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ABSTRACT

Up to the present time, there has existed no general method
for obtaining the pole locations of minimum-phase constant time delay
filters of desired selectivity. Since constant time delay filters are
necessary for low distortion FM transmission, and minimum-phase filters
are easy to construct and align, a general method for locating the poles
of minimum-phage constant time delay filters would be of considerable
importance. Presented in this paper is a procedure for locating the
poles of minimum-phase constant time delay filters of desired selectivity,
using a FORTRAN digital computer program. Two experimental FM receivers
were built to test the new filter characteristic, and the performance

of these receivers is discussed.
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INTRODUCT ION

With the advent of stereo FM broadcasting, very stringent
requirements have been set for the design of a suitable receiver.
In particular, one important aspect of FM receiver design - the IF
amplifier - has been largely neglected in tuneré and receivers intended
for the consumer market. For the most part, these circuits fall into
a general stereotype consisting of amplifier stages which are
permitted to act as limiters on strong signals combined with tuned
circuits of insufficient selectivity -~ a sacrifice necessary to
obtain nearly constant time delay to the signal. Since many
shortcomings in performance which arise in commercial tu;ler and
receiver designs can be traced at least in part to the IF amplifier,
it might be that the application of some new ideas would cause some
improvement in FM IF amplifier performance. One factor that is
of considerable importance in any new design is the cost. New designs
must be commercially feasables: economical in materials, easy to

construct and align, and reliable,

In seeking a means to improve on the solution of the FM IF
amplifier problem, the writer has devised a new class of linear-phase
filters which will be the main subject of this paper. The study
will continue with a discussion of a unique FM IF amplifier system
designed to make most effective use of the new filter characteristic.
Consideration of the use of the new IF amplifier in an experimental

FM stereo receiver will be reserved for the f£inal sections.



IF AMPLIFIER BANDPASS CHARACTERISTICS

Originally, some quite ordinary design spproaches to the FM IF
amplifier problem were investigated. Initially a minimum phase filter
amplifier of nominally constant time delay based upon cascaded
synchronously tuned stages was constructed. Next an amplifier using
a system of stagger-damped stages giving a Bessel characteristic was

tried. Both were rejected because of insufficient selectivity.

Another design effected a compromise by using a selective
minimum~phase characteristic, such as Butterworth, which had fair
phase characteristics with good enough selectivity to provide good

alternate channel reception in most cases.

The Butterworth tuner gave rather good per'formance2 and probably
Justifies the lack of initiative that has been evident in commercial
tuner designs - most of which use some type of flat-amplitude minimum-
phase filter amplifier. But the Butterworth tuner still suffered from
both inadequate selectivity and serious overloading of the IF

amplifier on strong signals.

One of the well known characteristics of a selective, flat-amplitude‘
minimum-phase filter is that the time delay increases from the
mid-band toward the band edges. It occurred to this writer that if a

single tuned circuit is placed in cascade with the aforementioned

1. The writer used this approach in an earlier paper, Ref. 1.

2. Performance data and specifications of this early tuner, extracted
from Ref. 1, appear in the appendix.



filter and tuned to its midband frequency, some delay equalization

will be obtained as qualitatively shown in Fig. 1.

_dp
Tl =2 T T4
/ff\/\\ /\ [\/\/’\
/ \ , .~ P Y

Fig. 1. Delay equaligation of a bandpass filter. (a) Time delay for
a hypothetical bandpass filter, (b) Time delay for a single tuned
circuit, and (c¢) Time delay for the bandpass filter and single tuned
circuit in cascade. -

The concept outlined in Fig. 1 can be expanded. The question was
asked: If the poles of a minimum-phase filter can be adjusted to give
any desired amplitude shape, might not they also be adjustable to
give any desired phase response? In particular, if the pole locations
of linear-phase all-pole filters of any desired selectivity could be
determined, a whole new approach to the FM IF amplifier design

problem would be generated.

There has existed no general method for easily obtaining the pole
locations for minimum-phase constant time delay filters of any desired
selectivity. Of the known filters in the minimum-phase class with
nominally constant time delay - Bessel, Gaussian, and Butterworth-
Thompson ~ the problem is either one of insufficient selectivity or
of less than optimum time delay characteristics. Highly selective

filters of constant time delay may be realized by adding an all-pass



delay equalizer to a Butterworth or Legendre filter, but the physical
construction and aligrment of these all-pass delay equalizers at

10.7 MC (the FM IF amplifier frequency) is so nearly impossible as

to rule out any consideration for their use in a commercially

feasable FM receiver.

THE RIMO FILTER

Presented in this paper are several of a new class of minimum=-
phase filters, having nominally constant time delay and moderately
flat amplitude response inside their passbands, and high selectivity
outside their passbands. The pole locations for these filters were
obtained by computer solution, and some of the resulting pole
constellations are found to allow the design of a selective, low

distortion FM IF amplifier.

The basic concept of the Rimo> filter is simple but requires a high
speed digital computer to obtain the pole locations. Applying the
Rime filter concept begins with the placing of some number of poles
in the S-plane and adjusting from just one to all of these poles until
minimum delay error occurs in the passband. An almost infinite variety
is then possible, with Fig. 2 on page 5 showing three possibilities.
In filters (1) and (2), poles (X) form a standard minimum-phase
filter, and poles (+) may be considered as a separate delay equalizer:
These are “hybrid" Rimo filters. In (3), all the'poles were adjusted

b

to give minimum delay error; this is a "pure" Rimo filter.

3. A name generated by taking the first two letters from RIchard MOdafferi.

L. Pole locations for "pure" Rimo filters approximate those for Bessel
filters, with the two tending to become more nearly identical as
the number of poles increases.
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Fig. 2. Three Rimo filters. In equalizing the time delay in the

passband, poles () were moved and poles (X) were held fixed. Although
the poles X and +4 of filters (1) and (2) are shown split into two
definite sections (which may be considered as a filter plus a delay
equalizer), this is not mandatory. The Rimo filter may be realized in
any manner particular to minimum-phase filters.



