
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 10-31-1994

Processor allocation for partitionable multiprocessor systems Processor allocation for partitionable multiprocessor systems

Nicholaos C. Antoniou
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Antoniou, Nicholaos C., "Processor allocation for partitionable multiprocessor systems" (1994). Theses.
1589.
https://digitalcommons.njit.edu/theses/1589

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232277144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1589&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1589?utm_source=digitalcommons.njit.edu%2Ftheses%2F1589&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PROCESSOR ALLOCATION FOR PARTITIONABLE
MULTIPROCESSOR SYSTEMS

by
Nicholaos C. Antoniou

The processor allocation problem in an n-dimensional hypercube multipro-

cessor is similar to the conventional memory allocation problem. The main objective

is to maximize the utilization of available resources as well as minimize the inherent

system fragmentation. In this thesis, a new processor allocation strategy is proposed,

and compared with the existing strategies, such as, the Buddy strategy, the Single

Gray Code strategy (SGC), the Multiple Gray Code (MGC), and the Maximal Set

of Subcubes (MSS). We will show that our proposed processor allocation strategy

outperforms the existing strategies, by having the advantage of being able to allocate

unused processors to other jobs/algorithms.

PROCESSOR ALLOCATION FOR PARTITIONABLE
MULTIPROCESSOR SYSTEMS

by
Nicholaos C. Antoniou

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1994

APPROVAL PAGE

PROCESSOR ALLOCATION FOR PARTITIONABLE
MULTIPROCESSOR SYSTEMS

Nicholaos C. Antoniou

Dr. Edwin Hou, Thesis Advisor 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Sotirios Ziavras, Committee Member 	 	Date
Assistant Professor of Electrical and Computer Engineering, MET

Dr. Kyriakos Mouskos, Committee Member 	 Date
Assistant Professor of Civil and Enviromental Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Nicholaos C. Antoniou

Degree: Master of Science in Electrical Engineering

Date: October 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

® Bachelor of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1992

Major: Electrical. Engineering

iv

This work is dedicated to
the memory of my late father

Christodoulos Antoniou

and my beloved mother
Joanna Antoniou

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Professor

Edwin Hou, for his guidance, friendship, understanding, and moral support

throughout this research.

A very special thanks to Professors Sotirios Ziavras and Kyriakos Mouskos

for serving as members of the committee and for providing valuable comments and

suggestions for this thesis.

The author greatly acknowledges the assistance of Professors Gregory Kriegs-

mann and Michael Porter of the Department of Mathematics in the form of a graduate

assistantship.

An additional word of thanks to Professor Michael Porter for being so

supportive and understanding to the author as his supervisor in the computer

laboratory of the Department of Mathematics and for making his high-tech computer

equipment available to him from which this thesis has greatly benefited.

An additional word of thanks to Professors Gregory Kriegsmann and Demitrius

Papageorgiou of the Department of Mathematics for the financial assistance in the

form of a graduate assistantship for the Summer of 1994.

The author also wishes to express appreciation to his brother Dr. Antonios

Antoniou and his best friend Michael Sideras for their moral support, timely help

and suggestions. Also, the author wishes to express a special thanks to all his friends

and relatives for their support during his studies.

Vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 DEFINITIONS, NOTATIONS AND REVIEW OF EXISTING ALLOCATION
ALGORITHMS 	 3

2.1 	Definitions and Notations 	3

2.2 Processor Allocation Strategies 	6

2.2.1 The Buddy Strategy 	6

2.2.2 Single Gray Code (SGC) 	 11

2.2.3 Multiple Gray Code (MGC) 	 15

2.2.4 Maximal Set of Subcubes (MSS) 	 23

3 PARTITIONABLE MULTI PROCESSOR ALLOCATION ALGORITHM 	 28

3.1 Formal Description of the Problem 	 28

3.2 Allocation Strategy I (ASI) 	 29

4 SIMULATION RESULTS AND DISCUSSION 	 37

5 CONCLUSIONS AND FUTURE WORK 	 45

APPENDIX A Program 	 46

APPENDIX B Sample Run 	 52

REFERENCES 	 55

vii

LIST OF TABLES

Table 	 Page

2.1 The Number of Subcubes Recognizable by the Buddy System and a SGC 14

3.1 	Illustration of bitwise allocation of Example 3.2 	 34

3.2 Illustration of bitwise allocation of Example 3.3 	 35

viii

LIST OF FIGURES

Figure 	 Page

2.1 Illustration of Gray codes. (a) BRGC. (b)A CC with {g1,g2,g3} =
{2,3,1}. 	 5

2.2 The complete binary tree for the allocation strategy using the buddy
system. 	 8

2.3 Allocation strategy using the buddy system 	 10

2.4 The complete binary tree for the allocation atrategy using the binary
reflected Gray code. 	 13

2.5 Allocation strategy using the binary reflected Gray code. 	 16

2.6 	Illustration of Theorem 2.3 when {g1,g2,g3,g4} 	2,3,4} when d E
{0,1}. 	 18

2.7 Recognizable subcubes by the given Gray codes, {g1,g2,g3,g4,g5} =
{1, 2,3,4,5},{2,5,1,3,4},{3,1,4,5,2} where dE 	19

2.8 Example of illustrating the Theorem of Matching. 	 21

2.9 A complete matching from M1 to M2. 	 22

2.10 The GC's required for complete subcube recognition in a Q. (a)
Deternime the GC's for complete subcube recognition. (b) Modifi-
cation of GC's in (a). 	 24

3.1 Illustration of Example 3.2 	 33

3.2 Illustration of Example 3.3 	 36

4.1 	Illustration of how Buddy, SGC, MGC and MSS allocate 4 partitions and
leaving 1 processor per partition unused. 	 38

4.2 Illustration of how AS1 allocates 4 partitions and uses the remaining
processors to form a 2-cube. 	 39

4.3 	Illustration of how Buddy, SGC, MGC and MSS allocate 4 partitions and
leaving 6 processors per partition unused. 	 41

4.4 Illustration of how ASI allocates 6 partitions and uses the remaining
processors to form a 2-cube. 	 42

4.5 	Illustration of how Buddy, SGC, MGC and MSS allocate 8 partitions and
leaving 3 processors per partition unused. 	 43

ix

Figure 	 Page

4.6 Illustration of how ASI allocates 12 partitions and uses the remaining
processors to form a 2-cube. 	 44

CHAPTER 1

INTRODUCTION

Hypercube multiprocessors have been drawing considerable attention mainly due to

their structural regularity for easy construction and high potential for the parallel

execution of various algorithms. A hypercube multiprocessor is often viewed as a

personal supercomputer since it has the potential to surpass the fastest supercom-

puters at a fraction of the cost, Denning [7]. Numerous research efforts related to

hypercube architectures, operating systems, programming languages, etc., have been

under taken, and several research and commercial hypercube multiprocessors have

been built.

A task arriving at a hypercube multiprocessor, called an incoming request, can

be specified in a graphic form and must be assigned optimally to a subcube in the

multiprocessor for execution. Upon completion of the execution, the subcube used

for the task must be released for later use. Efficient allocation and/or deallocation

of node processors in a h.ypercube multiprocessor is a key to its performance and

utilization. The processor allocation in a hypercube multiprocessor consists of two

steps: 1) determination of the size of a subcube to accommodate an incomming

task, and 2) location of a subcube of the size determined by 1) within the hypercube

multiprocessor. The first step is treated in Chen and Shin [9] and the second step is

the subject of this thesis. Results on the existence of subcubes of certain dimensions

after link/node failures have been reported elsewhere, Becker and Simon [8].

