

New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Fall 2018

TRAN 603-101: Introduction to Urban Transportation Planning

Steven Chien

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Chien, Steven, "TRAN 603-101: Introduction to Urban Transportation Planning" (2018). Civil and Environmental Engineering Syllabi. 42.

https://digitalcommons.njit.edu/ce-syllabi/42

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Department of Civil and Environmental Engineering

TRAN 603 – Introduction to Urban Transportation Planning Section: 101 Fall 2018

Instructor

Steven Chien, Ph.D.

Professor of John A. Reif, Jr. Civil & Environmental Engineering

New Jersey Institute of Technology Office: Tiernan Hall, Room 280

Phone: (973) 596-6083, Fax: (973) 596-6454

E-mail: chien@njit.edu

Class:

KUPF 202 (6:00 PM ~ 9:00 PM on Thursday)

Office Hours:

3:00 PM ~ 6:00 PM on Thursday

Course Description

The course will introduce the concepts of urban travel analysis, community and land activity related to transportation systems, and socio-economic aspect of transportation planning. The knowledge of the analytical models, including the design and use of mathematical models for the estimation of transport demand in the framework of major strategic transportation planning will also be discussed.

Course Objectives

- Understand the principles and practices of urban transportation planning
- Understand the interactions between transportation planning and socio-economic, demographic, and land use characteristics
- Learn transportation planning processes and forecasting models
- Attain the capability to deal with transportation planning problems within the context of society, data availability and practical constraints

Course Content

The course consists of a number of lectures, and several exercises. The following subjects will be covered:

- The functions of models in the transportation system analysis.
- Types of models and their applications.
- Theoretical foundations (travel choice theory).
- Aggregated models for trip generation, distribution, model split and network assignment.
- Disaggregated choice models.
- Estimation of model parameters and calibration.

Final Attainment Level

After completing the course the students are expected:

- 1. To have knowledge of the urban transportation planning process
- To have knowledge of the structure of the modeling analysis process in transportation planning, of the related computational models, their theoretical foundations and their behavioral backgrounds.
- 3. To have insight into the operation of the quantitative analysis process in transportation planning, in the derivation, the operation and the application possibilities of the different types of transportation models, as well as in the estimation process of model parameters based on travel and traffic observations.
- 4. To attain skills in:
 - Building a system description of a transportation network
 - Setting up simple transportation planning models
 - Calculating and analyzing transportation demand
 - Interpreting model results.

Instructional Material

- **Textbook**: Michael D. Meyer and Eric J. Miller, <u>Urban Transportation Planning</u>, 2nd Edition, The McGraw-Hill Companies, 2000. ISBN-10: 0072423323.
- Class Notes, Handouts, PowerPoint presentations, and narrated lectures

Tentative Course Outline

Date	Topic	Textbook
Sep 6	Course Introduction Purpose and Goals of Transportation Planning Urban Transportation Planning Process Systems Approach to Transportation Planning	Ch. 1 ~ 3
Sep 13	Transportation Demand Transportation Cost Concepts of Demand Elasticity	Ch. 5
Sep 20	"Four-Step" Transportation Demand Modeling	Ch. 4 ~ 5
Sep 27	Trip Generation Regression Models and ITE Trip Generation Book Cross-Classification Models	Ch. 5 Class Notes
Oct 4	Trip Distribution Gravity Model Calibration of a Gravity Model	Ch. 5 Class Notes
Oct 11	Modal Split (Mode Choice) User Utility Theory Calibration of a Modal Split Model	Ch. 5 Class Notes
Oct 18	Midterm Exam	
Oct 25	Transportation Network Design Transportation Supply Analysis	Ch. 7. Class Notes
Nov 1	Traffic Assignment (I) Network Equilibrium: User Equilibrium and System Optimal	Ch. 5 Class Notes
Nov 8	Traffic Assignment (II)	Ch. 7 Class Notes
Nov 15	Contemporary Urban Transportation Planning Problems: Congestion Pricing, Transit Planning and Transit Oriented	Class Notes
Nov 22	Development, Goods Movement	
Nov 27	Land Use Modeling (Tuesday Follow Thursday Schedule)	Ch. 6
Dec 6	Final Exam	Ch. 1 ~ 7
Dec 13	Final Exam Due	

Homework

There will be 5~8 homework assignments following the lectures, which shall be completed independently.

Exams

There will be a midterm and a final exam, which shall be completed independently.

Grading

Midterm Exam	30%
Final Exam	30%
Homework	30%
Class Participation	10%

General Policy

Assignments and exams are to be completed by the due dates. Late submission will not be acceptable.

Makeup Policy

There will be no makeup for exams unless there are justifiable circumstances.

Code of Conduct

The NJIT honor code (http://www.njit.edu/academics/pdf/academic-integrity-code.pdf) will be upheld throughout the term for this course, and students are expected to abide by it. Any breach of code will result in failure of the course at the least and will be brought to the immediate attention of the Dean of Students leading to suspension or dismissal from the university.

.