A hybrid low bit-rate video codec using subbands and statistical modeling

Ferhat Cakrak
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses
Part of the Electrical and Electronics Commons

Recommended Citation

Cakrak, Ferhat, "A hybrid low bit-rate video codec using subbands and statistical modeling" (1994).
Theses. 1598.
https://digitalcommons.njit.edu/theses/1598

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

Abstract

AlssTRACT

\title{ A Hybrid Low Bit-rate Video Codec Using Subbands and Statistical Modeling } by Ferhat Cakrak

A hybrid low bit-rate video codec using subbands and statistical modeling is proposed in this thesis. The redundancy within adjacent vidco frames is exploited by motion estimation and compensation. The Motion Compensated Frame Difference (MCFD) signals are decomposed into 7 subbands using 2-D dyadic tree structure and separable filters. Some of the subband signals are statistically modeled by using the 2-D AR(1) technique. Tho model parameters provide a representation of these subbands at the receiver side with a certain level of error. The remaining subbands are compressed employing a classical waveform coding technique, namely vector quantization (VQ).

It is shown that the statistical modeling is a viable representation approach for low-correlated subbands of MCFD signal. The subbands with higher correlation are better represented with waveform coding techniques.

A HYBRID LOW BIT-RATE VIDEO CODEC USING SUBBANDS AND STATISTICAL MODELING

by
Ferhat Cakrak

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

APPROVAL PAGE

A HYBRID LOW BIT-RATE VIDEO CODEC USING SUBBANDS AND STATISTICAL MODELING

Ferhat Cakrak

Dr. Ali N. Akansu, Thesis Advisor Date
Associate Professor of Electrical and Computer Engineering, NJIT
Dr. Nirwǎn Ansari, Committee Member
Date
Associate Professor of Electrical and Computer Engineering, NJIT

$\overline{\text { Dr. Zoran Siveski, Committee Member }}$ Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Ferhat Cakrak
Degree: Master of Science in Electrical Engineering
Date: January 1994

Undergraduate and Graduate Education:

- Master of Science in Electrical lingineering,

New Jersey Institute of Technology, Newark, NJ, 1994

- Bachelor of Science in Electrical Engineering,

Technical University of Istanbul. Istanbul, Turkey, 1989
Major: Electrical Engineering

This thesis is dedicated to my family

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. A. N. Akansu for his valuable contribution, advice, patience and understanding. I also appreciate his support and encouragement during the entire research period.

I am very grateful to Dr. Nirwan Ansari and Dr. Zoran Siveski for their effort and time in reviewing this work.

I also would like to thank the members of the Center for Communications and Signal Processing Research at New Jersey Institute of Technology and to all my friends for their help and support.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
2 MOTION COMPENSATED VIDEO CODING 3
2.1 Introduction 3
2.2 Block Matching Algorithm (BMA) 5
2.3 The Motion Compensated Frame Difference Signal (MCFD) 8
3 STATISTICAL MODEL BASED IMAGE CODING TECHNIQUES 10
3.1 Introduction 10
3.2 Autoregressive (AR) Process 10
3.3 First-order Autoregressive AR(1) Process 12
3.4 First-Order Correlation Models for Images 14
3.4.1 First-Order Autoregressive AR(1) Source Model for Images 15
4 THEORY OF SUBBAND SIGNAL ANALYSIS AND FILTER BANKS 18
4.1 Introduction 18
4.2 Main Building Blocks in Subband Analysis 18
4.2.1 Downsamlers and Upsamplers 18
4.2.2 Anti-aliasing Filters 20
4.2.3 Interpolation Filters 21
4.3 Two Channel Perfect Reconstruction Quadrature Mirror Filter (PR--QMF) Banks 21
4.4 M-Band Tree Decomposition 25
4.5 Two Dimensional Separable Case 26

- VECTOR QUANILZAIION IN SUBBANDS 31
5.1 Introduction 31
5.2 Vector Quantization 31
5.3 Codebook Design 32
Chapter5.3.1 The LGB Algorithm . 33
5.4 Vector Quantization In Subbands 34
5.4.1 The Adaptive Vector Quantization Based on the Motion Vectors 34
5.4.2 Vector Quantization for the AR(1) Model Parameters 36
6 EXPERIMENTAL STUDIES 37
6.1 Subband Decomposition of the MCFD Signals 37
6.2 Statistical Modeling In Subbands 37
6.3 Quantization 38
7 CONCLUSIONS AND DISCUSSIONS 49
APPENDIX A Simulation Program for the 7 Band Dyadic Tree Structure 50
REFERENCES 109

LIST OF FIGURES

Figure Page
2.1 Block Diagram of Motion Compensated Video Sequence Coding Structure. 4
2.2 Block matching motion estimation 6
2.3 Frame by frame variation of the correlation coefficients for the test sequence "CINDY" 8
2.4 Frame by frame variation of variances for the test sequence "CINDY" 9
3.1 Filter Model of $A R(N)$ Process 11
3.2 Filter Model of AR(1) Process 13
3.3 Frame by frame variation of variances for the LII band of the test sequence "CINDY' 17
4.1 Block diagrams for downsampler and upsampler. 19
4.2 Downsampling with $\mathrm{M}=2$. 20
4.3 Upsampling with $\mathrm{M}=2$. 21
4.4 Frequency domain representation of the Upsampling by 2, with the input signal (top) and the upsampled signal (bottom). 22
4.5 Frequency domain representation of the downsampling by 2, with the input signal (top) and the downsampled signal (bottom). 23
4.6 Interpolation and decimation filters. 24
4.7 The two-channel QMF bank. 25
4.84 band regular tree decomposition. 26
$4.9 \quad 7$ band dyadic tree decomposition. 28
4.104 band regular tree decomposition and reconstruction of a 2-D signal $x(m, n)$. 29
4.117 band dyadic tree decomposition and reconstruction of a 2-D signal $x(m, n)$ using $2-D$ separable filtors 30
5.1 Illustration of clusters and the vector quantization for two-dimensional space. 32
5.2 2-D subbands used in video codec 35
Figure Page
6.1 Frequency responses of the 8 tap separable low-pass and high-pass filters. 38
6.2 Frame by frame variation of the average $S N R_{p p}$ values in $d B$ for the test sequence "CIND) Y" 39
6.3 Frame by frame variation of the first order entropy values for the test sequence "CINDY" 41
6.4 Frame by frame variation of the average $S N R_{p p}$ values in dB for the test sequence "TOPGUN". 42
6.5 Frame by frame variation of the first order entropy values for the test sequence "TOPGUN". 43
6.6 25th frame of the test sequence "CINDY" 44
6.7 The direct difference between the frames 25 and 26 of test sequence "CINDY" 45
6.8 26th frames of the test sequence "CINDY", the original (top) and coded (bottom) $\left(S N R_{p p}=34.1, b p p=0.24\right)$ 46
6.9 26th MCFD frames of "CINDY", the original (top) and coded (bottom)$\left(S N R_{p p}=34.1, b p p=0.24\right)$.47
6.10 LH band of the 26th MCFD frames of "CINDY", the original (top) and statistically modeled (bottom). 48

CHAPTER 1

INTRODUCTION

Interest in digital image processing has significantly increased over the past two decades. Advances in signal and image processing techniques allow sophisticated image processing algorithms to be realized in real time at a reasonable cost. However, the storage capacity and bandwidth of available communication channels have always been two major limitations. Since the amount of data in images is immense the compression of data has been of a great interest. Hence, there have been several image compression techniques proposed in the literature and the problem is still being actively pursued.

In video transmission and storage applications, one mostly has to deal with the images of moving objects. The motion occurring in such a multi-frame sequence is due to translation and rotation of objects with respect to the camera or moving camera and moving object case[1].

In video frames, we encounter the redundancy in temporal and spatial dimensions among the adjacent frames. A satisfactory data compression technique should not only remove temporal and spatial redundancies but also give a good visual perspective for a certain level of image quality [1]. The more visual quality we can sacrifice, the lower the bit-rate we need to transmit or to store an image.

There are several video coding techniques which provide satisfactory performance for compression. Most of these techniques employ transform coding of motion prediction error which is also known as the motion compensated frame difference ($M C F D$) signal. The $M C F D$ signal has been studied by several researchers and it is still being studied extensively in order to achieve betier compression and visual performance. The statistical model based and subband coding techniques are the ones combined in the proposed codec structure of this thesis.

In model based image coding, an image or some regions of an image are statistically modeled and the model parameters are used for the representation. At the transmitter, the the statistical model parameters are estimated by analyzing the image. Then, these parameters are quantized and sent to receiver side. At the receiver side, the image is reconstructed using quantized model parameters. Although the modeling of speech is useful and works well, the modeling of images has not been satisfactory. Therefore, model-based image coding technique is still at the research stage and more needs to be done[3].

Subband coding, one of the most powerful waveform coding techniques, has found its applications in speech and image processing. To compress the data, the signal is divided into a set of uncorrelated frequency bands and subband signals are encoded after an optimal bit allocation.

In this thesis, the MCFD signal is studied by using subband coding and statistical modeling in subbands.

Chapter 2 deals with the motion compensated video coding and the statistical evaluation of MCFD signals. In Chapter 3, autoregressive source models and AR(1) modeling are studied. Chapter 4 deals with the theory of subband signal analysis and filter banks. In Chapter 5 , vector quantization in subbands is covered. In Chapter 6, the experimental results are presented. The conclusions are given in Chapter 7 .

CHAPTER 2

MOTION COMPENSATED VIDEO CODING

2.1 Introduction

In this chapter, the general idea behind the motion compensated video coding technique is given. The algorithms used for prediction are classified and explained briefly. In Section 2.2, the theory of block matching algorithms is given in detail. Section 2.3 deals with the statistical features of motion compensated frame difference (MCFD) signals.

Any good video coding technique should remove not only the temporal but the spatial redundancies. To eliminate redundancy in a video sequence, interframe predictive coding, one of the most powerful video coding techniques, is widely used. In a typical interframe coding process, the present video frame is predicted based on frame to frame motion and the previous frame. The prediction error, MCFD, along with motion information is transmitted. At the receiver side, the MCFD signals are decoded and added to the motion based prediction of the frame. The main feature in this coding technique is to predict the current frame based on the previous one. The better prediction gives the smaller error signal and the smaller transmission bit rate [2].

The video scenes usually contain moving objects. The motion in a typical video sequence is due to the rotation and translation of the objects. The current frame F_{K} is predicted by using the previous frame F_{K-1} and frame to frame motion. This process is called motion compensation, and the difference between the current frame and its motion compensated prediction is called motion compensated frame difference (MCFD) signal. Block diagram of motion compensated video coding technique is given in Figure 2.1.

Figure 2.1 Block Diagram of Motion Compensated Video Sequence Coding Structure.

To predict the current frame by using the previous frame, there are several motion estimation algorithms proposed in the literature. Most common algorithms used in practice are as follows:

- Block Matching Algorithm
- Pel (pixel) Recursive Algorithm
- Knowledge Based Algorithm

First two algorithms use the 2D information of the successive video frames. The block matching algorithm tries to estimate the displacement vectors by means of comparing the gray levels of adjacent video frames in block fashion. On the other hand, pel recursive algorithm uses the coded noighbour pixels to predict the
displacement of each pixel[2]. These two algorithms are based on the following assumptions:

- The motion of the moving objects is only translation.
- Intensity (illumination) is the same in spatial and temporal dimensions.
- Masking between objects and uncovered background is neglected.

The knowledge based algorithm employs the 3-D motion constraints. Although this algorithm is quite popular in model based coding, it is not quite practical due to the computational load and complexity of the algorithm.

2.2 Block Matching Algorithm (BMA)

In the current technology, block matching algorithms are widely used due to the their simplicity and effectiveness. The block matching algorithm (BMA) divides an image into fixed or variable size rectangular blocks, and assumes that each block can be represented by a displacement vector $D=\left(d_{2}, d_{y}\right)$ as shown in Figure 2.2. In order to maintain the validity of the assumption, block sizes are kept, small, such as 8×8 or $16 \times 16[2]$.

In this study, the motion compensation is based on the block matching algorithm, which can be implemented by using fixed or variable size blocks. In our approach, each video frame is divided into 8×8, fixed size, blocks. Each $8 x 8$ block in current frame is compared with all possible blocks within a certain search region in the previous frame. The best matching block is found by the following procedure.

The motion detector compares each pixel of a predefined image block in the present frame K, with the corresponding pixel values of the previous frame $K-1$. If the condition given by Eq .2 .1 is satisficd, which means difference is above the predetermined threshold value, then the pixel m, n of block i, j in frame K is assumed moving. For an 8×8 block, if the number of moving pixels is above the predetermined

Figure 2.2 Block matching motion estimation
threshold value N_{0} as given in Eq.2.2, then that block is assumed moving.

$$
\begin{align*}
& \left|P_{i, j}^{K}(m, n)-P_{i, j}^{K-1}(m, n)\right| \geq T_{0} \quad m, n=1,2, \ldots, 8 \tag{2.1}\\
& {[\text { number of moving pixels in an } 8 x 8 \text { block }] \geq N_{0}} \tag{2.2}
\end{align*}
$$

T_{0} and N_{0} are the predefined threshold values for each pixel and each 8×8 block respectively. These values can be adjusted depending on the application. In this study, $T_{0}=3, N_{0}=10$, have been found suitable values for the experimental video sequences. If the block has a motion, then motion estimation and compensation procedure is performed.

The BMA tries to find the best match for each 8×8 block belonging to the present frame K, using a predefined search region in the previous video frame. Predefined search region size has been taken as $(8+2 p) \times(8+2 p)$ and fixed. It is assumed that the maximum displacement between two 8×8 blocks in two consecutive video frames is $\mp p$ pixels in two dimensions. For a video conferencing environment $p=6$ is used. There are $(2 p+1) \times(2 p+1)$ different blocks in search region in which each block is a candidate to be the correct displacement.

A comprehensive search algorithm scans all the candidate search points in the search area for the best match. The best match is found by minimizing the distortion measurement, like mean square error (MSE), or by maximizing a correlation feature, like the cross-correlation function, of the two blocks [2]. In Practice there are several fast search algorithms. Independent orthogonal search algorithm, a computationally efficient search algorithm, is used in this study [1].

Number of thresholded absolute difference (NTAD) given in Eq. (2.3) is employed as the objective function.

$$
\begin{equation*}
N T A D_{k, l}=\sum_{m=1}^{8} \sum_{n=1}^{8}\left[f\left(T_{1},\left|B_{i, j}^{K}(m, n)-S_{i, j}^{K-1} i(m+k, n+l)\right|\right)\right] \quad k, l=1,2, \ldots, 13 \tag{2.3}
\end{equation*}
$$

where

$$
f\left(T_{1}, D\right)= \begin{cases}1 & T_{1} \leq D \\ 0 & T_{1}>D\end{cases}
$$

and $S_{i j}^{K-1}$ is the search region for block $B_{i j}^{K}(m, n)$. The best match is found by minimizing $N T A D(k, l)$. The parameter value $T_{1}=3$ is found the best for the video sequences used in this study.

After determining the best match, the image block $B_{i j}^{K}$ is predicted as $\hat{B}_{i j}^{K}$ based on the corresponding 8×8 block in the previous video frame F^{K-1}. This process is repeated for all the blocks and the prediction of the current frame \hat{F}_{K} is obtained as seen in Figure 2.1.

The prediction error, which is basically the difference signal between the original frame and its prediction, is encoded and transmitted to the receiver side along with the motion information to reconstruct the current frame F_{K}. The prediction error which is also called motion compensated frame difference $(M C F D)_{K}$ signal is given in Eq.(2.4) for the $M X N$ video image sequences.

$$
\begin{align*}
M C F D_{K}(i, j)=F_{K}(i, j)-\hat{F}_{K}(i, j) & i=1, \ldots \ldots, M \tag{2.4}\\
& j=1, \ldots \ldots, N
\end{align*}
$$

Figure 2.3 Frame by frame variation of the correlation coefficients for the test sequence "CINDY"

2.3 The Motion Compensated Frame Difference Signal (MCFD)

Although the motion information of the motion compensated video coding technique has to be encoded lossless, the MCFD signal may be encoded by using any entropy reduction technique. Transform coding, hybrid coding, and some other source coding techniques have been used to encode the MCFD signals.