A general computer program has been written in IBM Fortran to
allow any number of poles from four to twenty “bo be placed in the
S-plane. Up to ten of these poles may be fixed, and up to ten of
them may be movable to give minimum delay error. For example, the
designer may select a five-pole Butterworth filter, add five more
poles, and locate the ten poles of a hybrid Rimo filter by using the
computer to adjust the five added poles to equalize the delay of the
Butterworth filter., When the pole locations have been determined,
the filter may be realized by any synthesis methods the designer

chooses.

BASIC THEORY OF THE RIMO FILTER COMPUTER SOLUTICN

In order to obtain a linear-phase characteristic from an arbitrary
number of poles placed in the S-plane, a computer program is required
whose operation is entirely automatic and convergent; i.e., the
computer must accept the given poles and move them quickly without
equivocation into what should be one and only one optimum constellation.

Some thoughts on this idea will now be presented.

Given any number of poles in the S-plane, one may obtain minimum
delay error by moving all of the poles out to infinity. The resulting
filter then could be realized as a ladder structure consisting of
series open circuits and shunt short circuits - a realization of
no practical value. Thus the first consideration in writing the
compuber program is that of keeping the given poles clustered
symuetrically about the mid-band frequency so that some kind of
selective filter will result. This is most easily accomplished by

specifying the mid~-band time delay and holding this value constant



during execution of the program, automatically forcing all of the

poles to remain near the mid-band frequency.

If one plots the phase response of a hypothetical narrow band
minimim-phase bandpass filter, and superimposes on this curve a
straight line drawn tangent to the phase curve at the mid-band

frequency, the result in Fig. 3 may be obtained.

BAND ——

7

leading

I e S

Fig. 3. Phase response of a bandpass filter having poor phase

linearity. Curve (A) is phase characteristic of filter, line(B)

is drawn tangent to phase curve at the mid-band frequency. The

shaded area between (A) and (B) is a measure of the phase error.
If a computer program can be set up such that the shaded area

in Fig. 3 is automatically reduced as poles are moved, the

problem will be solved, since a filter having a straight line

phase shift will have constant delay.

OUTLINE OF THE COMPUTER SOLUTION

The method of the computer program will be shown by

consideration of a simple example. Given the three poles of Fig. Ly



let them be adjusted to give minimum delay error in the passba.nd.S

The computer will first calculate the mid-band time delay for the
three poles. This value of time delay is then stored and any subsequent
pole movements are controlled in such a menner as to hold this

initial time delay essentially constant. Next, the phase shift for

the three poles is calculated at frequencies along the jWw axis
beginning at the mid-band frequency and ending at an arbitrary .point
selected by the programmer - this ending point usually being just

beyond the imaginary coordinate of the last poles (Pl and P3 of Fig. L).

p
PZX "wo

PSX

Fig. L. Three poles to be adjusted by the computer to give
minimum delay error.

The values of phase shift are then compared with those values
obtained from a straight line drawn through the phase characteristic
for the initial pole positions, as in Fig. L. With the lines A and B
of Pig. 3 determined in the computer, it next calculates the magnitude

of the shaded area between them and stores this number,

Now a pole is moved. First, the middle pole is moved a small
distance along the real axis with other poles remaining fixed at

their initial loqa’cions. Then the shaded area is recalculated, If it

5. The result will aspproximate an n = 3 Bessel filter,



is less, indicating lower phase error, the pole is moved again in
the same direction until the value of the area passes through a
minimum. Upon passing through the minimum, the pole is moved back to
the location giving minimum delay error and left at this point.

If upon the initial movement of pole P2 in the real direction the
area had become larger rather than smaller, the pole movement would

have been reversed and a minimum sought.

Next, poles Pl and P3 are moved in the real direction as a
conjugate pair until the area function is again minimigzed. Following
this, poles PL and P3 are moved in the imaginary direction to seek an
area minimum., Now all three poles have been moved in all possible
directions t0 minimize the delay error. However, due to interactions
between the poles upon the delay error, the entire process is generally

repeated for a number of complete cycles.

Usually, four or more complete cycles of pole movement will
complete the minimization of the delay error. How quickly the solution
is arrived at depends on many factors, including how close to the
optimum the starting pole constellation was, and for what percent of

the passband a linear phase response is desired.

There exist refinements in the program which allow the operator
to exercise some control over the resulits. The initial value of pole
movement increment is adjustable. Assuming that a rough solution
is required, the poles may be adjusted in large steps to arrive

quickly at a result good enough for an evaluation.

The programmer may decide to equalize the delay over the whole

passband, or choose equalization near the mid-band frequency only - the
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latter giving somewhat better amplitude characteristics. Using the
program, any known all pole filter may have poles added to it and
then have these added poles adjusted to give minimum delay error
to the combination. The program is limited, however, to the poles
of minimum-phase filters, although modifications to include poles

and zeros of nomminimum-phase filters are not impossible.

DESIGN OF RIMO FILTERS USING THE COMPUTER PROGRAM

Introduction

Realization of a Rimo filter begins with choosing the desired
selectivity. A given selectivity can be satisfied by several pole
constellations, but by referring to the normalized data in the
appendix, the approximate number of poles required for linear-phase
filters of desired selectivity may be determined by examining the
amplitude responses for the tabulsted Rimo filters. If the design
criteria can be met byvone of the pole plets in the appendix, the
location of the poles is thus finished and the realization of the

filter can proceed to any synthesis method the designer chooses.

If the ®Mequirements cannot be met by one of the pole plots in the
appendix, or if the designer wishes to equalize the delay of some

filter he already has, the computer program will have to be used.

Explanation of the Computer Program

During the forthcoming discussion of the actual programming of
the computer to design a Rimo filter, the program and its flow
chart will be covered in de‘oa:l.‘l.6 A through understanding of the
operation of the program is essential in order for one to achieve

maximum results.

