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ABSTRACT 

PROCESSOR ALLOCATION FOR PARTITIONABLE 
MULTIPROCESSOR SYSTEMS 

by 
Nicholaos C. Antoniou 

The processor allocation problem in an n-dimensional hypercube multipro-

cessor is similar to the conventional memory allocation problem. The main objective 

is to maximize the utilization of available resources as well as minimize the inherent 

system fragmentation. In this thesis, a new processor allocation strategy is proposed, 

and compared with the existing strategies, such as, the Buddy strategy, the Single 

Gray Code strategy (SGC), the Multiple Gray Code (MGC), and the Maximal Set 

of Subcubes (MSS). We will show that our proposed processor allocation strategy 

outperforms the existing strategies, by having the advantage of being able to allocate 

unused processors to other jobs/algorithms. 
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CHAPTER 1 

INTRODUCTION 

Hypercube multiprocessors have been drawing considerable attention mainly due to 

their structural regularity for easy construction and high potential for the parallel 

execution of various algorithms. A hypercube multiprocessor is often viewed as a 

personal supercomputer since it has the potential to surpass the fastest supercom-

puters at a fraction of the cost, Denning [7]. Numerous research efforts related to 

hypercube architectures, operating systems, programming languages, etc., have been 

under taken, and several research and commercial hypercube multiprocessors have 

been built. 

A task arriving at a hypercube multiprocessor, called an incoming request, can 

be specified in a graphic form and must be assigned optimally to a subcube in the 

multiprocessor for execution. Upon completion of the execution, the subcube used 

for the task must be released for later use. Efficient allocation and/or deallocation 

of node processors in a h.ypercube multiprocessor is a key to its performance and 

utilization. The processor allocation in a hypercube multiprocessor consists of two 

steps: 1) determination of the size of a subcube to accommodate an incomming 

task, and 2) location of a subcube of the size determined by 1) within the hypercube 

multiprocessor. The first step is treated in Chen and Shin [9] and the second step is 

the subject of this thesis. Results on the existence of subcubes of certain dimensions 

after link/node failures have been reported elsewhere, Becker and Simon [8]. 

This thesis addresses the problem of locating available subcubes after a 

sequence of subcube allocations and relinquishments, thereby distinguishing this 

work from those described in Becker and Simon [8], and Chen and Shin [9]. 

1 
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Given a node addressing scheme, a set of contiguous nodes forms a subcube 

in an n-cube multiprocessor, similar to a set of memory pages forming a memory 

segment. This fact implies a close resemblance of the processor allocation problem 

in the n-cube multiprocessor to the conventional memory allocation problem. In 

both problems, we want to maximize the utilization of available resources and also 

minimize inherent systems fragmentation. Five allocation strategies for the n-cube 

multiprocessor are addressed here: the buddy strategy which is based on the buddy 

system, Knowlton [16], the single gray code (SGC) strategy which is based on the 

binary-reflected gray code(BRGC), Chen and Shin [6], the multiple gray code (MGC) 

strategy which is also based on the BRGC, Chen and Shin [6], the maximal set 

of subcubes (MSS) strategy which is based on the notion of a maximal subset of 

subcubes, Dutt and Hayes [1], and our newly proposed strategy, allocation strategy 

I (ASI). 

We will explore the properties of the buddy, SGC, MSG, and MSS allocation 

strategies, and our processor allocation strategy allocation strategy I will be proposed 

to remedy the processor underutilization problem of the above mentioned allocation 

strategies. The performances of the current strategies and the proposed one will be 

comparatively analyzed. 

The thesis is organized as follows. Chapter 2 introduces the necessary 

definitions and notations as well as a review of the four current allocation strategies. 

Chapter 3 provides the formal description of the problem as well as a detailed 

account of the proposed algorithm and the approach. Chapter 4 presents simulation 

results of the various allocation strategies implemented and a discussion of the 

performance of these allocation strategies. The thesis concludes with chapter 5, 

which also includes future work and references. 



CHAPTER 2 

DEFINITIONS, NOTATIONS AND REVIEW OF EXISTING 
ALLOCATION ALGORITHMS 

This chapter introduces the necessary definitions and notations used in this thesis 

as well as a brief study of existing representative processor allocation strategies. For 

simplicity sake, we will ignore the overhead for allocation and deallocation, and thus 

jobs are not penalized for these overheads. This simplification gives a strong benefit 

of the doubt to the more sophisticated strategies, which in practice incur considerably 

more overhead that the simpler strategies do. Even with this rather unfair advantage, 

however, we show that the most sophisticated strategies are generally capable of little 

or no improvement in performance over the simplest strategies. 

2.1 Definitions and Notations 

For a formal description of the n-cube structure, it is necessary to define the product 

of graphs as follows. 

Definition 2.1 Let Gp  = (Vp, Ep) be the product of two graphs G1  = 	E1) and 

G2  = (V2,E2), denoted by Gp  = G1  x G2. Then, Vp = V1 * V2 and two nodes 

u = (u1,u2) and v = (v1,v2) are adjacent in Gp 	= v1  and u2  adjacent to v2] 

or /u1  adjacent to v1  and u2  = v2]. 

An n-cube can now be defined as follows. 

Definition 2.2 An n-cube, Qn, is defined recursively as follows. 

a) Q0  is a trivial graph with one node, and 

b) Qn = K2 X Qn-1, where K2 is the complete graph with two nodes. 

3 
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Let Ʃ  be the ternary symbol set {0,1,*}, * is a DON'T CARE symbol. Then, 

every subcube of an n-cube can be uniquely represented by a string of symbols in E. 

Such a string of ternary symbols is called the address of the corresponding subcube. 

For example, the address of the subcube Q2 in a Q4  which consists of nodes 0010, 

0011, 0110, and 0111 is 0 * 1*. Note that the number of *'s in the address of a 

subcube is the dimension or size of the subcube. For convenience, the rightmost 

coordinate of an address of a subcube in the n-cube will be referred to as direction 1 

and the second to the rightmost coordinate as direction 2, and so on. Let *k  denote 

k consecutive *'s. A ternary string will also be used to denote the set of integers in 

binary representation that result from setting each * to 0 or 1. For example, 01 * * 

means the set of integers, {4, 5, 6, 7). 

Let {g1 ,g2 , • • -,gn} be a sequence of distinct integers. For 1 < i ≤  n the partial 

rank ri of gi  is defined as the rank of gi  in the set {g1,g2, ..., gi} when the set is 

rearranged in ascending order. For example, when {g1,g2,g3}= {3,1,2}, r1  = 

r2  = 1, r3  = 2. Let A be a sequence of binary strings of length n — 1, n > 1. 