It is well known that the performance of the transform coding decreases significantly for the low correlated signal sources such as MCFD signals. Therefore, transform coding is not a good choice for this kind of signals[1]. For the video test sequence "CINDY", frame by frame variation of the average first order horizontal and vertical correlation coefficients are given in Figure 2.3. It is seen from the figure that MCFD signals are low correlated.

Figure 2.4 Frame by frame variation of variances for the test sequence "(INDY"

The variance of the MCFD signals for first forty frames of the test sequence are displayed in Figure 2.4. It is seen that variance of the motion compensated frame difference signal for the first forty frames of the test sequence "CINDY" is just about 25% of the direct frame to frame difference signal.

There are several contributors to the prediction error (MCFD) signal. All types of motion is approximated by translation. Additionally, using the encoded version of previous frame for prediction brings the effects of the quantization noise into the progress.Furthermore, the threshold values used, T_{0}, T_{1}, N_{0}, are not global optimum values. Last, no abrupt scene change is included in this study. Hence, the effects of abrupt scene changes are not seen here.

CHAPTER 3

STATISTICAL MODEL BASED TMAGE CODING TECHNIQUES

3.1 Introduction

It is highly desirable to define signal sources by a set of statistical parameters. These parameters are used in transmission and storage applications for modeling of source characteristics. The main objective here is to use as few parameters as possible to represent a signal source, keeping certain level of signal quality for a given application. As mentioned earlier in Chapter 1 , in statistical model based image coding, an image or a portion of it is statistically modeled and model parameters are quantized and sent to the receiver side to reconstruct the image. Although the statistical modeling works well in speech coding applications, it does not give satisfactory results in still frame image coding applications. Therefore, it is still an active research area and more needs to be done.

Autoregressive modeling is widely used in 1-D applications like linear predictive coding (LPC) of speech. Although its performance is not satisfactory for 2-D applications, like still frame image modeling, it is a reasonable technique to represent MCFD signals. Hence, it can be used for modeling of the MCFD signals, i.e., by employing the subband coding technique some frequency bands of the MCFD signal can be statistically modeled.

In this chapter, Section 3.2 covers autoregressive $(A R)$ processes. In Section 3.3, first-order autoregressive, $A R(1)$, process is studied. In Section 3.4, $A R(1)$ modeling technique for images and the statistics of test images are presented.

3.2 Autoregressive (AR) Process

An autoregressive (AR) process is generated by passing the white noise $\eta(n)$ innovations through an all-pole filter. A wide-sense zero-mean white noise process

Figure 3.1 Filter Model of $\operatorname{AR}(N)$ Process
and its spectrum are defined as;

$$
\begin{equation*}
S_{N N}\left(e^{j \omega}\right)=\sigma_{N}^{2} \tag{3.1}
\end{equation*}
$$

where σ_{N}^{2} is the variance of a zero mean, wide-sense stationary white noise sequence. Its autocorrelation sequence is given as

$$
\begin{equation*}
R_{N N}(m)=E[\eta(n) \eta(n+m)]=\sigma_{N}^{2} \delta(m) \tag{3.2}
\end{equation*}
$$

where

$$
\delta(m)=\left\{\begin{array}{lc}
1 & \text { for } m=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

is the kronecker delta function. For any shift m there is no correlation between the samples of the white noise process and it has a flat power spectral density function as seen in Eq.(3.1).

Filter used in this process is called all-pole since it has N multiple zeros at, $z=0$ as seen in Eq. (3.3),

$$
\begin{equation*}
H(z)=\frac{1}{1-\sum_{i=1}^{N} b_{i} z^{-i}}=\frac{z^{N}}{z^{N}-\sum_{i=1}^{N} b_{i} z^{N-i}} \tag{3.3}
\end{equation*}
$$

The difference equation generating the AR process $\{x(n)\}$ is given by

$$
\begin{equation*}
x(n)=\eta(n)+\sum_{i=1}^{N} b_{i} x(n-i) \tag{3.4}
\end{equation*}
$$

The process $\{x(n)\}$ is called $A R(N)$ or Nth order Markov process. $\left\{b_{i}\right\}$ are the correlation coefficients. The filter model realizing an $A R(N)$ process is given in Figure 3.1.

The impulse response of an all-pole filter is in infinite duration. However, the autocorrelation function (acf) can be calculated recursively for the given set of prediction coefficients $b_{i} ; i=1,2, \ldots, N$. This is done by multiplying $x(n)$ in Eq.(3.4) with $x(n-m)$ and taking the expectations of both sides. Here, we should note that the white noise imnovations $\eta(n)$ are uncorrelated with its past outputs by definition. As a result, we have the following equations

$$
\begin{equation*}
E[\eta(n) x(n-m)]=0 \quad \text { for } \quad k>0 \tag{3.5}
\end{equation*}
$$

where $E[$.$] donates expectation and$

$$
\begin{equation*}
\sigma_{x}^{2}=E\left\{|x(n)|^{2}\right\}=R_{x x}(0)=\sum_{i=1}^{N} b_{i} R_{x x}(i)+\sigma_{\eta}^{2} \tag{3.6}
\end{equation*}
$$

where σ_{x}^{2} is the signal power. The recursive relation of autocorrelation sequence is given as

$$
\begin{equation*}
R_{x x}(m)=\sum_{i=1}^{N} b_{i} R_{x x}(m-i) \quad m>0 \tag{3.7}
\end{equation*}
$$

The all-pole model leads to N unknowns and N linear equations. These equations can be solved by using Levinson algorithm or the Cholesky decomposition[4][5].

3.3 First-order Autoregressive AR(1) Process

The first-order Markov or $\mathrm{AR}(1)$ process, with zero mean, is obtained easily from Eq.(3.4) with $N=1$ and $b_{1}=\rho$. Thus, we have the difference equation of $\mathrm{AR}(1)$ source model in time as

Figure 3.2 Filter Model of AR(1) Process

$$
\begin{equation*}
x(n)=\rho x(n-1)+\eta(n) \tag{3.8}
\end{equation*}
$$

where ρ is the first order correlation or prediction coefficient and $\{\eta(n)\}$ is the white noise sequence as given in Eqs.(3.1) and (3.2). The corresponding first-order filter function is found as

$$
\begin{equation*}
H(z)=\frac{1}{1-\rho z^{-1}} \tag{3.9}
\end{equation*}
$$

with the frequency response

$$
\begin{equation*}
H\left(e^{j \omega}\right)=H(z)_{z=e^{z \omega}}=\left(1-\rho e^{-j \omega}\right)^{-1} \tag{3.10}
\end{equation*}
$$

and the unit sample response

$$
\begin{equation*}
h(n)=\rho^{n} \quad n=0,1 \ldots \ldots \ldots \tag{3.11}
\end{equation*}
$$

The filter diagram for the first-order autoregressive process is given in Figure 3.2 where b_{1} denotes the first-order correlation or prediction coefficient.

The autocorrelation function of an $A R(1)$ signal is found as

$$
\begin{equation*}
R_{x x}(m)=\sigma_{x}^{2} p^{|m|} \quad m=0, \mp, 1, \mp, 2, \ldots \tag{3.12}
\end{equation*}
$$

The signal variance is expressed as

$$
\begin{equation*}
\sigma_{x}^{2}=R_{x x}(0)=\frac{\sigma_{N}^{2}}{1-\rho^{2}} \tag{3.13}
\end{equation*}
$$

where σ_{N}^{2} is the noise variance.
The power spectral density (psd) of an AR(1) process is given by

$$
\begin{equation*}
S_{x x}\left(e^{j \omega}\right)=\sigma_{N}^{2}\left|H\left(e^{j \omega}\right)\right|^{2}=\frac{1-\rho^{2}}{1+\rho^{2}-2 \rho \cos \omega} \sigma_{x}^{2} \tag{3.14}
\end{equation*}
$$

The process generated by Eq.(3.8) is stationary if the filter is stable. Therefore, $|\rho|<1$ and

$$
\begin{equation*}
\sum_{n=0}^{\infty}|h(n)|=(1-|\rho|)^{-1}<\infty \tag{3.15}
\end{equation*}
$$

Otherwise, a non-stationary process results.
The AR(1) source model is a good analytical tool in a variety of applications, such as speech and statistical model based signal representation.

3.4 First-Order Correlation Models for Images

A random field in which the mean is independent of spatial coordinates and the autocorrelation function is translation-invariant is called homogeneous. Properties of an homogeneous field is described by

$$
\begin{align*}
& E\{m, n\}=\mu(m, n)=\text { constant } \tag{3.16}\\
& E\{x(m, n) x(m+k, n+l)\}=R_{x x}(m, n) \text { for all } m, n \tag{3.17}
\end{align*}
$$

A homogeneous random field is white-sense stationary with the following power spectral density and autocorrelation function descriptions;

$$
\begin{gather*}
S_{x x}\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} R_{x x}(m, n) e^{-j \omega_{1} m} e^{-j \omega_{2} n} \tag{3.18}\\
R_{x x}(m, n)=\left[\frac{1}{2 \pi}\right]^{2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} S_{z x}\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right) e^{j \omega_{1} m} e^{j \omega_{2} n} d \omega_{1} d \omega_{2} \tag{3.19}
\end{gather*}
$$

If all the values of $R_{x x}(m, n)$ are zero in both spatial directions except $R_{x x}(0,0)$, a white noise process results. The autocorrelation function of a white noise process is defined by

$$
R_{x x}(m, n)=\sigma_{N}^{2} \delta(m, n)=\left\{\begin{array}{lr}
\sigma_{N}^{2} & m=n=0 \tag{3.20}\\
0 & \text { otherwise }
\end{array}\right.
$$

The process has a flat power spectral density (psd) function as given in Eq.(3.21).

$$
\begin{equation*}
S\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=\sigma_{N}^{2} \tag{3.21}
\end{equation*}
$$

The correlation models in two dimensional sources are divided into two groups; separable and non-separable correlation models[4]. Experimental studies have indicated that natural objects are better represented by non-separable correlation models[5]. On the other hand, artificial images are better represented by the separable correlation models. In this study, separable correlation model is employed. Hence, we are only concentrated on 2-D AR(1) modeling. More information about 2-D correlation models can be found in references [4] and [5].

3.4.1 First-Order Autoregressive AR(1) Source Model for Images

An important autocorrelation model in two dimensions is the first-order autoregressive $\mathrm{AR}(1)$ source model which has the autocorrelation function

$$
\begin{equation*}
R_{x x}(m, n)=\sigma_{x}^{2} \rho_{h}^{|m|} \rho_{v}^{|n|} \quad m, n=0, \mp, 1, \mp, 2, \ldots \ldots \tag{3.22}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\sigma_{x}^{2}=R_{x x}(0,0)=\frac{\sigma_{N}^{2}}{\left(1-\rho_{h}^{2}\right)\left(1-\rho_{v}^{2}\right)} \tag{3.23}
\end{equation*}
$$

where m and n are spatial shifts in horizontal and vertical directions, and ρ_{h} and ρ_{v} are the corresponding first-order horizontal and vertical correlation coefficients, respectively. The correlation model in Eq.(3.22) is called separable because it can be expressed as the product of two one-dimensional autocorrelations. One can verify that

$$
\begin{equation*}
R_{x x}(m, n)=\sigma_{x}^{2} \rho^{|m|+|n|} \quad \text { if } \rho_{k}=\rho_{v}=\rho \tag{3.24}
\end{equation*}
$$

A 2-D AR(1) signal can be expressed by the difference equation

$$
\begin{equation*}
x(m, n)=\rho_{h} x(m-1, n)+\rho_{v} x(m, n-1)-\rho_{h} \rho_{v} x(m-1, n-1)+\eta(m, n) \tag{3.25}
\end{equation*}
$$

where $\{\eta(m, n)\}$ is the zero mean, white noise array with the variance σ_{N}^{2}. The transfer function of 2-D $\mathrm{AR}(1)$ filter in Z -domain is given as

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{1}{1-\rho_{h} z_{1}^{-1}-\rho_{v} z_{2}^{-1}-\rho_{h} \rho_{v} z_{1}^{-1} z_{2}^{-1}} \tag{3.26}
\end{equation*}
$$

Although the real-world images are not stationary, they can be assumed stationary over a small region. By using this assumption, statistical parameters namely $\rho_{h}, \rho_{v}, \sigma_{x}^{2}$ and $\mu(m, n)$ of each region can be estimated, and these parameters can be used for image representation.

In this thesis, the first-order autoregressive source model is used for the statistical modeling of the MCFD frame in the subbands.

First, the MCFD signal is decomposed into a set of frequency bands (4 and 7 band 2-D filter banks) and then, some of the subband signals are modeled by using $\mathrm{AR}(1)$ technique. The following steps are performed for each subband.

The MCFD subband frame is divided into fixed size blocks, i.e., $8 \times 8,4 \times 4$, and for each block, the mean is calculated and subtracted from the respective block. Then, the statistical model parameters, namely ρ_{h}, ρ_{v} and σ_{x}^{2}, are estimated for each zero mean block. These 4 parameters are quantized and encoded for transmission. At the receiver side, these parameters are used to reconstruct the corresponding image blocks by using Eq.(3.25). The white noise array $\eta(m, n)$ is generated by using the respective local block variances with zero mean. The relationship between local block variances and white noise array variances is given in Eq.(3.23).

After reconstructing each statistically modeled, zero mean, block, mean is added to each respective block to recover the statistically modeled MCFD subband frame.

It is obvious that even in the case of perfect quantization, original signal can not be recovered. Modeling brings some error due to stationarity assumption. Frame by frame average variances of the LH band before and after $\mathrm{AR}(1)$ modeling is given in Figure 3.3 for the first forty frames of the test sequence "CINDY" for 4×4 block size.

Figure 3.3 Frame by frame variation of variances for the LH band of the test sequence "CINDY"

CHAPTER 4

THEORY OF SUBBAND SIGNAL ANALYSIS AND FMLTER BANKS

4.1 Introduction

In recent years, subband coding has been widely used for image and video coding applications. To compress the data, the signal is decomposed into a set of uncorrelated frequency bands and each of these subband signals are encoded for transmission after the optimal bit allocation. At the receiver side these encoded subband signals are decoded to reconstruct the signal.

In general, a subband system can be decomposed into two parts, analysis and synthesis. The analysis part of a subband system consists of anti-aliasing subband filters and downsamplers. The synthesis part consists of upsamplers and interpolation filters.

In this chapter, section 4.2 deals with the main building blocks of a subband system, i.e., downsamplers, upsamplers, anti-aliasing and interpolation filters. The two channel perfect reconstruction quadrature mirror filter (PR-QMF) banks are studied in section 4.3. In section 4.4, M-band tree decomposition is covered along with 4 and 7 band filter banks. Section 4.5 deals with the two dimensional separable filter case which is used in this study.

4.2 Main Building Blocks in Subband Analysis

In this section, main building blocks, i.e., downsamplers, upsamplers, anti-aliasing and interpolation filters, are studied along with their frequency domain characterizations.

4.2.1 Downsamlers and Upsamplers

Figure 4.1 shows the block diagrams of a downsampler and upsampler. The inputoutput relation of a downsampler with rate M is given by $[6]$

(a) an M -fold decimator

(b) an M -fold interpolator

Figure 4.1 Block diagrams for downsampler and upsampler.

$$
\begin{equation*}
y(n)=x(M n) . \tag{4.1}
\end{equation*}
$$

Eq.(4.1) shows that the output at time n is equal to the input at time $M n$. As a result, only the input samples with the sample numbers equal to multiples of M are retained. The sampling rate reduction process is illustrated in Figure 4.2 for $M=2$ case.

The input-output relation of an M-fold upsampler is given by

$$
y(n)=\left\{\begin{array}{lc}
x\left(\frac{n}{M}\right) & \text { if } n \text { is a multiple of } M \tag{4.2}\\
0 & \text { otherwise }
\end{array}\right.
$$

Eq. (4.2) indicates that the output $y(n)$ is obtained by inserting $M-1$ zeros between adjacent samples of $x(n)$. This process is shown in Figure 4.3 for $M=2$.

Although the downsamplers and upsamplers make the system time varying, they are linear systems.

