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ABSTRACT 

A MULTI-DIMENSIONAL MODEL OF PASSIVE MESFETS FOR USE IN 
NON-LINEAR MICROWAVE SIGNAL PROCESSING 

by 
Roger Dorval 

A multi-dimensional model which accurately predicts device non-linearities over 

frequency and power has been developed for MESFETs used in a passive configuration in 

microwave signal processing applications. 

Historically, MESFETs have been used in linear control applications as passive 

microwave switches and attenuators. More recently, MESFETs operated as passive ele-

ments have been employed as power-sensitive non-linear transfer function generators to 

produce limiters, phase shifters, and linearizers. These devices offer simplicity, high per-

formance, and the opportunity for application in MMIC technology. 

This thesis deals with a mapping of passive MESFET non-linear characteristics, 

and provides insight into the causes of non-linearity in MESFETs when operated as con-

trol elements at near zero drain voltage. Five unique operating modes are identified, and 

discussed in terms of their equivalent circuit models. 

This work also deals with computer aided model extraction and non-linear simu-

lation of MESFET characteristics, and presents a multi-dimensional lumped element model 

which accurately predicts device non-linearity over a wide range of power (-35 to > 10 

dBm) and frequency (.1 to > 18 GHz). The application of this model to the design of a 

traveling wave tube amplifier (TWTA) linearizer is demonstrated. The model allows 

linearized TWTA transfer characteristics and two-tone carrier-to-intermodulation (C/I) 

performance to be predicted using standard CAD software. 
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CHAPTER 1 

INTRODUCTION 

The ability to generate non-linear transfer functions (Power-in vs. Power-out) which can 

be tailored to desired magnitude and phase characteristics is important in many RF/ mi-

crowave applications. Principle among these applications are linearizers and limiters. 

Linearizers are used to reduce multi-tone intermodulation distortion caused by the non-

linearities of active RF/microwave components such as amplifiers. Limiters are used to 

limit, or diminish, the maximum signal levels produced by RF/microwave systems and in 

some instances are required to provide a shaped response H. Non-linear transfer char-

acteristics are also employed in microwave signal processing applications for the produc-

tion of logarithmic amplifiers and similar devices. 

Non-linear transfer functions have been commonly generated by driving amplifier 

into their saturation region, or by making use of the change in impedance of diodes with 

power level. Neither of these methods allow the resultant gain and phase transfer 

characteristics to be readily modified so as to match a desired transfer response. Diodes, 

in particular, can display gross changes in characteristics as frequency is varied. The 

ability to maintain a specific transfer characteristic over a wide band of frequency is es-

sential in many non-linear signal processing applications. 

Non-linear components have been used in both transmissive and reflective net-

works. Each configuration has unique characteristics and between the two, a variety of 

non-linear characteristics can be generated. A transmissive and a reflective network is 

illustrated in Figures la and lb, respectively, where the impedance, Zn1, represents the 

non-linear component. 

1 



2 

Figure la Transmissive Network 

Figure lb Reflective Network 

The equation for transducer gain can be determined for each of the above networks using 

network analysis techniques. The simplified transmissive case is shown in Figure la. The 

network transducer gain, S21, for a matched load (i.e. Z1 = Zo), is related to the non-

linear impedance, Znl, by Equation 1. 

If |Znl| >> |Zo|, then |S21| becomes inversely related to |Znl|  
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For the reflective case shown in Figure lb, assuming an ideal circulator and a 

matched load, the transducer gain is given by Equation 2, where Fn  is the reflection co-

efficient of Zni + ZL. 

Using flow graph theory, S21 can be related to the S-parameters of the Znl network (Snl) 

and FL, the reflection coefficient of the internal impedance ZL. This relation is given in 

Equation 3. 

When ZL is totally reflective (i.e. |FL = 1), and |Snl22|<< 1, then the transducer gain is 

given by Equation 4. 

Where 0 is the angle associated with FL. If |Snl11| << |Snl21| and the network is bilateral, 

then Equation 5 holds true. 

Under these conditions the transmissive characteristics of Znl also establish its reflective 

characteristics. When |Snl11| is comparable to |Snl21|, the angle of FL becomes critical, 

and a variety of reflective transfer characteristics can be established as a result of the 

addition or subtraction of Snl21 and Snl11. 



CHAPTER 2 

PASSIVE FET NON-LINEAR ELEMENT 

GaAs MESFETs connected in a common gate configuration and operated as passive ele-

ments, with the drain and source at the same dc potential, are commonly used in micro-

wave control applications to produce linear components such as switches and attenuators. 

In these control applications, the gate of the MESFET is connected to a high impedance, 

typically greater than 5 KO, and non-linearities in the power transfer characteristics are 

undesirable. When a MESFET is operated as a non-linear element (NLE), the gate is 

usually connected to ground through a relatively low impedance. The FET is operated es-

sentially as a passive element with the impedance of the drain-to-source channel controlled 

by the gate field. Negligible dc power is consumed when operated in this way, since there 

is no drain-source supply. A basic NLE network is illustrated in Figure 2. 

Figure 2 Basic FET Non-Linear Element (NLE) 
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It was discovered that a GaAs MESFET, when connected as an NLE, can display 

both a significant change in input impedance, S11, and transducer gain, S21, with varying 

power level [2]. In the case of passive MMIC switches/attenuators, a change of input 

impedance or insertion loss with power level is undesirable. Where such changes have 

been observed, they have been reported as occurring at power levels greater than 10 dBm 

and attention has focused on minimizing these effects [3]. For the NLE, the onset of 

changes in input impedance and insertion loss has been observed at input powers below 

-25 dBm. This change can be readily tailored to produce a wide variety of responses in 

both magnitude and phase and is relatively insensitive to frequency variation. In general, 

S11 is less sensitive to power level than S21, however, a variety of input reflection coef-

ficient responses are available by appropriate selection of FL as given by Equation 4. 

