM(n

) = BM (n — 1)

- 1/ λ (λ + µM(n)) ŷ(n - M - 1)KM(n). KM(n)

— K

M (n) KM(n)Ŷ'M(n)BM(n-1) + 1/ λµM(n - M - 1)KM(n

)

= BM

(n

— 1) — K M (

n

)[ŷ(

n

- M - 1) + ŶMBM

(n

— 1)] = BM

(n

— 1) — K M (

n

)[ŷ(

n

- M - 1) + B'M(

n

— 1)ŶM

(n

)]

where Equations 4.14 and 4.30 were used in the second equality. Using Equation

4.91, B(n) can be written as

BM(n)

 = BM

(n

— 1)

 —

KM

(n)bM

(n

) (4.98)

66

This is the desired form for the equation for the backward prediction coefficients.

With Equation 4.98 now established, it is possible to restate the algorithm given in

the previous section. The revised algorithm is summarized below:

fm(n) = ŷ(n — 1) + F'M (n — 1)ŶM (n — 1) 	 (4.99)

bM (n) = ŷ(

n

— M — 1) + KM (n — 1)ŶM(n) 	(4.100) FM(n)

 =

FM(n

 — 1) — KM

(n

 — 1)fM

(n

) 	 (4.101)

FM(n)

 = λS

M

(n — 1) + ŶM

(n — 1)

y

(n — 1)

	 (4.102)

g

M

(n) = y(n

— 1)

 — S'M(n)KM(n — 1) 	(4.103)

FM(n)

 = λFM(n — 1) +

g

M

(n) fM(n) (4.104)

[CM(n) / cM(n)

] =

KM+1(n) =

[

0 / KM(n - 1)] + gM(n) / FM(n)

[1 FM(n)] (4.105)

KM(n)

=

CM(n) - cM(n)BM(n - 1) / 1 - cM(n)

bM(n) (4.106)

BM(n)

=

BM(n - 1) - KM(n)bM(n) (4.107)

where, in the derivation of Equation 4.106, Equation 4.93 was used together with

Equation 4.98. Thus, as can be seen by the equations of the previous two sections,

the fast Kalman algorithm uses forward and backward predictors to update the

Kalman gain vector as a new input decision ŷ(n — 1) enters the equalizer and the

oldest decision ŷ(n — M — 1) is discarded. A count on the number of MADPI of

the fast Kalman algorithm necessary to update the tap weight vector reveals that

the fast Kalman for decorrelation requires approximately 10M + 6 MADPI. This

is a substantial savings over the O(M2) complexity of the RLC algorithm. In the

subsequent discussions, the fast. Kalman algorithm for decorrelation will also be

referred to as the FRLC (Fast Recursive Least Correlation) algorithm. The terms

fast Kalman and FRLC will be used interchangeably to refer to the same algorithm.

67

4.3 The Fast Transversal Filter for Decorrelation

In the previous section, it was shown that it is possible to decrease the complexity

of the RLC algorithm while still maintaining its high rate of convergence. A simple

inspection of the algorithm definition for the fast Kalman shows that the algorithm

is mainly based on the a priori error formulation. Carayannis, et al. [5] and Cioffi

and Kailath [7] took the fast Kalman algorithm one step further and derived another

member of this class of transversal filter-based fast algorithms, referred to as the fast

transversal filter (FTF). This particular fast structure differs from the fast Kalman

in. that it is based, primarily, on an a posteriori error formulation. Furthermore,

the FTF makes better use of the relationships between the a priori and a posteriori

errors. It is through exploitation of these relationships that the FTF algorithm is

able to further reduce the complexity of the fast Kalman algorithm. The inherent

similarity between the fast Kalman and FTF algorithms will become apparent in the

derivation that. follows.

In this section, as a. natural extension of the derivation of the fast Kalman

algorithm with decorrelation, the decorrelation criterion will be applied to the

fast transveral structure. It will be shown that the FTF for decorrelation offers

a comparable reduction in complexity as compared with the FRLC. In one of the

original derivations of the FTF algorithm, Cioffi and Kailath [7] used a geometrical

approach to derive the FTF. However, for the following derivation of the FIT with

decorrelation, an algebraic approach, similar to that presented in [5], will be used.

4.3.1 Derivation of the Algorithm

The key to the development of the FTF with decorrelation is the use of the so-

called alternative Kalman gain vector. Multiplying the numerator and denominator

of Equation 4.30 by the Kalman gain vector defined in Equation 4.30 can be

α

M

(n) = [1]

. (4.112)

[F M(n)]

68

written as

K M(n) = 1/λ R-1M,M(n - 1)Y M(n) / 1 + 1/λµ M(n) (4.108)

Therefore, considering the above expression, let

αM

(n) = 1 +

1/λµM(n)

= 1 +

1/λŶ'M(n)R-1M,M

(

n - 1)Y M(n) . (4.109)

Given the above definition and the definition of the Kalman gain vector of Equation

4.108, the alternative Kalman gain vector for decorrelation, KM(n), is given as

KM(n

) = α

M

(n

)K M(n) = 1/λR-1M,M(n - 1)Y M(n) . (4.110)

Equation 4.110 is similar in form to the alternative Kalman gain vector used by

Proakis and Manolakis [37] and is similar to the form of an exponentially weighted

version of the alternative Kalman gain vector used by Carayannis, et al. [5]. However,

as should be noted, the difference in the forms lies in the fact that the alternative

Kalman gain vector of Equation 4.110 is based on the decorrelation criterion, where

that used in [37] and [5] is not.

It will be useful to define the following scalar quantity,

γM(n

) = 1/α

M

(n

) = 1-Ŷ'M(n)K M(n) = λ/λ+µM(n) . (4.111)

It should be noted that if the derivation of the FTF for decorrelation followed

the approach given by Haykin in [18], the alternative Kalman gain vector defined

using

γ M(n)

 in Equation 4.111 would be used instead of

αM(n)

 in Equation 4.109.

Although this derivation of the FTF with decorrelation will follow the approach used

in [5], to some extent, the need for the quantity

γM(n

) will become apparent in the

following proof.

The first step in the proof of the FTF will be to redefine the extended Kalman

gain vector of Equation 4.105 in terms of the alternative Kalman gain vector and the

a priori estimate of the forward prediction coefficients, FM (n). Therefore, let

Rewriting Equation 4.101 accordingly, gives

aM(n

) =

aM(n - 1) - [0] fM(n) (4.113)

[KM(n - 1)

]

Substituting Equation 4.113 into Equation 4.105 and collecting terms:

KM+1(n

) =

[0] + gM(n)/F M(n)a M(n) [KM(n - 1)]

=

[0] + gM(n)/FM(n)aM(n - 1) - gM(n)/ f M(n) aM(n - 1) [0] [KM(n - 1)] [KM(n - 1)

]

[1 - gM(n) / f M(n) / FM(n)] = [0] + gM(n) /FM(n) aM(n - 1) - gM(n) / f M(n) aM(n - 1) [[KM(n - 1)

]

λFM(n - 1) / FM(n) = αM(n - 1) / αM+1(n) . (4.114) Consequently, in order to write Equation 4.114 in terms of the alternative Kalman gain vector, KM(n), it will be necessary to show that [1 - gM(n) / f M(n) / FM(n)] = λFM(n - 1) / FM(n) = αM(n - 1) / αM+1(n) . (4.115)

Thus, using Equation 4.105 and the first expression for ŶM+1 in Equation

4.36 as

γM+1(n) = 1 - Ŷ'M+1(n)KM+1(n) = 1 - Ŷ'M+1(n) { [0] + gM(n) / FM(n) [1] } { [KM(n - 1)] [FM(n)] } = 1 - Ŷ'M+1(n - 1) KM(n - 1) (4.116) - g M(n) /FM(n) (ŷ - 1) + Ŷ'M(n - 1)F M(n)) . (4.117)

Define the a posteriori forward prediction error for decorrelation as

fM(n , n) = ŷ(n - 1) + Ŷ'M(n - 1)F M(n) (4.118)

where, it should be noted, fm(n, n) is a scalar. Comparing Equation 4.118 with

Equation 4.99, to determine the basic relationship between fm(n, n) and

fM(n),

substitute Equation 4.101 for FM (n) in Equation 4.118:

f M (n, n) = ŷ (n - 1) + Ŷ' M (n - 1)F M(n) - K M (n - 1) f M (n)

= ŷ (n - 1) + Ŷ' M (n - 1)F M(n - 1) - f M (n)Ŷ' M (n - 1)K M (n - 1) f M (n)

= f M(n

[1

- Ŷ'M(n - 1)KM(n - 1)]

=

γ M(n - 1) fM(n) = fM(n) / αM(n -1) 	(4.119)

Using Equations 4.111, 4.118, and 4.119 in Equation 4.117 yields

γ M+1(n) = γ M(n -1) - gM(n)f M(n ,n)/FM(n) = γ(n -1) [1 - gM(n)f M(n ,n)/ FM(n)] (4.120)

Thus, according to Equations 4.111 and 4.120

1 - gM(n)f M(n)/FM(n) = γ M+1(n)/γ M(n -1) = αM(n -1)/αM+1(n)

Furthermore, substituting Equation 4.104 into the left-hand side (LHS) of Equation

4.121,

1 - gM(n)f M(n)/FM(n) = FM(n) - gM(n) f M(n)/FM(n) = λFM(n -1) + gM(n) f M(n) - gM(n) f M(n)/FM(n) = λ FM(n -1) /F M(n) (4.122)

Thus, Equation 4.115 is proved. Next, substitute the results of Equation 4.121 into

Equation 4.114 and then premultiply both sides of Equation 4.114 by α M+1(n) to

get

αM+1(n)KM+1(n) = [0] + gM(n)αM+1(n)/FM(n)aM(n-1) .

