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ABSTRACT 

INTENSE ULTRASONIC WAVES IN FLUIDS: NONLINEAR BEHAVIOUR 

by 

Jitendra Kewalramani 

High-intensity ultrasonic wave has several engineering, biological, medical and chemical 

applications. High intensity acoustic waves can lead to a desired change in a medium by 

initiating one or more diverse mechanisms such as acoustic cavitation, heating, radiation 

pressure, or chemical reactions. Nonlinear nature of intense acoustic waves opens an entire 

new spectrum of applications. Hence there is need to understand and model the mechanism 

of nonlinear wave motion for practical applications of intense acoustic waves.  

In this research, one-dimensional motion of shock waves in an ideal fluid is studied 

to include nonlinearity. In nonlinear acoustics, the propagation velocity of different 

sections of the waveform are different, which causes distortion in the waveform and results 

in formation of a shock (discontinuity). Intense acoustic pressure causes particles in fluid 

to move forward as if pushed by a piston to generate a shock. As the piston retracts, a 

rarefaction, a smooth fan zone of continuously changing pressure, density, and velocity, 

are generated. When the piston stops, another shock is sent into the medium. The wave 

speed can be calculated by solving a Riemann problem. This study examined the 

interaction of shocks with rarefactions. The flow field resulting from these interactions 

shows that the shock waves are attenuated to a Mach wave and the pressure distribution 

within the flow field shows the initial wave becoming severely distorted at a distance from 

the source. The developed theory was applied to waves generated by 20kHz, 500kHz and 

2MHz transducer with 50W, 150W, 500W and 1500W power levels to examine the 

variation in flow fields. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The appealing phenomena associated with intense, inaudible acoustic waves have the 

several scientific, engineering, industrial, chemical and medical applications and present a 

challenge in the fields of fundamental and applied mathematics (Gallego-Juárez & Graff, 

2015). Ultrasonics is a branch of acoustics dealing with the generation and the applications 

of inaudible acoustic waves in various fields. In general, the field of ultrasonics can be 

divided into two broad areas: low-intensity applications and high-intensity applications. 

Ultrasonic non-destructive testing and the imaging used as means of exploration, detection, 

and information (e.g., the location of crack, material properties), are some of promising 

low-intensity applications. Generally low intensity applications are made at high 

frequencies, typically in megahertz range, and power level applied to transducer are 

typically low, often in the milliwatts ranges (Blitz, 1971). 

High-intensity ultrasound is used to permanently change the physical, chemical, or 

biological properties or, if intense enough, even destroy the medium to which it is applied. 

The nonlinear phenomena associated with intense ultrasound wave opens an entire new 

spectrum of applications and can be broadly described as power ultrasonics (Gallego-

Juárez & Graff, 2015). In the framework of nonlinear acoustics, familiar laws like the 

principle of superposition, reflection and rarefaction cease to be valid. One of the 

consequences of nonlinearity is the formation of shocks (discontinuities) in the waveform 

(Leighton, 2007). Applications of power ultrasonics is initiated by one or more diverse 
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mechanisms such as the wave distortion, radiation pressure, cavitation in liquids, heating, 

formation and motion of dislocations in solids etc. (Sapozhnikov, 2015). Intense ultrasonic 

waves can induce different processes in different media to an extent that they may be 

contradicting with each other (Gallego-Juárez & Graff, 2015). Known applications of this 

technology are the welding of metals and polymers, particle agglomerations, water and 

waste-water treatment, and the desorption of contaminates from soils and sediments 

(Gallego-Juárez & Graff, 2015; Meegoda, Batagoda, & Aluthgun-hewage, 2017). 

Understanding the basic mechanism of the nonlinear wave motion is essential for practical 

applications of intense acoustic waves and to develop new applications. 

1.2 Sound Wave, Ultrasound Wave: A Review 

A sound wave is the mechanical wave, which is a disturbance in a medium that transfers 

energy without requiring any net flow of mass. The speed of the wave is determined by the 

medium in which it is propagating, being directly related to stiffness and inversely related 

to density. The relationship between the speed of the wave and the wavelength can be 

expressed by the equation (1.1). 

 c = λ ∗ f . (1.1) 

Ultrasound is a type of sound wave with frequencies ranging from 20kHz up to 

several gigahertz, higher than the upper limit of human hearing. Ultrasound is generated 

by the transducers which converts electrical energy into mechanical vibrations. 

Oscillations of the transducer causes particles in front of it to vibrate. Particles do not travel 

away from the transducer but are merely displaced locally. The oscillation of these particles 

creates acoustic waves, whose speed can be determined by the speed of the compressed 

region as it travels through the medium. In non-humid air at 200C, the speed of an acoustic 
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wave is 343m/s or 767mph. In the 1D model, the (maximum) speed of the oscillating 

particles in the acoustic field can be determined from displacement amplitude 𝐴 and time 

period of wave 𝑇. The amplitude 𝐴 can be defined as maximum displacement of particle 

from its equilibrium position in a medium and 𝑣 is the maximum speed attained by particle 

can be calculated as follow: (Ghosh, 2013). 

 𝐴 = √
2𝐼

(𝜌𝑐)𝜔2
 (1.2) 

 Where,  𝜔 = 2 ∗ 𝜋 ∗ 𝑓   

 𝑣 = 𝐴𝜔 = 2𝜋𝑓𝐴 (1.3) 

Where, 𝐼 is the intensity of wave, 𝑓 is the frequency, 𝜌 is the density of medium and 𝑐 is 

the sound speed in medium of propagation.    
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CHAPTER 2 

ULTRASONIC APPLICATIONS 

 

Ultrasonics is a branch of acoustics dealing with the generation and application of inaudible 

sound waves, corresponding to frequencies above 20kHz and ranges around 2MHz or 

higher, in various fields (Blitz, 1971). The first experimental studies of ultrasound go back 

to 1883, Mr. Galton found the upper limit of acoustic spectrum perceived by humans with 

help whistle, which can be regarded as one of the first man-made ultrasonic transducer 

(Blitz, 1971). Later in 1914-1918 during world war I, French scientist Langevin 

investigated use of quartz transducer for emitting and receiving ultrasonics waves, of 

relatively low frequencies in water, time delay between waves, provided means for 

detection of submarines (Hambling, 2017). The same technology give rise to ultrasonic 

nondestructive testing and imaging used as means for exploration, detection, and 

information. The key development to High-power ultrasonic came when Wood & Loomis, 

1927, demonstrated the ranges of effect of intense ultrasonic waves such as induced drilling, 

atomization, levitation, heating of tissue, flocculation and crystallization (Gallego-Juárez 

& Graff, 2015). Ultrasound is used in preference to the audible sound in many applications 

for one or more of the following reasons: (Blitz, 1971) 

• Directional Properties: Ultrasound wave travels in a straight line. This is main 

considerations in, for instance, crack detections and quality assurance of piles. 

• Wavelength: As the frequency increases, wavelength correspondingly decreases and 

are comparable with, or even much less than, the dimensions of sample of material 
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through which it propagates. This is crucial for measurement of small thickness or for 

high-resolution flaw detections. 

• Inaudible: This property advantageous for high-intensity applications. The 

applications such as water and waste-water treatment, and the desorption of 

contaminates from soil and sediments can be carried easily with audible frequencies 

but resulting noise may be intolerable and possibly injurious. 

The Field of ultrasonics can be divided into two broad areas based on the power level of 

the transducers. 

• Low-intensity applications 

• High-intensity applications 

It is difficult to establish limit between low and high intensity wave, but it can be 

approximated as 0.1 to 1 W/cm2, depending upon medium propagation (Gallego-Juárez & 

Graff, 2015).  

2.1 Low-Intensity Applications 

Low intensity ultrasound is generally used for nondestructive testing and ultrasonic 

imaging as means of exploration, detection, and information. Most of low intensity 

applications are made at very high frequencies, typically in megahertz range, and power 

level applied to transducer are typically low, often in the milliwatt ranges (Blitz, 1971).  

Ultrasound wave travels at a constant speed provided the disturbance caused by it 

in medium are purely elastic, i.e., acoustic intensity is low. Low intensity acoustic wave is 

useful for non-destructive defect analysis such as porosity, void, and delamination as well 

as analysis of material properties such as density, strength, and young’s modulus. These 
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applications are based on techniques of measuring velocity and attenuation of the wave as 

it travels through the medium. In most of cases, a single instrument provides both these 

measurement, often simultaneously. The choice of frequency is based on various factors 

such as kind of information required from the measurement, size of sample, and by 

optimum sensitivity (Blitz, 1971). 