Input and output match as well as reverse and through transmission gain have almost 

identical characteristics, meaning the NLE acts as a bilateral, or symmetrical, network. 

NLE non-linear characteristics have been successfully employed to produce superior high 

power amplifier (HPA) linearizers, limiters, level sensitive switches, and other related de-

vices [1,2]. 

The impedance properties of FET NLEs have been found to be easily altered by 

varying the gate parameters of the basic NLE network shown in Figure 2. Most important 

of these gate controls are the dc bias voltage and the RF impedance between the gate and 

ground. Depending on parameter values, it is possible to obtain an S21 transfer function 

whose magnitude becomes either larger or smaller and whose phase angle either increases 

or decreases with increasing input power. A typical NLE transfer response usable for a 

linearizer is shown in Figures 3 and 4 as a function of frequency and input power, 

respectively. 
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Figure 3a Typical NLE Gain Transfer Characteristics Versus Frequency 

Figure 3b Typical NLE Phase Transfer Characteristics Versus Frequency 



Figure 4a Typical NLE Gain Transfer Characteristics Versus Input Power 

Figure 4b Typical NLE Phase Transfer Characteristics Versus Input Power 

7 
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Figure 3a shows a null in the magnitude versus frequency characteristics of the 

forward transmission gain, S21. As shown in the figure, the depth of the null decreases 

with increasing power level. This change corresponds to gain expansion, as illustrated in 

Figure 4a. Such a characteristic can be used to compensate for the non-linearity of an 

amplifier in the compression region near saturation. Coinciding in frequency with this null 

in the magnitude response is a phase crossing, as illustrated in Figure 3b. Below this 

crossing point, phase increases with increasing power level, and above this point, phase 

decreases with increasing power level. The change in phase with input power level is 

illustrated in Figure 4b. The useful bandwidth of this type of response is limited on the 

low frequency side by the point of transition from gain expansion to gain compression and 

on the high frequency side by the transition from an increasing phase angle to a decreasing 

phase angle with power level. 

The location of the null center, the point of phase cross in frequency, and the shape 

of the magnitude and phase versus power characteristics are affected by input and output 

matching, external gate circuitry, and gate bias level. A desired non-linear response can be 

achieved by proper selection of these parameters. 



CHAPTER 3 

NLE MODES OF OPERATION 

3.1 Operational Modes 

Five distinct modes of FET NLE operation which are relatively insensitive to MESFET 

type and frequency band (up to at least 18 GHz) have been identified. These operational 

modes are established by the gate bias voltage. Each mode is defined in terms of a null in 

the magnitude response of the forward transmission gain of the NLE swept over fre-

quency. The location of the null in frequency, the depth of the null, and the sensitivity to 

power level, depend on the gate bias voltage and impedance. A packaged MESFET, with 

its gate grounded, will produce a transmission null in the multi-GHz frequency range. The 

null of a chip device will be significantly higher in frequency. As the NLE is driven harder 

these nulls tend to disappear as previously illustrated in Figure 3. This action produces the 

expanding magnitude transfer response, shown in Figure 4. The phase characteristics are 

mode dependent and will also be affected by frequency and external gate circuitry. 

3.2 Mode #1 

The first mode identified, referred to as mode #1, occurs for gate voltages ranging from 

approximately +1 volt to -2 volts. The precise voltage range depends on MESFET type 

and, in the positive range of voltage, depends on the size of the gate isolation resistor, 

since the gate diode draws current when biased positive. At higher power levels, the dc 

gate current increases. This self biasing action may help to explain some of the NLE's 

non-linear characteristics. As gate voltage is reduced, the location of the null moves 

higher in frequency. 

9 
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Figure 5 Typical Gain and Phase Response of Mode #1 

The response of a typical mode #1 null is illustrated in Figure 5. The response is 

that of an NE710 GaAs FET with a small inductance connecting the gate to ground 

through a dc blocking capacitor. A gain expansion, or reduction in loss, of greater than 12 

dB and a phase angle change of more than 60 degrees can be achieved for a change in 

input level of 20 dB. Gain compression, which occurs at frequencies below the null, is 

limited to about 5 dB over the same power range. A point of zero phase change with 

power occurs at the frequency coinciding with the bottom of the null. Phase angle in-

creases with increasing power at frequencies below this point, and phase angle decreases 

with increasing power at higher frequencies. 
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Figure 6 Effect of Gate Bias on Mode #1 Null Versus Frequency 

Figure 6 illustrates the effect of gate bias on the location of the null in frequency. 

The bias is varied from +0.6 volts to -1.0 volts. As the bias becomes more negative, the 

center of the null moves higher in frequency while the depth and shape of the null remain 

fairly constant. The corresponding phase cross associated with the null also moves higher 

in frequency as would be expected, and also maintains a fairly constant shape over the 

entire range of voltage. The ability to move the null frequency by varying the gate re-

actance is illustrated in Figure 7. 
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Figure 7 Effect of Gate Reactance on Mode #1 Null Versus Frequency 

Figure 7 shows the effect of varying the capacitance of a trimmer in the gate of an NLE 

from 4.5 pF to 0.5 pF with a small inductor of about 2 nH in series. The resistance of the 

source and drain dc return paths have negligible effect on this mode. The useful band-

width of mode #1, for transmissive linearizes applications, is limited on the low side by the 

point of transition from expansion to compression and on the high side by the transition 

from an increasing phase angle to decreasing phase angle with power level. 