The transform domain description of the upsampler is given by

$$
\begin{equation*}
Y(Z)=X\left(Z^{M}\right), \quad Y\left(e^{j \omega}\right)=X\left(e^{j \omega M}\right) \tag{4.3}
\end{equation*}
$$

where $z=e^{j \omega}$. The stretching effect of upsampling in time domain corresponds to a compression in frequency domain as shown in Figure 4.4 for $M=2$. As seen from the figure, $Y\left(e^{j \omega}\right)$ has $M-1$ images of the basic spectrum. Consequently, the upsampler causes an imaging effect.

Figure 4.2 Downsampling with $M=2$.
The transform domain description of the idownsampler is given by

$$
\begin{equation*}
Y(Z)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(Z^{1 / M} W^{k}\right), \quad Y\left(e^{j \omega}\right)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{j(\omega-2 \pi k) / M}\right) \tag{4.4}
\end{equation*}
$$

where $W=e^{-2 \pi j / M}$. For $M=2$, this equation becomes

$$
\begin{equation*}
Y\left(e^{j \omega}\right)=\frac{1}{2}\left[X\left(e^{j \omega / 2}\right)+X\left(e^{j \omega / 2}\right)\right] \tag{4.5}
\end{equation*}
$$

As seen above, a downsampler causes compression in time and brings the stretching effect in frequency domain as shown in Figure 4.5 for $M=2$. Figure 4.5 also shows that spectrum of the the original signal after downsampler contains the 2π-shifted versions of the original spectrum. As a consequence, aliasing effect is observed.

4.2.2 Anti-aliasing Filters

To avoid the aliasing effect of downsampling operation, the downsampler is preceded by a band limiting filter which is called anti-aliasing or decimation filter. For example, a low-pass filter with the stopband edge $\omega_{s}=\frac{\pi}{M}$ can serve as such a filter for the signal downsamled by M as seen in Figure 4.6.

Figure 4.3 Upsampling with $\mathrm{M}=2$.

4.2.3 Interpolation Filters

To eliminate the imaging effects at the output of the upsampler, it is followed by an interpolation filter. The low-pass filter in figure 4.6, again, may serve as an interpolation filter.

4.3 Two Channel Perfect Reconstruction Quadrature Mirror Filter (PR-QMF) Banks

Consider the two channel QMF structure given in Figure 4.7. Based on the Eqs.(4.3) and (4.5), we can express $\hat{X}(Z)$ as $[7]$

$$
\begin{align*}
\hat{X}(Z)= & \frac{1}{2}\left[H_{0}(Z) F_{0}(Z)+H_{1}(Z) F_{1}(Z)\right] X(Z)+ \tag{4.6}\\
& \frac{1}{2}\left[H_{0}(-Z) F_{0}(Z)+H_{1}(-Z) F_{1}(Z)\right] X(-Z)
\end{align*}
$$

Figure 4.4 Frequency domain representation of the Upsampling by 2, with the input signal (top) and the upsampled signal (bottom).

The second term in Eq.(4.6) represents the effects of imaging and aliasing. These terms can be eliminated simply by choosing the synthesis filters to be

$$
\begin{equation*}
F_{0}(Z)=H_{1}(-Z), \quad F_{1}(Z)=-H_{0}(-Z) \tag{4.7}
\end{equation*}
$$

When the aliasing effect is eliminated, the QMF bank becomes a time-invariant system with the transfer function

$$
\begin{equation*}
T(Z)=\frac{\hat{X}(Z)}{X(Z)}=\frac{1}{2}\left[H_{0}(Z) H_{1}(-Z)-H_{1}(Z) H_{0}(-Z)\right] \tag{4.8}
\end{equation*}
$$

Ideally, $T(Z)$ is desired to be a delay, i.e., $T(Z)=Z^{-n_{0}}$, so that the reconstructed signal is a delayed version of $x(n)$. Unfortunately, $T(Z)$ is not a delay in general and it represents a distortion overall transfer function. One can express $T(Z)$ in the form of

$$
\begin{equation*}
T(Z)=T\left(e^{j \omega}\right)=\left|T\left(Z^{j \omega}\right)\right| \arg \left[T\left(e^{j \omega}\right)\right] \tag{4.9}
\end{equation*}
$$

Figure 4.5 Frequency domain representation of the downsampling by 2, with the input signal (top) and the downsampled signal (bottom).
where $\left|T\left(e^{j \omega}\right)\right|$ and $\arg \left[T\left(e^{j \omega}\right]\right.$ represent amplitude and phase distortions, respectively. If $\left|T\left(e^{j \omega}\right)\right|$ is constant for all ω, then there is no amplitude distortion. Also, if $T(Z)$ is a linear phase FIR function, then $\arg \left[T\left(e^{j \omega}\right)\right]=k \omega$, and there is no phase distortion. As a result, $T(Z)$ becomes a delay, i.e., $T(Z)=C Z^{-n_{0}}$, so that $\hat{x}(n)$, reconstructed signal, is a delayed version of $x(n)$, i.e., $\hat{x}(n)=c x\left(n-n_{0}\right)[7]$.

Smith and Barnwell[8] have shown first time that amplitude and phase distortions can be eliminated simultaneously by choosing

$$
\begin{equation*}
H_{1}(Z)=Z^{N-1} H_{0}\left(-Z^{-1}\right) \tag{4.10}
\end{equation*}
$$

(a) An anti-aliasing filter followed an M -fold decimator.

(b) An M -fold interpolator followed by an interpolation filter

(c) A low-pass filter with the stopband edge π / M

Figure 4.6 Interpolation and decimation filters.
where $(N-1)$ is odd and N is the order of $H_{1}(Z)$. Thus, we have

$$
\begin{equation*}
T(Z)=\frac{1}{2} Z^{-(N-1)}\left[H_{0}(Z) H_{O}\left(Z^{-1}\right)-H_{0}(-Z) H_{0}\left(-Z^{-1}\right)\right]=C Z^{-(N-1)} \tag{4.11}
\end{equation*}
$$

Therefore, the perfect reconstruction requirement reduces to finding an $H(Z)=$ $H_{0}(Z)$ so that

$$
\begin{gather*}
Q(Z)=H(Z) H\left(Z^{-1}\right)+H(-Z) H\left(-Z^{-1}\right)=C \tag{4.12}\\
=R(Z)+R(-Z)
\end{gather*}
$$

The perfect reconstruction requirement in time is expressed as[5]

$$
\begin{equation*}
\rho(2 n)=\sum_{k=0}^{N-1} h(k)(k+2 n) \tag{4.13}
\end{equation*}
$$

where $\rho(2 n)$ is the autocorrelation function.

Figure 4.7 The two-channel QMF bank.

In summary, we have the perfect reconstruction conditions for the 2 band PR-QMF banks as follows;

$$
\begin{align*}
& F_{0}(Z)=-H_{1}(-Z) \tag{4.14}\\
& F_{1}(Z)=H_{0}(-Z) \\
& H_{0}(Z)=H(Z)
\end{align*}
$$

and

$$
\begin{align*}
R(Z)=H(Z) H\left(Z^{-1}\right) & \longleftrightarrow \rho(n)=h(n) * h(-n) \tag{4.15}\\
R(Z)+R(-Z)=1 & \longleftrightarrow \rho(2 n)=\rho(n)
\end{align*}
$$

4.4 M-Band Tree Decomposition

Once a given signal $x(t)$ is sampled at f_{s} and split into two subband signals, $X_{L}(n)$ and $X_{H}(n)$, each of these subband signals can be further decomposed into more than 2 subbands in the same manner as the initial signal $x(n)$. Pour subband signals, thus are obtained after reduction of the sampling rate to $f_{s} / 4$. The spectrum of each of these subbands, $X_{L L}(n), X_{L H}(n), X_{H L}(n)$ and $X_{H H}(n)$, represents the subspectrum of $x(n)$ in the corresponding subband. This decomposition-reconstruction structure can be repeated p times yielding a p-stage hierarchical tree decomposition. The initial

Figure 4.84 band regular tree decomposition.
signal is thus decomposed into $\mathrm{M}=2^{p}$ subbands. The subband tree decomposition technique is shown in Figure 4.8 for 4 -band regular tree and in Figure 4.9 for 7 -band dyadic tree decomposition[9].

4.5 Two Dimensional Separable Case

The two dimensional (2-D) filter bank is a direct extension of 1-D filter bank in separable filter case. In the separable case, the filters used can be expressed as the product of two one-dimensional filters as given in Eq.(4.16).

$$
\begin{equation*}
h\left(n_{1}, n_{2}\right)=h_{1}\left(n_{1}\right) h_{2}\left(n_{2}\right) \tag{4.16}
\end{equation*}
$$

The separability feature of the filter provides an alternative method of implementation of 2D-QMF banks. Figure 4.10 shows a four band analysis/synthesis filter bank structure. As shown, the structure consists of a set of one dimensional filters which operate separately along the rows and the columns of the input signal.

It can be shown that the use of such filters will result an alias-free reconstruction of the input signal at the receiver side[10].

The decomposition of input signal can be extended for more than four subbands, i.e., 7, 10,13 etc., by repeating the process as explained in section 4.4.

Figure 4.97 band dyadic tree decomposition.

Figure 4.104 band regular tree decomposition and reconstruction of a 2-D signal $x(m, n)$.

Figure 4.117 band dyadic tree decomposition and reconstruction of a 2-D signal $x(m, n)$ using $2-D$ separable filters

CHAPTER 5
 VECTOR QUANTIZATION IN SUBBANDS

5.1 Introduction

Many different coding techniques can be used for the encoding of the subband signals. In this study, vector quantization is used to independently encode the subband signals.

In this chapter, the concentration is given to vector quantization and its applications in subbands. Section 5.2 covers the general concept of vector quantization. In section 5.3, codebook design and the LGB algorithm[11] is covered. Section 5.4 deals with the vector quantization in subbands.

5.2 Vector Quantization

Vector quantization, also known as block quantization, is a direct extension of scalar quantization. The basic principle here is to map an N -dimensional input vector x onto another N -dimensional vector y, i.e.,

$$
\begin{equation*}
y=V Q(x) \tag{5.1}
\end{equation*}
$$

where $V Q($.$) is the vector quantization operator. Reconstruction vector, y_{i}$, takes its value from one of the finite set of vectors

$$
\begin{equation*}
Y=\left\{y_{i}, \quad i=1, \ldots \ldots \ldots, L\right\} . \tag{5.2}
\end{equation*}
$$

The set Y is referred as the codebook containing the L code-vectors. For an L-length codebook the bits per code vector is given by

$$
\begin{equation*}
R=\frac{1}{N} \log _{2} L \tag{5.3}
\end{equation*}
$$

The vector quantization procedure can be described as follows. First, the Ndimensional vector x is constructed from the input signal. Next, the best fitting code

Figure 5.1 Illustration of clusters and the vector quantization for two-dimensional space.
vector y_{i} minimizing the distortion measure is searched in the codebook. This can be expressed as

$$
\begin{equation*}
V Q(x)=y_{i}, \Longleftrightarrow d\left(x, y_{i}\right) \leq d\left(x, y_{j}\right) \quad j=1, \ldots \ldots, L \tag{5.4}
\end{equation*}
$$

where $d(x, y)$ represents the distortion measure or distance measure between the vectors x and y. The vector quantization process is shown in Figure 5.1 where two-dimensional space is divided into cells. The shape of each cell is uniquely determined by the location of the code vectors and the distortion measure.

5.3 Codebook Design

A codebook of size L divides the N-dimensional space into cells $\left\{C_{i}\right\}, i=1, \ldots, L$ associating each cell C_{i} a code vector y_{i}. The vector quantizer assigns the code vector y_{i} to the vector x if x falls into C_{i}. The optimal quantizer is found by minimizing the distortion over all possible L-level quantizers. The overall average distortion of
a vector quantizer is defined as[12]

$$
\begin{equation*}
D=\sum_{i=1}^{L} P\left(x \in C_{i}\right) \int_{x \in C_{i}} d\left(x, y_{i}\right) p(x) d x \tag{5.5}
\end{equation*}
$$

where $P\left(x \in C_{i}\right)$ is the probability that x lies inside C_{i} and, $p(x)$ is the multidimensional probability density function (pdf) of x. The integral is taken over all components of x. However, in practice the pdf is usually unknown. In that case we use a training set, consisting of a large number of vectors $V_{n}, n=1,2, \ldots, M$. The codebook is designed using an iterative algorithm known as the K-means algorithm. Since this algorithm was first proposed by Linde, Gray and Buzo it is called as the LGB algorithm[11].

5.3.1 The LGB Algorithm

The basic steps of LGB algorithm is implemented as follows[11]:

- 1. Initialization: Iteration index is set to $\mathrm{m}=0$. An initial codebook size L with the codebook vectors $y_{i}^{0}, i=1, \ldots, M$ is chosen.
- 2. Clustering: The training vectors $V_{n}, i=1, \ldots, M$ are classified into the clusters C_{i} by using the nearest neighbor rule.
- 3. Updating: New codebook vector y_{i}^{m+1} is calculated for each cell C_{i}^{m} by calculating the centroid of the training vectors classified to that cell:

$$
\begin{equation*}
y_{i}^{m+1}=\operatorname{cent}\left(C_{i}^{m}\right)=\frac{1}{M} \sum_{V_{n} \in C_{i}} V_{n}, \quad i=i, \ldots, L, \tag{5.6}
\end{equation*}
$$

where M_{i} is the number of training vectors classified to cell C_{i}.

- 4. Stop: New average distortion is calculated and if the distortion is below the predetermined threshold then the iteration is slopped. Otherwise iteration index is increased by 1 and the clustering operation is performed.

There are several ways to choose the initial codebook for the LGB algorithm. In our approach, we used splitting technique which works as follows. The initial codebook contains only one vector which is the centroid of all training sequence. The second codebook with codebook size $L=2$ is created by adding and subtracting a perturbance (a splitting vector) to the initial codebook. After optimizing this codebook, the splitting technique is repeated for larger size codebooks, i.e., $L=4,8$, $16, \ldots, 512$ etc. In our experiment $L=512$ is found as the optimal codebook size with respect to overall distortion and, iteration is stopped.

5.4 Vector Quantization In Subbands

As explained earlier in section 5.3, the LGB algorithm is used in this study to generate the codebooks. First, the MCFD signal is decomposed into 7 band using dyadic tree structure. After studying the subband signals, some of the subbands are found insignificient and entirely discarded. The remaining subbands excluding LH band are adaptively vector quantized based on the motion vectors[13]. The LH band is statistically modeled and the model parameters are vector quantized.

The 2-D 7 band dyadic tree structure, given in Figure 4.11, is used in this study. The filter used is the 8-tap separable filter[14]. Alter discarding the insignificiant bands, namely LLHH, HL and HH bands, the remaining bands are treated as follows.

5.4.1 The Adaptive Vector Quantization Based on the Motion Vectors

In this study, we employed adaptive vector quantization based on the block motion vectors (MBAVQ) to quantize LLLL, LLLH and LLHL bands as suggested in Ref [13].

In our approach, the motion compensation is based on block matching algorithm using brute-force method. The block size is set, to 8×8 and the maximum displacement in two directions, horizontally and vertically, is set to ∓ 6 pixels.

LLLL	LLLH	
LLHL	LLHH (DISCARDED)	(STATISTICAII_Y MODELED)
HI		
(DISCARDED)		
(DISCARDED)		

Figure 5.2 2-D subbands used in video codec
Each 8×8 block in full frame resolution corresponds to a 4×4 block in 4 subbands. Since the LL band is further decomposed into 4 subbands as seen in Figure 5.2, each 4×4 block in LL band corresponds to a 2×2 block in these subbands. The 4×4 and 2×2 blocks correspond to a block motion vector of size 8×8 in full frame resolution. In his thesis, Mutlag stated that there is a relation between motion vector magnitude and the MCFD variance of the corresponding block[13]. In general, large magnitude motion vectors represent high variance blocks in the MCFD signal while blocks with small motion vectors have small variances. By using this relation the codebooks are created depending on the motion vector magnitude. The magnitude of motion vector \hat{m} is given by

$$
\begin{equation*}
\hat{m}=\max (|i|,|j|) \tag{5.7}
\end{equation*}
$$

where i and j are the horizontal and vertical displacements respectively. The block motion vectors are classified into 3 groups depending on their motion magnitudes:

- Group 1: $\hat{m}=1$ or 2
- Group 2: $\hat{m}=3$ or 4
- Group 3: $\hat{m}=5$ or 6 .

Codebooks are generated using the sulbblocks corresponding to these groups. As a result, 9 codebooks are generated for the LLLL, LLLH and LLHL bands using the LGB algorithm.