2.1.1 Applications of Ultrasound to Structures 

Nondestructive testing (NDT) methods are used to determine concrete properties and to 

evaluate concrete in deep foundations, bridges, buildings, pavements, dams, and other 

concrete construction. Ultrasonic Pulse Velocity (UPV) test can be effectively used for 

detecting the quality of concrete. The UPV test is easy to apply, it involves measurements 

of pulse velocity of wave (P-wave), a given path of pulse propagation over travel time (ACI 

228.2R, 2013) . However, this method needs, access to both side of a structure. Moreover, 

wave transmission time is the only output of the UPV test and does not provide information 

on the depth of defects. 

 Ultrasound-echo method uses arrival time of stress wave (S-wave or 

transverse wave) reflected from a defect on one face of concrete structure to monitor 

concrete deterioration (ACI 228.2R, 2013). Recent advances have resulted in the improved 

transducer, array which can create a 3-D internal image of defects that are present in 

concrete (Bishko, Samokrutov, & Shevaldykin, 2008). 

2.1.2 Applications of Ultrasound to Soil Properties 

Handful studies were performed to demonstrate potential use of ultrasound to measure soil 

properties. Acoustic attenuation tends to increase in soil with increase in soil moisture, 

while speed is independent of soil moisture (Oelze, Darmody, & O’Brien, 2001). Collins, 
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Zhu, Mills, & Boxall, 2016, demonstrated an approach of using ultrasound reflection to 

study the soil water content beyond the pipe or culvert wall. Coe & Brandenberg, 2010, 

utilized ultrasonic p-wave reflection imagining system, to image the submerged soil model 

with embedded structural element. Evaluation of the acoustic propagation and scattering 

in soils to determine their index properties is being investigated. 

 

2.2 High Intensity Applications 

High intensity ultrasound or power ultrasonics is generally used to permanently alter the 

physical, chemical or biological properties of materials or systems. High-intensity 

applications are mostly made at low frequencies, usually in the ranges of 20kHz to 200kHz 

and acoustic power levels of 100W to 1000W. In some limiting applications, high-intensity 

method can be employed as non-destructive tests for example, submarine sonar, used to 

convey information. In general, ultrasound application can be defined as high intensity (or 

power ultrasonics), when the acoustic stresses developed are sufficiently great to result in 

a nonlinear strain, ceasing to obey the Hooke’s law. Applications of power ultrasonics are 

initiated by one or more diverse mechanism such as wave distortion, radiation pressure, 

cavitation in liquids, formation and motion of dislocations in solids etc. 

 Intense ultrasonic waves can induce different phenomena in different media, 

depending on type of medium, to an extend that may be contradict to each other. For 

instance, intense ultrasound can create particle dispersion to liquid suspension, whereas, 

its application to gas suspension leads to particle agglomeration (Gallego-Juárez & Graff, 

2015). Known applications of this technology are the welding of metals and polymers, 

particle agglomerations, water and waste-water treatment, and the desorption of 

contaminates from soil and sediment(Gallego-Juárez & Graff, 2015; Meegoda et al., 2017). 
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In the following section application involving the propagation of ultrasound in liquid 

medium are described. 

2.2.1 Water Treatment 

The propagation of intense ultrasonic wave can be used to eliminate pollutants from water. 

The classical treatment methods used for drinking water treatment do not always result in 

water that meet the current regulatory requirements. Advanced Oxidation Processes (AOPs) 

have been developed to improve efficiency of water treatment (Glaze, Kang, & Chapin, 

1987). AOPs involves the production and use of the hydroxyl radical ·OH, which eliminate 

the organic and mineral pollutants by oxidizing them. The radical can be produced by 

various ways such as (1) The propagation of ultrasound, (2) electrochemistry, (3) Ozone 

and hydrogen peroxide, (4) UV irradiations, (5) ozone photodecomposition  etc., (Parson 

& Williams, 2004). 

 In the ultrasonic process, the generation of hydroxyl radicals ·OH are not due to 

interaction between the acoustic waves and aqueous liquid, but are formed from the 

pulsation and collapse of cavitation bubbles, created from the pressure change resulting 

from propagation of wave in the liquid (Petrier, 2015). Cavitation bubbles grow from the 

smaller bubbles containing dissolved gases and water vapor that are expelled from crevices 

on the surface of suspended solid particles. Following a periodical change in the pressure, 

the tiny bubbles pulsate, with their diameter increases during expansions and decreases as 

the pressure is increased.  

 Acoustic waves are the longitudinal waves, generated by the vibration of 

transducers. As the transducer is moving back and forth, it pushes the neighboring fluid 
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particles. The forward motion of transducer pushes fluid particle to the right (propagation 

direction of wave) and the backward retraction of the transducer creates a low-pressure 

area allowing the fluid particle to move back to left. Due to longitudinal motion of fluid 

particles, there will be regions in the fluid where fluid particles are compressed together 

and other regions where fluid particle are spread apart. These regions are known as 

compression and rarefactions respectively. The compression are the regions of high 

pressure while the rarefaction are regions of low pressure.  

 During the low-pressure (rarefaction) of the pulse, there is entry of dissolved gases 

and water vapors to maintain the equilibrium of vapor pressure inside the bubble. 

Conversely, during the high-pressure (compression) of the pulse there is dissolution of 

gases from bubbles to the medium and liquification vapor pressure. The rate of this process 

is related to surface area of the bubble as it is the transfer surface of gases from and to the 

bubble. The bubble expansion associated with low pressure cycle of pulse is the dominant 

process, as surface area of bubble is higher. As a result, bubble size increases. This growth 

is not limitless, as bubble can collide with other, or the bubbles can reach a critical size and 

collapse at the beginning of compression side of pulse. Under such conditions, there is 

adiabatic compression of gases and vapors to a very high temperature ( Petrier, 2015). The 

energy of collapse drives the inside material in the bubble to a plasma state, instantaneously 

achieving very high temperatures and pressures. 

 It is postulated, in extreme temperature and pressures, water and oxygen molecules 

can be driven into the exited state of atoms and molecules and dissociate into hydroxyl, 

hydrogen and oxygen radicals, according with following equation (Henglein, 1987). 
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 H2O               ·OH + H+ 
(2.1) 

 O2                        2O- (2.2) 

 Hydroxyl radical’s formation react and combine in different ways in the final 

condensed phase of the collapse. Involvement of the ·OH radical in oxidative chemical 

reaction by ultrasonic waves have received considerable attention and is well established 

(Henglein, 1987). These phenomena of ultrasonic cavitation lead to the destruction of 

organic pollutant through thermal oxidation. 

 The scheme published by Segal and Wang (1981), as shown in figure 2.1 can be 

used to approximate the location of reaction. Radicals generated in the gaseous phase in 

the bubble react in the condensed layer at the liquid interface. This interface accumulates 

organic molecules depending on their hydrophobic characteristics. The more hydrophobic 

the structure (of organic pollutant) the greater the accumulation of those at the interface, 

the more it reacts with the hydroxyl radicals coming from the inside, and the more rapid 

degradation (Sivasankar & Moholkar, 2009).  

 Another mechanism for pollutant degradation is the pyrolysis due to the high 

temperatures the cavitation during ultrasound application can be considered as a 

microreactor that incinerates volatile molecules at high temperatures when the bubble 

collapse (Petrier, 2015). When two kinds of molecules are present (volatile and nonvolatile 

molecules) together in aerated water, first volatile molecules are oxidized eliminated and 

then nonvolatile are oxidized. 
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FIGURE 2.1 Scheme of Reaction Occurring in and at the Interface of Bubble. Accounting 

for the hydrophobic organic compound (OC) oxidation. 

Source:(Sehgal & Wang, 1981)  

 Although sonochemical treatment can eliminate most organic water pollutants, the 

efficiency depends on various factors. Key factor is the frequency of source. The diffusion 

of ultrasonic wave depends upon the ratio of λ/D, where λ is the wavelength and 𝐷 is the 

diameter of probe. For low frequency probe, most of energy, and the subsequent cavitation, 

occurs in the small volume close to the surface of probe (20kHz -40kHz) ( Petrier, 2015). 

Ultrasound energy is more dispersed in volume of reactor with a high frequency transducer. 

The high frequency system works as well-stirred reactors. The use of ultrasonic waves of 

frequency range above 200kHz leads to an increased degradation of organic pollutants than 

can be achieved with a low frequency range. As the size of the collapsing bubbles and the 

duration of the collapse decrease with frequency, these improves the availability of 

hydroxyl radicals (·OH) at the interface of bubbles improving the degradation of organic 

pollutants (Christian Petrier et al., 1994).  



