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ABSTRACT

ANNOTATION OF MULTIMEDIA LEARNING MATERIALS FOR
SEMANTIC SEARCH

by
Sheetal Rajgure

Multimedia is the main source for online learning materials, such as videos, slides

and textbooks, and its size is growing with the popularity of online programs offered

by Universities and Massive Open Online Courses (MOOCs). The increasing amount

of multimedia learning resources available online makes it very challenging to browse

through the materials or find where a specific concept of interest is covered. To

enable semantic search on the lecture materials, their content must be annotated

and indexed. Manual annotation of learning materials such as videos is tedious and

cannot be envisioned for the growing quantity of online materials. One of the most

commonly used methods for learning video annotation is to index the video, based

on the transcript obtained from translating the audio track of the video into text.

Existing speech to text translators require extensive training especially for non-native

English speakers and are known to have low accuracy.

This dissertation proposes to index the slides, based on the keywords. The

keywords extracted from the textbook index and the presentation slides are the basis

of the indexing scheme. Two types of lecture videos are generally used (i.e., classroom

recording using a regular camera or slide presentation screen captures using specific

software) and their quality varies widely. The screen capture videos, have generally

a good quality and sometimes come with metadata. But often, metadata is not

reliable and hence image processing techniques are used to segment the videos. Since

the learning videos have a static background of slide, it is challenging to detect

the shot boundaries. Comparative analysis of the state of the art techniques to

determine best feature descriptors suitable for detecting transitions in a learning video



is presented in this dissertation. The videos are indexed with keywords obtained from

slides and a correspondence is established by segmenting the video temporally using

feature descriptors to match and align the video segments with the presentation slides

converted into images. The classroom recordings using regular video cameras often

have poor illumination with objects partially or totally occluded. For such videos,

slide localization techniques based on segmentation and heuristics is presented to

improve the accuracy of the transition detection.

A region prioritized ranking mechanism is proposed that integrates the keyword

location in the presentation into the ranking of the slides when searching for a slide

that covers a given keyword. This helps in getting the most relevant results first. With

the increasing size of course materials gathered online, a user looking to understand

a given concept can get overwhelmed. The standard way of learning and the concept

of “one size fits all” is no longer the best way to learn for millennials. Personalized

concept recommendation is presented according to the user’s background knowledge.

Finally, the contributions of this dissertation have been integrated into the

Ultimate Course Search (UCS), a tool for an effective search of course materials. UCS

integrates presentation, lecture videos and textbook content into a single platform

with topic based search capabilities and easy navigation of lecture materials.
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CHAPTER 1

INTRODUCTION

1.1 Background

Traditionally, courses were designed for face-to-face learning, where students and

instructors meet on campus. The introduction of modern communication technologies,

such as the Internet and email, offers an opportunity for the instantaneous exchange of

thoughts and ideas. This has fostered the evolution of electronic learning, also called

e-learning or online learning. A student may not be able to traditionally attend

school for various reasons. E-learning relieves students from being physically present

on-campus to receive the lecture at fixed time. The flexibility to take courses at

their convenience allows them to complete their education. E-learning is a gateway

for students across the globe to receive knowledge from online courses provided by

experts.

In the last decade, e-learning has become a popular mode of instruction. Several

universities offer online courses containing videos, slides, electronic textbooks and

materials which are available centrally on a website, allowing students to access them

anywhere at their convenience.

Massive Open Online Courses (MOOCs) like Coursera [35], MIT open courseware

[64], Udacity [84] and edX [11] are storing large quantities of learning materials.

Online lectures, to some extent, can emulate traditional classroom environments.

Millions of students are registered for these courses and are taking advantage of these

online courses to enhance their knowledge.

1.2 Problem Statement

Coursera has collaborations with more than 140 institutions; edX has more than 60

member institutions and provide hundreds of courses and specializations in different

1



areas. As there is a massive amount of content, navigating and effectively searching

for a topic within the course material has become increasingly difficult. If a user is

searching for one specific topic covered in a course, he or she might have to browse

through the entire lecture material to find it.

Online courses by an institution are powered by learning software usually hosted

on a website. Each course contains sections, which contains links to the lecture

videos, respective presentation slides and some reference materials. These courses are

typically structured to navigate the course material sequentially. If a student wishes

to study a specific concept in the course, the current keyword-based search tool fetches

the entire video or slide which are not necessarily related to the required topic. This

limitation overwhelms the student with the large number of search results and must

go through entire section of the online material, i.e., presentation slide, lecture video

or the textbook to look for it. The current MOOCs lack the feature of topic-based

priority search. An interface capable of searching for a topic and providing relevant

results in the lecture material that are meaningful to the search would be ideal.

A student preparing for a course views videos and other materials on the e-

learning site, refers to a textbook recommended by the instructor and searches and

reads resources present on the Internet. The absence of an integral portal containing

all the learning materials and other resources, including the textbook in electronic

format, would save time and help the student to grasp the information quickly. Users

could search for a topic and the resultant material would be specific slides, segments

of the videos and most relevant pages of the electronic textbook associated to the

topic.

To create a topic-based search on lecture materials, the content needs to be

indexed. Given the amount of learning material present, annotating the content

manually would be a resource-intensive and tedious task. Therefore, automating the

annotation process will be beneficial. Segments of a video could be annotated to

2



represent the information of each presentation slide covered in that video segment.

The lecture videos are shot under different conditions: some of them are recorded in

the classroom while others are a screen capture using screen recording software.

(a) Case I - Full screen Image (b) Case II - Occlusions and poor

quality

(c) Case III - Slide covering small part

of video frame

Figure 1.1 Types of lecture videos.

Many videos have inadequate illumination, the presence of instructor and

audience, partial slides and poor quality. All these challenges make it difficult to

detect transition changes accurately (Figure 1.1). Case I shows a video, having

poor quality and occlusions, such conditions often generates false positives due to

obstructions. Case II shows a slide, that covers only 40% of the entire frame. Since

3



the slide covers a minor part of the frame, any change in background or speaker

movement can contribute to false detection.

Optical Character Recognition (OCR), recognizes the characters in the image.

Using OCR on the video stream directly can yield poor results and the processing

time is slow. The detection results are entirely dependent on the OCR software and

the false rates are high. In cases where slides contain only images or figures, OCR

does not work.

Automatic speech recognition (ASR) is still an active research area. The

problem with ASR is that the accuracy of generating keywords is entirely dependent

on the speech processing engine and the accuracy is generally poor. ASR systems

are often trained on native English accents. The false detection rate is relatively

high for non-native speakers of English. Such systems have to be trained for different

speakers and manual effort is needed to correct the speech in these cases. For foreign

languages, a new model needs to be added to the ASR systems with the vocabulary

and needs to be trained. Many commercial products like dragon also require the user

to be trained for different speakers.

1.3 Annotation in UCS

Annotating learning materials has various challenges. Different media are used for

teaching, such as slides, videos and textbooks. However, the annotation process is

different for each. The learning materials were processed separately to annotate the

content (Figure 1.2).

1.3.1 Slide

The following steps are performed to annotate the presentation slides:

Keyword extraction: Keywords are extracted from the slide text.

Structure extraction: Region information of keywords is extracted, based on their
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Figure 1.2 Annotation in UCS.

appearance in the region, which helps to present results based on priority.

The slide annotation contains an index of the keywords and locations of the slides,

where the keywords appear.

1.3.2 Video

Video is essentially a series of frames. To annotate the video automatically, individual

frames are analyzed. The following steps are performed at the pre-processing stage.

Slide localization: The slide is detected and extracted from the video frame for the

classroom videos.

Shot transition detection: Features extracted from the slide frame help to

determine transitions in the lecture video.

Slide and video mapping: Once the transitions are detected, the video segments

are mapped to the respective slides that appear in the video segment. The videos are

annotated using the mapping between slides and video segments (slide-video index).
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1.3.3 Textbook

The textbook is annotated by extracting the keywords and associated page numbers.

The textbook index contains information related to page numbers and keywords.

1.4 Outline of Dissertation

The history and evolution of MOOCs, is discussed in Chapter 2. The related work

done in content annotation over the years is presented.

Chapter 3 describes the processing step performed on screen capture videos.

Screen capture videos often come along with metadata which is not reliable many

times. To create a mapping between the video and slide, the video is partitioned

into segments such that each segment of video corresponds to one slide also called

as transition detection. Background for shot boundary detection is presented,

that includes the three steps, feature selection, feature similarity measure and

shot boundary detection. Related work done in this area is also presented. The

performance of state-of-the-art feature descriptors, namely Histogram of Oriented

gradients(HOG), Wavelets, Edge Change Ratio (ECR), Scale Invariant of Feature

Transform (SIFT) and Fast Fourier Transform (FFT), is compared. The goal of this

study is to determine suitable descriptor for lecture videos.

Classroom recorded videos need special processing as discussed in Chapter 4.

Classroom video recordings also record the surrounding classroom (e.g., the audience).

It is necessary to extract the slide region (localization) to avoid the false transitions.

The region extraction process consists of two steps. The first step towards localization

is to segment the frame into clusters of region. This is done using k-means clustering,

which involves clustering in R, G and B space. It is observed that many images like

lecture video frames are not color predominant. It is advantageous to convert them

to the different color spaces, namely DCT, Marginal, and grayscale, to determine the

most suitable technique for segmentation. K-means clustering based on Tsai’s moment
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preservation technique for multiple thresholds is proposed. These thresholds are set

as initial seeds. A comparative analysis of k-means clustering on DCT, marginal

and grayscale space is presented. The slide is then localized (extracted) using some

heuristics.

The annotation process of learning material in UCS is presented in Chapter 5.

The indexes are set up differently for each of the learning media (slide, video and

textbook). To prepare annotation of the videos, we use slide index as a base. The

slide index is prepared by extracting the keywords from the slides. For textbooks, we

use the rear index of the textbook to prepare the indexes. Videos are indexed with

the information such as the timestamp corresponding to the slide.

Often the top results returned for a search do not explain the topic very well.

A region-prioritized ranking mechanism is proposed, to prioritize the most relevant

results according to the region of appearance. If the keyword appears in the title,

more weight is attached to it than if it appears in the body. This makes sure that

relevant results appear at the top.

The contributions of this dissertation have been integrated into Ultimate Course

Search (UCS), a tool for an effective search of course materials. UCS integrates

presentations, lecture videos and textbook content into a single platform with

topic-based search capabilities on the actual content and easy navigation of lecture

materials. Users can query the UCS system with keywords, and the system returns

the links to the learning materials (slides, videos and textbooks) that cover the topic.

Upon selecting the video option, the user can directly view the segment of video

related to the topic. Similarly, the portions of slides and textbooks are displayed

that cover the topic. Users don’t have to navigate through entire lecture material by

using UCS.

Chapter 6 covers personalization of learning concepts based on the knowledge

of students due to the courses they have completed. In the case of e-learning systems,
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personalization can mean adapting the content to the user learning preference or the

knowledge level. The goal of personalized learning is to recommend the prerequisite

concepts, to prepare the user for the given concept. Chapter 7 concludes the

dissertation and proposes future work.
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CHAPTER 2

E-LEARNING BACKGROUND AND RELATED WORK

The term “distance learning” has existed for quite some time. After the lecture

materials became available online, the term “e-learning” was coined in 1999 as a

short version of electronic learning. The purpose of e-learning has been always to

make knowledge and resources available to the students who cannot manage it due to

the time. E-learning is an equivalent offering of the classroom lecture for those who

cannot physically attend the course. Below is a summary of how e-learning evolved.

2.1 E-learning Background

Distance education learning is categorized in two ways, synchronous and asynchronous

learning. In synchronous learning, the course is scheduled at a specific time and all

participants are present at the same time and in some way, it replicates the traditional

classroom experience. Web conferencing, video conferencing, television broadcasting,

internet radio, live streaming, telephone conversations and VoIP are all forms of

synchronous learning.

In asynchronous learning, participants can access the material according to their

schedule and convenience. Mail is one of the oldest correspondence mechanisms is

based on asynchronous learning. Similarly, emails, chats, message boards and all the

modern MOOC systems are based on asynchronous forms of learning.

2.1.1 Pre-history of E-learning

Previously, lectures were strictly in the classroom. Sometime in 19th century, postal

services became faster, and distance learning spread across Europe and the United

States. The first such course was taught by Pitman in the1840s. He started a

correspondence course on shorthand where he sent his assignment to his students by
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mail and his students would send the completed assignment back. Throughout the

19th century, distance learning was widespread. For example, students in Australia

could take correspondence courses offered from London School of Economics. In

correspondence courses, the materials were sent by mail and students could study

without having to be present physically.[65].

In 1920, Pressey developed a testing machine. Users were presented with a

question with 4-5 possible answers, the question number appeared on the device,

and the user was given multiple choices as possible answers (numbered 1-5). When

users pressed a key as a response to the question, their response was recorded by the

device on the test sheet. After they finished, their final score was also noted on the

test sheet. This was the first automatic grading. In the early 20th century with the

advent of technology, things changed as radio and television could be used as media

of instruction.

In the 1950s, as television became popular as a medium of education, and there

were not many teachers available to teach in United States, B.F. Skinner developed

a learning system around this time which differed from Pressey’s in some ways: he

presented the material in chunks. The teaching machine was mainly a program, which

was a combination of teaching material along with test items along the way of the

material. The program was composed by either fill in the blank or workbook or

in computer. The correct answer was revealed later. If the user selected the correct

answer, that was reinforced; otherwise, the user studied the answer to learn the correct

one for next time. This technique of teaching was called programmed instructions.

In the late 1950s “Computer Aided Instruction” or “Computer Assisted

Instruction” (CAI) was introduced in elementary schools. It was a joint effort between

educators of Stanford University and IBM. In CAI systems, information was combined

with drill and practice sessions. During this time, obtaining and maintaining

computers was difficult due to which these systems were limited. “Programmed Logic
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for Automated Teaching Operations” (PLATO) [70], was another early CAI system

started at the University of Illinois and used for higher education. It included drills

and practice exercises, and it consisted of a mainframe computer that had around

1000 terminals to support the students. By 1985 there were 100 PLATO systems that

were operating in United States. Around 40 million users were taking advantage of

PLATO systems from 1978-1985. These systems paved the way for communication

between users, similar to email technology developed later.