This thesis addresses the problem of locating available subcubes after a

sequence of subcube allocations and relinquishments, thereby distinguishing this

work from those described in Becker and Simon [8], and Chen and Shin [9].

1

2

Given a node addressing scheme, a set of contiguous nodes forms a subcube

in an n-cube multiprocessor, similar to a set of memory pages forming a memory

segment. This fact implies a close resemblance of the processor allocation problem

in the n-cube multiprocessor to the conventional memory allocation problem. In

both problems, we want to maximize the utilization of available resources and also

minimize inherent systems fragmentation. Five allocation strategies for the n-cube

multiprocessor are addressed here: the buddy strategy which is based on the buddy

system, Knowlton [16], the single gray code (SGC) strategy which is based on the

binary-reflected gray code(BRGC), Chen and Shin [6], the multiple gray code (MGC)

strategy which is also based on the BRGC, Chen and Shin [6], the maximal set

of subcubes (MSS) strategy which is based on the notion of a maximal subset of

subcubes, Dutt and Hayes [1], and our newly proposed strategy, allocation strategy

I (ASI).

We will explore the properties of the buddy, SGC, MSG, and MSS allocation

strategies, and our processor allocation strategy allocation strategy I will be proposed

to remedy the processor underutilization problem of the above mentioned allocation

strategies. The performances of the current strategies and the proposed one will be

comparatively analyzed.

The thesis is organized as follows. Chapter 2 introduces the necessary

definitions and notations as well as a review of the four current allocation strategies.

Chapter 3 provides the formal description of the problem as well as a detailed

account of the proposed algorithm and the approach. Chapter 4 presents simulation

results of the various allocation strategies implemented and a discussion of the

performance of these allocation strategies. The thesis concludes with chapter 5,

which also includes future work and references.

CHAPTER 2

DEFINITIONS, NOTATIONS AND REVIEW OF EXISTING
ALLOCATION ALGORITHMS

This chapter introduces the necessary definitions and notations used in this thesis

as well as a brief study of existing representative processor allocation strategies. For

simplicity sake, we will ignore the overhead for allocation and deallocation, and thus

jobs are not penalized for these overheads. This simplification gives a strong benefit

of the doubt to the more sophisticated strategies, which in practice incur considerably

more overhead that the simpler strategies do. Even with this rather unfair advantage,

however, we show that the most sophisticated strategies are generally capable of little

or no improvement in performance over the simplest strategies.

2.1 Definitions and Notations

For a formal description of the n-cube structure, it is necessary to define the product

of graphs as follows.

Definition 2.1 Let Gp = (Vp, Ep) be the product of two graphs G1 = 	E1) and

G2 = (V2,E2), denoted by Gp = G1 x G2. Then, Vp = V1 * V2 and two nodes

u = (u1,u2) and v = (v1,v2) are adjacent in Gp 	= v1 and u2 adjacent to v2]

or /u1 adjacent to v1 and u2 = v2].

An n-cube can now be defined as follows.

Definition 2.2 An n-cube, Qn, is defined recursively as follows.

a) Q0 is a trivial graph with one node, and

b) Qn = K2 X Qn-1, where K2 is the complete graph with two nodes.

3

4

Let Ʃ be the ternary symbol set {0,1,*}, * is a DON'T CARE symbol. Then,

every subcube of an n-cube can be uniquely represented by a string of symbols in E.

Such a string of ternary symbols is called the address of the corresponding subcube.

For example, the address of the subcube Q2 in a Q4 which consists of nodes 0010,

0011, 0110, and 0111 is 0 * 1*. Note that the number of *'s in the address of a

subcube is the dimension or size of the subcube. For convenience, the rightmost

coordinate of an address of a subcube in the n-cube will be referred to as direction 1

and the second to the rightmost coordinate as direction 2, and so on. Let *k denote

k consecutive *'s. A ternary string will also be used to denote the set of integers in

binary representation that result from setting each * to 0 or 1. For example, 01 * *

means the set of integers, {4, 5, 6, 7).

Let {g1 ,g2 , • • -,gn} be a sequence of distinct integers. For 1 < i ≤ n the partial

rank ri of gi is defined as the rank of gi in the set {g1,g2, ..., gi} when the set is

rearranged in ascending order. For example, when {g1,g2,g3}= {3,1,2}, r1 =

r2 = 1, r3 = 2. Let A be a sequence of binary strings of length n — 1, n > 1.

Then, a sequence of binary strings of length n, denoted by Ab\k , b e {0, 1}, can be

obtained by either inserting a bit b into the position immediately right of the kth

bit of every string in A if 1 ≤ k ≤ n — 1, or prefixing a bit b to every string in A

if k = n. Also, let A* denote the sequence of binary strings obtained from A by

reversing the order of the strings in A. For example, if A = {00, 01, 11, 10}, we have

A.1 \2 = {010,011,111,110}, A1\3 = {100,101,111,110}, and A* = {10,11,01,00}.

Using the above notation, Gray codes are defined formally as follows.

Definition 2.3 Let Gn be the GC with parameters gi, 1 ≤ i ≤ n, where {g1,g2,• •

gn} is a permutation of Zn 	{1,2, ...,n}. Then, Gn is defined recursively as

follows.

5

Figure 2.1 Illustration of Gray codes. (a) BRGC. (b)A GC with {g1,g2,g3} =
{2,3,1}.

where r k , as before, is the partial rank of gk .

For example, for a given GC with parameters {g1,g2,g3} = {2, 3, 1}, we get

{r1,r2,r3} = {2,3,1}, G1 = {0,1 }, G2 = {00,01,11,01}, G3 = {000,010,110,100,

001,011,111,101}, where the newly inserted hits are underlined. It is worth

mentioning that the above definition is a generalization of the Gray codes commonly

encountered in the literature, Chan and Saad [11], and that the binary reflected

Cray code(BRGC), the most frequently used GC, can be obtained readily from this

definition by letting gi = i,1≤i≤ n. Figure 2.1 (a) and (b) shows, respectively,

a BRGC and a GC with {g1,g2,g3} = {2,3,1}. Note that a GC with parameters

gi, i = 1, • •, 72, can be obtained be permuting the BRGC in such a way that the

direction i of the BRGC becomes the direction g, of this GC. For simplicity, unless

specified otherwise, Gn will henceforth be referred to as the BRGC.

A set of contiguous integers is called a region and let #[a , 	{k | a < k ≤

b, k ϵ I+} , where I+ denotes the set of positive integers. Let Bn(m) denote the binary

6

representation of an integer m with n-bits and Gn(m,) be the BRGC representation

of m. Also, the notation Lid is used to denote the largest integer which is less than

or equal to b, and [b1 denotes the smallest integer which is greater than or equal to

b. Let ISA denote the cardinality of the set S.

2.2 Processor Allocation Strategies

This section briefly describes and explores the properties of existing representative

processor allocation strategies.