[α (n-1)K M (n-1)]

Noting from Equation 4.115 that

αM+1(n)FM(n) = αM(n -1)/λ FM(n-1) (4.123)

71

and using the definition of Equation 4.110, the extended fast Kalman gain vector of

Equation 4.105 can be rewritten in terms of the FTF alternative Kalman gain vector

as

KM+1(n)

=

[0] + gM(n)αM(n

-1)/λFM(n-1) [1] (4.124)

[K M (n-1)] [FM(n-1)] where KM+l (n) can be partitioned as KM+1(n)

= [CM(n)] . (4.125)

[cM (n)]

At this point, to proceed with the proof it will be necessary to derive the extended

Kalman gain vector of Equation 4.105 in terms of the backward prediction coefficients

of Equation 4.107. To do this, a process similar to that followed for the derivation of

the fast Kalman gain vector, KM(n), will be used, but now reformulated in terms of

BM(12) and not FM(n). Therefore, in lieu of Equations 4.47, 4.48, and 4.49, it can

be seen that it will be necessary to modify

[KM(n)]

[0]

so that

[0M (n)] [β(n) - y(n - M - 1)]

on the RHS of Equation 4.47 is eliminated. To accomplish this, it will be assumed

that an M x 1 vector BM(n) is known, such that

R(n) [βM(n

)] = [0M(n)] (4.126)

[1] [βM(n)]

where, it should be noted, B m (n) is a scalar. Consequently, using the above

expression and a method similar to that shown in Appendix B,

R(n) [BM(n)] BM-1(n) [β(n) - y(n

- M - 1) = [0M (4.127)

[1] [β(n) - y(n - M - 1)]

Therefore, with a method similar to that expressed in Appendix C, using the

following definition,

	

R (n)K (n)

 = Ῡ (n) (4.129)

72

K(n)

=

KM+1(n) ∆̳ [KM(n) - BM(n)BM-1(n)[β(n) - y(n - M - 1)] [-BM-1(n)[β(n

) - y(n) - (n - M - 1)] (4.128)

with Equations 4.47 and 4.127 and the second expression for R(n) in Equation

4.38, it can be shown that

where

K (n)

 can be partitioned as in Equation 4.54.

The determination of the time update recursion for

BM

(n) will be done by

means of induction. The time-update equation for

BM

(n)

was previously given in

Equation 4.107. Therefore, assume that the vector

BM

(n

 — 1) is given such that

R(n)

[BM(n — 1)] = [

BM] . (4.130)

[1] [

BM(n - 1)]

Therefore; together with Equations 4.35, 4.36, and 4.62,

R (n)

[B

M

(n — 1)

] = [λRM(n - 1)

+ Ῡ (n)Ŷ' (n)

] [B

M

(n - 1)

] [1] [1]

= λ [0M] [BM(n - 1)] + [YM(n

)] (ŷ (n - M - 1) + Ŷ'M BM(n - 1)) (4.131)

[y(n - M - 1)]

	

where, from Equation 4.100,

b

M

(n

) = ŷ(n — M — 1)

+ B

M

(n

— 1)Ŷ'

M

(n

). Postmul-

tiplying both sides of Equation 4.47 by

b

M

(n

) yields

R (n)

[KM(

n

)] = bM(n) = [YM(n

)] bM(n) . (4.132)
[0] [β(n)]

Consequently, subtracting Equation 4.132 from both sides of Equation 4.131

73

R(n)

=

[BM(n - 1) - KM(n)bM(n)]

=

R(n) [BM(n - 1)] - [KM(n)] bM(n)] [1)] [0]] = λ [0M] + [Y(n)] bM(n) [bM(n) 1)] [y(n - M - 1)] - [YM] bM(n) [β(n)] = λ [0M] [λBM(n - 1) + (y(n - M - 1) - β(n))bM(n)] . (4.1

33)

Comparing Equation 4.133 with Equation 4.130, the time update expression for

BM(n) is BM(n) = λBM(n - 1) + (y(n - M - 1) - β(n))bM(n) (4.134)

where

β(n)

 is given by Equation 4.48. For simplicity, let

hM(n) = y(n - M - 1) - β(n) . (4.135)

Therefore, with the previously defined quantities in mind, the extended Kalman gain

vector defined by Equation 4.128 can be written as

K

(n) = ∆ ̳ [KM(n)] + hM(n)/BM(n) [BM(n)] (4.136) [0] [1]

Now that the extended Kalman gain vector has been defined in terms of the

backward prediction coefficients, it will be necessary to formulate the extended alter-

native Kalman gain vector using Equation 4.136. To do this, let

bM(n) = [BM(n)] [1] . (4.137)

Rewriting Equation 4.107 accordingly, gives

bM(n) = bM(n - 1) - [KM(n)] [0] bM(n) . (4.138)

Substituting Equation 4.138 into Equation 4.136 and collecting terms:

KM+1(n) = [K(n - 1)] + hM (n)/B M (n) b M (n - 1) hM (n)b M (n) / B M (n) [K M (n)] [0] [0] = [1 - hM(n)bM(n) / BM(n)] [KM(n)] + hM(n)/BM(n)bM(n - 1) . (4.139)

[0]

Therefore, in order to write Equation 4.139 in terms of the alternative gain vector,
KM+1(n

) , it will be necessary to show that
= [1 - hM(n)bM(n) / BM(n)] ≡ λBM(n - 1)/BM(n) ≡ αM(n)/αM+1(n) (4.140)

Thus, using Equation 4.136 and the second expression for

Ŷ

M+1(n) in Equation 4.36

as follows

γM+1(n) = 1 - Ŷ'M+1(n)KM+1(n) = 1 - Ŷ'M+1(n) { [KM(n)] + hM(n)/BM(n) [BM(n)] } { [0] [1] } = 1 - Ŷ'M(n)KM(n) (4.141) - hM(n)/BM(n) (ŷ(n - M - 1) + Ŷ'M(n)BM(n)) . (4.142)

Define the a posteriori backward prediction error for decorrelation as

bm(n ,n) = ŷ(n - M - 1) + Ŷ'M(n)BM(n) (4.143)

where, it should be noted, bm (n, n) is a. scalar. Comparing Equation 4.143 wit

h Equation 4.100, to determine the basic relationship between bm(n,n) and

bM(n)

substitute Equation 4.107 for BM(n) in Equation 4.143:

bm(n ,n) = ŷ(n - M - 1) + Ŷ'M(n)BM(n - 1) - KM(n)bM(n)] = ŷ(n - M - 1) + Ŷ'M(n)BM(n - 1) - bM(n)Ŷ'M(n)KM(n) = bM(n) [1 - Ŷ'M(n)KM(n)] = γM(n)bM(n) = bM(n

)/αM(n) (4.144)

Using Equations 4.111, 4.143, and 4.144 in Equation 4.142 yields

γM+1(n)

=

γM (n) - hM (n)/bM (n,n) / BM (n)

=

γ M (n) [1 - hM (n)/b M (n,n) / BM (n)] .

(4.145)

Thus, according to Equations 4.111 and 4.145 1 - hM(n)/bM(n) / BM(n) = BM(n) - hM(n)/bM(n) / BM(n) = λBM(n - 1) + hM(n)/bM(n) - hM(n)bM(n) / BM(n) = λBM(n - 1) / BM(n)

and using the definition of Equation 4.110, the extended fast Kalman gain vector of

Equation 4.136 can be rewritten in terms of the FTF alternative Kalman gain vector

as

KM+1(n)

=

[KM(n)] + hM(n)αM(n)/λBM(n - 1) [BM(n - 1)] [0] [1] (4.147)

76

All that remains in the proof of the FTF with decorrelation is to write

Equations 4.19, 4.101, 4.106, and 4.107 in terms of Km (n) and derive a time-update

recursion for the scalar am(n). First., substitution of Equation 4.119 into Equation

4.101 and using the definition of Equation 4110, the forward prediction coefficients

can be written in terms of the alternative Kalman gain vector as
FM (n)

= FM(n — 1) —
KM(n

— 1) fM(n,n) 	(4.148)

Next, substitution of Equation 4.144 into Equation 4.107 and using the definition of

Equation 4.110, the backward prediction coefficients can be written as

BM (n)

= BM(n — 1) —

KM(n

)bM(n,n) . 	(4.149)

To write the tap weight update recursion of Equation 4.19, it will first be necessary

to define the a. posteriori estimation error for decorrelation as

	ηM(n,n)

= x(n)

—

ŶM(n

)

WM(n) 	(4.1.50)

where, again, 7) M (n, n) is a scalar. Comparing Equation 4.150 with Equation 4.18,

to determine the basic relationship between 71M (n, n) and 7)M (n) substitute Equation

4.19 for W M (n) in Equation 4.150:

	η

M

(n,n)

= x

(n

)

—

ŶM (n

)

[WM(n

— 1) + ηM(n)

KM (n

)]

	=

x(n

)

—

ŶM (n

)

WM(n

— 1) - ηM(n)

Ŷ'M (n

)

KM (n

)]

 =

ηM(n) [1 —

Ŷ'M(n

)

KM (n

)]

=

γM(n)ηM(n

) = ηM(n)/αM(n

) 	 (4.151)

Consequently, substituting Equation 4.151 into Equation 4.19 and using the

definition of Equation 4.110, the tap weight recursion can he written as

W

M (n)

 = W

M (n

— 1) +

ηM (n

,n)KM(n) . (4.152)

77

A comparison of Equations 4.124 and 4.147 with the partitioning of Equation

4.125 reveals the following useful identity:

c M (n)

=

h M

(n)

α M (n)/λB M (n

 — 1)

(4.153)

where

cM (n

) is a scalar. Equation 4.153 will be used to formulate the necessary time-

update recursion for KM

(n)

. An inspection of Equation 4.147 with the partitioning

of Equation 4.125 reveals that CM(n) can be written as

C M (n)

=

K M

(n) + h

M

(n)

α M (n)/λB M (n

 —

1) B

M

(n)
(4.154)

The final step in the derivation of the FTF with decorrelation is to determine

the necessary time-update recursion for

CM (n

) To do so, note that using the

definition of Equation 4.110 in the definition of Equation 4.109, α M+1(n) can be

written as

α M+1(n) = 1 + Ŷ M+1

(n)
K M+1

(n)
(4.155)

Therefore, using the first expression for

Ŷ

M+1

(n)

 in Equation 4.36 and using

Equation 4.124 for KM+1

(n)

, Equation 4.155 can be written as

αM+1(n) = = 1 + [ŷ (n)Ŷ' M (n

 —

1)] {[0] + g M (n)α M (n

 —

1)/λF M (n

 — 1) [1]}
{[K M (n

 —

1)] {[FM(n

 - 1)]}

= 1 + Ŷ'M (n

 —

1)K M (n

 — 1)
+ gM (n)α M (n

 —

1)/λF M (n

 — 1) (ŷ
(n) + Ŷ' M (n

 — 1)
= α M (n

 —

1) + g M (n)α M (n

 —

1)/λF M (n

 —

1) f

M (n

) (4.156)

78

where Equation 4.99 was used in the last line. To determine the current realization

of am (n), using the second expression for Ŷ' M+1 in Equation 4.36, and Equation

4.147 for K M+1 (n), Equation 4.155 can he written as

αM+1

(n) = 1 + [Ŷ'

M

(n)

ŷ (n

 —

M)] {[K M

(n)] + h

M

(n)

α M (n)/λB M (n

 —

1) [B M (n

 — 1)]}

[0] [1]}

= 1 + Ŷ'

M

(n)K

M

(n) + h

M

(n)

α M (n)/λB M (n

 — 1) (ŷ
(n

 —

M) + Ŷ' M

(n)

B M (n

 — 1))

= α

M

(n) + h

M

(n)

α M (n)/λB M (n

 —

1)b

M

(n)
(4.157)

where Equation 4.100 was used in the last line. Substituting the identity of Equation

4.153 and isolating

αM (n)

 on the RHS of Equation 4.157, the desired time-update

recursion for α

M (n

) is

α M (n) = α M+1(n) - c M (n

)b

M

(n)
. (4.158)

Therefore,

α

M+1(

n

) must first be calculated according to Equation 4.156 and then α

(n

) can be updated using Equation 4.158.