In 1969, ARPANET was born as a research project at DARPA, and UCLA was

connected as a host to ARPANET. Computers were added to the ARPANET during

the following years and gave birth to the Internet. In 1972 the initial application of

electronic mail was developed. The simple application had read, file, respond and

forward the message. This made the communication between people much faster and

easier.

In 1969, Open University [7] in the United Kingdom was another initiative

that took correspondence learning to the next level by using multimedia. Open

University the first successful distance learning university. When email became

available, Open University began to communicate the course material through it.

This was a breakthrough in the field of education. The communication was instant

and would no longer take days with postal mail. Some people took advantage of

this technology and accessed the learning materials for free. Through the 1970s and

1980s, enrollments increased steadily and more courses were introduced.

In the 1970s, with the invention of GUI and mice for computers, the new era

of e-learning began with Computer Based Training (CBT). The training to any

individual was given through a computer. The first CBT was developed in 1976

[87] at New Jersey Institute of Technology (NJIT). Electronic Information Exchange

system (EIES) was developed. The students could have stored class discussion in an

asynchronous manner. They concluded that discussion in such a manner proved to
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be informative for both instructor and students, with students actively participating

in the discussion.

When the first personal computers were introduced by Altair, Apple II and

IBM PC, individuals gained access to the computers for their personal use. CBT

gained popularity around this time. Users needed to install the program stored on

media, such as floppy disk/ CD-ROM/ DVD. With the CD-ROM and DVD, more

information could be stored in the form of instructional material.

With the Internet available to people, online courses gradually picked up pace.

The first fully online university, the University of Catalonia, was founded in 1994 in

Spain [10]. From 1990 to 2000, many of the Learning Management Systems (LMS)

that remain popular today were developed. Institutions used an LMS to deliver

content online. The students could submit their assignments and instructors could

keep track of the grades using LMS. In 1997, CourseInfo LLC launched “Interactive

Learning Management” at Cornell University, Yale Medical School and University

of Pittsburgh. Later, CourseInfo LLC merged with Blackboard Inc [1] to launch

Blackboard Learning System.

In 2001, MIT initiated “MIT Open Courseware” (OCW) [64]. OCW opened

the set of 32 courses in 2002 to the public. Various course materials, such as the

syllabus, an introduction about the course and video lectures were hosted online.

Additional materials, such as power point presentations, pdf files and others were

also uploaded where applicable. Each course was divided into several lectures, having

their respective supplementary materials.

In 2002, Moodle [6] was introduced and remains one of the most popular LMSs.

In the 2000s, businesses started to present e-learning courses to train their employees

with new skills to improve their knowledge and in turn help companies on their

projects.
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From 2000 to 2008, online education was widespread in most of the countries

throughout the world. Social media, iTunes U and MOOCs took the online

education to a totally new level by giving students a platform not only to learn

at their convenience but also to communicate with the instructor and other students

instantaneously and most effectively.

In 2004, Salman Khan, a Harvard and MIT graduate, started remotely tutoring

one of his cousins interactively using Yahoo Doodle images. That was an instant

hit among his relatives. To make better use of time and allow flexibility, Khan

posted the videos on YouTube. After becoming popular with many students, Khan

established Khan Academy and began working full-time on that. A typical tutorial

has a video that shows step-by-step doodles and diagrams on an electronic blackboard.

Other than tutorials, the website also has features such as progress tracking, practice

exercises and a variety of tools for teachers in public schools There are more than 4500

tutorial that cover different academic fields. The organization is supported through

donations and has more than one million subscribers [4].

In 2007, Apple announced the launch of “iTunes U” via its digital content store

iTunes [5]. This service was aimed at students of various universities and they were

given access to their university’s video and audio content. Each member university

creates its own iTunes U site, which facilitates searching for material. Many colleges

and universities in various countries, such as the United States, the United Kingdom,

Australia, Canada, Ireland and New Zealand, offer iTunes U that includes lectures,

language lessons, lab demonstrations and more. Anyone with an Apple device or

using iTunes software was able to access the content with ease. As of 2011, Open

University in the UK set the record for the most downloads having reached 40 million

downloads. In early 2013, iTunes U crossed the mark of one billion downloads from

more than 800 institutions. From 2008 the new era of MOOCs had begun, and it

took e-learning to new heights. The next section talks more about MOOCs.
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2.2 Massive Open Online Courses (MOOC)

Figure 2.1 Massive open online courses (MOOC), types and criteria.

A MOOC is an online course aimed at massive participation from students

across the globe via web [66]. The courses offered have course material similar

to classroom lectures and also the video of the instructor explaining the content.

Students are provided with an assessment comparable to the classroom lectures. An

essential aspect of MOOC is the network, people across the world can discuss the

course contents with each other. There is no prerequisite to join the course, such as

completion of any specific degree. The aim is to give free (sometimes paid) education

to students who are often unable to attend school. In MOOC systems, learning and

success are entirely dependent on one’s participation.

2.2.1 MOOC is Massive

Massive Open Online Course as the name suggests is an online course that is massive

in the sense of participation of students. Traditional classroom courses are limited

concerning the number of students that they can accommodate. On the other

hand, the massiveness in MOOC systems is regarding the number of students taking

advantage of this course. Users across the globe can access any material without any
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restriction. Some MOOC have few hundreds of students enrolled while others have

more than thousands of students enrolled for every course.

2.2.2 MOOC is Open

Originally, the creators had a different idea of openness of MOOC. The creators felt

that the MOOC should be open in the sense that anyone can access, use it and

edit the material. The materials should not be copyrighted or property of specific

institution or person. The content should be modifiable so that more people share

their experiences and thought to make it better.

Today that concept has changed, such that most of the courses in Coursera or

edX are copyrighted, and users are not allowed to modify those. The materials are

available only for the duration of the course, this is not what was initially intended,

and over the years the purpose has changed regarding the openness. In short, today

MOOCs are open with some restrictions.

At the present time, open means several things. The MOOCs are open in the

sense that anyone can access the material and the course is free. However, some of

the MOOCs, such as Coursera or edX have specialized courses or certification courses

that are offered for some fee. The meaning of open is a course that is available at no

cost without any prerequisite. In other words, anyone with a degree, either in high

school or college can take any course, and there is no minimum qualification set for

any course.

2.2.3 MOOC is Online

MOOC is offered on the web so that students can take advantage of the course

remotely from any part of the world. MOOC also enables the students to share their

thoughts and ideas with each other about the course and allows an instructor to reach

out to everyone, similar to the traditional class, but at a substantially large scale.
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2.2.4 MOOC is Course

In the field of education, a course means a unit of teaching a specific area with

predefined objective or goal, which is often taught by one or more instructors. The

course usually has some definite duration, with start and end dates marking the course

duration. Upon completion of the course, the instructor determines the progress of

each student by giving them a grade which marks the end of the course.

MOOCs are a courses in some sense. Each course has a fixed start and end

time, typically lasting 4-6 weeks. Every week there is some specific chapter or topic

covered and students can control their pace. In other words, users can choose when

to view lecture material according to their comfort.

In MOOC the completion of the course is entirely up to the student. MOOCs

provide regular assignments, quizzes or projects to students to help them understand

the topics better and set some milestones along the course completion. Every

assignment has some deadline associated, similar to the traditional classroom course.

It is difficult for an instructor to evaluate the work considering the massiveness of

students. Hence, the assignments are assessed by software or peers.

2.2.5 Types of MOOCs

MOOCs are broadly divided into two categories namely cMOOC and xMOOC [2],

[3]. cMOOCs work on connectivism philosophy of MOOC that was proposed in

earlier versions of MOOC. In cMOOC, the learners create their own goal, where the

learners are not evaluated, but they control their learning. The starting point of the

connectivism is an individual learner, the learner has several connections, and the

information is exchanged through the network. The participants act both as teachers

and students. The learning is through collaborating with each other through a social

network; the learners are connected for discussions and to work on a joint project and

thus create a platform for future learning.
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There exist some MOOC types worth mentioning, such as smOOCs and

bMOOCs. sMOOC is the small open online course that includes a small number

of students. bMOOCs are the blended or hybrid MOOCs where the course is taught

in the class as well as available online; this gives students flexibility regarding time.

2.2.5.1 cMOOC. Downes identified four key design principles for cMOOCs:

Autonomy of the learner: Here the learners choose what skill they want to learn.

There is no set format or outline of the course.

Diversity: Range of people who participate and their knowledge

Interactivity: Co-operative learning, communication between participants leading

to knowledge exchange.

Openness: Openness is regarding free access, free content, and assessment

Thus in cMOOCs, the learning occurs due to exchange of information between the

participant, unlike xMOOC where the knowledge learning results from an instructor

who is an expert in that field.

2.2.5.1.1 Design Features for cMOOCs

Today, cMOOCs take advantage of some of the following techniques:

Social Media: For cMOOCs, the first important requirement is the network. The

network is where one can start sharing the information. These may include web

conferencing tools, such as Google Hangouts or Adobe Connect, streamed video or

audio files, blogs, wikis, learning management systems, such as Moodle or Canvas,

Twitter, LinkedIn or Facebook, all enabling participants to share their contributions.

User-driven curriculum: There may be moderator assigned to start a particular

topic, but the content is driven by the users who participate in the discussion.

Assessment: There is no instructor or authority available for assessment. Even

17



though some of the users get an advantage of sharing knowledge from a more

experienced user, it is up to the user to decide the completion of course.

2.2.5.2 xMOOCs. The xMOOCs, on the other hand, are based on the idea

of traditional classroom courses. In xMOOC, there are one or more instructors,

supported by the TAs and several students are enrolled for the course. The lectures

are prerecorded videos, accompanied by other learning material. This form of MOOC

has a more controlled layout of the course, and the topics covered in xMOOC are

predefined. The students are assessed with quizzes, assignments and projects. There

are peer assessments and discussion forums where students can participate and share

their thoughts.

2.2.5.2.1 Design Features of xMOOC

Software: xMOOCs use specialized software that acts as a platform for the

registration of vast numbers of participants, storing and streaming of content and

assessment

Short Video lectures: xMOOCs use the recorded videos that are hosted online.

Usually, each course spans for 8-13 weeks. The research shows that the human

attention span is limited; due to this people lose interest if the video lectures are

too long. In xMOOCs, the video lecture is broken down into smaller segments of

15-20 minutes to help students retain their interest. These videos are shot either

using a camera covering the class or by the instructors themselves using web-camera

or screen capture software.

Computer Assessment: Students complete an online test or quiz and receive

immediate computerized feedback. The course grade is earned after completing

the online test or project. Most xMOOC assignments are based on multiple-choice

questions, but in some cases, MOOCs also used text fields for participants to enter
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answers, such as coding in a computer science course, or mathematical formulae, and

in one or two cases, short text answers, but in all cases, these are graded automatically.

Peer Assessment: Some xMOOCs divide students into a small group where they

assess the assignments randomly submitted by their peers. Sometimes it may cause

a problem due to a different level of expertise these users may have.

Supplementary Materials: Often there is some supplementary material along with

the video lectures to help students learn better, such as Slides, audio files, URL link

to some of the reference material, a discussion forum where the enrolled students can

communicate and discuss problems faced.

Certificates: After successful completion of the program, most xMOOCs award the

students with some recognition in the form of certificate or a score learning analytics.

Learning Analytics: xMOOC platforms can collect and analyze the data about how

students learn which may be necessary to determine the success rate of the MOOCs.

2.2.6 Emergence of MOOC and Features

The first MOOC was launched in 2008, named “Connectivism and Connective

knowledge” CCK8 [40]. The course was free and available to anyone. This course was

open, and anyone could join, modify the content. Students were both teachers and

students. The primary objective was to encourage collaboration between different

people. Students share their knowledge through networking with other students.

Here there is no predefined outline of the course. The students ask questions, and the

knowledge is transferred within the network. The students were engaged in learning

by using different platforms, such as Facebook, wiki pages, blogs and forums. Around

2,200 people joined, and many of them created blogs. The CCK8 comes under the

cMOOC category.
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Peer to Peer University (P2PU) [8] was established in 2009. P2PU is aimed at

people sharing their knowledge with each other. Anyone can either create or take a

course. The idea is that students learn better socially, and the results are often better.

The participants of the class communicate with each other synchronously on tools,

such as Skype or IRC and they can interact asynchronously on the P2PU website.

Three professors at Stanford, Andrew Ng, Daphne Koller and Sebastian Thrun

paved the way for the modern MOOC that exists today. Ng started in 2007 with a

primitive approach; he recorded his lectures and put them online. His idea was to

reach out to students who did not get a chance to have education at Stanford. To his

surprise thousands of students took advantage of his course on machine learning.

Koller felt that passively listening to the entire video might not be that

interesting and that students could lose out interest quick. She felt that if the videos

were divided into chunks of shorter segments, it might interest the students further.

Ng and Koller collaborated with each other to improve the quality of learning. They

felt that students often learn better when they discuss the material, that way they

know several possible solutions. Taking the idea from social networking, the two

professors decided to integrate the discussion forums to the software built by them.

IIn 2011, Stanford University launched three courses, first was offered by

Sebastian Thrun and Peter Norvig from Google, launched “Introduction to AI”, this

course was a huge success. As soon as it was announced, the enrollment rose to 160,000

students to everyone’s surprise. Shortly after the success, two other professors Ng and

Widom launched two more courses which were also a huge success.

Based on the popularity of the courses, Thrun established Udacity [84], Ng and

Koller launched Coursera [35]. Coursera announced a partnership with University

of Pennsylvania, Princeton University, Stanford University and the University of

Michigan. In 2013, Udacity launched its first for-credit course in collaboration with

San Jose state university.
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Anant Agrawal, one of the MIT professors, was inspired by the success at the

Stanford University. With the commercialization of online education, he created a

not-for-profit initiative MITx. Harvard joined the group and MITx was renamed

to edX [11]. Several other universities joined too. In 2013 Google announced a

partnership with edX. Google and edX will work on the research dealing with how

students learn. edX launched a joint open source platform that is under GPL license.

Originally the MOOC was designed to be open in the sense that the material is freely

available and without any copyright issues, but with Coursera and edX the materials

were copyrighted.

2.2.7 Features of Current MOOCs

Features of the popular MOOCs namely coursera [35], Udacity [84] , edX [11] and

Udemy[9] are as follows:

2.2.7.1 Coursera. Coursera was established by Ng and Koller in 2012. Following

are some of the technical aspects:

Platform Used: Coursera runs on Nginx web server on Linux OS on Amazon web

services with the primary stack in Scala on the Play Framework. Data is stored on

Amazon S3.