2.2.1 The Buddy Strategy

The Buddy strategy, originally proposed for storage allocation by Knowlton [16]

in 1965, has since been applied to processor allocation in hypercubes. For a job

requesting a subcube of dimension k within a hypercube of dimension n, the Buddy

strategy is as follows: Find the smallest integer j, 0 =< j =< 2n-k 1, such that

all processors in the subcube #[j2k , (j 1.)2k — 	are available, and allocate these

processors to the job. If no such j exists, no subcube can currently be allocated to the

job. Although quite simple, Buddy has poor subcube recognition abilities relative

to other strategies. For this study, we use a particularly efficient implementation of

Buddy that uses n +1 doubly linked lists (one for each subcube dimension), together

with an array of pointers (one for each possible subcube) to keep track of available

subcubes. Under this algorithm, the worst-case time complexity of both allocation

and deallocation is 0(n), where n is the dimension of a hypercube containing 2n

processors.

One form of the buddy strategy was investigated in Purdom and Stigler [14]

and also implemented in the NCUBE/six multiprocessor, NCUBE Corp. [12]. Since

there are 2n processor nodes in a Qn 2n allocation bits are used to keep track of

the availability of all the nodes. An allocation bit with value 0 (1) indicates the

7

availability (unavailability) of the corresponding node. The buddy strategy consists

of two parts, processor allocation and processor relinquishment, which are outlined

below.

Processor Allocation:

Step 1. Set k 	where 	is the dimension of a subcube required to accom-

modate the request

Step 2. Determine the least integer m such that all the allocation bits in the region

#[m2k , (m 	1)2k — 1] are 0's, and set all the allocation bits in the region

#[m2k , (n2 + 1)2k — 1] to l's.

Step 3. Allocate nodes with addresses Bn(i) to the request of 	Vi E #[m2k,

(m +1)2k — 1].

Processor Relinquishment:

Step 1. Reset every pth allocation bit to 0, where Bn(p) E q and q is the address of

a released subcube.

This strategy can be explained by the binary tree in Figure 2.2. The level

where the root node resides is numbered 0, and the nodes in level i are associated

with subcubes of dimension n — i. A node in this binary tree is available only if

all of its offsprings are available. When an incoming request needs a Qk, the buddy

strategy searches the level n — k of the tree from left to right and allocates the first

available subcube to the request. The processors associated with allocation bits in

#[m2k , (n7 + 1)2k — 1] always constitute a Qk whose address is B n- k (m)* k

Similarly to the conventional memory allocation, whenever a processor

allocation or relinquishment takes place, the subcube to he allocated or released

must be associated with a region of contiguous allocation bits. Static allocation is

Figure 2.2 The complete binary tree for the allocation strategy using the buddy system.

8

9

concerned only with how to accommodate incoming requests without considering

processor relinquishment. Figure 2.3 shows a simple example of static allocation.

It is easy to observe that Q4 can accommodate the incoming request sequence

{I1, ..., I8} even if the order of the requests in the sequence was arbitrarily shuffled.

As we shall prove later, this is not a coincidence, but rather, a result of the static

optimality. An allocation strategy is said to be statically optimal if a Qn using the

strategy can accommodate any input request sequence {Ik} k i=1 if Ʃ 	< 2n,

where 	is the dimension of a subcube required to accommodate the request

We shall prove that below, in Theorem 2.1, that the buddy strategy is statistically

optimal.

To facilitate the proof of static optimality of the buddy strategy, it is necessary

to introduce the following definition and two lemmas.

Note that a region is unavailable if any one of the allocation bits associated

with the region is set to 1. Clearly, an allocation bit reset to 0 must always belong to

one and only one hole. Let {hi(j)} i=1 denote the sequence of holes which result from

allocating subcubes to the request sequence {I1,I2, • • •, Ij} 	where uis the number of

holes. Order the hole sequence in such a way that hp(j)must lie before hq (j)iff p < q.

Then we have the following two useful lemmas.

Lemma 2.1 Let {hi(j)} u i=1 be the hole sequence in a Qn following the allocation of

subcubes to the request sequence {Ir} j r=1. 1 , If hi(j) = bnbn-1 	• bn-k+1 *n—k for some

i, then bn_ k+i = 1.

11

These lemmas lead to the following important result.

Theorem 2.1 The buddy strategy is statistically optimal.

Note that when a Qk is needed, the buddy strategy searches for a region

of allocation bits with 0's whose addresses start with an integral multiple of 2k .

This in turn implies that there are only 2n-k Qk's within the n-cube multiprocessor

recognizable by the buddy strategy. Consequently, the buddy strategy underutilizes

processors in the n-cube multiprocessor.

2.2.2 Single Gray Code (SGC)

The Single Gray Code (SGC) allocation strategy, proposed by Chen and Shin [6]

in 1987, is based on the binary-reflectem gray code (BRGC), which is the gray

code having parameters 1, 2, ...,n. A BRGC is a sequence of 2nn-bit codes, n,

and is defined recursively as follows: For C1 = (0, 1)and Gn = (xo, x1, ..., x2. -1) , Gn+1

 = (0xo , 0x1 , ..., 	0x2n-1, 1x2n-1, 1x2n-2, ..., 1x1, 1x0). For example, the

BRGC G3 = {000, 001, 011, 010, 110, 111, 101, 100}. Let n (m)denote the mth code

in the sequence n. The availability of processors is represented by using 2n allocation

bits. A bit having value 0 indicates that the corresponding processor is available,

whereas 1 indicates a processor in use. For a job requesting a subcube of dimension

k:, we find the smallest integer jsuch that all of the (m mod 2n)th allocation bits are

0's, where in E #[j2k-1, (j +2)2k-1 - 1], and allocate the corresponding free subcube

be setting the bits to 1. The number of subcubes recognizable by SGC is twice that

of buddy strategy. The allocation time complexity of this algorithm is 0(2n), and

for deallocation is 0(2k).

Similarly to the buddy strategy, the CC strategy can be described by the

following.

12

Processor Allocation:

Step 1. Set k := |Ij|, where f hi is the dimension of a subcube required to accom-

modate the request

Step 2. Determine the least integer m such that all (i mod 2n)th allocation bits are

0's, where i E #[m2k, (m 2)2k-1 - 1]. Set all these 2k allocation bits to l's.

Step 3. Allocate nodes with addresses n(i mod 2') to Ij, where i E #[m2k,

(m+2)2k-1 -1].

Processor Relinquishment:

Step L Reset every pth allocation bit to 0, where Gn (p) E q and q is the address of

a subcube released.

Since the nodes corresponding to the first and last allocation bits are adjacent

to each other, circular search is allowed in the GC strategy. To show that the

nodes associated with those allocation bits in #[m2k, (m 2)2k-1 — 1] constitute a

Qk, consider another procedure for generating the BRGC, Chan and Saad [14 As

mentioned before, one can assume, without loss of generality, that the GC strategy

uses the BRGC only. It is proved in Reingolg, Nievergelt and Deo [13], that this

procedure indeed generates the BRGC. Given a k-bit BRGC Gk = {m0, d1, ... , d2k -1},

a (k + 1) bit BRGC can be generated by G k+1 	{d00, 41, m11, d70, d20 m21, • •

., m2k -11, d2k -10} .

This procedure can be described by a complete binary tree as in Figure 2.4.

The address of every external node is determined by the coded bits in the path from

the root to the external node, and the BRGC is then obtained by the addresses of

external nodes left to right.