6. The program and flow chart appear in Appendix, pages 7 to 18.
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Table no. 1 below lists the variables which are used by the
computer in working the program. Some of these variaﬁles are used'by
the programmer in initializing the problem; others are used only
by the computer in working out the program. This table should bhe
referred to as the discussion of the program and its flow chart

progresses.

TABLE 1.

(a) Variables Used by the Programmer

NFeiveoseossass nunber of fixed poles

NVeeeoreooosse .mumber of movable poles

i ....equal to zero for odd number of fixed poles
equal to one for even number of fixed poles

Nlseeeeoensees.equal to zero for odd number of movable poles
equal to one for even number of movable poles

MOOD

DELL

COW  ++«+-e+-.used collectively to control pole movements

MOO

XX (NN)
YY(NN)

X(N)
Y(N)

vesessss.dimensioned array for the movable poles

cesessses..dimensioned array for the fixed poles

FB....c.ssses..area weighting function
CONST. CEE A B B I B B .ama Weighting fm]ction
REFER. e v+ +cees.initial value for weighted area

(b) Variables Used by the Computer Only

INDEXee . a..cunulative number of pole movements made
POSERs s e« s 0eq . .maximum positive phase error, radians
ERNEGeesss ... .maximum negative phase error, radians
KOSFQe e ee s« .s..frequency of maximum positive phase error
NEGFQesssv.....frequency of maximum negative phase error



TABLE 1, CONTINUED

ERFNC.........oWeighted area between linear-phase line and
filter phase curve.

FEE............phase angle to the fixed poles.

FEEEe.e.+.s....phase angle to the movable poles.

MODe s vasesseoscControl variable used in locating point of

minimum phase error during movement of a pole.

Ml LI U R A L Variable COntmlling CO@uted GO TO‘

Neeeeseeoeaoeosindex on dimensioned variable for fixed poles. -

12

NNeeecesoaoseasindex on dimensioned variable for movable poles.

NEicesussosso. dummy variable used to set value for NSFP.
NNEe:eeooeeess .dummy variable used to set value for NSVP.
NSFPuvscesos...8qual to one for odd number of fixed poles,
equal to two for even number of fixed poles.
NSVPe+vsseseas-equal to one for odd number of movable poles,

equal to two for even number of movable poles.

DEL.e.eseesesssactual distance a pole is moved in S-plane.

INDIX.ees+e+0. .nunber punched in output data. Gives total
number of pole movements accumulated by
conputer when a pole is located at point of
minimum delay error.

ERRA, ...

eesERRU..cu....departure from linear phase, in radians, at
normalized frequencies of 5, 10, 15....100
radians/second.

MM.vosiiooeaes.dunmy variable used to control exit of
computed GO TO loop.

Keeeorieroeanaofixed point frequency variable.

Feesersarsoseasfloating point frequency variable. Always
equal numerically to X.

ANG(K)ev.s+0...phase angles to all poles at. frequencies K
for all K from 1 to 100.

FE(K)eesoeeee..phase angles to fixed poles only at
frequencies K for all K from 1 to 100.

ANGL. ..+ 44es0..phase angle to all poles at frequency K
equal to one only. Also equal to the numerical
value of the normalized time delay in seconds
for the mid-band frequency.

ERR(K)+e+.+e...phase error as departure from linear-phase for
all X from 1 to 100.

DELTA«ve e seesdunmmy used to accumulate summing of the
weighted errors. (see ERFNC below)

ERFNCeveowans. .Weighted area function resulting from the
continued summing of DELTA.

JERR(K)e v+ e....ERR(K) multiplied by a thousand. Used to
control IF statement which in tumm controls
output data punched for NEGFQ, ERNEG, KOSFQ,
and POSER.
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TABLE 1, CONTINUED

KLUNK. .+ s seoo..COnbrols direction of initial movement of
a pole; reverses movement direction if
initial movement causes an increase in
phase error.

COow

MOQ Tttt ~used together to fix the number of pole

movements taken during full execution of the
program,

The logic of the computer program will be most easily understood
if the above table is used in conjunction with the flow chart in

following the program.

Consideration of a specific example will show how the program
operates: five movable poles will be adjusted to equalize the delay
of a five-pole minimum-phase filter. Given in Fig. 5 below are the poles

of a five-pole Butterworth function, taken from Ref. 2, page 331.

Ph x
P2 % PL  0.309 + jO,951
P2 0.809 + j0.588
F1 X -, 71 1.000 + jO.000
P3 0.809 =j0.588
P3 % P5 0,309 -=j0,951
P5 X

Fig. 5. Pole locations for a five-pole Butterworth function.
(L.H.P. poles only)

Before insertion into the computer, the poles must be normalized
such that the imaginary parts of the outermost poles (those farthest

from the mid-band frequency) have an absolute value at or slightly



below 100.000.7 This is most conveniently done by multiplying the
real and imaginary parts of all poles in Fig. 5 by 100.000 with the

resulting values appearing in Table 2 below.

TABLE 2

Fixed poles scaled for insertion into the computer

¥(1)eee...100.000
X(2)eeo... 80.902
X(3)...... 80.902
(L) een.e 30.902

Y(1)e..... 0.000
¥(2)eseaes 58.779
Y(3)eee...~58.779

'Y(h)n.--a. 9501%

Y(S)O.o e 0_95-:1%

X(5)...... 30.902

A guess based on a graphical study of this pole configuration led

to placing the five movable poles as follows:

TABLE 3

Movable poles scaled for insertion into the computer

XX(1)eees..100.000 Y¥(1)eeeoo. 0.000
X(2)euees. 99.000 ¥Y(2)ers... 30,500
X(3)eeeees 99,000 YY(3)eeus..=30.500
xx(h)eennn. 15).000 YY(h)e.....107.000
XX(5)......154.000 ¥Y(5). e .. =207.000

Initial values for NF, NV, I, MOOD, DELL, COW, and MOO were set

up as in Table L.