For the LLLL band, the codebook contains 512 vectors in which each vector is in dimension 4. For the LLLH and LLHL bands the codebook size is 512 and each codeword is in dimension 16. For the latter case, 4 motion vectors are averaged and these motion vectors are used to create the codebooks.

5.4.2 Vector Quantization for the AR(1) Model Parameters

As mentioned earlier, the LH band in $\mathrm{AR}(1)$ modeled and model parameters are vector quantized and encoded for transmission. The model parameters, $\rho_{h}, \rho_{v}, \sigma^{2}$, and η, are vector quantized as follows: for means and variances two 256 length codebooks in which each codeword is in dimension 16 are generated. For the prediction coefficients, the codebook size is set to 512 where each codeword is also in dimension 16.

In conclusion, 12 codebooks are generated to vector quantize the subbands and model parameters.

CHAPTER 6

EXPERIMENTAL STUDIES

The performance of the proposed low bit-rate hybrid subband codec was simulated. The first forty frames of monochrome video test sequences CINDY, MONO, DUO, QUARTET and TOPGUN are used. The video frames are 512×100 pixel size except 240×352 for TOPGUN sequence, and 8 bits/pixel.

Simulations are carried out in the following manner. First, the MCFD signals are split into 7 subbands using 2-D dyadic tree structure and separable 8 -tap filters[14]. Next, the statistical modeling of some subband signals are studied. The last step, the quantization, is carried out after modeling those subbands.

6.1 Subband Decomposition of the MCFD Signals

In this study, 7 band 2-D dyadic tree structure is employed for decomposition of the MCFD signal. This analysis/synthesis subband tree structure is given in Figure 4.11. The filters employed are 8 -tap separable filters. The frequency response of these filters are given in Figure 6.1. After studying the subband signals, LLHH, HL, HH bands are found insignificiant and completely discarded.

6.2 Statistical Modeling In Subbands

The remaining subbands are studied for statistical modeling using 2-D $\mathrm{AR}(1)$ technique. The LH band is statistically modeled. The model parameters are quantized and sent to the receiver side for the reconstruction of LH band. The modeling procedure was explained in detail in Chapters 3 and 5.

Frame by frame variation of subband variances for LH band before and after 2-D AR(1) modeling of the test sequence "CINDY" was displayed in Figure 3.3. As

Figure 6.1 Frequency responses of the 8 tap separable low-pass and high-pass filters. seen from the figure, modeling brings some error, but this error can be tolerated for the low bit-rate coding applications.

6.3 Quantization

Vector quantization is used to encode the subbands. The Motion Based Adaptive Vector Quantization (MBAVQ) is used for the subbands which are not modeled. Codebooks are generated using the LGB algorithm. For the statistically modeled LH band, the model parameters for each 4×4 blocks are quantized using the classical VQ algorithm. The more information about quantization was given in chapter 5 .

The peak-to-peak signal to noise ratio is used as the objective performance criterion and defined as

$$
\begin{equation*}
S N R_{p p}(d B)=10 \log _{10}\left(\frac{255^{2}}{E\left\{(X(i, j)-\hat{X}(i, j))^{2}\right\}}\right) \tag{6.1}
\end{equation*}
$$

Figure 6.2 Frame by frame variation of the average $S N R_{p p}$ values in dB for the test sequence "CINDY".
where the denominator term is the mean square coding error.
Frame by frame variation of peak-to peak SNR values before and after quantization for the test sequence "CINDY" is given in Figure 6.2 along with the average $S N R_{p p}(d B)$ values for the first forty frames. Figure 6.2 also shows the $S N R_{p p}(d B)$ values for the 10 band case which is used for comparison.

The total bit-rate for the proposed hybrid video codec can be expressed as

$$
\begin{equation*}
B=B_{M}+B_{S B}+B_{A R(1)} \tag{6.2}
\end{equation*}
$$

where

- $B_{M}=$ average bits/pixel for motion information.
- $B_{S B}=$ average bits/pixel for the subband signals which are not modeled.
- $B_{A R(1)}=$ average bits/pixel for the $A R(1)$ modeled subbands.

The measure of information is expressed by the entropy. The first order entropy is defined as

$$
\begin{equation*}
H=-\sum_{i} p(i) \log _{2} p(i) \tag{6.3}
\end{equation*}
$$

where $p(i)$ is the probability of the source symbol i. The frame by frame variation of entropy values for the first forty frames of test sequence "CINDY" is given in Figure 6.3 along with the average entropy values.

The performance of the proposed algorithm was also tested for the video sequences which are not a part of the training sequence. "TOPGUN" which is not a part of training sequence, gave the superior $S N R$ results for the proposed algorithm compared to the other algorithms used for comparison. Figures 6.4 and 6.5 display the $S N R_{p p}(d B)$ and entropy values of the tested 100 frames of the video sequence "TOPGUN". These figures also show the performance of the algorithms used for comparison.

25th and 26th frames of the test sequence "CINDY" are given in Figures 6.66.10 along with the MCFD frames for coded and original cases.

Figure 6.3 Frame by frame variation of the first order entropy values for the test sequence "CINDY".

Figure 6.4 Frame by frame variation of the average $S N R_{p p}$ values in $d B$ for the test sequence "TOPGUN".

Figure 6.5 Frame by frame variation of the first order entropy values for the test sequence "TOPGUN".

Figure 6.625 th frame of the test sequence "CINDY"

Pigure 6.7 The direct difference between the frames 25 and 26 of test sequence "CINDY"

Figure 6.826 th frames of the test sequence "CINDY", the original (top) and coded (bottom) $\left(S N R_{p p}=34.1, b p p=0.24\right)$

Figure 6.9 26th MCFD frames of "CINDY", the original (top) and coded (bottom) $\left(S N R_{p p}=34.1, b p p=0.24\right)$.

Figure 6.10 LH band of the 26th MCFD frames of "CINDY", the original (top) and statistically modeled (bottom).

CHAPTER 7

CONCLUSIONS AND DISCUSSIONS

A hybrid low bit-rate video codec is proposed in this study. The proposed technique achieves a good objective and visual performance at the low bit-rates $\mathrm{B} \leq 0.30$ bits/pixel with the $S N R_{p p} 30-36 \mathrm{~dB}$ range.

It is well known that the training sequence dependency of vector quantization is a very important problem. Furthermore, the modeling approach used introduces some error due to stationarity assumption. In spite of these drawbacks, the statistical modeling is a viable approach for the low-correlated MCFD signal subbands and, the study to improve and develop better modeling techniques is an open field. In conclusion, the future work is to find better modeling approaches to have better performance and visual quality for low bit-rate video coding applications.

APPENDIX A

Simulation Program for the 7 Band Dyadic Tree Structure

```
c SOURCE CODE FOR THE PROPOSED ADAPTIVE SUBBAND VIDEO CODING WITH
c MOTIDN COMPENSATION using MBAVQ
c nx Row size of the picture
c ny Column size of the picture
c frame1 Previous Frame
c frame2 Current Frame
c pics Search frame from the previous frame
c recon Prediction of the current frame with motion compensation
c ibs Block size (8 is used)
c ip Assumed maximum displacement (Max of 6)
c frm2msk ibs*ibs size mask of the current frame to be
c motion compensated
c frmimsk ibs*ibs size mask of the previous frame in the
                same geometrical position (used for motion detection)
c err1 Motion Compensated Frame Difference Signal
c searg Search Region (ibs+ip)*(ibs+ip)
c mask Same as frm2msk
```

```
parameter(nx=400,ny=512)
        integer motionv(50,64),ifld
        common /motionv/ motionv
        common /ifld/ ifld
        common /ifl/ ifl
        real outimg(400,512)
        real frame1(nx,ny), frame2(nx,ny),pics(416,528)
        real recon2(nx,ny),frmimsk(8,8),frm2msk(8,8),\operatorname{err1}(nx,ny)
real recon3(400,512), errtemp (400,512)
        integer ifrm1(nx,ny),ifrm2(nx,ny)
        real dirdif(400,512)
        real b1v1(512,4),b1v2(512,4),b1v3(512,4)
        real b2v1(512,16),b2v2(512,16),b2v3(512,16)
        real b3v1(512,16),b3v2(512,16),b3v3(512,16)
        real b4v1 (256,16),b4v2(256,16),b4v3(512,16),b4v4(512,16)
```

 common /entropy1/entropy1
 common /entropy \(2 /\) entropy 2
    ```
    common /entropy3/entropy3
    common/arbitrate/arbitrate
    common /vqcodebooki/ b1v1,b1v2,b1v3
    common /vqcodebook2/ b2v1,b2v2,b2v3
    common /vqcodebook3/ b3v1,b3v2,b3v3
    common/vqcodebook4/ b4v1,b4v2,b4v3,b4v4
character*1 pim(nx,ny)
character*1 pim1(nx,ny)
    integer mcvector (50,64)
    common/AAA/ searg(24,24),mask (8,8)
    print*, 'READING CODEBOOKS'
    open (15,file='B1NEW/b1v1.12')
    do 10 i=1,512
        read(15,*) (bIv1(i,j),j=1,4)
10 continue
    close(15)
    open (16,file='B1NEW/b1v2.34')
    do 11 i=1,512
        read(16,*) (b1v2(i,j), j=1,4)
11 continue
    close(16)
    open (17,file='B1NEW/b1v3.56')
    do 12 i=1,512
        read(17,*)(b1v3(i,j),j=1,4)
12 continue
    close(17)
    open (20,file='QUANTIZER/b2v1.12')
    do 1110 i=1,512
        read(20,*)(b2vi(i,j),j=1,16)
1110 continue
    close(20)
    open (21,file='QUANTIZER/b2v2.34')
    do }1111i=1,51
        read(21,*) (b2v2(i,j),j=1,16)
```

```
1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 1 5
1117 continue
1 1 1 8
    open (27,file='QUANTIZER/b4v4.var')
    do 1117 i=1,256
        read(27,*) (b4v2(i,j),j=1,16)
    close(27)
    open (28,file='QUANTIZER/b4v4.rh')
    do }1118\mathrm{ i=1,512
        read(28,*) (b4v3(i,j),j=1,16)
        continue
    close(28)
```

```
            open (29,file='QUANTIZER/b4v4.rv')
            do 1119 i=1,512
            read(29,*) (b4v4(i,j),j=1,16)
            continue
        close(29)
        print*, 'CODEBOOKS ARE READ'
c mfld: final field to be read
c ifld: starting field number
            mfld =34
            ifld =33
                call read_frm(ifld,pim)
                ifl=0
C**************************************
c Frame One is read into framel array
c*************************************
            do 100 i=1,nx
            do 100 j=1,ny
            ifrmi(i,j)=ichar(pim(i,j))
            if(ifrm1(i,j).lt.0) ifrm1(i,j)=256+ifrm1(i,j)
            framei(i,j)=float(ifrmi(i,j))
    100 continue
c call write_in_frm(ifld,frame1)
c call write_out_frm(ifld,frame1)
            write(35,*) 'Original Image'
c The loop to process mfld number
c of frames begins here
    6000 ifld = ifld+1
                ifl=ifl+1
            write(*,*) 'Frame Number = ', ifld,ifl
            write(35,*) 'Frame Number =', ifld
            call read_frm(ifld,pim1)
c************************************
c Current frame is read into frame2
```

do 110 i=1,nx
do 110 j=1,ny
ifrm2(i,j)=ichar(pim1(i,j))
if(ifrm2(i,j).lt.0) ifrm2(i,j)=256+ifrm2(i,j)
frame2(i,j)=float(ifrm2(i,j))
110
continue
c
call write_in_frm(ifld,frame2)
C************************************
c Auto-Correlation, Mean, Variance
c are calculated in
c the subroutine autocor
C*********************************
c print *,'Frame k'
write(35,*) 'Frame k'
call autocor(frame1,nx,ny)
c print *,'Frame k+1'
write(35,*) 'Frame K+1'
call autocor(frame2,nx,ny)
do 2000 i=1,400
do 2000 j=1,512
dirdif(i,j)=frame2(i,j)-frame1(i,j)
2000
continue
c write(35,*) 'Direct Difference Frame'
call autocor2(dirdif,nx,ny)

```
c ip: displacement
\[
i p=6
\]
c ibs: the mask block size
\(i b s=8\)
c imthd: Enter 1 for Brute-force method and 2 for Orthogonal src imthd=1
c imdetect: Enter 1 if motion-detection is required'
imdetect=1
```

c************************************
c Search Array pics is Initialized
C**************************************
do 101 i=1,nx+2*ip
do 101 j=1,ny+2*ip
pics(i,j)=0.0
101 continue
C**
c Search Array is generated from the previous frame.
c Borders are filled with first(or last) ip
c rows(or clums) of the previous frame
c**
do 155 i=1,nx
do 155 j=1,ny
pics(i+ip,j+ip)=frame1(i,j)
155 continue
do 111 i=1,ip
do 111 j=1,ny
pics(i,j)=frame1(i,j)
pics(i+nx+ip,j)=frame1(i+nx-ip,j)
111 continue
do 112 i=1,nx
do 112 j=1,ip
pics(i,j)=frame1(i,j)
pics(i,j+ny+ip)=frame1(i,j+ny-ip)
112 continue
C**
c Prediction of the Current frame is Initialized
C***

```
```

 do 240 i4=1,nx
    ```
            do 240 i4=1,nx
            do 240 j4=1,ny
            do 240 j4=1,ny
                        recon2(i4,j4)=0.0
                        recon2(i4,j4)=0.0
    240
        continue
c*****************************************************
c The current frame is devided into 8*8 blocks and
c motion compensated. mcount keeps count of number
c of moving blocks.
c********************************************************
```

```
mcount=0
            do 200 i=1,nx/ibs
    do 200 j=1,ny/ibs
            iact=(i-1)*ibs+1
        jact=(j-1)*ibs+1
if (imdetect .eq. 1) then
do 401 k=1,ibs
        do 401 l=1,ibs
        frm1msk(k,l)=frame1(iact-1+k,jact-1+1)
frm2msk(k,l)=frame2(iact-1+k,jact-1+1)
4 0 1 ~ c o n t i n u e
c*********************************************************
c First the motion is detected
c************************************************************
call motiondetect(frm1msk,frm2msk,ibs,indx)
    if (indx .eq. 1) then
        mcount=mcount+1
        do 410 i1=1,ibs+ip*2
    do 410 j1=1,ibs+ip*2
    searg(i1,j1)=pics(i1+iact-1+ip-ip,j1+jact-1+ip-ip)
4 1 0 ~ c o n t i n u e
    do 420 i2=1,ibs
    do 420 j2=1,ibs
    mask(i2,j2)=frame2(iact-1+i2,jact-1+j2)
4 2 0 ~ c o n t i n u e ~
    if motion is detected, it is estimated and predicted
*******************************************************
    call matct(ip,ibs,imthd,n,nn,Num)
            motionv(i,j)=max(abs(n-7),abs(nn-7))
            mcvector(i,j)=Num
            do 430 i3=1,ibs
            do 430 j3=1,ibs
            recon2(iact-1+i3.jact-1+j3)=pics(iact+ip-1+(n-ip)-1+i3,
        + jact+ip-1+(nn-ip)-1+j3)
    4 3 0 ~ c o n t i n u e
            else
            motionv(i,j)=0
```

```
    mcvector (i,j)=0
C
        write(55,*) mcvector(i,j)
        do 402 k1=1,ibs
        do 402 11=1,ibs
        recon2(iact-1+k1,jact-1+11)=frame1(iact-1+k1,jact-1+11)
    402
    continue
        endif
    else
        do 210 i1=1,ibstip*2
do 210 j1=1,ibs+ip*2
        searg(i1,j1)=pics(i1+iact-1+ip-ip,j1+jact-1+ip-ip)
    210 continue
        do 220 i2=1,ibs
        do 220 j2=1,ibs
        mask(i2,j2)=frame2(iact-1+i2,jact-1+j2)
    220 continue
        call matct(ip,ibs,imthd,n,nn,Num)
            do 230 i3=1,ibs
            do 230 j3=1,ibs
            recon2(iact-1+i3,jact-1+j3)=pics(iact+ip-1+(n-ip)-1+i3,
        + jact+ip-1+(nn-ip)-1+j3)
    230 continue
endif
c write(55,*) motionv(i,j)
    200 continue
```