The S11 characteristics of mode #1 display an improvement in match over a broad-

band with increasing power level. By symmetry, the same holds true for S22 char-

acteristics. The magnitude of S11 decreases by about 5 dB with increasing power as 

shown in Figure 8. 
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Figure 8 Typical S11 Characteristics of Mode #1 

The phase angle of S11 becomes negative with greater power level below the null center, 

and more positive above the center. This response can be altered greatly by terminating 

the NLE in a non-Z0  load, and in this manner be tailored for use in reflective circuit appli-

cations as predicted by Equation 3. 

3.3 Mode #2 

A second operational mode, mode #2, occurs at a more negative gate voltage than mode 

and over a relatively narrow voltage window of about 0.2 volts, just before the pin-

chuff voltage level. The attributes of this null are similar to, but more complex than those 

of mode #1, and depend on the gate bias ground return path at the source and drain termi-

nals. Typically as the gate voltage is reduced, the center of this null moves lower in fre- 
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quency. If dc return paths are provided at both the input and output ports, the frequency 

point of zero phase angle change with power level takes place at or near the center of the 

transmission null. The phase angle decreases with increasing power level below the null 

center frequency, and increases with increasing power above this point. This facet as well 

as the change of null frequency with gate voltage are the opposite of mode #1. 

Figure 9 Typical Gain and Phase Response of Mode #2 

Mode #2 provides a very deep null, typically greater than 20 dB, and is the most 

sensitive to power level as demonstrated in Figure 9. A dynamic gain expansion of greater 

than 15 dB with a maximum slope on the order of 1 dB/dB can be achieved with a single 

FET. The point of maximum attenuation is usually associated with a large and steep 

change in phase. A mode #2 null can be also tuned to act as a limiter and produce a 



deeper null with increased power. Greater than 20 dB of limiting can be achieved with a 

single mode #2 NLE. This property is illustrated in Figure 9 as well. 

The S11 characteristics of mode #2 normally display a broad null whose depth 

decreases, and phase angle increases, with increased power level as shown in Figure 10. 

Figure 10 Typical S11 Characteristics of Mode #2 

3.4 Mode #3 

Decreasing the gate voltage further, typically Vg < -2.7 volts, produces a broad, deep null 

at frequencies less than 3 MHz, which is referred to as mode #3. At frequencies above 3 

MHz, there is little sensitivity to power in either the magnitude or phase response of the 

forward transmission gain. A typical mode #3 response is shown in Figure 11. 

15 
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Figure 11 Typical Gain and Phase Response of Mode #3 

The above response was obtained from the same network used to produce the mode #1 

and mode #2 response shown in Figures 5-10. However, for mode #3 operation, the gate 

impedance was reduced to move any residual mode #1 or mode #2 nulls above the 

frequency range shown. 

Mode #3 can provide more than 10 dB of gain expansion with a maximum gain 

slope approaching 1 dB/dB, but only a phase angle change that decreases with increasing 

power level and which is relatively insensitive to the value of gate impedance. This mode 

is particularly useful for HF and VHF/UHF linearizer applications. 

Mode #3 S11 response displays a broad band increase in return loss of about 5 dB 

with increasing power. A small phase change, primarily in the negative direction, is seen 

with increasing power level. These characteristics are illustrated in Figure 12. 
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Figure 12 Typical S11 Characteristics of Mode #3 

3.5 Broad-Band Mode 

Setting the gate voltage to a level somewhere between the more negative end of mode #2 

and the beginning of mode #3, yields a multiple decade broad-band mode. Uniform non-

linear magnitude and phase characteristics are obtainable over several GHz range. A typi-

cal broad-band mode response is illustrated in Figure 13. 
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Figure 13 Typical Gain and Phase Response of the Broad-Band Mode 

Although the gain expansion and phase change with power of this mode are less 

than that provided by mode #1, #2, or #3 , they are still sufficient (> 6 dB) for many 

applications. One limitation of this mode as well as mode #3, is that the phase angle 

displays only a decrease with increasing power. The characteristics of the input reflection 

coefficient, S11, shown by this mode are almost identical to those of mode #3, shown in 

Figure 12. 
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3.6 Mode #4 

One additional mode, mode #4, has been classified. This mode occurs for a gate bias 

more positive than that of a mode #1. A typical mode #4 response is shown in Figure 14. 

Figure 14 Typical Gain and Phase Response of Mode #4 

Mode #4 has characteristics very similar to mode #1 but the null occurs at a lower fre-

quency for a given gate reactance. There is also considerable dc gate current because of 

the high forward gate bias. The decrease in phase angle with power level, which occurs 

above the null center frequency is commonly more pronounced than the increase in phase 

angle which occurs below the null center frequency. 

The S11 characteristics of mode #4 are similar to mode #1 in magnitude, but 

display a phase angle which increases with applied power. This is the reverse of a mode 

#1 null. 



CHAPTER 4 

STATIC MODELING OF NLE MODES 

4.1 General Static NLE Model 

The operational mode characteristics described in Chapter 3 can be predicted using cold 

FET models [4,5]. Most device modeling is usually done for devices operating as active 

components in a common source configuration. The cold FET models are used to simu-

late the passive characteristics of devices (i.e. Vds = 0) and, as presented here, apply to a 

common gate configuration as opposed to common source configuration. A modified 

cold FET model is shown below in Figure 15. The behavior of the various NLE modes is 

modeled closely by a symmetrical Tee network consisting of the elements, Zs  and Zm, as 

shown in the Figure. 

Figure 15 Symmetrical Tee Equivalent Network of a Passive MESFET 

The impedances, Zs  and Zm, can be related to the S-parameters for the two-port network 

by Equations 6 and 7, as derived through network analysis techniques. 

20 
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4.2 Mode #1 Model 

In the case of mode #1, Zs  is the fixed resistance, Rcg  (5 I fits the sample data shown in 

Figure 3). Zm  consists of the power sensitive resistance, Rg, in series with a capacitor, C 

(.6 pF), internal to the MESFET, and a series external inductor, LG (5.2 nH), connected 

between the gate and ground. This model is shown in Figure 16. 