4.3.2 The Algorithm

The algorithm which defines the fast transversal filter with decorrelation is now

complete. The order which constitutes the fast transversal filter with &correlation

is given below:

f M (n) = ŷ (n

 —

1) + F' M (n

 —

1)Ŷ M (n

 — 1)

(4.159)

f M (n,n) = f M (n)/α M (n

 — 1)

(4.160)

F' M (n) = F M (n

 —

1) - K M (n

 —

1) f M (n,n

). (4.161)

S M (n) = λS M (n

 —

1) - K M (n

 —

1) f M (n,n

). (4.162)

Š M (n) = S M (n)/α M (n

 — 1)

(4.163)

g M (n) = y(n

 —

1) - S M (n)K M (n

 — 1)

(4.164)

79

FM(n) = λ FM(n

—

1) + gM(n) fM(n) (4.165)

KM+1(n) = [0] + gM(n)

αM(n)/λ FM(n — 1) [1] (4.166) [KM(n

—

1)] [FM(n

— 1)]

Partition K M+1

(n

) according to

KM+1(

n
) ≡ [CM(n)] . (4.167)

[cM(n)]

Let

FM(n)

=

KM(n)

+ hM(n)

αM(n)/λBM(n

—

1) BM(n — 1) (4.168) αM+1(n) = αM(n

—

1) + gM(n)αM(n)/λFM(n

—

1) fM(n) (4.169)

bM(n)

= ŷ(n - M - 1) + B'M(n

—

1)ŶM(n

) (4.170)

α M(n) = αM+1(n) - cM(n)

b M(n) (4.171) bM(n,n) = bM(n)
/α M(n) (4.172)

BM(n)

= BM(n

—

1) - KM(n

)
b M(n,n) (4.173) ηM(n) = x(n) - Y'M(n)

W'M(n — 1) (4.174)

ηM(n,n) = ηM(n)
/α M(n) (4.175)

WM(n)

= WM(n

—

1) + ηM(n,n

)
KM(n) . (4.176)

To initialize the FTF for decorrelation algorithm, set all vectors and quantities to

zero, except let F

M

(

-1

)

= δ > 0 and αM (-1)=1 [37]. A count on the number of

MADPI of the FTF algorithm necessary to update the tap weight vector reveals that

the FTF requires approximately 10M +16 MADPI. The modest increase in MADPI

over the fast Kalman algorithm is a direct result of the asymmetry present in the

80

augmented correlation matrix of Equation 4.38. However, this is still a substantial

savings over the O (M2) complexity of the RLC algorithm.

Several remarks need to he made regarding the algorithm of Equations 4.159

through 4.176. First, a simple inspection of Equation 4.166 reveals that there is no

longer any coupling between the computation of the extended Kalman gain vector

and the calculation of the forward prediction coefficients. This comes as a result of

the fact that

FM (

n - 1) and not F

M

(n) appears in Equation 4_166.

Finally, an interesting result becomes apparent when the expressions defining

the relationships between the a priori and a posteriori errors are compared. A

remarkable consequence of Equations 9.160, 4.172, and 4.175 (comparing them to

Equations 4.118, 4.143, and 4.150, respectively) is that the a. posteriori errors at

time a can be computed before the filter parameters producing them, i.e., before the

computation of

FM (

n) , B

M (

n), and W

M (

n), respectively [5]. It is for this reason

that α

M (

n) is referred to in the literature a.s a. conversion factor [18]. In either

its regular or delayed form, am (a) converts the a priori forward, backward, and

estimation errors into the corresponding a posteriori errors.

4.4 Simulation Results for the Fast Algorithms

In this section, the rate of convergence of the fast Kalman (FRLC) algorithm, given

by Equations 4.99 through 4.107, and the FTF, given by Equations 4.159 through

4.176, will be compared to each other and to the Kalman (R.LC) algorithm given in

the first section. Both the blind, decorrelation fast Kalman and FTF in a decision

feedback configuration were simulated for two channels representing pure, heavy

amplitude distortion. The model of the DFE used in these simulations is shown in

Figure 4.2.

81

Figure 4.2 Decision Feedback Equalizer Used for Simulations.

For each simulation of each of the respective structures, a nine-tap equalizer

with a weighting factor of λ=0.999 was used. The particular channel sampled impulse

response used in all of the simulations was the raised-cosine pulse, defined by

h(k) = { 1/2√h'h [1 + cos (2π/W(k — 3)], k = 1, 2, 3, 4, 5, (4.177)

{ 0 otherwise

and h = h1 + h2 + h3 + h4 + h4 + h5]' where W in Equation 4.177 was set equal to either 3.1

or 3.6 to provide for an eigenvalue ratio of 11 or 49, respectively. Note that the

first cursor, h0, is chosen to be 1 so that the channel satisfies the criterion for

intersymbol interference. The channel's impulse response is normalized such that

h2

1

+ h22 + h23 + h24 + h24 + h25 = 1 for all values of the bandwidth parameter W. Additive

white Gaussian noise of zero-mean and variance 0.001 was added to the output of the

channel to form the received waveform x(n). The channel model is similar to the one

used by Sa.torius and Alexander in [401, where the normalization was added by Axford

in [11. To provide a bound on which to judge the convergence rate performance of

these rapidly converging algorithms, the decorrelation DFE presented in Chapter

2 was also implemented. The performance of the fast Kalman and decorrelation

equalizers for W=3.1 is shown in the learning curve of Figure 4.3.

82

Figure 4.3 MSE of the Fast Kalman DFE with W=3.1.

The performance of the fast transversal filter-based and decorrelation equalizers

for W=3.1 is shown in the learning curve of Figure 4.4. In these figures, the

estimate of the residual ISI power is obtained by passing the sequence of the squared

error (I(n) — ŷ(n — 1))2 through a smoothing filter whose transfer function is given

by 0.05/(1 — 0.95z-1) [20]. This particular definition of the MSE is the same as used

by Satorius and Pack [41], Satorius and Alexander [40], and Haykin [18]. Each curve

was obtained by the Monte-Carlo averaging of the MSE over 100 independent trials.

In these simulations, the length of the delay of the element, z-k , of Figure 4.2 was

chosen to produce the smallest MSE for the algorithms being considered [40]. Unless

specified, this delay was chosen to be z-1 .

As mentioned previously, the speed of convergence of the fast, Kalman and

FTF algorithms will be compared with the Kalman-based (RLC) algorithm given in

the first section of this chapter. The reason for this comparison is that the Kalman

algorithm, as shown by Godard [14] and modified in [24], has been recognized to be

the fastest known equalizer adaption algorithm [38]. The Kalman algorithm is an

83

Figure 4.4 MSE of the FTF DFE with W=3.1.

ideal self-orthogonalizing algorithm in that the received equalizer input. signals are

used to build up the inverse of the input correlation matrix which is applied to the

coefficient adjustment process [12]. Consequently, the algorithm of Equations 4.20

through 4.26 was also implemented using the channel given by Equation 4.177. The

learning curve of the mean squared error for the Kalman (RLC) algorithm (compared

with the decorrelation DFE) is shown in Figure 4.5.

By comparing Figures 4.3, 4.4, and 4.5, it can be seen that the fast Kalman and

FTF algorithms offers virtually identical performance to the Kalman algorithm—all

algorithms converge in approximately 100 iterations. This is a substantial increase

over the convergence rate of the corresponding decorrelation DFE. The intimate

relationship between the convergence rates of the three rapidly converging algorithms

is more readily apparent when the three separate curves are overlayed on one another,

as done in Figure 4.6. 	It should he emphasized that the fast Kalman for decor-

relation and FTF for decorrelation algorithms are mathematically equivalent to the

RLC algorithm, resulting in their comparable performance.

84

Figure 4.5 MSE of the RLC Algorithm with W=3.1.

The learning curves of the fast. Kalman- and FTF-based equalizers (using the

convergence rate of the decorrelation DFE as a reference) with W=3.6 in Equation

4.177 are shown in Figures 4.7 and 4.8, respectively. Again, to compare the

performance of the fast Kalman and FTF algorithms, the Kalman (RIC) algorithm

is implemented with W=3.6, as shown in Figure 4.9. By comparing Figures 4.7 and

4.8 with Figure 4.9, it can be seen that the fast Kalman and FTF algorithms again

offer virtually identical performance to the RLC algorithm, offering a substantial

increase in performance as compared with the decorrelation DFE. As had been done

previously, this conclusion becomes more readily apparent when the three separate

curves are overlayed on one another, as done in Figure 4.10. It should be noted

that the comparable performance characteristics of the FRLC and FTF algorithms

to the RLC algorithm are a. direct result of the mathematical equivalence of the three

algorithms.

One final remark concerning the learning curves of Figures 4.6 and 4.10 is

necessary. A comparison of the two curves reveals that the convergence rate of the

85

Figure 4.6 Performance Comparison of the FRLC, FTF, and RLC Algorithms
with W=3.1.

fast Kalman (FRLC), PTF, and Kalman (RLC) algorithms are reasonably insensitive ive

to the eigenvalue spread of the channel. This agrees well with theory. Since all three

algorithms are types of self-orthogonalizing equalizers, the convergence rates of the

respective equalizers do not depend on the eigenvalue spread of the channel [18].

