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ABSTRACT 

A Hybrid Low Bit-rate Video Codec Using 
Subbands and Statistical Modeling 

by 
Ferhat Cakrak 

A hybrid low bit-rate video codes using subbands and statistical modeling is 

proposed in this thesis. The redundancy within adjacent video frames is exploited by 

motion estimation and compensation. The Motion Compensated Frame Difference 

(MCFD) signals are decomposed into 7 subbands using 2-D dyadic tree structure 

and separable filters. Some of the subband signals are statistically modeled by 

using the 2-D AR(1) technique. The model parameters provide a representation 

of these subbands at the receiver side with a. certain level of error. The remaining 

subbands are compressed employing a classical waveform coding technique, namely 

vector quantization (VQ). 

It is shown that the statistical modeling is a viable representation approach for 

low-correlated subbands of MCFD signal.The subbands with higher correlation are 

better represented with waveform coding techniques. 
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CHAPTER 1 

INTRODUCTION 

Interest, in digital image processing ha.s significantly increased over the past two 

decades. Advances in signal and image processing techniques allow sophisticated 

image processing algorithms to be realized in real time at a reasonable cost. However, 

the storage capacity and bandwidth of available communication channels have always 

been two major limitations. Since the amount of data in images is immense the 

compression of data has been of a great interest. Hence, there have been several 

image compression techniques proposed in the literature and the problem is still 

being actively pursued. 

In video transmission and storage applications, one mostly has to deal with 

the images of moving objects. The motion occurring in such a multi-frame sequence 

is due to translation and rotation of objects with respect to the camera or moving 

camera and moving object case[1]. 

In video frames, we encounter the redundancy in temporal and spatial 

dimensions among the adjacent frames. A satisfactory data compression technique 

should not only remove temporal and spatial redundancies but also give a good 

visual perspective for a. certain level of image quality [1.]. The more visual quality 

we car►  sacrifice, the lower the bit-rate we need to transmit or to store a.n image. 

There are several video coding tecbniques which provide satisfactory performance 

for compression. Most of these techniques employ transform coding of motion 

prediction error which is also known as the motion compensated frame difference 

(MCFD) signal. The MCPD signal has been studied by several researchers and it 

is still being studied extensively in order to achieve better compression and visual 

performance. The statistical model based and subband coding techniques are the 

ones combined in the proposed codec structure of this thesis. 

1 
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In model based image coding, an image or some regions of an image are statis-

tically modeled and the model parameters are used for the representation. At the 

transmitter, the the statistical model parameters are estimated by analyzing the 

image. Then, these parameters are quantized and sent to receiver side. At the 

receiver side, the image is reconstructed using quantized model parameters. Although 

the modeling of speech is useful and works  well, the modeling of images has not been 

satisfactory. Therefore, model-based image coding technique is still at the research 

stage and more needs to be done[3]. 

Subband coding, one of the most powerful waveform coding techniques, has 

found its applications in speech and image processing. To compress the data, the 

signal is divided into a set of uncorrelated frequency bands and subband signals are 

encoded after an optimal bit allocation. 

In this thesis, the MCFD signal is studied by using subband coding and 

statistical modeling in subbands. 

Chapter 2 deals with the motion compensated video coding and the statistical 

evaluation of MCFD signals. In Chapter 3, autoregressive source models and AR(1) 

modeling are studied. Chapter 4 deals with the theory of subband signal analysis and 

filter banks. In Chapter 5, vector quantization in subbands is covered. In Chapter 

6, the experimental results are presented. The conclusions are given in Chapter 7. 



CHAPTER 2 

MOTION COMPENSATED VIDEO CODING 

2.1 Introduction 

In this chapter, the general idea behind the motion compensated video coding 

technique is given. The algorithms used for prediction are classified and explained 

briefly. In Section 2.2, the theory of block matching algorithms is given in detail. 

Section 2.3 deals with the statistical features of motion compensated frame difference 

(MCFD) signals. 

Any good video coding technique should remove not only the temporal but 

the spatial redundancies. To eliminate redundancy in a video sequence, interframe 

predictive coding, one of the most powerful video coding techniques, is widely used. 

In a typical interframe coding process, the present video frame is predicted based on 

frame to frame motion and the previous frame. The prediction error, MCFD, along 

with motion information is transmitted. At the receiver side, the MCFD signals are 

decoded and added to the motion based prediction of the frame. The main feature 

in this coding technique is to predict the current frame based on the previous one. 

The better prediction gives the smaller error signal and the smaller transmission bit 

rate [2]. 

The video scenes usually contain moving objects. The motion in a typical video 

sequence is due to the rotation and translation of the objects. The current frame 

Fk  is predicted by using the previous frame Fk-1 and frame to frame motion. This 

process is called motion compensation, and the difference between the current frame 

and its motion compensated prediction is called motion compensated frame difference 

(MCFD) signal. Block diagram of motion compensated video coding technique is 

given in Figure 2.1. 

3 
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Figure 2.1 Block Diagram of Motion Compensated Video Sequence Coding 
Structure. 

To predict the current frame by using the previous frame, there are several 

motion estimation algorithms proposed in the literature. Most common algorithms 

used in practice are as follows: 

• Block Matching Algorithm 

• Pel (pixel) Recursive Algorithm 

• Knowledge Based Algorithm 

First two algorithms use the 21) information of the successive video frames. 

The block matching algorithm tries to estimate the displacement, vectors by means 

of comparing the gray levels of adjacent. video frames in block fashion. On the 

other hand, pel recursive algorithm uses the coded neighbour pixels to predict the 
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displacement of each pixel[2]. These two algorithms are based on the following 

assumptions: 

• The motion of the moving objects is only translation. 

• Intensity (illumination ) is the same in spatial and temporal dimensions. 

• Masking between objects and uncovered background is neglected. 

The knowledge based algorithm employs the 3-D motion constraints. Although 

this algorithm is quite popular in model based coding, it is not quite practical due 

to the computational load and complexity of the algorithm. 

2.2 Block Matching Algorithm (BMA) 

In the current technology, block matching algorithms are widely used due to the their 

simplicity and effectiveness. The block matching algorithm (BMA) divides an image 

into fixed or variable size rectangular blocks, and assumes that each block can he 

represented by a displacement vector D = (dx ,dy ) as shown in Figure 2.2. In order 

to maintain the validity of the assumption, block sizes are kept small, such as 8x8 or 

16x16[2]. 

In this study, the motion compensation is based on the block matching 

algorithm, which can be implemented by using fixed or variable size blocks. In our 

approach, each video frame is divided into 8x8, fixed size, blocks. Each 8x8 block in 

current frame is compared with all possible blocks within a certain search region in 

the previous frame. The best matching block is found by the following procedure. 

The motion detector compares each pixel of a predefined image block in the 

present frame K, with the corresponding pixel values of the previous frame K — 1. 

If the condition given by Eq. 2.1 is satisfied, which means difference is above the 

predetermined threshold value, then the pixel m., n of block i,j in frame K is assumed 

moving. For an 8x8 block, if the number of moving pixels is above the predetermined 
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Figure 2.2 Block matching motion estimation. 

threshold value N0  as given in Eq.2.2, then that block is assumed moving. 

[number of moving pixels in an 8x8 block] ≥ N0 	(2.2) 

T0  and N0  are the predefined threshold values for each pixel and each 8x8 block 

respectively. These values can be adjusted depending on the application. In this 

study, To  = 3, N0  = 10, have been found suitable values for the experimental video 

sequences. If the block has a motion, then motion estimation and compensation 

procedure is performed. 

The BMA tries to find the best match for each 8x8 block belonging to the 

present frame K, using a predefined search region in the previous video frame. 

Predefined search region size has been taken as (8 + 2p)x(8 + 2p) and fixed. It is 

assumed that the maximum displacement between two 8x8 blocks in two consecutive 

video frames is Ŧp pixels in two dimensions. For a video conferencing environment 

p = 6 is used. There are (2p + 1)x(2p + 1) different blocks in search region in which 

each block is a candidate to be the correct displacement. 
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A comprehensive search algorithm scans all the candidate search points in the 

search area for the best, match. The best match is found by minimizing the distortion 

measurement, like mean square error (MSE), or by maximizing a correlation feature, 

like the cross-correlation function, of the two blocks [2]. In Practice there are several 

fast search algorithms. Independent orthogonal search algorithm, a computationally 

efficient search algorithm, is used in this study [1]. 

Number of thresholded absolute difference (NT AD) given in Eq.(2.3) is 

employed as the objective function. 

and 	is the search region for block BKij(m,n). The best match is found by 

minimizing NT AD(k,l). The parameter value T1  = 3 is found the best for the video 

sequences used in this study. 

After determining the best match, the image block BKij is predicted as BKij based 

on the corresponding 8x8 block in the previous video frame FK-1. This process is 

repeated for all the blocks and the prediction of the current frame f̂K  is obtained as 

seen in Figure 2.1. 

The prediction error, which is basically the difference signal between the 

original frame and its prediction, is encoded and transmitted to the receiver side 

along with the motion information to reconstruct the current frame FK. The 

prediction error which is also called motion compensated frame difference (MCFD)K  

signal is given in Eq.(2.4) for the MX N video image sequences. 
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Figure 2.3 Frame by frame variation of the correlation coefficients for the test 
sequence "CINDY" 

2.3 The Motion Compensated Frame Difference Signal (MCFD) 

Although the motion information of the motion compensated video coding technique 

has to be encoded lossless, the MCFD signal may be encoded by using any entropy 

reduction technique.Transform coding, hybrid coding, and some other source coding 

techniques have been used to encode the MCFD signals. 

It is well known that the performance of the transform coding decreases signif-

icantly for the low correlated signal sources sucb as MCFD signals. Therefore, 

transform coding is not a good choice for this kind of signals[1]. For the video test 

sequence "CINDY", frame by frame variation of the average first order horizontal 

and vertical correlation coefficients are given in Figure 2.3. It is seen from the figure 

that MCFD signals are low correlated. 
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Figure 2.4 Frame by frame variation of variances for the test sequence "CINDY" 

The variance of the MCFD signals for first forty frames of the test sequence 

are displayed in Figure 2.4. It is seen that variance of the motion compensated frame 

difference signal for the first forty frames of the test sequence "CINDY" is just about 

25% of the direct frame to frame difference signal. 

There are several contributors to the prediction error (MCFD) signal. All types 

of motion is approximated by translation. Additionally, using the encoded version 

of previous frame for prediction brings the effects of the quantization noise into the 

progress.Furthermore, the threshold values used, T0, T1,N0, are not global optimum 

values. Last, no abrupt scene change is included in this study. Hence,the effects of 

abrupt scene changes are not seen here. 



CHAPTER 3 

STATISTICAL MODEL BASED IMAGE CODING TECHNIQUES 

3.1 Introduction 

It is highly desirable to define signal sources by a. set, of statistical parameters. These 

parameters are used in transmission and storage applications for modeling of source 

characteristics. The main objective here is to use as few parameters as possible to 

represent a signal source, keeping certain level of signal quality for a given application. 

As mentioned earlier in Chapter 1, in statistical model based image coding, an image 

or a portion of it is statistically modeled and model parameters are quantized and 

sent to the receiver side to reconstruct the image. Although the statistical modeling 

works well in speech coding applications, it does not give satisfactory results in still 

frame image coding applications. Therefore, it is still an active research area. and 

more needs to be done. 

Autoregressive modeling is widely used in 1-D applications like linear predictive 

coding (LPC) of speech. Although its performance is not satisfactory for 2-D appli-

cations, like still frame image modeling, it is a reasonable technique to represent 

MCFD signals. Hence, it can be used for modeling of the MCFD signals, i.e., by 

employing the subband coding technique some frequency bands of the MCFD signal 

can be statistically modeled. 

In this chapter, Section 3.2 covers autoregressive (AR) processes. In Section 

3.3, first-order autoregressive, AR(1), process is studied. In Section 3.4, AR(1) 

modeling technique for images and the statistics of test images are presented. 

3.2 Autoregressive (AR) Process 

An autoregressive (AR) process is generated by passing the white noise η(n.) 

innovations through an all-pole filter. A wide-sense zero-mean white noise process 

10 



11 

Figure 3.1 Filter Model of AR(N) Process 

and its spectrum are defined as; 

where σ2N is the variance of a zero mean, wide-sense stationary white noise sequence. 

Its autocorrelation sequence is given as 

is the kronecker delta function. For any shift m. there is no correlation between the 

samples of the white noise process and it ha.s a flat power spectral density function 

as seen in Eq.(3.1.). 

Filter used in this process is called all-pole since it has N multiple zeros at z=0 

as seen in Eq.(3.3), 
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The difference equation generating the AR process {x(n)} is given by 

The process {x(n)} is called AR(N) or Nth order Markov process. {bi} are the 

correlation coefficients. The filter model realizing an AR(N) process is given in 

Figure 3.1. 

The impulse response of an all-pole filter is in infinite duration. However, 

the autocorrelation function (acf) can be calculated recursively for the given set 

of prediction coefficients 	; i. = 1,2,...., N. This is clone by multiplying x(n) in 

Eq.(3.4) with x(n — in) and taking the expectations of both sides. Here, we should 

note that the white noise innovations η(n) are uncorrelated with its past outputs by 

definition. As a result, we have the following equations 

where E[.] donates expectation and 

where o is the signal power. The recursive relation of autocorrelation sequence is 

given as 

The all-pole model leads to N unknowns and N linear equations. These equations 

can be solved by using Levinson algorithm or the Cholesky decomposition[4][5]. 