12 

2.2.2 Wastewater Treatment 

It was recognized in early 1990, that the innovative technology of high intensity ultrasound 

can improve the traditional anaerobic reaction of organic sludge produced during waste-

water treatment (Neis, 2015). Wastewater activated sludge consist of highly concentrated 

bacterial cells held together by extracellular substances in a floc structure. The idea behind 

using the intense ultrasound is to disintegrate sludge cells (de-agglomerate) and 

subsequently intensify the anaerobic degradation, eventually resulting in more biogas and 

less residual sludge. The following effects of propagating intense ultrasound in waste water 

sludge can improve the anaerobic degradation. 

•  Alternating zone of compression and rarefaction 

• Acoustically induced cavitation causing high mechanical stresses and radical 

reactions (such as sonochemical reactions). 

 In such a process, usually low frequency ultrasound, sufficient for de-

agglomeration is generally applied. At high intensities, microorganism cell walls are 

broken or perforated, and intracellular material is released, resulting in increase in the 

amount of organic material (Tiehm, Nickel, & Neis, 2001). The applications of power 

ultrasound for the disintegrations and intensification of anaerobic digestion is well 

established, however a rational design procedure for reactors is still lacking, and today’s 

reactors are designed empirically. 
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CHAPTER 3 

NONLINEAR ACOUSTICS 

 

In the linear wave motion, sound wave propagate at a constant speed (relative to the 

medium), and do not influence the fluid. If wave intensity is increased, this situation 

dramatically changes, wave starts experiencing nonlinearity (Sapozhnikov, 2015). In 

nonlinear acoustics, propagation speed of different regions of waveform are different, 

which causes distortion in waveform and results in formation of shock (discontinuities) in 

the waveform (Blackstock, et al., 1998). As Shown in figure 3.1 Shock formation 

corresponds to the transformation of waveform from sinusoidal to a sawtooth shape (called 

as N-wave). With the shocks, a jump condition is formed between the fluid in front and the 

volume behind the shock (Courant & Friedrichs, 1948).  

 

FIGURE 3.1: Schematic of Linear and Nonlinear Wave Motion. (a) Unlike the low-

intensity ultrasonic wave propagating linearly (b) high-intensity ultrasonic wave propagate 

nonlinearly, such that as it propagates away from source, the waveform gets distorted and 

results in formation of shock in the waveform. 

Source:(Leighton, 2007). 

 

 

 

(a) 

(b) 
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3.1 Linear & Nonlinear Wave Motion 

The nonlinear wave motion can be described using the principle of the linear theory of 

acoustics (Sapozhnikov, 2015). In linear wave motion, consider an undisturbed medium 

(𝑢 = 0) characterized by the thermodynamic variables density 𝜌0, pressure 𝑃0, entropy 𝑆0, 

and temperature 𝑇0,. A disturbance 𝑢 in the medium is characterized by the perturbations  

 𝜌′ = 𝜌 − 𝜌0
 

(3.1) 

  𝑃′ = 𝑃 − 𝑃0 (3.2) 

 𝑆′ = 𝑆 − 𝑆0 (3.3) 

 𝑇′ = 𝑇 − 𝑇0 (3.4) 

Perturbations of density (𝜌′) and temperature (𝑇′) can be expressed through the 

perturbations of pressure (  𝑃′)  and entropy (𝑆′)  using the thermodynamic relations 

(Sapozhnikov, 2015). Therefore, only three variables, 𝑢, 𝑃′, 𝑎𝑛𝑑 𝑆′,  are needed to 

determine the linear wave motion.  

The perturbations can be defined as a result of three independent modes: acoustic, 

entropy, and vorticity modes, where 𝑢 = 𝑢𝑣𝑜𝑟 + 𝑢𝑎𝑐 + 𝑢𝑒𝑛𝑡, 𝑃′ = 𝑃𝑣𝑜𝑟 + 𝑃𝑎𝑐 + 𝑃𝑒𝑛𝑡 and 

so on respectively (Pierce, 1994). In the vorticity mode, only the velocity (𝑢𝑣𝑜𝑟)  is 

disturbed, whereas  the other thermodynamic variables ( 𝑒. 𝑔., 𝑃𝑣𝑜𝑟 , 𝑆𝑣𝑜𝑟) remain in their 

equilibrium state (Pierce, 2002; Sapozhnikov, 2015). In the Acoustic mode associated with 

the sound wave, the viscosity, thermal conductivity, and entropy perturbations (𝑆𝑎𝑐) are 

zero, and the perturbations of density  (𝜌𝑎𝑐)  and temperature (𝑇𝑎𝑐)  can be expressed 

through the pressure perturbations (𝑃𝑎𝑐) (Pierce, 2002; Sapozhnikov, 2015). The entropy 

mode describes the heat transfer, where entropy fluctuations (𝑆𝑒𝑛𝑡) are significant in this 
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mode, whereas the pressure perturbation (𝑃𝑒𝑛𝑡) is nearly zero, the perturbations of density 

 (𝜌𝑒𝑛𝑡)  and temperature  (𝑇𝑒𝑛𝑡)  can be expressed in terms of entropy perturbations 

(Sapozhnikov, 2015).  

As the speed of the disturbance increases, linear wave motion cease, therefore 

superposition principle is no longer valid, thus disturbance cannot be described in form of 

three independent modes (Pierce, 2002). These modes start interacting with one another. 

Three interactions between these modes are activated in the nonlinear propagation of the 

acoustic wave: the sound-sound, sound-vorticity and sound-entropy interactions (see 

Figure 3.2) (Pierce, 2002). 

During propagation of the intense acoustic waves, first due to the sound-sound 

interactions, harmonic generations and self-demodulations occur within acoustic mode 

(Pierce, 2002). Then, acoustic mode starts to interact with other two modes, this interaction 

includes acoustically induced heating and generation of hydrodynamic flow (Pierce, 2002). 

 

FIGURE 3.2 Study of Nonlinear Acoustics. For power ultrasonics, flow fields can be 

describe using the three basic modes of fluctuations with those modes interacting with each 

other and with themselves. 

Source:(Sapozhnikov, 2015). 
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3.2 Nonlinear Propagation & Shock Formation 

In the framework of the linear wave motion, acoustic waves are presumed to propagate in 

a thermoviscous fluid at constant speed. However, at the higher ultrasonic intensities, and 

frequencies, the disturbance 𝑢  in medium can be sufficiently high that nonlinear 

propagation occur (Leighton, 2007). A Consequence of this result is the fact that local 

sound speed 𝑐 depends on the disturbance speed u (𝑐 as function of 𝑢), 𝑐𝑢, so does the local 

wave propagation velocity gets modified to  𝑐𝑢 + 𝑢 (Sapozhnikov, 2015). There are two 

independent sources of the acoustic nonlinearity. 

• Change of the wave propagation speed due to drift with velocity 𝑢. 

• Change in local sound speed from 𝑐0 𝑡𝑜 𝑐𝑢. 

Thus, transition from linear regime to a nonlinear one corresponds to the change                           

𝑐0          𝑐𝑢 + 𝑢.  Wave propagation speed varies throughout the waveform, and so the 

greater the local acoustic pressure, greater the local wave speed. As shown in figure 3.3, 

during nonlinear propagation, region of the compression (where 𝑢  and 𝑐𝑢  are in same 

direction), would tends to travel at speed faster than the region of the expansion (where 𝑢 

is opposite to 𝑐𝑢). Thus, a continuous waveform that is initially sinusoidal will therefore 

gets distorted as it progresses from the source. As a consequence of nonlinear distortion, 

there is formation of the shock (discontinuity) in the waveform (Blackstock & Hamilton, 

1998; Courant & Friedrichs, 1948). At the shock, the jump condition is form and the 

medium undergoes abrupt, and nearly discontinuous change in the pressure, density and 

temperature. Nonlinear distortion accumulates gradually during wave propagation. 

Therefore, shock appear at some distance from source. 
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Figure 3.3 Schematic Representation of Acoustic Distortion and Shock Formation during 

Nonlinear Propagation. The upper sketch is a spatial plot of the initial waveform (t=0). The 

first two graph shows the initial sinusoidal waveform in terms of (a) particle velocity and 

(b) pressure at various distances x. Unlike linear propagation of the wave, these waveforms 

propagate nonlinearly, such that as it propagates from the source, the pressure waveform 

distorts (c), and if dissipation is not too great, can eventually form a shock. 