4.5 Numerical Properties of the Fast Kalman and FTF Algorithms

As mentioned throughout this chapter, the fast Kalman and FTF algorithms offer the

advantage of rapid convergence with a substantial decrease in the overall complexity,

compared with the RLC algorithm. However, a disadvantage to the fast Kalman

and FTF structures is that they have a tendency to become unstable in finite-

precision environments and have exhibited numerical instability (25, 8J. To overcome

these problems, several remedies have been proposed which are applicable to the

86

Figure 4.7 MSE of the Fast Kalman DFE with W=3.6.

decorrelation-based implementations of the algorithms presented in this chapter.

Two of the most widely used solutions will be discussed.

The simplest of the procedures is a periodic reinitialization of the respective

algorithms [25, 9]. Through experimentation, it has been shown [25] that a certain

quantity derived for the fast Kalman and FTF algorithms goes negative just before

the algorithms diverge. Let

ζ

M

(n) = αm (n)/ α M+1 (n) (4.178)

which is merely a redeclaration of Equation 4.140. It has been shown that (1(n)

is the ratio of two non-negative quantities, and, therefore, is itself a non-negative

quantity [25]. For the ideal case of infinite precision, 0 ≤ ζ

M

(n)

≤ 1. A violation

on this hound of the value of

ζ M

(n)

 is a direct result of finite-precision effects. Due

to the accumulation of finite-precision errors, this quantity becomes negative just

before divergence occurs. Therefore,

ζ M

(n)

 has been termed the rescue variable [25].

87

Using Equation 4.140, Equation 4.178 can be written as

ζM(n) = λBM(n - 1) /BM(n)

. (4.179)

This will be considered the rescue variable pertaining to the fast. Kalman algorithm

for decorrelation. For the FTF, substitution of the identity of Equation 4.153 into

Equation 4.140 yields
ζ M

(N) = 1 - cM (n)bM (n)/αM+1 (n) . (4.1

80)

Equation 4.180 will be the corresponding rescue variable for the FTF algorithm for

decorrelation.

When either of the rescue variables becomes negative, the algorithm must be

restarted. However, this now poses a. problem. The original fast. Kalman and FTF

algorithms were derived for what is termed the prewindowed data case. In other

words, the relevant input data sequences were considered zero for n < 0. If and

when these algorithms are restarted, this condition is no longer true. Consequently,

the algorithms must be modified for the unwindowed or covariance data. case. In

Appendix D, the covariance fast Kalman algorithm for decorrelation (CFRLC) has

been derived. The algorithm consists of a slight modification to the fast Kalman

algorithm of Equations 4.99 through 4.107 and is shown to reduce to the actual

fast Kalman algorithm as n → ∞ . A corresponding covariance FTF algorithm is

not necessary, since an elaborate initialization scheme, derived in [18] and [7], can be

used in the case of unwindowed data.. The initialization scheme of [18] can be directly

applied to the FTF for decorrelation derived in this chapter. The interested reader

is referred to either [18] or [7] for details on the initialization. However, it should be

noted that a derivation of a corresponding covariance FTF for decorrelation can be

made by following the procedure as expressed in [22]. The proof in [22] is similar to

that presented in this work, and the appropriate extensions can be readily made.

Therefore, if, at time n = n0, the quantity ζM

(n

) , of Equations 4.179 and 4.180,

respectively, is observed going negative, to restart the two fast algorithms of this

88

chapter the following procedure must be performed. First, save the current. estimate

of the tap weight vector, WM (n0), as its initial condition. Then, allow another equal-

ization algorithm to perform the adaptive process while reinitialization is occurring.

Following the conventional approach, the decorrelation DFE presented in Chapter 2

could be used to update the tap weights as reinitialization is occurring. Note that

since the reinitialization process lasts for only a short time (approximately M to 1.5M

iterations), virtually no degradation in the performance of the fast algorithms has

been found [7]. Reinitialize all other relevant quantities in the respective algorithms.

For the fast Kalman algorithm, the covariance structure will he used after the reini-

tialization process is complete. According to Appendix D, this will require the use of

unwindowed data, so the appropriate non-zero input vectors,

YM

(

n0

) and

ŶM

(

n0

) ,

must also be stored. For the FTF, the initialization procedure as outlined in [18] is

to be followed. After completion of the procedure, transfer adaptive control back to

the CFRLC or FTF algorithms and proceed with normal operation.

As remarked earlier, this is the simplest of the procedures to deal with

accumulated finite-precision errors. Another approach is to use the so-called

normalized. or stabilized versions of the respective algorithms (see [3], [8], and

[43]). In summary, these normalized/stabilized algorithms incorporate square-roots,

error feedback, and inherent redundancies in order to limit any effects of a finite

word-length environment. However, the disadvantage to these algorithms is in the

dramatic increase in complexity that they incur. In some cases, this can result in

a two- to three-fold increase in MADPI over the original fast Kalman and FTF

algorithms [43].

89

Figure 4.8 MSE of the FTF DFE with W=3.6.

Figure 4.9 MSE of the RLC Algorithm with W=3.6.

90

Figure 4.10 Performance Comparison of the FRLC, FTF, and RLC Algorithms
with W=3.6.

CHAPTER 5

LATTICE STRUCTURES WITH DECORRELATION

The fast, transversal-based equalizers of Chapter 4 were shown to exhibit several

advantageous properties, including low computational complexity and high rate

of convergence. However, as was discussed, these algorithms can behave catas-

trophically in environments governed by a finite word length. Several remedies to

overcome these difficulties were proposed. Another approach to solving the finite-

precision performance problem is to use an alternative structure for the decorre-

lation algorithm. Lattice-based structures offer many preferable properties, among

them fast convergence rates and the modularity inherent in their implementation.

However, the property that is of the most interest is that of their resistance to

the accumulated effects of quantization errors in a finite-precision environment.

Consequently, in this chapter, the decorrelation algorithm will be applied to several

different formulations of the lattice structure.

There are many different implementational forms of the basic lattice filter

structure, including both normalized and non-normalized, a priori and a posteriori,

and error-feedback realizations (see [11], [26] and [37], for example). In this chapter,

the conventional recursive least-squares lattice, originally developed by Satorius and

Pack [41], and the gradient lattice algorithm, originally developed by Satorius and

Alexander [40], will be modified to incorporate the decorrelation algorithm. Both

structures will be implemented in a decision feedback configuration. As will be

discussed, the main structural difference between the RLS and gradient lattices is in

the type of computation required of the respective reflection coefficients.

91

92

5.1 Recursive Least-Squares Lattice-Ladder with Decorrelation

It has been shown extensively in the literature that it is possible to derive an alter-

native solution to the direct-form RLS algorithm by incorporating a lattice filter

structure [41, 37]. The derivation of the lattice structure is still based on the

minimization of the exponentially weighted sum of the output squared error, which

results in a form that is mathematically equivalent to the direct-form RLS [37]. It

is this relation to the direct-form RLS from which the RLS lattice inherits its fast

convergence rate [18]. Although the RLS lattice does maintain this mathematical

equivalence, the structure itself is no longer based on a transversal filter.

Unlike the RLC, FRLC, and FTF for decorrelation, derivation of the least-

squares lattice based on the decorrelation criterion is not possible, at least not in any

conventional sense. As mentioned in Chapter 4, the asymmetry of the decorrelation-

based augmented cross-correlation matrix, R(n), of Equation 4.38 prevents the appli-

cation of the expression for the inverse of a square matrix, which is itself comprised

of square matrices on its diagonal. The invertibility of this matrix is a necessary

component to the derivation of the order-update recursions which define the RLS

lattice [37, 18]. Consequently, because the RLS lattice formulated in this section will

not be derived based on the decorrelation algorithm, the mathematical equivalence

between the RLC and the RLS lattice for decorrelation will be lost. A direct result

of this will be the decrease in the rate of convergence of the decorrelation lattice,

compared with the conventional RLS lattice and its relation to the direct-form RLS.

The RLS lattice-ladder equalizer has many desirable properties which make

it ideal for adaptive equalization. As discussed, these include its convergence rate,

order-recursive nature, and its modest computational complexity (compared with

the direct-form RLS). Therefore, it is desirable to formulate the RLS lattice in terms

of the decorrelation algorithm. Following the methodology expressed in [1], it is

possible to retain the existing RLS lattice structure and incorporate the decorrelation

93

criterion to update the tap weights. The modified algorithm follows the form of the

RLS lattice as presented by Satorius and Pack in [41], with the explicit formulation

based on that presented in [33]. Since the RLS lattice will not be derived based on

the decorrelation criterion, the lengthy proof which comprises the derivation of the

RLS lattice structure is unnecessary, and will not be presented in this work. The

interested reader is referred to [37], [18], or [33] for the complete derivation.

The RLS lattice with decorrelation will be implemented in a decision feedback

configuration. Traditional approaches to the lattice DFE use a multi-channel config-

uration, with the forward filter comprised of a single channel lattice and the feedback

filter comprised of a two-channel lattice [28, 27, 42, 36]. The signal which is fed back

is actually the estimation error at each stage of the feedback (two-channel) portion

of the DFE lattice [28]. Since this particular formulation is not applicable to the

decorrelation algorithm, an alternative scheme for the lattice DFE will be used. The

structure of the adaptive least-squares lattice/joint-process (ladder) estimator using

decorrelation is shown in Figures (5.1) and (5.2), where Figure (5.2) represents one

stage of the lattice equalizer.

Figure 5.1 Structure of Lattice-Based Decorrelation DFE.

As noted in Chapter 2, since the channels under consideration do not require

the use of a forward filter, a feedforward lattice is not used in Figure 5.1. Unlike

the lattice DFE of [28], the lattice structure of Figure 5.1 uses the output of the

94

Figure 5.2 Stage m of the RLS Lattice.

slicer as the quantity to be fed back. Note from the previous figures that in distin-

guishing the RLS lattice-ladder from the gradient lattice-ladder equalizer, the forward

and backward reflection coefficients are not equal. Each is independently updated

to minimize the weighted sum of squared forward and backward prediction errors,

respectively.

The algorithmic formulation of the RLS lattice with decorrelation is as follows.

At time n, the inputs to the first lattice stage are set to the newly received output

of the slicer (see Figure 5.1):

f0 (n) = b0 (n)

=

ŷ (n) .