3.3 First-order Autoregressive AR(1) Process 

The first-order Markov or AR(1) process, with zero mean, is obtained easily from 

Eq.(3.4) with N=1 and b►  = p. Thus, we have the difference equation of AR(1) 

source model in time as 
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Figure 3.2 Filter Model of AR(1) Process 

where p is the first order correlation or prediction coefficient and {η (n)} is the white 

noise sequence as given in Eqs.(3.1) and (3.2). The corresponding first-order filter 

function is found as 

with the frequency response 

and the unit sample response 

The filter diagram for the first-order autoregressive process is given in Figure 

3.2 where b1  denotes the first-order correlation or prediction coefficient. 

The autocorrelation function of an AR(1) signal is found as 

The signal variance is expressed as 
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where σ2N, is the noise variance. 

The power spectral density (psd) of an A R(1) process is given by 

The process generated by Eq.(3.8) is stationary if the filter is stable. Therefore, 

|p| < 1 and 

Otherwise, a non-stationary process results. 

The AR(1) source model is a good analytical tool in a variety of applications, 

such as speech and statistical model based signal representation. 

3.4 First-Order Correlation Models for Images 

A random field in which the mean is independent of spatial coordinates and the 

autocorrelation function is translation-invariant is called homogeneous. Properties 

of an homogeneous field is described by 

A homogeneous random field is white-sense stationary with the following power 

spectral density and autocorrelation function descriptions; 

If all the values of Rxx(m,n) are zero in both spatial directions except Rxx(0, 0), 

a white noise process results. The autocorrelation function of a. white noise process 

is defined by 
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The process has a. flat power spectral density (psd) function as given in Eq.(3.21). 

The correlation models in two dimensional sources are divided into two groups; 

separable and non-separable correlation models[4]. Experimental studies have 

indicated that natural objects are better represented by non-separable correlation 

models[5]. On the other hand, artificial images are better represented by the 

separable correlation models. In this study, separable correlation model is employed. 

Hence, we are only concentrated on 2-D AR(1) modeling. More information about 

2-D correlation models can be found in references [4] and [5]. 

3.4.1 First-Order Autoregressive AR(1) Source Model for Images 

An important autocorrelation model in two dimensions is the first-order autore- 

gressive AR(1) source model which has the autocorrelation function 

and variance 

where m and n are spatial shifts in horizontal and vertical directions, and ph  and 

pv are the corresponding first-order horizontal and vertical correlation coefficients, 

respectively. The correlation model in Eq.(3.22) is called separable because it can 

be expressed as the product of two one-dimensional autocorrelations. One can verify 

that 
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A 2-D AR(1) signal can be expressed by the difference equation 

where {η(m,n)} is the zero mean, white noise array with the variance σ2N. The 

transfer function of 2-D AR(1) filter in Z-domain is given as 

Although the real-world images are not stationary, they can be assumed 

stationary over a small region. By using this assumption, statistical parameters 

namely ph„ pv ,o and µ(m, n) of each region can be estimated, and these parameters 

can be used for image representation. 

In this thesis, the first-order autoregressive source model is used for the 

statistical modeling of the MCFD frame in the subbands. 

First, the MCFD signal is decomposed into a set of frequency bands (4 and 7 

band 2-D filter banks) and then, some of the subband signals are modeled by using 

AR(1) technique. The following steps are performed for each subband. 

The MCFD subband frame is divided into fixed size blocks, i.e., 8x8, 4x4, and 

for each block, the mean is calculated and subtracted from the respective block. 

Then, the statistical model parameters, namely ph , pv and σ2x, are estimated for each 

zero mean block. These 4 parameters are quantized and encoded for transmission. At 

the receiver side, these parameters are used to reconstruct the corresponding image 

blocks by using Eq.(3.25). The white noise array η(m,n) is generated by using the 

respective local block variances with zero mean. The relationship between local block 

variances and white noise array variances is given in Eq.(3.23). 

After reconstructing each statistically modeled, zero mean, block, mean is 

added to each respective block to recover the statistically modeled MCFD subband 

frame. 
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It is obvious that even in the case of perfect quantization, original signal can 

not be recovered. Modeling brings some error clue to stationarity assumption. Frame 

by frame average variances of the LH band before and after AR(1) modeling is given 

in Figure 3.3 for the first forty frames of the test sequence "CINDY" for 4x4 block 

size. 

Figure 3.3 Frame by frame variation of variances for the LI-I band of the test 
sequence "CINDY' 



CHAPTER 4 

THEORY OF SUBBAND SIGNAL ANALYSIS AND FILTER BANKS 

4.1 Introduction 

In recent years, subband coding has been widely used for image and video coding 

applications. To compress the data, the signal is decomposed into a set of uncor-

related frequency bands and each of these subband signals are encoded for trans-

mission after the optimal bit allocation. At the receiver side these encoded subband 

signals are decoded to reconstruct the signal. 

In general, a subband system can be decomposed into two parts, analysis and 

synthesis. The analysis part of a subband system consists of anti-aliasing subband 

filters and downsamplers. The synthesis part consists of upsamplers and interpolation 

filters. 

In this chapter, section 4.2 deals with the main building blocks of a subband 

system, i.e., downsamplers, upsamplers , anti-aliasing and interpolation filters. The 

two channel perfect reconstruction quadrature mirror filter (PR-QMF) banks are 

studied in section 4.3. In section 4.4, M-hand tree decomposition is covered along 

with 4 and 7 band filter banks. Section 4.5 deals with the two dimensional separable 

filter case which is used in this study. 

4.2 Main Building Blocks in Subband Analysis 

In this section, main building blocks, i.e., downsamplers, upsamplers, anti-aliasing 

and interpolation filters, are studied along with their frequency domain characteri-

zations. 

4.2.1 Downsamlers and Upsamplers 

Figure 4.1 shows the block diagrams of a downsampler and upsampler. The input- 

output relation of a downsampler with rate M is given by[6] 
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Figure 4.1 Block diagrams for downsampler and upsampler. 

Eq.(4.1) shows that the output at time n is equal to the input at time Mn. As a 

result, only the input samples with the sample numbers equal to multiples of M are 

retained. The sampling rate reduction process is illustrated in Figure 4.2 for M = 2 

case. 

The input—output relation of an M—fold upsampler is given by 

Eq.(4.2) indicates that the output y(n) is obtained by inserting M — 1 zeros between 

adjacent samples of x(n). This process is shown in Figure 4.3 for M = 2. 

Although the downsamplers and upsamplers make the system time varying, 

they are linear systems. 

The transform domain description of the upsampler is given by 

where z = ejw. The stretching effect of upsampling in time domain corresponds to a 

compression in frequency domain as shown in Figure 4.4 for M = 2. As seen from the 

figure, Y(ejw) has M —1 images of the basic spectrum.Consequently, the upsampler 

causes an imaging effect. 
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Figure 4.2 Downsampling with M=2. 

The transform domain description of the idownsampler is given by 

= e-2πj/M where IV 	 For M = 2, this equation becomes 

As seen above, a downsampler causes compression in time and brings the stretching 

effect in frequency domain as shown in Figure 4.5 for M = 2. Figure 4.5 also shows 

that spectrum of the the original signal after downsampler contains the 27r—shifted 

versions of the original spectrum. As a consequence, aliasing effect is observed. 

4.2.2 Anti-aliasing Filters 

To avoid the aliasing effect of downsampling operation, the downsampler is preceded 

by a band limiting filter which is called anti—aliasing or decimation filter. For 

example, a low-pass filter with the stopband edge ws  = 	can serve as such a 

filter for the signal downsamlecl by M as seen in Figure 4.6. 
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Figure 4.3 Upsampling with M=2. 

4.2.3 Interpolation Filters 

To eliminate the imaging effects at the output of the upsampler, it is followed by 

an interpolation filter. The low—pass filter in figure 4.6, again, may serve as an 

interpolation filter. 

4.3 Two Channel Perfect Reconstruction Quadrature Mirror Filter 
(PR—QMF) Banks 

Consider the two channel QMF structure given in Figure 4.7. Based on the Eqs.(4.3) 

and (4.5), we can express x̂ (Z) as[7] 
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Figure 4.4 Frequency domain representation of the Upsampling by 2, with the input 
signal (top) and the upsampled signal (bottom). 

The second term in Eq.(4.6) represents the effects of imaging and aliasing. These 

terms can be eliminated simply by choosing the synthesis filters to be 

When the abasing effect is eliminated, the QMF bank becomes a time-invariant 

system with the transfer function 

Ideally, T(Z) is desired to be a delay, i.e., T(Z) = Z-n0, so that the reconstructed 

signal is a delayed version of x (n). Unfortunately, T(Z) is not a delay in general and 

it represents a distortion overall transfer function. One can express T(Z) in the form 

of 
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Figure 4.5 Frequency domain representation of the downsampling by 2, with the 
input signal (top) and the downsampled signal (bottom). 

where |T(ejw)| and arg[T(ejw)] represent amplitude and phase distortions, respec-

tively. If |T(ejw)| is constant for all w, then there is no amplitude distortion. Also, 

if T(Z) is a linear phase FIR function, then arg[T(ejw)] = kw, and there is no phase 

distortion. As a result, T(Z) becomes a delay, i.e., T(Z) = C 	so that x(n), 

reconstructed signal, is a delayed version of x(n), i.e., x(n) = cx(n — n0)[7]. 

Smith and Barnwell[8] have shown first time that amplitude and phase 

distortions can be eliminated simultaneously by choosing 
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Figure 4.6 Interpolation and decimation filters. 

where (N — 1) is odd and N is the order of 111(Z). Thus, we have 

Therefore, the perfect reconstruction requirement reduces to finding an 11(Z) = 

H0(Z) so that 

The perfect reconstruction requirement in time is expressed as[5] 

where p(2n) is the autocorrelation function. 



25 

Figure 4.7 The two-channel QMF bank. 

In summary, we have the perfect reconstruction conditions for the 2 band 

PR-QMF banks as follows; 

and 

4.4 M-Band Tree Decomposition 

Once a given signal x(t) is sampled at fs  and split into two subband signals, XL(n) 

and XH(n), each of these subband signals can be further decomposed into more than 

2 subbands in the same manner as the initial signal x(n). Four subband signals, thus 

are obtained after reduction of the sampling rate to L/4. The spectrum of each of 

these subbands, XLL(n), X LH (n), XHL(n) and Xi-m(77.), represents the subspectrum 

of x(n) in the corresponding subban.d. This decomposition-reconstruction structure 

can be repeated p times yielding a p-stage hierarchical tree decomposition. The initial 
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Figure 4.8 4 band regular tree decomposition. 

signal is thus decomposed into M=2P subbands. The subband tree decomposition 

technique is shown in Figure 4.8 for 4-band regular tree and in Figure 4.9 for 7-band 

dyadic tree decomposition[9]. 

4.5 Two Dimensional Separable Case 

The two dimensional (2-D) filter hank is a direct extension of 1-D filter bank in 

separable filter case. In the separable case, the alters used can be expressed as the 

product of two one-dimensional filters as given in Eq.(4.16). 

The separability feature of the filter provides an alternative method of imple-

mentation of 2D-QMF banks. Figure 4.10 shows a four band analysis/ synthesis 

filter bank structure. As shown, the structure consists of a set of one dimensional 

filters which operate separately along the rows and the columns of the input signal. 
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It can be shown that the use of such filters will result an alias-free reconstruction of 

the input signal at the receiver side[10]. 

The decomposition of input signal can be extended for more than four 

subbands, i.e., 7, 10, 13 etc., by repeating the process as explained in section 

4.4. 
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Figure 4.9 7 band dyadic tree decomposition. 
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Figure 4.10 4 band regular tree decomposition and reconstruction of a 2-D signal 
x(m,n). 
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Figure 4.11 7 band dyadic tree decomposition and reconstruction of a 2-D signal 
x(m,n) using 2-D separable filters 



CHAPTER 5 

VECTOR QUANTIZATION IN SUBBANDS 

5.1 Introduction 

Many different coding techniques can be used for the encoding of the subband signals. 

In this study, vector quantization is used to independently encode the subband 

signals. 

In this chapter, the concentration is given to vector quantization and its appli-

cations in subbands. Section 5.2 covers the general concept of vector quantization. 

In section 5.3, codebook design and the LGB algorithm[11] is covered. Section 5.4 

deals with the vector quantization in subbands. 

5.2 Vector Quantization 

Vector quantization, also known as block quantization, is a direct extension of scalar 

quantization. The basic principle here is to map an N-dimensional input vector x 

onto another N-dimensional vector y, i.e., 

where VCS(.) is the vector quantization operator. Reconstruction vector, yi, takes its 

value from one of the finite set of vectors 

The set Y is referred as the codebook containing the L code-vectors. For an L-length 

codebook the bits per code vector is given by 

The vector quantization procedure can be described as follows. First, the N- 

dimensional vector x is constructed from the input signal. Next, the best fitting code 
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Figure 5.1 Illustration of clusters and the vector quantization for two-dimensional 
space. 

vector yi  minimizing the distortion measure is searched in the codebook . This can 

be expressed as 

where d(x, y) represents the distortion measure or distance measure between the 

vectors x and y. The vector quantization process is shown in Figure 5.1 where 

two-dimensional space is divided into cells. The shape of each cell is uniquely 

determined by the location of the code vectors and the distortion measure. 