Source (Blackstock & Hamilton, 1998; Leighton, 2007) 

 

3.3 Nonlinear Interactions within Acoustic Mode 

The simplest way to describe the nonlinear behavior of intense ultrasound waves is to 

consider the one-dimensional motion of an ideal fluid, where it has no viscosity or thermal 

conductivity. In this case, 𝑣 = (𝑢, 0,0) and all variables depend only on x and t. The motion 

of the wave can be modeled as the flow of an ideal fluid in an infinitely long tube extending 

along the x-axis, with one end having a moving piston and the other end as fixed wall. In 

one-dimensional model, nonlinear waves are propagating only in one direction. 
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In a gas-filled tube, if a piston is moved into or if a receding piston is stopped a 

shock (discontinuities) is generated, that moves away from the piston. Similarly, a 

rarefaction wave is sent into medium when the piston recedes away from the fluid  (Courant 

& Friedrichs, 1948). In this case of rarefaction wave, not all the regions of the wave are 

affected simultaneously, only the particles impacted by wave are disturbed from their initial 

state. A pulse ultrasonic wave can be conceived as one complete cycle of piston in tube. 

That is, piston moves from a stationary, or at rest position at a constant speed until it reaches 

the maximum point of displacement, stops instantaneously and reverse the direction, moves 

in the opposite direction at the same speed as the propagation velocity and stops at the rest 

location. As shown in figure 3.4, there will be a shock originated as the piston moves 

forward, a rarefaction wave sent as advancing piston stops and starts receding and another 

discontinuity originate at tail of the cycle. 

 

FIGURE 3.4 Generation of Shock and Rarefaction Wave. (a) Shock produced by a piston 

moving with constant velocity into the fluid at rest. (b) As the piston reaches its maximum 

displacement and changes the direction of propagation a rarefaction wave is sent into the 

compressed fluid behind the shock. (c) When piston comes to rest, another shock is 

produced. 

Source (Courant & Friedrichs, 1948). 
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The one-dimensional flow eliminates the vorticity mode, and absence of 

dissipations makes the process adiabatic, that is, it excludes the entropy modes as well. 

Therefore, above equations only describe nonlinear behavior of the acoustic mode 

(Sapozhnikov, 2015). 

The propagation of intense acoustic wave in one-dimensional motion can be 

mathematically described by using the conservation equation of mass, momentum and 

energy: 

 (
𝜌
𝑚
𝑒
)

𝑡

+ ∇ ∗ 

(

 
 

𝑚
𝑚2

𝜌
+ 𝑃

(
𝑚

𝜌
) (𝑒 + 𝑃)

)

 
 

= 0 (3.5) 

Here 𝜌 is the density of gas, 𝑚 is the momentum, 𝑃 is the pressure and 𝑒 is the energy per 

unit volume which is expressed as: 

 𝑒 = 𝜌휀 +
𝜌𝑢2

2
 (3.6) 

Here 𝑢 is the particle velocity and specific internal energy 휀 is: 

 휀 =
𝑃

𝜌(𝛾 − 1)
 (3.7) 

With shock speed 𝑈, the conservation of mass can be written as: 

 𝜌1(𝑢1 − 𝑈) = 𝜌0(𝑢0 − 𝑈) (3.8) 

The subscripts 0  and 1  represent the states ahead of and behind the shock. The 

conservation of momentum for the shock can be expressed as: 

 𝜌1(𝑢1 − 𝑈)2 + 𝑃1 = 𝜌0(𝑢0 − 𝑈)2 + 𝑃0 (3.9) 

The conservation of energy for the shock can be written as: 

 (𝑢1 − 𝑈)(𝑒1 + 𝑃1) = (𝑢0 − 𝑈)(𝑒0 + 𝑃0) (3.10) 
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By using the specific volume, 𝜏 = 1/𝜌, equations (3.8), (3.9)𝑎𝑛𝑑 (3.10) can be reduced 

to the Hugoniot relation (Bukiet, 1988): 

 
𝛾0𝜏0𝑃0

𝛾0 − 1
−

𝛾1𝜏1𝑃1

𝛾1 − 1
=

(𝑃0 − 𝑃1)(𝜏0 + 𝜏1)

2
 (3.11) 

 

3.4 Riemann Problem 

Equations (3.8) – (3.10) describe nonlinear behavior of the acoustic mode alone. Riemann 

showed a long time ago these equations can have an exact general solution in the form of 

the waves. To solve the Riemann problem, initial data can be described as follow: 

 𝑆𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑃𝐿)𝑓𝑜𝑟 𝐿𝑒𝑓𝑡 𝑤𝑎𝑣𝑒 ( 𝑥 < 0) (3.12) 

 𝑆𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑃𝑅)𝑓𝑜𝑟 𝑅𝑖𝑔ℎ𝑡 𝑤𝑎𝑣𝑒 ( 𝑥 > 0) (3.13) 

By using this initial data, the solution would consist of a right wave, a left wave 

and a contact. Right (or left) wave can be a shock or a rarefaction as shown in figure 3.5. 

 

FIGURE 3.5 Riemann Solution for Wave Motion. Resulting flow field generally consist 

of a left-facing wave and a right-facing wave that can be a shock or rarefaction, separated 

by a contact discontinuity.  

Source (Courant & Friedrichs, 1948) 
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Intermediate region can be connected to left or right regions by following Riemann 

invariants (Bukiet, 1988): 

 
𝑢𝐿

2
+

𝑐𝐿

𝛾𝐿 − 1
=

𝑢∗

2
+

𝑐∗

𝛾∗ − 1
 (3.14) 

 
𝑢𝑅

2
+

𝑐𝑅

𝛾𝑅 − 1
=

𝑢∗

2
+

𝑐∗

𝛾∗ − 1
 (3.15) 

Using the isentropic law, the following is obtained: 

 𝑃𝐿𝜌𝐿
−𝛾𝐿 = 𝑃∗𝜌∗

−𝛾∗ (3.16) 

 𝑃𝑅𝜌𝑅
−𝛾𝑅 = 𝑃∗𝜌∗

−𝛾∗  (3.17) 

Here * denotes the region inside the wave, or mid-region. Equations for shock or 

rarefaction wave can be found by eliminating 𝑈 and 𝜌1 from equations (3.8) – (3.10). Since 

left and right regions connect to regions with same velocity and pressure,  equations can 

be expressed in terms of velocity as a function of pressure (Bukiet, 1988). Newton’s 

iteration scheme is used to solve the equation for the velocity and pressure of the mid-

region. Bukit, 1988, presented the following equations, relating the intermediate state of 

wave to side state: 

Right shock: 

 𝑢 = 𝑢𝑅 +
𝐴𝑅(𝛼𝑅 − 1)

(𝐷𝑅𝛼𝑅 + 𝐸𝑅)1 2⁄
,
𝑑𝑢

𝑑𝑃
=

𝛼𝑅𝐷𝑅 + 3𝛾𝑅 − 1

√2𝜌𝑅𝑃𝑅(𝐷𝑅𝛼𝑅 + 𝐸𝑅)3 2⁄
 (3.18) 

Right rarefaction: 

 𝑢 = 𝑢𝑅 +
2𝐶𝑅(𝛼𝑅

𝐵𝑅 − 1)

𝐸𝑅
,
𝑑𝑢

𝑑𝑃
=

1

𝐻𝑅𝛼𝑅
𝐽𝑅

 (3.19) 

With: 

𝛼𝑆 =
𝑃

𝑃𝑆
; 𝐴𝑆 = √

2𝑃𝑆

𝜌𝑆
; 𝐵𝑆 =

𝛾𝑆−1

2𝛾𝑆
; 𝐶𝑆 = √

𝛾𝑆𝑃𝑆

𝜌𝑆
; 𝐷𝑆 = 𝛾𝑆 + 1; 𝐸𝑆 = 𝛾𝑆 − 1; 
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Here 𝑆 is the side, 𝑅 and 𝐿 denote the region of fluid to the right or left side of mid-region. 

Equations (3.8) and (3.11) can be used to compute mid-region density and wave speed for 

shock, while equations (3.14) - (3.17) can be used for rarefactions. 

 

3.4.1 Head Shock 

With the one-dimensional model, as high intense ultrasound wave is sent into medium, it 

will push fluid in front (like a piston) and a shock is generated. As mentioned before, a 

nonlinear wave is propagating in one direction only, assuming the direction of propagation 

as right, so the right shock equation can be used. To demonstrate the calculations, following 

parameters for ultrasound transducer were assumed: 

Transducer of 1500𝑊, 80% efficiency, source diameter of 12.7mm, frequency of 2MHz 

and, ideal fluid, 𝜌 = 1.225 𝑘𝑔 𝑚3⁄ , 𝑐0 = 343𝑚/𝑠.  

Using equation (1.2) and (1.3). 