MCFD signal is generated C****************************
do $650 \quad i=1,400$
do $650 \quad j=1,512$
650
$\operatorname{recon} 3(i, j)=0.0$
do $700 \quad i=1,400$
do $700 j=1,512$

700

```
        recon3(i,j)=recon2(i,j)
```

 do \(599 \mathrm{i}=2, \mathrm{nx}-1\)
 do \(600 j=2, n y-1\)
 \(\operatorname{recon} 3(i, j)=(1.0 / 16.0) *(\operatorname{recon} 2(i-1, j-1)+2.0 * \operatorname{recon} 2(i-1, j)\)
 \(+\operatorname{recon} 2(i-1, j+1)+2.0 * \operatorname{recon} 2(i, j-1)+4.0 * \operatorname{recon} 2(i, j)\)
 \(\# \quad+r e c o n 2(1-1, j+1)+2.0 * r e c o n 2(i, j-1)+4.0 * r e c o n 2(i, j)\)
 $\# \quad+2.0 * r e c o n 2(i, j+1)+r e c o n 2(i+1, j-1)+2.0 * r e c o n 2(i+1, j)$
\# +recon2 $(i+1, j+1))$
continue
continue
do $300 \quad i=1, n x$
do $300 \mathrm{j}=1$, ny
err=(err+abs(frame2(i,j)-recon3(i,j)))
$\operatorname{err1}(i, j)=f r a m e 2(i, j)-r e c o n 3(i, j)$
continue
print *,'the value of err=', err
write $(35, *)$ 'the value of err=',err
if (imdetect .eq. 1) then
print *,'Number of blocks motion detected $=$ ', mcount
write ($35, *$)'Number of blocks motion detected $=$ ', mcount
endif

```
            print *,'Error Signal'
            write(35,*) 'Error Signal'
            call autocor(err1,nx,ny)
            print *,'Predicted singal'
            write(35,*) 'Predicted signal'
            call autocor(recon2,nx,ny)
            do 350 i = 1,nx
            do 350 j = 1,ny
            errtemp(i,j) = \operatorname{err1(i,j)}
            outimg(i,j)=0.0
            continue
```

 call bitrates2(mcvector, entropy, 50, 64)
 call writeimgs(err1, 400,512,'diff25')
 *****CODING OF MCFD SIGNAL IS CARRIED OUT HERE******

```
    call subband(err1,outirg,400,512)
print *,'Error Signal after the vector quantization'
write(35,*)'Error Signal after the vector quantization'
call autocor1(outimg,nx,ny)
vecmean = 0.0
vecvar = 0.0
do 351 i = 1,nx
do 351 j = 1,ny
vecmean = vecmean + (errtemp(i,j) - outimg(i,j))
vecvar = vecvar + (errtemp(i,j) - outimg(i,j))**2
351
continue
vecmean = vecmean/(nx*ny)
vecvar = vecvar/(nx*ny) - vecmean**2
write(35,*) 'Variance of quantization error',vecvar
Quantized MCFD signal is added to the motion compensated
prediction of the current frame and put into frame1 and
this becomes the previous frame for the next current frame
*************************************************************
    xmse = 0.0
    do 1000 i=1,nx
    do }1000j=1,n
        framet(i,j)=recon3(i,j)+outimg(i,j)
        xmse = xmse + (frame2(i,j)-frame1(i,j))**2
    continue
    call write_out_fr(framel)
c call write_out_frm(ifld,frame1)
    xmse = xmse/(nx*ny)
    snr = 10* log10(255**2/xmse)
    write(*,*) 'SNR = ',snr
    write(35,*) 'SNR = ',snr
    write(100,*) ifld ,snr
    write(*,*) 'Mean Square Error after Vector
+ Quantization=',xmse
    write(36,*) ifld,xmse
    write(*,*) 'mean square error=',xmse
```

```
tbitllll=entropy 1/ (400*512)
tbitlllh=entropy2/(400*512)
tbitllhl=entropy 3/(400*512)
tbitlh=arbitrate/(400*512)
xmbitrate = entropy/64.0
tbitsub= (entropy1+entropy2+entropy3+arbitrate)/(400*512)
tbitrate=xmbitrate+tbitsub
write(200,*) xmbitrate
write(201,*) tbitsub
write(35,*) 'total bitrate=',tbitrate
write(202,*) tbitrate
write(*,*) 'total bitrate=',tbitrate
**********************************************
*if all the frames are not processed go back
***********************************************
    if(ifld.lt.mfld) go to 6000
    stop
        end
**********************
* subroutine matct
******氺水***********
    subroutine matct(ip,ibs,imthd, n, nn,Num)
common /AAA/ searg (24,24),mask (8,8)
real test(13,13)
do 50 i=1,2*ip+1
            do 50 j=1,2*ip+1
            test(i,j)=0.0
            do 50 ii=1,ibs
            do 50 jj=1,ibs
            test(i,j)=abs(mask(ii,jj)-searg(i+ii-1,j+jj-i))+test(i,j)
    50 continue
```

```
                if (imthd .eq. 1 ) then
            tmin=1.0e20
                do }100i=1,2*ip+
            do 100 k=1,2*ip+1
                if(test(i,k).lt. tmin) then
            tmin=test(i,k)
                n=i
            nn=k
                endif
    100
                continue
else
call ortho(test,ip,ibs,icent,jcent)
n=icent
nn=jcent
endif
c
c Generates anumber between 1 & 169, The number idicates
c the motion information
c
c write(*,*) Num,n,nn
    return
end
subroutine ortho(test,ip,ibs,icent,jcent)
*********************************************
* Independent Orthognal Search Technique *
```



```
real test(ip*2+1,ip*2+1)
icent=ip+1
jcent=ip+1
I=ip/2.+.5
istep=0
```

```
10 if ((test(icent,jcent) .It. test(icent,jcent-l)) .and.
    + (test(icent,jcent).lt. test(icent,jcent+l))) then
        icent=icent
    jcent=jcent
else if ((test(icent,jcent-1) .lt. test(icent,jcent)) .and.
    + (test(icent,jcent-1).lt. test(icent,jcent+1))) then
        icent=icent
    jcent=jcent-l
else if ((test(icent,jcent+l) .lt. test(icent,jcent)) .and.
    + (test(icent,jcent+l) .lt. test(icent,jcent-l))) then
                        icent=icent
        jcent=jcent+l
        endif
    istep=istep+1
if ((test(icent,jcent) .lt. test(icent-l,jcent)) .and.
    + (test(icent,jcent) .lt. test(icent+l,jcent))) then
                icent=icent
    jcent=jcent
else if ((test(icent-l,jcent) .lt. test(icent,jcent)) .and.
    + (test(icent-l,jcent).lt. test(icent+l,jcent))) then
                icent=icent-1
    jcent=jcent
else if ((test(icent+l,jcent).lt. test(icent,jcent)) .and.
    + (test(icent+l,jcent).lt. test(icent-l,jcent))) then
                icent=icent+1
    jcent=jcent
endif
istep=istep+1
if (1 .ne. 1) then
    l=(1/2.0+.5)
    go to }1
            endif
return
end
        subroutine motiondetect(frm1msk,frm2msk,ibs,indx)
```

```
*********************************************************
* Subroutine calculates if motion is present in the *
* (ibs*ibs) subblock *
```


real frm1msk(ibs,ibs),frm2msk(ibs,ibs)

```
kount=0
do 10 i=1,ibs
    do 10 j=1,ibs
    thrsh=abs(frm1msk(i,j)-frm2msk(i,j))
if (thrsh .gt. 3) kount=kount+1
    1 0 ~ c o n t i n u e
if (kount .gt. 10) then
indx=1
            else
indx=0
endif
c print *,'index',indx
return
end
```

$* *$
This Subroutine calculates the prediction coefficients,
*means and variances of each ibx*iby block and forms *
*the $A R(1)$ model of corresponding subband frame *

subroutine ar1(fror, nx, ny, armod,ibx,iby)
character*1 pimm(200*256)
real fror(1:nx,1:ny)
real autoc(12800)
real autoci(12800)
real uframe1 (-12:212,-12:268)
real rmean1(3200), fror0(-10:210,-10:266)
real framar1(1:200,1:256)
real $\mathrm{rh}(3200), r v(3200), \operatorname{var}(3200)$
real armod(1:200,1:256)
real fror $1(-5: 205,-5: 261)$
real mean,sigma
integer hist41(512)
integer hist42(512)
integer hist43(512)
integer hist44(512)
common/arbitrate/arbitrate

```
    real yy(1:16)
    common /yy/yy
    do 13 i=-5 ,205
    do 13 j=-5,261
    frori(i,j)=0.0
13 continue
    do 44 i=1,3200
    rmean1(i)=0.0
    rh(i) =0.0
    rv(i)=0.0
    var(i)=0.0
4 4 ~ c o n t i n u e ~
c write(1,*) ((\operatorname{fror}(i,j),j=1,256),i=1,200)
    do 39 i=1,200
    do 39 j=1,256
    fror1(i,j)=fror(i,j)
    framar1(i,j)=0.0
    armod(i,j)=0.0
39
    continue
* IN FOLIOWTNG IOOP ZFRD MEAN FRAME OPTATNED*
```



```
    kk=0
    do 10 i=0,nx-ibx,ibx
    do 11 j=0,ny-iby,iby
        ii=i
        jj=j
        kk=kk+1
        rmn=0.0
        do 12 k=ii+1,ii+ibx
        do 12 l=jj+1,jj+iby
        rmn=rmn+fror1(k,l)
12 continue
        rmean1(kk)=rmn/(ibx*iby)
    do 14 m=ii+1,ii+ibx
    do 14 n=jj+1,jj+iby
```

```
    fror0(m,n)=fror1(m,n)-rmean1(kk)
1 4
    continue
11 continue
10 continue
    do 50 m=-12,nx+12
    do 50 n=-12,ny+12
    uframe1(m,n)=0.0
5 0 ~ c o n t i n u e
    mm=0
*IN FOLLOWING LOOP ,ZERO MEAN MCFD FRAME MODELED BY *
*USING THE AR1 MODEL PARAMETERS. FIRST, VARIANCE, *
*AUTOCORRELATION , RH,RV OF EACH ibx*iby BLOCKS ARE *
*CALCULATED
    do 511 i=0, nx-ibx,ibx
    do 512 j=0, ny-iby,iby
    ii=i
    jj=j
    mm=mm+1
    rautoc=0.0
    do 71 k=ii+1,ii+ibx
    autoc(k)=0.0
    do 72 l=jj+1, jj+iby-1
    autoc(k)=autoc(k)+fror0(k,l)*fror0(k,l+1)
72 continue
    rautoc=rautoc+autoc(k)
71 continue
    rautoc = rautoc/(ibx*iby)
    rautoc1=0.0
    do 23 l=jj+1, jj+iby
    autoci(1)=0.0
    do 24 k=ii+1, ii+ibx-1
    autoci(I)=autoc1(I)+fror0(k,I)*fror0(k+1,I)
24 continue
    rautoc1=rautoc1+autoc1(1)
2 3
    continue
```

```
    rautoc1 = rautoc1/(ibx*iby)
    var1=0.0
    do 25 k=ii+1, ii+ibx
    do 26 I=jj+1, jj+iby
    var1=var1+fror0(k,1)*\operatorname{rror}0(k,1)
26
    continue
    continue
    var(mm) = var1/(ibx*iby)
    rh(mm) = rautoc/var(mm)
    rv(mm)= rautoc1/var(mm)
C
    write(50,*) rh(mm),rv(mm)
512 continue
5 1 1 ~ c o n t i n u e
* QUANTIZATION OF THE AR1 MODEL PARAMETERS*
* ARE CARIED OUT HERE
```



```
print*, 'quantizing ar1 parameters'
call vec_quant4(rmean1,1,hist41,256)
call vbitrates4(hist41,bs1,256)
call vec_quant4(var,2,hist42,256)
call vbitrates4(hist42,bs2,256)
call vec_quant4(rh,3,hist43,512)
call vbitrates4(hist43,bs3,512)
call vec_quant4(rv,4,hist44,512)
call vbitrates4(hist44,bs4,512)
arbitrate=bs1+bs2+bs3+bs4
write(*,*) 'BITRATE FOR AR1=', arbitrate
c
    write(100,*) (hist41(i),i=1, 512)
    N=16
```

```
        sigma=1.0
        mean=0.0
        nu=0
        call gauss(N,mean,sigma,iseed)
        do 518 i=0, nx-ibx,ibx
        do 518 j=0, ny-iby,iby
        ii=i
        jj=j
        nu=nu+1
        varno=(1.0-rh(nu)**2)*(1.0-rv(nu)**2)*var(nu)
        sigma1=sqrt(varno)
        nn=0
        do 27 k=ii+1, ii+ibx
        do 28 l=jj+1, jj+iby
        nn=nn+1
        uframe1(k,1)=rh(nu)*uframe1(k,1-1)+rv(nu)*uframe1(k-1,1)
    + - rh(nu)*rv(nu)*uframe1(k-1,l-1)+sigma1*yy(nn)
    continue
    continue
2 7
*************************************************
*MEANS ARE ADDED TO THE AR1 MODELED MCFD FRAME*
**************************************************
    do 29 k=ii+1, ii+ibx
    do 30 l=jj+1, jj+iby
    framar1(k, l)=uframe1(k,l)+rmean1(nu)
    uframe1(k,l)=0.0
    continue
29 continue
5 1 8 ~ c o n t i n u e
            do 510 i=1,nx
            do 510 j=1,ny
            armod(i,j)=framar1(i,j)
510
            continue
c open(99,file='ard25',access='direct',form='unformatted'
c + ,recl=nx*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(armod}(i,j))+12
c if(ip.gt.255) ip=255
```

```
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=1) (pimm(j),j=1,nx*ny)
c close(99)
        write(*,*) 'OKAY'
    return
    end
*****************************
* GAUSSIAN NOISE GENERATOR *
*****************************
    subroutine gauss(N,mean,sigma,iseed)
    real x(1:16),mean, yy(1:16)
    common /yy/yy
    do 1 i=1,N
    x(i)=gran(mean,sigma,iseed)
    yy(i)=x(i)
1 continue
    return
    end
****************************************
    function gran(mean,sigma,iseed)
    real mean
    u=0
    do 1 i=1,12
    u=u+ran(iseed)
1 continue
    gran=sigma*(u-6) +mean
    return
    end
C***************************************
    subroutine write_out_fr(frm)
    real frm(400,512)
    real frm1(1:512,1:512)
    character*1 image(512*512)
    common /ifl/ ifl
    parameter(nx=400,ny=512)
    open(21,file='fr25', access='direct',form=
    & 'unformatted', recl=512*512)
```

do $300 \quad i=0,513$

$$
\text { do } 300 j=0,513
$$

$$
\operatorname{frm} 1(i, j)=0.0
$$

c do $499 \quad i=3, n x-2$
c \# +frm $(i+2, j+2))$
c $\#+4.0 *(\operatorname{frm}(i-2, j-1)+\operatorname{frm}(i-2, j+1)+\operatorname{frm}(i-1, j-2)$
c \# +frm $(i-1, j+2))$
c \# $\quad+4.0 *(\operatorname{frm}(i+1, j-2)+\operatorname{frm}(i+1, j+2)+\operatorname{frm}(i+2, j-1)$
$\mathrm{c} \quad \#+\operatorname{frm}(i+2, j+1))$
c \# +6.0* $(\operatorname{frm}(i-2, j)+\operatorname{frm}(i, j-2)+\operatorname{frm}(i, j+2)$
c $\#+\operatorname{frm}(i+2, j))$
c $\#+16.0 *(\operatorname{frm}(i-1, j-1)+\operatorname{frm}(i-1, j+1)$
$c \quad \#+\operatorname{frm}(i+1, j-1)+\operatorname{frm}(i+1, j+1))$
c $\quad \#+24.0 *(\operatorname{frm}(i-1, j)+f r m(i, j-1)+\operatorname{frm}(i, j+1)$
$c \quad \#+\operatorname{frm}(i+1, j))$
c $\quad \#+36.0 * \operatorname{frm}(i, j))+(1 . / 256). * \operatorname{frm}(i+2, j-2)$
c500 continue
c499 continue
do $10 \quad i=1,512$
do $10 \quad j=1,512$
ip=int $(\operatorname{frm} 1(i, j)+.5)$
if(ip.gt.255) ip=255
if(ip.lt.0) ip=0
if(ip.gt.127) ip=ip-256
image $((i-1) * 512+j)=\operatorname{char}(i p)$
10
continue
write(21,rec=ifl)(image(j), $j=1,512 * 512)$
close(21)
return
end
subroutine write_out_frm(ifld,frm)
real $\operatorname{frm}(400,512)$
real pici(1:512,1:512)
character*1 image (512*512)
open(21,file='cindy.out', access='direct',form=
\& 'unformatted', recl $=512 * 512$)
do $300 \quad i=0,513$
do $300 \quad j=0,513$
do $200 \quad i=1,400$
do $200 j=1,512$
$\operatorname{pici(i,j)}=f r m(i, j)$
200
continue