5.3 Codebook Design 

A codebook of size L divides the N-dimensional space into cells {Ci}, i = 1, 	L 

associating each cell Ci  a code vector yi . The vector quantizer assigns the code vector 

yi  to the vector x if x falls into Ci. The optimal quantizer is found by minimizing 

the distortion over all possible L-level quantizers. The overall average distortion of 
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a vector quantizer is defined as[12] 

where P(x E Ci) is the probability that x lies inside Ci  and, p(x) is the multi-

dimensional probability density function (pdf) of x. The integral is taken over all 

components of x. However, in practice the pdf is usually unknown. In that case we 

use a training set, consisting of a large number of vectors Vn, n = 1,2, ...., M. The 

codebook is designed using an iterative algorithm known as the K-means algorithm. 

Since this algorithm was first proposed by Linde, Gray and Buzo it is called as the 

LGB algorithm[11]. 

5.3.1 The LGB Algorithm 

The basic steps of LGB algorithm is implemented as follows[11]: 

• 1. Initialization: Iteration index is set to m=0. An initial codebook size L 

with the codebook vectors y0i 	1,....,M is chosen. 

• 2. Clustering: The training vectors Vn,i = 1,....,M are classified into the 

clusters Ci  by using the nearest neighbor rule. 

• 3. Updating: New codebook vector ym+1i  is calculated for each cell Cmi by 

calculating the centroid of the training vectors classified to that cell: 

where Mi  is the number of training vectors classified to cell C. 

• 4. Stop: New average distortion is calculated and if the distortion is below 

the predetermined threshold then the iteration is stopped. Otherwise iteration 

index is increased by 1 and the clustering operation is performed. 
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There are several ways to choose the initial codebook for the LGB algorithm. 

In our approach, we used splitting technique which works as follows. The initial 

coclebook contains only one vector which is the centroid of all training sequence. 

The second codebook with codebook size L=2 is created by adding and subtracting 

a perturbance ( a splitting vector) to the initial codebook. After optimizing this 

codebook, the splitting technique is repeated for larger size codebooks, i.e., L=4, 8, 

16,...,512 etc. In our experiment L=5]2 is found as tbe optimal codebook size with 

respect to overall distortion and, iteration is stopped. 

5.4 Vector Quantization In Subbands 

As explained earlier in section 5.3, the 1.,C:D3 algorithm is used in this study to generate 

the codebooks. First, the MCFD signal is decomposed into 7 band using dyadic tree 

structure. After studying the subband signals, some of the subbands arc found 

insignificient and entirely discarded. The remaining subbands excluding LH band 

are adaptively vector quantized based on the motion vectors[13]. The LH band is 

statistically modeled and the model parameters are vector quantized. 

The 2-D 7 band dyadic tree structure, given in Figure 4.11, is used in this study. 

The filter used is the 8-tap separable filter[14]. After discarding the insignificiant 

bands, namely 	HL and HH bands, the remaining bands are treated as follows. 

5.4.1 The Adaptive Vector Quantization Based on the Motion Vectors 

In this study, we employed adaptive vector quantization based on the block motion 

vectors (MBAVQ) to quantize LLLL, LLLH and LLHL bands as suggested in Ref 

[13). 

In our approach, the motion compensation is based on block matching 

algorithm using brute-force method. The block size is set to 8x8 and the maximum 

displacement in two directions, horizontally and vertically, is set to Ŧ6 pixels. 
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Figure 5.2 2-D subbands used in video codec 

Each 8x8 block in full frame resolution corresponds to a 4x4 block in 4 

subbands. Since the LL band is further decomposed into 4 subbands as seen in 

Figure 5.2, each 4x4 block in LL band corresponds to a 2x2 block in these subbands. 

The 4x4 and 2x2 blocks correspond to a block motion vector of size 8x8 in full frame 

resolution. In his thesis, Mutlag stated that there is a relation between motion vector 

magnitude and the MCFD variance of the corresponding block[13]. In general, large 

magnitude motion vectors represent high variance blocks in the MCFD signal while 

blocks with small motion vectors have small variances. By using this relation the 

codebooks are created depending on the motion vector magnitude. The magnitude 

of motion vector m  is given by 

.where i and j are the horizontal and vertical displacements respectively. The block 

motion vectors are classified into 3 groups depending on their motion magnitudes: 

• Group 1: m =̂1 or 2 

• Group 2: m =̂3 or 4 
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• Group 3: m̂=5 or 6. 

Codebooks are generated using the subblocks corresponding to these groups. As a 

result, 9 codebooks are generated for the LLLL, LLLH and LLHL bands using the 

LGB algorithm. 

For the LLLL band, the codebook contains 512 vectors in which each vector is 

in dimension 4. For the LLLH and LIAM bands the codebook size is 512 and each 

codeword is in dimension 16. For the latter case, 4 motion vectors are averaged and 

these motion vectors are used to create the codebooks. 

5.4.2 Vector Quantization for the AR(1) Model Parameters 

As mentioned earlier, the LH band is AR(1) modeled and model parameters are 

vector quantized and encoded for transmission. The model parameters, ph , pv, σ2, 

and η, are vector quantized as follows: for means and variances two 256 length 

codebooks in which each codeword is in dimension 16 are generated. For the 

prediction coefficients, the coclebook size is set to 512 where each codeword is also 

in dimension 16. 

In conclusion, 12 codebooks are generated to vector quantize the subbands and 

model parameters. 



CHAPTER 6 

EXPERIMENTAL STUDIES 

The performance of the proposed low bit-rate hybrid subband codec was simulated. 

The first forty frames of monochrome video test sequences CINDY, MONO, DUO, 

QUARTET and TOPGUN are used. The video frames are 512x400 pixel size except 

240x352 for TOPGUN sequence, and 8 bits/pixel. 

Simulations are carried out in the following manner. First, the MCFD signals 

are split into 7 subbands using 2-D dyadic tree structure and separable 8-tap 

filters[14]. Next, the statistical modeling of some subband signals are studied. The 

last step, the quantization, is carried out after modeling those subbands. 

6.1 	Subband Decomposition of the MCFD Signals 

In this study, 7 band 2-D dyadic tree structure is employed for decomposition of the 

MCFD signal. This analysis/ synthesis subband tree structure is given in Figure 

4.11. The filters employed are 8-tap separable filters. The frequency response of 

these filters are given in Figure 6.1. After studying the subband signals, LLHH, HL, 

MI bands are found insignificiant and completely discarded. 

6.2 Statistical Modeling In Subbands 

The remaining subbands are studied for statistical modeling using 2-D AR(1) 

technique. The LH band is statistically modeled. The model parameters are 

quantized and sent to the receiver side for the reconstruction of LH band. The 

modeling procedure was explained in detail in Chapters 3 and 5. 

Frame by frame variation of subband variances for LH band before and after 

2-D AR(1) modeling of the test sequence "CINDY" was displayed in Figure 3.3. As 
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Figure 6.1 Frequency responses of the 8 tap separable low-pass and high-pass filters. 

seen from the figure, modeling brings some error, but this error can he tolerated for 

the low bit-rate coding applications. 

6.3 Quantization 

Vector quantization is used to encode the subbands. The Motion Based Adaptive 

Vector Quantization (MBAVQ) is used for the subbands which are not modeled. 

Codebooks are generated using the LGB algorithm. For the statistically modeled 

LH band, the model parameters for each 4x4 blocks are quantized using the classical 

VQ algorithm. The more information about quantization was given in chapter 5. 

The peak-to-peak signal to noise ratio is used as the objective performance 

criterion and defined as 
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Figure 6.2 Frame by frame variation of the average SNRpp values in dB for the test 
sequence "CINDY". 

where the denominator term is the mean square coding error. 

Frame by frame variation of peak-to peak SNR values before and after quanti-

zation for the test sequence "CINDY" is given in Figure 6.2 along with the average 

SN Rpp(dB) values for the first forty frames. Figure 6.2 also shows the S N Rpp(dB) 

values for the 10 band case which is used for comparison. 

The total bit-rate for the proposed hybrid video codec can be expressed as 

where 

• BM= average bits/pixel for motion information. 

• BSB= average bits/pixel for the subband signals which are not modeled. 

• BAR(1)=average bits/pixel for the AR.(1) modeled subbands. 
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The measure of information is expressed by the entropy. The first order entropy 

is defined as 

where p(i) is the probability of the source symbol i. The frame by frame variation of 

entropy values for the first forty frames of test sequence "CINDY" is given in Figure 

6.3 along with the average entropy values. 

The performance of the proposed algorithm was also tested for the video 

sequences which are not a part of the training sequence. "TOPGUN" which is not a 

part of training sequence, gave the superior SNR results for the proposed algorithm 

compared to the other algorithms used for comparison. Figures 6.4 and 6.5 display 

the S N Rpp(dB) and entropy values of the tested 100 frames of the video sequence 

"TOPGUN". These figures also show the performance of the algorithms used for 

comparison. 

25th and 26th frames of the test sequence "CINDY" are given in Figures 6.6 -

6.10 along with the MCFD frames for coded and original cases. 
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Figure 6.3 Frame by frame variation of the first order entropy values for the test 
sequence "CINDY". 
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Figure 6.4 Frame by frame variation of the average SNRpp  values in dB for the test 
sequence "TOPGUN". 
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Figure 6.5 Frame by frame variation of the first order entropy values for the test 
sequence "TOPGUN". 
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Figure 6.6 25tb frame of the test sequence "CINDY" 
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Figure 6.7 The direct difference between the frames 25 and 26 of test sequence 
"CINDY" 
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Figure 6.8 26th frames of the test sequence "CINDY", the original (top) and coded 
(bottom) (SNRpp = 34.1, bpp = 0.24) 



Figure 6.9 26th MCFD frames of "CINDY", the original (top) and coded (bottom) 
(SNRpp  = 34.1, bpp = 0.24). 
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Figure 6.10 LH band of the 26th MCFD frames of "CINDY", the original (top) 
and statistically modeled (bottom). 
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CHAPTER 7 

CONCLUSIONS AND DISCUSSIONS 

A hybrid low bit-rate video codec is proposed in this study. The proposed technique 

achieves a good objective and visual performance at the low bit-rates B<0.30 

bits/pixel with the SNRpp  30-36 dB range. 

It is well known that the training sequence dependency of vector quantization 

is a very important problem. Furthermore, the modeling approach used introduces 

some error due to stationarity assumption. In spite of these drawbacks, the statistical 

modeling is a viable approach for the low-correlated MCFD signal subbands and, 

the study to improve and develop better modeling techniques is an open field. In 

conclusion, the future work is to find better modeling approaches to have better 

performance and visual quality for low bit-rate video coding applications. 
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APPENDIX A 

Simulation Program for the 7 Band Dyadic Tree Structure 

c SOURCE CODE FOR THE PROPOSED ADAPTIVE SUBBAND VIDEO CODING WITH 
c MOTION COMPENSATION using MBAVQ 
c 	nx 	Row size of the picture 
c 	ny 	Column size of the picture 
c 	frame? Previous Frame 
c 	frame2 Current Frame 
c 	pics 	Search frame from the previous frame 
c 	recon Prediction of the current frame with motion compensation 
c 	ibs 	Block size (8 is used) 
c 	ip 	Assumed maximum displacement (Max of 6) 
c 	frm2msk ibs*ibs size mask of the current frame to be 
c 	 motion compensated 
c 	frm1msk ibs*ibs size mask of the previous frame in the 
c 	 same geometrical position (used for motion detection) 
c 	err? 	Motion Compensated Frame Difference Signal 
c 	searg 	Search Region (ibs+ip)*(ibs+ip) 
c 	mask 	Same as frm2msk 

parameter(nx=400,ny=512) 
integer motionv(50,64),ifld 
common /motionv/ motionv 
common /ifld/ ifld 
common /ifl/ ifl 
real outimg(400,512) 

real framel(nx,ny),frame2(nx,ny),pics(416,528) 
real recon2(nx,ny),frmlmsk(8,8),frm2msk(8,8),errl(nx,ny) 

real recon3(400,512), errtemp(400,512) 
integer ifrml(nx,ny),ifrm2(nx,ny) 
real dirdif(400,512) 

real b1v1(512,4),b1v2(512,4),b1v3(512,4) 
real b2v1(512,16),b2v2(512,16),b2v3(512,16) 
real b3v1(512,16),b3v2(512,16),b3v3(512,16) 

real b4v1(256,16),b4v2(256,16),b4v3(512,16),b4v4(512,16) 

common /entropyl/entropyl 
common /entropy2/entropy2 
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common /entropy3/entropy3 
common/arbitrate/arbitrate 

common /vqcodebookl/ blvl,blv2,blv3 

common /vqcodebook2/ b2v1,b2v2,b2v3 

common /vqcodebook3/ b3v1,b3v2,b3v3 

common /vqcodebook4/ b4v1,b4v2,b4v3,b4v4 

character*1 pim(nx,ny) 

character*1 pim1(nx,ny) 
integer mcvector(50,64) 

common /AAA/ searg(24,24),mask(8,8) 

print*, 'READING CODEBOOKS' 

open (15,file='B1NEW/b1v1.12') 

do 10 1=1,512 

read(15,*) (blvl(i,j),j=1,4) 