Figure 16 Equivalent Circuit for Mode #1. LG is external to the MESFET. 
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The parameters, Rcg  and Cg, correspond to the physical resistance of the gate 

channel and the gate diode capacitance established by the gate bias voltage. They are both 

insensitive to variation in power level. The resistance, Rg, represents the internal gate re-

sistance. An excellent match to mode #1 typical characteristics is obtained when Rg is 

increased from 1 Ω at low power level (Pin < -20 dBm) to about 30 Ω at high power (5 -

10 dBm). These characteristics are shown in Figures 17a and 17b. 

Figure 17a Gain Response of Mode #1 Equivalent Circuit. Rg = 1 Ω to 30 Ω. 

The modeled response shows the characteristic null which decreases in depth with 

increasing power level. The model also predicts the change from gain expansion to gain 

compression with increasing power as frequency is reduced. Likewise, the model predicts 

the phase cross corresponding in frequency to the center of the magnitude null. The 

model shows positive phase shift below the cross and negative phase shift above the cross. 
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Figure 17b Phase Response of Mode #1 Equivalent Circuit. Rg  = 1S2 to 30 Q. 

4.3 Mode #3 Model 

As the MESFET's negative gate bias is increased, the value of Rcg  increases and becomes 

sensitive to power level. Because of the lower conductance of the gate channel, the shunt 

channel to gate capacitances, Ccg, become significant. The variation of Rcg  with power 

can be used to model mode #3 behavior. For this case, Zs  is the parallel combination of 

Rcg  and Ccg  as shown in Figure 18 and given by Equation 8. 

Figure 18 Equivalent Circuit for Mode #3 
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A value of about 0.15 pF for Ccg, and 1Ω for Rg, is need to model the S21 magnitude 

and phase response shown in Figure 13. The value of the gate capacitor, Cg, reduces to 

about 0.2 pF. A change in Rcg  from about 3000 Ω, to simulate low power response, to 

100 Ω, to simulate high power response, produces the characteristics shown in Figures 

19a and 19b. 

Figure 19a Gain Response of Mode 3 Equivalent Circuit. Rcg  = 3000 Q to 100 Q. 
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Figure 19b Phase Response of Mode #3 Equivalent Circuit. Reg  = 3000 Ω to 100 Ω. 

For the mode #3 equivalent circuit, the impedance Zm, consists of Rg  in series 

with Cg
. Variation of Rg, up to 500 Q, has negligible effect on the mode #3 null. The ra-

tio of Cg  to Ccg  does effect the shape of the response. Lg  is not required since it does not 

effect the near dc null of mode #3. If Lg  is added to the circuit Zm  is as described in 

Equation 9. 

Both mode #1 and mode #3 nulls will be present under these conditions, and each will be 

independently controlled by the respective power sensitive resistance, Rg  and Rcg. In the 

transition frequency range between these nulls, the magnitude of the forward transmission 

gain is relatively insensitive to gate bias voltage level, while the phase angle varies con-

siderably. This property can be utilized to produce an exceedingly simple, voltage con-

trolled phase shifter [6]. 
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4.4 Broad-Band Mode Model 

The broad-band mode characteristics can be modeled by the same Tee equivalent circuit as 

that of mode #3, which is shown in Figure 18. For the broad-band mode, however, the 

required value of Rcg  spans the range from 130 Q to 50 Q, to simulate increasing power. 

This result is expected as a consequence of the lower dc bias voltage. Ccg  is also reduced 

to a value of 0.13 pF. The corresponding broad-band mode response is shown in Figures 

20a and 20b. 

Figure 20a Gain Response of Broad-Band Mode Equivalent circuit. Rcg=130 Ω to 50 Ω. 
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Figure 20b Phase Response of Broad-Band Mode Equivalent circuit. 
Reg  = 130 Q to 50 Q. 

4.5 Mode #2 Model 

A model for the mode #2 response is shown in Figure 21. A bridged Tee network with a 

restricted range of values is required to produce the unique phase characteristics associ-

ated with this mode. Too large or too small of an element value will transform the de-

scending phase step, shown in Figure 9, to an ascending phase step, and mode #1 charac-

teristics will result. Mode #1 nulls are observed on both sides of the narrow band of bias 

voltages which produce mode #2 nulls. The response provided by the mode #2 model is 

shown in Figures 22a and 22b. 



Figure 21 Equivalent Circuit for Mode #2. Rch affects Null Depth and Frequency. 

Figure 22a Gain Response of Mode #2 Equivalent Circuit. Rch = 70 S) to 30 
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Figure 22b Phase Response of Mode #2 Equivalent Circuit. Rch = 70 Ω to 30 Q. 

Only a change in Rch is required to simulate the observed mode #2 magnitude and 

phase response. An equivalent Tee network can be created consisting of complex, reac-

tive elements. The network whose response is depicted in Figure 22, requires the resis-

tance, Rcg, with a value of 250 Ω, and the resistance, Rch, which varies from 70 Ω to 20 

Ω as power is increased. The equivalent real part of the impedance Zs  ranges from 30.7 

Q to 9.6 Ω These values fit the mode #2 bias conditions which lie between those of 

mode #1 where Rcg  = 5 Ω and the Broad-band Mode where Rcg  = 130 Ω to 50 Ω. The 

complex impedances Zs  and Zm  are given by Equations 10 and 11 respectively where Zm' 

in Equation 11 is given by Equation 12, and is the part of the Zm  term resulting from the 

bridge elements. 
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The above expression for Zm  includes Rg (4.5 ohms), Cg (.5 pF and an external LG (.45 

nH) needed to match the mode #2 response. The Zm' expression shows why a change in 

Rch not only effects the mode #2 null depth but also its location in frequency. It also 

explains why mode #2 can be used to produce high-Q notch filters. If, 

the real part of Zm, as given by Equation 11, is negative. By proper choice of component 

values and bias voltage, it is possible to cancel Rg  and any losses of Lg  and Cg  to produce 

an extremely high-Q trap. Notch depths in excess of 50 dB are easily achieved as 

illustrated in Figure 23. 
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Figure 23 Single NLE Used as a Notch Filter 

One limitation of this techniques is the NLE's non-linear characteristic. NLE notch 

filters should be limited to low power applications (Pin < -10 to -20 dBm) to avoid distor-

tion. 