Similarly to the binary tree in Figure 2.2, the nodes in level n— k are associated

with Qk's. It is easy to see from the scheme of coding edges of the tree that two

Figure 2.4 The complete binary tree for the allocation atrategy using the binary reflected. Gray code. 1
3

14

Table 2.1 The Number of Subcubes Recognizable by the Buddy System and a SGC

Q0 Qk,1≤ k ≤ n-1 Qn

The number of distinct subcubes 2' Cnk2 	(n- k)

The number of distinct subcubes
recognizable by the buddy system

2n
2(n-k) 1

The number of distinct subcubes
recognizable by a SGC

2n
2(n-k+ 1)

adjacent nodes in the (n — k + 1)th level form a Qk even when they don't have the

same immediate predecessor. Therefore, when a Qk is requested, the GC strategy

searches from left to right for two adjacent available nodes in level n — k -I- 1, rather

than searching for an available node in level n — k. A Qk will thus be searched for

in the regions whose addresses start with an integral multiple of 2k-1 instead of 2k.

Recall that the later was used by the buddy strategy. This means that the number

of subcubes recognizable by a GC is twice that by the buddy strategy. The number

of subcubes recognizable by each of the two strategies is presented in Table 2.1.

Because of its enhanced subcube recognition ability, the GC strategy can

allocate subcubes more densely at one end, and thus, make larger subcubes available

at the other end for future use. More important, the GC strategy too is statistically

optimal.

Theorem 2.2 The CC strategy is statistically optimal.

15

An example of the GC strategy is given in Figure 2.5, where the input

request sequence is the same as that in Figure 2.3. It can be observed that the

GC strategy outperforms the buddy strategy in the first-fit search and will pack

incoming requests more densely, thus making larger contiguous regions available

than the buddy strategy can.

2.2.3 Multiple Gray Code (MGC)

Although the Single Gray Code strategy has better subcube recognition than

the Buddy strategy does, SGC cannot generally identify all subcubes of a given

dimension. Because different gray codes are associated with different sets of recog-

nizable subcubes, subcube recognition can be improved by using more than one gray

codes. It is therefore important to investigate the relationship between the number

of GC's employed and the corresponding subcube recognition ability. A new gray

code with parameters {g1,g2, gn } is obtained by permuting the BRGC in such a

way that the ith bit (numbered from right to left, beginning with 1) of each member

of the BRGC becomes the gith bit of that member in the new gray code. So, G3

with parameters {2, 3, 1} is {000, 010, 110, 100, 101, 111, 011, 001}. Out of the n!

distinct gray codes that exist for an n-cube, Chen and Shin [6] have shown that the

minimal number required for complete subcube recognition is (n n/2) . For example,

20 gray codes are required for n=6; 252 for n=10; 3432 for n=14 and 184,756 for

n=20. The time complexity of allocation is 0((Lnni2j)2n), whereas deallocation is

0(2k).

2.2.3.1 Subcube Recognition Ability of a SGC Let {g1,g2,...,gn} be a permu-

tation of Zn. By permuting the ith direction of the BRGC to the gi th direction, one

can obtain a GC with parameters gi, i = 1, • • • , n. Since there are n! permutations

of n distinct numbers, there are n! distinct GC's for the n-cube multiprocessor.

16

Figure 2.5 Allocation strategy using the binary reflected Gray code.

17

Moreover, the subcube recognition ability of each GC can be determined by the

following theorem.

Theorem 2.3 A subcube Q k with the ammress bnbn-1 • • • b1 can. be recognizem by a GC

with parameters g1, 1 ≤ i ≤ n, if any of the following three conmitions is satisfiem.

An illustrative example of the subcube recognition ability of a 4-bit BRGC is

shown in Figure 2.6. It is interesting to observe that the node addresses of a subcube

recognizable by a GC are contiguous in that GC. This is the very reason that a GC

can be used to detect the availability of subcubes with the linear search designed for

the conventional memory allocation.

Note that Theorem 2.3 provides a necessary and sufficient condition for the

availability of a subcube to be recognized by a GC. Since different GC's are associated

with different sets of recognizable subcubes, processor improves as the number of

GC's used in an allocation strategy increases. Consider an allocation strategy which

uses three GC's with the following parameters: {g3. j=1

} .51 	j=1 = {1, 2, 3, 4, 5}, {g2j} 5 j=1 = =

{2, 5,1, 3, 4}, and {g3 51 = {3,1, 4, 5, 2}. Then, the set of subcubes recognizable by

this allocation strategy can be determined by Theorem 2.3 and shown in Figure 2.7

with the trivial cases for Qo and Q5 omitted. Also, it is shown from Theorem 2.3 that

every subcube must be recognizable by at least on GC and that the complete subcube

recognition can be achieved if all the n! GC's are used. However, we naturally want

to reduce, if possible, the number of GC's required for complete subcube recognition

in order to minimize the search overhead associated with MGC's. More on this will

be discussed in the following subsubsection.

Figure 2.6 Illustration of Theorem 2.3 when {g1,g2,g3,g4} ={1,2,3,4} when d E
{OM.

18

Figure 2.7 Recognizable subcubes by the given Gray codes, {g1,g2,g3,g4,g5} =
{1,2,3,4,5},{2,5,1,3,4},{3,1,4,5,2} where d E {O,1}.

19

20

2.2.3.2 The Number of GC's for Complete Subcube Recognition Let S

be a set of strings which are permutations of Zn. S is said to have the C property,

Chen and Shin [6], if for any k distinct numbers from Zn there is at least one string

s E S such that these k numbers are the first k numbers of .s.

Lemma 2.3 Let Mk be the set of all combinations of k mistinct integers out of Zn,

0 ≤ k ≤ n, anm let x ≤ y denote that all the integers in a combination x are containem

in another combination y. Then

It is necessary to introduce the Theorem of Matching, Liu [15], to prove Lemma 2.3.

Theorem 2.4 Theorem of Matching [15]. In a bipartite graph 	(V, E), a

complete matching from X C V to Y C V exists 	|A| < R(A)| for every subset of

A of X, where R(A) menotes the set of vertices in Y that are adjacent to vertices in

A.

A matching in a bipartite graph is as selection of edges such that no two edges

are incident with the same vertex, and a complete matching from X to Y in a

bipartite graph is a matching in which there is an edge incident with every vertex in

X. For example, there is a complete matching from X to Y in Figure 2.8 (a), but

not in Figure 2.8(b), since |{x2, x3}| = 2 > R({x2, x3}) = {y4} = 1 in Figure 2.8

(b).

Figure 2.9 (b) illustrates Lemma 2.3 when n = 5 and i =

Theorem 2.5 Let SC be the set of all sets with the C property. Then, 	{|S|} = minsϵsx

where .0 stands for combination.

21

Figure 2.8 Example of illustrating the Theorem of Matching.

22

Figure 2.9 A complete matching from M1 to M2 .

23

An example of determining the GC's required for complete subcube recognition

in a Q5 is given in Figure 2.10. The method introduced in the proof of Theorem 2.4

has placed arcs from M, to Mi-1, 2 ≤ i ≤ n, in Figure 2.10 (a), and the procedure

of determining the required GC's is shown in Figure 2.10 (b).

Let a(n) be the minimal number of GC's required for complete subcube recog-

nition in a Qn. Then, the following corollary follows from Theorem 2.4.

Corollary 2.1 a(n) ≤ Cn n/2

To determine the complexity of Cn n/2 consider the following proposition.

that the complexity of Cn n/2 is still exponential. However, the above result bears

practical importance, since the number of the GC's required for complete subcube

recognition is significantly reduced according to Corollary 2.1; especially, this is true

2.2.4 Maximal Set of Subcubes (MSS)

The MSS strategy was proposed by Dutt and Hayes [1] in 1991. This strategy is

based on the notion of a Maximal Subset of Subcubes (MSS), which is a set of

disjoint subcubes composed of all of the available processors in the hypercube that

has the property of being greater than or equal to all other sets of disjoint subcubes

composed of all of the available processors. As described by Dutt and Hayes [1], a set

of subcubes is considered greater than another (A > B) if the following conditions

exist.