Then, a sequence of binary strings of length n, denoted by Ab\k , b e {0, 1}, can be 

obtained by either inserting a bit b into the position immediately right of the kth 

bit of every string in A if 1 ≤ k ≤ n — 1, or prefixing a bit b to every string in A 

if k = n. Also, let A* denote the sequence of binary strings obtained from A by 

reversing the order of the strings in A. For example, if A = {00, 01, 11, 10}, we have 

A.1 \2  = {010,011,111,110}, A1\3 = {100,101,111,110}, and A* = {10,11,01,00}. 

Using the above notation, Gray codes are defined formally as follows. 

Definition 2.3 Let Gn be the GC with parameters gi, 1 ≤ i ≤ n, where {g1,g2,• • 

gn} is a permutation of Zn 	{1,2, ...,n}. Then, Gn is defined recursively as 

follows. 
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Figure 2.1 Illustration of Gray codes. (a) BRGC. (b)A GC with {g1,g2,g3} = 
{2,3,1}. 

where r k , as before, is the partial rank of gk . 

For example, for a given GC with parameters {g1,g2,g3} = {2, 3, 1}, we get 

{r1,r2,r3} = {2,3,1}, G1  = {0,1 }, G2 = {00,01,11,01}, G3 = {000,010,110,100, 

001,011,111,101}, where the newly inserted hits are underlined. It is worth 

mentioning that the above definition is a generalization of the Gray codes commonly 

encountered in the literature, Chan and Saad [11], and that the binary reflected 

Cray code(BRGC), the most frequently used GC, can be obtained readily from this 

definition by letting gi = i,1≤i≤ n. Figure 2.1 (a) and (b) shows, respectively, 

a BRGC and a GC with {g1,g2,g3} = {2,3,1}. Note that a GC with parameters 

gi, i = 1, • •, 72, can be obtained be permuting the BRGC in such a way that the 

direction i of the BRGC becomes the direction g,  of this GC. For simplicity, unless 

specified otherwise, Gn will henceforth be referred to as the BRGC. 

A set of contiguous integers is called a region and let #[a , 	{k | a < k ≤ 

b, k ϵ  I+} , where I+ denotes the set of positive integers. Let Bn(m) denote the binary 
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representation of an integer m with n-bits and Gn(m,) be the BRGC representation 

of m. Also, the notation Lid is used to denote the largest integer which is less than 

or equal to b, and [b1 denotes the smallest integer which is greater than or equal to 

b. Let ISA denote the cardinality of the set S. 

2.2 Processor Allocation Strategies 

This section briefly describes and explores the properties of existing representative 

processor allocation strategies. 

2.2.1 The Buddy Strategy 

The Buddy strategy, originally proposed for storage allocation by Knowlton [16] 

in 1965, has since been applied to processor allocation in hypercubes. For a job 

requesting a subcube of dimension k within a hypercube of dimension n, the Buddy 

strategy is as follows: Find the smallest integer j, 0 =< j =< 2n-k 1, such that 

all processors in the subcube #[j2k , (j 1.)2k  — 	are available, and allocate these 

processors to the job. If no such j exists, no subcube can currently be allocated to the 

job. Although quite simple, Buddy has poor subcube recognition abilities relative 

to other strategies. For this study, we use a particularly efficient implementation of 

Buddy that uses n +1 doubly linked lists (one for each subcube dimension), together 

with an array of pointers (one for each possible subcube) to keep track of available 

subcubes. Under this algorithm, the worst-case time complexity of both allocation 

and deallocation is 0(n), where n is the dimension of a hypercube containing 2n 

processors. 

One form of the buddy strategy was investigated in Purdom and Stigler [14] 

and also implemented in the NCUBE/six multiprocessor, NCUBE Corp. [12]. Since 

there are 2n  processor nodes in a Qn 2n allocation bits are used to keep track of 

the availability of all the nodes. An allocation bit with value 0 (1) indicates the 



7 

availability (unavailability) of the corresponding node. The buddy strategy consists 

of two parts, processor allocation and processor relinquishment, which are outlined 

below. 

Processor Allocation: 

Step 1. Set k 	where 	is the dimension of a subcube required to accom- 

modate the request 

Step 2. Determine the least integer m such that all the allocation bits in the region 

#[m2k , (m 	1)2k — 1] are 0's, and set all the allocation bits in the region 

#[m2k , (n2 + 1)2k — 1] to l's. 

Step 3. Allocate nodes with addresses Bn(i) to the request of 	Vi E #[m2k, 

(m +1)2k  — 1]. 

Processor Relinquishment: 

Step 1. Reset every pth allocation bit to 0, where Bn(p) E q and q is the address of 

a released subcube. 

This strategy can be explained by the binary tree in Figure 2.2. The level 

where the root node resides is numbered 0, and the nodes in level i are associated 

with subcubes of dimension n — i. A node in this binary tree is available only if 

all of its offsprings are available. When an incoming request needs a Qk, the buddy 

strategy searches the level n  — k of the tree from left to right and allocates the first 

available subcube to the request. The processors associated with allocation bits in 

#[m2k , (n7 + 1)2k — 1] always constitute a Qk  whose address is B n- k  (m)* k  

Similarly to the conventional memory allocation, whenever a processor 

allocation or relinquishment takes place, the subcube to he allocated or released 

must be associated with a region of contiguous allocation bits. Static allocation is 



Figure 2.2 The complete binary tree for the allocation strategy using the buddy system. 
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concerned only with how to accommodate incoming requests without considering 

processor relinquishment. Figure 2.3 shows a simple example of static allocation. 

It is easy to observe that Q4  can accommodate the incoming request sequence 

{I1, ..., I8} even if the order of the requests in the sequence was arbitrarily shuffled. 

As we shall prove later, this is not a coincidence, but rather, a result of the static 

optimality. An allocation strategy is said to be statically optimal if a Qn  using the 

strategy can accommodate any input request sequence {Ik} k i=1 if Ʃ 	< 2n, 

where 	is the dimension of a subcube required to accommodate the request 

We shall prove that below, in Theorem 2.1, that the buddy strategy is statistically 

optimal. 

To facilitate the proof of static optimality of the buddy strategy, it is necessary 

to introduce the following definition and two lemmas. 

Note that a region is unavailable if any one of the allocation bits associated 

with the region is set to 1. Clearly, an allocation bit reset to 0 must always belong to 

one and only one hole. Let {hi(j)} i=1 denote the sequence of holes which result from 

allocating subcubes to the request sequence {I1,I2, • • •, Ij} 	where uis the number of 

holes. Order the hole sequence in such a way that hp(j)must lie before hq (j)iff p < q. 

Then we have the following two useful lemmas. 