 

𝐴 = √
2𝐼

(𝜌𝑐)𝜔2

= √
2 ∗ (.8 ∗ 1500)/(3.14 ∗ .25 ∗ (12.7 ∗ 10−3)2

(1.225 ∗ 343) ∗ 125600002

= 1.691 ∗ 10−5𝑚 

 

 𝜔 = 2 ∗ 𝜋 ∗ 𝑓 = 2 ∗ 3.14 ∗ 2 ∗ 106 = 12560000𝐻𝑧   

 𝑢 = 2 ∗ 𝐴 ∗ 𝑓 ∗ 𝜋 = 1.691 ∗ 10−5 ∗ 12560000 ≈ 212.4𝑚/𝑠  

In the front of the head shock fluid is in undisturbed state, particle speed is 0m/s 

and behind the shock particle speed is 212.4m/s. Using equation (3.18), to calculate the 

pressure behind the shock, in the expression subscript “1” and “r1” represent fluid, ahead 

and behind of shock respectively. Thereby,  𝑢1 is equal 0m/s, as the fluid in front of the 
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head shock is undisturbed. The 𝑃1, normal fluid pressure is equal to the 101,325Pa, 𝜌1 is 

equal to the 1.225kg/m3 and specific heat ratio 𝛾 for normal fluid equals is 1.4, unknown 

𝑃𝑟1 can be calculated as:  

 

𝑢𝑟1 = u1 +

√
2P1
ρ1

(
𝑃𝑟1
P1

− 1)

[{(γ + 1)
𝑃𝑟1

P1
} + (γ − 1)]

1 2⁄
 

 

 212.4 = 0 +

√2 ∗ 101325
1.225

(
𝑃𝑟1

101325
− 1)

[(1.4 + 1)
𝑃𝑟1

101325
+ (1.4 − 1)]

1 2⁄
  

 𝑃𝑟1 = 229,029𝑃𝑎 𝑜𝑟 40,530𝑃𝑎  

For the propagation direction, particle speed 𝑢𝑟1 and sound speed 𝑐𝑟1 are in same 

direction, thus, 𝑃𝑟1 > 𝑃1, thus, 𝑃𝑟1 value of 229,029Pa is selected. Equation (3.8) and (3.11) 

can be used to calculate shock speed and density behind the shock  

Using Hugoniot equations (3.11):  

 

1.4 ∗ (1 1.225⁄ ) ∗ 101325

1.4 − 1
−

1.4 ∗ (1 𝜌𝑟1
⁄ ) ∗ 229029

1.4 − 1

=
(101325 − 229029) ((1 1.225⁄ ) + (1 𝜌𝑟1

⁄ ))

2
 

 

 𝜌𝑟1 = 2.16𝑘𝑔/𝑚3  

With the conservation of mass, equation (3.8): 

 2.16(212.4 − 𝑈1) = 1.225(0 − 𝑈1)  

 𝑈1 = 490.8𝑚/𝑠  

By applying the Hugoniot relationship density behind the head shock is equals to 

2.16kg/m3. The speed of shock generated by the vibration speed of particle as 212.4m/s is 
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490.8m/s. Shocks always moves at a supersonic speed as observed on front side, and 

subsonic speed as observed from back side.  

 

3.4.2 Rarefaction 

During the wave propagation, fluid particles are vibrating back and forth in direction of the 

propagation around its original position (like an oscillating piston). Once the direction of 

motion of fluid particles changes, a rarefaction is generated. Rarefaction is a smooth fan 

zone with continuously changing pressure, density and velocity. Subscript 𝑟1  and 𝑟2 

represent face and tail of rarefaction. The particle velocity of the face rarefaction is 𝑢𝑟1 =

212.4𝑚/𝑠. As fluid particles recede, piston velocity become negative, 𝑢𝑟2 = −212.4𝑚/𝑠 

and a rarefaction wave is sent to the system. Using equation (3.19) for right rarefaction, 

where, ur1 = 212.4m/s , speed attained by particle at edge of piston with 𝑃𝑟1 =

229029Pa and 𝜌𝑟1 = 2.16𝑘𝑔/𝑚3, 𝑃𝑟2 pressure at tail of rarefaction can be calculated: 

𝑢𝑟2 = 𝑢𝑟1 +

2√
𝛾 ∗ 𝑃𝑟1

𝜌𝑟1
((

𝑃𝑟2

𝑃𝑟1
)

𝛾−1
2𝛾

− 1)

𝛾 − 1
 

−212.4 = 212.4 +

2√1.4 ∗ 229029
2.16 ((

Pr2

229029)

1.4−1
2∗1.4

− 1)

1.4 − 1
 

Pr2 = 40,055𝑃𝑎 

For the rarefaction wave, as particle speed 𝑢𝑟2  and sound speed 𝑐𝑟2  are in opposite 

direction, and acoustic pressure, Pr2 < 𝑃1. 

Equation (3.15) and (3.16) is used to determine density at tail of rarefaction wave,  
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Pr2ρr2
−γR = Pr1ρr1

−γ∗ 

40055 ∗ ρr2
−1.4 = 229029 ∗ 2.16−1.4 

ρr2 = 0.62kg/m3 

As mentioned, transition from linear to nonlinear regime corresponds to change in 

propagation velocity from 𝑐0 𝑡𝑜 𝑢 + 𝑐 . Using this and data from the shock speed 

calculations, the wave velocity at face of rarefaction is equal to 𝑢𝑟1 + 𝑐𝑟1 = 212.4 +

√
1.4∗229029

2.16
 = 212.4 + 385.69 =  597.68 ≈ 597.7m/s , which is faster than the head 

shock speed, also the propagation speed at tail of rarefaction wave would be −𝑢𝑟2 + 𝑐𝑟2 =

−212.4 + √
1.4∗40055

0.62
= −212.4 + 300.74 = 88.34 ≈  88.3m/s.  With front and tail of 

the rarefaction known, and it can help to compute the intermediate point in the rarefaction 

(Zhenting , 2017). 

To compute the intermediate regions in rarefaction, assume constant 𝑘1, 𝑘2, and 𝑘3 : 

 𝑘1 =
𝑑𝑥

𝑑𝑡
= 𝑢∗ + 𝑐∗ (3.20) 

 𝑘2 =
𝑢𝑟1

2
−

𝑐𝑟1

𝛾 − 1
=

𝑢∗

2
−

𝑐∗

𝛾 − 1
 (3.21) 

 𝑘3 = 𝑃𝑟1𝜌𝑟1
−𝛾 = 𝑃∗𝜌∗

−𝛾 (3.22) 

k1, k2 and k3 can be related as follow, let k1 minus two k2 to get: 

 𝑘1 − 2 ∗ 𝑘2 = 6√1.4 ∗
𝑃∗

𝜌∗
 (3.23) 

From Equation (3.22),  

 𝑃∗ = 𝑘3 ∗ 𝜌∗
1.4 (3.24) 
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Substitute P* in (3.23) by using (3.24) to obtain: 

 𝜌∗ = [
(
𝑘1 − 2𝑘2

6 )
2

1.4𝑘3
]

2.5

 (3.25) 

Here k2 and k3 are constant, there by knowing the state at the of front rarefaction and by 

using different values of k1, the density of each point in the rarefaction can be found. Then, 

using (3.25) and (3.17), the pressure for point in the rarefaction can be calculated as shown 

below: 

 𝑃∗ =
𝑃𝑟1 ∗ 𝜌∗

1.4

𝜌𝑟1
1.4  (3.26) 

Finally, the particle velocity of the rarefaction can be determined by using (3.15). 

 𝑢∗ = 2 ∗ [(
𝑢𝑟1

2
−

𝐶𝑟1

𝛾 − 1
) +

𝑐∗

𝛾 − 1
] (3.27) 

Due to the smooth change in velocity in the rarefaction, the k1 has its own velocity range 

between the tail rarefaction velocity of 88.3m/s and the face rarefaction velocity 597.7m/s. 

Consequently, k2 and k3 can be calculated as 

𝑘2 =
𝑢𝑟1

2
−

𝐶𝑟1

𝛾 − 1
= −857𝑚/𝑠 

𝑘3 = 𝑃𝑟1𝜌𝑟1
−𝛾 = 77944𝑚/𝑠 

Rarefaction wave can be divided into two parts separated by sound wave, where 

𝑢∗ + 𝑐∗ = 𝑐0 (Courant & Friedrichs, 1948). Let 𝜌𝑟, 𝑃𝑟 represent the density and pressure at 

separation boundary respectively, using   𝐾1 = 𝑢𝑟 + 𝑐𝑟 = 343𝑚/𝑠, and equations (3.25) 

and (3.26) to find separation boundary. 
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𝜌𝑟 = [
(
343 + 2 ∗ 857

6 )
2

1.4 ∗ 77944
]

2.5

= 1.2𝑘𝑔/𝑚3 

 𝑃𝑟 =
229029 ∗ 1.21.4

2.161.4
= 101,161.4𝑃𝑎  

Thus, rarefaction can be divided into two zones at boundary, 𝑃𝑟 = 101,161.4𝑃𝑎, 𝑎𝑛𝑑 𝜌𝑟 =

1.2𝑘𝑔/𝑚3. 