24

Figure 2.10 The GC's required for complete subcube recognition in a Qs. (a)
Deternime the GC's for complete subcube recognition. (b) Modification of GC's in
(a).

25

1) A and B contain the same number of processors.

2) There exists an integer k, 0 =< k =< n, such that for all m, k =< m =< n,

A and B have equal numbers of subcubes of dimension m, and A has more

subcubes of dimension k than B.

The goal of the MSS strategy is to maintain the greatest MSS as a free-list of

available processors after every allocation and deallocation on a subcube. A subcube

can then be allocated directly out of this list if the list contains a subcube of the

requested dimension. If it does not, but it contains larger subcubes, a larger subcube

is chosen and decomposed in such a way that the greatest MSS is left behind. The

major portion of the overhead of the MSS strategy arises from searching for this

best decomposition, because all possible decompositions must be considered. This

decision problem is NP-hard with time complexity O(23n). The MSS strategy goes

beyond the complete subcube recognition provided by MGC, because it not only

finds a subcube of a given size if one exists but also chooses the one whose allocation

will leave behind the greatest MSS.

Note that we basically have two forms of MSS-based subcube allocation

strategies, MSS_STRATEGY and FAST_MSS_STRATEGY that use BEST_FIT and

HUERISTIC_COALESCE, Dutt and Hayes [1]. The primary difference between

these two strategies is that when a k-cube cannot be allocated by BEST_FIT, and

there are at least 2k free nodes, MSS_STRATEGY forms an approximate MSS S,

and again checks to see if there is a k-cube in S, while FAST_MSS_STRATEGY

skips this step when a request cannot be allocated by BEST_FIT.

We now argue that the simple allocation scheme BEST_FIT is actually quite

effective in returning a good approximation of the greatest MSS obtainable after an

allocation.

26

Theorem 2.6

a) Any allocation of a k-cube from the current MSS to an incoming k-cube request

yielms the greatest MSS that can be obtainem after allocating a k-cube.

b) If there are no k-cubes in the current MSS, and m is the mimension of the smallest

cube in MSS (> k), then no MSS obtainem after allocating k-cube by splitting

an m-cube in the current MSS can have more than one cube of each of the

dimensions m-1, m- 2, • • •, k+1

In case b) of Theorem 2.6, it is possible that the greatest MSS after allocation

of a k-cube can obtain more than one k-cube. When BEST_FIT is used to make

allocations from an MSS in such a situation, it returns a Set of Free Subcubes (SFS),

Dutt and Hayes [I], that has exactly one cube of each of the dimensions m-1, m-2 , • •

•, k, which is thus a good approximation of the greatest MSS. For case a), BEST_FIT

returns the greatest MSS possible. Extrapolating this argument, we can state that

when BEST_FIT is used to make allocations from a good approximation S of the

MSS, it always returns a good approximation of the greatest MSS obtainable after

allocating k-cube.

It is easy to see that the worse case time complexity of BEST_FIT is 0(n).

Thus, the complexity of HEURISTIC_COALESCE, Dutt and Hayes [1], is the

dominating factor in FAST_MSS_STRATEGY, whose complexity is thus 0(n2n).

In practice, however, as shown by [1], the time taken by FAST_MSS_STRATEGY

is reasonably small. The worse case complexity of MSS_STRATEGY is greater due

to its use of APPROX_MSS, Dutt and Hayes [1]; however, once more, as shown by

Dutt and Hayes [1], its actual execution time is small. It should be noted that the

worst case complexity of BUDDY_STRATEGY and the SGC method, Chen and

Shin [6] is O(2n), while that of the MGC method, Chen and Shin [6] is O(2n(n n/2

Furthermore, neither of these allocation strategies attempts to reduce fragmentation

27

of the hypercube, whereas MSS_STRATEGY and FAST_MSS_STRATEGY do so to

a certain extend, due to the fact that they always maintain a good approximation

of the MSS.

CHAPTER 3

PARTITIONABLE MULTI PROCESSOR ALLOCATION
ALGORITHM

3.1 Formal Description of the Problem

In an n-dimensional hypercube (n-cube), multiprocessor, a task is viewed as a set of

interacting modules, which must be assigned to a cube. Thus, processor allocation

in an n-cube multiprocessor consists of two sequential steps. The first one is to find

the number of resources that should be allocated on a multiprocessor for running an

application program. An application program/algorithm is represented by a number

of interacting modules where each module can be assigned to a processing node of

a hypercube. The number of nodes required for a task (job/algorithm) depends

on the task flow graph. It has been reported that some regular interconnection

topologies such as the ring, tree, and mesh can be embedded on a hypercube, Saad

and Schultz [5]. This implies that if we know the size of a topology, the subcube size

for accomodating the task is known. Of coarse, not all topology sizes are valid, since

the proposed algorithm Allocation Strategy I (AS]) does not allow external fragmen-

tation. So, for certain topologies which are not possible we might have some internal

fragmentation, which at maximum, we will have three processors unallocated. Hence,

we assume that the size of the subcube for an incoming request is known.

The second step in the processor allocation is to locate and assign the required

number of resources, as required by a task, on a multiprocessor. On a hypercube, this

problem reduces to finding and allocating an appropriate subcube in the machine.

This second step of the processor allocation scheme on a hypercube is addressed in

this thesis. Although this is the second part of the two-step process, we would call

it processor allocation without loss of generality.

28

29

An efficient processor allocation scheme maximizes the resource utilization,

reduces external as well as internal fragmentation, and finally improves system

performance. An allocation policy is called static if the incoming requests are

considered for allocation only at some specific time intervals. It does not consider

deallocation (processor relinguishment) at any arbitrary time. On the other hand,

a dynamic policy can handle processor allocation and deallocation at any time

depending on the arrival and completion of jobs. A dynamic policy gives better

utilization of resources than a static allocation. However, finding a perfect dynamic

policy at minimal overhead is extremely hard. Furthermore, the allocation problem

becomes more difficult when some specific nodes must be allocated and/or excluded

for some specific tasks. The inclusion situation occurs when some resources are

reachable only through specific nodes. The exclusion problem arises when some nodes

are faulty or are designated for other purposes and, therefore, cannot be allocated.

3.2 Allocation Strategy I (ASI)

This section describes the allocation strategy ASI that we propose, which has the

ability to allocate not only complete cubes, but also incomplete ones.

One possible approach in implementing this allocation is to assign a large

cube of dimension 7n that can accommodating the y nodes, i.e., m ≥ clog 0, and

deallocate the unnecessary (2'n — y) nodes. If an m-cube is not possible, the number

of nodes y is divided into smaller subcubes. For example, if a task needs 11 nodes,

then the request is divided into 8 and 4-node requests. The 8 nodes (3-cube) and the

4 node (2-cube) are allocated such that they are adjacent. Instead of allocating a

2-cube, one can allocate a 1-cube and a 0-cube to make the number of nodes exactly

11. This thesis focuses on allocating exact number of nodes, and it is achieved by

using the (cyclic) BRGC. Under this algorithm, the worst-case time complexity of

30

both allocation and deallocation is O(n), where n is the dimension of the hypercube

containing 2n processors.