4.6 Mode #4 Model 

The equivalent circuit for mode #4 characteristics is shown in Figure 24. This cir-

cuit is very similar to the mode #1 circuit. One difference is the absence of Cg. As a con-

sequence of the high forward bias current, the FET is virtually a resistive element, and Cg  

disappears. The function of Cg  is replaced by an external capacitor CG which is a 10 pF 

dc blocking capacitor. This change accounts for the drop in frequency displayed by the 

mode #4 null. 



Figure 24 Equivalent Circuit for Mode #4. Both LG and CG are External to the FET. 

The response produced by the above mode #4 equivalent circuit is illustrated be-

low in Figures 25a and 25b. 

Figure 25a Gain Response of Mode #4 Equivalent Circuit. Rg = 5 Ω to 30 Ω. 
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Figure 25b Phase Response of Mode #4 Equivalent Circuit. Rg = 5 Ω to 30 Q. 
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CHAPTER 5 

DYNAMIC NLE MODEL 

5.1 Model Development 

An accurate dynamic model is essential to conform the response of a device to a specific 

application. Unfortunately, most existing non-linear GaAs MESFET models were formu-

lated for active, common source, applications, and give poor results when applied to the 

NLE in a passive common gate configuration [4]. Some specialized passive models have 

been developed [7,8]. However, these models are primarily for FET switches, and focus 

on the ON and OFF states in the linear region of operation. They provide little insight into 

MESFET characteristics in the transition region between these end states. This is the re-

gion of most importance in NLE applications. 

To solve this problem, a model was developed which accurately predicts passive 

MESFET characteristics over a wide dynamic range of frequency, power level, and bias 

voltage. This model is based on a modified Curtice model with a non-linear diode element 

acting as the non-linear channel resistance [4]. Harmonic balance microwave circuit 

simulation software is used for the analysis of circuit component values. 

The S-parameters of the device to be modeled are obtained over a desired range of 

frequency and input power, for a variety of bias levels using a network analyzer, auto-

mated test equipment, and specially designed calibration fixtures. Circuit optimization is 

then used to match the component values of an initial static model to the measured S-pa-

rameter data. This is done in a manner similar to the equivalent circuit modeling presented 

in Chapter 4. The static model is converted to a dynamic model by insertion of the non-

linear diode element, and run under a harmonic balance analysis. The diode is reversed bi-

ased and operates in the reverse saturation region. Diode parameters such as junction ca-

pacitance and reverse saturation current control the change in characteristics with power 
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level. These parameters are altered to match the device's non-linear gain response. Once 

congruent gain characteristics are obtained, the phase characteristics should also match, 

with little or no adjustment of the diode. The general, dynamic model of a MESFET con-

nected as an NLE, is shown in Figure 26. 

Figure 26 Dynamic Model of NE710 NLE Using a Non-Linear Diode Element 

The S-parameter equations for the equivalent circuit model shown in Figure 26 are given 

in Equation A-21. A detailed derivation and definition of terms is provided in Appendix I. 

The Libra model schematic representation and circuit file description for the basic FET 

NLE component are discussed in Appendix II. 
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5.2 NLE Modeling Results 

The dynamic model simulates gate bias control, and the effect of external component 

variation on the NLE frequency and power transfer characteristics. The following data il-

lustrates the effect of gate bias control in the model. The complete dynamic model shown 

in Figure 26 was used to simulate the typical performance characteristics of mode #1, #2, 

and #3 operation of an NLE. Figures 27, 28 and 29 illustrate these results. These results 

correspond to the equivalent circuit modeling results shown in Figures 17, 22, and 19, 

and to the measured data shown in Figures 5, 9, and 11, respectively. As illustrated by the 

figures, the single dynamic model simulates the magnitude and phase characteristics of 

three of the five operating modes previously modeled by three separate static models. 
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Figure 27a Simulated Mode #2 Gain Response 

Figure 27b Simulated Mode #2 Phase Response 
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Figure 28a Simulated Mode #3 Gain Response 

Figure 28b Simulated Mode #3 Phase Response 
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Figure 29a Simulated Broad-Band Mode Gain Response 

Figure 29b Simulated Broad-Band Mode Phase Response 
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Figure 27a illustrates the deep null in the gain response associated with mode #2 

corresponding to gate voltages just before the pinch-off voltage level. The simulated 

phase response for mode #2 is shown in Figure 27b. A gate bias of 1.2 volts corresponds 

to the data shown in this figure. 

The broad null in gain response at low frequency associated with mode #3 is 

shown in Figure 28a. Figure 28b illustrates the negative phase shift with increasing power 

level associated with this mode. The modeled response occurs for gate voltages above 1.5 

volts. 

The broad-band mode gain response shown in Figure 29a was obtained with a gate 

bias of 1.3 volts which falls between the voltage levels of modes #2 and #3. The corre-

sponding phase characteristics are given in Figure 29b. 

The above results show the validity of simulated gate bias control in the model. 

Each of the mode #2, and #3, and the broad-band mode characteristics associated with a 

region of gate bias were simulated using the gate bias control in the model. The model, 

however, does not take into account the drastic physical changes in gate structure that 

take place during the forward bias conditions of mode #1 or the reverse breakdown region 

associated with mode #4. Further modifications to the model would be needed to take 

these effects into account. 