10 	continue 

close(15) 

open (16,file=)B1NEW/blv2.34') 

do 11 i=1,512 
read(16,*) (b1v2(i,j),j=1,4) 

11 	continue 

close(16) 

open (17,file='B1NEW/blv3.56') 

do 12 1=1,512 
read(17,*) (b1v3(i,j),j=1,4) 

12 	continue 
close(17) 

open (20,file='QUANTIZER/b2v1.12') 

do 1110 i=1,512 

read(20,*) (b2v1(i,j),j=1,16) 

1110 	continue 

close(20) 

open (21,file='QUANTIZER/b2v2.34') 

do 1111 i=1,512 

read(21,*) (b2v2(i,j),j=1,16) 



1111 	continue 
close(21) 

open (22,file='QUANTIZER/b2v3.56') 

do 1112 i=1,512 
read(22,*) (b2v3(i,j),j=1,16) 

1112 	continue 
close(22) 

open (23,file='QUANTIZER/b3v1.12') 
do 1113 i=1,512 

read(23,*) (b3v1(i,j),j=1,16) 
1113 	continue 

close(23) 

open (24,file='QUANTIZER/b3v2.34') 
do 1114 i=1,512 
read(24,*) (b3v2(i,j),j=1,16) 

1114 	continue 
close(24) 

open (25,file='QUANTIZER/b3v3.56') 

do 1115 i=1,512 
read(25,*) (b3v3(i,j),j=1,16) 

1115 	continue 
close(25) 
open (26,file='QUANTIZER/b4v4.mn') 
do 1116 i=1,256 
read(26,*) (b4v1(i,j),j=1,16) 

1116 	continue 
close(26) 

open (27,file='QUANTIZER/b4v4.var') 

do 1117 i=1,256 
read(27,*) (b4v2(i,j),j=1,16) 

1117 	continue 
close(27) 

open (28,file='QUANTIZER/b4v4.rh') 
do 1118 i=1,512 
read(28,*) (b4v3(i,j),j=1,16) 

1118 	continue 
close(28) 
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open (29,file='QUANTIZER/b4v4.rv') 
do 1119 i=1,512 
read(29,*) (b4v4(i,j),j=1,16) 

1119 	continue 

close(29) 
print*, 'CODEBOOKS ARE READ' 

c mfld: final field to be read 
c ifld: starting field number 

mfld =34 
ifld =33 

call read_frm(ifld,pim) 
if1=0 

c************************************ 

c Frame One is read into frame1 array 
c************************************* 

do 100 i=1,nx 
do 100 j=1,ny 
ifrml(i,j)=ichar(pim(i,j)) 
if(ifrml(i,j).11.0) ifrml(i,j)=256+ifrml(i,j 
framel(i,j)=float(ifrml(i,j)) 

	

100 	continue 

c call write_in_frm(ifld,frame1) 
c call write_out_frm(ifld,framel) 

write(35,*) 'Original Image' 

c The loop to process mfld number 
c 	of frames begins here 

	

6000 	ifld = ifld+1 
ifl=ifl+1 
write(*,*) 'Frame Number = 	ifld,ifl 

write(35,*) 'Frame Number =',ifld 

call read_frm(ifld,pim1) 

c************************************ 

c Current frame is read into frame2 
c************************************** 
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do 110 i=1,nx 
do 110 j=1,ny 
ifrm2(i,j)=ichar(pim1(1,j)) 

if(ifrm2(i,j).1t.0) ifrm2(i,j)=256+ifrm2(i,j) 

frame2(i,j)=float(ifrm2(i,j)) 
110 	continue 

c 	call write_in_frm(ifld,frame2) 

c******************************** 

c Auto-Correlation, Mean, Variance 
c are calculated in 
c the subroutine autocor 
c******************************** 

c 	print *,'Frame k' 
write(35,*) 'Frame k' 
call autocor(frame1,nx,ny) 

c 	print *,'Frame k+1' 
write(35,*) 'Frame K+1' 
call autocor(frame2,nx,ny) 

do 2000 i=1,400 
do 2000 j=1,512 
dirdif(i,j)=frame2(i,j)-frame1(i,j) 

2000 	continue 

c 	write(35,*) 'Direct Difference Frame' 

call autocor2(dirdif,nx,ny) 

c ip: displacement 
ip=6 

c ibs: the mask block size 
ibs=8 

c imthd: Enter 1 for Brute-force method and 2 for Orthogonal src 
imthd=1 

c imdetect: Enter 1 if motion-detection is required' 
imdetect=1 



c************************************ 

c Search Array pics is Initialized 

c************************************ 

do 101 i=1,nx+2*ip 

do 101 j=1,ny+2*ip 

pics(i,j)=0.0 

101 continue 
c*************************************************** 

c Search Array is generated from the previous frame. 

c Borders are filled with first(or last) ip 

c rows(or clums) of the previous frame 
c**************************************************** 

do 155 i=1,nx 

do 155 j=1,ny 

pics(i+ip,j+ip)=framel(i,j) 

155 continue 

do 111 i=1,ip 

do 111 j=1,ny 

pics(i,j)=frame1(i,j) 

pics(i+nx+ip,j)=framel(i+nx-ip,j) 

111 	continue 

do 112 i=1,nx 

do 112 j=1,ip 

pics(i,j)=frame1(i,j) 

pics(i,j+ny+ip)=framel(i,j+ny-ip) 

112 	continue 
c************************************************* 

c Prediction of the Current frame is Initialized 

c************************************************* 

do 240 i4=1,nx 

do 240 j4=1,ny 

recon2(i4,j4)=0.0 

240 	continue 

c*************************************************** 

c The current frame is devided into 8*8 blocks and 

c motion compensated. mcount keeps count of number 

c 	of moving blocks. 
c*************************************************** 
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mcount=0 
do 200 i=1,nx/ibs 

do 200 j=1,ny/ibs 
iact=(i-1)*ibs+1 

jact=(j-1)*ibs+1 
if (imdetect .eq. 1) then 

do 401 k=1,ibs 
do 401 1=1,ibs 

frmlmsk(k,l)=framel(iact-l+k,jact-1+1) 
frm2msk(k,1)=frame2(iact-1+k,jact-1+1) 
401 continue 
c******************************************************** 

c 	First the motion is detected 
c******************************************************** 

call motiondetect(frm1msk,frm2msk,ibs,indx) 

if (indx .eq. 1) then 
mcount=mcount+1 
do 410 i1=1,ibs+ip*2 

do 410 j1=1,ibs+ip*2 
searg(i1,j1)=pics(i1+iact-l+ip-ip,j1+jact-l+ip-ip) 
410 	continue 

do 420 i2=1,ibs 
do 420 j2=1,ibs 
mask(i2,j2)=frame2(iact-1+i2,jact-1+j2) 

420 continue 

***************************************************** 

if motion is detected, it is estimated and predicted 
***************************************************** 

call matct(ip,ibs,imthd,n,nn,Num) 
motionv(i,j)=max(abs(n-7),abs(nn-7)) 
mcvector(i,j)=Num 
do 430 i3=1,ibs 
do 430 j3=1,ibs 
recon2(iact-1+i3,jact-1+j3)=pics(iact+ip-1+(n-ip)-1+i3, 

+ jact+ip-1+(nn-ip)-1+j3) 
430 	continue 

else 
motionv(i,j)=0 
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mcvector(i,j)=0 
c 	write(55,*) mcvector(i,j) 

do 402 k1=1,ibs 
do 402 11=1,ibs 

recon2(iact-1+k1,jact-1+11)=framel(iact-1+kl,jact-1+11) 
402 	continue 

endif 

else 

do 210 i1=1,ibs+ip*2 
do 210 j1=1,ibs+ip*2 

searg(il,j1)=pics(i1+iact-1+ip-ip,j1+jact-1+ip-ip) 
210 	continue 

do 220 i2=1,ibs 
do 220 j2=1,ibs 
mask(i2,j2)=frame2(iact-1+i2,jact-1+j2) 

220 	continue 

call matct(ip,ibs,imthd,n,nn,Num) 

do 230 i3=1,ibs 
do 230 j3=1,ibs 

recon2(iact-1+i3,jact-1+j3)=pics(iact+ip-1+(n-ip)-1+i3, 
+ jact+ip-1+(nn-ip)-1+j3) 

230 	continue 
endif 
c 	write(55,*) motionv(i,j) 

200 continue 

***************************** 

MCFD signal is generated 
c**************************** 

do 650 i=1,400 
do 650 j=1,512 

650 	recon3(i,j)=0.0 

do 700 i=1,400 
do 700 j=1,512 
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700 	recon3(i,j)=recon2(i,j) 

do 599 i=2,nx-1 
do 600 j=2,ny-1 

recon3(i,j)=(1.0/16.0)*(recon2(i-1,j-1)+2.0*recon2(i-1,j) 

# 	+ recon2(i-1,j+1)+2.0*recon2(i,j-1)+4.0*recon2(i,j) 

# 	+2.0*recon2(i,j+1)+recon2(i+1,j-1)+2.0*recon2(i+1,j) 

# 	+recon2(i+1,j+1)) 

	

600 	 continue 

	

599 	 continue 

do 300 i=1,nx 

do 300 j=1,ny 

err=(err+abs(frame2(i,j)-recon3(i,j))) 

errl(i,j)=frame2(i,j)-recon3(i,j) 

	

300 	continue 
print *,'the value of err=',err 

write(35,*) 'the value of err=',err 

if (imdetect .eq. 1) then 

print *,'Number of blocks motion detected = 	mcount 

write(35,*)'Number of blocks motion detected =',mcount 

endif 

print *,'Error Signal' 

write(35,*) 'Error Signal' 

call autocor(errl,nx,ny) 

print *,'Predicted singal' 
write(35,*) 'Predicted signal' 

call autocor(recon2,nx,ny) 

do 350 i = 1,nx 

do 350 j = 1,ny 

errtemp(i,j) = errl(i,j) 

outimg(i,j)=0.0 

	

350 	 continue 

call bitrates2(mcvector,entropy,50,64) 

c 	call writeimgs(err1,400,512,'diff25') 

*****CODING OF MCFD SIGNAL IS CARRIED OUT HERE****** 

**********7-BAND FILTER BANK IS CALLED************ 
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call subband(err1,outimg,400,512) 

print *,'Error Signal after the vector quantization' 
write(35,*)'Error Signal after the vector quantization' 
call autocorl(outimg,nx,ny) 
vecmean = 0.0 
vecvar = 0.0 
do 351 i = 1,nx 
do 351 j = 1,ny 
vecmean = vecmean + (errtemp(i,j) - outimg(i,j)) 
vecvar = vecvar + (errtemp(i,j) - outimg(i,j))**2 

351 	continue 
vecmean = vecmean/(nx*ny) 
vecvar = vecvar/(nx*ny) - vecmean**2 

write(35,*) 'Variance of quantization error',vecvar 

********************************************************** 

Quantized MCFD signal is added to the motion compensated 
prediction of the current frame and put into frame1 and 
this becomes the previous frame for the next current frame 
*********************************************************** 

xmse = 0.0 

do 1000 i=1,nx 
do 1000 j=1,ny 
framel(i,j)=recon3(i,j)+outimg(i,j) 
xmse = xmse + (frame2(i,j)-frame1(i,j))**2 

1000 	continue 

call write_out_fr(frame1) 
c 	call write_out_frm(ifld,frame1) 

xmse = xmse/(nx*ny) 
snr = 10*log10(255**2/xnse) 
write(*,*) 'SNR = ',snr 
write(35,*) 'SNR = ',snr 
write(100,*) ifld ,snr 

write(*,*) 'Mean Square Error after Vector 
+ Quantization=',xmse 

write(36,*) ifld,xmse 
write(*,*) 'mean square error=',xmse 



tbit1111=entropy1/(400*512) 
tbitlllh=entropy2/(400*512) 

tbitllhl=entropy3/(400*512) 
tbitlh=arbitrate/(400*512) 

xmbitrate = entropy/64.0 
tbitsub= (entropy1+entropy2+entropy3+arbitrate)/(400*512) 
tbitrate=xmbitrate+tbitsub 
write(200,*) xmbitrate 

write(201,*) tbitsub 
write(35,*) 'total bitrate=',tbitrate 
write(202,*) tbitrate 
write(*,*) 'total bitrate=',tbitrate 

****************************************** 

*if all the frames are not processed go back 
******************************************* 

if(ifld.lt.mfld) go to 6000 
stop 

end 

******************** 

* subroutine matct 
******************** 

subroutine matct(ip,ibs,imthd,n,nn,Num) 

common /AAA/ searg(24,24),mask(8,8) 
real test(13,13) 

do 50 i=1,2*ip+1 
do 50 j=1,2*ip+1 
test(i,j)=0.0 
do 50 ii=1,ibs 
do 50 jj=1,ibs 
test(i,j)=abs(mask(ii,jj)-searg(i+ii-1,j+jj-1))+test(i,j) 

50 	continue 
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if (imthd .eq. 1 ) then 
tmin=1.0e20 
do 100 i=1,2*ip+1 
do 100 k=1,2*ip+1 

if(test(i,k) .lt. train) then 
tmin=test(i,k) 

n=i 
nn=k 

endif 
100 continue 

else 

call ortho(test,ip,ibs,icent,jcent) 

n=icent 
nn=jcent 

endif 

c 

c Generates anumber between 1 & 169, The number idicates 
c the motion information 
c 

Num=(n-1)*(ip*2+1)+nn 
c 	write(*,*) Num,n,nn 

return 
end 

subroutine ortho(test,ip,ibs,icent,jcent) 
******************************************** 

* Independent Orthognal Search Technique * 
******************************************** 

real test(ip*2+1,ip*2+1) 

icent=ip+1 
jcent=ip+1 l=ip/2.+.5 

istep=0 
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10 if ((test(icent,jcent) .lt. test(icent,jcent-l)) .and. 