600
599

```
do \(599 i=1, n x\)
do \(600 j=1, n y\)
\(\operatorname{pici}(i, j)=(1.0 / 16.0) *(\operatorname{frm}(i-1, j-1)+2.0 * f r m(i-1, j)\)
\(\#+\operatorname{frm}(i-1, j+1)+2.0 * f r m(i, j-1)+4.0 * \operatorname{frm}(i, j)\)
\(\#+2.0 * \operatorname{frm}(i, j+1)+\operatorname{frm}(i+1, j-1)+2.0 * \operatorname{frm}(i+1, j)\)
\(\#+f r m(i+1, j+1))\)
continue
    continue
```

 do \(10 \quad i=1,400\)
 do \(10 j=1,512\)
 \(i p=\operatorname{int}(\operatorname{pic} 1(i, j)+.5)\)
 if(ip.gt.255) ip=255
 if(ip.lt.0) ip=0
 if(ip.gt.127) ip=ip-256
    ```
            image((i-1)*512+j) = char(ip)
10
continue
write(21,rec=ifld)(image(j),j=1,512*512)
close(21)
return
end
* SUBROUTINE AUTOCOR*
**********************
    subroutine autocor(frame,nx,ny)
    real frame(nx,ny)
    real autoc(400),autoci(512)
    rautoc=0.0
    do 11 k=1,nx
        autoc(k)=0.0
        do 12 l=1,ny-1
            autoc(k)=\operatorname{autoc(k)+frame(k,l)*frame(k,I+1)}
        continue
        rautoc=rautoc+autoc(k)/ny
    continue
    rautoc1=0.0
    do 13 l=1,ny
        autoc1(1)=0.0
        do 14 k=1,nx-1
            autoc1(1)=autoc1(1)+frame(k,l)*frame(k+1, l)
        continue
        rautoci=rautoc1+autoc1(1)/nx
    continue
    rac=0.0
    rmean=0.0
    do 23 l=1,ny
        do 24 k=1,nx
            rac=rac+frame(k,l)*frame(k,l)
            rmean=rmean+frame(k,l)
        continue
    continue
```

```
    rmean=rmean/(nx*ny)
    var=rac/(nx*ny)-rmean*rmean
    rautoc=rautoc/nx-rmean*rmean
    rautoc1=rautoc1/ny-rmean*rmean
    write(35,*) 'Mean Variance'
    write(35,*) rmean,var
    rh=rautoc/var
    rv=rautoc1/var
    Write(35,*) 'Autocor-H,Autocor-V'
    write(35,*) rh,rv
    return
    end
**********************************************
* subroutine initial *
* This subprogram initialize the main program*
**********************************************
            subroutine initial
            character*80 input_file
            common /ina/ input_file
            write (*,1)
write (*,3)
            read (5,4) input_file
    1 format (', ')
    3 format (' Enter the name of the file contains
        & ',/,'the order of the filtes there coefficients,
        & input Image, and output file:')
            format(a80)
            return
            end
c*******************************************
    subroutine writeimgs(pic,nx,ny, name)
            real pic(nx,ny)
            character*1 pim(400*512)
            character*20 name
```

```
            open(1,file=name, access='direct',
            + form='unformatted', recl=400*512)
            do 20 i=1,nx
            do 20 j=1,ny
                    ip=int(pic(i,j))+128
                    if(ip.gt.255) ip=255
                    if(ip.lt.0) ip=0
                    if(ip.gt.128) ip=ip-256
                    mm=j+(i-1)*ny
                pim(mm)= char(ip)
    continue
    write(1,rec=1) (pim(j),j=1,nx*ny)
    close (1)
        return
        end
C********************************************
            subroutine writeimg(pic,nx, ny, name)
            real pic(nx,ny)
            character*1 pim(400*512)
            character*20 name
            open(1,file=name, access='direct',
            + form='unformatted',recl=nx*ny)
            do 20 i=1,nx
                do 20 j=1,ny
                    ip=int(pic(i,j))
                    if(ip.gt.128) ip=ip-256
                    mm=j+(i-1)*ny
                    pim(mm)= char(ip)
    20
    continue
    write(1,rec=1) (pim(j),j=1,nx*ny)
    close (1)
    return
    end
c***********************************************
    subroutine writeint(c,nx,ny,name)
    real c(nx,ny)
    character*20 name
    open(1,file=name)
```

```
    do 10 i=1,nx
        write(1,*) (c(i,j),j=1, ny)
10 continue
    close (1)
    return
    end
**********************************************
    subroutine writeint1(pic,nx, ny, name)
    integer pic(nx,ny)
    character*20 name
    open(1,file=name)
    do 10 i=1,nx
        write(1,*) (pic(i,j),j=1,ny)
10 continue
    close (1)
            return
            end
C *************************************************
    subroutine read_frm(ifld,pic)
    character*1 pic(400,512)
    open(1,file='/images/cindy',access='direct',form=
    &
            'unformatted',recl=512)
    open(1,file='/images/mono',access='direct',form=
C
    & 'unformatted',recl=512)
    open(1,file='/images/quartet', access='direct', form=
c & 'unformatted',recl=512)
C
c open(1,file='/images/duo',access='direct',form=
c & 'unformatted',recl=512)
C
    icod1 = (ifld-1)*400
    icod2 = (ifld-1)*400 + 200
        do 10 i=1,200
    read(1,rec=icodi+i)(pic(2*i-1,j),j=1,512)
```

```
    read(1,rec=icod2+i)(pic(i*2,j),j=1,512)
1 0
continue
    close(1)
    return
    end
subroutine write_in_frm(ifld,pic)
        real pic(400,512)
        character*1 image(512*512)
        open(22,file='cindy.in', access='direct',form=
    & 'unformatted',recl=512*512)
do 10 i=1,400
    do 10 j=1,512
        ip=int(pic(i,j)+.5)
        if(ip.gt.255) ip=255
        if(ip.It.0) ip=0
        if(ip.gt.127) ip=ip-256
        image((i-1)*512+j) = char(ip)
    1 0 ~ c o n t i n u e ~
        do 20 i=204801,262144
        image(i) = char(003)
        continue
        write(22,rec=ifld)(image(j), j=1,512*512)
close(22)
return
end
******************************************************
```

subroutine write_ifrm(pic, name)
real pic $(400,512)$
character*1 image (512*400)
character*20 name

```
            open(22,file=name, access='direct',form=
        & 'unformatted',recl=512*400)
do 10 i=1,400
            do 10 j=1,512
            ip=int(pic(i,j)+.5)
            if(ip.gt.255) ip=255
            if(ip.lt.0) ip=0
            if(ip.gt.127) ip=ip-256
            image((i-1)*512+j) = char(ip)
    10 continue
c write(22,rec=1)(image(j),j=1,512*400)
close(22)
return
end
```



```
* SUBROUTINE SUBBAND-7 BAND ANALYSIS AND SYNTHESIS*
```



```
* LL-LH-HL-HH Bands used *
* Synthesize band signals *
* Write out reconstructed imageaa*
*************************************
subroutine subband(inimg,outimg,nx,ny)
    integer raw,col
c
c raw=number of rows of input image
c col=number of columns of input image
**********************************************************
* CHANGE raw and col values for different sized images*
```



```
    parameter(raw=400,col=512)
    real coffi(-20:20),\operatorname{coff2(-20:20),coff3(-20:20),coff4(-20:20)}
    character*80 input_file
    common /ifl/ ifl
    common /ina/ input_file
    common /a/ coff1,coff2,coff3,coff4,ltap1,mtap1,ltap2,mtap2
&
        ,1tap3,mtap3,1tap4,mtap4
```

```
    real inimg(nx,ny)
    real a1(200,256),a2(200,256),a3(200,256),a4(200,256)
    real outimg(400,512)
    real b1(raw/4,col/4),b2(raw/4,col/4)
    real b3(raw/4,col/4),b4(raw/4,col/4)
    real e1(raw/2,col/2)
c input_file='in8'
c input_file='in81'
    input_file='FILTERS/inmf8'
    input_file='insb8'
    input_file='inst8'
    input_file='inunc8'
    input_file='inotf8'
    input_file='inofa8'
    input_file='inofb8'
    input_file='inotaf8'
    input_file='inofsa8'
    input_file='inofsb8'
    input_file='inoffl8'
    call readf
    write(*,*) 'subband analysis'
    call analysis256(inimg,a1,a2,a3,a4)
    a1:LL
c a2:LH
c a3:HL
c a4:HH
    call analysis128(a1,b1,b2,b3,b4)
    b1:LLLL
    b2:LLLH
    b3:LLHL
    c b4.LIHH
c
write(*,*) 'synthesis'
call synthesis128(b1,b2,b3,b4,e1)
call synthesis256(e1,a2,a3,a4,outimg,inimg)
return
end
```

 subroutine readf
 real coff1(-20:20), coff2(-20:20),\operatorname{coff 3(-20:20), coff4 (-20:20)}
 common /a/ coff1,coff2,coff3,coff4,Itap1,mtap1,Itap2,mtap2
 \&
,1tap3,mtap3,1tap4,mtap4
call openf
write(*,*) 'reading filter coefficients'
read(11,*) ltap1
c brite(*,*) Itap1
read(11,*) mtap1
do 10 i=ltap1,mtap1
read(11,*) coff1(i)
c
read(11,*) ltap2
read(11,*) mtap2
do 20 i=ltap2,mtap2
read(11,*) coff2(i)
c
read(11,*) 1tap3
read(11,*) mtap3
do 30 i=ltap3,mtap3
read(11,*) coff3(i)
c
read(11,*) Itap4
read(11,*) mtap4
do 40 i=ltap4,mtap4
40 read(11,*) coff4(i)
C
close (11)
RETURN
END
**
subroutine openf
character*80 input_file
common/ina / input_file
write(*,*) 'Opening input_file'
open (11,file=input_file,status='old')

```
```

 write(*,*) 'file opened'
 return
 end
 subroutine analysis256(inimg,llband,lhband,hlband,hhband)
 integer raw,col
 parameter(raw=400,col=512)
    ```

```

 common /a/ coff1,coff2,coff3,coff4,1tap1,mtap1,1tap2,mtap2
 ,Itap3,mtap3,1tap4,mtap4
 c these are the four subband
real llband(raw/2,col/2), Ihband(raw/2,col/2)
\& ,hlband(raw/2,col/2),hhband(raw/2,col/2)
c these are the high and low bands
real lband(raw,col/2), hband(raw,col/2)
c input and output images
real inimg(raw,col)
nx=raw
ny=col
call rfilter(coff1,inimg,lband,nx,ny,Itap1,mtap1)
call rfilter(coff2,inimg,hband,nx,ny,ltap2,mtap2)
ny=ny/2
call cllfilter(coff1,lband,llband,nx,ny,ltap1,mtap1)

```
```

call clhfilter(coff2,1band,1hband,nx,ny,1tap2,mtap2)
call chlfilter(coffi,hband,hlband, nx, ny, ltap1,mtap1)
call chhfilter(coff2,hband,hhband, nx, ny,ltap2,mtap2)
return
end

```

\section*{************************************************************}
subroutine analysis128(inimg, llband, Ihband,hlband,hhband)
integer raw,col
parameter (raw=200, col=256)
common /ifld/ ifld
integer motionv \((50,64)\),ifld
common/motionv/ motionv
real coffi \((-20: 20), \operatorname{coff} 2(-20: 20), \operatorname{coff} 3(-20: 20), \operatorname{coff} 4(-20: 20)\)
common /a/ coff1,coff2,coff3,coff4,ltap1,mtap1,Itap2,mtap2
\& ,ltap3,mtap3,ltap4,mtap4
\(c\) these are the four subband
real llband (raw/2,col/2), Ihband(raw/2,col/2)
\& , hlband (raw/2,col/2),hhband (raw/2,col/2)
\(c\) these are the high and low bands
real lband (raw, col/2), hband (raw,col/2)
c input and output images
real inimg (raw, col)
nx=raw
ny=col
call rfilter(coffi,inimg,lband, \(n x\), ny, ltapi, mtap1)
call rfilter(coff2,inimg,hband,nx,ny,ltap2,mtap2)
```

 ny=ny/2
 call cllllfilter(coff1,lband,1lband,nx,ny,ltap1,mtap1)
 call clllhfilter(coff2,1band,1hband,nx,ny,1tap2,mtap2)
 call cllhlfilter(coff1,hband,hlband,nx,ny,ltap1,mtap1)
 call cllhhfilter(coff2,hband,hhband,nx,ny,ltap2,mtap2)
 return
 end
 c.
subroutine rfilter(f,a1,a2,raw, col,ltap,mtap)
integer col,raw,ltap,mtap
real a1(raw,col),a2(raw,col/2),f(-20:20)
do 20 i=1,raw
do 20 j=2,col,2
a2(i,j/2)=0
do 20 k=1tap,mtap
jk=j+k
if(jk.le.0) jk=col+jk
if(jk.gt.col) jk=jk-col
a2(i,j/2)=a2(i,j/2)+a1(i,jk)*f(k)
continue
return
end
C__-_---_---

```
```

subroutine cfilter(f,a1,a2,raw, col, ltap, mtap)

```
subroutine cfilter(f,a1,a2,raw, col, ltap, mtap)
    integer col,raw,ltap, mtap,jk
    integer col,raw,ltap, mtap,jk
    real a1 (raw, col) , a2(raw/2,col) ,f(-20:20)
    real a1 (raw, col) , a2(raw/2,col) ,f(-20:20)
    do 20 i=1,col
    do 20 i=1,col
        do \(20 \mathrm{j}=2\),raw, 2
        do \(20 \mathrm{j}=2\),raw, 2
            \(a 2(j / 2, i)=0\)
            \(a 2(j / 2, i)=0\)
            do \(20 \mathrm{k}=1 \mathrm{tap}, m \mathrm{tap}\)
            do \(20 \mathrm{k}=1 \mathrm{tap}, m \mathrm{tap}\)
                \(j k=j+k\)
                \(j k=j+k\)
                if(jk.le.0) jk=raw+jk
```

 if(jk.le.0) jk=raw+jk
    ```
```

 if(jk.gt.raw) jk=jk-raw
 a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)
 continue
 return
 end
 *********** LL FILTER**********************************
subroutine cllfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
common /ifl/ ifl
real a1(raw,col),a2(raw/2,col),f(-20:20)
character*1 pimm(200*256)
parameter(nx=200, ny=256)
do 20 i=1,col
do 20 j=2,raw, 2
a2(j/2,i)=0
do 20 k=1tap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw
a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)
continue
open(99,file='LL',access='direct',form='unformatted'
c + ,recl=nx*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(a2(i,j))+128
c if(ip.gt.255) ip=255
c if (ip.It.0) ip=0
c if(ip.gt.128) ip=ip-255
c }\quadkk=j+(i-1)*n
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c close(99)
return
end

```
```

 subroutine cllllfilter(f,a1,a2,raw,col,ltap,mtap)
 integer col,raw,ltap,mtap,jk
 real a1(raw,col),a2(100,128),f(-20:20)
 common /hist1/ histi
 real hist1(3,512)
 common /ifl/ ifl
 common/entropy1/entropy1
 character*1 pimm(100*128)
 parameter(nx=100,ny=128)
 do 20 i=1,col
 do 20 j=2,raw,2
 a2(j/2,i)=0
 do 20 k=ltap,mtap
 jk=j+k
 if(jk.le.0) jk=raw+jk
 if(jk.gt.raw) jk=jk-raw
 a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)
 continue
call vec_quan1(a2)
c open(99,file='LLLL',access='direct',form='unformatted'
c + ,recl=ny*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(a2(i,j))+128
c if(ip.gt.255) ip=255
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c close(99)
call vbitrates1(hist1,entropy1,3,512)
write(*,*) 'entropy1=',entropy1
return
end