The order-update recursions for the estimated sum of the squared forward and

backward prediction errors Ef m (n) and a Ebm (n) , respectively, at stage m) are

initialized as follows:

	Ef 0 (n)

= E0b(n) = λEf0(n)(n — 1) + ŷ

(n

)ŷ

(n

) . 	 (5.1)

For stages in = 1, 2, ... ,M — 1 the order updates for the RLS lattice-ladder

recursions are performed in the following manner. Referring to Figure 5.2, the

forward prediction errors are updated according to

	fm (n) = fm-1(n) -- Fm(n - 1)

bm-1 (n - 1) 	(5.2)

95

and the backward prediction errors according to

bm (n)

= bm-1

(
n — 1

)
— Bm

(
n — 1

)
fm-1

(n).
(5.3)

Calculate the scalar I (n) according to the time-update recursion

Km (n)

= λKm

(
n — 1

) + tm (
n — 1

)
fm-1

(n)
(5.4)

where the scalar tm

(n)

 is referred to as the adaptive step-size parameter [18]. The

quantity, Km

(n)

, is used in both of the update equations for the forward and

backward reflection coefficients. The forward reflection coefficients of Figure 5.2

are updated in the following manner:

Fm (n)

=

Km (n)

/ Ebm-1(n — 1) (5.5)

while the backward reflection coefficients are updated according to

Bm (n)

=

Km (n)

/ Ef m-1 (n) .
	
	 (5.6)

The estimated sum of the squared forward and backward prediction errors are

updated according to the following order recursions:

Efm(n)

=

Efm-1 (n) - Fm(n)

Km(n) (5.7)

Ebm(n)

=

Ebm-1 (n) - Bm(n)

Km(n) (5.8)

respectively. The adaptive step size parameter, tm

(n)

, used in the update equation

for K (n) is itself updated according to

tm(n) = [1 - γm-1(n)]bm-1(n)

. 	(5.9)

The estimation error or conversion factor, 7m-3 (n.), is updated according to

γm(n) = γm-1(n) + │tm(n)

│2 / Eb m-1(n) 	(5.10)

96

It should be noted that this parameter enables the RLS lattice algorithm to adapt

rapidly to sudden changes in the input data [18]. The output of the RLS lattice-

ladder is formed by z (n)

=

ΣN-1k=1 ωk (n)

bk (n) . (5.11)

Finally, update the tap weight coefficients in the following manner using the decor-

relation criterion:

ωm (n + 1) = ωm (n) + µy (n)

y

(

n - m) (5.12)

where µ is the step size which controls the speed of adoption of the tap weight

algorithm. The components can be initialized as follows

fm(-1) = bm(-1) = 0

Fm(-1) = Bm(-1) = 0 Km(-1) = tm(-1) = γm(-1) = 0

Ef m(-1) = Ebm(-1)= δ > 0

wm(0) = 0 .

z(0) = 0 .

The lattice DEE based on the decorrelation criterion is shown in Figure 5.3.

One important property of the lattice structure in the context of channel

equalization is its ability to transform {ŷm(m), ŷm(m - 1),....,ŷm(m - M + 1)}, the cor

related input sequence, into {b0(m), b1(m),......, bM(m)}, the uncorrelated sequence

of backward prediction errors. This process may be viewed as a deterministic

form of the Gram-Schmidt orthogonalization procedure [18]. The increased rate

of convergence of the decorrelation algorithm using a lattice structure is related to

the self-orthogonalizi.ng nature of the RLS-lattice [13,14 This assertion will become

more apparent in the simulations to follow.

97

Figure 5.3 Lattice DFE Incorporating the Decorrelation Algorithm.

5.2 Gradient Lattice-Ladder with Decorrelation

In an attempt to simplify the computational aspects of this particular class of

algorithms, while still retaining many of their optimal qualities, it is possible

to introduce an alternative lattice-ladder structure in which the number of filter

parameters is significantly reduced. In keeping with the methodology as expressed

in the previous section and in [1], the existing gradient lattice structure will be

retained, with the decorrelation criterion used to update the tap weights. The

gradient lattice-ladder structure under consideration is shown in Figures 5.4 and 5.5.

Each stage of the lattice is characterized by the following input-output relations:

f m (n) = fm-1(n)

- km(n — 1)bm-1(n — 1) 	(5.13)

and

bm (n) = bm-1 (n — 1) — km

(n — 1)

fm-1(n) 	(5.14)

98

Figure 5.4 Lattice Structure for the Decorrelation Algorithm.

Figure 5.5 Stage m of the Gradient Lattice.

where km (n) is the reflection coefficient and fm (n) and bm (n) are the forward and

backward prediction errors, respectively, of the rnth stage of the lattice. It should

be noted that this form of the lattice filter is identical to that obtained from the

Levinson-Durbin algorithm, except that now km (n) is allowed to vary with time so

that the lattice filter can adapt the the time variations in the signal statistics [37]. In

comparison with the RLS lattice filter, the lattice described by Equations 5.13 and

5.14 are more restrictive in that the forward and backward predictors have identical

reflection coefficients.

The reflection coefficients,

km (n)

, may be optimized according to either an

MSE criterion or by employing the method of least squares. In an adaptive filtering

application, since the statistical properties of the signal are unknown, the least-

99

squares criterion will be adopted for determining km (n). The performance index

to he minimized will consist of a weighted sum of the squares of the forward and

backward prediction errors. The derivation to follow is similar to that presented in

[37]. Therefore,

εLS m = Σnt=0 λn-1[│ f m-1

(n)│2 + │ b

m

(n)]2

	

= Σnt=0 λn-1 [│ fm-1

(n)

- km (n — 1)bm-1 (n — 1)2 +

+ │

bm-1 (n — 1) - km (n — 1)fm-1 (n)│2] . (5.15)

Minimization of εLSm with respect to km(n) yields the solution km(n) = -2Σnt=0 λn-1f m-1

(n)

bm-1 (n — 1)

/ Σnt=0 λn-1f m-1

(

n)│b

m

(n)

2 + │] . (5.16)

Equation 5.16 can he computed recursively, where the numerator and denominator

may be updated as follows:

	

um (n)

= λum (n — 1) + 2 f m-1

(n)

bm-1 (n — 1) (5.17)

vm (n)

= λvm (n — 1) + │ f m-1

(n)

│2 + │bm-1 (n — 1)2 . (5.18)

Then

km(n) = -um(n)

/ vm (n) . (5.19)

Accordingly, km (n) may he updated recursively in time according to the relation

km(n)

= km (n — 1) + f m-1

(n)bm (n)

+ bm-1 (n — 1)f m-1

(n)

/ vm

(n)

(5.20)

It should be noted that this particular lattice structure is referred to as a gradient

lattice- ladder, because the traditional implementation of the lattice uses a gradient

algorithm to update the tap weight coefficients. Although this is no longer the case

for the decorrelation criterion, in order to distinguish this structure from the RLS

lattice, this notational description will be continued.

100

The algorithm is now complete. At time n, the backward and forward

prediction errors are updated according to

f0(n) = f0(n) = ŷ (n)

and for stages in = 1, 2, ..., M-1 the order-update recursions for the gradient lattice-

ladder are performed as follows. Update the forward and backward prediction errors

according to

	fm(n) = f m-1(n)

— km(n — 1) — bm-1(n — 1) (5.21)

	bm(n)

= bm-1(n — 1) — km(n — 1) —

fm-1(n) . (5.22)

Update the adaptive step size as

vm(n)

= λvm(n — 1) + │ fm-1(n)│2 + │bm-1(n — 1)│2 . (5.23)

The reflection coefficients are updated according to

km(n)

= km(n — 1) + f m-1(n)

bm(n)

+ bm-1(n — 1)fm(n)

/ vm(n) (5.24)

Form the output of the gradient lattice-ladder as

z(n) = ΣN-1k=1ωk(n)bk(n) (5.25)

Finally, update the tap weight coefficients in the following manner using the decor-

relation criterion:

wm(n + 1)

= wm(n) + µy(n)

y(n — m) . (5.26)

The components can be initialized as follows:

fm (-1) = bm (-1) = 0 vm (-1) = km (-1) = 0 wm (0) = 0

z (0)

= 0 .

101

5.3 Simulation Results for the Lattice-Ladder Algorithms

For the purpose of examining the convergence of the RLS lattice-ladder and gradient

lattice-ladder algorithms with decorrelation, the blind, decorrelation lattice in the

configuration of Figure (5.3) was simulated for a channel which introduces severe

intersymbol interference. In the simulation, four-stage lattices were used. The step

size for the tap-weight updates was chosen to be g=0.05 and the weighting factor

was chosen as A=0.99. The particular channel sampled impulse response used in all

of the simulations is the same as used by Proakis in [35] and is given by

H(z) = 0.407 + 0.815z-1 + 0.407z-2 . 	 (5.27)

The correlation matrix, R, of the channel of Equation 5.27 has an eigenvalue spread

of

 x(R) = λmax / λmin = 436.6379 . 	(5.28)

This can be effectively considered an infinite eigenvalue spread. The channel's

impulse response is normalized such that h

20 + h 2

1

+

h

2

2 = 1. Zero-mean, white,

Gaussian noise with variance 0.001 was added to the output of the channel. As

a means to compare the relative speeds of the two lattice algorithms, the RLC

algorithm given in Chapter 4 (with M=4) and a four-tap version of the conventional

decorrelation DFE of Chapter 2 were also implemented using the channel given by

Equation 5.27. For the decorrelation DFE, the step size was chosen to be µ=0.05

in order to offer the best possible comparison to the lattice algorithms. These

two structures will provide upper and lower bounds, respectively, on the rate of

convergence of the lattice-based decorrelation DFEs.

The model of the DFE used in the simulation is similar to that presented in

Figure 4.2. In the simulations to follow, the length of the delay of the element,

Z -k , of Figure 4.2 was chosen to produce the smallest MSE for the algorithms being

considered. Unless specified, this delay was chosen to be z-1. Figure (5.6) shows the

102

comparison of the rates of convergence for the various algorithms using the channel

of Equation 5.27.

Figure 5.6 Comparison of Gradient, RLS, Decorrelation, and Kalman Equalizers.

In this figure, the estimate of the residual ISI power is obtained by passing the

sequence of the squared error (I(n) — ŷ(n))2 through a smoothing filter whose transfer

function is given by 0.05/(1 — 0.95z-1). As mentioned in Chapter 4, this particular

definition of the MSE is the same as used by Satorius and Pack [41], Satorius and

Alexander [40], and Haykin [18]. Each curve was obtained by Monte-Carlo averaging

the MSE over 100 independent trials.