Specialization: Coursera offers Specialization with fee, but one can audit the course

for free.

Assignments: The courses are typically 10-12 weeks. There are quizzes, weekly

exercise, assignments and project.

Course Outline and Features: The course is split into weeks, one chapter every

week, and each chapter is broken into small segments of 7-10 minutes. The videos

are recorded using screen capture software. There are quizzes and assignments at

the end of each week. There is a discussion forum where the students can discuss

course-related problems. Students can also form a study group. Few moderators can
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help to solve course difficulties.

2.2.7.2 Udacity. Udacity uses Wacom Cintiq tablets to make their presentations.

The course is divided into several lessons, such as Coursera. The grading is

automated. Students can take certification courses called Nano-Degree programs

which are categorized according to their difficulty level. The lecture videos could

also be downloaded. The lectures are uploaded on YouTube makes use of YouTube

close captioning. The transcript is available on YouTube, and if the user clicks on

the transcript, they can be directed to a segment of the video. YouTube uses the

automatic speech recognition API (ASR API) from Google that creates the transcript

automatically.

2.2.7.3 edX. edX differs from Udacity and Coursera in the way that edX is a

not for profit organization and also it runs on the open source platform. In edx, the

course is divided into weeks of study, such as Coursera and Udacity. The videos are

of shorter duration. On the front-end, there is a provision to see the transcript along

with the video. As the video progresses, the text in the transcript is highlighted and

the user can navigate the video through the speech transcript which plays the video

from that point. However, instructors are required to upload the speech transcripts.

2.2.7.4 Udemy. Udemy offers paid or free course depending on the instructor.

Using their platform instructors can upload their content in the form of videos,

PowerPoint, pdf, audio and zip files. Udemy provides instructors to create a course

advertise it and earn profit from the tuition of students enrolled. Courses are split into

various sections. Lectures are usually video, but they can also include audio, text,

and presentation slides. Users can access the related material, discussion forums.
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Every course has a web page with a brief description of the course, user reviews, and

sometimes a video introduction.

2.2.8 Completion Rates

Completion rates are anywhere between 7% - 10% which is due to some of the factors

such as, the course is too easy or difficult, lecture fatigue, lack of organization of the

course, many students want to take an overview of the course rather than completing

it.

2.3 Related Work: Annotation of Learning Material

Annotating the content is to tag the content in such a way that the content can be

searched using the tag. The annotation of any material defines the content. The

content usually is in the form of text (slides), visual (video) or audio (speech of

instructor).

2.3.1 Manual Annotation of Lecture Videos

Earlier when the technology wasn’t advanced, the annotation of the content was done

manually. Manually annotation is a tedious work and requires time and labor. This

section presents some of the related work done in this area.

One way to annotate the lecture materials, is to attach some meta-data to the

lecture video as described by Jesse et al. [51]. But the metadata usually provides a

summary of the entire video and most of the time this is done manually. Annotation

on the metadata limits the search capability to only the keywords appearing in the

metadata than on the entire lecture video.

Classroom 2000 project [12] introduced a presentation tool called ClassPad

that uses an electronic whiteboard to present slides and allow annotation by the

instructor. The instructor annotates the GIF image of the slide with a pen. Students

are also provided with the similar interface where they can take their notes. Both the
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approaches rely on some form of hardware or software systems that have to be used

to prepare the recording. The problem with the approach is that manually editing

the timestamps, is a tedious task and takes a significant amount of time.

In Microsoft research Annotation System (MRAS) [21] the authors describe

an annotation tool that lets users annotate the content played. In this system, the

student can login to watch the class lecture; they are provided with an interface

where a user can enter questions or comments related to a specific part of lecture

video. These comments are saved so that when other user logs into the system, they

can watch the lectures along with the comments that were entered into the system

prior by other students who viewed the lecture before them. The questions are linked

to the content, and as the user progresses watching the material, the comments are

highlighted in that section of the course material.

2.3.2 Automatic Annotation of Lecture Videos

For lecture video, automatic annotation means extracting the semantic information

either directly from the text that appears on the video frames using some character

recognition method or to map the slides with video segments. Another approach is

to convert the audio stream of the instructor into text and use the text to annotate

the video.

2.3.2.1 Annotation Using Text Extraction Techniques. One way to extract

the text from the video stream directly is by using Optical Character Recognition

(OCR). OCR is an electronic conversion of images of typed, handwritten or printed

text into machine understandable text. In OCR, first the computer is trained with

samples of characters on test data, and then it recognizes those characters. Early

research has been done in this area.

Liška et al. [57] use OCR tool on the extracted frames for text recognition. OCR

is performed on every extracted slide frame which amounts to a lot of computation
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time. They do not use text localization process to identify text regions. Therefore,

the recognition accuracy of their approach is much lower.

TalkMiner [15] offers search capabilities similar to UCS but on talks. Talk-Miner

provides an interface where the user can browse through the talks and search for

specific talks using keywords. The keywords are extracted from the video directly

using optical character recognition (OCR). Thus, the accuracy of keywords is entirely

dependent on the accuracy of OCR. The text extracted is used to build indexes to

support the search. OCR techniques are slow and not always reliable especially when

the quality of the video is low; this can impact the search capabilities. TalkMiner is

proposed on general talks, and their numbers are limited compared to course lectures

given at higher education institutions.

Yang et al. [92], presented an approach for automated lecture video indexing

based on video OCR technology. Instead of giving the whole frame as an input to

OCR and then detecting the text, the text is localized from the frame, such as slide

title and subtitles and those sections are given as an input to OCR.

Second way to annotate the videos is by aligning the video segments to the

slides.

In the work [77], authors mapped the videos with the slides to index the content.

They manually edited the time stamps of the transition points for synchronization.

Another approach is that used in BIBS lecture webcasting [78] system that

provides the user with a tool to review the lectures. The lecture is recorded using

their software. To map the slide and the video, they use a plug-in to record the

slide time codes automatically. Otherwise, they enter it manually. If the lectures are

recorded with software, then this approach works fine, but if we want to include some

old lectures or any other videos not recorded with the software, then the approach

fails.
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Mukhopadhyay et al. [67], propose an authoring system. First, the transitions

are found by binarizing two frames after a chosen interval. The difference between two

frames is computed regarding pixels, which is compared against a fixed threshold. For

the matching step, both the slide and video frame are clipped and binarized. After

that, both the images are dilated, and again the number of black pixels is computed

as a measure of similarity.

Hunter et al. [50] proposed Synchronized Multimedia Integration Language(SMIL),

a technique to index a multimedia presentation archive. In this method, the authors

prepare a system where the instructors upload the slides in the pdf format. The

recorded video is mapped to the uploaded slides. The video frames are binarized, and

pixel difference technique is used to find the transition point. The major problem in

above two approaches is that it relies on pixel-based information which is often noisy

and unreliable.

Mapping video with the slides is a two-step process. The first step is

segmentation of video and localizing of a slide in a video and secondly to match

the video with the slide. To map the slides and video, we need to segment the video

such that each segment contains the talk about each slide.

Image processing techniques are used to identify the transitions automatically.

In a lecture video, each video segment corresponds to one slide of the power-point

presentation. The method to detect the transition is also termed as shot boundary

detection. Extensive research has been done on shot boundary detection.

2.3.2.2 Annotation Using Speech Transcript. Another approach is to use

the audio layer as suggested by Kamabathula et al. [52] and Repp et al. [76]. In the

work proposed by Kamabathula et al. [52], a video browsing tool is developed that

uses speech transcripts to generate keywords for indexing. The audio track usually

produces a considerable amount of keywords, and many of them do not appear in
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the slides. For the cases where we do not have access to the speakers to train the

software, it becomes challenging to get correct results. In the approach suggested

by Kamabathula et al. [52] and Repp et al. [76], slide transitions were detected, by

recognizing the characters using OCR technique.

Yang et al. [91] used Automatic Speech Recognition (ASR). These systems are

based on machine learning and by default trained in American English and needs an

intensive training for non-native English speakers. In the lecture browser, the authors

train their system for various speeches of non-native speakers. This process requires

extensive manual training.

In systems, such as edX, the users are required to upload their transcript; this

leads to an additional step to align the transcript either by themselves or using paid

software.
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CHAPTER 3

ANNOTATING SCREEN CAPTURE VIDEOS

Videos are mainly a series of consecutive images called frames. A “video shot” is

defined as the sequence of continuous frames shot without any interruption by a

single camera. These shots are grouped into scenes based on location. Shot boundary

detection techniques are used to segment a video temporally into smaller segments

based on camera movements. In an educational video, each shot refers to a slide of

the PowerPoint presentation. A video consists of several frames, and selected frames

called key-frames are picked to represent video shots.

Figure 3.1 Decomposition of video into scenes, shots and frames.

Educational videos, capture not only the content of PowerPoint slides but also

the instructor’s explanation of the slides. The videos need to be segmented based on

the slides obtained in a video recording. Knowing the slide transitions in the video

is the first step towards annotating the lecture video. We must find the time in the

video recording when the slide first appears and the duration for which the slide is

covered in the recording. Each part of the video is referred to as a video segment
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associated with a slide. Video index generates a mapping between the segments of

the videos and slides in the corresponding lecture presentation.

It is essential to select best features to identify shot boundaries, in an

educational video. Choosing an ideal feature to represent the video frame, remains a

problem in instructional videos, due to the nature of the lecture video. Learning video

recordings capture presentation slides whose template remains unchanged, except the

text or figure. Therefore, detecting a transition is challenging.

Two kinds of videos are commonly used: (a) Videos shot in a classroom ((Figure

1.1) Case II and Case III) and (b) Screen capture videos (Figure 1.1 Case I), where the

instructor uses dedicated software to capture the computer screen. Unlike the screen

capture video which may be accompanied by metadata, generated by the recording

software, the classroom video is captured by regular cameras and are more difficult to

process. This chapter describes the processing and annotation in the case of screen

capture videos. Chapter 4, presents the details of annotation in the case of classroom

videos.

Screen capture videos are usually of good quality. In some cases, it was noticed

that the metadata was not consistent, and some transitions were missed. Therefore,

instead of relying on metadata, image processing techniques were used to identify the

transitions. The following steps are carried out to align the videos with the slide.

First, the background details on shot boundary detection and the related work

on general videos are presented. Next, the commonly used descriptors on educational

videos are described. These descriptors can be used to segment the videos and provide

the time when the transition occurs. An additional step of slide matching is proposed

for aligning slides to videos; in case the slides were skipped. Slide matching also

serves as a verification step for the transitions detected. Finally, the slide-video index

is proposed that serves as the mapping between slide and videos.
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3.1 Shot Boundary Detection Background

To associate a slide with a video segment, we need to find the transitions in the video.

The technique to detect transitions in a video is known as shot boundary detection. In

an educational video, each transition corresponds to the slide change. As opposed to

shot transitions in generic videos, the transitions in a lecture video are based on slide

change rather than camera motion. Therefore, the descriptors need to be invariant

to the camera motion and animation effects in the slide presentations, such as text

animations and capture different types of transition effects. The shot transitions for

lecture videos can be of various kinds. The usual slide transition effects are cut, when

there is an abrupt change of slide, gradual, when a slide fades in while the previous

fades out, dissolve, where the previous slide disappears within the next slide, wipe,

where the next slide gradually wipes out the previous one. The slide transition length

can be from a few frames to hundreds of frames; these challenges make it difficult to

select suitable descriptors for lecture video.

The shot boundary detection process is divided into three parts. The first step

is to create a feature vector for each video frame. The second step is to define a

similarity function that can capture slide transitions, by comparing feature vectors

chosen in the feature selection process. The final step is the shot boundary decision

to declare a shot boundary, if the distance between two video frames is above some

set threshold.

3.1.1 Feature Descriptor Selection

The feature descriptor selection is the first shot boundary detection. Kikukawa

et al. [53], proposed feature descriptor based on the change in intensity in the

images. But later, several techniques were developed in this area and can be broadly

categorized into the following:
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3.1.1.1 Pixel-Based Methods. Early methods in the field of shot transition

detection were pixel-based, where the change in the number of pixels between two

consecutive frames was computed. If the number of pixels that do not match is above

some threshold, a shot boundary is declared. One of the pixel-based approaches

proposed by Nagasaka and Tanaka [68], used techniques like sum of difference of

intensities of pixels. Otsuji [71], used pixel-based inter-frame distance. This method

is susceptible to any motion. In the work proposed by Choubey et al. [31], the authors

also focus on pixel-based shot boundary detection.

Zhang et al. [95], made some improvements by making use of 3 × 3 averaging

filters to reduce the motion effect in the video. The image is filtered, before comparing

the pixels from two different frames. A block matching scheme was presented by

Shahraray et al. [81], to compensate for the motion. The image was divided into

12 blocks, and the pixel intensities between two frames were compared. The block

matching scheme provides more room for any movement instead of comparing pixel

at a specific location in one frame to the pixel in the same position in another frame.

In the work proposed by Ngo et al. [69], pixels from a specific part of the video frame

were subsampled. Pixel-based methods are fast regarding computation, but they are

susceptible to movement of camera or change of illumination and can produce many

false positives.

3.1.1.2 Histogram-Based Methods. A better approach than pixel-based approach

is that of computing histogram of one frame and comparing it against another. The

histogram approach considers the distribution of pixels rather than the location of

pixels. The histograms could be calculated either on the intensity (grayscale) of

the pixels or their color information [47]. Histograms are very efficient concerning

computing time and are insensitive to small camera movements. The histogram does
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not consider spatial data of the pixels; instead, it provides a distribution of color or

intensity in the form of bins.

Many of the shot boundary detection techniques, were based on the color

histogram. The color histogram based methods, use different color spaces like RGB,

HSV etc. Zhang et al. [95], calculates the difference of color histogram to detect the

shot boundary.

However, there are few problems with this approach, even if two different images

having a similar color distribution will end up showing a higher similarity score. Some

improvement was suggested on this approach where an image is divided into smaller

blocks, and a histogram is computed for the block, resulting in localized features The

final histogram is a combination of all the histograms for individual blocks. Such an

approach is presented in [68].

Pass et al. [72], compute color coherence vector to compute the difference

between two images, they add the spatial information in addition to the color

histogram. But adding the spatial information also adds sensitivity to any motion.

Adcock et al. [16], used color correlograms to implement video search. Amir et al. [17],

used color moments based approach in their work.