 

3.4.3 Tail Shock  

At the end of pulse wave, as fluid particle will come to rest, particle speed will change 

from −212.4m/s to 0m/s, and another shock will be generated. Using equation (3.18), to 

calculate the pressure behind the tail shock, in the expression subscript “r2” and “2” 

represent fluid, ahead and behind of shock, respectively. 𝑢2 is the particle velocity behind 

the tail shock which equals to 0 𝑚/𝑠,  𝑢𝑟2 is equal −212.4 𝑚/𝑠, 𝑃𝑟1 is 40,055𝑃𝑎, 𝜌𝑟2 is 

0.62 kg/m3, and 𝛾 for normal air equals to 1.4. Substituting these values into equation 

(3.18), unknown 𝑃2 can be calculated:  

 

𝑢2 = u𝑟2 +

√
2P𝑟2
ρ𝑟2

(
𝑃2
P𝑟2

− 1)

[{(γ𝑟 + 1)
𝑃2

P𝑟2
} + (𝛾 − 1)]

1 2⁄
 

 

 0 = −212.4 +
√2 ∗ 40055

0.62 (
𝑃2

40055
− 1)

[(1.4 + 1)
𝑃2

40055
+ (1.4 − 1)]

1 2⁄
  

 𝑃2 = 99,954𝑃𝑎  

Using Hugoniot expression (3.11) to calculate density at shock. 
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1.4 ∗ (1 0.62⁄ ) ∗ 40055

1.4 − 1
−

1.4 ∗ (1 𝜌2
⁄ ) ∗ 99954

1.4 − 1

=
(40055 − 99954) ((1 0.62⁄ ) + (1 𝜌2

⁄ ))

2
 

 

 𝜌2 = 1.38𝑘𝑔/𝑚3  

With the conservation of mass, equation (3.8): 

 1.38(0 − 𝑈1) = 0.62(−212.4 − 𝑈2)  

 𝑈2 = 172.4𝑚/𝑠  

By applying the Hugoniot relation, the density behind the tail shock equals to 1.38kg/m3 

and the tail shock speed is 172.4m/s. 

 

3.5 Decaying of N-Wave 

In a pulse of ultrasonic wave, there will be two shocks and a rarefaction in between. The 

velocity of head shock is subsonic relative to local sound speed behind. Thus, a rarefaction 

wave eventually overtakes the head shock causing shock to weaken. Similarly, as shock 

velocity is supersonic relative to local sound speed ahead of it, tail shock will eventually 

overtake the rarefaction wave. The rarefaction can be divided into two parts, separated by 

wave speed of sound, where 𝑢∗ + 𝑐∗ = 𝑐0. The head shock traverses the forward part of 

the rarefaction and the tail shock crosses the backward part (Courant & Friedrichs, 1948).  

Speed of waveform at face of rarefaction is 𝑢𝑟1 + 𝑐𝑟1 = 597.7𝑚/𝑠,whereas speed 

of head shock is 𝑈1 = 490.8𝑚/𝑠, thus after some time rarefaction will overtake the head 

shock. Similarly, the speed of waveform at tail of rarefaction is 𝑢𝑟2 + 𝑐𝑟2 = 88.3𝑚/𝑠, for 

tail shock is 𝑈2 = 172.4𝑚/𝑠, so tail shock will be overtaken from backward rarefaction 

waveform, as shown in figure 3.6. 
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Back in 1950s, extensive experimental investigations were performed at Institute 

of Aerophysics, University of Toronto (which was earlier known as Institute of Aerospace 

Studies) on flow field resulting from one-dimensional wave interactions, two studies 

namely overtaking of shock by a rarefaction wave by Glass, et.al., 1959 and another study 

on one-dimensional shock overtaking rarefaction wave by Bermner, et.al., 1960 can be 

used to study the interaction between head shock and forward part of refraction wave and  

tail shock and backward part of rarefaction respectively. 

 

FIGURE 3.6 Decaying of N-Wave–Due to overtaking of head shock by forward 

rarefaction and tail shock overtaking backward rarefaction.  

Source (Courant & Friedrichs, 1948)  
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3.5.1 Shock Wave Overtaken by A Rarefaction Wave 

Figure 3.7 shows a schematic representation of planar shock overtaken by a weak 

rarefaction wave . Interaction can result in the following two wave patterns: a reflected 

rarefaction wave, or a reflected shock, while the transmitted wave in both case is a shock. 

As this transmitted wave decays with interactions, it strength decreases, and the entropy 

diminishes. Glass, et. al., 1959 presented algebraic equations relating the pressures ratios 

across transmitted and reflected wave (at the end of interactions) to the known values of 

pressure ratios across the incident shock and overtaking rarefaction wave (before 

interactions). When overtaking rarefaction wave is weak, the interaction results in a 

reflected rarefaction wave, the quasi-steady flow in regions (b) and (c) can be evaluated 

using expression (3.27) and (3.28) (Igra, 2001). The case of transmitted compression wave 

was tactically assumed. Hence it would not influence the terminal states and can be 

neglected (Glass, Heuckroth, & Molder, 1959). 

 

FIGURE 3.7: Overtaking of a Shock by a Weak Rarefaction Wave. (a) A shock of known 

strength overtaken by a rarefaction wave. (b) Flow field resulting from interaction can 

result into a transmitted shock wave with a reflected rarefaction or (c) a transmitted shock 

with a reflected wave that can be a shock or a compression wave  

Source (Glass et al., 1959) 



31 

 

 √
𝛽

𝑃1

𝑃5
(𝛼 +

𝑃1

𝑃5
)

(1 + 𝛼
𝑃1

𝑃5
)

[
 
 
 1 −

𝑃1

𝑃5

√
𝑃1

𝑃5
(𝛼 +

𝑃1

𝑃5
)

+
1 −

𝑃2

𝑃1

√𝛼
𝑃2

𝑃1
+ 1

]
 
 
 

  

 +2(
𝑃4

𝑃5
)
𝛽

− (
𝑃2

𝑃1

𝑃1

𝑃5
)
𝛽

− 1 = 0  

 

(3.27) 

And 

 

 

(
𝑃3

𝑃4
) =

𝑃2

𝑃1

𝑃1

𝑃5

𝑃5

𝑃4
 (3.28) 

Where, 𝛽 =
𝛾−1

2𝛾
  and 𝛼 =

𝛾+1

𝛾−1  
 

3.5.2 Shock Wave Overtaking A Rarefaction Wave  

Figure 3.8 shows a schematic representation shock overtaking a rarefaction. A relatively 

weak shock of known strength proceeds from left to right and a rarefaction wave of known 

strength proceeds in a same direction. Interaction results into a reflected wave and a 

transmitted wave. The reflected wave can be a shock or a rarefaction wave while 

transmitted wave is a rarefaction wave. In the limiting case of a very weak shock, the 

overtaking shock wave is weakened until it is decayed to a Mach wave (Igra, 2001). Mach 

wave is the envelope of wave front, travelling at sound speed propagated from an 

infinitesimal disturbance in supersonic speed. For a weak incident shock wave, (a case 

when it completely attenuated to a Mach wave), the reflected wave is a shock wave, the 

quasi-steady flow in the regions (b) and (c) in figure 3.8 can be evaluated using (3.29) and 

(3.30) (Bremner, Dukowicz, & Glass, 1960). 



32 

 

Figure 3.8: Shock Wave Overtaken by a Rarefaction Wave. (a) A shock of known strength 

overtaking a rarefaction wave. (b) Flow field resulting from interaction can result into a 

reflected shock wave with a reflected rarefaction or (c) reflected and transmitted wave both 

are rarefaction wave. 