From Figure 5.6, it can be seen that the RLS and gradient lattice algorithms

converge in approximately 450 iterations, while the conventional decorrelation DFE

requires almost 700 iterations. Notice, however, there is a decrease in the rate of

convergence of the lattice-based structures compared with the RLC algorithm. This

103

is a direct result of the fact that the lattice structures have not been derived based

on the decorrelation criterion. Rather, only the tap weights are updated according

to the decorrelation algorithm. The increase in the rate of convergence of the lattice

algorithms over the decorrelation DFE is due to the self-orthogonahzing nature of

the lattice algorithms.

As was mentioned earlier, the RLS lattice algorithm offers a slightly faster

rate of convergence than the gradient lattice. Notice from Figure 5.6 that there is

only a negligible increase in convergence of the RLS over the gradient lattice. From

Figure 5.6, it can be seen that the rate of convergence of the two lattice algorithms

is virtually identical. In fact, in numerous simulations with channels of varying

complexity, it was found that the differences between the convergence rates of the

two algorithms was almost negligible. For simple channels, the speed of convergence

of the two adaptive lattice equalizers was found, in most cases, to be identical.

Again, it should be emphasized that although there is a decrease in the speed

of convergence, the RLS and gradient lattice-ladder equalizers offer a greater savings

in computational complexity (compared with the RLC algorithm) and exhibit better

numerical stability and robustness to finite-precision errors (compared with the fast

Kalman and FTF algorithms). Furthermore, since the RLS and gradient lattice

structures are types of self-orthogonalizing equalizers, the convergence rate of the

equalizers do not depend on the eigenvalue spread of the channel [18].

5.4 Numerical Properties of the Decorrelation-Based Equalizers

As a final note on the adaptive lattice equalizers presented in this paper, a comparison

of the computational complexity of the various algorithms should be made. Table

5.1 shows a comparison of the number of operations needed to update the tap weight

coefficients (in terms of the number of multiplications and divisions per iteration),

based on the length of the filter.

104

Table 5.1 Comparison of the Computational Complexities of the Decorrelation
Based Algorithms.

ALGORITHM MADPI

RLC 4M2 + 4M + 2
RLS-Lattice 15M — 11
Gradient-Lattice 13M — 8
Fast Transversal Filter 11M + 16
Fast RLC 11M + 6
Decorrelation DFE 2M + 1

To facilitate comparison, the results of Table 5.1 are plotted in Figure 5.7 to

offer a. better comparison of the relative complexities of the various algorithms.

Figure 5.7 Computational Complexity of Decorrelation-Based Equalizers.

The results of Table 5.1 and the individual curves in Figure (5.7) are based on

estimates of the count of the number of multiplications and divisions per iteration

105

for the various algorithms as described in Chapter 4, [33], [41], and Chapter 2. The

parabolic nature of the curve for the RLC algorithm is due to its order M2 computa-

tional complexity. All other algorithms in the figure have order M complexity. The

decorrelation algorithm presented in Chapter 2 was included as a reference on the

lower bound of complexity. The decorrelation algorithm, like the LMS algorithm,

can be considered as one of the simplest of the adaptive equalization algorithms in

terms of implementation. Consequently, as can be clearly seen in the figure, the fast

Kalman is the most efficient of the recursive least algorithms discussed in this work.

However, its computational complexity is only slightly less than the fast transversal

filter. Closely following is the gradient lattice algorithm, then the RLS lattice, and,

finally, the direct-form Kalman algorithm. Note that for small values of M (equalizers

of very short length), there is little difference in the complexity among the rapidly

convergent algorithms.

CHAPTER 6

CONCLUSIONS AND AREAS FOR CONTINUED WORK

In this work, it was shown that the rate of convergence of the decorrelation-based

decision feedback equalizer can be increased dramatically by a subsequent increase

in the complexity of the algorithm. However, this complexity has a direct bearing

on the cost of implementing the algorithm in either hardware or software. It

is this cost that provides the motivation for the development of more computa-

tionally efficient algorithms which maintain the high rate of convergence, but. at a.

complexity that increases linearly with the length of the tap weight vector. Several

such algorithms have been proposed and developed in this thesis which alleviate the

O(M2) complexity of the RLC algorithm of [24].

The fast Kalman algorithm for decorrelation and the fast transversal filter

for decorrelation both have O(M) complexity. Furthermore, since the fast Kalman

and FTF algorithms based on decorrelation are mathematically equivalent to the

RLC algorithm, these two fast algorithms should have a. rate of convergence which

is comparable to that of the RLC. This was confirmed through simulation and

comparison of the performance of the various algorithms in differing channels.

However, a disadvantage of these fast algorithms is that they have a tendency to

become unstable in finite-precision environments. Remedies to this problem were

proposed, among which was the derivation of the covariance fast Kalman algorithm

for decorrelation. The CFRLC is the unwindowed case of the fast Kalman algorithm,

used when the fast Kalman algorithm is restarted to overcome the accumulated

effects of the finite-precision environment.

Two additional fast structures, which exhibit better numerical stability in

finite-precision environments, were also proposed to deal with the complexity of the

RLC. The RLS and gradient lattices have O(M) complexity and have been shown

106

107

to be more inherently stable in environments governed by a finite word-length. To

incorporate the decorrelation algorithm into these algorithms, the existing lattice

structures were used, with the tap weights now updated according to the decorre-

lation algorithm. In addition, since these lattice structures were implemented in

a decision feedback configuration, the decision on the most recent output of the

equalizer is used as the input to the various lattice structures. This differs from

the conventional approach taken in DFE lattice implementations, which use a two-

channel lattice and an error feedback structure. Again, through simulation with

various channels, the rate of convergence of both the RLS and gradient lattices

based on decorrelation was shown to offer a. substantial increase in speed over the

decorrelation DFE. A comparison of the relative computational complexities of the

various algorithms (given in terms of the number of multiplications and divisions per

iteration) was also performed. In terms of linear complexity of the rapidly converging

structures presented in this work, the fast Kalman and FTF algorithms are the least

computationally complex, followed by the gradient and RLS lattices.

As was discussed, the performance of the algorithms proposed in this thesis

depends on the type of environment in which they are implemented. In other words,

the convergence properties of a given algorithm may he dramatically different when

that algorithm is implemented in a finite-precision environment. It is for this reason

that a discussion on the finite-precision performance of the decorrelation algorithm

has been made. Models for the finite word-length environment were proposed and

an expression for the quantization error of the correction term of the decorrelation

algorithm, referred to as the digital residual error, was calculated and shown to be

similar to the corresponding LMS. These results were compared with those of the

LMS algorithm, on which much work has been done in the area of limited-precision

environments. It was shown that the decorrelation algorithm offers comparable finite-

precision performance to the LMS.

108

The work proposed in this thesis may progress into many areas. The most

obvious extension of this work would be studying the performance of the fast

algorithms for decorrelation in finite-precision environments. Methods similar to

that proposed in [18] and [30] could be used. Furthermore, to truly understand

the performance of the decorrelation algorithm in a finite-precision environment,

more complex models of the decorrelation quantization error will need to be derived.

In the context of finite-precision, the fast algorithms could also be modified into

their corresponding normalized or stabilizing forms, as proposed in [8], [3], and

[43]. Recall that this would entail a relative increase in the complexities of the

fast algorithms due to the inclusion of square-root computations. Moreover, the

decorrelation algorithm, itself, could be modified so as to offer better performance

in finite-precision environments. The application of the technique known as leakage

to the decorrelation algorithm would help to stabilize the digital implementation of

the algorithm in that occurence of overflow would be prevented [6]. Consequently,

the scaling factor derived in Chapter 2 would no longer be needed.

Next, with the channel model used for this thesis, there was subsequently no

need for a forward filter in the decision feedback equalizer. Consequently, only single

channel forms of the fast algorithms were derived. Therefore, another area. into which

this work may progress is the creation of multichannel representations of the FRLC

and FTF algorithms. This extension is quite straightforward and could easily follow

the derivations given in this work, since all that is required is a new declaration of

the augmented vectors of the input and output of the slicer.

The decorrelation algorithm can also be extended to many other fast structures.

There are literally dozens of competing fast algorithms that have been proposed in

the literature, in both fast Kalman/FTF and lattice manifestations (see [38] for an

extensive bibliographical listing of fast algorithms). Since most of these other fast

algorithms are based on much of the same theory that has been proposed in this

109

thesis, the further application of the decorrelation algorithm to other computational

efficient structures is very possible.

Finally, if better numerical stability and rapid initial convergence of the

decorrelation algorithm is desired without regard to complexity, a decorrelation-

based structure using square-root Kalman filtering can be developed. This class of

algorithms, like the RLS, has an O(M2) complexity, hut has been /shown to be the

most numerically stable of all rapidly converging algorithms [19].