TABLE 4

Initial values for the program control varisbles

NF.veeeessb MOODeseseessO
NVeeosnnsob DELLecessa2.7
I..O..lOOOO COW..".‘.GQO
NI........0 MOOsceveass.0

7. Real parts for the poles in the L.H.P. are given plus signs in
order to simplify the input data. The progran is set up in such a
manner that this causes no problem.
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An arbitrarily large number is chosen to initialize the value
for REFER:

REFERe e+ e« 0 0s.1715.966

When the above input data has been punched on cards according to the
relevant FORMAT statements, the program is compiled. The data cards

from tables 2, 3, and li are read in along with REFER and the computer
is started.

Normally, all sense switches are left OFF and the computer

proceeds from statement 410 to statement 21, initislizing the various

control wvariables as follows.

W W W
Vi ©
FEEZE==E
I T
! "z:-:ﬁ 1
o 5 H =
w8
&

e

W

=h=
it

o R
)
mmgzz
1w
‘ i
g
=

i Eu

oo
bt

Statement no. 21 actually begins the problem solving phase of

the program. This will become more evident with the consideration of

a few more steps:

22N=N+1 = 0+1=1
NSFP = NSFP + 1 = 0+ 1=1
25 FEE = FEE + ATANF((Y(N) -F)/x(N))
or

25 FEE = 0 + ATANF(0.000 = 1)/(100,000)
which is ‘

-0,0099996666 radian.



The situation existing in the computer as statement 25 is
executed is shown in Fig. 6 below. Only the relevant pole X(1),

Y(1) is shown.

Jw
N F:K:‘:l
S=-plane
x(1),1(1) FEE ~ FEK=0
7~ o

Fig. 6. Graphical representation of statement n. 25 with the
computer executing this statement at the first pole for frequency
equal to one.

Note that the angle FEE is made to come out as a negative
quantity by subtracting the frequency 1 from the Y value of the
pole. This is consistent with reality, as the phase contributed by a

pole in the L.H.P. is negative for frequencies above the imaginary

part of the pole.

After computing FEE, the machine proceeds to the next pole
X(2), ¥(2) by the following steps:
22 N=N+1=1+1=2
NSFP = NSFP+1 =

2
o5 FEE = FEE + ATANF((Y(N) - F)/X(N))
or

FEE = -,099996 + ATANF(58.779 - 1)/(80.902)
which is
+0.61018317 radian,
This process continues until FEE is summed for all of the

fixed poles at the frequency F = K = 1. Then the phase angle

contributed by all of the poles at frequency 1 is stored asi

2 FE(X) = FEE
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or

FE(L)= -0.032360900 radian,
next the phase angle to the movable poles is calculated, using a method
similar to that for the fixed poles. This process is contained in

statements 23 to 13 inclusive and will not be explained in detail.

Statement 1l is executed only if there are no fixed poles. Thus
the procedure passes on to statement 15 where the total phase angle

to all of the poles - fixed and movable - is stored in ANG(1) as:

15 ANG(X) = FE(X) + FEEE
or
ANG(1) = FE(1) + FEEE
and
AaNg(L) = -0.069569700 radian.

The variables controlling the calculation of phase angle are
now reinitialized so that the computation of these angles can be

carried out for frequency F =K = 2.

16 FEE = O,
FEEE = O.
N=I= 0
NN=NI= O
NSFP = NE = 0O
NSVP = NNE = O
998 ANGL = ANG(1) = -0,069569700 radian.

Statements 999 to 104 — 2, inclusive, control the storage of
output data consisting of the normalized frequencies of maximum
positive and negative phase error and the values, in radians, for

these phase errors.

Statement 63 increments frequency to the next value as:

63 K=K + 1
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or

1 1 = 2

K = +
GO TO 21
The computer returns to statement 21 and follows the procedure
outlined above for frequency F =K = 2 instead of F =K =1,
This process continues for frequencies 3,4, 5,....100. When the
machine reaches frequency 100, it will have computed the entire phase
curve8 for all of the given poles at 100 points along the frequency
axis., Output data is then punched in accordance with statements 6L

to 997, inclusive, as tabulated below:

TABLE 5

The First Set of Output Data Punched by the Computer

INDEX.....1 ry(l).... 0.000
POSER. . ...0,02123 radian YY(2).... 30,500
KOSFQ.u oo ..56 Y¥(3)eees =30.500
ERNEG.....0.1750 radian TY(h).... 107,000
NEGFQ.....100 YY(5)....=-107.000
Xx(1).....100.000

XX(Q). LI I 990000

XX(3)eueee 99,000

XX(4)eaes.15L.000

XX(5)¢e0s+.154,000

The actual output data as punched by the computer for four

complete pole movement cycles using the data from tables 2, 3, and
i with REFER of page 1L appears in the appendix on pages 19 through
3L, Note how the first four lines of the output data correspond to
table 5 above. Now examine the next four lines of the output data,
observing that pole XX(1) has been moved 2.7 normalized units to
the left along the real axis. How this was accomplished will now
be explained,

8. That portion of curve (A) of Fig. L to the right of the mid-band
frequency. By symmetry, the left hand portion is the same.
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After punching the output data appearing above, the computer arrives
at statement 997 + 1. In this statement, ERFNC, the weighted phase
error area function, is compared with REFER, which is the arbitrarily
large phase error area function read in the input data. Since ERFNC
is less than REFER, the computer proceeds to statement 333.

333 KLUNK =KLUNK+1 = 0+1=1
GO TO 252

Statement 252 replaces the old REFER, 1715.966, with the just
calculated value for ERFNC, 83.811. When a pole has been moved and a
new ERFNC calculated, it will be compared with this new value for
REFER, 83.811, in order to ascertain whether the pole movement has made

the phase error better or worse.

The series of arithmetic statements beginning with ERRA =ERR(S)
and ending with ERRU = ERR(100) stores twenty values of phase error,
in radians, for later output data. Statements 275 through 255 - 1
reset ERFNC, POSER, ERNEG, KOSFQ, and NEGFQ so that these may be

recalculated for the next pole configuration.