Definition 3.1 The (cyclic) binary reflected gray code of n bits BRGC(n) is mefined

recursively by BRGC(n)={0•BRGC(n - 1), 1•BRGC-1 (n - 1)}, where "a" menotes

concatenation, BRGC-1(n — 1) denotes the sequence merivem by reversing the order

of elements in the sequence BRGC(n — 1), and BRGC(1)={0,1}.

Example 3.1 BRGC(2)={ 00, 01,11,10} and BRGC(3)={000,001,011,010,110,111,

101,100 .

Theorem 3.1 Given the request of size y, assuming y < 2n, the ASI algorithm

guaranteem that the maximum number of hops is given by [log(m)], where m is the

smallest possible cube that the incomplete y-cube fits in.

Proof. 	It has been known that the maximum number of hops in an m-cube is

equal to log(m). Since y < 2', by taking the ceiling of the log(m) ([log(m)]),

it is garanteed that it will be equal to the maximum number of hops. 	n

Theorem 3.2 The remaining r nomes that have not yet been allocated, are gurandeed

to be multiples of and can form at maximum a complete 5-mimensional hypercube.

Proof. 	Due to the restrictions in our algorithm, we do not allocate any processors

unless the remaining r nodes are multiples of 4. Furthermore, our algorithm

requires that the remaining r processors form complete cubes of maximum size

of 5. Thus, Theorem 3.2 holds. 	 n

Any gray code has the property that any two neightboring codes in the sequence

of all possible 2' n-bit numbers differ in a single bit. The cyclic version of the

BRGC(n) is used throughout this thesis. The presentation of the ASI is very detailed

for the purpose of clarity, and the steps are as follows.

31

Processors Allocation

Step 1. Give the size of the n-cube, and the request of size y.

Step 2. Calculate the number p, of incomplete y-cubes that can be allocated from

the n-cube, where p = ([2" 10), and y-cube=incomplete cube with y nodes.

Step 3. Verify that by allowing these p possible incomplete cubes, the number of

remaining r nodes, is a multiple of 4. Algorithmically, this can be verified by

forming the r mod 4 function and the outcome should be equal to 0, (r%4 0).

Step 4. If the remaining nodes r, are not a multiple of 4, then increase the value of

the request size y by 1, and go back to step 2; otherwise, skip this step and go

to step 5. (Note, that steps 2 and 3, might be repeated at maximum 3 times,

thus, having at 3 nodes unallocated. If all the above steps are satisfied, then

we do the allocation.)

Step 5. Generate the address space of the n-cube using the BRGC(n.).

Step 6. The addresses for the p y-cubes are generated using the following algorithm.

Assuming that we number the y-cubes from 0 to p — 1. Let Yo be the address

range for the 0th y-cube, and in general Yn is the address of the Yn-1 y-cube.

Algorithmically,

32

where A0 = bin(y - 1), and bin(x) is the binary representation of x.

Step 7. Let g be the number r of unallocated nodes in the n-cube.

Step 8. If (g/temp) 0, it means that more than temp nodes (at first temp = 32),

are available, therefore allocate sequentially starting from address Ap + 1 a

5-cube (a 5-dimensional hypercube). Skip to step 10.

Step 9. If (g/temp) = 0, it means that the less than temp nodes (at first temp = 32),

are available, so reduce the size of temp nodes (32 	16 	8 —3 4), and go

back to step 8. (Note, that if temp = 4, it means that these 2-cube are the last

nodes available from the n-cube and must exit the terminate procedure.)

Step 10. Reduce the size of temp nodes (16 	8 	4), and go back to step 8.

(Once again if at this stage temp = 4, exit the terminate procedure.)

Example 3.2 Let us assume that n = 5 and a request of size y = 7 comes along. We

calculate the number p, of incomplete 7-cubes that can be allocated from the complete

5-cube, by p = ([2n/y]) = ([25/ 7j) 	([32/7j) = 4. We then verify that by allowing

4 possible incomplete cubes, the number of the remaining r nodes, is a multiple of 4,

r = (25-4*7) = (32-28) = 4 	r/4 = 4/4 = 0. Then generate the address space of

the 5-cube using the BRGC(5). We let g be the number r = 4 of the unallocated nodes

in the 5-cube. Then let temp = 32 and check if g/temp = 4/32 is 0 or not. In this

case g/temp = 0, thus the unallocatem nodes are inmeed less than 32 so we decrease

temp = 16. Once again g/temp = 0, so we mecrease temp = 8, and check if y 1 temp

is = 0, which it is, thus g = 4 < 8. Then mecrease temp to its smallest possible

value 4. In this case g/temp = 4/4 	0 it is 1, thus we can allocate sequentially a

2-cube, and thus we have allocatem all the nomes of the 4-cube anm we stop. The final

allocation of the nomes is given graphically in Figure 3.1, and bitwise in Table 3.1.

33

Figure 3.1 Illustration of Example 3.2

34

Table 3.1 Illustration of bit-wise allocation of Example 3.2

Partitions

1. 2 3 4 55

00000 00100 01.001 11111 10010
00001 01100 01000 11101 10011
00011 01101 11000 11100 10001
00010 01111 11001 10100 10000
00110 01110 11011 10101
00111 01010 11010 10111
00101 01011 11110 10110

Example 3.3 Let us assume that n = 6 and a request of size y = 22 comes along.

We calculate the number p, of incomplete 22-cubes that can be allocated from the

complete 6-cube, by p = ([2n/y]) = ([26/22]) = ([64/22]) = 2. We then verify that

by allowing 2 possible incomplete cubes, the number of the remaining r nodes, is a

multiple of 4, r = (26 -2*22) = (64-44) = 20 	r/4 = 20/4 = 0. Then generate the

address space of the 6-cube using the BRGC(6). We let g be the number r = 20 of the

unallocated nomes in the 6-cube. Then let temp = 32 and check if g/temp = 22/32

is 0 or not. In this case g/temp = 0, thus the unallocated nodes are inmeed less than

32 so we mecrease temp = 16. Now g/temp = 20/16 0, thus, the unallocated nodes

are more than 16 so we allocated sequentially a 4-cube. Then we update the number

g of the unallocatem nomes by letting g = r — 16 = 20 — 16 = 4. We also decrease

temp = 8, and check if g/temp is = 0, which it is, thus g = 4 < 8. Then temp is

mecreasem to its smallest possible value 4. In this case g/temp = 4/4 0, thus we can

allocate sequentially a 2-cube, and we have allocatem all the nomes of the 4-cube and

the algorithm stops. The final allocation of the nomes is given graphically in Figure

3.2.

Table 3.2 Illustration of bitwise allocation of Example 3.3

Partitions

1 2 3 4
000000 011101 111010 100010
000001 011100 111011 100011
000011 010100 111001 100001
000010 010101 111000 100000
000110 010111 101000
000111 010110 101001
000101 010010 101011
000100 010011 101010
001100 010001 101110
001101 010000 101111
001111 110000 101101
001110 110001 101100
001010 110011 100100
001011 110010 100101
001001 110110 100111
001000 110111 100110
011000 110101
011001 110100
011011 111100
011010 111101
011110 111111
011111 111110

35

Figure 3.2 Illustration of Example 3.3

36

CHAPTER 4

SIMULATION RESULTS AND DISCUSSION

In this chapter, we will show how the ASI outperforms the existing allocation

algorithms by using 3 simple examples illustrated in numerical and graphical forms.