3.1.1.3 Texture-Based Methods. Texture-based features are not based on color

or intensity information but contain information of the surface and the neighbouring

information of the object Amir et al. [17] used co-occurrence matrix and Tamura

features in their work. In the work proposed by Hauptmann et al. [48], authors used

Gabor wavelet filters. The mean and the variance of the outputs are combined to

create a final texture feature vector. Some of the research has been presented by Li

et al. [54] Discrete Wavelet Transform is used to determine the shot boundary. The

advantage of using wavelet feature descriptor is that it gives the frequency information

related to the image and is fast concerning computational time.
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3.1.1.4 Compression-Based Methods. Little et al. [58], proposed differences in

the sizes of JPEG compressed frames was used to detect the shot boundary. In one of

the other work [19], authors devised a new mechanism of determining shot boundary

by computing the discrete cosine transform (DCT) coefficients of a compressed frame

to determine the similarity between the frames.

3.1.1.5 Edge Based Methods. Totterdell et al. [85], proposed technique, based

on the changes in the edges between two frames, this approach is insensitive towards

illumination changes and robust to the motion. The shot boundary was declared by

calculating the ratio of change of incoming and outgoing edges [56]. Hauptmann et

al. [48], proposed to use the edge histogram descriptor (EHD) to capture the spatial

distribution of edges. EHD is calculated by considering the number of pixels that

form edges. The features can be computed locally by splitting the image into blocks.

Foley et al. [44] and Cooke et al. [34] proposed to divide the image into 4x4 blocks,

and an edge histogram was computed. Such features work best when the shape is

dominant in the video.

3.1.1.6 Local Features. Scale Invariant Feature Transform (SIFT) developed by

David Lowe [59] is one of the methods that detect robust features in images for the

Shot detection. Li et al. [55], presented their approach to detect the shot boundary

based on SIFT features. Inspired by SIFT algorithm, another feature called Speeded

Up Robust Features (SURF) proposed by Bay et al. [22], has running time lesser

than SIFT. Baber et al. [20], proposed to use the SURF features to determine shot

boundary and they show that the features based on SURF, detect not only abrupt

cuts but also fade-ins and fade-outs efficiently.

3.1.1.7 Motion-Based Methods. Motion is a useful feature to determine shot

change in the video. Motion features are classified into two types. The first one
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represents camera motion like zooming or panning. Ueda et al. [88] and Zhang et

al. [95], devised a block matching algorithm to detect the zooming a panning.

The second one is the motion of an object which can be estimated by a motion

vector. Ma and Zhang [61], transformed the motion vector to many directional slices

according to the energy of the motion. A set of moments are computed on each slice

and is transformed into a multidimensional vector called motion texture. This vector

is used to determine shot boundary detection.

3.1.2 Similarity Functions

The similarity between two feature vectors is computed using p-Norm described as

follows:

||x||p =

(
n∑

i=1

xp
i

)(1/p)

(3.1)

where, p=2 for Euclidean distance.

Another metric used commonly is the chi-square given as

χ̃2(i, j) =
M∑
k=1

(Ii(k)− Ij(k))
2

Ii(k)
(3.2)

where, Ii and Ij are the ith and jth frames.

3.1.3 Shot Boundary Decision

In the feature selection step of shot boundary detection, the feature vectors are

computed using one of the methods described earlier. Once we have the feature

vector, the next step is to declare a shot boundary. Shot boundary decision can be

taken by different approaches as follows:

3.1.3.1 Fixed Threshold. A global threshold is set for the cut detection. If the

distance between two feature vectors is higher than the set value, then the cut is
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declared [28]. 
Disti ≤ Tc, noise

Disti > Tc, cut

where, Tc is the threshold that needs to be selected. Choosing a correct threshold is

the key to detect the cut. However, a single threshold does not work for every kind

of video.

3.1.3.2 Adaptive Threshold. A threshold that varies with every video could be

set to address the problem of the fixed threshold. To select a threshold, we must

consider the distribution of inter-frame differences (or similarity) obtained and adjust

the threshold accordingly [95]. Some statistics (like mean, standard deviation, etc.)

could be applied to the differences within a temporal window [93].

3.1.3.3 Machine Learning based approaches: SVM and KNN. Machine

learning approaches train a classifier that classifies a given shot into one of the two

categories namely “shot change” or “no shot change.” Such approaches often require

training data to train the classifier. The training data is often prepared manually and

labelled as one of the classes “shot change” or “no shot change.” Lack of training data

available on educational videos makes it difficult to use machine learning approaches.

3.2 A Comparison of State-of-the-Art Image Descriptors

The first step of transition detection is to define feature descriptors for the educational

videos. The following descriptors were considered for the study based on their

ability to detect texture features. In this section, the performance of Histogram of

Oriented Gradients (HOG), Color Moments, Edge Change Ratio (ECR), Fast Fourier
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Transform (FFT), Scale Invariant Feature Transform (SIFT) and Haar Wavelet

descriptors are compared.

3.2.1 Histogram of Oriented Gradients

The main idea behind Histogram of Oriented Gradients (HOG) [36] is that object

shape can be well described by the distribution of the gradient or edge directions

without accurately knowing the position of the gradient. The image is divided into

small regions called cells, and a histogram is calculated for every cell. These cells can

be rectangular or radial in shape, and a gradient is computed for each pixel inside the

cell. Each pixel casts a weighted vote for an orientation-based histogram channel. A

separate gradient is computed for each color channel, and one with the largest norm

is considered as the pixel’s gradient vector. For each cell, a 1D histogram of gradient

direction is computed by applying 1-D centered, point discrete derivative mask in

horizontal and vertical directions. The histogram consists of 9 bins from 0 to 180◦.

These entries are then combined and contrast-normalized. For contrast-

normalization, the entries are accumulated to larger blocks, and all the cells in the

block are normalized. The final descriptor is a vector composed of all the normalized

cell responses from every block in the detection window.

3.2.2 Color Moments

Educational video consists of recording of power-point presentation presented by an

instructor during the lecture. The power point has same template for all the slides.

Thus, all the slides have similar background with only change in the content (text and

images). Thus, we focus on a window centered in the video frame, as the change occurs

usually in the center of any slide. We determine the window size experimentally. We

further divide it into 8X8 blocks. By using this approach, we can record the changes

locally.
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For each block we calculate the 10 moments for R, G, and B respectively. The

first moment is the mean of histogram and is defined as the mean.

m1 =
1

N
×
∑
i

Hist(i) (3.3)

Second moment is variance, third is skewness and fourth is kurtosis. Moment

five to ten are the central moments. From 2 to 10, moments are computed as follows.

mk =
1

N
×
∑
i

(Hist(i)−m1)
k (3.4)

where, k =2...10, N is the total number of pixels, Hist(i) is the histogram of the ith

block.

3.2.3 Edge Change Ratio (ECR)

The edge change Edge change Ratio (ECR) is based on the principle that the change

in contents appears near the shot boundary. In ECR, the image is converted to edge

image.

ECR = ECR(n, k) = max(
Xin

σn

,
Xoutnk
σnk

). (3.5)

Where, Xin is the number of pixels in frame n,

Xout is the number of exiting pixels in the previous frame n-1, σn and σn−1 are the

number of edge pixels respectively in the frames n and n− 1.

The edges are calculated by Canny detector [25].

3.2.4 Fast Fourier Transform (FFT)

Fourier transform converts the image in the frequency domain where an image is

represented as real and imaginary components. The number of frequencies involved

in an image corresponds to the number of pixels of the image. Fast Fourier

Transform (FFT) provides a fast way of computing the 2D transform by calculating
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Figure 3.2 Edge Change Ratio(ECR), is calculated from the number of exiting
edges in frame t and entering edges in frame t+1.

Source: A Feature-based Algorithm for Detecting and Classifying Scene Breaks [94].

the components at one time in the horizontal direction and then in the vertical

direction. In FFT, the energy is concentrated in a circle at the center (Figure 3.3).

The magnitude of the FFT component is considered and the feature vector generated

by calculating the sum of the magnitude for each angle varying from 0 to 360◦.
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Figure 3.3 FFT 2D (original(left), magnitude (center), phase(right)).

3.2.5 Scale Invariant Feature Transform (SIFT)

SIFT produces key points in an image regardless of the scale change. There are

different stages of detection of SIFT features. The scale space L(x, y, σ) of an image

I(x, y) is defined as:

L(x, y, σ) = G(x, y, σ)× I(x, y) (3.6)

where, x,y are the pixel coordinates of image I, σ is the scale, G(x, y, σ) is the Gaussian

kernel

G(x, y, σ) =
1

(2πσ2)
e(
−(x2 + y2)

2σ2
) (3.7)

SIFT uses Difference of Gaussian (DOG) to detect the keypoints.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ))× I(x, y) = L(x, y, kσ)− L(x, y, σ) (3.8)

where, L(x, y, kσ) is the convolution of the original image I(x,y) with the Gaussian

blur G(x, y, kσ) at scale kσ.

The DOGs are computed by Gaussian smoothing the image at two different

scales (Figure 3.5) σ, and computing the difference. The process is repeated for

different octaves by reducing the resolution of the image by half for each octave.

After the DOG is determined, the extrema are found by comparing one pixel in an

image with its eight neighbors as well as nine pixels in next scale and nine pixels in

previous scales. If this pixel is local extrema that is, if it is larger or smaller than all
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Figure 3.4 SIFT Key point Matching between two frames.

Figure 3.5 SIFT Algorithm. For each octave of scale space the image is convolved
with Gaussians to produce the scale spaces (on left), these adjacent Gaussian images
are subtracted to produce difference of gaussian images (on right), Gaussian image
is down sampled by 2 and process is repeated.

Source: David Lowe [59]

these neighbors, then it is chosen as a potential key point. The next step is to localize

the key points. If the intensity at the extrema is less than some peak threshold (0.03

as described in [59]), it is rejected. In this step, all the edge key points and the ones

having low contrast is rejected. To generate stable keypoints, it is not enough to

reject the keypoints with low contrast; the difference of Gaussian produces strong
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edge responses. To eliminate the poor peaks in the difference of Gaussian function

2×2 Hessian matrix is used.

Once the key points are estimated, the next step is to assign the orientation,

which gives stability towards image rotation invariance. An Orientation histogram is

computed with 36 bins covering 360 degrees. The peaks in the orientation histogram

show the dominant directions. The highest peak and any peak above 80% of the

highest peaks are considered as orientations.

Next a descriptor is created by taking an area of 16×16 pixels around the

key point. This area is divided into 4×4 sub-block. For each sub-block eight bin

orientation histogram is calculated, so the final descriptor has 128 values. Best match

for each keypoint is chosen as the nearest neighbor. As proposed in [59], instead of

keeping a global threshold the ratio of the distance between closest and second closest

neighbor is computed. This measure works better as the correct matches will have

neighbors relatively closer than the incorrect ones. All the matches that have a ratio

greater than 0.8 are discarded (Figure 3.4). Number of matches is not a good measure

of similarity; the distance is given by:

dist = 1− (Numberofmatchedkeypoints)

(Totalnumberofkeypoints)
(3.9)

3.2.6 Haar Wavelet

Wavelet is helpful in decomposing the image into sub-bands. It has an advantage over

the Fourier Transform such that it carries not only frequency information but also the

location information (temporal information). Discrete Wavelet Transform (DWT) is

used to reduce the computations used in Continuous Wavelet Transform (CWT). It

consists of high pass and low pass filter. We chose Haar wavelet as it possesses many

qualities like good image features and fast processing.

41



After performing a 2D DWT, an image is decomposed into four sub-bands which

are a quarter the size of original image. These four sub-bands are low frequency

(denoted by LL) which is the first down-sampled approximation of original image,

vertical detail (LH) which is the high frequency in the vertical direction (y-axis). HL

is the high frequency in the horizontal direction (x-axis), and HH is the diagonal high

frequency, which is directional difference diagonally. The LL band can be further

decomposed into four bands producing quarter size output, with LL, LH, HL and HH

bands. The LL band contains the major image energy and features whereas LH, HL

and HH bands consist of vertical edge information.

Figure 3.6 Wavelet decomposition, when wavelet transform is applied on image,
the image is decomposed into various bands as seen (original image, LL, LH, HL and
HH bands).

A similar approach used by Li et al. [54] is used to divide the image into n×n

blocks, for each block DWT is computed. Each of the blocks has four coefficients,

one for each of the sub-bands. All the sub-bands are used to calculate our feature

vector to get the energy and edge differences. The first feature vector is the energy

feature vector which is computed as follows:

Ef = (C1, C2 . . . . . . CM) (3.10)

df = Ef − Ef+1 (3.11)

DLL =
M∑
k=1

df (k) (3.12)
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where, C1 . . . CM are the coefficients for LL band for each block, M represents the

total number of blocks, Ef is the Energy for Frame f, Ef+1 is energy for next frame.

Similarly, the edge difference DLH, DHL and DHH is computed. Finally, the

feature vector consists of four values obtained from each of the sub-bands.

After computing feature difference for frames using equation 3.11, the threshold

is identified as the mean value for each of the sub-band. If the value is greater than its

corresponding sub-band mean for each of the four sub-bands, a potential shot change

is declared.

3.3 Video Dataset and Comparison Results

Key-frames are picked and Euclidean distance is calculated between the feature

vectors of consecutive key-frames. The most natural approach to selecting key-frames

is to choose a frame at a fixed time interval. A smaller time interval will pick more

key-frames which will increase the accuracy but also the processing time, whereas

transitions may be missed with substantial time intervals. We need to know the

transitions to select an optimum value of m (the minimum time interval between two

consecutive transitions).

For the videos recorded with regular cameras, the slides do not necessarily

appear in all the frames and may not always occupy the entire video frame. The

lecture videos can sometimes contain frames that are not slides (e.g. the narrator

frames, audience, web page etc.). A classifier proposed by Dorai et al. [39], is used

to classify the frames into slides and non-slides. Only slide frames are considered for

the experiments.

Fourteen different lecture videos of varying quality were used for the experiments

(Table 3.1), ranging from 30 minutes to 4 hours. The videos VD1 to VD10 were

recorded with the regular cameras and the videos VD2, VD7 and VD8 were of lower

quality. The videos VD1 to VD10 were full-screen videos.
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Videos VD11 and VD12 were recorded using Camtasia and contained metadata.

However, the instructor browsed back and forth in the slide presentation. The

associated metadata file included incorrect slide numbers and inaccurate slide

transitions. Also, VD11 and VD12 had slide covering partial part of the frame ranging

from 70% to 80% of the frame. Both videos were provided by two different instructors.