Lemma 2.1 Let {hi(j)} u i=1 be the hole sequence in a Qn following the allocation of 

subcubes to the request sequence {Ir} j r=1. 1 , If hi(j) = bnbn-1 	• bn-k+1 *n—k  for some 

i, then bn_ k+i  = 1. 
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These lemmas lead to the following important result. 

Theorem 2.1 The buddy strategy is statistically optimal. 

Note that when a Qk is needed, the buddy strategy searches for a region 

of allocation bits with 0's whose addresses start with an integral multiple of 2k . 

This in turn implies that there are only 2n-k Qk's within the n-cube multiprocessor 

recognizable by the buddy strategy. Consequently, the buddy strategy underutilizes 

processors in the n-cube multiprocessor. 

2.2.2 Single Gray Code (SGC) 

The Single Gray Code (SGC) allocation strategy, proposed by Chen and Shin [6] 

in 1987, is based on the binary-reflectem gray code (BRGC), which is the gray 

code having parameters 1, 2, ...,n. A BRGC is a sequence of 2nn-bit codes, n, 

and is defined recursively as follows: For C1  = (0, 1)and Gn  = (xo, x1, ..., x2. -1) , Gn+1

 = (0xo , 0x1 , ..., 	0x2n-1, 1x2n-1, 1x2n-2, ..., 1x1, 1x0). For example, the 

BRGC G3 = {000, 001, 011, 010, 110, 111, 101, 100}. Let n (m)denote the mth code 

in the sequence n.  The availability of processors is represented by using 2n allocation 

bits. A bit having value 0 indicates that the corresponding processor is available, 

whereas 1 indicates a processor in use. For a job requesting a subcube of dimension 

k:, we find the smallest integer jsuch that all of the (m mod 2n)th allocation bits are 

0's, where in E #[j2k-1, (j +2)2k-1 - 1], and allocate the corresponding free subcube 

be setting the bits to 1. The number of subcubes recognizable by SGC is twice that 

of buddy strategy. The allocation time complexity of this algorithm is 0(2n), and 

for deallocation is 0(2k). 

Similarly to the buddy strategy, the CC strategy can be described by the 

following. 
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Processor Allocation: 

Step 1. Set k := |Ij|, where f hi is the dimension of a subcube required to accom-

modate the request 

Step 2. Determine the least integer m such that all (i mod 2n)th allocation bits are 

0's, where i E #[m2k, (m 2)2k-1  - 1]. Set all these 2k  allocation bits to l's. 

Step 3. Allocate nodes with addresses n(i mod 2') to Ij, where i E #[m2k, 

(m+2)2k-1 -1]. 

Processor Relinquishment: 

Step L Reset every pth allocation bit to 0, where Gn (p) E q and q is the address of 

a subcube released. 

Since the nodes corresponding to the first and last allocation bits are adjacent 

to each other, circular search is allowed in the GC strategy. To show that the 

nodes associated with those allocation bits in #[m2k, (m 2)2k-1  — 1] constitute a 

Qk, consider another procedure for generating the BRGC, Chan and Saad [14 As 

mentioned before, one can assume, without loss of generality, that the GC strategy 

uses the BRGC only. It is proved in Reingolg, Nievergelt and Deo [13], that this 

procedure indeed generates the BRGC. Given a k-bit BRGC Gk = {m0, d1, ... , d2k -1}, 

a (k + 1) bit BRGC can be generated by G k+1 	{d00, 41, m11, d70, d20 m21, • • 

., m2k -11, d2k -10} . 

This procedure can be described by a complete binary tree as in Figure 2.4. 

The address of every external node is determined by the coded bits in the path from 

the root to the external node, and the BRGC is then obtained by the addresses of 

external nodes left to right. 

Similarly to the binary tree in Figure 2.2, the nodes in level n— k are associated 

with Qk's. It is easy to see from the scheme of coding edges of the tree that two 



Figure 2.4 The complete binary tree for the allocation atrategy using the binary reflected. Gray code. 1
3
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Table 2.1 The Number of Subcubes Recognizable by the Buddy System and a SGC 

Q0 Qk,1≤ k ≤ n-1 Qn 

The number of distinct subcubes 2' Cnk2 	(n- k) 

The number of distinct subcubes 
recognizable by the buddy system 

2n 
2(n-k) 1 

The number of distinct subcubes 
recognizable by a SGC 

2n 
2(n-k+ 1)  

adjacent nodes in the (n — k + 1)th level form a Qk even when they don't have the 

same immediate predecessor. Therefore, when a Qk is requested, the GC strategy 

searches from left to right for two adjacent available nodes in level n — k -I- 1, rather 

than searching for an available node in level n — k. A Qk  will thus be searched for 

in the regions whose addresses start with an integral multiple of 2k-1  instead of 2k. 

Recall that the later was used by the buddy strategy. This means that the number 

of subcubes recognizable by a GC is twice that by the buddy strategy. The number 

of subcubes recognizable by each of the two strategies is presented in Table 2.1. 

Because of its enhanced subcube recognition ability, the GC strategy can 

allocate subcubes more densely at one end, and thus, make larger subcubes available 

at the other end for future use. More important, the GC strategy too is statistically 

optimal. 

Theorem 2.2 The CC strategy is statistically optimal. 
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An example of the GC strategy is given in Figure 2.5, where the input 

request sequence is the same as that in Figure 2.3. It can be observed that the 

GC strategy outperforms the buddy strategy in the first-fit search and will pack 

incoming requests more densely, thus making larger contiguous regions available 

than the buddy strategy can. 

2.2.3 Multiple Gray Code (MGC) 

Although the Single Gray Code strategy has better subcube recognition than 

the Buddy strategy does, SGC cannot generally identify all subcubes of a given 

dimension. Because different gray codes are associated with different sets of recog-

nizable subcubes, subcube recognition can be improved by using more than one gray 

codes. It is therefore important to investigate the relationship between the number 

of GC's employed and the corresponding subcube recognition ability. A new gray 

code with parameters {g1,g2, gn } is obtained by permuting the BRGC in such a 

way that the ith bit (numbered from right to left, beginning with 1) of each member 

of the BRGC becomes the gith bit of that member in the new gray code. So, G3  

with parameters {2, 3, 1} is {000, 010, 110, 100, 101, 111, 011, 001}. Out of the n! 

distinct gray codes that exist for an n-cube, Chen and Shin [6] have shown that the 

minimal number required for complete subcube recognition is (n n/2) . For example, 

20 gray codes are required for n=6; 252 for n=10; 3432 for n=14 and 184,756 for 

n=20. The time complexity of allocation is 0(( Lnni2j  )2n), whereas deallocation is 

0(2k ). 