For the first simulation, let us assume that we have available a 5-cube, (thus

32 processors), and the requests are for cubes with 7 processors. All of the existing

allocation strategies are able to allocate 4 partitions of 8 processors (3-cube), and

thus we will have 1 processor in each partition that will not be allocated. In the

case of the ASI, we are able to allocate 4 partitions of 7 processors each, thus having

incomplete cubes, and the remaining 4 processors are grouped together to form a

2-cube. Therefore, ASI allocates all the processors without having any unused ones.

Figure 4.1 shows how the buddy, SGC, MGC and MSS allocation strategies

will allocate the 4 partitions, by leaving one processors unallocated in each 3-cube.

On the other hand, Figure 4.2 shows how the ASI allocation strategy allocates the 4

partitions of 7 processors, as well as the grouping of the remaining 4 into a 2-cube.

Furthermore, if we go into more complex structures, the ASI algorithm, not

only outperforms the existing algorithms by allocating the unused processors to the

other tasks, but also can create more partitions. Thus one can decrease the finish

time of the parallel tasks.

To show how the ASI can form more partitions than the other algorithms in

certain cases, let us assume that we have a 6-cube, and we have requests of 10

processors per partition. The buddy, SGC, MGC and MSS algorithms, are able to

allocate 4 partitions of 4-cubes, and thus we will have 6 processors in each partition

that will not be used by the other tasks. On the other hand, the ASI algorithm is able

to allocate 6 partitions of exactly 10 processors each by forming incomplete cubes.

37

38

Figure 4.1 Illustration of how Buddy, SGC, MGC and MSS allocate 4 partitions
and leaving 1 processor per partition unused.

39

Figure 4.2 Illustration of how ASI allocates 4 partitions and uses the remaining
processors to form a 2-cube.

40

It will also use the remaining processors to form a 2-cube that can be allocated to

some other task. If we assume that we had 12 tasks to run, the existing algorithms

would require to turn around 3 times, thus allocating 4 4-cubes 3 times. The ASI

algorithm, requires only 2 times of turn around, thus having a speedup of 3/2 over

the existing algorithms for this siduation.

Figure 4.3 shows how the buddy, SGC, MGC and MSS allocation strategies

will allocate the 4 partitions, by leaving 6 processors unused in each 4-cube. On

the other hand, Figure 4.4 shows how the ASI algorithm allocates 6 partitions of 10

processors, as well as using the 4 unallocated processors to form a 2-cube.

Furthermore, let us assume that we have a 6-cube, and we have requests of 5

processors per partition. The buddy, SGC, MGC and MSS algorithms, are able to

allocate 8 partitions of 3-cubes, and thus we will have 3 processors in each partition

that will not be used by the other tasks. On the other hand, the ASI algorithm

is able to allocate 12 partitions of exactly 5 processors each by forming incomplete

cubes. The latter, also uses the remaining processors to form a 2-cube that can be

allocated to some other task. If we assume that we had 24 tasks to run, the existing

algorithms would require to turn around 3 times, thus allocating 8 3-cubes 3 times.

The ASI algorithm, requires only 2 times of turn around, thus having a speedup of

3/2 over the existing algorithms for this siduation.

Figure 4.5 shows how the buddy, SGC, MGC and MSS allocation strategies

will allocate the 8 partitions, by leaving 3 processors unused in each 3-cube. On

the other hand, Figure 4.6 shows how the ASI algorithm allocates 12 partitions of 5

processors, as well as using the 4 unallocated processors to form a 2-cube.

41

Figure 4.3 Illustration of how Buddy, SGC, MGC and MSS allocate 4 partitions
and leaving 6 processors per partition unused.

42

Figure 4.4 Illustration of how ASI allocates 6 partitions and uses the remaining
processors to form a 2-cube.

43

Figure 4.5 Illustration of how Buddy, SGC, MGC and MSS allocate 8 partitions
and leaving 3 processors per partition unused.

44

Figure 4.6 Illustration of how ASI allocates 12 partitions and uses the remaining
processors to form a 2-cube.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Efficient processor allocation is essential for achieving high performance on a multi-

processor system. In this thesis, we have first investigated the properties of the

buddy, SGC, MGC, and MSS allocation strategies, and then we proposed a new

algorithm, Allocation Strategy I (ASI), using the BRGC. The latter outperforms

the former by providing better subcube recognition and allocation abilities. We have

considered allocation strategies using MGC's, and have seen the relationship between

the MGC's used and the corresponding subcube recognition ability. The minimal

number of GC's required for complete subcube recognition in a Qn is found to be

less than or equal to Cn n/2, which is significantly less than n! for a brute-force

enumeration.

The existing allocation strategies cannot efficiently support multiple partitions

of incomplete cubes, while the proposed AST not only supports incomplete cubes, but

also allocated the unused ones to other tasks. Also, it has been shown to outperform

the existing ones in simple parallel problems.

This work can be furthered improved by having the ability to allocate smaller

partitions of unused processors, like a 0-cube or a 1-cube.

45

APPENDIX A

Program

/* 	 */
/* Program I */
/* Calculates all possible partitions for a specific */
/* Hypercube size. */

/* 	 */

/* #define */

/* 	 */
#define N 6
#define TPN 64 	 10
#define z 5

/* header files */

/* 	*/
#include <stmio.h>
#include <math.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h> 	 20

#include <time.h>

void main 0
{

int j, j, k, n;
int x, y;
int p, r, t;
int a2, b2, c2; 	 30

int a3, b3, c3;
int a', 	;
int a5, b5, c5;
int rgc[TPN][N] ;
int cntr=0, cntrp=0, tmp1 ;

FILE *fp ;

46

47

if((fp1=fopen("data.txt","w"))==NULL) 	 40

{

printf("could not open file data.txt \n") ;
exit(1) ;

}

system("clear") ;

/* 	 */

/* calculate and verify partitions */

/* 	 */ 	 50

printf("Starting calculations . . .") ;

fprintf (fp1 ,"\n") ;
fprintf (fp ,"Results from Algorithm I\n") ;
fprintf (fp1," 	 \n") ;

fprintf (fp1 ,"\n") ;

j=N;

{
60

n=pow(2,j) ;
k=(n/4)

fprintf(fp1,"available processors: %d\n", n) ;
fprintf(fp1,"maximum number of partitions: %d\n", k) ;

i=z ;
{

p=(n/i) ;
if(p==0) 	 70

printf("invalid request\n") ;

;

a5=32 ;

b5=(r%a5);
c5=(r / a5) ;

a4=16 ;
b4 =(b5%a4);

c4=(b5/a4) ; 	 80

a3=8 ;

48

b3=(b4%a3) ;
c3=(b4/ a3) ;

a2=4 ;
b2=(b3%a2) ;

c2=(b3 / a2) ;

if(b2==0) 	 90

{
fprintf (fp1 ,"%d x %d, ", p, i) ;

if(c5!=0)
fprintf (fp1 ,"%d x %d, ", c5, a5) ;

if(c4!=0)
fprintf 	(fp1, "%d x %d, ", c{, 	;

if (c3!=0)
fprintf (fp1 ,"%d x %d, ", c3, a3) ;

if(c2!=0)
fprintf(fp1,"%d x %d, ", c2, a2) ; 100

fprintf (fp1,"\n") ;
}

}
fprintf (fp1, "------------------ 	\n") ;