Videos VD13 and VD14 were the most challenging lecture videos. Both were of

poor quality with various problems, such as inadequate illumination, zoom effect and

occlusion. Video VD14, had both the presenter and the slide in some of the frames,

with the slide covering only 40% part of the screen and text appears line by line.

Table 3.1 Video Datasets

Video Transitions Duration Metadata
available?

Quality Size

VD1 34 01:11:04 No Fair Full screen
VD2 19 00:38:33 No Fair

(Blurred
characters,
noisy)

Full screen

VD3 23 00:37:25 No Good Full screen
VD4 23 00:46:30 No Good Full screen
VD5 28 01:03:09 No Good Full screen
VD6 15 00:36:41 No Good Full screen
VD7 21 00:48:30 No Fair,

Blurred
characters,
noisy

Full screen

VD8 23 00:42:47 No Poor, Very
noisy and
blurred
characters

Full screen

VD9 19 00:40:22 No Good Full screen
VD10 30 00:47:26 No Good Full screen
VD11 70 01:48:45 Yes Good Partial

screen
(70%)

VD12 112 04:24:02 Yes Good Partial
screen
(80%)

VD13 14 00:22:05 No Poor, very
noisy

Partial
screen
(80%)

VD14 14 00:18:00 No Poor,
gradual
slides

Partial
screen
(40%)
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Table 3.2 illustrates the results that we obtained for shot boundary detection

after comparing the above image descriptor techniques. For each of the techniques we

selected an automatic threshold by using Dugad factor [41] which is given as follows:

T = µ+ tf × (
√
σ) (3.13)

where, µ is the mean of distance calculated between two keyframes, tf is the threshold

factor, σ is the standard deviation of the distance.

If the distance calculated is greater than the threshold, then transition is

declared. For our experiments, the threshold factor is set (tf ) as 2. The results

show that features selected using HOG, Color moments and SIFT are among the

best. Wavelet method has low recall rates. ECR is very sensitive to effects and

quality.

3.3.1 Slide Matching

The slide matching phase ensures that the mapping between the slides and the video

segments is in a correct order. In some cases, meta-data associated with screen

capture videos had missing transitions. The slide matching phase is essential to align

slides and videos correctly. Sometimes, the presenter can hide some slides during

the presentation, these slides do not appear in the recording, while they exist in the

presentation.

The slide matching phase consists of matching a slide found in a video frame with

the actual power-point presentation slide converted into an image, and the extracted

features (HOG) are compared with the features obtained (HOG) from the slides

extracted from the video frames.

As shown in table 3.3, the slide matching phase corrected the transitions and

improved the accuracy. The accuracy has improved in all videos except VD4, VD8

and VD14, for which, the quality was the major issue.
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Table 3.2 Comparative Results for Transition Detection (Precision and Recall)

Video Transitions HOG Wavelet SIFT Color
Moments

FFT ECR

VD1 34 94.1
100

94.1
100

91.4
100

97
100

88.9
100

97
100

VD2 19 100
100

100
100

100
100

100
100

100
100

100
100

VD3 23 100
100

100
60.9

100
87

100
100

100
100

100
100

VD4 23 100
100

100
100

100
100

100
100

100
100

100
100

VD5 28 100
92.9

100
57.1

100
96.4

100
96.4

96.4
96.4

14.3
3.6

VD6 15 100
100

100
100

100
100

100
100

93.8
100

100
86.7

VD7 21 100
100

100
100

100
100

100
100

87.5
100

100
76.2

VD8 23 95.5
100

95.5
100

100
100

95.5
100

80.8
100

95.23
95.23

VD9 19 100
100

100
100

100
100

100
100

100
100

100
100

VD10 30 100
100

100
90

100
100

96.8
100

100
100

100
93.3

VD11 70 100
98.6

30.8
5.6

100
98.6

70
98.6

65.4
98.6

56.3
25.4

VD12 112 99.03
96.4

41.2
12.6

63
96.39

45.25
94.59

41.6
98.2

0
0

VD13 14 84.16
76.92

63.63
50

38.9
100

76.92
71.2

66.6
71.4

33.33
7.14

VD14 14 63.3
100

0
0

60
85.7

80
85.7

42
57.14

64.7
73.3

Table 3.3 Slide Matching Results

Video Transitions Precision
VD1 34 100
VD2 19 95
VD3 23 100
VD4 23 79.6
VD5 28 100
VD6 15 100
VD7 21 95.45
VD8 23 82.60
VD9 19 100
VD10 30 100
VD11 70 100
VD12 112 90.09
VD13 18 93.33
VD14 11 81.81

46



CHAPTER 4

ANNOTATING CLASSROOM VIDEOS WITH SLIDE
LOCALIZATION

For classroom videos like Cases II and III, it is necessary that the slide is extracted

before the transition detection phase. This helps to get rid of false cases, like motion

of audience members, the speaker, etc. The rest of the steps for classroom videos are

same as described in screen capture videos.

Slide localization is a technique of detecting and extracting slide in the video

frames. This chapter focuses on different images in color space and proposes a

well-suited algorithm for the scenario. We discuss various transformation techniques

that are best according to color distribution between DCT, marginal and grayscale

transformation. Many images are not color predominant, and such images can be

represented effectively in less than two dimensions by transforming RGB space to

DCT (dimension-1 and dimension-2), marginal space and grayscale, which merges all

information on one dimension.

Segmentation techniques have been always an area of interest for researchers.

Various types of segmentation techniques exist in literature. Common techniques

include thresholding and edge detection-based methods. In this work, K-means

technique is used. We evaluate the segmentation results of K means clustering on

DCT, Marginal and Grayscale transformations. DCT yields results that are close to

real image. If the image has color distribution limited to one dimension, marginal

and grayscale are more suitable. We also compare the results of segmentation with

ground-truth and evaluate the results with similarity measures.

Segmentation of educational video frames, poses several challenges. The images

captured in a lecture video sequence have problems regarding the conditions in which

video is shot, and generally, the quality is not very good, depending on various factors
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discussed earlier. Localization of slides in such video frames is extremely difficult in

such scenarios. Since the color distribution is usually limited to a single dimension in

case of lecture videos, we focus only on grayscale and marginal space and evaluate the

results. According to the evaluation results, we note that marginal performs slightly

better than grayscale. Finally, we discuss the localization of the slide in a video frame.

We show that after detecting different regions in marginal space, we can localize the

slide efficiently by using simple heuristics.

4.1 Image Transformation Techniques

The best-known representation for a color image is the RGB space composed of 3

dimensions R, G and B. As we can see from the color distributions (Figure 4.1)

that image (ia) has more scattered distribution (ib), which means it is more color

predominant. Most of the images are not so color predominant for example image iia

and iiia. For such images it is useful if we transform the image from RGB to DCT

(which uses 2 dimensions), Marginal (1 dimension) and grayscale (1 dimension) as we

do not need all the 3 dimensions in this case and we can make use of k means based

on grayscale histogram approach to segment color images effectively. The suitability

of each of these transformations is dependent on the distribution of color in an image

(Figure 4.1). We explain each of the transformation technique in detail.

4.1.1 DCT Transform

Translation of RGB space to DCT is given by the following equation

Wm(k) = 
√

1√
3
for m=1 and k=1,2,3√

2

3
cos((2k − 1)(m− 1)

π

6
, for m = 2,3; k = 1,2,3

This space preserves the non-correlation of data and preservation of total energy.
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Figure 4.1 Color Distribution(3D) for 3 dimensions R,G and B, as represented
above a) Original Image b) 3D color distribution of the image corresponding to R,G,B
dimensions.

Figure 4.2 DCT Transform on image: a) Original image, b) DCT dimension 1 c)
DCT dimension 2 d) DCT dimension 3.

4.1.2 Grayscale

A grayscale image is an image in which the value of each pixel carries only intensity

information. Images of this sort, also known as black-and-white, are composed of

shades of gray, varying from black at the weakest intensity (0) to white at the strongest

(255).
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Figure 4.3 Grayscale conversion of images. Here the image loses the color
information, but the intensity information is used.

4.1.3 Marginal

Marginal space is useful for images where color information is not that predominant,

or the color distribution is limited to one dimension. HSV space provides a better

de-correlation of information in the visual sense. In this space, color information

can be reduced to a composite monochrome image by Carron’s [27] criterion which

digitally merges Hue (IH), Saturation (IS) and Value (IV), information into a single

magnitude M defined by:

M = α(IS)IH + (1− α(IS))Iv (4.1)

α(IS) = 1/π[tan (β(IS − S0))] (4.2)

where, S0(0 ≤ S0 ≤ 255) defines a mean relevance level of the hue related to a

saturation level, and β(0.05 ≤ β ≤ 0.5) used to tone the mix. Thus segmentation

techniques developed for gray-scale images can be used for this case.

For lower values of S0 there is a clear distinction between different colors in

the image and higher value of S0 is close to the grayscale value. The value of S0

and β vary for every image. For the experiments, the value of β was chosen as 0.05

experimentally and S0 was chosen as the median value of the distribution that varies

for each image.
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Figure 4.4 Marginal Image. The figure shows a comparison between grayscale and
marginal image. While marginal is also 2D image, it carries more color information
as compared to grayscale. a) Original image b) Grayscale c) Marginal(S0=74, β=
0.05) d) Marginal(S0=255, β =0.05).

4.2 Segmentation

In this section the segmentation results on DCT, marginal and grayscale spaces

are compared. To segment and localize the slides in a lecture video, we first need

to analyze these three techniques on general images. The idea here is to study

segmentation of these transformations to find their suitability on different types of

images. We use K-means technique to segment the image into different clusters.

K-means is a classical technique widely popular in image segmentation.

4.2.1 K-means Clustering

We use the grayscale histogram approach to form the clusters. In general, we observe

that choosing random centroids does not yield same result for every run, so we fix the

initial centroid using Tsai’s moment-preserving method [86] with multiple thresholds.

For DCT, K-means clustering is performed on dimension 1 and dimension 2 separately

and then both the regions are merged. We use Berkeley dataset [63] and ground truth

for general comparison. For some images we compute the ground truth ourselves. The

visual comparison results of K-means are formulated in Table A.1.

We use the grayscale histogram approach to form the clusters. In general, we

observe that choosing random centroids does not yield same result for every run, so

we fix the initial centroid using Tsai’s moment-preserving method [86] with multiple
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Table 4.1 Mean Color Image Obtained after Clustering in DCT, Marginal, and
Grayscale Space

Original
Image

Ground
Truth

DCT Marginal Grayscale

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

thresholds. For DCT, K-means clustering is performed on dimension 1 and dimension

2 separately and then both the regions are merged. We use Berkeley dataset [63] and

ground truth for general comparison. For some images we compute the ground truth

ourselves. The visual comparison results of K-means are formulated in Table A.1.

4.3 Similarity Measures

To compare different segmentation results from DCT, marginal and grayscale, we

make use of similarity measures. First, we compute a confusion matrix between the

ground truth and the regions obtained in segmentation and then we compute the

following measures.
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4.3.1 Jaccard Index

We calculate the Jaccard Index similarity measure defined as

J =
A ∩B

A ∪B
(4.3)

where, A and B are ground truth and segmented image respectively. “∩” is the

intersection between the two sets and “∪” is the union of two sets. Jaccard Index is

calculated for each region and then overall similarity is calculated as mentioned by

Busin et al. [24].

4.3.2 F-measure

We calculate F-measure as follows

F-meas(β) = (1 + β2)(Precision×Recall)

β2 × (Precision+Recall)
(4.4)

where, β gives β time importance to recall than precision. Precision is given more

weight than recall as discussed by Achanta et al. [13].

As seen from Table A.1. Both Jaccard and F-measure give a consistent result

for all the images. We can see that most of the color distribution of images is limited

to one dimension except image 2, that is due to the over-segmentation caused by

labels marked in benchmark image, which do not consider other details of the image.

For the first two images, ground truth is created manually. For most of the results,

DCT shows clusters close to the real image as it takes account of every detail in the

image. A better merging approach is needed to avoid over-segmentation.

Segmentation in marginal space omits some details, but still manages to capture

the necessary details; it performs well on average with benchmarks, and generally

performs better where the color distribution of the image is not scattered. We also

analyze whether the S0 we obtain is ideal or not. In most cases, the median value is
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close to ideal value. in images 1, 118035, 302003 and 388016 the median S0 value is

not ideal. Hence, we can improve the results by tuning the S0 value.

Grayscale does not perform well when there are subtle color changes, which

is evident from the image 5 of Table A.1. If the color distribution is limited to

one dimension and there is enough contrast between the objects, grayscale performs

better.

The running times of the k-means on the three spaces are compared, for some

images marginal performs faster than grayscale, and in others, grayscale is faster.

DCT takes most time as K-means is performed on two dimensions separately.

4.4 Slide Localization

In the previous section, general images were used, and we can conclude that for the

images which are not color predominant marginal and grayscale transformation is

enough to represent the image. In this section, our focus is on educational videos.

Since the lecture video is not so color predominant and the color distribution is limited

to one dimension, instead of DCT (which uses two dimensions for analysis), grayscale

and marginal space are considered. For the lecture videos, a visual comparison is

presented, since the ground truths of these images are not available.

For localizing the slide, the value of S0 is chosen experimentally. Marginal space

gives the flexibility to tune the parameters. From the visual comparison in Table 4.2,

it can be seen that grayscale and marginal yield similar results. For some images

grayscale loses some part of the slide whereas marginal can detect it.

Marginal space performs better than grayscale in some cases, which is evident

from Table 4.2. Hence, segmentation results of marginal space are used for slide

localization.
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Table 4.2 Mean Color Image Obtained after Clustering in Marginal and
Grayscale Space

Original Image Marginal Grayscale

(i)

(ii)

(iii)

(iv)

(v)

(vi)

4.4.1 Heuristics for Slide localization

Two heuristics are used to detect the slide regions from the regions obtained by

k-means performed on marginal space. The heuristics are proposed, according to the

standard observations in a recording of lecture video (Table 4.2).

Size: In a lecture recording, slide usually covers the significant part of the video

frame. In practice, the slide covers at least (1/4) of dimensions of a video frame.

Luminance: In any presentation, the slide region is the most illuminant region than

the surrounding.