(test(icent,jcent) .lt. test(icent,jcent+l))) then 
icent=icent 

jcent=jcent 
else if ((test(icent,jcent-l) .lt. test(icent,jcent)) .and. 

(test(icent,jcent-l) .lt. test(icent,jcent+l))) then 
icent=icent 

jcent=jcent-l 
else if ((test(icent,jcent+1) .lt. test(icent,jcent)) .and. 

(test(icent,jcent+l) .lt. test(icent,jcent-l))) then 
icent=icent 

jcent=jcent+1 
endif 

istep=istep+1 

if ((test(icent,jcent) .lt. test(icent-1,jcent)) .and. 
(test(icent,jcent) .1t. test(icent+l,jcent))) then 

icent=icent 
jcent=jcent 

else if ((test(icent-l,jcent) .lt. test(icent,jcent)) .and. 
(test(icent-1,jcent) .lt. test(icent+l,jcent))) then 

icent=icent-l 
jcent=jcent 

else if ((test(icent+1,jcent) .lt. test(icent,jcent)) .and. 
(test(icent+1,jcent) .it. test(icent-l,jcent))) then 

icent=icent+1 
jcent=jcent 

endif 

istep=istep+1 

if (l .ne. 1) then 
1=(1/2.0+.5) 
go to 10 

endif 

return 
end 

subroutine motiondetect(frmlmsk,frm2msk,ibs,indx) 
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******************************************************* 

* Subroutine calculates if motion is present in the * 
* (ibs*ibs) subblock 
******************************************************* 

real frmlmsk(ibs,ibs),frm2msk(ibs,ibs) 

kount=0 
do 10 i=1,ibs 

do 10 j=1,ibs 
thrsh=abs(frm1msk(i,j)-frm2msk(i,j)) 

if (thrsh .gt. 3) kount=kount+1 
10 continue 

if (kount .gt. 10 ) then 
indx=1 

else 
indx=0 
endif 
c print *,'index',indx 
return 
end 

********************************************************* 

*This Subroutine calculates the prediction coefficients,* 
*means and variances of each ibx*iby block and forms * 
*the AR(1) model of corresponding subband frame 
********************************************************* 

subroutine arl(fror,nx,ny,armod,ibx,iby) 
character*1 pimm(200*256) 
real fror(1:nx,1:ny) 
real 	autoc(12800) 
real autocl(12800) 
real uframel(-12:212,-12:268) 
real rmeanl(3200),fror0(-10:210,-10:266) 
real framar1(1:200,1:256) 
real rh(3200),rv(3200),var(3200) 
real armod(1:200,1:256) 
real frorl(-5:205,-5:261) 
real mean,sigma 
integer hist41(512) 
integer hist42(512) 
integer hist43(512) 
integer hist44(512) 
common/arbitrate/arbitrate 
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real yy(1:16) 
common /yy/yy 

do 13 i=-5 ,205 
do 13 j=-5 ,261 
fror1(i,j)=0.0 

13 	continue 

do 44 i=1,3200 

rmeanl(i)=0.0 
rh(i)=0.0 
rv(i)=0.0 
var(i)=0.0 

44 	continue 

c 	write(1,*) ((fror(i,j),j=1,256),i=1,200) 

do 39 i=1,200 
do 39 j=1,256 
frorl(i,j)=fror(i,j) 
framarl(i,j)=0.0 
armod(i,j)=0.0 

39 	continue 
********************************************** 

* IN FOLLOWING LOOP ZERO MEAN FRAME OPTAINED* 
********************************************** 

kk=0 
do 10 i=0,nx-ibx,ibx 
do 11 j=0,ny-iby,iby 
ii=i 

J1=3 
kk=kk+1 
rmn=0.0 
do 12 k=ii+1,ii+ibx 
do 12 1=jj+1,jj+iby 

rmn=rmn+frorl(k,1) 
12 	continue 

rmean1(kk)=rmn/(ibx*iby) 

do 14 m=ii+1,ii+ibx 
do 14 n=jj+1,jj+iby 
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fror0(m,n)=fror1(m,n)-rmean1(kk) 
14 	continue 

11 	continue 
10 	continue 

do 50 m=-12,nx+12 
do 50 n=-12,ny+12 
uframe1(m,n)=0.0 

50 	continue 
mm=0 

***************************************************** 

*IN FOLLOWING LOOP ,ZERO MEAN MCFD FRAME MODELED BY * 
*USING THE AR1 MODEL PARAMETERS. FIRST, VARIANCE, 	* 
*AUTOCORRELATION , RH,RV OF EACH ibx*iby BLOCKS ARE * 
*CALCULATED 
***************************************************** 

do 511 i=0, nx-ibx,ibx 
do 512 j=0, ny-iby,iby 
ii=i 

jj=j 
mm=mm+1 
rautoc=0.0 
do 71 k=ii+1,ii+ibx 
autoc(k)=0.0 
do 72 l=jj+1, jj+iby-1 
autoc(k)=autoc(k)+fror0(k,l)*fror0(k,1+1) 

72 	continue 
rautoc=rautoc+autoc(k) 
71 	continue 

rautoc = rautoc/(ibx*iby) 

rautoc1=0.0 
do 23 l=jj+1, jj+iby 
autoc1(l)=0.0 
do 24 k=ii+1, ii+ibx-1 
autoc1(1)= autoc1(1)+fror0(k,1)*fror0(k+1,l) 

24 	continue 
rautocl=rautoc1+autoc1(1) 

23 	continue 
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rautocl = rautoc1/(ibx*iby) 

var1=0.0 
do 25 k=ii+1, ii+ibx 
do 26 l=jj+1, jj+iby 
var1=var1+fror0(k,1)*fror0(k,l) 

26 	continue 
25 	continue 

var(mm) = varl/(ibx*iby) 
rh(mm) = rautoc/var(mm) 
rv(mm)= rautoc1/var(mm) 

c 	write(50,*) rh(mm),rv(mm) 

512 	continue 

511 	continue 
******************************************* 

* QUANTIZATION OF THE AR1 MODEL PARAMETERS* 
* ARE CARIED OUT HERE 
******************************************* 

print*, 'quantizing ar1 parameters' 

call vec_quant4(rmean1,1,hist41,256) 
call vbitrates4(hist41,bs1,256) 

call vec_quant4(var,2,hist42,256) 
call vbitrates4(hist42,bs2,256) 

call vec_quant4(rh,3,hist43,512) 
call vbitrates4(hist43,bs3,512) 

call vec_quant4(rv,4,hist44,512) 
call vbitrates4(hist44,bs4,512) 

arbitrate=bs1+bs2+bs3+bs4 
write(*,*) 'BITRATE FOR AR1=', arbitrate 

c 	write(100,*) (hist41(i),i=1,512) 

N=16 



sigma=1.0 
mean=0.0 
nu=0 
call gauss(N,mean,sigma,iseed) 

do 518 i=0, nx-ibx,ibx 
do 518 j=0, ny-iby,iby 
ii=i 

jj=j 
nu=nu+1 
varno=(1.0-rh(nu)**2)*(1.0-rv(nu)**2)*var(nu) 
sigma1=sqrt(varno) 

nn=0 
do 27 k=ii+1, ii+ibx 
do 28 l=jj+1, jj+iby 
nn=nn+1 
uframel(k,l)=rh(nu)*uframe1(k,l-1)+rv(nu)*uframel(k-1,1) 

rh(nu)*rv(nu)*uframel(k-1,1-1)+sigma1*yy(nn) 
28 	continue 

27 	continue 
************************************************* 

*MEANS ARE ADDED TO THE AR1 MODELED MCFD FRAME* 
************************************************* 

do 29 k=ii+1, ii+ibx 
do 30 1=jj+1, jj+iby 
framarl(k,1)=uframe1(k,l)+rmeanl(nu) uframel(k,l)=0.0 

30 	continue 
29 	continue 

518 	continue 

do 510 i=1,nx 
do 510 j=1,ny 
armod(i,j)=framar1(i,j) 

510 	continue 

c 	open(99,file='ard25',access='direct',form='unformatted' 

c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(armod(i,j))+128 
c 	if(ip.gt.255) ip=255 
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c 	if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	write(99,rec=1) (pimm(j),j=1,nx*ny) 
c 	close(99) 

write(*,*) 'OKAY' 
return 
end 

***************************** 

* GAUSSIAN NOISE GENERATOR * 
***************************** 

subroutine gauss(N,mean,sigma,iseed) 
real x(1:16),mean,yy(1:16) 
common /yy/yy 
do 1 i=1,N 
x(i)=gran(mean,sigma,iseed) 
yy(i)=x(i) 

1 	continue 
return 
end 

**************************************** 

function gran(mean,sigma,iseed) 
real mean 
u=0 
do 1 i=1,12 
u=u+ran(iseed) 

1 	continue 
gran=sigma*(u-6)+mean 

return 
end 

c*************************************** 

subroutine write_out_fr(frm) 
real frm(400,512) 
real frm1(1:512,1:512) 
character*1 image(512*512) 
common /ifl/ ifl 
parameter(nx=400,ny=512) 
open(21,file='fr25',access='direct',form= 

& 'unformatted',rec1=512*512) 
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do 300 i=0,513 
do 300 j=0,513 

300 	 frml(i,j)=0.0 

do 200 i=1,400 

do 200 j=1,512 
frm1(i,j)=frm(i,j) 

200 	continue 

do 599 i=1,nx 
do 600 j=1,ny 

frml(i,j)=(1.0/16.0)*(frm(i-1,j-1)+2.0*frm(i-1,j) 
#+ frm(i-1,j+1)+2.0*frm(i,j-1)+4.0*frm(i,j) 

#+2.0*frm(i,j+1)+frm(i+1,j-1)+2.0*frm(i+1,j) 
#+frm(i+1,j+1)) 

600 	 continue 

599 	 continue 

c 	 do 499 i=3,nx-2 
c 	 do 500 j=3,ny-2 

c 	frml(i,j) =(1.0/256.0)*((frm(i-2,j-2)+frm(i-2,j+2) 

c 	# +frm(i+2,i+2)) 

c 	# +4.0*(frm(i-2,j-1)+frm(i-2,j+1)+frm(i-1,j-2) 

c 	# +frm(i-1,j+2)) 
c 	# +4.0*(frm(i+1,j-2)+frm(i+1,j+2)+frm(i+2,j-1) 

c 	# +frm(i+2,j+1)) 

c 	# +6.0*(frm(i-2,j)+frm(i,j-2)+frm(i,j+2) 

c 	# +frm(i+2,j)) 
c 	# +16.0*(frm(i-1,j-1)+frm(i-1,j+1) 

c 	# +frm(i+1,j-1)+frm(i+1,j+1)) 

c 	# +24.0*(frm(i-1,j)+frm(i,j-1)+fim(i,j+1) 

c 	# +frm(i+1,j)) 
c 	# +36.0*frm(i,j))+(1./256.)*frm(i+2,j-2) 

c500 	continue 
c499 	continue 

do 10 i=1,512 
do 10 j=1,512 
ip=int(frm1(i,j)+.5) 
if(ip.gt.255) ip=255 
if(ip.lt.0) ip=0 
if(ip.gt.127) ip=ip-256 
image((i-1)*512+j) = char(ip) 

10 	continue 
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write(21,rec=ifl)(image(j),j=1,512*512) 

close(21) 

return 
end 

********************************************* 

subroutine write_out_frm(ifld,frm) 
real frm(400,512) 
real pic1(1:512,1:512) 
character*1 image(512*512) 

open(21,file='cindy.out',access='direct',foim= 
& 'unformatted',recl=512*512) 

do 300 i=0,513 
do 300 j=0,513 

300 	 pic1(i,j)=0.0 

do 200 i=1,400 
do 200 j=1,512 
picl(i,j)=frm(i,j) 

200 	continue 

do 599 i=1,nx 
do 600 j=1,ny 

pic1(i,j)=(1.0/16.0)*(frm(i-1,j-1)+2.0*frm(i-1,j) 

frm(i-1,j+1)+2.0*frm(i,j-1)+4.0*frm(i,j) 
#+2.0*frm(i,j+1)+frm(i+1,j-1)+2.0*frm(i+1,j) 
#+frm(i+1,j+1)) 