```
```

*********** LLLH FILTER*********************************
subroutine clllhfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real pimm1(12800),pimm2(12800)
real a1(raw,col),a2(raw/2,col),f(-20:20)
common /hist2/ hist2
common /entropy2/entropy2
real hist2(3,512)
common /ifl/ ifl
character*1 pimm(100*128)
parameter(nx=100,ny=128)
do 20 i=1,col
do 20 j=2,raw,2
a2(j/2,i)=0
do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw
a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)
20 continue
call vec_quan2(a2)
c open(99,file='LLLH',access='direct',form='unformatted'
c + ,recl=nx*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(a2(i,j))+128
c if(ip.gt.255) ip=255
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c Write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c close(99)
c do 1 i=1,100
c do 1 j=1,128

```
```

c }\quad\textrm{kk}=\textrm{j}+(\textrm{i}-1)*12
c pimmi(kk)=a2(i,j)
c write(60,*) pimm1(kk)
c1 continue
call vbitrates2(hist2,entropy2,3,512)
write(*,*) 'entropy2=', entropy2
return
end

```
********** LLHL FILTER \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
    subroutine cllhlfilter ( \(\ddagger\), a1, a2, raw, col, ltap,mtap)
    integer col, raw, ltap,mtap, jk
    real a1(raw, col), a2(raw/2,col),f(-20:20)
    common /ifl/ ifl
    common /hist3/ hist3
    common /entropy3/entropy3
    real hist \(3(3,512)\)
            character*1 pimm(100*128)
        parameter \((n x=100, n y=128)\)
            do \(20 \quad i=1, \operatorname{col}\)
            do \(20 j=2\),raw, 2
                        \(a 2(j / 2, i)=0\)
                do \(20 \mathrm{k}=1 \mathrm{tap}, \mathrm{mtap}\)
                        \(j k=j+k\)
                        if (jk.le.0) jk=raw+jk
                if (jk.gt.raw) \(j k=j k-r a w\)
                \(a 2(j / 2, i)=a 2(j / 2, i)+a 1(j k, i) * f(k)\)
    continue
    call vec_quan3(a2)
c open(99,file='LLHL', access='direct', form='unformatted'
\(c \quad+\quad\),recl \(=n x * n y)\)
c do \(690 \quad i=1, n x\)
c do \(691 j=1\), ny
c ip=int \((a 2(i, j))+128\)
\(c \quad\) if(ip.gt.255) ip=255
\(c \quad\) if (ip.lt.0) ip=0
\(c \quad i f(i p . g t .128)\) ip=ip-255
```

c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c close(99)
call vbitrates3(hist3,entropy3,3,512)
write(*,*) 'entropy3=', entropy3
return
end

```
********** LLHH FILTER \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
    subroutine cllhhfilter(f,a1, a2, raw, col,ltap,mtap)
    integer col,raw,ltap,mtap,jk
    real a1(raw,col), a2(raw/2,col),f(-20:20)
    common /ifl/ ifl
    parameter \((n x=100, n y=128)\)
do \(20 \quad i=1, \operatorname{col}\)
do 20 j=2,raw,2
    a2 \((j / 2, i)=0\)
do \(20 \mathrm{k}=1 \mathrm{tap}, \mathrm{mtap}\)
                        \(j k=j+k\)
                        if (jk.le.0) \(j k=r a w+j k\)
                if(jk.gt.raw) jk=jk-raw
c
                    \(a 2(j / 2, i)=a 2(j / 2, i)+a 1(j k, i) * f(k)\)
                \(\mathrm{a} 2(\mathrm{j} / 2, \mathrm{i})=0.0\)
    20 continue
        return
        end
    subroutine clhfilter(f,a1,a2,raw, col, l.tap, mtap)
    integer col, raw,ltap,mtap,jk
    real a1(raw, col), a2(raw/2,col), a6(200,256),f(-20:20)
    common /ifl/ ifl
    character*1 pimm(200*256)
```

 parameter(nx=200,ny=256)
 do 20 i=1,col
 do 20 j=2,raw,2
 a2(j/2,i)=0
 do 20 k=ltap,mtap
 jk=j+k
 if(jk.le.0) jk=raw+jk
 if(jk.gt.raw) jk=jk-raw
 c a2(j/2,i)=0
a.2(j/2,i)=a.2(j/2,i)+a1(jk,i)*f(k)
continue
c open(99,file='LH',access='direct',form='unformatted'
c + ,recl=nx*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(a2(i,j))+128
c if(ip.gt.255) ip=255
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c close(99)
call ar1(a2,200,256,a6,4,4)
do 35 i=1,200
do 35 j=1,256
a2(i,j)=a6(i,j)
35
continue
return
end
**********HL FILTER*********************************
subroutine chlfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real a1(raw,col),a2(raw/2,col),f(-20:20)
common /ifl/ ifl
character*1 pimm(200*256)
parameter(nx=200, ny=256)

```
```

 do 20 i=1,col
 do 20 j=2,ram,2
 a2(j/2,i)=0
 do 20 k=1tap,mtap
 jk=j+k
 if(jk.le.0) jk=raw+jk
 if(jk.gt.raw) jk=jk-raw
 c a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)
a2(j/2,i)=0.0
continue
c call ar1(a2,200,256,a7,8,8)
c do 35 i=1,200
c do 35 j=1,256
c35 a2(i,j)=a7(i,j)
c write(13,*) ((a2(i,j),j=1, 256),i=1, 200)
c open(99,file='HL',access='direct',form='unformatted'
c + ,recl=nx*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(a2(i,j))+128
c if(ip.gt.255) ip=255
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c close(99)
return
end
***********HH FILTER******************************
subroutine chhfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real a1(raw,col),a2(200, 256),f(-20:20)
common /ifl/ ifl
real a8(200,256)
character*1 pimm(200*256)
parameter(nx=200,ny=256)
do 20 i=1,col

```
```

do 20 j=2,raw,2
a2(j/2,i)=0
do 20 k=1tap,mtap
jk=j+k
if(jk.Ie.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

```
c
\[
a 2(j / 2, i)=a 2(j / 2,1)+a 1(j k, i) * f(k)
\]
\[
a 2(j / 2, i)=0.0
\]
    continue
c \(\quad\) arite \((*, *)\) ifl
c call ar1 \((a 2,200,256, a 8,16,16)\)
c do \(35 i=1,200\)
c do \(35 j=1,256\)
c35
        \(a 2(i, j)=a 8(i, j)\)
c open(99,file='HH', access='direct',form='unformatted'
\(c \quad+\quad, r e c l=n x * n y)\)
c do \(690 \quad i=1, n x\)
c do \(691 j=1, n y\)
\(c \quad i p=i n t(a 2(i, j))+128\)
c if(ip.gt.255) ip=255
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c \(\quad k k=j+(i-1) * n y\)
\(c \quad\) pimm \((k k)=c h a r(i p)\)
c691 continue
c690 continue
c \(\quad\) write \((99, \operatorname{rec}=i f 1)(\operatorname{pimm}(j), j=1, n x * n y)\)
c close(99)
    return
    end
    subroutine vec_quan1 (pic)
c pic: picture o be coded (100X128)
real pic \((100,128)\)
integer motionv \((50,64)\)
real tvector(4)
```

common /hist1/ hist1
integer histi(3,512)
common /motionv/ motionv
real b1v1(512,4),b1v2(512,4),b1v3(512,4)
common /vqcodebook1/ b1v1,b1v2,b1v3
do 191 i=1,3
do 191 j=1,512
hist1(i,j)=0
continue

```
```

 nn=0
 do 10 i=1,50
do 10 j=1,64
if(motionv(i,j).ge.5) then
do 20 k=1,2
do 20 l=1,2
tvector(2*(k-1)+1)=pic((i-1)*2+k,(j-1)*2+1)
continue
mm=nn+3
else if(motionv(i,j).ge.3) then
do 21 k=1,2
do 21 l=1,2
tvector(2*(k-1)+1)=pic((i-1)*2+k,(j-1)*2+1)
continue
mm=nn+2
else if(motionv(i,j).ge.1) then
do 22 k=1,2
do 22 l=1,2
tvector(2*(k-1)+1)=pic((i-1)*2+k,(j-1)*2+1)
continue
mm=nn+1
else
do 33 k=1,2
do 33 l=1,2
pic((i-1)*2+k,(j-1)*2+1)=0.0
continue
mm=0
endif
if(mm.eq.1) then
call vquantizer(tvector,b1v1,ivecnum)
hist1(1,ivecnum) = hist1(1,ivecnum)+1

```
```

 else if(mm.eq.2)then
 call vquantizer(tvector,b1v2,ivecnum)
 hist1(2,ivecnum) = hist1(2,ivecnum)+1
 else if(mm.eq.3)then
 call vquantizer(tvector,b1v3,ivecnum)
 hist1(3,ivecnum) = hist1(3,ivecnum)+1
 endif
 if(mm.ne.0) then
 do 44k=1,2
 do 44 I=1,2
 pic}((i-1)*2+k,(j-1)*2+1)=tvector (2*(k-1)+1
 continue
 endif
 continue
 return
 end

subroutine vec_quan2(pic)

C
pic: picture to be coded (100X128)
real pic(100,128)
integer motionv(50,64)
integer motionv1(25,32)
real tvector(16)
common /hist2/ hist2
integer hist2(3,512)
common/motionv/ motionv
real b2v1(512,16),b2v2(512,16),b2v3(512,16)
common /vqcodebook2/b2v1,b2v2,b2v3
do 191 i=1,3
do 191 j=1,512
hist2(i,j)=0
191 continue
do 50 i=1,25
do 50 j=1,32
notl=0

```
```

 do 51 k=i*2-1,2*i
 do 51 I=2*j-1, 2*j
 notl =notl+motionv(k,l)
 continue
 motionv1(i,j)=(notl/4)
 continue
    ```
    \(n n=0\)
do \(10 \quad i=1,25\)
do \(10 j=1,32\)
    if (motionv1 (i, j).ge.5) then
        do \(20 \mathrm{k}=1,4\)
        do \(20 \quad 1=1,4\)
            \(\operatorname{tvector}(4 *(k-1)+1)=\operatorname{pic}((i-1) * 4+k,(j-1) * 4+1)\)
        continue
        \(m m=n n+3\)
    else if(motionv1(i,j).ge.3) then
        do \(21 \mathrm{k}=1,4\)
        do 21 l=1,4
            \(\operatorname{tvector}(4 *(k-1)+1)=\operatorname{pic}((i-1) * 4+k,(j-1) * 4+1)\)
        continue
        \(m m=n n+2\)
    else if(motionv1(i,j).ge.1) then
        do \(22 \mathrm{k}=1,4\)
        do \(22 \quad \mathrm{l}=1,4\)
            \(\operatorname{tvector}(4 *(k-1)+1)=\operatorname{pic}((i-1) * 4+k,(j-1) * 4+1)\)
        continue
        \(m m=n n+1\)
    else
        do \(33 \mathrm{k}=1,4\)
        do \(33 \quad l=1,4\)
            \(\operatorname{pic}((i-1) * 4+k,(j-1) * 4+1)=0.0\)
        continue
            \(\mathrm{mm}=0\)
            endif
        if (mm.eq.1) then
            call vquantizer3(tvector, b2v1, ivecnum)
            hist2(1, ivecnum \()=\) hist \(2(1\), ivecnum \()+1\)
    else if(mm.eq.2)then
            call vquantizer3(tvector,b2v2,ivecnum)
```

 hist2(2,ivecnum) = hist2(2,ivecnum)+1
 else if(mm.eq.3)then
 call vquantizer3(tvector,b2v3,ivecnum)
 hist2(3,ivecnum) = hist2(3,ivecnum)+1
 endif
 if(mm.ne.0) then
 do 44 k=1,4
 do 44 1=1,4
 pic((i-1)*4+k,(j-1)*4+1) = tvector (4*(k-1)+1)
 continue
 endif
 continue
 return
 end
 subroutine vec_quan3(pic)
 c
pic: picture to be coded (100X128)
real pic(100,128)
integer motionv(50,64)
integer motionvi(25,32)
real tvector(16)
common /hist3/ hist3
integer hist3(3,512)
common /motionv/ motionv
real b3v1(512,16),b3v2(512,16),b3v3(512,16)
common/vqcodebook3/b3v1,b3v2,b3v3
do 191 i=1,3
do 191 j=1,512
hist3(i,j)=0
191 continue
do 50 i=1,25
do 50 j=1,32
notl=0
do 51 k=i*2-1,2*i
do 51 l=2*j-1,2*j
notl =notl+motionv(k,l)
continue

```
```

motionvi(i,j)=(not1/4)
continue
nn=0
do 10 i=1,25
do 10 j=1,32
if(motionv1(i,j).ge.5) then
do 20 k=1,4
do 20 I=1,4
tvector}(4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1
continue
mm=nn+3
else if(motionv1(i,j).ge.3) then
do 21 k=1,4
do 21 I=1,4
tvector (4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1)
continue
mm=nn+2
else if(motionv1(i,j).ge.1) then
do 22 k=1,4
do 22 I=1,4
tvector (4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1)
continue
mm=nn+1
else
do 33 k=1,4
do 33 I=1,4
pic}((i-1)*4+k,(j-1)*4+1)=0.
continue
mm=0
endif
if(mm.eq.1) then
call vquantizer3(tvector,b3v1,ivecnum)
hist3(1,ivecnum) = hist3(1,ivecnum)+1
else if(mm.eq.2)then
call vquantizer3(tvector,b3v2,ivecnum)
hist3(2,ivecnum) = hist 3(2, ivecnum)+1
else if(mm.eq.3)then
call vquantizer3(tvector,b3v3,ivecnum)
hist3(3,ivecnum) = hist3(3,ivecnum)+1
endif

```
```

 if(mm.ne.0) then
 do 44 k=1,4
 do 44 I=1,4
 pic}((i-1)*4+k,(j-1)*4+1)=tvector (4*(k-1)+1
 continue
return
end

```
44
10
**********************************************
    subroutine vec_quant4 (enimg, \(n\), hist \(4, L\) )
    real testv(16)
    real enimg (3200)
    integer hist4 (L)
    integer ivecnum4
    real \(b 4 v 1(256,16), b 4 v 2(256,16), b 4 v 3(512,16), b 4 v 4(512,16)\)
    common /vqcodebook4/ b4v1,b4v2,b4v3,b4v4
    do \(17 j=1, L\)
    hist4(j)=0
17 continue
    do \(100 \quad i=0,3184,16\)
        \(\mathrm{k}=0\)
            do \(150 \quad i i=i+1, i+16\)
            \(k=k+1\)
            \(\operatorname{testv}(k)=\operatorname{enimg}(i i)\)
    150
        continue
    if (n.eq.1) then
        call vquant 4 (testv, b4v1, ivecnum \(4, L\) )
        else if (n.eq.2) then
        call vquant 4 (testv, b4v2, ivecnum \(4, L\) )
```

 else if (n.eq.3) then
 call vquant4(testv,b4v3,ivecnum4, L)
 else if (n.eq.4) then
 call vquant4(testv,b4v4,ivecnum4,L)
 endif
 hist4(ivecnum4)=hist4(ivecnum4)+1
 k1=0
 do 170 jj=i+1,i+16
 k1=k1+1
 enimg(jj) = testv(k1)
 170
100
continue
return
end

```

    subroutine vquantizer(testv, codebook, ivecnu)
    \(c\) Best Matching of vector
    real testv (4)
    real codebook \((512,4)\)
    rdiff \(=1000000.0\)
        ivecnu \(=0\)
    do \(110 \mathrm{~m}=1,512\)
        adiff \(=0\)
        do \(120 n=1,4\)
            adiff \(=\operatorname{adiff}+(\operatorname{testv}(n)-\operatorname{codebook}(m, n)) * * 2\)
    120
        continue
        if (adiff.lt. rdiff) then
            rdiff = adiff
```

 ivecnu = m
 endif
 continue
 do 130 n = 1,4
 testv(n) = codebook(ivecnu,n)
 continue
 return
 end
    ```
    subroutine vquantizer3(testv, codebook,ivecnu)
\(c\) Best Matching of vector
    real testv (16)
    real codebook \((512,16)\)
    rdiff \(=1000000.0\)
    ivecnu \(=0\)
    do \(110 \mathrm{~m}=1,512\)
        adiff \(=0\)
        do \(120 n=1,16\)
                \(\operatorname{adiff}=\operatorname{adiff}+(\operatorname{testv}(n)-\operatorname{codebook}(m, n)) * * 2\)
    120 continue
        if (adiff .lt. rdiff) then
            rdiff = adiff
            ivecnu = m
        endif
    110 continue
    do \(130 \mathrm{n}=1,16\)
        testv(n) \(=\) codebook(ivecnu, \(n\) )
    continue
    return
    end
***************************************************
    subroutine vquant4 (testv, codebook, ivecnu, L)
\(c\) Best Matching of vector
    real testv (16)
    real codebook (L, 16)
```

rdiff = 1000000.0
ivecnu = 0
do 110m=1,L
adiff = 0
do 120 n = 1,16
adiff = adiff + (testv(n) - codebook(m,n))**2
continue
if (adiff .lt. rdiff) then
rdiff = adiff
ivecnu = m
endif
continue
do 130 n = 1,16
testv(n) = codebook(ivecnu,n)
continue
return
end
c this subroutine calculate the entropy of each band
c and find the probability of each code
**
subroutine vbitrates1(ic,bitrate,raw,col)
c common /gtotal/ gtotal
integer ic(raw,col),raw,col
real entropy(3),sum(512),pr(512)
gtotal=0
bitrate=0
do 10 m=1,3
total=0
do 20 n=1,512
sum(n)=ic(m,n)
total=total+sum(n)
20
continue
c