Based on the results obtained in Marginal space in Table 4.2, the first heuristic is

used to calculate the size of each region. An adaptive threshold is set, based on the
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Figure 4.5 Heuristics for slide localization are based on size of the region after
segmentation and the intensity of the region.

size of the image (1/4 * size of frame). The regions having a size larger than the

threshold are identified as candidate regions.

Intensity of each region is computed using heuristic 2, and the best candidate

is recognized as the slide region. There can be more heuristics associated with the

slide, such as shape etc., but the two heuristics were enough to localize the slide for

four different datasets.

Figure 4.6 Extracted slide, obtained after applying localization using above two
heuristics and segmentation in marginal space.

56



4.4.2 Results

After applying localization algorithm on two classroom videos (VD13 and VD14)

using HOG, it is observed that the precision was improved from 84% to 92.8% for

and recall to 85% for VD13 and VD14 from 63.63 to 92.8% (precision). For SIFT the

precision was improved from 38.9% to 43.75% for VD13 and for VD14 the precision

improved from 60 to 68.4% Using Moments, the precision for VD13 improved from

76.92% to 92.3% and for VD14 from 80% to 85%. Best results were obtained for

HOG among all the image descriptors as mentioned earlier.

4.4.3 Saliency vs Localization

An alternative way to detect an object is known as visual saliency. Saliency is closely

related to what human find most interesting when they first look at an image. In a

lecture recording, the most interesting object is the slide, as it is most illuminated.

One of the works in this area is the saliency filters [73]. To find the saliency, the

authors first segment the image using superpixels [14]. Once the image is segmented

into superpixels, the abstraction phase removes any unwanted details to create a

homogeneous distribution of pixels into different regions. For every region, uniqueness

and spatial distribution is computed, and this contributes to the final salient region.

We compare our method of slide localization to salient object detection. The results

are tabulated based on the same input given to the two algorithms (Table 4.3).

From the results (Table 4.3), it can seen that for Case (i) a very small part

of the slide is extracted when we use saliency whereas localization can retrieve the

entire slide. Similarly, for Cases (ii) (iv) and (v) the saliency algorithm extracts only

partial slide, whereas by using localization approach, the entire slide can be extracted.

For Cases (iii) and (vi), the saliency results are similar to the localization approach.

Overall the slide localization yields better results than the saliency for slide extraction.
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Table 4.3 Saliency Vs Localization on Video frame for Slide extraction

Original Image Slide extracted with
Saliency

Slide extracted with
Localization

(i)

(ii)

(iii)

(iv)

(v)

(vi)
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CHAPTER 5

INDEXING, RANKING AND UCS APPLICATION

Ultimate Course search (UCS) aims to automate the whole indexing process as much

as possible. In UCS, image processing techniques are used to detect shot boundaries

for the videos. The transitions are detected using HOG features. HOG features are

more robust than the pixel-based and frame differencing methods, used in many of

the works in mapping the slides and video. The HOG feature descriptors used to

identify the transition, are accurate in detecting the transitions even with the slides

that have same titles.

UCS is meant for students participating in classroom lectures. UCS provides all

the media, such as textbooks, videos, and slides, on a single platform. The content is

present in one place, with a search feature, so that users can quickly search through

the lecture material without having to go through the entire content. Users can enter

a keyword corresponding to the topic in which they are interested, and the results are

displayed on the interface, this helps the user to prepare and study for the content in

the most efficient way.

UCS has one more feature that makes it different from the other work:

the ranking mechanism that considers the region of the appearance of the search

keywords, this enables the users to get the most relevant result set for the topic they

are interested.

To make the multimedia learning materials searchable by their learning content,

we need to index them by their learning content. Separate indexes are generated

for slides, videos and textbooks. The slides are indexed on the keywords extracted

from PowerPoint presentation. The videos are mapped to the slides. The following

subsections describe the steps that take place for the data annotation and indexing.
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5.1 Indexing
5.1.1 Slides as a Roadmap to Learning Material Annotation

PowerPoint slides are a very common medium of teaching. They are carefully

prepared by the instructor of the course who is often an expert in the area. We extract

the text from the PowerPoint slides. We also extract structure-related information

using Apache POI [18], a Java library for reading and writing files in Microsoft Office

formats. The text in the slides is processed using classic text processing techniques

like tokenizing and stemming.

Each word extracted using above process is compared against the course

ontology [89], when available. In the simplest form, the ontology can just be a

taxonomy provided by the course textbook index. As the back index of the textbook

is provided by an expert, its keywords are likely to be used in learning material

searches. Indexing only the keywords in the slides that appear in the textbook back

index helps us reduce the number of keywords to be indexed.

For each keyword previously extracted from the slide text, we store its

region-based information (e.g. slide title, subtitle, and text). This helps us at the

ranking stage as we can assign different weights according to where the keyword

appears in a slide. The slide index is composed of documents, where each slide

is treated as an individual document. For each slide document, metadata such

as presentation identifiers, slide numbers, and titles are also indexed. Since the

PowerPoint presentation consists of a set of slides, the entire presentation is treated

as a composite document that is also indexed. We create link between individual

slide and the presentation which helps us to identify whether a slide is a part of a

particular presentation.

The keywords are stored as inverted lists for indexing the learning material.

The inverted lists help to quickly fetch the set of documents that contain a given

term. The slides and the presentations that contain them are then ranked based
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on the keyword location and term statistics such as frequency, term dictionary (all

indexed terms and the number of documents containing these terms), term proximity

(position of occurrence in the document), etc.

5.1.2 Video

Educational videos are a very popular teaching medium that capture not only the

PowerPoint slides but also the instructor’s explanation. The huge popularity of the

videos is due to the e-learning concept, which is aimed at students who cannot attend

the classroom lectures.

To make the videos searchable we need to index the videos. As discussed earlier

the keywords are extracted directly from the video stream, which is a heavy process;

instead, we make use of the keywords extracted from the slide and try to establish a

relationship between the video and slides.

To link a slide to the part of video where the slide appears—i.e., finding a video

segment that talk about a particular slide—we need to find the start and end time

of the video segment associated with a particular slide so that users can view the

corresponding explanation for the slide in the video. We use this information to build

the video index. This mapping is called the slide-video index.

Often the lecture video also has certain frames which are non-slides: e.g.,

narrator frames or frames where the instructor explains a concept with the help of

a command prompt or web browser. As a preprocessing step, we classify the frames

into slides and non-slides and remove these frames from the set of candidate frames.

This helps us pick the right keyframes and also reduce the number of false positives

for transition.

For the lecture videos that are recorded with the help of lecture recording

software such as Camtasia [83], we determine these transitions using the metadata file

that comes along with the recording. For the videos that are recorded with software
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but are missing the metadata or are recorded with regular camera, we use histograms

of oriented gradients (HOG) [36] on the video frames to determine the transitions.

The slide-video index contains the information about slide number and presen-

tation details they are associated with, along with start and end time of each video

segment associated to that slide. Therefore, when users search for keywords in the

search bar, the slide index is searched for the keyword and using the slide-video index,

and the corresponding video will be linked and displayed.

5.1.3 Textbook

For learning any material thoroughly, we can get in-depth information from the

textbook. We used electronic forms of textbooks given to us by respective authors.

In order to look up any particular topic in a textbook, we normally look at the back

index of the textbook, which provides us with the page number(s) on which this

topic or term appears. We make use of same concept: we take the back index of the

text-book in an electronic format [46]. We parse the keyword and page numbers

and use it to create our textbook index. When a user searches for a keyword in

the textbook interface, the keyword is searched in the textbook index and a list of

matching terms is returned along with their page numbers. The indexes on slides,

videos and textbooks have been implemented using Apache Lucene.

5.2 Keyword Appearance Region Prioritized Ranking

The classical document search based on term frequency and inverse document

frequency (TF/IDF) alone will not yield the desirable result here as a high frequency

of a term in a slide does not necessarily mean that the term is defined in that slide.

We use the heuristic that if a keyword appears in the title then it is likely that the

slide is about the term. We divided the region into two parts, the title and the body,

which correspond to the slide title and slide text respectively.
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To calculate the score for an individual slide (document), we use the TF/IDF

measure and attach a weight depending on the region where the query term appears.

If the query term appears in the title region, we give it a higher weight than the

body. On the other hand, if the keyword appears in the body of the slide, it is given

relatively lower weight. Given a query q composed of the terms t1 ,…,tn, the score of

a document d (slide in our case) is computed as follows:

Score(q, d) =
∑
t∈q

tf(t in d)× idf(t)×weighttitle+
∑
t∈q

tf(t in d)× idf(t)×weightbody

(5.1)

where, weighttitle is the weight applied if a query term t appears in the title, weightbody

is the weight applied when the term t appears in the body, tf (t in d) is the term

frequency of the term in region (title or body) within the document, and idf(t) is

the inverse document frequency given by log N
df
. Notice that weighttitle > weightbody

and both values are greater than 1. The weight weighttitle is used to boost the score,

when q query keyword appears in the title of the slide. The scores of individual

query terms are added up to obtain the Score(q, d) for a document d. The scores of

individual query terms are added up to obtain the Score(q, d) for a document d. The

scores of individual slides in a presentation are aggregated to obtain the score of the

presentation. The presentation score is also boosted with a weight (weightpresentation)

a query term appears in the presentation title as the presence of the query terms in

the presentation title may imply that entire presentation talks about this topic.

5.3 UCS Functionality Overview

UCS integrates learning materials from different media and allows them to be searched

and viewed through a single interface. A student viewing a particular slide can

also view its associated video segment and the corresponding textbook pages. The

application is written in Java. We use Apache Tomcat as the web server and Apache

Lucene as the search engine. UCS provides two types of searches: the first type is on
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slides and videos combined, and second is on textbooks. When users provide keywords

in the search bar of the slide and video interface, all the slides and corresponding video

segments that match the keyword are displayed in the order of relevance. The top 20

results matching to a keyword are returned.

Figure 5.1 Slide/Video interface in UCS application with slide option selected.

When users type in keywords, they are presented with suggestions based on the

keywords that are extracted from the PowerPoints. Upon clicking the slide/video

button, internally Apache Lucene uses the slide index to fetch all the slides that

contain the keyword. We prioritize the results according to the region-based scheme

and the results are returned on the left side of the interface as shown in Figure

5.1. The results are displayed as a list of links where each link corresponds to an

individual slide that contain the keyword. The links corresponding to slides from

the same presentation are grouped together (i.e., presented consecutively). Upon

selecting a link, a particular slide can be viewed in the display area on the right.

As shown in Figure 5.2, if a user wants to view the corresponding lecture video,

then he or she can click on the video icon in the search results, and only the part of

the video that is about this slide is played. The user does not have to go through

the entire video to understand a topic. After a search, the user can also freely drag

the cursor to play any part of the entire lecture. We use our video indexes to get
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Figure 5.2 Slide/Video interface in UCS application with video option selected.

the timestamps of the beginning and end of the video segment and use html5 code

to play only part of the video. UCS also provides logical connective operations such

as “AND,” “OR” and “NOT” to enhance the search. For example, if we search for

“encryption NOT decryption,” then only results for encryption will be displayed, and

the results containing the keyword decryption will be omitted from the results. It is

the same case for “AND,” where if we search for encryption AND decryption, then

the slides containing both these keywords are returned as top results.

Figure 5.3 UCS application with textbook interface selected, when user looks for a
search keyword, the results are presented as a list of page numbers. When user clicks
on the page number result, that particular page number is displayed on the right side.
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Figure 5.3 shows the textbook search interface that allows users to view the

pages where the keyword appears. When the user types the keyword in the search

bar, the result returns the list of the terms where this keyword appeared and the

corresponding page numbers. On clicking the page number, users can view that

particular page within the textbook with the keywords highlighted. This removes

the need for users to go through the entire textbook and makes the textbook easy to

navigate.

5.4 UCS Evaluation

Currently, UCS is in its beta version and was used in two courses at our university.

Students utilizing the tool provided feedback to the research and development teams

at the end of the semester. Feedback on UCS was requested in a questionnaire.

Questions included ways to improve the user interface, how the students utilized the

tool, how it affected their learning, and what positive aspects of UCS there were.

Some students used UCS only when studying for tests or completing assignments,

up to a few times during the semester, while others utilized UCS two or three times

per week. The majority of students indicated they used the tool to study for tests,

collaborate with peers, and review their notes. Typical comments included, “study for

midterm,” “to take better notes,” and “look for terms.” Users were asked “what effect

did the tool have on your learning?” One student responded, “profound. Helped me

understand the material more in depth.” Students also stated that UCS “made me

write detailed notes so I could do better in class,” and “it made it a lot easier to look

up information.”

Students were also asked what they liked about the tool. The majority of

responses centered around the usability and accuracy of the tool. Common comments

included: “it is intuitive,” “you can find the slides specifically with the key word”,

“quick search,” and “fast search engine”. Thus, students utilized the tool to solve
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current problems in electronic course content. Students were able to use UCS to

search for specific terms, as well as aid their studying and notetaking. Not having to

search through all of the material “made it quicker.”

While the majority of students found the tool easy to use, users provided

feedback to the development team regarding improvements. Users requested larger

window sizes for the textbook and videos, a longer period of time before timing

out of the tool, the ability to highlight the search terms in the textbook, and more

instructions on the use of the tool. Overall, the improvements requested focused

on design rather than on the accuracy or ease of use, indicating the tool provided

information in a timely way, and that the searches were accurate.

5.5 Conclusions

In this Chapter, Ultimate Course Search was presented, which provides not only a very

simple-to-use interface but also a beneficial way to search various lecture material.

For making the learning material search-able, we index the three most widely used

lecture media: slide, video and textbook. We index the slides by identifying relevant

keywords from the slide.

We show that without annotating the slides and videos we can effectively link

the material by storing the transition of slides in a video. Our results show that

finding the transitions automatically, along with matching with the original slides,

helps us to identify better transitions.

UCS also offers to search in the textbook by indexing content from the back-

index of the textbook along with page numbers. UCS thus integrates these three

learning media into a single platform, which provides students with a way to search

the material effectively and efficiently. The results presented to users after a keyword

search are based on the region where the keyword appears, displaying the results in

such a fashion brings the most important and relevant content on the top. Currently,
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we are integrating the speech of the instructor, which will add many more keywords

and make the interface for videos independent.