600 	 continue 
599 	 continue 

do 10 i=1,400 
do 10 j=1,512 
ip=int(picl(i,j)+.5) 
if(ip.gt.255) ip=255 
if(ip.lt.0) ip=0 
if(ip.gt.127) ip=ip-256 
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image((i-1)*512+j) = char(ip) 
10 	continue 

write(21,rec=ifld)(image(j),j=1,512*512) 

close(21) 

return 
end 

********************** 

* SUBROUTINE AUTOCOR* 
********************** 

subroutine autocor(frame,nx,ny) 
real frame(nx,ny) 
real autoc(400),autoc1(512) 

rautoc=0.0 
do 11 k=1,nx 
autoc(k)=0.0 
do 12 l=1,ny-1 
autoc(k)=autoc(k)+frame(k,l)*frame(k,l+1) 

12 	continue 
rautoc=rautoc+autoc(k)/ny 

11 	continue 

rautoc1=0.0 
do 13 1=1,ny 

autoc1(l)=0.0 
do 14 k=1,nx-1 

autoc1(1)=autoc1(l)+frame(k,1)*frame(k+1,l) 

14 	continue 
rautocl=rautocl+autoc1(1)/nx 

13 	continue 

rac=0.0 
rmean=0.0 
do 23 l=1,ny 

do 24 k=1,nx 
rac=rac+frame(k,l)*frame(k,l) 
rmean=rmean+frame(k,l) 

24 	continue 

23 	continue 
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rmean=rmean/(nx*ny) 
var=rac/(nx*ny)-rmean*rmean 

rautoc=rautoc/nx-rmean*rmean 
rautoc1=rautoc1/ny-rmean*rmean 

write(35,*) 'Mean Variance' 
write(35,*) rmean,var 

rh=rautoc/var 
rv=rautoc1/var 

write(35,*) 'Autocor-H,Autocor-V' 
write(35,*) rh,ry 

return 
end 

********************************************** 

* subroutine initial 
* This subprogram initialize the main program* 
********************************************** 

subroutine initial 
character*80 input_file 
common /ina/ input_file 

write (*,1) 
write (*,3) 

read (5,4) input_file 

1 	format (' 	') 

3 	format (' Enter the name of the file contains 
& ',/,'the order of the filtes there coefficients, 
& input Image, and output file:') 

4 	format( a80) 

return 
end 

c******************************************* 

subroutine writeimgs(pic,nx,ny,name) 

real pic(nx,ny) 
character*1 pim(400*512) 

character*20 name 
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open(1,file=name,access='direct', 
+ form='unformatted',rec1=400*512) 

do 20 i=1,nx 
do 20 j=1,ny 
ip=int(pic(i,j))+128 
if(ip.gt.255) ip=255 
if(ip.lt.0) ip=0 
if(ip.gt.128) ip=ip-256 
mm=j+(i-1)*ny 
pim(mm)= char(ip) 

20 	continue 
write(1,rec=1) (pim(j),j=1,nx*ny) 
close (1) 

return 
end 

c****************************************** 

subroutine writeimg(pic,nx,ny,name) 
real pic(nx,ny) 
character*1 pim(400*512) 
character*20 name 

open(1,file=name,access='direct', 
+ form='unformatted',recl=nx*ny) 

do 20 i=1,nx 
do 20 j=1,ny 
ip=int(pic(i,j)) 
if(ip.gt.128) ip=ip-256 
mm=j+(i-1)*ny 
pim(mm)= char(ip) 

20 	continue 
write(1,rec=1) (pim(j),j=1,nx*ny) 
close (1) 

return 
end 

c********************************************* 

subroutine writeint(c,nx,ny,name) 
real c(nx,ny) 

character*20 name 
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do 10 i=1,nx 
write(1,*) (c(i,j),j=1,ny) 

10 	continue 

close (1) 

return 
end 

********************************************** 

subroutine writeint1(pic,nx,ny,name) 
integer pic(nx,ny) 
character*20 name 

open(1,file=name) 

do 10 i=1,nx 
write(1,*) (pic(i,j),j=1,ny) 

10 	continue 

close (1) 

return 
end 

c ************************************************* 

subroutine read_frm(ifld,pic) 
character*1 pic(400,512) 

open(1,file='/images/cindy',access='direct',form= 

& 'unformatted',recl=512) 

c 	open(1,file='/images/mono',access='direct',form= 
c 	& 'unformatted',rec1=512) 
c 
c 	open(1,file='/images/quartet',access='direct',form= 
c 	& 'unformatted',rec1=512) 
c 
c 	open(1,file='/images/duo',access='direct',form= 
c 	& 'unformatted',rec1=512) 
c 

icod1 = (ifld-1)*400 
icod2 = (ifld-1)*400 + 200 

do 10 i=1,200 
read(1,rec=icodl+i)(pic(2*i-1,j),j=1,512) 



read(1,rec=icod2+i)(pic(i*2,j),j=1,512) 
10 	continue 

close(1) 

return 
end 

***************************************************** 

subroutine write_in_fim(ifld,pic) 
real pic(400,512) 
character*1 image(512*512) 

open(22,file='cindy.in',access='direct',form= 
& 'unformatted',rec1=512*512) 

do 10 i=1,400 
do 10 j=1,512 

ip=int(pic(i,j)+.5) 
if(ip.gt.255) ip=255 
if(ip.lt.0) ip=0 
if(ip.gt.127) ip=ip-256 
image((i-1)*512+j) = char(ip) 

10 continue 

do 20 i=204801,262144 
image(i) = char(003) 

20 	continue 

write(22,rec=ifld)(image(j),j=1,512*512) 

close(22) 

return 
end 
****************************************************** 

subroutine write_lfrm(pic,name) 
real pic(400,512) 
character*1 image(512*400) 
character*20 name 
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open(22,file=name,access='direct',form= 
& 'unformatted',recl=512*400) 

do 10 1=1,400 
do 10 j=1,512 
ip=int(pic(i,j)+.5) 
if(ip.gt.255) ip=255 
if(ip.lt.0) ip=0 
if(ip.gt.127) ip=ip-256 
image((i-1)*512+j) = char(ip) 

10 continue 

c 	write(22,rec=1)(image(j),j=1,512*400) 

close(22) 

return 
end 

*************************************************** 

* SUBROUTINE SUBBAND-7 BAND ANALYSIS AND SYNTHESIS* 
*************************************************** 

* LL-LH-HL-HH Bands used 
* Synthesize band signals 
* Write out reconstructed imageaa* 
*********************************** 

subroutine subband(inimg,outimg,nx,ny) 

integer raw,col 

c 	raw=number of rows of input image 
c 	col=number of columns of input image 
******************************************************* 

* CHANGE raw and col values for different sized images* 
******************************************************* 

parameter(raw=400,col=512) 

real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20) 
character*80 input_file 
common /ifl/ ifl 
common /ina/ input_file 

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2 
,ltap3,mtap3,ltap4,mtap4 



real inimg(nx,ny) 
real a1(200,256),a2(200,256),a3(200,256),a4(200,256) 
real outimg(400,512) 
real bl(raw/4,col/4),b2(raw/4,col/4) 
real b3(raw/4,co1/4),b4(raw/4,co1/4) 
real e1(raw/2,co1/2) 

c 	input_file='in8' 
c 	input_file='in81' 

input_file='FILTERS/inmf8' 
c 	input_file='insb8' 
c 	input_file='inst8' 
c 	input_file='inunc8' 
c 	input_file='inotf8' 
c 	input_file='inofa8' 
c 	input_file='inofb8' 
c 	input_file='inotaf8' 
c 	input_file='inofsa8' 
c 	input_file='inofsb8' 
c 	input_file='inoffl8' 

call readf 

write(*,*) 'subband analysis' 
call analysis256(inimg,al,a2,a3,a4) 

c 	a1:LL 
c 	a2:LH 
c 	a3:HL 
c 	a4:HH 

call analysis128(a1,b1,b2,b3,b4) 
c 	b1:LLLL 
c 	b2:LLLH 
c 	b3:LLHL 
c 	b4:LLHH 

write(*,*) 'synthesis' 
call synthesis128(bl,b2,b3,b4,e1) 
call synthesis256(e1,a2,a3,a4,outimg,inimg) 

return 
end 

**************************************************** 

* 	SUBROUTINE READ 
* 	THIS SUBROUTINE READS THE FILTER COEFFICIENTS * 
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**************************************************** 

subroutine readf 
real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20) 

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2 
,ltap3,mtap3,1tap4,mtap4 

call openf 
write(*,*) 'reading filter coefficients' 
read(11,*) ltapl 

c 	write(*,*) ltapl 
read(11,*) mtapl 
do 10 i=ltap1,mtapl 

10 	read(11,*) coffl(i) 

read(11,*) ltap2 
read(11,*) mtap2 
do 20 i=ltap2,mtap2 

20 	read(11,*) coff2(i) 
c 

read(11,*) ltap3 
read(11,*) mtap3 
do 30 i=ltap3,mtap3 

30 	read(11,*) coff3(i) 
c 

read(11,*) ltap4 
read(11,*) mtap4 
do 40 i=ltap4,mtap4 

40 	read(11,*) coff4(i) 
c 

close (11) 

RETURN 
END 

********************************************** 
subroutine openf 
character*80 input_file 
common/ina / input_file 
write(*,*) 'Opening input_file' 
open (11,file=input_file,status='old') 
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write(*,*) 'file opened' 

return 

end 
********************************************* 

subroutine analysis256(inimg,llband,lhband,hlband,hhband) 

integer raw,col 

parameter(raw=400,co1=512) 

real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20) 

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2 

,ltap3,mtap3,ltap4,mtap4 

c these are the four subband 

real llband(raw/2,co1/2),lhband(raw/2,col/2) 
& ,hlband(raw/2,co1/2),hhband(raw/2,col/2) 

c these are the high and low bands 

real lband(raw,co1/2),hband(raw,col/2) 

c input and output images 

real inimg(raw,col) 

nx=raw 

ny=col 

call rfilter(coffl,inimg,lband,nx,ny,ltapl,mtapl) 

call rfilter(coff2,inimg,hband,nx,ny,ltap2,mtap2) 

ny=ny/2 

call cllfilter(coffl,lband,llband,nx,ny,ltapl,mtapl) 
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call clhfilter(coff2,lband,lhband,nx,ny,ltap2,mtap2) 

call chlfilter(coff1,hband,hlband,nx,ny,ltapl,mtap1) 

call chhfilter(coff2,hband,hhband,nx,ny,ltap2,mtap2) 

return 
end 

************************************************************ 

subroutine analysis128(inimg,llband,lhband,hlband,hhband) 

integer raw,col 

parameter(raw=200,col=256) 

common /ifld/ ifld 

integer motionv(50,64),ifld 

common /motionv/ motionv 

real coffl(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20) 

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2 

& ,ltap3,mtap3,ltap4,mtap4 

c these are the four subband 

real llband(raw/2,col/2),Ihband(raw/2,col/2) 
& ,hlband(raw/2,col/2),hhband(raw/2,col/2) 

c these are the high and low bands 

real lband(raw,co1/2),hband(raw,co1/2) 

c input and output images 

real inimg(raw,col) 

nx=raw 

ny=col 

call rfilter(coffl,inimg,lband,nx,ny,ltapl,mtapl) 

call rfilter(coff2,inimg,hband,nx,ny,ltap2,mtap2) 



ny=ny/2 

call cllllfilter(coff1,1band,llband,nx,ny,ltapl,mtapl) 

call clllhfilter(coff2,lband,lhband,nx,ny,ltap2,mtap2) 

call cllhlfilter(coff1,hband,hlband,nx,ny,ltap1,mtapl) 

call cllhhfilter(coff2,hband,hhband,nx,ny,ltap2,mtap2) 

return 
end 

subroutine rfilter(f,a1,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap 

real a1(raw,col),a2(raw,co1/2),f(-20:20) 

do 20 i=1,raw 

do 20 j=2,col,2 

a2(i,j/2)=0 

do 20 k=ltap,mtap 
jk=j+k 

if(jk.le.0) jk=col+jk 

if(jk.gt.col) jk=jk-col 

a2(i,j/2)=a2(i,j/2)+al(i,jk)*f(k) 

20 	continue 

return 

end 

c 	  

subroutine cfilter(f,al,a2,raw,col,ltap,mtap) 

integer col,raw,ltap,mtap,jk 

real al(raw,col),a2(raw/2,col),f(-20:20) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 

do 20 k=ltap,mtap 

jk=j+k 

if(jk.le.0) jk=raw+jk 
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if(jk.gt.raw) jk=jk-raw 