2.2.3.1 Subcube Recognition Ability of a SGC Let {g1,g2,...,gn} be a permu-

tation of Zn. By permuting the ith direction of the BRGC to the gi th direction, one 

can obtain a GC with parameters gi, i = 1, • • • , n. Since there are n! permutations 

of n distinct numbers, there are n! distinct GC's for the n-cube multiprocessor. 
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Figure 2.5 Allocation strategy using the binary reflected Gray code. 
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Moreover, the subcube recognition ability of each GC can be determined by the 

following theorem. 

Theorem 2.3 A subcube Q k  with the ammress bnbn-1 • • • b1  can. be  recognizem by a GC 

with parameters g1, 1 ≤ i ≤ n, if any of the following three conmitions is satisfiem. 

An illustrative example of the subcube recognition ability of a 4-bit BRGC is 

shown in Figure 2.6. It is interesting to observe that the node addresses of a subcube 

recognizable by a GC are contiguous in that GC. This is the very reason that a GC 

can be used to detect the availability of subcubes with the linear search designed for 

the conventional memory allocation. 

Note that Theorem 2.3 provides a necessary and sufficient condition for the 

availability of a subcube to be recognized by a GC. Since different GC's are associated 

with different sets of recognizable subcubes, processor improves as the number of 

GC's used in an allocation strategy increases. Consider an allocation strategy which 

uses three GC's with the following parameters: {g3. j=1 
 

} .51 	j=1 = {1, 2, 3, 4, 5}, {g2j} 5 j=1 = = 

{2, 5,1, 3, 4}, and {g3 51  = {3,1, 4, 5, 2}. Then, the set of subcubes recognizable by 

this allocation strategy can be determined by Theorem 2.3 and shown in Figure 2.7 

with the trivial cases for Qo  and Q5 omitted. Also, it is shown from Theorem 2.3 that 

every subcube must be recognizable by at least on GC and that the complete subcube 

recognition can be achieved if all the n! GC's are used. However, we naturally want 

to reduce, if possible, the number of GC's required for complete subcube recognition 

in order to minimize the search overhead associated with MGC's. More on this will 

be discussed in the following subsubsection. 



Figure 2.6 Illustration of Theorem 2.3 when {g1,g2,g3,g4} ={1,2,3,4} when d E 
{OM. 
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Figure 2.7 Recognizable subcubes by the given Gray codes, {g1,g2,g3,g4,g5} = 
{1,2,3,4,5},{2,5,1,3,4},{3,1,4,5,2} where d E {O,1}. 
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2.2.3.2 The Number of GC's for Complete Subcube Recognition Let S 

be a set of strings which are permutations of Zn. S is said to have the C property, 

Chen and Shin [6], if for any k distinct numbers from Zn there is at least one string 

s E S such that these k numbers are the first k numbers of .s. 

Lemma 2.3 Let Mk be the set of all combinations of k mistinct integers out of Zn, 

0 ≤ k ≤ n, anm let x ≤ y denote that all the integers in a combination x are containem 

in another combination y. Then 

It is necessary to introduce the Theorem of Matching, Liu [15], to prove Lemma 2.3. 

Theorem 2.4 Theorem of Matching [15]. In a bipartite graph 	(V, E), a 

complete matching from X C V to Y C V exists 	|A| < R(A)| for every subset of 

A of X, where R(A) menotes the set of vertices in Y that are adjacent to vertices in 

A. 

A matching in a bipartite graph is as selection of edges such that no two edges 

are incident with the same vertex, and a complete matching from X to Y in a 

bipartite graph is a matching in which there is an edge incident with every vertex in 

X. For example, there is a complete matching from X to Y in Figure 2.8 (a), but 

not in Figure 2.8(b), since |{x2, x3}| = 2 > R({x2, x3}) = {y4} = 1 in Figure 2.8 

(b). 

Figure 2.9 (b) illustrates Lemma 2.3 when n = 5 and i = 

Theorem 2.5 Let SC be the set of all sets with the C property. Then, 	{|S|} = minsϵsx 

where .0 stands for combination. 
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Figure 2.8 Example of illustrating the Theorem of Matching. 
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Figure 2.9 A complete matching from M1  to M2 .  
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An example of determining the GC's required for complete subcube recognition 

in a Q5  is given in Figure 2.10. The method introduced in the proof of Theorem 2.4 

has placed arcs from M, to Mi-1, 2 ≤ i ≤ n, in Figure 2.10 (a), and the procedure 

of determining the required GC's is shown in Figure 2.10 (b). 

Let a(n) be the minimal number of GC's required for complete subcube recog-

nition in a Qn. Then, the following corollary follows from Theorem 2.4. 

Corollary 2.1 a(n) ≤ Cn n/2  

To determine the complexity of Cn n/2  consider the following proposition. 

that the complexity of Cn n/2  is still exponential. However, the above result bears 

practical importance, since the number of the GC's required for complete subcube 

recognition is significantly reduced according to Corollary 2.1; especially, this is true 

2.2.4 Maximal Set of Subcubes (MSS) 

The MSS strategy was proposed by Dutt and Hayes [1] in 1991. This strategy is 

based on the notion of a Maximal Subset of Subcubes (MSS), which is a set of 

disjoint subcubes composed of all of the available processors in the hypercube that 

has the property of being greater than or equal to all other sets of disjoint subcubes 

composed of all of the available processors. As described by Dutt and Hayes [1], a set 

of subcubes is considered greater than another (A > B) if the following conditions 

exist. 
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Figure 2.10 The GC's required for complete subcube recognition in a Qs. (a) 
Deternime the GC's for complete subcube recognition. (b) Modification of GC's in 
(a). 
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1) A and B contain the same number of processors. 

2) There exists an integer k, 0 =< k =< n, such that for all m, k =< m =< n, 

A and B have equal numbers of subcubes of dimension m, and A has more 

subcubes of dimension k than B. 

The goal of the MSS strategy is to maintain the greatest MSS as a free-list of 

available processors after every allocation and deallocation on a subcube. A subcube 

can then be allocated directly out of this list if the list contains a subcube of the 

requested dimension. If it does not, but it contains larger subcubes, a larger subcube 

is chosen and decomposed in such a way that the greatest MSS is left behind. The 

major portion of the overhead of the MSS strategy arises from searching for this 

best decomposition, because all possible decompositions must be considered. This 

decision problem is NP-hard with time complexity O(23n). The MSS strategy goes 

beyond the complete subcube recognition provided by MGC, because it not only 

finds a subcube of a given size if one exists but also chooses the one whose allocation 

will leave behind the greatest MSS. 