User research was conducted comparing security course students using UCS with

students not using UCS. Both classes were taught by the same professor, using the

same syllabus, assignments, and lectures. The attrition rate for the course utilizing

UCS was 13% as compared to the attrition rate of 41% for the course without access

to UCS (Renfro-Michel and Walo, in press). Students used the tool to study for their

exam, watch lecture videos, search for specific terms and information, and to complete

homework assignments and projects. Overall, the students using the tool found it to

be user-friendly, fast and accurate, and stated that it helped them understand difficult

course concepts.
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CHAPTER 6

PERSONALIZED E-LEARNING SEARCH RESULTS: TAKING INTO
ACCOUNT WHAT THE USER KNOWS

6.1 Introduction

Personalization, also known as customization, is the concept of presenting information

that is relevant to the user: e.g., social media applications, a recommendation of

television shows and movies, online advertisements based on previous searches, etc.

Personalization may emphasize specific information related to a user; in other cases,

the system can restrict or grant access to particular tools or interfaces depending

on the user profile, or offer ease of access by remembering information about a user.

Various tech companies such as Google, Facebook, Microsoft and Yahoo personalize

user experience by building a profile that is based on the search history of the user.

Amazon can provide customized offers to their customers from their purchase history.

The advent of personal devices has popularized personalization. As a result, the

content presented to the user has become concise and relevant.

In the case of e-learning systems, personalization can have different meanings

ranging from adapting the content to the user learning preference or the knowledge

level. Personalized learning starts with the learner. It means that learners have a

say in their learning by taking responsibility for it. When they own and drive their

learning, they are motivated to learn. Personalized learning tailors the environment

to meet the learner’s requirement.

Today, an increasing number of online learning resources are generated every

day. As a result, users searching for a concept can get overwhelmed. The digital

learning data can be leveraged in different ways to assist the user better. The standard

way of learning and the concept of “one size fits all” is no longer the best way to learn,

and there can be several ways to personalize e-learning.
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6.1.1 Learning Preference

Learning preferences refer to a person’s pattern of learning and preferences in

processing and retrieving information [75], [29],[80]. In general, learning preferences

can be categorized into the following:

Verbal/written: Learners who prefer learning by reading, and tend to remember

and express the information by writing it down.

Aural/Auditory/Oral: These learners can learn better when they listen to

explanations. Some auditory learners also prefer to read aloud to understand a

concept.

Visual/Graphic: Visual learners are the ones who learn when they see something:

e.g., figures, pictures, videos, etc. They also might prefer reading.

Active/Reflective: Active learners process information on the fly. They benefit

from studying in groups. On the other hand, reflective learners spend time themselves

thinking through the concept before joining in the group discussion.

6.1.2 Learning Concepts

When users want to learn a specific topic, they can be presented with in-depth

suggestions or recommendations of concepts to better understand them. This

information could be personalized based on user learning styles [37], [38], [49], [62].

Learning preferences can be broadly classified as verbal/written, visual and auditory

learners. The user interface can be personalized based on individual users’ learning

preferences. User preferences can also be personalized based on user behavior and

usage history. This can be done by tracking the user session and providing further

recommendation based on users’ behavior.

6.1.3 Personalized Learning in UCS

Students taking the same courses may have different knowledge levels due to previous

courses. This is precisely the gap we would like to fill with the personalization
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method we are proposing. This work is an extension of “Ultimate Course Search

(UCS)” proposed by Rajgure et al. [74], designed for students in higher education.

The learning materials in UCS are slide presentations, videos and textbooks and

UCS provides an integrated and effective way to search these heterogeneous lecture

materials. We have defined a course precedence graph that uses the course prerequisite

information and the chapter precedence graph that defines guidelines for using

course textbooks to define a precedence relationship for learning concepts. The user

knowledge is based on the courses the user has already taken.

The rest of the chapter is organized as follows: Section 6.2describes some of

the related work done in personalization. In section 6.3, we present the data that is

used in our work, namely chapter precedence graphs, course precedence graphs, user

knowledge graphs and query graphs. Section 6.4 presents query processing and the

ranking mechanism used. Matching the query result and the user concept knowledge

is presented in section 6.5. Section 6.6, provides some example queries to show the

personalized result.

6.2 Related Work
6.2.1 Personalization Based on Learning Preferences

In the digital world, many efforts are made to cater the needs of user by studying and

analyzing user data such as usage habits and preferences proposed by Brusilovsky

et al. [23]. Several techniques have been proposed to mine users’ data and offer

personalized learning activities [45]. Chen et al., proposed a personalized course

recommendation system based on Item Response Theory (PEL-IRT) [29] that

considers both course material difficulty and learner ability to provide individual

learning paths for learners. Learners’ feedback responses are collected using feedback

agents to improve the recommendations and the learner abilities are reevaluated. The

study also proposes a collaborative voting approach for adjusting course material

difficulty.
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Intelligent Tutoring Systems proposed by Chen et al. [30] work on courses, such

as geometry or physics education, as well as several Adaptive Educational Hypermedia

(AEH) using both Adaptive Presentation to adapt the content of a page based on

the student model, by inserting, changing and hiding specific fragments of text and

Adaptive Navigation Support to adapt link presentation (and support the student’s

navigation) through annotation, sorting and hiding techniques [23].

Learners’ most observed and modeled characteristic is their knowledge about

the learning domain, assessed through quizzes or usage-based information. Some

systems are based not only on modeling the students’ knowledge, but also on their

learning styles. By modeling the learner, learning systems can adapt content to the

individual user’s actual needs.

An intelligent agent called eTeacher proposed by Schiaffino et al. [80] provides

personalized assistance to e-learning students. eTeacher observes a student’s behavior

and automatically builds the student’s profile. This profile is comprised of the

student’s learning style and information about the student’s performance for a given

course, such as exercises done, topics studied, and exam results. A student’s learning

style is automatically detected from the student’s actions in an e-learning system

using Bayesian networks. eTeacher uses the information contained in the student

profile to proactively assist the student by suggesting personalized courses of action

that will help him or her during the learning process.

In the approach proposed by Lu et al. [60], learning material is recommended to

users based on certain criteria like learning style, web browsing patterns, and other

criteria, such as if the student is part-time or full-time, are taken into consideration.

Users are judged based on the level of their knowledge. A learning material tree is

built which is categorized into different levels and material is recommended according

to the level of the student. This work does not provide search mechanism and there

is no way where user could look for a material to study. Some of the notable work in
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the area of recommender systems based on the user preferences was done by Rashid

et al. [75]. They proposed a sequence of items for the collaborative filtering system to

present to each new user for rating. They made use of information theory to select the

items that will give the most value to the recommender system, aggregate statistics

to select the items the user is most likely to have an opinion about and personalized

techniques that predict which items a user will have an opinion about.

In the work proposed by Eyharabide et al. [43], the objective is to improve

e-learning environment personalization, making use of users’ preferences (e.g., the

learning style of the user). They propose the AdaptWeb system, in which content

and navigation recommendations are provided depending on the student’s context.

An e-learning environment for each user is personalized based on the information

stored in a user profile.

6.2.2 Personalization Based on Ontology

Ontology is the relation defined between various concepts, some work done in building

a course ontology was presented by Wali et al. [89], Chun et al.[32], Wali et al. [90]

and SLOB [33]. Domain information about different courses like ontology, could also

be used to derive personalized content for the user. Courseware Watchdog proposed

by Tane et al. [82] allows making the most of the e-learning resources available on the

Web. The tool addresses the different needs of tutors and learners and organizes their

learning material according to their needs. Users can browse through web content,

and the crawler finds the website and documents that match their interests. However,

in this work, user preferences and knowledge are not taken into consideration.

Another work based on ontology by Markellou et al. [62] also takes person-

alization into consideration. The structure of knowledge and information plays a

crucial role. The ontology-based organization helps managing of content related to a

given course or lesson. The framework for personalization is based on usage profiles
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of the users and the domain ontology. User information such as log files are used

to record users’ browsing activities. After this association, rules are calculated that

have a support greater than a specified minimum support and confidence greater than

a specified minimum confidence. Then the content from ontology is combined with

users’ navigation path.

Henze et al. [49], proposed a framework for personalized e-Learning in the

semantic web and they show how the semantic web resource description formats

can be utilized for automatic generation of hypertext structures from distributed

metadata. Ontologies and metadata for three types of resources namely domain, user,

and observation are investigated. User profile is built based on personal information.

6.2.3 Personalization in LMS and MOOCs

Despite being the most popular learning systems, LMSs provide limited support for

personalization. LMSs, such as Intelligent Web Teacher [26], focuses on the concept

of personalized e-Learning for the computer science (or informatics) education.

They used Semantic Web technologies (e.g. ontologies) as a technological basis for

personalization in e-learning. They proposed the Intelligent Web Teacher (IWT)

which records user learning preferences and use ontology to model concepts that

could be suggested according to user preferences and the evaluation received on each

domain.

Alfanet [79], integrates the concepts of student modeling and personalization,

but is not yet widely used. On the other hand, one of the most popular and

frequently used Learning Management Systems, Moodle, offers limited support for

personalization. It is possible to personalize the interface environment by creating

new themes. In other words, specific activities can be made available to the learner

according to certain conditions, such as the grade obtained in one or more tests, the

completion of one or more activities, or a combination of the two. Teachers, however,
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are responsible for defining possible alternative learning paths. Some MOOC systems

provide recommendations on courses based on user interest.

6.3 Learning Data Model

User preference profile is built using learning abilities of a user or tracking browsing

pattern for the user. However, little attention is paid to users’ knowledge that acquired

during the study. There is a need for a structure that defines precedence between the

concepts to prepare a student for a given topic.

The learning model represents the data in graphical form, which helps to retain

any precedence information. For personalizing the search responses, following are

used:

Chapter precedence graph: The chapter precedence graph is used to derive a

precedence relationship for the concepts covered in each of the chapters of the course

textbook. In general, the textbook chapters are ordered and sometimes, the authors

provide a guideline for presenting the topics to the students. This information can

be used to build the “Chapter Precedence Graph”, where each node corresponds to a

chapter in the graph. The outgoing edges determine the child node or next chapters.

Course precedence graph: The course precedence graph models the prerequisite

relationship between courses offered at a given institution.

User concept knowledge: The user concept knowledge represents the concepts

that a student has covered from the courses she has taken. User concept knowledge

is different for each user.

6.3.1 Chapter Precedence Graph

It is often essential that user understands the prerequisite concepts that provide

background for the concept under study for a thorough understanding. This

information is not easy to obtain as it requires expert knowledge. If a chapter C1
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precedes a chapter C2, then it can be assumed that all the concepts covered in C1

precede the concepts covered in C2.

Every course has a prescribed textbook that provides an in-depth explanation

of a course systematically. The course is divided into several chapters, where the

initial chapters are usually introductory, and the later chapters are a comprehensive

explanation of a specific topic. Chapter precedence graph can be built using the

table of contents (TOC) of the textbook according to the structure of the textbook.

In some textbooks, a chapter usage guideline is proposed to guide the instructors on

possible orders to present the course topics (Figure 6.1). This guideline is useful in

understanding the precedence level of chapters and in turn the concepts covered in

each chapter.

Figure 6.1 Chapter precedence graph, each vertex in the graph represents a chapter
in the textbook. The precedence relation is represented by the edges between vertices.

Source: Fundamentals of Database Systems [42]

A chapter precedence graph GC = (VC , EC) is a graph where, the vertices VC are

the chapters (Chapter Titles) for a given course textbook and the edges EC(Edges)

represent the precedence relationship. Edges are added between the two vertices,

if the vertices satisfy the precedence order. “≺” is used to denote the precedence

relationship. If a chapter (Vi ≺ Vj), then an edge is added from Vi to Vj.

Besides, each node (chapter) is associated with the concepts presented in that

chapter in the graph. The index of the textbook can be used to obtain the information

76



about the location of each concept. A concept can appear in several pages/chapters,

and the frequency is used to determine a home chapter for the concept.

6.3.2 Course Precedence Graph

The knowledge of a student regarding topics / concepts covered varies from one

student to another. The course precedence graph depicts the relation between the

courses available at a given institution. The course precedence graph represents the

prerequisite relationship between courses. Although this is not always true, it can be

assumed that a student masters all the concepts in the courses s/he has taken. The

course precedence is defined as a graph GD = (VD, ED) where VD(vertices) are the

courses available within a University, ED(Edges) are the directed edges that connects

two vertices Vi and Vj if there exists a dependency between two courses. If course

(V i
D) is a prerequisite for course V j

D (V i
D ≺ V j

D), then an edge is added from V i
D to V j

D

as shown in figure 6.2.

Figure 6.2 Example of course precedence graph. Each vertex in the graph is a
course and the edges represent the prerequisite relation for each node.

In the example, the course CS759 has CS659 as a prerequisite. CS659 has CS505

as a prerequisite. If a user is registered for a course CS759, it can be assumed that

the user must have taken or possessed knowledge of courses CS659 and CS505.
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6.3.3 User Concept Knowledge

Each student takes several courses during study towards a degree. A separate concept

index is created for every user to represent the concept information for every user.

Personalized results consider the knowledge of the user. There are two different ways

to represent user concept knowledge:

1. A list of course precedence graphs where each graph represents the course user

has already taken.

2. A list of concepts, supported by an index to represent the concepts user has

already covered.

The structural information for user concept knowledge is not necessary to determine

if the user is aware of the concept. Hence, the user concept knowledge is represented

as a list of concepts as follows:

Cu = C1, C2 . . . Cn

Ku = V 1
c , . . . V

n
c

(6.1)

where, Cu is a list of courses user has taken. Ku is the user concept knowledge list, V 1
c

are the vertices (concepts) covered by user corresponding to the chapter precedence

graph for course C1

6.4 Indexing, Query Processing and Ranking

Chapter precedence graphs containing a query term are extracted with the help of an

index. In the query processing step, the top k chapter precedence graphs are retrieved

according to the scores. The concepts that needed to be studied are represented as

the subgraphs extracted from the chapter precedence graph. Each subgraph consists

of a set of nodes with the leaf node as the chapter covering the query term and all the
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parent nodes connected to the leaf node. The matching step considers the knowledge

of the user to display the personalized results.

6.4.1 Indexing

The index representation can be given as follows:

Information, such as textbook title, corresponding chapter precedence graph and

Figure 6.3 Textbook representation

chapters are recorded for each textbook. For each chapter, information, such as

chapter title, chapter text, section titles and associated page numbers are recorded.

This information (Figure 6.3), is then given as input to Apache Lucene to build

inverted indexes.