5.3 NE710 Modeling Results 

The mode of operation most useful for linearization is the broad-band mode. The ability 

of the model to accurately simulate the actual power and frequency response characteris-

tics of an NE710 MESFET operating in this mode is illustrated in Figures 30 and 31. The 

data was taken and the model was generated for the NE710 MESFET as described in sec-

tion 5.1. A comparison of actual measured S-parameter data and the simulated results is 

given in the figures. 
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Figure 30a Comparison of Measured and Simulated Gain Response Over Frequency 

Figure 30b Comparison of Measured and Simulated Phase Response Over Frequency 



Figure 31a Comparison of Measured and Simulated Gain Response Over Power 
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Figure 31b Comparison of Measured and Simulated Phase Response Over Power 
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The simulated and measured magnitude and phase characteristics of an NE710 

MESFET chip connected as an NLE and biased for broad-band mode operation are illus-

trated in Figures 30a and 30b. The data is shown over frequency, at -20 dBm input power 

and 0 dBm input power. At the low power level, the NLE is insensitive to changes in 

drive level, while at the high power level, the change in NLE loss is approximately 6 dB, 

about that needed to compensate for the non-linearity of an amplifier near saturation. The 

null associated with this mode occurs above the frequency range of interest and thus facili-

tates a wide band response. Figures 31a and 31b show a comparison of the simulated and 

measured response of the same device as a function of input power at 12 GHz. The fig-

ures illustrate the expanding magnitude and phase transfer characteristics of the forward 

transmission gain as input power is increased. 



CHAPTER 6 

NLE TWTA LINEARIZER DESIGN 

6.1 TWTA Linearizer 

Non-linearities are inherent in all amplifier transfer characteristics (power in vs. power 

out) in both magnitude and phase. These non-linearities produce intermodulation distor-

tion for multi-carrier input signals and increased bit error rate and spectral spreading for 

single carrier digitally modulated signals. 

As discussed earlier, some of the identified NLE modes are beneficial for the de-

sign of linearizers, others are more applicable to limiters. The NLE has been applied in 

both reflective and transmissive networks to produce linearizers which cover the full C and 

Ku satellite bands. The passive FET non-linear element has proven particularly successful 

as a broad-band linearizer for compensation of such non-linearities for TWTAs, and GaAs 

FET and BJT solid state amplifiers. For TWTAs, NLE linearizers provide a reduction in 

inter-modulation distortion products of more than 10 dB at the 2.5 dB output power back-

off point. Multiple-decade bandwidth is also possible for linearizers using FET NLEs. 

6.2 TWTA Linearizer Design 

The above model was used to design a linearizer for a Ku-band TWTA. TWTAs require a 

phase response which increases with power level. This characteristic is opposite to that 

produced by the basic NLE network. Positive phase shift with increasing power can be 

achieved by the NLE through appropriate design of the gate impedance and the NLE 

embedding network. This can be done while maintaining the gain expansion and band-

width characteristics typical of the basic NLE operating in the broad-band mode. 

For the design, the entire linearizer/TWTA system was simulated. This included 

the linearizer, the TWTA, and variable gain blocks at the input and output of the 
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linearizer. These are used to align the expansion of the linearizer relative to the TWTA 

saturation point. S-parameter data of the TWTA magnitude and phase transfer response 

as a function of input power were obtained using an automated test system. This S-

parameter data was converted to equation form using an exponential series expansion as 

given by Equations 14 and 15, for output power and phase respectively. 

These equations were then combined with a linearizer circuit embedding the NE710 dy-

namic model, and analyzed using the same harmonic balance software used to develop the 

NLE model. The linearizer circuit components were adjusted to provide maximally flat 

phase and optimal gain response defined as a 1 dB compression point as close to satura-

tion as possible with less than 0.5 dB overshoot. The two-tone, third order carrier-to-in-

termodulation ratio (C/I) performance was then calculated using these results. The result-

ing linearizer gain and phase characteristics as a function of input power level are shown in 

Figures 33a and 33b. The combined linearizer/TWTA transfer response is shown in Fig-

ures 34a-34c, and the overall C/I as a function of output backoff is shown in Figure 35. 

6.3 TWTA Linearizer Modeling Results 

To verify the design, a linearizer was fabricated using the component values predicted by 

the dynamic model and evaluated for transfer characteristics and C/I performance. These 

results are also shown in Figures 33-35, and confirm the value and accuracy of the NLE 

model. Figures 32a and 32b show the gain and phase compression of the uncompensated 

TWTA as saturation is approached. Figures 33a and 33b show the simulated and 

measured gain and phase expansion characteristics of the TWTA linearizer. The combined 
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linearizer/TWTA measured and simulated gain and phase characteristics, output power, 

and C/I performance are illustrated in Figures 34 and 35. 

The linearizer, when mated with the test TWTA, increased the C/I performance to 

greater than 30 dB for 3 dB and greater output backoff levels. The worst case phase 

variation from far backoff to saturation was reduced from 40 degrees to less than 5 

degrees, and the am/pm conversion coefficient (Kp) was reduced to less than 1 degree/dB. 

Also, the separation of the 1 dB compression point from saturation was reduced from 

greater than 8 dB to less than 2 dB. This performance was maintained over a bandwidth 

of greater than 500 MHz. 