Source (Bremner et al., 1960) 

 
1 − (

𝑃3

𝑃4
)
𝛽

(
𝑃4

𝑃5
)
𝛽

√𝛽
+

(
𝑃4

𝑃5
− 1)

[1 + 𝛼 (
𝑃4

𝑃5
)]

1/2

+ [

𝑃4

𝑃5
(𝛼 +

𝑃4

𝑃5
)

1 + 𝛼
𝑃4

𝑃5

]

1/2

(1 −
𝑃4

𝑃5
)

[1 + 𝛼
𝑃4

𝑃5
]
1/2

= 0 

 

 

(3.29) 

And 

 
(
𝑃3

𝑃4
) =

𝑃2

𝑃2

𝑃1

𝑃5

𝑃5

𝑃4
 

(3.30) 

Where, 𝛽 =
𝛾−1

2𝛾
  and 𝛼 =

𝛾+1

𝛾−1  
 

Based on the above discussion, for a head shock overtaken by forward part of 

rarefaction (
𝑃1

𝑃𝑟
< 1), the resulting flow field can be evaluated using equation (3.27) and 

(3.28): 
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 √
𝛽

𝑃1

𝑃𝑟1
(𝛼 +

𝑃1

𝑃𝑟1
)

(1 + 𝛼
𝑃1

𝑃𝑟1
)

[
 
 
 1 −

𝑃1

𝑃𝑟1

√
𝑃1

𝑃𝑟1
(𝛼 +

𝑃1

𝑃𝑟1
)

+
1 −

𝑃𝑟12

𝑃1

√𝛼
𝑃𝑟12

𝑃1
+ 1

]
 
 
 

  

 +2(
𝑃𝑟

𝑃𝑟1
)
𝛽

− (
𝑃𝑟12

𝑃1

𝑃1

𝑃𝑟1
)
𝛽

− 1 = 0  

And   

 (
𝑃𝑟13

𝑃𝑟
) =

𝑃𝑟12

𝑃1

𝑃1

𝑃𝑟1

𝑃𝑟1

𝑃𝑟
  

Using above expression,  𝑃𝑟12 = 101,269𝑃𝑎 𝑎𝑛𝑑 𝑃𝑟13 = 101,269𝑃𝑎 (see Appendix A) 

Similarly, using equation (3.29) and (3.30), for evaluating flow field resulting from 

interaction for tail shock wave overtaking back ward part of rarefaction wave(
𝑃𝑟

𝑃2
< 1): 

 
1 − (

𝑃𝑟23

𝑃2
)
𝛽

(
𝑃2

𝑃𝑟2
)
𝛽

√𝛽
+

(
𝑃2

𝑃𝑟2
− 1)

[1 + 𝛼 (
𝑃2

𝑃𝑟2
)]

1/2

+ [

𝑃2

𝑃𝑟2
(𝛼 +

𝑃2

𝑃𝑟2
)

1 + 𝛼
𝑃2

𝑃𝑟2

]

1/2

(1 −
𝑃𝑟23

𝑃2
)

[1 + 𝛼
𝑃𝑟23

𝑃2
]
1/2

 

 

 

 

And   

 
(
𝑃𝑟23

𝑃2
) =

𝑃𝑟22

𝑃𝑟

𝑃𝑟

𝑃𝑟2

𝑃𝑟2

𝑃2
 

 

 

Using above expression 𝑃𝑟12 = 100,527𝑃𝑎 𝑎𝑛𝑑 𝑃𝑟13 = 100,527𝑃𝑎 (see Appendix A) 
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FIGURE 3.9 Flow Field Resulting from Interactions. Pressure jump across the head and 

tail shock diminishes due to interactions, resulting in decaying of wave energy. 

 

The flow field shows resulting pressure across states (Pr12- Pr22) and transmitted 

shocks (P1), after the interaction of head shock and forward rarefaction are almost identical, 

this means forward rarefaction has attenuated the head shock to Mach wave, just as its tail 

reaches the head shock. Similarly, in the case of tail shock overtaking the backward 

rarefaction, states (Pr22- Pr23) and (P2) are nearly coincident, thus, incident tail shock has 

been attenuated to a Mach wave, just as it reaches the head of the backward rarefaction 

(Bremner et al., 1960). Shocks keep on decaying during these interactions with the 

rarefaction waves, its strength (the pressure jumps across it) diminishes. Thus, at some 

distance from source, both the shock at head and tail of N-wave will get attenuated to Mach 

waves and will become one of the Mach line of rarefaction wave. As entropy across the 

shock continues to decay due to interactions with the rarefaction, there is reduction 

waveform speed and amplitude. This reduction is due to the dissipation of ultrasound 

energy. The loss of ultrasound energy and conservation of energy implies this energy is 

conserved and is transferred from one form to another. In this case, it becomes heat. 
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A similar set of calculation are performed for transducer of power levels of 50W, 150W, 

500W and 1500W and for frequencies of 20kHz, 500kHz and 2MHz, as shown in table 

3.1 and 3.2 

Table 3.1 Vibration speed of Fluid Particle in Acoustic Field of Varying Power Level 

and Frequency  

Power level, 
 W 

 (watt) 

Frequency, 

f  
(kHz) 

Intensity, 
I 

 (W/m2) 

Amplitude,  
A 

(m) 

Particle Speed, 
V 

 (m/s) 

1500 20 9477702.96 1691E-06 212.4 

1500 500 9477702.96 67.6E-06 212.4 

1500 2000 9477702.96 16.9E-06 212.4 

500 20 3152941.98 976.3E-06 122.6 

500 500 3152941.98 39.1E-06 122.6 

500 2000 3152941.98 9.76E-06 122.6 

150 20 94772.6 534.7E-06 67.2 

150 500 94772.6 21.4E-06 67.2 

150 2000 94772.6 5.34E-06 67.2 

50 20 315924.2 308.7E-06 38.78 

50 500 315924.2 12.3E-06 38.78 

50 2000 315924.2 3.08E-06 38.78 

  

Table 3.2 Variation in Resulting Flow Field 

Particle 
speed,  

V 

(m/s) 

P1 
(Pa) 

Pr1 

(Pa) 
Pr 

(Pa) 
Pr2 

(Pa) 
P2 

(Pa) 
Pr12=Pr13 

(Pa) 
Pr22=Pr23 

(Pa) 

Head 
Shock, 

U1  
(m/s) 

212.4 101325 229029 101161 40055 99954 101269 100527 490.8 

122.6 101325 164678 102005 60027 101058 102004 101152 421.7 

67.2 101325 132853 102220 76414 101281 102228 101294 383 

38.7 101325 118629 102258 86225 101317 102260 101319 364 
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FIGURE 3.10 Particle Speed vs Head Shock. The speed of head shock and thereby 

strength of shock increases with increase in the disturbance speed of transducer. 

 

3.6 Discussions of Results 

In an ideal fluid (medium of propagation), displacement amplitude of an intense ultrasonic 

wave decreases with an increase in frequency of transducer, since amplitude is inversely 

proportional to the intensity of disturbance or vibration. But the vibration speed, remains 

constant for a given power level for different frequencies as shown in table 3.1. The 

strength of shock (discontinuity) that develops in waveform depends on the disturbance 

speed, higher the vibration speed stronger the discontinuity. For example, for particle speed 

of 212.4m/s strength of head shock is 𝑃𝑟1/𝑃1 is 2.26 whereas for particle speed of 122.6m/s 

it is 1.625. Similarly, it can be seen from pressure distribution in resulting flow field (before 

interaction), distortion in wave will also be increase with increase in power level. After the 

interaction, the shock strength (the pressure jumps across it) diminishes. For instance, for 

particle speed of 212.4 m/s pressure jump across head shock was 2.26 before interaction 
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and reduces to near atmospheric after the interactions. This causes dissipation of ultrasound 

energy, but since energy is conserved, it is transferred from one form to another. In this 

case, it becomes heat. 

 

 

FIGURE 3.11 Intial & Final Condition of N-Wave. (a) In a pulse of intense ultrasonic 

wave two shocks will form with a rarefaction wave in between due to nonlinear wave 

motion of the wave. (b) Rarefaction can be divided into two parts separated by the sound 

wave, 𝑢∗ + 𝑐∗ = 𝑐0. (c) Head shock traverses the forward part of rarefaction wave, the tail 

shock backward part. (d) Interaction results in decaying of shocks to a Mach wave.  
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CHAPTER 4 

 SUMMARY & CONCLUSION 

 

In linear acoustics, disturbances always propagate at a constant speed relative to the 

medium and do not influence the fluid properties or behavior. The situation changes, 

dramatically, if the wave intensity is increased. Familiar laws like superposition, reflection, 

and refraction cease to be valid. Local sound speed changes from 𝑐0 to 𝑐𝑢 + 𝑢. Thus, with 

acoustic nonlinearity, there is different propagation velocities in different regions of a 

waveform hence shocks (discontinuities) are formed 

In this research, one-dimensional motion of an ideal fluid is used to study the 

nonlinear propagation of intense acoustic waves. With a pulse of high-intensity wave, two 

shocks are formed at the boundaries and a rarefaction zone of varying velocity are also 

form in between them. The strength of shock will depend on the power level of the source, 

higher the power level produces stronger discontinuity. The wave speed at the face of the 

rarefaction zone is faster than that of the shock at the front, while the shock at back is 

travelling at a faster speed than that of the tail of the rarefaction zone. The rarefaction can 

be separated into two zones separated by the sound wave,  𝑐𝑢 + 𝑢 = 𝑐0. The forward zone 

will overtake the shock at the front, while the tail shock overtakes the backward part. The 

pressure jump across the shocks will continue to decay during these interactions. The 

interactions will cause attenuation of the shock to a Mach wave and change in the entropy 

across the shock also diminish. This results in the dissipation of the shock’s energy. Since 

energy is conserved, it is transferred from wave energy to heat.  