Pole XX(1), YY(1) is now moved 2.7 units to the left by

statement 255 as follows:
255 GO T0(253,260,280,270,290,261,262,266,265), M

Since M = 1, the computer goes to statement 253 and executes it

as below:

253 xx(1) = xx(1) + DEL
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or :
XX(1) = 100,000 + 2.700 = 102.700
GO0 TC 10 ’
Pole XX(1) is now located at 102.700 and the computer has
returned to statement 10 to begin a new cycle of calculations.

This new cycle determines the output data appearing on lines five through

eight in the output data printout on pageill? of the appendix.

By examining the output data, the progress of pole XX(1), YY(1)
may be determined. Note that the pole continues to move in steps of
2.7 units until a point is reached where the relative magnitudes of
ERFNC and REFER change. The pole continues to move to the left as
long as ERFNC continues to be less than REFER. When a point is
reached where ERFNC is calculated to be greater then REFER (line 8 on
pagepAl9) the pole would either have been moved the wrong way initially
or moved through a point of minimum delay error. In this case, the
initial movement of the pole wgs in the wrong direction, since the

computer was "fooled" by the initial read in value for REFER. °

The motion of the pole is now reversed; i.e., it is now moved

to the right toward the point of minimum delay error as follows:

251 IF(KLUNK) 258, 258, 259

9. Negligible machine time (in comparison to the total) is lost

by this process. The writer once calculated REFER to two significant
figures using a graphical process and a slide rule; this took

forty hours. The machine used by the author(an IBM 1620) - quite

a slow computer -~ will calculate refer for ten poles in about

forty seconds.
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Since KLUNK = 1,

259 MOD = MOD + 1
or

MOD = 0 + 1 = 1
and since NMOD = 3,

2L9 DEL = ~DEL/3.
or

DEL = =2.7/3. = =0.9

With DEL now equal to -0.9, the pole is moved to the right in

successive steps of 0,9 units until the peoint of minimum delay error
is again passed. DEL is then divided by three and its sign changed,
and examination of the output data (appendix page A1l9) will show that
the pole is now moved t0 the left in steps of 0.3 units until the

minimum delay error point is passed for the third time.

In order to return pole XX(1) to its optimum position, it is
moved 0.3 units to the right and then left at this point which gives
minimum delay error. (The minimum value for ERFNC is given in the

output data as 71.627.)

The next pole - actually the conjugate pair XX(2), XX(3) - is
moved 2.7 units to the left, beginning the system of movements that
will soon locate this pair at the X coordinate giving minimum delay
error. The process of pole movements continues until all of the poles
have been moved, with single poles being moved in the X direction only
and conjugate pairs being moved in both the X and Y directions. All

of the pole movements are spmmarized in table 6 on the next page.



TABLE 6

Summary of Pole Movement Directions for 5 Movable Poles

pole movements

xx(1), T¥(1) in X (real) direction

gg%’ gg% in X and Y (imaginary)

XX(L;)i Yy (L) direction as a conjugate pair
xx(5), 1Y(5)

A study of the output data from the begimning (appendix p.Al9)
to the end (appendix p.A3L) will reveal the pole movements summarized

above.

Note that in the output data when the movement of a pole has
been completed, three extra lines sppear. Examine line 57 on page
A20 of the appendix. The INDEX (actually INDIX) with a value of 13
states that it took thirteen pole movement steps to place the pole
XX(1) in a position to give minimum ERFNC. Count up eight lines and

note that the same number (now INDEX) appears at the start of line

L9. At INDEX = 13, the pole has been located at the optimum position,

four lines later the computer has determined that the point of
minimum delay error has been passed, and seven lines later (1ine 61)
the pole XX(1) has been relocated at its optimum position and the

next pole movement (XX(2), XX(3) ) has been executed.

The three extra lines of data appearing at each optimum pole
position give the phase errors, in radians, at frequencies of S, 10,
15,...... 100 normalized frequency units for the pole position given
by the number, INDIX, punched at the start of the first of the

three lines.
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Sometimes one or two of the phase errors punched at an optimum
pole position will correspond to POSER or ERNEG. Since ERNEG,
1.871E-01 radians, occurs at frequency 100, this value is also

punched as the last entry on line L9.

When the computer has completed the entire eycle of pole
movements for the first time, it arrives at statement 300 in the

program and executes:

3000 M = NI + 1

or

—

M 0 + 1 1
It then prints, on the typewriter, statement no. 77z
X-Y POLE SHIFT CYCLE COMPLETE

This tells the programmer that the machine is now going to

reiterate the entire pole movement process. Execution of the program

continues:
COW = COW + 1. = 0. + 1. = 1.0
and
5 MOO = MOO + 1 =0+1=1
301 DELL = DELL/3.0 = 2.7/3.0 = 0.9
DEL = DELL = 0.9
MOD = MOOD = O
GO TO 275
275 ERFNC = O.
POSER = O.
ERNEG = O.
KOSFQ = 0
NEGFQ = O
255 GO T0(253, 260,280, 270,290, 261, 262,266,265), M

Since M = 1, the machine proceeds to statement 253, as shown on the

next page.
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253 XX(1) = xx(1) + DEL
or
(1) = 97.600 + 0.9 = 98.500
The entire cycle of pole movements thus begins anew with DEL

starting out as 0.9 instead of 2.7. This will give a finer resolution

in locating the optimum pole positions.

On the third cycle, DEL begins with a value of 0.3, and on the
fourth, or final cycle, DEL begins with a value of O.1l. On the third
and fourth cycles, the number of pole movement reversals decreases,
with a corresponding reduction in the number of times the variable
DEL is changed. A flnal solution is approaching and machine time will
be saved if the number of back and forth pole movements is decreased,
The relative values of COW and MOOD are the controlling factors in the
number of back and forth movements of the poles as the cycles progress;

10
tables 7 and 8 show some possibilities.

TABLE 7

Number of changes in the variable DEL, including
that giving the final pole positioning, which
occur for different values of COW with MOOD
equal to zero.

cow lst cycle 2nd cycle 3rd cycle Lth cycle
-2.0 L L L L
-1.0 N b L 3
0.0 L k 3 2
1.0 L 3 2 1

Line three of table 7 shows the pole movements executed by the
program under discussion, As another example, consider the table on

the following page, with MOOD set equal to + 1 instead of O.