Note that we basically have two forms of MSS-based subcube allocation 

strategies, MSS_STRATEGY and FAST_MSS_STRATEGY that use BEST_FIT and 

HUERISTIC_COALESCE, Dutt and Hayes [1]. The primary difference between 

these two strategies is that when a k-cube cannot be allocated by BEST_FIT, and 

there are at least 2k  free nodes, MSS_STRATEGY forms an approximate MSS S, 

and again checks to see if there is a k-cube in S, while FAST_MSS_STRATEGY 

skips this step when a request cannot be allocated by BEST_FIT. 

We now argue that the simple allocation scheme BEST_FIT is actually quite 

effective in returning a good approximation of the greatest MSS obtainable after an 

allocation. 
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Theorem 2.6 

a) Any allocation of a k-cube from the current MSS to an incoming k-cube request 

yielms the greatest MSS that can be obtainem after allocating a k-cube. 

b) If there are no k-cubes in the current MSS, and m is the mimension of the smallest 

cube in MSS (> k), then no MSS obtainem after allocating k-cube by splitting 

an m-cube in the current MSS can have more than one cube of each of the 

dimensions m-1, m- 2, • • •, k+1 

In case b) of Theorem 2.6, it is possible that the greatest MSS after allocation 

of a k-cube can obtain more than one k-cube. When BEST_FIT is used to make 

allocations from an MSS in such a situation, it returns a Set of Free Subcubes (SFS), 

Dutt and Hayes [I], that has exactly one cube of each of the dimensions m-1, m-2 , • • 

•, k, which is thus a good approximation of the greatest MSS. For case a), BEST_FIT 

returns the greatest MSS possible. Extrapolating this argument, we can state that 

when BEST_FIT is used to make allocations from a good approximation S of the 

MSS, it always returns a good approximation of the greatest MSS obtainable after 

allocating k-cube. 

It is easy to see that the worse case time complexity of BEST_FIT is 0(n). 

Thus, the complexity of HEURISTIC_COALESCE, Dutt and Hayes [1], is the 

dominating factor in FAST_MSS_STRATEGY, whose complexity is thus 0(n2n). 

In practice, however, as shown by [1], the time taken by FAST_MSS_STRATEGY 

is reasonably small. The worse case complexity of MSS_STRATEGY is greater due 

to its use of APPROX_MSS, Dutt and Hayes [1]; however, once more, as shown by 

Dutt and Hayes [1], its actual execution time is small. It should be noted that the 

worst case complexity of BUDDY_STRATEGY and the SGC method, Chen and 

Shin [6] is O(2n), while that of the MGC method, Chen and Shin [6] is O(2n( n  n/2 

Furthermore, neither of these allocation strategies attempts to reduce fragmentation 
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of the hypercube, whereas MSS_STRATEGY and FAST_MSS_STRATEGY do so to 

a certain extend, due to the fact that they always maintain a good approximation 

of the MSS. 



CHAPTER 3 

PARTITIONABLE MULTI PROCESSOR ALLOCATION 
ALGORITHM 

3.1 Formal Description of the Problem 

In an n-dimensional hypercube (n-cube), multiprocessor, a task is viewed as a set of 

interacting modules, which must be assigned to a cube. Thus, processor allocation 

in an n-cube multiprocessor consists of two sequential steps. The first one is to find 

the number of resources that should be allocated on a multiprocessor for running an 

application program. An application program/algorithm is represented by a number 

of interacting modules where each module can be assigned to a processing node of 

a hypercube. The number of nodes required for a task (job/algorithm) depends 

on the task flow graph. It has been reported that some regular interconnection 

topologies such as the ring, tree, and mesh can be embedded on a hypercube, Saad 

and Schultz [5]. This implies that if we know the size of a topology, the subcube size 

for accomodating the task is known. Of coarse, not all topology sizes are valid, since 

the proposed algorithm Allocation Strategy I (AS]) does not allow external fragmen-

tation. So, for certain topologies which are not possible we might have some internal 

fragmentation, which at maximum, we will have three processors unallocated. Hence, 

we assume that the size of the subcube for an incoming request is known. 

The second step in the processor allocation is to locate and assign the required 

number of resources, as required by a task, on a multiprocessor. On a hypercube, this 

problem reduces to finding and allocating an appropriate subcube in the machine. 

This second step of the processor allocation scheme on a hypercube is addressed in 

this thesis. Although this is the second part of the two-step process, we would call 

it processor allocation without loss of generality. 

28 
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An efficient processor allocation scheme maximizes the resource utilization, 

reduces external as well as internal fragmentation, and finally improves system 

performance. An allocation policy is called static if the incoming requests are 

considered for allocation only at some specific time intervals. It does not consider 

deallocation (processor relinguishment) at any arbitrary time. On the other hand, 

a dynamic policy can handle processor allocation and deallocation at any time 

depending on the arrival and completion of jobs. A dynamic policy gives better 

utilization of resources than a static allocation. However, finding a perfect dynamic 

policy at minimal overhead is extremely hard. Furthermore, the allocation problem 

becomes more difficult when some specific nodes must be allocated and/or excluded 

for some specific tasks. The inclusion situation occurs when some resources are 

reachable only through specific nodes. The exclusion problem arises when some nodes 

are faulty or are designated for other purposes and, therefore, cannot be allocated. 

3.2 Allocation Strategy I (ASI) 

This section describes the allocation strategy ASI that we propose, which has the 

ability to allocate not only complete cubes, but also incomplete ones. 

One possible approach in implementing this allocation is to assign a large 

cube of dimension 7n that can accommodating the y nodes, i.e., m ≥ clog 0, and 

deallocate the unnecessary (2'n — y) nodes. If an m-cube is not possible, the number 

of nodes y is divided into smaller subcubes. For example, if a task needs 11 nodes, 

then the request is divided into 8 and 4-node requests. The 8 nodes (3-cube) and the 

4 node (2-cube) are allocated such that they are adjacent. Instead of allocating a 

2-cube, one can allocate a 1-cube and a 0-cube to make the number of nodes exactly 

11. This thesis focuses on allocating exact number of nodes, and it is achieved by 

using the (cyclic) BRGC. Under this algorithm, the worst-case time complexity of 
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both allocation and deallocation is O(n), where n is the dimension of the hypercube 

containing 2n processors. 

Definition 3.1 The (cyclic) binary reflected gray code of n bits BRGC(n) is mefined 

recursively by BRGC(n)={0•BRGC(n - 1), 1•BRGC-1 (n - 1)}, where "a" menotes 

concatenation, BRGC-1(n — 1) denotes the sequence merivem by reversing the order 

of elements in the sequence BRGC(n — 1), and BRGC(1)={0,1}. 

Example 3.1 BRGC(2)={ 00, 01,11,10} and BRGC(3)={000,001,011,010,110,111, 

101,100 . 