39 

 These research helps to understand the nonlinear behavior of intense ultrasonic 

waves and can be used to model the processes involving the propagation of ultrasonic 

waves. 
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CHAPTER 5 

SUGGESTION FOR FUTURE WORK 

 

Nonlinear acoustic waves containing shocks can create wide range of mechanisms such as 

heating, agitation, diffusion, friction, mechanical rupture, and chemical effects. In this 

research, an attempt is made to understand the formation of shocks within intense waves 

and the decaying of shocks due sound-sound interactions within N-waves. However, in this 

study, the medium of propagation was an ideal fluid. It is proposed to extend the scope of 

this research to include the propagation of intense acoustic waves in non-ideal media, such 

as water, this will help to better understand the interactions of wave with the fluids. The 

shock will not appear immediately near the source, but will form at some distance from it, 

and the shock will continue to decay along the direction of propagation. Determining the 

distance from the source at which the shock appears and until when it decays will be 

essential to improving the applications of intense ultrasound. 
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APPENDIX A 

MATLAB CODES 

MATLAB coding to calculate pressure, 𝑃𝑟12 𝑎𝑛𝑑𝑃𝑟13 for the case of the head shock wave 

overtaken by a forward region of rarefaction wave. 

syms pr12 

p1=101325; 

pr1=229030; 

pr=101161.4; 

alpha=6; 

beta=0.142857; 

x=2*power((pr/pr1),beta); 

b=(1-(pr12/p1))/(sqrt((alpha*(pr12/p1))+1)); 

a=(1-(p1/pr1))/sqrt((p1/pr1)*(alpha+(p1/pr1))); 

c=sqrt(((beta*(p1/pr1))*((p1/pr1)+alpha))/((alpha*(p1/pr1))+1)); 

d=power((pr12/p1)*(p1/pr1),beta); 

eqn=c*(a+b)+x-d-1==0; 

solpr12= solve(eqn,pr12) 

 

pr13=pr*(pr12/p1)*(p1/pr1)*(pr1/pr) 

 

MATLAB coding to calculate pressure, 𝑃𝑟22 𝑎𝑛𝑑𝑃𝑟23 for the case of the tail shock wave 

overtaking a backward region of rarefaction wave. 

syms Pr23 

P1=101161.4; 

P5=40054.54; 

P4=99953.85; 

alpha=6; 

beta=0.142857; 

a=((1-((power((P3/P4),beta))*(power((P4/P5),beta))))/(sqrt(beta))); 

b=(((P4/P5)-1)/(sqrt(1+(alpha*(P4/P5))))); 

c2=((1-(P3/P4))/(sqrt(1+(alpha*(P3/P4))))); 

c1=(sqrt(((P4/P5)*(alpha+(P4/P5)))/(1+(alpha*(P4/P5))))); 

eqn=a+b+(c1*c2)==0 

solPr23=solve(eqn,Pr23) 
 

pr22=(pr23/p2)*pr*(pr2/pr)*(p2/Pr2) 
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APPENDIX B 

MATLAB CODE FOR EQUATION OF STATE OF WATER 

 

In this research, initial attempt was made to develop the proposed theory for water as 

medium of propagation. To expand this theory to water as medium, it was essential to have 

equation of state i.e., formulation to relate the thermodynamic properties of fluid phases of 

water over a wide range of conditions. International Association for the Properties of Water 

and Steam, IAPWS developed a formulation for the calculation of thermodynamic 

properties of ordinary water, this formulation is for calculating the free energy (𝛷) as a 

function of temperature (𝑇) and density (𝜌); appropriate combinations of derivatives of 

expression can produce any thermodynamic property desired (sound speed, density, etc.) 

(IAPWS, 2016). An MATLAB coding was developed to calculate the free energy for a 

given density and temperature.  

The equation is expressed in dimensionless form, 𝛷 = 𝑓/𝑅𝑇, and is separated into two parts, an 

ideal-gas part 𝛷0 and a residual gas part 𝛷𝜏: 

 

𝑓(𝜌, 𝑇)

𝑅𝑇
= 𝛷(𝛿, 𝜏) = 𝛷0(𝛿, 𝜏) + 𝛷𝜏(𝛿, 𝜏) 

 
 

Where, 𝛿 = 𝜌/𝜌𝑐 and 𝜏 = 𝑇𝑐/𝑇 with 𝑇𝑐 = 647.096𝐾, 𝜌𝑐 = 322𝑘𝑔 𝑚−3 and R =

0.46,151,805 Kj𝑘𝑔−1𝐾−1 

The ideal-gas part and residual gas-part can be calculated using following expression:  
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MATLAB coding to calculate ideal-gas part: 

T=input('Enter value of Temperature:'); 

rho=input('Enter value of Density:'); 

Tc= 647.096; 

rhoc = 322; 

sigma = (rho)/(rhoc); 

tau = Tc/T; 

Oni = xlsread('HFEValues','B5:B9'); 

OgammaI = xlsread('HFEValues','C5:C9'); 

On1= -8.3204464837497; 

On2= 6.6832105275932; 

on3= 3.00632; 

free_energy=(log(sigma)+On1+On2*(tau)+on3*log(tau)); 

for index=1:5 

free_energy=free_energy++(((Oni(index)*log(1-exp(-OgammaI(index)*tau))))) 

end 
 

TABLE 1 Numerical values of the coefficients and parameters of the ideal-gas part 
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TABLE 2 Numerical values of the coefficients and parameters of the Residual-gas part 
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MATLAB Coding for calculating Residual Energy Part 

T=input('Enter value of Temperature:'); 

rho=input('Enter value of Density:'); 

Tc= 647.096; 

rhoc = 322; 

sigma = (rho)/(rhoc); 

tau = Tc/T; 

i = xlsread('research2017','A2:A57'); 

di7 = xlsread('research2017','C2:C8'); 

ti7 = xlsread('research2017','D2:D8'); 

ni7 =xlsread('research2017','E2:E8'); 

di51 = xlsread('research2017','C9:C52'); 

ti51 = xlsread('research2017','D9:D52'); 

ni51 =xlsread('research2017','E9:E52'); 

ci51 = xlsread('research2017','B9:B52'); 

di54 = xlsread('research2017','C53:C55'); 

ti54 = xlsread('research2017','D53:D55'); 

ni54 =xlsread('research2017','E53:E55'); 

alphai = xlsread('research2017','F53:F55'); 

betai = xlsread('research2017','G53:G55'); 

gammaI = xlsread('research2017','H53:H55'); 

Ei = xlsread('research2017','I53:I55'); 

ni56 =xlsread('research2017','E56:E57'); 

bi56 =xlsread('research2017','K56:K57'); 

Ci56 =xlsread('research2017','M56:M57'); 

Di56 =xlsread('research2017','N56:N57'); 

Bi56 =xlsread('research2017','L56:L57'); 

ai56 =xlsread('research2017','J56:J57'); 

Ai56 =xlsread('research2017','O56:O57'); 

theta = (1-tau)+dot(Ai56,((sigma-1)^2).^(1/(2*Bi56))); 

delta = theta^2+dot(Bi56,((sigma-1)^2).^(ai56)); 

w=((-Ci56*(sigma-1)^2)-(Di56*(tau-1)^2)); 

C = exp((-Ci56*(sigma-1)^2)-(Di56*(tau-1)^2)); 

  

  

Residual_term_01=0; 

for index=1:7 

    Residual_term_01 

=Residual_term_01+(ni7(index)*(sigma^(di7(index)))*(tau^(ti7(index)))) 

end 

Residual_Term_02=0; 

for index=1:44 
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Residual_Term_02=Residual_Term_02+(ni51(index)*(sigma^(di51(index)))*(tau^(ti51(i

ndex)))*(exp(-sigma^(ci51(index))))) 

end 

Residual_Term_03=0; 

for index=1:3 

    

Residual_Term_03=Residual_Term_03+((ni54(index))*(sigma^(di54(index)))*(tau^(ti54

(index)))*(exp((-alphai(index)*(sigma-Ei(index))^2)-betai(index)*(tau-

gammaI(index))^2))) 

end 

Residual_Term_04=0; 

for index=1:2 

    

Residual_Term_04=Residual_Term_04+((ni56(index))*(delta^(bi56(index)))*sigma*(C(

index))) 

end 

Residual_Energy=Residual_term_01+Residual_Term_02+Residual_Term_03+Residual_

term_04; 
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