10, If the initial movement of a pole is incorrect, one more change
in the variable DEL than the number indicated in the table will occur.
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TABLE 8

Number 6f changes for variable DEI, including final positioning,
which occur for different values of COW with MOOD equal

to 4+ 1.

cow 1st cycle 2nd cycle 3rd cycle Lth cycle
-1.0 3 3 2 1

0.0 3 2 1 -

l.o 2 1 L -

The programs of table 8 would take little machine time and would
be useful in obtaining an approximate solution. Note that less than
four movement cycles are possible. For line three of table 8, MOO
will have to be initialized at one rather than zero to prevent a
"hang up" on the nonexistent fourth cycle; similarly for line four,

MO0 will have to be initialized at two.

Returning to the program being discussed, table 9 below summarizes
the actual pole movement steps which happen during the four complete
pole movement cycles. Every single pole will have experienced each of
these movements in the X direction, while every conjugate pair will

have experienced each of these movements in both the X and Y directions.

TABLE 9

A Summary of the Pole Movement Increments for the
Program Under Discussion

1st CYC:LG 2.7’ ""009, 003’ -0c3
2nd CyCle O¢9’ "003, Onl’ "Ool
Brd Cycle 003, ‘O.l’ Ool

Lth cycle 0.1, -0.1
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Examination of the output data contained in the appendix will

confirm the pole movement cycles outlined in table 9.

MOO is the variable which causes the execution of the program
to cease. When MOO reaches the value four in statement 5+ 1, four
complete pole movement cycles would have been completed. The following

steps are then undertaken:

PRINT 107

and statement 107 is typed as:

FINAL X~-Y POLE CYCLE COMPLETE. NEW DATA NFEDED

continuing,

PUNCH 108, ANGL

and ANGL is punched as

-69.830110E-03 (radians)

Evaluating the Result of the Computer Program

The programmer must then decide if the four pole movement cycles
gave sufficient delay equalization. Two criteria exist which are used
to ascertain the usefulness of the solution. The first involves the
examination of ERFNC. If the value of ERFNC is observed to be rapidly
decreasing at the end of the output data, then the optimum delay
error point has not been reached and another set of pole movement

cycles will be required.

To initiate a new set of pole movement cycles requires only the

re-use of the final cards from the output data which give the last
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optimum pole locations; these are lines 820 and 821 on pagel3l of

the appendix.ll The last value of REFER may be used, or the arbitrary
large value used earlier may be re-used. The same card originally

used to initialigze NF, NV, I, NI, MOOD, DEILL, COW, and MOO may also

be re-used, but a new one is generally punched. In most cases, it is
better to start a second complete run with a reduced initial valuel2

of DELL; i.e., a value of 1.8 or 1.2 may be used instead of the original

3

1
value of 2.7. Below are summarized the datas which might be read in

for the next complete run of four cycles:

TABLE 9

Initial Data to Start a New Four Cycle
Pole Movement

(1l)e..... 9L.T00 1] R
XX(2)eee... 99.000 NVeeerreeeab
XX(3)e.ee.. 99.000 5 N o
xx(h)......158.,000 NIeseeeeasaO
xx(5)......158.,000 MOODaseen..0
TY(l).e..... 0,000 DEIL.....1l.8
¥Y(2)...... 30,300 COW.eevwo.0.0
YY(3)e.....=304300 MOO.eeeeesaO

YY(}4)......105,600
YY(5).....rl05,600

The second criterion for evaluating the result of the computer
solution involves the determining of the absolute phase errors. If
ERFNC is found to be nearly static in the output data as pole movements
are executed, then the poles are in their optimum positions and further

computation is not necessary. By multiplying ANGL (the last line of

11. Note that here REFFR is static and a new run is not necessary.

12. Note the violence done to REFER by using the large value for initial
DELL of 2.7 here. The pole position of tables 2 and 3 was nearly

optimm.

13. Making DELL divisible by three makes the pole movement reversals
easy to follow in the output data.
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output data, pagep3l of the appendix) by 5, 10, 15......100 and

comparing the results with the phase errors printed on line 827 to 829 of
the output data (page/8l of the appendix), the magnitude of the

phase or delay error for the pole constellation may be evaluated, as

will now be shown:
ERR(35) is determined from the output data to be
1,057B-03 radians
and ANGL is
~69,830110E-03 radians
and
(awaL) (35) = -2.L4LL0 radianms.

Thus the phase error is 0,001057 radians in ~2,4h)i0 radians,

Expressed as a per cent, the result is

phase error=0.0433 %, leading.

Approximate time delay error in per cent may be established

as follows:
ANGL, = radians of phase shift at F =K =1

therefore

phase shift _ ANGL

midband time delay = =
frequency O to 1 1

which evaluates as

0,069830110 seconds.
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Delay error will be indicated by the departures which exist along
the passband from the value of this midband time delay. The value of

the time delay at F = K = 35 is determined approximately as:

PHASE SHIFT IN PHASE SHIFT IN
FREQUENCY 30 TO 35 -+ FREQUENCY 35 TO 4O

TIME DELAY = 5 5 R

2
or
0.3h6723 + 0.347055

TIME DELAY — 5 5 ,

2

which gives
0.,069377 seconds @ frequency 35.

Thus the delay error with respect to the mid-band delay is given by:

MID-BAND DEL - DELAY A
DELAY ERFGR, % = BAN AY ELAY AT 35

MID-BAND DELAY

or

DELAY ERROR, % — 0.069830 - Oo069377 — 0.6)4_8 %.
0.069830

A more accurate result, if needed, may be obtained by calling from
the computer memory the final value of the entire array ERR(K).
Resolution of ERR(K) to frequencies only one unit apart would then
be possible, as opposed to the resolution of the punched data, which
gives phase errors for frequencies five units apart. The equation
for delay error given above can then be used to determine the delay

error, as before.
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Some Further Details

The possibility may arise that the delay error i1s excessive when
the optimum pole constellation is reached, as indicated by no further
reduction in ERFNC. Two possible reasons exist for the difficulty:

(1) The delay error due to the fixed poles is so great that the
specified number of movable poles cannot achieve delay equalization,

and (2) delay equalization over too great a bandwidth is being attempted.