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k) 
20 	continue 

return 
end 

*********** LL FILTER********************************** 

subroutine cllfilter(f,al,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 
common /ifl/ ifl 
real a1(raw,col),a2(raw/2,col),f(-20:20) 
character*1 pimm(200*256) 
parameter(nx=200,ny=256) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 
do 20 k=ltap,mtap 
jk=j+k 

if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k) 
20 	continue 

c 	open(99,file='LL',access='direct',form='unformatted' 
c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(a2(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	close(99) 

return 
end 
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subroutine cllllfilter(f,al,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 
real al(raw,col),a2(100,128),f(-20:20) 
common /hist1/ hist1 
real hist1(3,512) 
common /ifl/ ifl 
common /entropy1/entropy1 
character*1 pimm(100*128) 
parameter(nx=100,ny=128) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 
do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k) 
20 	continue 

call vec_quan1(a2) 

c 	open(99,file='LLLL',access='direct',form='unformatted' 
c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(a2(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	 if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 

c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	close(99) 

call vbitrates1(hist1,entropy1,3,512) 
write(*,*) 'entropy1=',entropyl 

return 
end 
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*********** LLLH FILTER******************************** 

subroutine clllhfilter(f,al,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 

real pimmi(12800),pimm2(12800) 
real al(raw,col),a2(raw/2,col),f(-20:20) 
common /hist2/ hist2 
common /entropy2/entropy2 
real hist2(3,512) 

common /ifl/ ifl 
character*1 pimm(100*128) 
parameter(nx=100,ny=128) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 
do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 

if(jk.gt.raw) jk=jk-raw 

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k) 
20 	continue 

call vec_quan2(a2) 

c 	open(99,file='LLLH',access='direct',form='unformatted'  

c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(a2(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	close(99) 

c 	do 1 i=1,100 

c 	do 1 j=1,128 
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c 	kk=j+(i-1)*128 
pimml(kk)=a2(i,j) 
write(60,*) pimml(kk) 

c1 	continue 
call vbitrates2(hist2,entropy2,3,512) 
write(*,*) 'entropy2=',entropy2 

return 
end 

********** LLHL FILTER******************************* 

subroutine cllhlfilter(f,a1,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 
real a1(raw,col),a2(raw/2,col),f(-20:20) 
common /ifl/ ifl 
common /hist3/ hist3 
common /entropy3/entropy3 
real hist3(3,512) 

character*1 pimm(100*128) 
parameter(nx=100,ny=128) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 
do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 
a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k) 

20 	continue 

call vec_quan3(a2) 

c 	open(99,file='LLHL',access='direct',form='unformatted' 
c 	+ ,recl=nx*ny) 

do 690 i=1,nx 
c 	do 691 j=1,ny 

ip=int(a2(i,j))+128 

c 	if(ip.gt.255) ip=255 
c 	if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
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c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	close(99) 

call vbitrates3(hist3,entropy3,3,512) 
write(*,*) 'entropy3=',entropy3 

return 
end 

********** LLHH FILTER****************************** 

subroutine cllhhfilter(f,a1,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 
real al(raw,col),a2(raw/2,col),f(-20:20) 
common /ifl/ ifl 
parameter(nx=100,ny=128) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 
do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 

c 	 a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k) 
a2(j/2,i)=0.0 

20 	continue 

return 
end 

*********LH FILTER*********************************** 

subroutine clhfilter(f,a1,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 

real al(raw,col),a2(raw/2,col),a6(200,256),f(-20:20) 
common /ifl/ ifl 
character*1 pimm(200*256) 
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parameter(nx=200,ny=256) 

do 20 i=1,col 
do 20 j=2,raw,2 

a2(j/2,i)=0 
do 20 k=ltap,mtap 

jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 

c 	 a2(j/2,i)=0 
a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k) 

20 	continue 

c 	open(99,file='LH',access='direct',form='unformatted' 
c + ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(a2(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	 close(99) 

call arl(a2,200,256,a6,4,4) 
do 35 i=1,200 

do 35 j=1,256 
a2(i,j)=a6(i,j) 

35 	continue 

return 
end 

**********HL FILTER******************************** 

subroutine chlfilter(f,al,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 
real a1(raw,col),a2(raw/2,col),f(-20:20) 
common /ifl/ ifl 

character*1 pimm(200*256) 
parameter(nx=200,ny=256) 
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do 20 i=1,col 

do 20 j=2,raw,2 
a2(j/2,i)=0 

do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 

c 	 a2(j/2,i)=a2(j/2,0+a1(jk,i)*f(k) 
a2(j/2,i)=0.0 

20 	continue 
c 	call arl(a2,200,256,a7,8,8) 
c 	do 35 i=1,200 
c 	do 35 j=1,256 

c35 	a2(i,j)=a7(i,j) 
c 	write(13,*) ((a2(i,j),j=1,256),i=1,200) 
c 	open(99,file='HL',access='direct',form='unformatted' 
c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 

c 	do 691 j=1,ny 
c 	ip=int(a2(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	if (ip.t.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	 write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	close(99) 

return 
end 

***********HH FILTER***************************** 

subroutine chhfilter(f,a1,a2,raw,col,tap,mtap) 
integer col,raw,tap,mtap,jk 
real al(raw,col),a2(200,256),f(-20:20) 
common /ifl/ ifl 

real a8(200,256) 
character*1 pimm(200*256) 
parameter(nx=200,ny=256) 

do 20 i=1,col 
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do 20 j=2,raw,2 
a2(j/2,i)=0 

do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 

c 	 a2(j/2,i)=a2(j/2,1)+a1(jk,i)*f(k) 
a2(j/2,i)=0.0 

20 	continue 
c 	 write(*,*) ifl 
c 	call arl(a2,200,256,a8,16,16) 
c 	 do 35 i=1,200 
c 	 do 35 j=1,256 
c35 	a2(i,j)=a8(i,j) 

c 	open(99,file='HH',access='direct',form='unformatted' 
c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(a2(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	if (ip.lt.0) ip=0 
c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny) 
c 	close(99) 

return 
end 

****************************************** 

subroutine vec_quanl(pic) 
****************************************** 

c 	pic: picture o be coded (100X128) 

real pic(100,128) 
integer motionv(50,64) 
real tvector(4) 
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common /hist1/ hist1 
integer hist1(3,512) 
common /motionv/ motionv 
real b1v1(512,4),b1v2(512,4),b1v3(512,4) 

common /vqcodebook1/ blvl,blv2,blv3 

do 191 i=1,3 
do 191 j=1,512 
hist1(i,j)=0 

	

191 	continue 

nn=0 
do 10 i=1,50 
do 10 j=1,64 

if(motionv(i,j).ge.5) then 
do 20 k=1,2 
do 20 l=1,2 
tvector(2*(k-1)+l)=pic((i-1)*2+k,(j-1)*2+1) 

	

20 	continue 
mm=nn+3 

else if(motionv(i,j).ge.3) then 
do 21 k=1,2 
do 21 l=1,2 
tvector(2*(k-1)+1)=p1c((i-1)*2+k,(j-1)*2+1) 

	

21 	continue 
mm=nn+2 

else if(motionv(i,j).ge.1) then 
do 22 k=1,2 
do 22 1=1,2 
tvector(2*(k-1)+1)=pic((i-1)*2+k,(j-1)*2+1) 

	

22 	continue 
mm=nn+1 

else 
do 33 k=1,2 
do 33 l=1,2 

pic((i-1)*2+k,(j-1)*2+l)=0.0 

	

33 	continue 
mm=0 

endif 

if(mm.eq.1) then 

call vquantizer(tvector,b1v1,ivecnum) 
hist1(1,ivecnum) = hist1(1,1vecnum)+1 
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else if(mm.eq.2)then 
call vquantizer(tvector,b1v2,ivecnum) 
hist1(2,ivecnum) = hist1(2,ivecnum)+1 

else if(mm.eq.3)then 
call vquantizer(tvector,b1v3,ivecnum) 
histl(3,ivecnum) = histl(3,ivecnum)+1 

endif 
if(mm.ne.0) then 
do 44 k=1,2 
do 44 1=1,2 

pic((i-1)*2+k,(j-1)*2+l) = tvector(2*(k-1)+1 
44 	continue 

endif 

10 	continue 

return 
end 

************************************* 

subroutine vec_quan2(pic) 
************************************* 

c 	pic: picture to be coded (100X128) 

real pic(100,128) 
integer motionv(50,64) 
integer motionv1(25,32) 

real tvector(16) 
common /hist2/ hist2 
integer hist2(3,512) 
common /motionv/ motionv 
real b2vl(512,16),b2v2(512,16),b2v3(512,16) 
common /vqcodebook2/ b2v1,b2v2,b2v3 

do 191 i=1,3 
do 191 j=1,512 
hist2(i,j)=0 

191 	continue 

do 50 i=1,25 
do 50 j=1,32 
notl=0 
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do 51 k=i*2-1,2*i 
do 51 1=2*j-1,2*j 
notl =notl+motionv(k,l) 

51 	continue 
motionv1(i,j)=(notl/4) 

50 	continue 

nn=0 
do 10 i=1,25 
do 10 j=1,32 

if(motionvl(i,j).ge.5) then 
do 20 k=1,4 
do 20 l=1,4 
tvector(4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1) 

20 	continue 
mm=nn+3 

else if(motionvl(i,j).ge.3) then 
do 21 k=1,4 
do 21 1=1,4 
tvector(4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1) 

21 	continue 
mm=nn+2 

else if(motionvl(i,j).ge.1) then 
do 22 k=1,4 
do 22 l=1,4 
tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+1) 

22 	continue 
mm=nn+1 

else 
do 33 k=1,4 
do 33 1=1,4 

pic((i-1)*4+k,(j-1)*4+1)=0.0 
33 	continue 

mm=0 
endif 

if(mm.eq.1) then 
call vquantizer3(tvector,b2v1,ivecnum) 
hist2(1,ivecnum) = hist2(1,ivecnum)+1 

else if(mm.eq.2)then 
call vquantizer3(tvector,b2v2,ivecnum) 
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hist2(2,ivecnum) = hist2(2,ivecnum)+1 

else if(mm.eq.3)then 
call vquantizer3(tvector,b2v3,ivecnum) 
hist2(3,ivecnum) = hist2(3,ivecnum)+1 

endif 
if(mm.ne.0) then 
do 44 k=1,4 
do 44 l=1,4 

pic((i-1)*4+k,(j-1)*4+l) = tvector(4*(k-1)+l) 
44 	continue 

endif 

10 	continue 

return 
end 

************************************* 

subroutine vec_quan3(pic) 
c 	pic: picture to be coded (100X128) 

real pic(100,128) 
integer motionv(50,64) 
integer motionv1(25,32) 

real tvector(16) 
common /hist3/ hist3 
integer hist3(3,512) 
common /motionv/ motionv 
real b3v1(512,16),b3v2(512,16),b3v3(512,16) 
common /vqcodebook3/ b3v1,b3v2,b3v3 

do 191 i=1,3 
do 191 j=1,512 
hist3(i,j)=0 

191 	continue 
do 50 i=1,25 
do 50 j=1,32 
not1=0 
do 51 k=i*2-1,2*i 
do 51 1=2*j-1,2*j 

notl =notl+motionv(k,l) 

51 	continue 
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motionv1(i,j)=(notl/4) 
50 	continue 

nn=0 
do 10 i=1,25 
do 10 j=1,32 

if(motionv1(i,j).ge.5) then 
do 20 k=1,4 
do 20 l=1,4 
tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+l) 

20 	continue 
mm=nn+3 

else if(motionv1(i,j).ge.3) then 
do 21 k=1,4 
do 21 1=1,4 

tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+l) 
21 	continue 

mm=nn+2 
else if(motionv1(i,j).ge.1) then 
do 22 k=1,4 
do 22 1=1,4 
tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+l) 

22 	continue 
mm=nn+1 

else 
do 33 k=1,4 
do 33 1=1,4 

pic((i-1)*4+k,(j-1)*4+l)=0.0 
33 	continue 

mm=0 
endif 

if(mm.eq.1) then 
call vquantizer3(tvector,b3v1,ivecnum) 
hist3(1,ivecnum) = hist3(1,ivecnum)+1 

else if(mm.eq.2)then 
call vquantizer3(tvector,b3v2,ivecnum) 
hist3(2,ivecnum) = hist3(2,ivecnum)+1 

else if(mm.eq.3)then 
call vquantizer3(tvector,b3v3,ivecnum) 
hist3(3,ivecnum) = hist3(3,ivecnum)+1 

endif 
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if(mm.ne.0) then 
do 44 k=1,4 
do 44 1=1,4 

pic((i-1)*4+k,(j-1)*4+1) = tvector(4*(k-1)+l) 

44 	continue 
endif 

10 	continue 

return 
end 

********************************************** 

subroutine vec_quant4(enimg,n,hist4,L) 
real testv(16) 
real enimg(3200) 
integer hist4(L) 
integer ivecnum4 
real b4vl(256,16),b4v2(256,16),b4v3(512,16),b4v4(512,16) 
common /vqcodebook4/ b4v1,b4v2,b4v3,b4v4 

do 17 j=1,L 
hist4(j)=0 

17 	continue 

do 100 i=0,3184,16 
k=0 

do 150 ii=i+1,i+16 
k=k+1 
testv(k) = enimg(ii) 

150 	 continue 

if (n.eq.1) then 

call vquant4(testv,b4vl,ivecnum4,L) 

else if (n.eq.2) then 

call vquant4(testv,b4v2,ivecnum4,L) 



else if (n.eq.3) then 

call vquant4(testv,b4v3,ivecnum4,L) 

else if (n.eq.4) then 

call vquant4(testv,b4v4,ivecnum4,L) 

endif 

hist4(ivecnum4)=hist4(ivecnum4)+1 

k1=0 
do 170 jj=i+1,i+16 

k1=k1+1 

enimg(jj) = testv(k1) 
170 	continue 

100 	continue 

return 
end 

**************************************************** 

subroutine vquantizer(testv,codebook,ivecnu) 
c Best Matching of vector 

real testv(4) 
real codebook(512,4) 

rdiff = 1000000.0 
ivecnu = 0 

do 110 m = 1,512 
adiff = 0 
do 120 n = 1,4 
adiff = adiff + (testv(n) - codebook(m,n))**2 