APPENDIX A

PROOF OF EQUATIONS 4.46 AND 4.47

It will now be shown that Equations 4.33 and 4.34 are contained in the expressions

of Equations 4.46 and 4.47. To prove Equation 4.46, substitute the first matrix

representation of Equation 4.38 for R(n) in Equation 4.33 and multiply out all terms,

as shown:

[π (n) = S'

M

(n)] [0] = [Q M(n)

R M.M(n

—

1)] [KM (n

 — 1)]

= [S'

M

(n)

K M (n

 — 1)]

[R M.M(n

— 1)K

M (n

 — 1)]

= [ρ (n)]

[Y M (n

 — 1)]
= [y (n

 —

1)] + [S M (n

 —

1)K M (n

 — 1) - y

(n

 — 1)]
[Y M (n

 — 1)] [0

M

]

= Y M (n) + [ρ

(n)

— y

(n

 — 1)] . [0

M]

To prove Equation 4.47, substitute the second matrix representation of

Equation 4.38 for R(n) in Equation 4.34 and multiply out. all terms, as shown:

[R M.M (n) Ǭ

M

(n)] [K

M

(n)] = [R M.M (n) K

M

(n)] [S'

M

(n) π (n)] [0] [S'

M

(n)K

M

(n)] = [YM(n)] [β(n)] = [YM(n)

] + [0M] [y(n — M — 1)] [S'M(n)

KM(n)

— y(n — M — 1)]

= YM(n) + [0M] . [β(n)

— y(n — M — 1)]

110

APPENDIX B

PROOF OF EQUATION 4.51

In order to prove Equation 4.51, it will first be necessary to substitute the first matrix

representation of Equation 4.38 for

R(n)

 in Equation 4.50. Thus,

R (n) [1] = [π (n) S'

M

(n)] [1] [FM(n)

] [QM(n) R M.M(n

—

1)] [FM(n

)] = [π(n) + S'M(n) + FM(n)] [QM(n)

+ RM.M(n

—

1)FM(n

)] = [FM(n)] . [0

M]

Consequently, according to the above equations, the following two equalities hold:

F-1M(n) = 1 / π(n) + S'M(n) + FM(n) (B.1)

and

QM(n)

+ RM.M(n

—

1)FM(n

) = 0

M . (B.2)

Therefore, taking these two equalities into account, postmultiply both sides of

Equation 4.50 by F-1

M

(n) (ρ(n)

—

y(n — 1)). Expanding terms yields:

R(n) [π(n) + S'M(n) FM(n)] F-1M(n) (ρ(n)

— y(n —

1)) = [QM(n) + RM.M(n

—

1)FM(n

)] = [{π(n) + S'M(n) FM(n) } {F-1M(n) (ρ(n)

— y(n —

1))}] [{QM(n) + RM.M(n

—

1)FM(n

) } {F-1M(n) (ρ(n)

— y(n — 1))}]

= [(ρ(n)

— y(n —

1)] . [0M(n)]

111

APPENDIX C

PROOF OF EQUATION 4.53

In order to prove Equation 4.53, it will first be necessary to substitute the first matrix

representation of Equation 4.38 for

R(n)

in Equation 4.53 and use the definition of

K(n)

 given in Equation 4.52. Thus,

R(n)K(n)

 =

= [π (n) S'

M

(n)] [-F-1

M

(n)[ρ (n)

— y

(n

 —

1)]] [QM(n) R M.M(n

— 1)] [K

M (n

 — 1) —

F-1 M

(n)[ρ (n)

— y

(n

 — 1)]]

= [- {{π (n) + S'

M

(n)F

M

(n)}-F-1

M

(n)[ρ (n)

— y

(n

 —

1))} + S M

(n)

K M (n

 — 1)] . [- Q(

n) + R (n

 — 1)

F

(n)}-F-1

M

(n)[ρ (n)

— y

(n

 — 1))} + R

(n

 — 1)K

(n

 — 1)]

Using Equations 4.33 and 4.35, the identities derived in Appendix B for F-1

M

(n)

and

Q M (n) + RM.M(n

—

1)F M

(n)

 and the definition of ρ

(n)

 in Equation 4.48, the above

equation can be simplified as follows:

R (n)K (n)

 =

[- ρ (n)

—

y (n — 1)) + ρ

(n)

] . = [0M + RM.M(n

—

1)K M (n

 — 1)]
= [y(n

— 1)] = [y(n —

1)] = ῩM(n

)

. [RM.M(n

—

1)KM (n

 — 1)] [YM(n — 1)]

112

APPENDIX D

THE COVARIANCE FAST KALMAN ALGORITHM FOR
DECORRELATION

In this appendix, a modification to the fast Kalman algorithm for decorrelation

will be made so that the FRLC can accomodate the case of unwindowed data, as

discussed in Chapter 4. The covariance fast Kalman algorithm for decorrelation

(CFRLC) assumes that the input data vectors

YM (n)

 and

ŶM (n)

 are not zero for

n < 0. The proof of the algorithm closely parallels that presented in Chapter 4 for

the prewindowed fast Kalman. Therefore, similar steps in the proof will be omitted

for sake of brevity and only relevant and necessary results presented. The derivation

is based on the work done in [25].

For the covariance fast Kalman, like the fast Kalman, it will be necessary

to derive a set of equations to compute the covariance Kalman gain vector,

ΩM (n)

 =

R-1 M.M(n

)Y

M (n

) recursively in time. The modified cross-correlation

matrix, Rm,m(n) is given by

R-1M.M(n) = Σn λn-kYM(k)Ŷ'M(

k) + δWM(n), 	(D.1)
k=0

where

WM (

n) = diag [λn , λn-1,...., λn-M+1] 	 (D.2)

and δ is a small, positive constant. The constant A is chosen close to, but less than,

one. This inclusion of the weighting factor in Equation D.1 is to insure the initial

nonsingularity of the cross-correlation matrix,

R

M.M(n) [18]. It has been shown in

the literature [25] that the modification will not affect the time-update recursions

for the fast Kalman algorithm, only the starting value. Furthermore, the additional

weighting term will decay to zero as n --> oo. To go from

Ω M (n

 — 1) to Ω
M

(n

),

 it

113

114

is possible to write

RM.M(n

—

1)ΩM(n — 1) =

YM(n — 1) 	(D.3)

and

RM.M(n)ΩM(n) =
YM(n), 	(D.4)

The matrices
R

M.M(n
—

1) and R M.M(n) can be related through the augmented

correlation matrix (see [25])

R(n

) =

RM+1.M+1(n) = Σn k=1

 λn-kῩ(k)Ῡ'

(

k) + δWM(n) (D.5)
k=1

where

Ῡ(

n) and Ῡ'

(

n) are given by Equations 4.35 and 4.36, respectively, and

δWM(n) = λn λn-1,.....,λn-M] 	(D.6)

as follows

R(n) = [π(n)

S'M(n)

] [QM(n) RM.M(n

— 1)]

 = [RM.M(

n) λnYM (0)Y'M (0) QM(n)] . (D.7) [S'M(n

)

π(n)]

The quantities which comprise Equation D.7 are defined according to

π(n

) = Σn k=1λn-ky(k —1)ŷ(k —1) + λnδ
k=1

S'M(n)

= Σn k=1λn-kY'M(k—1)y (k —1)

QM

(n)

= Σn k=1λn-kY'M(k—1)y(k —1)

k=1

QM

(n) =

 Σn k=1λn-kYM(k —1)ŷ(k —1)

	RM.M (n —1)

 =

Σn k=0λn-kYM(k —1)Y'

M

(k —1)

+ δWM(n —1)

and

π(n

) = Σn k=1λn-k y (k — M)ŷ (k — M) + λn-Mδ

(D.8)

SM(n)

 =

Σn k=1λn-kY'M(k

)y (k — M)

(D.9)

114

115

QM

(n)

= Σn k=1λn-kYM(k) ŷ(k — M) 	(D.10)

and RM,M

(

n) is given by Equation D.1. Referring to Equation 4.54, the augmented

Kalman gain vector, K

(

n), can be partitioned as

K

(n)= [CM(n)] [QM(n)] RM.M(n — 1)]

Substituting Equation D.11, the second expression for 11(n) in Equation D.7, and

the second expression for 17- (n) in Equation 4.35 into Equation 4.49,

[R M.M

(

n) - λnYM(0)

Ŷ'

M

(0)

Q M(n)] = K(n) = [CM(n)] = [YM(n

)] [S'M(n)

π(n)] [cM(n

)] [y

(n

 — M — 1)]

it can be seen from the first line of the above equation that

R M.M

(

n) — λnY

M

(0)Ŷ'

M

(0)

] C M(n

)

+Q M(n)c M(n

) = Y

M

(

n) . 	(D.12)

Recall from Chapter 4 that following expression for the backward prediction coeffi-

cients holds

R

(

n) [BM

(

n)] = [0M] [1] [BM(n)] 	(D.13)

Substitution of the second expression for the augmented cross-correlation matrix of

Equation D.7 into the above equation results in

[R M.M

(

n) - λnY

M

(0)Ŷ'

M

(0)

Q M(n)] = [BM

(

n)] = [0

M(n)] [S'M(n) π(n)] [1] [BM(n)] . (D.14)

Therefore, expanding Equation D.14 and collecting terms, it can be seen that

QM(n

) = - [RM.M

(

n) —

λnYM(0)Ŷ'M(0)

]BM(n) . 	(D.15)

With a workable definition for QM(n) now established, Equation D.12 can be

rewritten according to

[RM.M

(

n) - λnYM(0)

Ŷ'

M

(0)

] [C M(n) - B M

(

n)cM(

n)] = = R M.M

(

n)[IM-λnR-1M.M

(n)YM(0)Ŷ'

M

(0)

]C M(n)-B M

(

n)cM(

n)] =YM

(

n) (D.16)

116

where IM is the identity matrix. Let

dM(n) = λnR-1M.M

(n)

Y

M

(0) . 	 (D.17)

Note that, since λ < 1, as n --> ∞ , d

M(n

) --> 0. Therefore, comparing Equation D.16

with Equation D.4, it can readily be seen that the covariance Kalman gain vector

can be defined as Ω M(n

) = [I

M

 —

d M(n)Ŷ' M

(0)

] [C

M(n

) —

B M(n

)c

M

(n)] . 	(D.18)

Inspection of Equation D.18 reveals that it will be necessary to derive a time-

update recursion for dM (n.). Therefore, rewrite Equation D.17 as

λn

Y

M

(0)

 = RM.M

(

n)dM(n) . 	(D.19)

Equation D.19, at time n — 1, correponds to

λn

Y

M

(0)

= λRM.M(n

—

1)dM(n — 1) .

Equivalently,

λn

Y

M

(0)

=

λRM.M(n

—

1)dM(n — 1) . 	(D.20)

Substitution of the time-update recursion for Rm.m(n) of Equation 4.8 into the last

line of the above equation yields

RM.M(n)d M(n

) =

R M.M(n) —

Y

M(n)Ŷ' M

(n)

]d

M(n

— 1) . 	(D.21)

Rearranging terms in Equation D.21 and using the definition of ΩM

(n

) in Equation

D.4, the time-update recursion for

d M(n

) is

dM(n

)

 = [I

M

 —

R-1M.M(n)

Y

M(n)Ŷ'M(n)]dM(n

—

1) 	

= [IM — ΩM(

n)Ŷ'M(n)

]dM(n — 1) . 	(D.22)

Notice in Equation D.22 that the current estimate of

dM(n

) requires the current

estimate of ΩM

(n

) . But from Equation D.18, ΩM

(n

) depends on dM(n). To remedy

117

this problem, use the definition of the fast Kalman gain vector of Equation 4.93,

KM(n), and substitute Equation D.18 into the last line of Equation D.22:

dM(n) = [I M - [IM - dM

(n

)

Ŷ'

M

(0)]K

M

(

n)Ŷ'

M

(

n)] d

M

(n

 —

1) = [IM - KM

(

n)Ŷ'

M

(

n) + d

M

(n)Ŷ'

M

(

n)K

M

(n)Ŷ'

M

(

n)] d

M

(

n — 1) .