Resolving the difficuliy involves either adding more movable
poles and/or modifying the weighting of the error function. The adding
of more poles is a fairly easy task, at least in principle, and needs

no special explanation.

Modifying the weighting of the error function involves the
adjustment of the two quantities CONST and FB. This is achieved by
starting the program going with SENSE SWITCH ONE turned ON. The machine
will then type:

INSERT CONST, FB

Using the typewriter, new values of CONST and FB are read into
the program, Generally CONST will be left at the value 1.0, but to
attach less importance to delay errors far removed from the mid-band
frequency, FB is made smaller; it may be made less than 100, so that
the computer will deliberately accentuate the delay error at the band
edges in order to achieve less delay error near the mid-band

frequency.

Generally, small values of FB and CONST will give a delay error
characteristic tending toward an "equal ripple" condition, while large

values for FB and CORST will produce a delay error characteristic
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tending toward a "maximelly flat" condition.

Conclusion

The explanation of the computer program given here is by no means
complete., Indeed, a full exposition would require a book and is beyond
the scope of this paper. However, given a through understanding of the
operation of the program for the given example above, the reader will,
with further study of the program, its flow chart, and tables one
through nine, come to a full understanding of its operation. To further
assist the reader in comprehending the operation of the program, the
complete set of input data used in computing all of the pole locations

given in the appendix is given along with the relevant pole locations.

APPLICATION OF THE RIMO FILTER TO THE FM IF AMPLIFIER

The real usefulness of the Rimo filter lies in its application
to FM transmission. Ideally, FM signals are sensitive to phase
information only, and it is this characteristic that makes Rimo’ -
filters useful for FM transmission. These filters have nominally linear
phase response and moderately rounded amplitude response within their
passbands, and high attenuation outside their passbands, If an FM signal
is applied to a Rimo filter, it will pass through with its important
phase information negligibly distorted. The moderate amplitude
distozjtion which results would be easily handled by a good limiter,

while the high selectivity will effectively suppress alternate channel

signals.

Full realization of the potential inherent in the Rimo filter
concept utilized in an Fi IF amplifier design requires some care in

the layout of the system. Poles of a Rimo filter are chosen on the
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Two experimental FM receivers have been built using the Rimo filter

concept, the first being a "state of the art" tuner and the second

being a table radio. Both use identical 5-pole Butterworth filters

with five equalizer poles, with the equaliger poles being realized in

a different manner in each.

A functional block diagram of the tuner is shown in Fig. 7, and

that of the radio is shown in Fig. 8 on the next page.

P2 |

LIMITER

RATTO
DET. |

50| erowp 5 - POLE
®— =D BUTTERNORTH [
ant. FILTER
1| hth Sth
& —
PLT P51 17 Pl
AGC DET. | AGC DET.
AMPLIFIER AVPLIFIER
POWER
SUPPLY

miltiplex

outpub

Fige 7. Functional block diagram for the tuner. The five interstage

networks are the five equalizer poles (FL through P5).
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dipole antemna
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L] FILTER
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AIDIO PUSH-PULL —(
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DET. | 12 tweeter
655
6BN6, 1N5hh 124X7 608 6AQ5
LSl ! POWER
volume  bass treble SUPFLY

Fig. 8. Functional block diagram for the radio. The equalizer poles
are realized as two double-tuned and one single tuned interstage.

Note that in realizing the Rimo filter, the poles were split. The
Butterworth portion, which comprises much of the selectivity, is a
lumped passive filter following the mixer, The less selective equalizer
poles are distributed as interstage networks between the IF a.mplii‘ier
stages. Some of the care in realizing the Rimo filter - amplifier
system should now be evident. Overloading of the IF amplifier by
strong altermate channel signals is reduced tc a minimum by placing
the selective Butterworth poles in a filter before the first IF
amplifier, The less cribical low-Q equalizer poles are placed in the

IF amplifier beginning with the higher Q poles and ending with the
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lower Q poles. The single center pole is placed between the last IF

stage and the limiter. Reserving the center pole for the final

(output) position in a tuned amplifier is common practice, as it
1L

gives maximum output capability in the center of the bandpass

where it is generally most needed.

An FM tuner must accept signals which vary at the antenna input
from levels of less than a microvolt to over a volb, and with this
great variation still produce an outpubt which is as free of noise
and distortion as possible. Since the information contained in an FM
signal is determined by phase only and not by amplitude, it might
seem possible in an FM receiver to use a low-noise RF amplifier
followed by the mixer, IF amplifier, and detector, and run the whole
receiver at full gain at all times, using no AGC. However, under these
conditions, when a relatively weak desired channel is being received
among several strong near-by channels, all of the signals could arrive
limited to the same amplitude level at the detector, causing cross-

talk and distortion.

A vetter situation would result if the receiver were to have a
highly selective, closely gain controlled IF amplifier preceding the
limiter, and allow the limiter to smooth only the IF response in
the desired chammel. Off chamnel signals would then enter the limiter
and detector at a lower level than the desired signal determined by
the IF selectivity. Somewhat elaborate circuitry is used in the
tuner to achieve a very constant input amplitude to the limiter and
detector. The radio uses a standard AGC circuit which follows

common design practice.

1h. Tuned amplifiers generally have an odd number of poles to allow the
placing of the single odd pole at the output position.
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The remainder of the circuitry in the btuner follows somewhat
standard practice. The four-tube front end gives the required L5
db of gain before the first IF grid, with delayed AGC applied %o
the two BF stages. The 6BA7 mixer, although noisy, has excellent overload
capability and good conversion gain. A schematic and performance

characteristics of the tuner are presented in the appendix.