Theorem 3.1 Given the request of size y, assuming y < 2n, the ASI algorithm 

guaranteem that the maximum number of hops is given by [log(m)], where m is the 

smallest possible cube that the incomplete y-cube fits in. 

Proof. 	It has been known that the maximum number of hops in an m-cube is 

equal to log(m). Since y < 2', by taking the ceiling of the log(m) ([log(m)]), 

it is garanteed that it will be equal to the maximum number of hops. 	n 

Theorem 3.2 The remaining r nomes that have not yet been allocated, are gurandeed 

to be multiples of and can form at maximum a complete 5-mimensional hypercube. 

Proof. 	Due to the restrictions in our algorithm, we do not allocate any processors 

unless the remaining r nodes are multiples of 4. Furthermore, our algorithm 

requires that the remaining r processors form complete cubes of maximum size 

of 5. Thus, Theorem 3.2 holds. 	 n 

Any gray code has the property that any two neightboring codes in the sequence 

of all possible 2' n-bit numbers differ in a single bit. The cyclic version of the 

BRGC(n) is used throughout this thesis. The presentation of the ASI is very detailed 

for the purpose of clarity, and the steps are as follows. 
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Processors Allocation 

Step 1. Give the size of the n-cube, and the request of size y. 

Step 2. Calculate the number p, of incomplete y-cubes that can be allocated from 

the n-cube, where p = ([2" 10), and y-cube=incomplete cube with y nodes. 

Step 3. Verify that by allowing these p possible incomplete cubes, the number of 

remaining r nodes, is a multiple of 4. Algorithmically, this can be verified by 

forming the r mod 4 function and the outcome should be equal to 0, (r%4 0). 

Step 4. If the remaining nodes r, are not a multiple of 4, then increase the value of 

the request size y by 1, and go back to step 2; otherwise, skip this step and go 

to step 5. (Note, that steps 2 and 3, might be repeated at maximum 3 times, 

thus, having at 3 nodes unallocated. If all the above steps are satisfied, then 

we do the allocation.) 

Step 5. Generate the address space of the n-cube using the BRGC(n.). 

Step 6. The addresses for the p y-cubes are generated using the following algorithm. 

Assuming that we number the y-cubes from 0 to p — 1. Let Yo  be the address 

range for the 0th  y-cube, and in general Yn is the address of the Yn-1  y-cube. 

Algorithmically, 
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where A0  = bin(y - 1), and bin(x) is the binary representation of x. 

Step 7. Let g be the number r of unallocated nodes in the n-cube. 

Step 8. If (g/temp) 0, it means that more than temp nodes (at first temp = 32), 

are available, therefore allocate sequentially starting from address Ap  + 1 a 

5-cube ( a 5-dimensional hypercube). Skip to step 10. 

Step 9. If (g/temp) = 0, it means that the less than temp nodes (at first temp = 32), 

are available, so reduce the size of temp nodes (32 	16 	8 —3 4), and go 

back to step 8. (Note, that if temp = 4, it means that these 2-cube are the last 

nodes available from the n-cube and must exit the terminate procedure.) 

Step 10. Reduce the size of temp nodes (16 	8 	4), and go back to step 8. 

(Once again if at this stage temp = 4, exit the terminate procedure.) 

Example 3.2 Let us assume that n = 5 and a request of size y = 7 comes along. We 

calculate the number p, of incomplete 7-cubes that can be allocated from the complete 

5-cube, by p = ([2n/y]) = ([25/ 7j) 	([32/7j) = 4. We then verify that by allowing 

4 possible incomplete cubes, the number of the remaining r nodes, is a multiple of 4, 

r = (25-4*7 ) = (32-28) = 4 	r/4 = 4/4 = 0. Then generate the address space of 

the 5-cube using the BRGC(5). We let g be the number r = 4 of the unallocated nodes 

in the 5-cube. Then let temp = 32 and check if g/temp = 4/32 is 0 or not. In this 

case g/temp = 0, thus the unallocatem nodes are inmeed less than 32 so we decrease 

temp = 16. Once again g/temp = 0, so we mecrease temp = 8, and check if y 1 temp 

is = 0, which it is, thus g = 4 < 8. Then mecrease temp to its smallest possible 

value 4. In this case g/temp = 4/4 	0 it is 1, thus we can allocate sequentially a 

2-cube, and thus we have allocatem all the nomes of the 4-cube anm we stop. The final 

allocation of the nomes is given graphically in Figure 3.1, and bitwise in Table 3.1. 
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Figure 3.1 Illustration of Example 3.2 
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Table 3.1 Illustration of bit-wise allocation of Example 3.2 

Partitions 

1. 2 3 4 55 

00000 00100 01.001 11111 10010 
00001 01100 01000 11101 10011 
00011 01101 11000 11100 10001 
00010 01111 11001 10100 10000 
00110 01110 11011 10101 
00111 01010 11010 10111 
00101 01011 11110 10110 

Example 3.3 Let us assume that n = 6 and a request of size y = 22 comes along. 

We calculate the number p, of incomplete 22-cubes that can be allocated from the 

complete 6-cube, by p = ([2n/y]) = ([26/22]) = ([64/22]) = 2. We then verify that 

by allowing 2 possible incomplete cubes, the number of the remaining r nodes, is a 

multiple of 4, r = (26 -2*22) = (64-44) = 20 	r/4 = 20/4 = 0. Then generate the 

address space of the 6-cube using the BRGC(6). We let g be the number r = 20 of the 

unallocated nomes in the 6-cube. Then let temp = 32 and check if g/temp = 22/32 

is 0 or not. In this case g/temp = 0, thus the unallocated nodes are inmeed less than 

32 so we mecrease temp = 16. Now g/temp = 20/16 0, thus, the unallocated nodes 

are more than 16 so we allocated sequentially a 4-cube. Then we update the number 

g of the unallocatem nomes by letting g = r — 16 = 20 — 16 = 4. We also decrease 

temp = 8, and check if g/temp is = 0, which it is, thus g = 4 < 8. Then temp is 

mecreasem to its smallest possible value 4. In this case g/temp = 4/4 0, thus we can 

allocate sequentially a 2-cube, and we have allocatem all the nomes of the 4-cube and 

the algorithm stops. The final allocation of the nomes is given graphically in Figure 

3.2. 