}

printf(" done. \n") ;

/* 	 */
110

/* 	 */
/* allocate complete and incomplete cubes */

/* 	 */
printf("Starting allocation 	 ")

/* create rgc */
create_rgc(rgc);

120

fprintf(fp1, " \n") ;
fprintf (fp1," Processor Allocation \n") ;

fprintf (fp 1," 	 \n") ;
for(i=0;i<TPAT;i++)
{

fprintf (fp1," 	") ;

49

for(j=0;j<N;j++)
{

fprintf (fp 1 ,"%d" ,rgc[i][j])
130

fprintf (fp1," \\\\ \n") ;
cntr=cntr++ ;
if(cntr==z)
{

fprintf (fp 1," 0 	\n") ;
cntr=0 ;
cntrp=cntrp++ ;

}
if(cntrp==p)

140

if((cntr==a5)&&(c4 != 0))
fprintf (fp 1," 1 	 \n") ;

if((cntr==a5*c5 + a4*c4)&&(c3!=0))
fprintf (fp 1," 2 	\n") ;

/* 	 if((cntr,a4)&&(c5==0))
fprintf(fpl,"3 	\n") ;

printf ("\n"); 	150

printf (" cntr=%d\n" cntr);
printf (" c5=%d , c4=%d, c3=%d\n");

if((cntr== a5 c5 + *c4 + a3*c3))
fprintf (fp1,"4 	 \n") ;

7* 	 if((cntr==a3)&&(c4==0)&&(c5==0))
fprintf(fpl,"5 	-\n") ;

if(cntr==a5*c5+a4 *c4 +a3*c3+a2*c2) 	160

fprintf (fp 1," 6 	\n") ;

/* 	 if((cntr==a2)&&(c3==0)&&(c4==0)&8(c5==0))
fprintf(fpl,"7 	-\n") ;

}
}
fprintf (fp 1," 	 \n") ;
fprintf (fp ,"\n") ;

170

50

printf ("done. \n") ;

fclose(fp1);

} 	* end of algorithm */
/* 	*/

/* 	 180

functions

*/

create_rgc(rgc)
int rgc[TPN][N] ;

{

	

int i=0,j=0,k=0,l=0 ; 	 190

int r_seq ;
int mid ;
int reflect_offset ;

r_seq= TPN ;

for(i=0;i< N ;i++)
200

r_seq=r_seq/2 ;

for(j=0;j <r_seq;j ++)
rgc[j][i]=0 ;

for(j=r_seq;j <2*r-seq;j ++)
rgc[j][i]=1 ;

/* reflect */
210

	

for(k=i; k>0;k--)

{
mid=(TPN/ power(2,k))-1 ;
reflect_offset =1 ;

51

for(l= mid ;l> —1;1— —)
{

rgc[mid+reflect_offset][i]=rgc[l][i] ;
reflect_offset++ ;

220

}

/* for i */

/* function */

/* 	 */
int power(b,e)
int b; 	 230

int e;
{

int t ;
t=b;

for(e--;e;e--)
b*=t;

return b ;

/* function */ 	 240

/* */

APPENDIX B

Sample Run

Results from Algorithm I

available processors: 64
maximum number of partitions: 16
12 x 5, 1 x 4,

Processor Allocation 	 10

000000 \\

000001 \\

000011 \\

000010 \\

000110 \\

000111 \\

000101 \\

000100 \\ 	 20

001100 \\

001101 \\

001111 \\

001110 \\

001010 \\

001011 \\

001001 \\

001000 \\ 	 30

011000 \\

011001 \\

011011 \\

011010 \\

011110 \\

011111 \\

011101 \\

52

53

011100 \\
010100 \\ 	 40

010101 \\
010111 \\
010110 \\
010010 \\
010011 \\

010001 \\
010000 \\
110000 \\ 	 50

110001 \\
110011 \\

110010 \\
110110 \\
110111 \\
110101 \\
110100 \\

111100 \\ 	 60

111101 \\

111111 \\
111110 \\
111010 \\

111011 \\
111001 \\
111000 \\
101000 \\
101001 \\ 	 70

101011 \\
101010 \\
101110 \\
101111 \\
101101 \\

101100 \\
100100 \\
100101 \\ 	 80

100111 \\
100110 \\

54

100010 \\
100011 \\
100001 \\
100000 \\

90

REFERENCES

1. S. Dutt and J. P. Hayes, "Subcube allocation in hypercube computers," IEEE
Trans. Comput., vo. 40, pp. 341-352, Mar. 1991.

2. J. Kim, C. R. Das, and W. Liu, "A top-down processor allocation scheme for
hypercube computers," IEEE Trans. Parallel Distrib. Syst., vol. 2, pp.
20-30, Jan. 1991.

3. S. Dutt and J. P. Hayes, "On allocating subcubes in a hypercube multipro-
cessor," in Proc. 5rd Conf. Hypercube, pp. 801-810, Jan. 1988

4. F. Harary, J. P. Hayes and H. J. Wu, "A survey of the theory of hypercube
graphs," Comput. Math. Appl., vol. 15, no. 4, pp. 277-289, 1988.

5. Y. Saad and M. H. Schultz, "Topological. properties of hypercube," IEEE Trans.
Comput., vol. 37, pp. 867-872, July 1988.

6. M. S. Chen and K. G. Shin, "Processor allocation in an n-cube multiprocessor
using gray codes," IEEE Trans. Comput., vol. C-36, no. 12, pp. 1396-1407,
Dec. 1987.

7. P. J. Denning, "Parallel computing and its evolution," Commun. Ass. Comput.
Mach., vol. 29, pp. 1163-1167, Dec. 1986.

8. B. Becker and H. U. Simon, "How robust is the n-cube?," in Proc. 27th Annu.
Symp. Foundations Comput. Sci., pp. 283-291, Oct. 1986.

9. M. S. Chen and K. G. Shin, "Embedment of interacting task modules into a
hypercube multiprocessor," Proc. Second Hypercube Conf., pp. 121-129,
Oct.1986.

10. J. P. Hayes et al.," A microprocessor-based hypercube suppercomputer," IEEE
Micro, vol.6, no. 5, pp. 6-17, Oct. 1986.

11. T. F. Chan and Y. Saad, "Multigrad algorithms on the hypercube multipro-
cessor," IEEE Trans. Comput., vol. C-35, pp. 969-977, Nov. 1986.

12. NCUBE Corp., "NCUBE/ten: An overview," Beaverton, OR, Nov. 1985.

13. E. M. Reingolg, J. Nievergelt, and N. Deo, Combinatorial algorithm, Englewood
Cliffs, NJ, Prentice-Hall, 1977.

14. P. W. Purdom, Jr. and S. M. Stigler, "Statistical properties of the buddy
system," J. Ass. Comput. Mach., vol. 17, pp. 683-697, Oct. 1970.

15. C. L. Liu, Introduction to Combinatorial Mathematics, New York, McGraw-Hill,
1968.

55

56

16. K. C. Knowlton, "A fast storage allocator," Commun. Ass. Comput. Mach., vol.
8, pp. 623-625, Oct. 1965

	Processor allocation for partitionable multiprocessor systems
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Definitions, Notations and Review of Existing Allocation Algorithms
	Chapter 3: Partitionable Multi Processor Allocation Algorithm
	Chapter 4: Simulation Results and Discussion
	Chapter 5: Conclusions and Future Work
	Appendix A: Program
	Appendix B: Sample Run
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