Figure 32a TWTA Gain Compression 
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Figure 32b TWTA Phase Compression 

Figure 33a NE710 TWTA Linearizer Measured and Simulated Gain Transfer Response 
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Figure 33b NE710 TWTA Linearizer Measured and Simulated Phase Transfer Response 

Figure 34a Comparison of Combined Linearizer/TWTA Measured 
and Simulated Gain Performance Over Power 
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Figure 34b Comparison of Combined Linearizer/TWTA Measured 
and Simulated Phase Performance Over Power 

Figure 34c Comparison of Combined Linearizer/TWTA Measured 
and Simulated Output Power Versus Input Power 



50 

Figure 35 Comparison of Combined Linearizer/TWTA Measured and Simulated 
C/I Performance as a Function of Output Backoff 



CHAPTER 7 

CONCLUSION 

Information has been provided on the non-linear characteristics of MESFET NLEs when 

used in non-linear control applications. FET NLEs offer significant advantages in terms of 

circuit simplicity, bandwidth, temperature stability and control of transfer characteristics 

over other non-linear transfer function generators. Because of the passive nature of FET 

NLEs, negligible dc power is consumed which offers the potential for high reliability. The 

value of FET NLEs has been demonstrated in a variety of linearizer and limiter 

applications. These devices can be fabricated with minimum size and weight while provid-

ing features as remote commandability, wide bandwidth, implementation in MMIC 

technology, and outstanding performance. 

Five, bias dependent, operating modes valuable in the production of non-linear 

control elements have been identified. Four of these modes are associated with power 

sensitive nulls in the transmission response. The fifth mode provides a very wide band 

transmission response while maintaining power sensitivity. Simple equivalent circuit 

models were developed for each of these modes. These models require only a single 

resistive element to be varied to simulate the NLE's change in response with power and 

were shown to closely match the measured characteristics of NLEs. 

A general model which accurately predicts the dynamic characteristics of an NLE 

linearizer was presented. This model accurately forecasts the effects of external circuitry 

and gate bias control on linearizer transfer characteristics. Excellent agreement between 

simulated and measured performance has been shown, when used in the design of a 

linearizer for a TWTA at Ku band. Use of the model has enabled the system gain and 

phase transfer response, output power, and C/I performance of a linearizer/TWTA 

combination to be predicted in advance of fabricating the linearizer. 
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APPENDIX 1 

DERIVATION OF MODEL S-PARAMETERS 

In order to derive the S-parameter equations for the NLE dynamic model, the equivalent 

circuit was broken into smaller two-port networks. The network parameters for each sub-

network were then derived. These parameters were then combined using two-port 

network analysis techniques to derive the equations for the entire equivalent circuit. 

The first sub-network evaluated was the tee network in the gate circuit as shown in 

Figure A1-1. 

Figure A1-1 Tee Sub-Network of NLE Equivalent Circuit 

The Z-parameters for the above tee network are given in Equation A1-1, and 

where obtained using the Z-parameter defining equations for a tee network. 

The tee network in Figure A1-1 is in parallel with the series network Rnl as shown in 

Figure A1-2. Since Y-parameters add in parallel, the above Z-parameters are converted to 

Y-parameters as given in Equation A1-2 [10]. 
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Figure A1-2 Series Network Containing the Non-Linear Resistance, RnI 

The Y-parameters for the series network Rnl are as given in Equation A1-4. 

The combined network is shown in Figure AI-3. 

Figure A1-3 Parallel Combination of Tee and Series Sub-Networks 
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The resulting Y-parameters are obtained from direct matrix addition of the Y-

parameters for the tee and series sub-networks and are as given in Equation A1-5 

In order to combine these results with the network parameters of the series 

resistance Rd, the above Y-parameters are converted to ABCD parameters as given in 

Equation A1-6. 

The series two port network, Rd, is shown in Figure A1-4 and the resulting ABCD 

parameters are given in Equation A1-8. 

Figure A1-4 Series Network, R 
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Figure A1-5 Combination with Series Network, Rd 

The resulting parameters for the series combination of the above two-port 

networks is obtained by matrix multiplication of the ABCD parameter. The results are 

given below in Equation A1-9. 

The next step is to combine the series resistance, Rs, with the above ABCD 

parameters. The ABCD parameters for the series network RS shown in Figure A1-6 are 

given in Equation A1-10. 
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Figure A1-6 Series Network, Rs 

Figure A1-7 Combination with Series Network, Rs 

The resulting network is shown above in Figure A1-7. As before, the S-

parameters of the combined network are found through matrix multiplication of the 

ABCD parameter matrices as given in Equation A1-11. 
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The ABCD parameters are then converted to Y-parameters to be combined in 

parallel with the series reactance Xds. The converted parameters are given in Equation 

A1-12. 

Figure A1-8 Series Network, Xds 
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The series reactive network to be combined in parallel with the previous result is 

shown in Figure A1-8. The corresponding Y-parameters are given in Equation A1-14.  

Figure A1-9 Parallel Combination with Series Network, Xds 

The resulting two-port network is shown above in Figure A1-9. The S-parameters  

for this network are obtain by matrix addition of the Y-parameters for the two individual 

networks as given in Equations A1-12 and A1-14. These results are given in Equations 

A1-15. 
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The above Y-parameters are then converted to the ABCD parameters given by Equation 

A1-16. These ABCD parameters are combined with the series reactive network, Xd, 

shown in Figure A-10. 

Figure A1-10 Series Network, Xd. 

The ABCD parameters for the network in Figure A1-10 are given by Equation A1-18. 
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Figure A1-11 Combination with Series Network, Xd 

The resulting ABCD parameters for the combined network shown in Figure A1-11 

are given in Equation A1-19. 

Figure A1-12 Series Network, Xs 
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The final step is the series cascading of the previous result, Figure A1-11, with the 

reactive two-port network Xs shown in Figure A1-12. The ABCD parameters for this 

network are as follows in Equation A1-20. The resulting two-port network and the corre-

sponding ABCD parameters are given in Figure A1-13 and Equation A1-21 respectively. 