Table 3.2 Illustration of bitwise allocation of Example 3.3 

Partitions 

1 2 3 4 
000000 011101 111010 100010 
000001 011100 111011 100011 
000011 010100 111001 100001 
000010 010101 111000 100000 
000110 010111 101000 
000111 010110 101001 
000101 010010 101011 
000100 010011 101010 
001100 010001 101110 
001101 010000 101111 
001111 110000 101101 
001110 110001 101100 
001010 110011 100100 
001011 110010 100101 
001001 110110 100111 
001000 110111 100110 
011000 110101 
011001 110100 
011011 111100 
011010 111101 
011110 111111 
011111 111110 
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Figure 3.2 Illustration of Example 3.3 
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CHAPTER 4 

SIMULATION RESULTS AND DISCUSSION 

In this chapter, we will show how the ASI outperforms the existing allocation 

algorithms by using 3 simple examples illustrated in numerical and graphical forms. 

For the first simulation, let us assume that we have available a 5-cube, (thus 

32 processors), and the requests are for cubes with 7 processors. All of the existing 

allocation strategies are able to allocate 4 partitions of 8 processors (3-cube), and 

thus we will have 1 processor in each partition that will not be allocated. In the 

case of the ASI, we are able to allocate 4 partitions of 7 processors each, thus having 

incomplete cubes, and the remaining 4 processors are grouped together to form a 

2-cube. Therefore, ASI allocates all the processors without having any unused ones. 

Figure 4.1 shows how the buddy, SGC, MGC and MSS allocation strategies 

will allocate the 4 partitions, by leaving one processors unallocated in each 3-cube. 

On the other hand, Figure 4.2 shows how the ASI allocation strategy allocates the 4 

partitions of 7 processors, as well as the grouping of the remaining 4 into a 2-cube. 

Furthermore, if we go into more complex structures, the ASI algorithm, not 

only outperforms the existing algorithms by allocating the unused processors to the 

other tasks, but also can create more partitions. Thus one can decrease the finish 

time of the parallel tasks. 

To show how the ASI can form more partitions than the other algorithms in 

certain cases, let us assume that we have a 6-cube, and we have requests of 10 

processors per partition. The buddy, SGC, MGC and MSS algorithms, are able to 

allocate 4 partitions of 4-cubes, and thus we will have 6 processors in each partition 

that will not be used by the other tasks. On the other hand, the ASI algorithm is able 

to allocate 6 partitions of exactly 10 processors each by forming incomplete cubes. 
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Figure 4.1 Illustration of how Buddy, SGC, MGC and MSS allocate 4 partitions 
and leaving 1 processor per partition unused. 
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Figure 4.2 Illustration of how ASI allocates 4 partitions and uses the remaining 
processors to form a 2-cube. 
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It will also use the remaining processors to form a 2-cube that can be allocated to 

some other task. If we assume that we had 12 tasks to run, the existing algorithms 

would require to turn around 3 times, thus allocating 4 4-cubes 3 times. The ASI 

algorithm, requires only 2 times of turn around, thus having a speedup of 3/2 over 

the existing algorithms for this siduation. 

Figure 4.3 shows how the buddy, SGC, MGC and MSS allocation strategies 

will allocate the 4 partitions, by leaving 6 processors unused in each 4-cube. On 

the other hand, Figure 4.4 shows how the ASI algorithm allocates 6 partitions of 10 

processors, as well as using the 4 unallocated processors to form a 2-cube. 

Furthermore, let us assume that we have a 6-cube, and we have requests of 5 

processors per partition. The buddy, SGC, MGC and MSS algorithms, are able to 

allocate 8 partitions of 3-cubes, and thus we will have 3 processors in each partition 

that will not be used by the other tasks. On the other hand, the ASI algorithm 

is able to allocate 12 partitions of exactly 5 processors each by forming incomplete 

cubes. The latter, also uses the remaining processors to form a 2-cube that can be 

allocated to some other task. If we assume that we had 24 tasks to run, the existing 

algorithms would require to turn around 3 times, thus allocating 8 3-cubes 3 times. 

The ASI algorithm, requires only 2 times of turn around, thus having a speedup of 

3/2 over the existing algorithms for this siduation. 

Figure 4.5 shows how the buddy, SGC, MGC and MSS allocation strategies 

will allocate the 8 partitions, by leaving 3 processors unused in each 3-cube. On 

the other hand, Figure 4.6 shows how the ASI algorithm allocates 12 partitions of 5 

processors, as well as using the 4 unallocated processors to form a 2-cube. 
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Figure 4.3 Illustration of how Buddy, SGC, MGC and MSS allocate 4 partitions 
and leaving 6 processors per partition unused. 
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Figure 4.4 Illustration of how ASI allocates 6 partitions and uses the remaining 
processors to form a 2-cube. 
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Figure 4.5 Illustration of how Buddy, SGC, MGC and MSS allocate 8 partitions 
and leaving 3 processors per partition unused. 
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Figure 4.6 Illustration of how ASI allocates 12 partitions and uses the remaining 
processors to form a 2-cube. 



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Efficient processor allocation is essential for achieving high performance on a multi-

processor system. In this thesis, we have first investigated the properties of the 

buddy, SGC, MGC, and MSS allocation strategies, and then we proposed a new 

algorithm, Allocation Strategy I (ASI), using the BRGC. The latter outperforms 

the former by providing better subcube recognition and allocation abilities. We have 

considered allocation strategies using MGC's, and have seen the relationship between 

the MGC's used and the corresponding subcube recognition ability. The minimal 

number of GC's required for complete subcube recognition in a Qn  is found to be 

less than or equal to Cn n/2, which is significantly less than n! for a brute-force 

enumeration. 

The existing allocation strategies cannot efficiently support multiple partitions 

of incomplete cubes, while the proposed AST not only supports incomplete cubes, but 

also allocated the unused ones to other tasks. Also, it has been shown to outperform 

the existing ones in simple parallel problems. 

This work can be furthered improved by having the ability to allocate smaller 

partitions of unused processors, like a 0-cube or a 1-cube. 
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APPENDIX A 

Program 

/* 	  */ 
/* Program I */ 
/* Calculates all possible partitions for a specific */ 
/* Hypercube size. */ 

/* 	 */ 

/* #define */ 

/* 	 */ 
#define N 6 
#define TPN 64 	 10 
#define z 5 

/* header files */ 

/* 	*/ 
#include <stmio.h> 
#include <math.h> 
#include <ctype.h> 
#include <string.h> 
#include <stdlib.h> 	 20 

#include <time.h> 

void main 0 
{ 

int j, j, k, n; 
int x, y; 
int p, r, t; 
int a2, b2, c2; 	 30 

int a3, b3, c3; 
int a', 	; 
int a5, b5, c5; 
int rgc[TPN][N] ; 
int cntr=0, cntrp=0, tmp1 ; 

FILE *fp ; 

46 
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if((fp1=fopen("data.txt","w"))==NULL) 	 40 

{ 

printf("could not open file data.txt \n") ; 
exit(1) ; 