Collecting terms in the last line of the above equation, the time-update recursion for d M

(

n) can be expressed as

d M(n) = [I M - KM

(n)Ŷ'

M

(

n)d

M

(n

 —

1) / 1 - Ŷ'
M

(

0)K

M

(n)Ŷ'

M

(

n)d

M

(

n — 1) . (D.23)

The algorithm is now complete. To perform the covariance fast Kalman algorithm

for decorrelation, follow Equations 4.84 through 4.92. Then, let

KM

(

n) = CM (n) - BM(n)cM(n) 	(D.24)

d M(n) = 1 / 1 - Ŷ'M

(

0)KM

(n)Ŷ'

M

(n)d

M

(n

— 1) [I

M

- KM(n

)Ŷ'

M

(

n)]dM

(

n — 1)

	

(D.25)

and

ΩM

(n

) = [I

M

 -

dM

(n)Ŷ'M(

n)]dM

(

n — 1) 	(D.26)

where

ΩM

(n

)

 is the desired covariance Kalman gain vector. To initialize the

algorithm, set

FM

(0) = 0M , B

M

(0)=0M , F

M

(0) = λδ , and

KM(0) = dM

(

0) = R-1M.M

(0)YM(0) = YM(0) / YM(0)Ŷ'M(0) + δWM(0) = W-1M(0)YM(0) / δ + Ŷ'M(0)W-1M(0)YM(0) .

It should be noted that for the unwindowed, or covariance, data case, the vectors

YM

(n) and

ŶM

(n) at time n = 0 are now comprised of the previous M data samples.

In other words,

Ŷ'M(0)

= [y(—1), y(—2),....,y(— M)] (D.28)

Ŷ'M(0)

= [y(—1), ŷ(—2),....,y(— M)] . (D.29)

REFERENCES

1. R.. A. Axford, Jr., "Blind equalization with the lattice constant modulus
algorithm," in Proc. IEEE Military Communications Conf., Boston,
Massachusetts, pp. 268-272, October 1993.

2. S. Bellini, "Bussgang techniques for blind equalization," in Proc. IEEE Global
Telecommunications Conf., Houston, Texas, pp. 1634-1640, 1986.

3. J.-L. Botto and G. V. Moustakides, "Stabilizing the fast Kalman algorithms,"
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 37, no. 9,
pp. 1342-1348, September 1989.

4. C. Caraiscos and B. Liu, "A roundoff error analysis of the LMS adaptive
algorithm," IEEE Trans. Acoustics, Speech, and Signal Processing;
vol. ASSP-32, no. 1, pp. 34-41, February 1984.

5. G. Carayannis, D. G. Manolakis, and N. Kalouptsidis, "A fast sequential
algorithm for least-squares filtering and prediction," IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. ASSP-31, no. 6, pp. 1394-
1402, December 1983.

6. J. M. Cioffi, "Limited-precision effects in adaptive filtering," IEEE Trans.
Circuits and Systems, vol. CAS-34, no. 7, pp. 821-833, July 1987.

7. J. M. Cioffi and T. Kailath, "Fast, recursive least-squares transversal filters for
adaptive filtering," IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. ASSP-32, no. 2, pp. 304-337, April 1984.

8. 3. M. Cioffi and T. Kailath, "Windowed fast transversal filters adaptive
algorithms with normalization," IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. ASSP-33, no. 3, pp. 607-625, June 1985.

9. E. Eleftheriou and D. D. Falconer, "Restart methods for stabilizing FRLS
adaptive equalizers in digital HF transmission," in Proc. IEEE Global
Telecommunications Conf., Atlanta, GA, pp. 1558-1562, November 1984.

10. D. D. Falconer and L. Ljung, "Application of fast Kalman estimation to
adaptive equalization," IEEE Trans. Communications, vol. COM-26,
no. 10, pp. 1439-1446, October 1978.

11. B. Friedlander, "Lattice filters for adaptive processing," Proc. IEEE, vol. 70,
no. 8, pp. 829-867, August 1982.

12. R. D. Gitlin and F. R. Magee, Jr., "Self-orthogonalizing adaptive equalization
algorithms," IEEE Trans. Communications, vol. COM-25, no. 7, pp. 666-
672, July 1977.

118

119

13. R. D. Gitlin, J. E. Mazo, and M. G. Taylor, "On the design of gradient
algorithms for digitally implemented adaptive filters," IEEE Trans.
Communications, vol. CT-20, no. 2, pp. 125-136, March 1973.

14. D. N. Godard, "Channel equalization using a Kalman filter for fast data trans-
mission," IBM J. Research and Development, pp. 267-273, May 1974.

15. D. N. Godard, "Self-recovering equalization and carrier tracking in two-
dimensional data communication systems," IEEE Trans. Communi -
cations, vol. COM-28, no. 11, pp. 1867-1875, November 1980.

16. D. Hatzinakos and C. L. Nikias, "Blind equalization using a tricepstrum-based
algorithm," IEEE Trans. Communications, vol. COM-39, n9. 5, pp. 669-
682, May 1991.

17. S. Haykin, Communication Systems, John Wiley and Sons, New York;
second ed., 1983.

18. S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, New Jersey,
second ed., 1991.

19. F. M. Hsu, "Square-root Kalman filtering for high-speed data. received over
fading dispersive HF channels," IEEE Trans. Information Theory, vol. IT-
28, no. 5, pp. 753-763, September 1982.

20. C. R. Johnson, Jr., "Admissibility in blind adaptive channel equalization," IEEE
Control Systems Mag., vol. 11, pp. 3-15, 1991.

21. T. Kailath, Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1980.

22. N. Kalouptsidis, G. Carayannis, and D. G. Manolakis, "A fast covariance type
algorithm for sequential least-squares filtering and prediction," IEEE
Trans. Automatic Control, vol. AC-29, no. 8, pp. 752-755, August. 1984.

23. R. E. Kamel and Y. Bar-Ness, "Error analysis of the blind decision feedback
equalizer using the decorrelation criterion," submitted to MILCOM 194

24. R. E. Kamel, Blind Detection in Channels with Intersymbol Interference, PhD
thesis, New Jersey Institute of Technology, Newark, New Jersey, 1994.

25. D. W. Lin, "On digital implementation of the fast Kalman algorithms," IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-32, no. 5,
pp. 998-1005, October 1984.

26. F. Ling, D. G. Manolakis, and J. G. Proakis, "Numerically robust least-squares
lattice-ladder algorithms with direct updating of the reflection coeffi-
cients," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-
34, no. 4, pp. 837-845, August 1986.

120

27. F. Ling and J. G. Proakis, "A generalized multichannel least squares lattice
algorithm based on sequential processing stages," IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. ASSP-32, no. 2, pp. 381-389, April
1984.

28. F. Ling and J. G. Proakis, "Adaptive lattice decision-feedback equalizers-their
performance and application to time-variant multipath channels," IEEE
Trans. Communications, vol. COM-33, no. 4, pp. 348-356, April 1985.

29. L. Ljung, M. Morf, and D. D. Falconer, "Fast calculation of gain matrices for
recursive estimation schemes," International J. Control, vol. 27, no. 1,
pp. 1-19, January 1978.

30. S. Ljung and L. Ljung, "Error propagation properties of recursive least-squares
adaption algorithms," Automatica, vol. 21, no. 2, pp. 157-167, March
1985.

31. R. W. Lucky, "Automatic equalization for digital communications," The Bell
System Tech. J., vol. 44, pp. 547-588, April 1965.

32. P. Monsen, "Feedback equalization for fading dispersive channels," IEEE Trans.
Information Theory, vol. IT-17, pp. 56-64, January 1971.

33. M. S. Mueller, "Least-squares algorithms for adaptive equalizers," The Bell
System Tech. J., vol. 60, no. 8, pp. 1905-1925, October 1981.

34. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1975.

35. J. G. Proakis, Digital Communications, McGraw-Hill, New York, 1983.

36. J. G. Proakis, "Adaptive equalization for TDMA digital mobile radio," IEEE
Trans. Vehicular Technology, vol. 40, no. 2, pp. 333-341, May 1991.

37. J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing,
Macmillan Publishing Company, New York, 1988.

38. S. U. H. Qureshi, "Adaptive equalization," Proc. IEEE, vol. 73, no. 9, pp. 1345-
1387, September 1985.

39. Y. Sato, "A method of self-recovering equalization for multilevel amplitude-
modulation systems," IEEE Trans. Communications, vol. COM-23,
pp. 679-682, June 1975.

40. E. H. Satorius and S. T. Alexander, "Channel equalization using adaptive lattice
algorithms," IEEE Trans. Communications, vol. COM-27, no. 6, pp. 899-
905, June 1979.

121

41. E. H. Satorius and J. D. Pack, "Application of least squares lattice algorithms
to adaptive equalization," IEEE Trans. Communications, vol. COM-29,
no. 2, pp. 136-141, February 1981.

42. M. J. Shensa., "A least-squares lattice decision feedback equalizer," in Proc.
IEEE Int. Conf. Communications, pp. 57.6.1-57.6.5, June 1980.

43. D. T. M. Slock and T. Kailath, "Numerically stable fast transversal filters for
recursive least squares adaptive filtering," IEEE Trans. Signal Processing,
vol. 39, no. 1, pp. 92-113, January 1991.

44. B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, Jr., "Stationary
and nonstationary learning characteristics of the LMS adaptive filter,"
Proc. IEEE, vol. 64, no. 8, pp. 1151-1162, August 1976.

	On issues of equalization with the decorrelation algorithm : fast converging structures and finite-precision
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The System
	Chapter 3: The Decorrelation Algorithm and Finite-Precision
	Chapter 4: Rapidly Converging Algorithms for Decorrelation
	Chapter 5: Lattice Structures with Decorrelation
	Chapter 6: Conclusions and Areas for Continued Work
	Appendix A: Proof of Equations 4.46 and 4.47
	Appendix B: Proof of Equation 4.51
	Appendix C: Proof of Equation 4.53
	Appendix D: The Covariance Fast Kalman Algorithm for Decorrelation
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