Figure A1-13 Two-Port Representation of Complete NLE Model 



APPENDIX II 

LIBRA MODEL CIRCUIT FILE 
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The Libra model circuit schematic is shown in Figure MI-1. The figure illustrates the 

components necessary to simulate the entire linearizer/TWTA system. The model takes 

into account the physical layout of the device in a fixture including input and output dc 

blocking capacitors and the bond wires connecting the transmission line to the device. 

The directional coupler elements are used to detect the incident and reflected signals from 

which the transducer gains and reflection coefficients are calculated. The dc power supply 

is used to simulate gate bias control. 

When the basic NLE dynamic model is embedded within a linearizer/TWTA 

combination, the gain block elements are necessary to control the level into the linearizer 

and the gain between the linearizer and the TWTA. This allows the gain and phase 

expansion of the linearizer to be aligned with the corresponding gain and phase 

compression of the TWTA. 

In order to obtain the linearizer/TWTA system output, the calculated S-parameters 

of the linearizer/gain block combination are input into a power series expansion of the 

TWTA gain and phase response. This enables the system gain and phase response to be 

determined. These calculations are all done in the equation block contained in the Libra 

circuit file included in this appendix. 



ACADEMY (TM) Ver. 3.500.104.1 Cfg. (210 N202 5 0 8953 1 0 DOF) 
bbmode. ckt 

DIM 
FREQ GHZ 
RES 	OH 
COND /OH 
IND 	NH 
CAP 	PF 
LNG 	MIL 
TIME 	PS 
ANG 	DEG 
VOL 	V 
CUR 	A 
PWR 	DBM 

VAR 
dcbias = 1.28 
isl #0 .25 .1 
n1 #0 1.95 10 
rsd #0 -.4 10 
tt #0 1E-12 le-10 
cgd #0 .048030 1 
cgs #0 .265174 1 
ld #0 .000112 1 
Is #0 .512426 1 
lg #0 .069777 1 
rg #0 1.912534 10 
cds #0 .043509 1 
pa = -75 
lchk = 10000 
cdecoup = 10 
rd #0 4 10 
rs #0 .05 10 
ldl = 0 
1d2 = 0 
Isl = 0 
ls2 = 0 
Igl = 0 
lg2 = 0 
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EQN 



CKT 

RES_R3 7 2 R^rd 
RES_R5 3 10 R^rs 
CAP C5 2 5 C^cgd 
CAP_C6 3 5 C^cgs 
RES_R6 5 16 R^rg 
CAP_C7 7 10 C^cds 
TLIN_T1 1 12 Z=50.0000000000 E^pa F=12.0000000000 
WIRE_L1 4 22 D=0.70000000000 L^ld1 RHO=1.00000000000 AF? CO? Al? A2? 
WIRE_L2 4 22 D=0.70000000000 L^ld2 RHO=1.00000000000 AF? CO? Al? A2? 
WIRE_L3 21 15 D=0.70000000000 L^ls1 RHO=1.00000000000 AF? CO? Al? A2? 
WIRE_L4 21 15 D=0.70000000000 L^Is2 RHO=1.00000000000 AF? CO? Al? A2? 
WIRE_L5 19 0 D=0.70000000000 L^lg1 RHO=1.00000000000 AF? CO? Al? A2? 
WIRE_L6 19 0 D=0.70000000000 L^lg2 RHO=1.00000000000 AF? CO? Al? A2? 
DPWRSMP_P1 6 1 8 9 
DIODE_D1 3 2 [MODEL=nlres1] 
CAP_Cl 17 0 C^cdecoup 
DPWRSMP_P3 13 11 18 20 
IND_L7 22 7 Lid 
IND_L8 10 21 Lis 
IND_L10 16 19 L^Ig 
CAP C2 15 13 C=10.0000000000 
CAP C3 12 4 C=10 
IND_L12 10 0 L=10000.0000000 
DEF2P 6 11 MODE3 
TERM 

PROC 

MODEL 

nlresl d is^isl n^nl rs^rsd tt^tt 

SOURCE 
MODE3 RES R1 14 6 R=50.0000000000 
MODE3 RES R2 11 0 R=50.0000000000 
MODE3 P_V1 14 0 R=res_r1 P^pwr F^f1 
MODE3 VS_D2 17 0 DC^dcbias 
MODE3 IND L9 17 7 L^lchk 
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DCTR 



FREQ 
NH=3 

SWEEP 1 18 2 
!STEP 12.2 

POWER 

STEP -20,0 
!SWEEP -20 0 2 

FILEOUT 

mode3 hb pdspar ./freq 

OUTVAR 

pal = mode3 spw_pal 8 r=match h1=1 
pbl = mode3 spw_pb1 9 r=match h1=1 
pa2 = mode3 spwpa2 18 r=match h1=1 
pb2 = mode3 spw_pb2 13 r=match h1=1 

vdl = mode3 vfc 3 2 h1=1 
idl = mode3 ifc diode_d1 h1=1 

OUTEQN 

s21 = pb2/pal 
dbs21 = 20*log(mag(s21)) 

sl 1 = pbl/pal 
dbsl l = 20*log(mag(s11)) 

s12 = pbl/pa2 
dbs12 = 20*log(mag(s12)) 

s22 = pb2/pa2 
dbs22 = 20*log(mag(s22)) 

res1 = vdl/idl 
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OUT 

outeqn re[dbs21] grl 
outeqn ang[s21] gr2 

outeqn re[dbs11] gr3 
outeqn ang[s11] gr4 

outeqn re[res1]gr5 

GRID 

freq 1 18 1 
!power -20 0 2 

!grl -14 -6 1 
grl 0 -20 2 
!gr2 -45 -75 5 
gr2 -45 45 10 
gr3 0 -20 2 
gr4 0 -90 10 
gr5 0 450 50 

HBCNTL 

OPT 

YIELD 

TOL 
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