} 

system("clear") ; 

/* 	 */ 

/* calculate and verify partitions */ 

/* 	  */ 	 50 

printf("Starting calculations . . .") ; 

fprintf (fp1 ,"\n") ; 
fprintf (fp ,"Results from Algorithm I\n") ; 
fprintf (fp1," 	 \n") ; 

fprintf (fp1 ,"\n") ; 

j=N; 
 

{ 
60 

n=pow(2,j) ; 
k=(n/4) 

fprintf(fp1,"available processors: %d\n", n) ; 
fprintf(fp1,"maximum number of partitions: %d\n", k) ; 

i=z ; 
{ 

p=( n/i) ; 
if(p==0) 	 70 

printf("invalid request\n") ; 

; 

a5=32 ; 

b5=(r%a5); 
c5=(r / a5) ; 

a4=16 ; 
b4 =(b5%a4); 

c4=(b5/a4) ; 	 80 

a3=8 ; 
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b3=(b4%a3) ; 
c3=(b4/ a3) ; 

a2=4 ; 
b2=(b3%a2) ; 

c2=(b3 / a2) ; 

if(b2==0) 	 90 

{ 
fprintf (fp1 ,"%d x %d, ", p, i) ; 

if(c5!=0) 
fprintf (fp1 ,"%d x %d, ", c5, a5) ; 

if(c4!=0) 
fprintf 	(fp1, "%d x %d, ", c{, 	; 

if (c3!=0) 
fprintf (fp1 ,"%d x %d, ", c3, a3) ; 

if(c2!=0) 
fprintf(fp1,"%d x %d, ", c2, a2) ; 100 

fprintf (fp1,"\n") ; 
} 

} 
fprintf (fp1, "------------------ 	\n") ; 

} 

printf(" done. \n") ; 

/* 	 */ 
110 

/* 	 */ 
/* allocate complete and incomplete cubes */ 

/* 	 */ 
printf("Starting allocation 	 ") 

/* create rgc */ 
create_rgc(rgc); 

120 

fprintf(fp1, " \n") ; 
fprintf (fp1," Processor Allocation \n") ; 

fprintf (fp 1," 	 \n") ; 
for(i=0;i<TPAT;i++) 
{ 

fprintf (fp1," 	") ; 
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for(j=0;j<N;j++) 
{ 

fprintf (fp 1 ,"%d" ,rgc[i][j]) 
130 

fprintf (fp1," \\\\ \n") ; 
cntr=cntr++ ; 
if(cntr==z) 
{ 

fprintf (fp 1," 0 	\n") ; 
cntr=0 ; 
cntrp=cntrp++ ; 

} 
if( cntrp==p) 

140 

if((cntr==a5)&&(c4 != 0)) 
fprintf (fp 1," 1 	 \n") ; 

if((cntr==a5*c5 + a4*c4 )&&(c3!=0)) 
fprintf (fp 1," 2 	\n") ; 

/* 	 if((cntr,a4)&&(c5==0)) 
fprintf(fpl,"3  	\n") ; 

printf ("\n"); 	150 

printf (" cntr=%d\n" cntr); 
printf (" c5=%d , c4=%d, c3=%d\n"); 

if((cntr== a5 c5 + *c4 + a3*c3)) 
fprintf (fp1,"4 	 \n") ; 

7* 	 if((cntr==a3)&&(c4==0)&&(c5==0)) 
fprintf(fpl,"5  	-\n") ; 

if(cntr==a5*c5+a4 *c4 +a3*c3+a2*c2) 	160 

fprintf (fp 1," 6 	\n") ; 

/* 	 if((cntr==a2)&&(c3==0)&&(c4==0)&8(c5==0)) 
fprintf(fpl,"7 	-\n") ; 

} 
} 
fprintf (fp 1," 	 \n") ; 
fprintf (fp ,"\n") ; 

170 
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printf ("done. \n") ; 

fclose(fp1); 

} 	* end of algorithm */ 
/* 	*/ 

/* 	 180 

functions 

*/ 

create_rgc(rgc) 
int rgc[TPN][N] ; 

{ 

	

int i=0,j=0,k=0,l=0 ; 	 190 

int r_seq ; 
int mid ; 
int reflect_offset ; 

r_seq= TPN ; 

for(i=0;i< N ;i++) 
200 

r_seq=r_seq/2 ; 

for(j=0;j <r_seq;j ++) 
rgc[j][i]=0 ; 

for(j=r_seq;j <2*r-seq;j ++) 
rgc[j][i]=1  ; 

/* reflect */ 
210 

	

for(k=i; k>0;k--) 

{ 
mid=( TPN/ power(2,k) )-1 ; 
reflect_offset =1 ; 
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for(l= mid ;l> —1;1— —) 
{ 

rgc[mid+reflect_offset][i]=rgc[l][i] ; 
reflect_offset++ ; 

220 

} 

/* for i */ 

/* function */ 

/* 	  */ 
int power(b,e) 
int b; 	 230 

int e; 
{ 

int t ; 
t=b; 

for(e--;e;e--) 
b*=t; 

return b ; 

/* function */ 	 240 

/*    */ 



APPENDIX B 

Sample Run 

Results from Algorithm I 

available processors: 64 
maximum number of partitions: 16 
12 x 5, 1 x 4, 

Processor Allocation 	 10 

000000 \\ 

000001 \\ 

000011 \\ 

000010 \\ 

000110 \\ 

000111 \\ 

000101 \\ 

000100 \\ 	 20 

001100 \\ 

001101 \\ 

001111 \\ 

001110 \\ 

001010 \\ 

001011 \\ 

001001 \\ 

001000 \\ 	 30 

011000 \\ 

011001 \\ 

011011 \\ 

011010 \\ 

011110 \\ 

011111 \\ 

011101 \\ 
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011100 \\ 
010100 \\ 	 40 

010101 \\ 
010111 \\ 
010110 \\ 
010010 \\ 
010011 \\ 

010001 \\ 
010000 \\ 
110000 \\ 	 50 

110001 \\ 
110011 \\ 

110010 \\ 
110110 \\ 
110111 \\ 
110101 \\ 
110100 \\ 

111100 \\ 	 60 

111101 \\ 

111111 \\ 
111110 \\ 
111010 \\ 

111011 \\ 
111001 \\ 
111000 \\ 
101000 \\ 
101001 \\ 	 70 

101011 \\ 
101010 \\ 
101110 \\ 
101111 \\ 
101101 \\ 

101100 \\ 
100100 \\ 
100101 \\ 	 80 

100111 \\ 
100110 \\ 
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100010 \\ 
100011 \\ 
100001 \\ 
100000 \\ 

90 
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