6.4.2 Query Results

Top-k chapter precedence graphs containing the concept are retrieved (6.3) as a

result of the user query. For each chapter precedence graph, chapter representing

each term is also recorded. All the chapters preceding the current chapter in

the chapter precedence graph form the induced subgraph, and the rest of the

chapters are disregarded. If a user queries for the term “big data” (Figure 6.4),

which appears in chapter 25, the induced subgraph will contain three paths,

{chapter{1, 2}, {16, 17}, {20, 21, 22}, {23, 24, 25}}, {chapter{1, 2}, {5}, {6, 7}, {23, 24, 25}},

{chapter{1, 2}, {5}, {6, 7}, {20, 21, 22}, {23, 24, 25}}.

There are two different ways to represent query graph at this point

1. List of sub-graphs.
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Figure 6.4 Induced subgraph for user query “big data.”

2. Merge the graphs in the query to form a single graph as a query graph.

Figure 6.5 Query graph merged to single graph.

In the figure(6.5), three Course precedence graphs are returned as a result of

query “TCP”. Here similar concepts, such as computer network info and transport

layer can be merged with the left subgraph. And since the query term resulted in the

chapters at the leaf level in the figure, a link can be added between them too.

Since merging of graphs is a research issue, and different courses do not align

the concepts in similar order, the merging operation could make it expensive and

unnecessary.
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Instead, the query using approach (1) is used to retrieve only top k subgraphs

corresponding to k separate sub-queries; this keeps the retrieval constant and less

expensive.

6.4.3 Course Material Retrieval and Ranking

In general, a user query q =< t1, t2....tm > consists of one or more terms. Each course

chapter is given a score based on the equation below. Given a query (q) which is list

of keywords. The score of a textbook chapter for a given term is determined following

the classical TF/IDF formulas as follows:

Score(q, ch) =
∑
t∈q

tf(t in ch)× idf(t)× weightchaptertitle

+
∑
t∈q

tf(t in ch)× idf(t)× weightsectiontitle

+
∑
t∈q

tf(t in ch)× idf(t)× weightbody

(6.2)

where, q is the query consisting of one or more terms,ch, is the chapter of textbook that

contains the term, weightchaptertitle , weightsectiontitle and weightbody are the weights

added if keyword appears in the chapter title, section title and body of the textbook

respectively, tf (t ∈ ch) is the term frequency of the term within the chapter, idf(t) is

the inverse document frequency given by log N
df
.

Each chapter is a considered a document. A cumulative score of the textbook is

computed as an aggregate score of individual chapters covering the same topic within

a textbook. The most representative chapter is also recorded for each keyword.

Top-k chapter precedence graphs containing the concept are retrieved (Equation

6.3) as a result of the user query. For each chapter precedence graph, chapter

representing each term is also recorded.

Ψ(q) = {Ct
i} (6.3)
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where, Ψ(q) is the mapping function that maps query term to list of textbooks (t)

that contain the term and most relevant chapter(i). These textbooks are ordered by

score (SC). The list of chapter precedence graphs can be obtained from the index

(Equation 6.3). Function “ϕ” is defined to extract the subgraph from each chapter

precedence graph. Chapter representing each term is identified for each chapter

precedence graph. All the chapters preceding the current chapter in the chapter

precedence graph form the induced subgraph, rest of the chapters are discarded.

ϕ(GC , C) = {G′
C : G′

C ⊆ GC} (6.4)

where, ϕ(Gi
C , C

i) is the function that extracts the subgraph from the graph for a

given term. G′
C = (V ′

C , E
′
C) : V

′
C ⊆ VC , E

′
C ⊆ EC .

List of subgraphs is used to represent the query (Lq) for the matching step.

Lq = {Gi′

C , ....G
k′

C} (6.5)

where, k is the number representing kth graph of top k graphs, G1′
C ....G

k′
C are the k

subgraphs (subset of corresponding course precedence graphs) returned by the query.

6.5 Matching Query Resultant Graph and User Graph

The matching step considers the knowledge of the user to display the personalized

results. The results obtained from the query (Lq) are matched against the user

concept knowledge (Ku).

The user graph Ku consists of all the courses the user has covered and can be

represented as:

Ku = {Gi
C , G

j
C ....G

n
C} (6.6)

where, Gi
C is the chapter precedence graph of the particular course i. The concepts

the user needs to cover is the result obtained from (Equation 6.5).
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A matching function (“λ”) represents the similar concepts between the query results

and the user concept knowledge as follows:

λ(Lq, Ku) : Lq ∩Ku (6.7)

where the vertices in Vq and Vu match if they have same title.

The concepts left to be covered are given as follows:

{Lq \Ku} (6.8)

where, the distinct vertices of Lq and Ku are included in the set.

Since the representation of concepts is different in various courses, the concepts are

presented to the user in the color-coded form. The blue color indicates, the concepts

that are already covered by the user, and the red color indicates the concepts left

to be covered by the user. The recommendations of the concepts to be covered, are

presented to the user. The users can browse through the recommended concepts to

prepare thoroughly. The recommended concepts are linked to the lecture material

that covers them, such as slide, videos and textbook.

6.6 Examples of Queries

The data set consisted of four different courses, each course has a chapter precedence

graph.

GC = {G1
C , G

2
C , G

3
C , G

4
C}

Query1 (q1):“tcp”

The UCS application (based on G2
C) returns the slides that cover the keyword “tcp”.

Along with slides, videos and textbook chapter that cover the concept are also listed.

Out of four graphs in the data set, three contain the concept “tcp” (as shown in the

Figure 6.7). Result Intermediate:{G1
C , G

2
C , G

3
C}

Next, we pick top k subgraphs from this list (k=2) in this case.
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Figure 6.6 Results of query “Transmission Control Protocol (tcp),” on the UCS
system.

Figure 6.7 Induced subgraph for query “tcp”.

Result top k: {G1
C , G

2
C}

The subgraph for each of them consists of precedence graph from the root to the

chapter that contains this term. This becomes the leaf node.

Subgraphs extracted: {G1′
C , G

2′
C} The query results contain prerequisite concepts for

tcp.

Concepts needed to be covered:

Gq = {computer network introduction, physical layer, data link layer, medium access

control sublayer, network layer,

transport lay, introduction computer security introduction, physical security, operating

systems security, malware, network security, network security ii}. Following cases

describe personalized results under different scenarios, based on user experience. The

concepts are recommended in a color-coded manner. The blue color indicates, the
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concepts that are already covered by the user, and the red color indicates the concepts

left to be covered by the user.

• Case 1: User does not have any relevant experience to the topic in query

Query “network security”

Query result: {computer network introduction, physical layer, data link layer,

medium access control sublayer, network layer, transport layer, application

layer, network security}

User 1 course list: Database

Concepts already covered: {none}

Suggested concepts to be covered: {computer network introduction, physical

layer, data link layer, medium access control sublayer, network layer, transport

layer, application layer, network security}

In this case, the user has no experience related to query in question. The user

is registered for a course “Database”, and has no prior experience related to

network security. The precedence subgraph G1’ is suggested as the result of

the query.

• Case 2: User has some relevant experience to the topic in query

Query: “security” Query result: G2’, G1’, G4’

introduction computer security introduction, physical security , operating

systems security , computer network introduction, physical layer, data link

layer, medium access control sublayer, network layer, transport layer, appli-

cation layer, network security, databases, database system concepts architecture

, relational data model, basic sql , more sql: complex queries triggers views

schema modification, database security

User 2 course list: Database

Concepts already covered:{ databases, database system concepts architecture

, relational data model, basic sql , more sql: complex queries triggers views
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schema modification, database security}

Suggested concepts to be covered: {introduction computer security intro-

duction, physical security, operating systems security, computer network

introduction, physical layer, data link layer, medium access control sublayer,

network layer, transport layer, application layer, network security }

In case 2, the query “security” is a generic term. The security could be related

to network, database, etc. Top k (top 3) results fetched from the database

(G2’,G1’,G4’). Since the user has already covered “Database” course, the

chapter precedence subgraph (G4’) is excluded from the result and G2’ and

G1’ are recommended to the user.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented “Ultimate Course Search”, an interface that provides

a simple, easy-to-use interface, but also a highly beneficial way to search various

lecture material. For enabling search on the learning material, we index the three

most widely used lecture media, namely slides, videos and textbooks. We index the

slides by identifying relevant keywords from the slide.

We show that without manually annotating the slides and videos, we can

effectively link the material by indexing the video segments with the corresponding

slide. We present a comparative analysis of the state-of-the-art techniques to

determine the feature descriptors most suitable for detecting transitions of learning

video and conclude that HOG descriptors performed the best. Our results show that

detecting the transitions automatically along with matching the original slides helps

us to identify transitions accurately.

We presented a localization technique to extract the slide from the video frame

in the case of classroom videos that capture the surroundings as well. Our results

show that the transition detection performance was improved by using localization.

We also compare the results to saliency technique and show that our localization

technique performs better for educational videos.

UCS also offers search in the textbook by indexing the content from the back-

index of the textbook along with the page number information. UCS thus integrates

these three learning media into a single platform, which provides students with a way

to learn the material effectively and efficiently. The results presented to users after

a keyword search are based on the region where the keyword appears, displaying the

results in such a fashion brings the most important and relevant content to the top.
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Finally, we proposed a technique to personalize the content for users based on

knowledge of an individual user. We show that by representing the concepts as a

precedence graph, a user is presented with concepts that are needed to be covered to

understand a concept fully. We also take user knowledge into account by representing

user knowledge in the form of a user graph.

In future work, the speech of an instructor can be analyzed, since the speech

includes plenty of keywords that are otherwise not present in the presentation slides.

Audio obtained from the video can be converted to text using the speech-to-text

software. Adding the keywords from the speech of the instructor would make the

interface for videos independent of slide information. Additional video interfaces

could be added to UCS for searching the videos with keywords obtained from speech.

Currently, user data was created for the experiments and not integrated into the

UCS system. In the future, actual user data can be used for personalized learning.

The content can be personalized based on learning preference of the user using the

UCS application. Chapter precedence graph was used to create the precedence

relation between the concepts at the chapter level. Slides can be mapped to the

textbook and used to develop refined levels of precedence between concepts.
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APPENDIX A

SIMILARITY MEASURES FOR DCT, MARGINAL AND
GRAYSCALE

Table A.1: Similarity Measures (Jaccard Index (JI),
F-measure (FM)) computed for DCT, Marginal, and
Grayscale space

Image
Id

Original
Image

3D
Distri-
bution

DCT Marginal Grayscale

(1*) JI: 0.09 FM:
0.57 Time:
2.04

JI: 0.09
FM: 0.72
Time: 1.74
Somedian =
16

JI: 0.01 FM:
0.20 Time:
0.98

(2*) JI: 0.66 FM:
0.96 Time:
0.77

JI: 0.54
FM: 0.95
Time: 0.61
S0median :
241

JI: 0.26 FM:
0.86 Time:
0.32

(253036) JI: 0.13 FM:
0.92 Time:
2.81

JI: 0.08 FM:
0.44 Time:
1.84

JI: 0.07 FM:
0.34 Time:
1.96

(118020) JI=0.05, FM
= 0.49, Time:
6.06

JI=0.06,
FM = 0.59
Time: 4.89
S0median :
27 Ideal: 101

JI=0.05, FM
= 0.52, Time:
5.55

(118035) JI=0.13, FM
= 0.74 Time:
3.536

JI=0.12,
FM = 0.85
Time: 2.766
S0median :43
Ideal: >151

JI=0.23, FM
= 0.90 Time:
2.038
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(135069) JI=0.39, FM
= 0.96 Time:
2.649

JI=0.55,
FM = 0.68
Time: 1.8617
S0median :
81 Ideal : 51
- 151

JI=0.51, FM
= 0.84 Time:
1.824

(138078) JI=0.09, FM
- 0.70 Time:
4.59

JI=0.09,
FM = 0.86
Time: 2.321
S0median 16
Ideal: 51

JI=0.06, FM
= 0.56 Time:
3.6011

(161062) JI=0.23, FM
= 0.97 Time:
4.22

JI=0.10
FM = 0.23
Time: 1.436
S0median 30
Ideal: 1 - 100

JI=0.12, FM
= 0.96 Time:
3.70

(172032) JI: 0.06 FM:
0.71 Time:
4.87

JI: 0.14
FM: 0.89
Time: 2.71
Somedian :
29 Ideal:1
–50

JI: 0.09 FM:
0.80 Time:
3.22

(187029) JI: 0.09 FM:
0.77 Time:
4.87

JI: 0.12
FM: 0.94
Time: 2.06
Somedian =
33

JI: 0.11 FM:
0.87 Time:
2.32

(189003) JI: 0.01
Time: 5.2

JI: 0.07,
FM: 0.69
Time: 3.16
S0median 27,
Ideal: 1-50

JI : 0.08, FM
: 0.58 Time:
3.8

(24004) JI=0.05, FM
= 0.42 Time:
5.7

JI=0.05,
FM = 0.47
Time: 3.73
S0median 37

JI=0.037,
FM = 0.43
Time: 4.6
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(299091) JI: 0.11 FM:
0.65 Time:
3.52

JI: 0.13
FM: 0.79
Time: 1.81
Somedian :
43 Ideal: 1-
100

JI: 0.13
FM: 0.79
Time: 1.81
Somedian :
43 Ideal: 1-
100

(302003) JI: 0.22 FM:
0.94 Time:
3.6

JI: 0.26
FM: 0.97
Time: 2.48
Somedian :
46 Ideal:101

JI: 0.34 FM:
0.81 Time:
2.33

(323016) JI: 0.06 FM:
0.49 Time:
3.8

JI: 0.13
FM: 0.68
Time: 3.26
Somedian :26
Ideal: 1 – 50

JI: 0.09
FM:0.62
Time: 2.5

(368078) JI=0.08, FM
= 0.71 Time:
5.7

JI=0.08,
FM = 0.64
Time: 4.202
S0median 60,
Ideal: 50 –
100

JI=0.10 FM
= 0.76 Time:
3.86

(372047) JI=0.03, FM
= 0.42 Time:
4.754

JI=0.04 FM
= 0.494107
Time: 3.7301
S0median
: 44 Ideal:
1-50

JI=0.05, FM
= 0.54 Time:
3.293

(372047) JI=0.22, FM
= 0.94 Time:
6.3512

JI=0.19,
FM = 0.69
Time: 3.086
S0median 32
Ideal: 101

JI= 0.22 ,
FM = 0.88,
Time: 3.75
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