120 	continue 
if (adiff .lt. rdiff) then 

rdiff = adiff 
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ivecnu = m 
endif 

110 	continue 

do 130 n = 1,4 
testv(n) = codebook(ivecnu,n) 

130 	continue 

return 
end 

****************************************************** 

subroutine vquantizer3(testv,codebook,ivecnu) 
c Best Matching of vector 

real testv(16) 
real codebook(512,16) 

rdiff = 1000000.0 
ivecnu = 0 

do 110 m = 1,512 
adiff = 0 
do 120 n = 1,16 
adiff = adiff 	(testv(n) - codebook(m,n))**2 

120 	continue 
if (adiff .lt. rdiff) then 

rdiff = adiff 
ivecnu = m 

endif 
110 	continue 

do 130 n = 1,16 
testv(n) = codebook(ivecnu,n) 

130 	continue 

return 
end 

*************************************************** 

subroutine vquant4(testv,codebook,ivecnu,L) 
c Best Matching of vector 

real testv(16) 
real codebook(L,16) 
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rdiff = 1000000.0 
ivecnu = 0 

do 110 m = 1,L 
adiff = 0 
do 120 n = 1,16 
adiff = adiff + (testv(n) - codebook(m,n))**2 

120 	continue 
if (adiff .t. rdiff) then 

rdiff = adiff 
ivecnu = m 

endif 
110 	continue 

do 130 n = 1,16 
testv(n) = codebook(ivecnu,n) 

130 	continue 

return 
end 

***************************************************** 

c this subroutine calculate the entropy of each band 
c and find the probability of each code 
****************************************************** 

subroutine vbitratesl(ic,bitrate,raw,col) 

c 	common /gtotal/ gtotal 
integer ic(raw,col),raw,col 
real entropy(3),sum(512),pr(512) 

gtotal=0 
bitrate=0 
do 10 m=1,3 

total=0 
do 20 n=1,512 
sum(n)=ic(m,n) 
total=total+sum(n) 

20 	continue 

c 
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entropy(m)=0.0 
do 30 n=1,512 

pr(n)=sum(n)/total 
if(pr(n).gt.0) then 

br=pr(n)*xlog2(1.0/pr(n)) 
entropy(m)=entropy(m)+br 

endif 
30 	continue 

bitrate=bitrate+entropy(m)*total 
write(*,*) 'total = ',total 
gtotal=gtotal+total 

10 	continue 

write(*,*) 'gtotal = ',gtotal 
write(*,*) 'ventropy = ',(entropy(i),i=1,3) 
write(*,*) 'bitrate = 	bitrate 

return 
end 

*************************************************** 

subroutine vbitrates2(ic,bitrate,raw,col) 

integer ic(raw,col),raw,col 
real entropy(3),sum(512),pr(512) 

gtotal=0 
bitrate=0 
do 10 m=1,3 

total=0 
do 20 n=1,512 
sum(n)=ic(m,n) 
total=total+sum(n) 

20 	continue 

entropy(m)=0.0 
do 30 n=1,512 

pr(n)=sum(n)/total 
if(pr(n).gt.0) then 

br=pr(n)*xlog2(1.0/pr(n)) 
entropy(m)=entropy(m)+br 
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endif 
30 	continue 

bitrate=bitrate+entropy(m)*total 
write(*,*) 'total = ',total 
gtotal=gtotal+total 

10 	continue 
c 	bitrate=(gtotal/800)*(9./256) 

write(*,*) 'gtotal = ',gtotal 
write(*,*) 'ventropy = ',(entropy(i),i=1,3) 

write(*,*) 'bitrate = 	bitrate 
return 
end 

************************************************ 

subroutine vbitrates3(ic,bitrate,raw,col) 

integer ic(raw,col),raw,col 

real entropy(3),sum(512),pr(512) 

gtotal=0 
bitrate=0 
do 10 m=1,3 

total=0 
do 20 n=1,512 
sum(n)=ic(m,n) 
total=total+sum(n) 

20 	continue 

c 

entropy(m)=0.0 
do 30 n=1,512 

pr(n)=sum(n)/total 
if(pr(n).gt.0) then 

br=pr(n)*xlog2(1.0/pr(n)) 
entropy(m)=entropy(m)+br 

endif 

30 	continue 

bitrate=bitrate+entropy(m)*total 
write(*,*) 'total = ',total 
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gtotal=gtotal=total 
10 	continue 

c 	bitrate=(gtotal/800)*(9.7256.) 

write(*,*) 'gtotal = ',gtotal 
write(*,*) 'ventropy = ',(entropy(i),i=1,3) 
write(*,*) 'bitrate = 	bitrate 
return 
end 

************************************************** 

subroutine vbitrates4(ic,bitrate,col) 

integer ic(col),col 
real entropy,sum(512),pr(512) 

bitrate=0 

total=0 
do 20 n=1,col 
sum(n)=ic(n) 
total=total+sum(n) 

20 	continue 

entropy=0.0 
do 30 n=1,col 

pr(n)=sum(n)/total 
if(pr(n).gt.0) then 

br=pr(n)*xlog2(1.0/pr(n)) 
entropy=entropy+br 

endif 
30 	continue 

bitrate=entropy*total 

write(*,*) 'entropyarl = ',entropy 

write(*,*) 'total = ',total 
write(*,*) 'bitrate = 	bitrate 

return 
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end 

***************************************** 

function xlog2(x) 
real x 
xlog2=alog(x)/alog(2.0) 
return 
end 

************************************************ 
subroutine bitrates2(ic,entropy,raw,col) 

************************************************ 

integer ic(raw,col),raw,col 
real entropy,sum(0:169),pr(0:169) 

do 20 n=0,169 
sum(n)=0.0 

20 	continue 
c 

do 10 i=1,raw 
do 10 j=1,col 

k=ic(i,j) 
sum(k)=sum(k)+1 

10 	continue 
entropy=0.0 
total=real(raw*col) 
do 30 n=0,169 

pr(n)=sum(n)/total 
if(pr(n).gt.0) then 

br=pr(n)*xlog2(1.0/pr(n)) 
entropy=entropy+br 

endif 
30 	continue 

write(*,*) 'xmentropy = ',entropy 

c 	write(*,*) 'pr = ',(pr(i),i=1,169) 

return 
end 
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****************************************************** 

subroutine ccfilter(f,al,a2,raw,col,ltap,mtap) 
integer col,raw,tap,mtap,jk 
real al(raw,col),a2(raw,col),f(-20:20) 
do 20 i=1,col 

do 20 j=1,raw 
a2(j,i)=0 
do 20 k=ltap,mtap 
jk=j+k 
if(jk.le.0) jk=raw+jk 
if(jk.gt.raw) jk=jk-raw 
a2(j,i)=a2(j,i)+al(jk,i)*f(k) 

20 	continue 
return 
end 

c 	  

subroutine rcfiter(f,a1,a2,raw,col,ltap,mtap) 
integer col,raw,ltap,mtap,jk 

real al(raw,col),a2(raw,col),f(-20:20) 
do 20 i=1,raw 

do 20 j=1,col 
a2(i,j)=0 
do 20 k=tap,mtap 
jk=j+k 
if(jk.le.0) jk=col+jk 
if(jk.gt.col) jk=jk-col 
a2(i,j)=a2(i,j)+al(i,jk)*f(k) 

20 	continue 

return 
end 

c 	  

subroutine cinter(in,out,nraw,ncol) 
integer nraw,ncol 
real in(nraw,ncol),out(nraw*2,ncol) 

do 20 j=1,ncol 
do 20 i=1,nraw 

out(2*i-1,j)=in(i,j) 
out(2*i,j)=0.0 
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C 	 out(2*i,j)=in(i,j) 
out(2*i-1,j)=0.0 

20 	continue 
return 

end 

subroutine rinter(in,out,nraw,ncol) 
integer nraw,ncol 
real in(nraw,ncol),out(nraw,2*ncol) 
do 20 j=1,ncol 

do 20 i=1,nraw 
out(i,2*j-1)=in(i,j) 
out(i,2*j)=0.0 

c 	 out(i,2*j)=in(i,j) 
c 	 out(i,2*j-1)=0.0 
20 	continue 

return 
end 

c 	  

subroutine synthesis256(llband,lhband,hlband,hhband,outimg, 
inimg) 

character*1 pimm(400*512) 
real inimg(400,512) 
integer raw,col 
parameter(raw=400,co1=512) 
parameter(nx=400,ny=512) 

c input and output images 
real outimg(raw,col) 

c these are the four subband 
real llband(raw/2,co1/2),lhband(raw/2,col/2) 

& ,hlband(raw/2,col/2),hhband(raw/2,col/2) 

real lli(raw,col/2),lhi(raw,col/2),hli(raw,col/2), 

& hhi(raw,col/2),11o(raw,col/2),lho(raw,col/2),hlo(raw,col/2), 
& hho(raw,col/2) 
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real li(raw,col/2),lo(raw,col),hi(raw,col/2), 

& ho(raw,col) 

real limg(raw,col),himg(raw,col) 

real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20) 

common /a/ coff1,coff2,coff3,coff4,ltap1,mtapl,ltap2,mtap2 

,tap3,mtap3,ltap4,mtap4 

nraw=raw 

ncol=col 

call cinter(llband,lli,raw/2,col/2) 

call ccfilter(coff4,lli,llo,raw,col/2,ltap4,mtap4) 

call cinter(lhband,lhi,raw/2,col/2) 

call ccfiter(coff3,lhi,lho,raw,col/2,ltap3,mtap3) 

call cinter(hlband,hli,raw/2,col/2) 

call ccfiter(coff4,hli,hlo,raw,col/2,tap4,mtap4) 

call cinter(hhband,hhi,raw/2,col/2) 

call ccfiter(coff3,hhi,hho,raw,col/2,ltap3,mtap3) 

c 

do 10 i=1,raw 

do 10 j=1,col/2  

li(i,j)=llo(i,j)+lho(i,j) 

c 	 li(i,j)=llo(i,j) 

c 	 hi(i,j)=hlo(i,j)+hho(i,j) 

c 	 hi(i,j)=hlo(i,j) 
hi(i,j)=0.0 

10 	continue 

call rinter(li,lo,raw,col/2) 

call rcfiter(coff4,lo,limg,raw,col,ltap4,mtap4) 

call rinter(hi,ho,raw,col/2) 
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call rcfilter(coff3,ho,himg,raw,col,ltap3,mtap3) 

do 20 i=1,raw 
do 20 j=1,col 
outimg(i,j)=limg(i,j) 

20 	continue 

c 	open(99,file='im',access='direct',form='unformatted' 
c 	+ ,recl=nx*ny) 
c 	do 690 i=1,nx 
c 	do 691 j=1,ny 
c 	ip=int(outimg(i,j))+128 
c 	if(ip.gt.255) ip=255 
c 	if (ip.lt.0) ip=0 

c 	if(ip.gt.128) ip=ip-255 
c 	kk=j+(i-1)*ny 
c 	pimm(kk)=char(ip) 
c691 	continue 
c690 	continue 

c 	write(99,rec=1) (pimm(j),j=1,nx*ny) 

c 	close(99) 

return 
end 

*************************************** 

* SYNTHESIS FILTER FOR 128*100 IMAGES* 
*************************************** 

subroutine synthesis128(llband,lhband,hlband,hhband,outimg) 

integer raw,col 
parameter(raw=200,col=256) 

c input and output images 
real outimg(raw,col) 

c these are the four subband 
real llband(raw/2,col/2),lhband(raw/2,col/2) 

& ,hlband(raw/2,col/2),hhband(raw/2,col/2) 
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real lli(raw,col/2),lhi(raw,col/2),hli(raw,col/2), 

& hhi(raw,col/2),llo(raw,col/2),lho(raw,col/2),hlo(raw,col/2), 

& hho(raw,col/2) 

real li(raw,col/2),lo(raw,col),hi(raw,col/2), 

& ho(raw,col) 

real limg(raw,col),himg(raw,col) 
real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20) 

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2  

,ltap3,mtap3,tap4,mtap4 

c 	  

nraw=raw 

ncol=col 

call cinter(llband,lli,raw/2,col/2) 

call ccfiter(coff4,lli,llo,raw,col/2,ltap4,mtap4) 

call cinter(lhband,lhi,raw/2,col/2) 

call ccfilter(coff3,lhi,lho,raw,col/2,ltap3,mtap3) 

call cinter(hlband,hli,raw/2,col/2) 
call ccfilter(coff4,hli,hlo,raw,col/2,tap4,mtap4) 

call cinter(hhband,hhi,raw/2,col/2) 

call ccfilter(coff3,hhi,hho,raw,col/2,tap3,mtap3) 

c 
do 10 i=1,raw 

do 10 j=1,col/2 
li(i,j)=llo(i,j)+lho(i,j) 

hi(i,j)=hlo(i,j) 

10 	continue 

call rinter(li,lo,raw,col/2) 
call rcfilter(coff4,lo,limg,raw,col,ltap4,mtap4) 

call rinter(hi,ho,raw,col/2) 

call rcfilter(coff3,ho,himg,raw,col,tap3,mtap3) 



do 20 i=1,raw 
do 20 j=1,col 
outimg(i,j)=1*(limg(i,j)+himg(i,j)) 

20 	continue 

return 
end 
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