```
```

 entropy(m)=0.0
 do 30 n=1,512
 pr(n)=sum(n)/total
 if(pr(n).gt.0) then
 br=pr(n)*xlog2(1.0/pr(n))
 entropy(m)=entropy (m)+br
 endif
 continue
 bitrate=bitrate+entropy(m)*total
 write(*,*) 'total = ',total
 gtotal=gtotal+total
 10
 continue
 write(*,*) 'gtotal = ',gtotal
 write(*,*)'ventropy = ',(entropy(i),i=1,3)
 write(*,*) 'bitrate = ', bitrate
 return
 end
 subroutine vbitrates2(ic,bitrate,raw,col)
 integer ic(raw, col), raw, col
 real entropy(3),sum(512),pr(512)
 gtotal=0
 bitrate=0
 do }10\textrm{m}=1,
 total=0
 do 20 n=1,512
 sum(n)=ic(m,n)
 total=total+sum(n)
 20 continue
entropy (m)=0.0
do 30 n=1,512
pr(n)=sum(n)/total
if(pr(n).gt.0) then
br}=\textrm{pr}(\textrm{n})*x\operatorname{log}2(1.0/pr(n)
entropy(m)=entropy (m)+br

```
```

 endif
 write(*,*) 'gtotal = ',gtotal
 write(*,*) 'ventropy = ',(entropy(i),i=1,3)
 write(*,*) 'bitrate = ', bitrate
 return
 end
 subroutine vbitrates3(ic,bitrate,raw,col)
 integer ic(raw,col),raw,col
 real entropy(3),sum(512),pr(512)
 gtotal=0
 bitrate=0
 do 10 m=1,3
 total=0
 do 20 n=1,512
 sum(n)=ic(m,n)
 total=total+sum(n)
 20 continue
c
entropy (m) $=0.0$
do $30 \mathrm{n}=1,512$
$\operatorname{pr}(\mathrm{n})=\operatorname{sum}(\mathrm{n}) /$ total
if $(\operatorname{pr}(\mathrm{n}) . g t .0)$ then
$\mathrm{br}=\mathrm{pr}(\mathrm{n}) * \mathrm{x} \log 2(1.0 / \mathrm{pr}(\mathrm{n}))$
entropy (m)=entropy (m)+br
endif
30
continue
bitrate=bitrate+entropy (m)*total
write(*,*) 'total = ',total

```

10
c
write (*,*) 'gtotal \(=\) ', gtotal
write \((*, *)\) 'ventropy \(=\) ', (entropy (i), \(i=1,3)\)
write(*,*) 'bitrate \(=\) ', bitrate
return
end
subroutine vbitrates4(ic,bitrate,col)
integer ic (col), col
real entropy, sum (512), pr(512)
bitrate=0
total \(=0\)
do \(20 \mathrm{n}=1\), col
\(\operatorname{sum}(n)=i c(n)\)
total=total+sum (n)
20
continue
entropy=0.0
do \(30 n=1\), col
\(\operatorname{pr}(n)=\operatorname{sum}(n) /\) total
if \((\mathrm{pr}(\mathrm{n}) . g \mathrm{~g} .0)\) then
\(\mathrm{br}=\operatorname{pr}(\mathrm{n}) * x \log 2(1.0 / \operatorname{pr}(\mathrm{n}))\)
entropy=entropy+br
endif
30 continue
bitrate=entropy*total
write (*,*) 'entropyar1 = ', entropy
write \((*, *)\) 'total \(=\) ', total
write(*,*) 'bitrate \(=\) ', bitrate
return
end

```

 function xlog2(x)
 real x
 x log}2=a\operatorname{log}(x)/a\operatorname{log}(2.0
 return
 end
    ```
    subroutine bitrates2(ic, entropy, raw, col)

    integer ic (raw, col), raw, col
    real entropy, sum (0:169), pr (0:169)
    do \(20 \mathrm{n}=0,169\)
        \(\operatorname{sum}(n)=0.0\)
    20 continue
C
    do 10 i=1,raw
    do \(10 \mathrm{j}=1, \mathrm{col}\)
        \(k=i c(i, j)\)
        \(\operatorname{sum}(k)=\operatorname{sum}(k)+1\)
    continue
    entropy=0.0
    total=real (raw*col)
    do \(30 n=0,169\)
        \(\operatorname{pr}(n)=\operatorname{sum}(n) /\) total
        if \((\operatorname{pr}(n) . g t .0)\) then
            \(\mathrm{br}=\operatorname{pr}(\mathrm{n}) * \mathrm{xlog} 2(1.0 / \mathrm{pr}(\mathrm{n}))\)
            entropy=entropy+br
        endif
    30
    continue
    write (*,*) 'xmentropy \(=\) ', entropy
C
    write(*,*) 'pr \(=\) ', (pr(i), \(i=1,169)\)
    return
    end
```

 subroutine ccfilter(f,a1,a2,raw,col,Itap,mtap)
 integer col,raw,ltap,mtap,jk
 real a1(raw,col),a2(raw,col),f(-20:20)
 do 20 i=1,col
 do 20 j=1,raw
 a2(j,i)=0
 do 20 k=ltap,mtap
 jk=j+k
 if(jk.le.0) jk=raw+jk
 if(jk.gt.raw) jk=jk-raw
 a2(j,i)=a2(j,i)+a1(jk,i)*f(k)
 continue
 return
 end
 c_--

```
            subroutine rcfilter(f,a1, a2, raw, col, ltap, mtap)
            integer col,raw, ltap,mtap,jk
            real a1(raw,col), a2(raw,col),f(-20:20)
            do 20 i=1,raw
            do \(20 \mathrm{j}=1, \mathrm{col}\)
                a2 \((i, j)=0\)
            do \(20 \mathrm{k}=\mathrm{l}\) tap,mtap
                \(j k=j+k\)
                if (jk.le.0) \(j k=c o l+j k\)
                if(jk.gt.col) jk=jk-col
                    \(a 2(i, j)=a 2(i, j)+a 1(i, j k) * f(k)\)
    20
    continue
    return
    end
\(c\)
subroutine cinter(in, out, nraw, ncol)
integer nraw, ncol
real in(nraw, ncol), out(nraw*2,ncol)
do \(20 \mathrm{j}=1\), ncol
do 20 i=1, nraw
out \((2 * i-1, j)=i n(i, j)\)
out \((2 * i, j)=0.0\)
```

c out (2*i,j)=in(i,j)
c out (2*i-1,j)=0.0
20 continue
return
end

```

```

 subroutine rinter(in, out, nraw, ncol)
 integer nraw,ncol
 real in(nraw,ncol),out(nraw,2*ncol)
 do 20 j=1,ncol
 do 20 i=1,nraw
 out(i,2*j-1)=in(i,j)
 out (i, 2*j)=0.0
 c out(i,2*j)=in(i,j)
c out(i,2*j-1)=0.0
20 continue
return
end

```

    subroutine synthesis256(11band, Ihband,hlband,hhband, outimg,
        + inimg)
            character*1 pimm(400*512)
            real inimg \((400,512)\)
            integer raw, col
            parameter (raw=400, col=512)
            parameter ( \(n x=400, n y=512\) )
c input and output images
real outimg(raw,col)
\(c\) these are the four subband
real llband (raw/2,col/2), 1hband(raw/2,col/2)
\& , hlband (raw/2,col/2),hhband (raw/2,col/2)
real lli(raw, col/2), lhi (raw, col/2), hli(raw, col/2), \& hhi (raw, col/2), llo (raw, col/2), lho(raw, col/2), hlo(raw, col/2), \& hho(raw,col/2)
```

 real li(raw,col/2), lo(raw,col),hi(raw,col/2),
 & ho(raw,col)
 real limg(raw,col),himg(raw,col)
    ```

```

 common /a/ coff1,coff2,coff3,coff4,ltap1,mtap1,ltap2,mtap2
 & ,ltap3,mtap3,Itap4,mtap4
 c_
nraw=raw
ncol=col
call cinter(llband,lli,raw/2,col/2)
call ccfilter(coff4,1li,llo,raw,col/2,ltap4,mtap4)
call cinter(lhband,lhi,raw/2,col/2)
call ccfilter(coff3,1hi,lho,raw,col/2,1tap3,mtap3)
call cinter(hlband,hli,raw/2,col/2)
call ccfilter(coff4,hli,hlo,raw,col/2,ltap4,mtap4)
call cinter(hhband,hhi,raw/2,col/2)
call ccfilter(coff3,hhi,hho,raw,col/2,ltap3,mtap3)
c
do 10 i=1, raw
do 10 j=1,col/2
li(i,j)=llo(i,j)+lho(i,j)
li(i,j)=1lo(i,j)
hi(i,j)=hlo(i,j)+hho(i,j)
hi(i,j)=hlo(i,j)
hi}(i,j)=0.
continue
call rinter(li,lo,raw,col/2)
call rcfilter(coff4,lo,limg,raw,col,ltap4,mtap4)
call rinter(hi,ho,raw,col/2)

```
```

call rcfilter(coff3,ho,himg,raw,col,Itap3,mtap3)
do 20 i=1,raw
do 20 j=1,col
outimg(i,j)=\operatorname{limg}(i,j)
continue
c open(99,file='im',access='direct',form='unformatted'
c + ,recl=nx*ny)
c do 690 i=1,nx
c do 691 j=1,ny
c ip=int(outimg(i,j))+128
c if(ip.gt.255) ip=255
c if (ip.lt.0) ip=0
c if(ip.gt.128) ip=ip-255
c kk=j+(i-1)*ny
c pimm(kk)=char(ip)
c691 continue
c690 continue
c write(99,rec=1) (pimm(j),j=1,nx*ny)
c close(99)
return
end

```
    ***************************************
    * SYNTHESIS FILTER FOR 128*100 IMAGES*
    \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
subroutine synthesis128(11band, lhband,hlband,hhband,outimg)
integer raw,col
parameter (raw=200, col=256)
c input and output images
real outimg (raw,col)
\(c\) these are the four subband
real llband (raw/2,col/2), Ihband (raw/2,col/2)
\& , hlband (raw/2,col/2),hhband (raw/2,col/2)
real lli(raw, col/2), Ihi (raw, col/2), hli(raw, col/2), \& hhi \((\mathrm{raw}, \mathrm{col} / 2), 1 \mathrm{lo}(\mathrm{raw}, \mathrm{col} / 2)\), hho(raw,col/2),hlo(raw,col/2), \& hho(raw,col/2)
real \(\operatorname{li}(\) raw, col/2), lo(raw, col), hi(raw,col/2), \& ho(raw,col)
real limg(raw, col),himg(raw,col)
real coffi \((-20: 20)\), \(\operatorname{coff} 2(-20: 20), \operatorname{coff} 3(-20: 20), \operatorname{coff} 4(-20: 20)\)
common /a/ coffi,coff2,coff3,coff4,1tap1,mtap1,Itap2,mtap2
\& , ltap3,mtap3,1tap4,mtap4
c.
nraw=raw
ncol=col
call cinter(llband,lli,raw/2,col/2)
call ccfilter (coff4,1li,1lo,raw,col/2,ltap4,mtap4)
call cinter(lhband, Ihi, raw/2,col/2)
call ccfilter (coff3,lhi,lho,raw,col/2,1tap3,mtap3)
call cinter(hlband,hli,raw/2,col/2)
call ccfilter (coff4,hli,hlo,raw, col/2,ltap4,mtap4)
call cinter (hhband,hhi,raw/2,col/2)
call ccfilter (coff3,hhi,hho,raw,col/2,1tap3,mtap3)
c
do \(10 i=1\), raw do \(10 j=1, \operatorname{col} / 2\)
\(\operatorname{li}(i, j)=1 l o(i, j)+\operatorname{lho}(i, j)\) \(h i(i, j)=h l o(i, j)\)
continue
call rinter(li, lo, raw, col/2)
call rcfilter (coff4, lo,limg, raw, col,ltap4,intap4)
call rinter(hi,ho,raw,col/2)
call rcfilter(coff3,ho,himg,raw, col, Itap3,mtap3)
```

do 20 i=1,raw
do 20 j=1,col
outimg(i,j)=1*(limg(i,j)+himg(i,j))
continue
return
end

```
20

\section*{REFERENCES}
1. M. S. Kadur, "Adaptive Subband Video Coding with Motion Compensation," M.Sc. Thesis. NJIT, May 1989.
2. V. Seferidis and M. Chanbari, "Generalized Block Matching Motion Estimation," SPIE, Visual Communications and Image Processing'92, vol. 1818, pp.110-119, 1992.
3. Joe S. Lim, Two-Dimensional Signal and Image Processing, Prentice- Hall Inc., Englewood Cliffs, NJ, 1990.
4. N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall Inc., Englewood Cliffs, NJ, 1984.
5. A. N. Akansu and R. A. Haddad, Mulliresolution Signal Decomposition; Transforms, Subbands, and Wavelets, Acedemic Press, Inc., San Diago, CA, 1992.
6. P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial,", Proceedings of the IEEE, vol. 78 , no.1, pp. \(56-93\), January 1990.
7. P. P. Vaidyanathan, "Quadrature Mirror Filter Banks, M-band Extentions and Perfect-Reconstruction Techniques,", IEEE ASSP Magazine, pp. 4-20, July 1987.
8. M. J. T. Smith and T .P. Barnwell, II,"A Procedure for Designing Exact Reconstruction Filter Banks for Tree Structured Subband Coders," In Proc. IEEE inl. conf. Acust., Speech, Signal Processing, pp.27.1.1-27.1.4, San Diago, CA, March 1984.
9. A. Croisier, D. Esteban and C. Galand,"Perfect Channel Splitting by Use of Interpolation/Decimation/Tree Decomposition Techniques," Intll Conf. on Information Sciences and Systems, Patras, Greece, 1976.
10. H. Gharavi and A. Tabatabai, "Application of Quadrature Mirror Filtering to the Coding of Monochrome and Color Images," Proccedings of ICASSP, pp. 2384-2387, Dallas, April 6-9, 1987.
11. Y. Linde, A. Buzo and R.M. Gray, "An Algorithm for Vector Quantizer Design," IEEE Trans. on Communications, Vol. COM-28, no.1, pp. 84-85, January 1985.
12. J. Makhoul, S. Roucos and H. Gish, "Vector Quantization in Speech Coding," Proc. of the IEEE, vol.73, no.11, pp.1551-1588, Nov 1985.
13. H. M. Mutlag, "A comperative Study of Image Coding Techniques: Filter Banks vs. Discrete Cosine Transform," M.Sc. Thesis, NJIT, May 1991
14. J. D. Johnston, "A filter Family Designed for Use in Quadrature Mirror Filter Banks," Int. Conf. on ASSP, ICASSP, pp. 291-294, Denver, 1980.```