The table radio uses a Rimo filter in addition to otherwise

orthodox circuitry. Performance data appear in the appendix,

Considerable work on both the tuner and radic remains
unfinished, with neither unit in a static condition and both still
undergoing constant experimentation. Among some things awaiting
further study are a multiplex decoder for the tuner, and an

investigation of distoriion of the signal caused by imperfect limiting.
CONCLUSION

In the field of minimum-phase filters, the Rimo filter is to
phase sensitive signals as the flat-amplitude gpproximations are to
amplitude sensitive signals. Using the charts or the computer program
presented in the appendix, the designer may choose the poles of a
minimim-phase constant delay filter of any desired selectivity, in a
manner exactly analogous to the selection of a minimm-~phase flat

amplitude filter of any desired selectivity.

In both the tuner and radio, the result of the application of the
Rimo filter concept to the IF amplifier design has 'been gratifying.
The performance of the tuner is nothing short of excellent, and the

1
reception of stereo broadcasts %rom distant stations has been of

15. An Bico model MK-99multiplex decoder is presently in use with the tuner.
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consistently good quality. In many cases, these distant signals are

not audible on other tuners due to their poor selectivity.

The Rimp filter concept as presented in this paper is very
incomplete ~ indeed it is only a beginning. The Rimo filter is still
in its genesis and much experimentation with the computer program
will be necessary before any general conclusions can be made concerning
these filters. Among the aspects in consideration for. future
exploration is the effect of the area weighting function on the

amplitude and phase response of Rimo filters.

An important aspect to be pursued is the determination of
exact solutions for maximally-flat and equal-ripple time delay

filters using the computer program - if such solutions exist.

Current plans call for a continued research in Rimo filters
beyond this thesis with the abovementioned ideas forming the basis

for the future investigation,
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Al,

PERFORMANCE DATA, BUTTERWORTH TUNER

taken from Ref. 1,

page 27.

IHFM SENSITIVITY:

LOCAL OSCILLATOR DRIFT.

CAPTURE RATIO:
TUNING RANGE:
NOISE FIGURE=

SPURIOUS RESPONSES:

INPUT VSWR:
RATIO DETECTOR BANDWIDTH:
AUDIO OUTPUT:

SIGNAL TO NOISE RATIO=z

Local: 2uv across 75 ohms
Distant: 0.7 uv across 75 ohms

Less than 2KC after 5 minute warmup
and 10% line voltage change

3 DB

86.5 to 110 MC

distant: 2.1 DB

distant: down at least 60 DB
local: down at least 84 DB

less than 1.2:1 referred to 75 ohm input
800 KC peak to peak
1 volt nominal at 1KC, 100% modulation

70 DB or greater for input 1000 uv

additional data

NUMBER OF VACUUM TUBES
NUMBER OF SEMICONDUCTORS

HARMONIC DISTORTION:z

12
15

Less than 0,3% for 100% modulation,
50 CPS to 15KCPS, 1000 uv input

Note: A simpler version of this tuner was constructed, using 11
tubes and three semiconductors, and gave essentially the
same performance as listed above. It is still in use.
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PERFORMANCE DATA, RIMO FILTER TUNER

THFM SENSITIVITY:

LOCAL OSCILLATOR DRIFT:

CAPTURE RATIO:
TUNING RANGE=:
NOISE FIGURE:

SPURICUS RESPONSESs

INPUT VSWR:

RATIO DETECTOR BANDWIDTH:
3t

AUDIO OUTPUT:

SIGNAL TO NOISE RATIO:

NUMBER OF VACUUM TUBES
NUMBER OF SEMICONDUCTORS

HARMONIC DISTORTION

IF BANDWIDTH:

1.5uv across 75 ohms

Less than 2KC after 5 minute warmup
and 10% line voltage change

2 DB

86.5 to 110 MC

6 DB

image and second harmonic oscillator
conversion, down at least 90 DB;

all other spurious down at least 100 DB
less than 1.2:1 referred to 75 ohms

1.5 MC peak to peak

2.0 volts nominal at 1KC, 100% modulation

70 DB or greater for input 50 uv

1}, less multiplex decoder
5

essentially unmeasurable in mono

or stereo on available test

equipment; distortion in sterec mode

on frequencies not subharmonically
related to 19XC is probably less than 1%

@DB: 221 XC
@0 DB: 59 KC
@90 DB: 865 XC

#* An audio output stage has been added to the tuner and does not

appear in the schematic.
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C=140pf

NOTES:

I. ALL CAPACITORS IN PF EXCEPT ELECTROLYTIC.

s

2. + INDICATES ELECTROLYTIC WITH VALUES IN MFD.

3. ALL RESISTORS
4. LL THRU L7 .

VALUES IN OHMS,
5 TO 2.5 ph VARIABLE.

=3.9K

FM TUNER

APRIL, 1965

MODEL-3

10K 27K

B+2

__ 100K 68K

B+3

K1 15k 0. 02

B+l

DI &D2,

h 3¥h

3uh

b5K; Vi2 >skT Ve > VS 5K1
] } IE } l

IN3756

MULTIPLEX
OuUTPUT

ACTIVE COMPONENTS

T3.9KE D3,04,8D5, INI7T63




PERFORMANCE DATA,

A5

TABLE RADIO

IHFM SENSITIVITY:

LOCAL OSCILLATOR DRIFT:

CAPTURE RATIO:
TUNING RANGE:
NOISE FIGURE:

SPURIOUS RESPONSES:

INPUT VSWRs

RATIO DETECTOR BANDWIDTHs

EFFECTIVE AUDIO FREQUENCY
RANGE

AUDIO OUTPUT

O.5uv across 300 ohms

less than 25KC after 10 minutes
warmup

6 DB, approx.

87 to 109 MC

2.1 DB

image down at least 35 DB,

all other spurious down at least
LO DB

3:1 approx.

300 KC

100 cycles to 15 KC

3 watts

Note: The front end in this radio has been designed to
operate from a built in cabinet antemna, which
dictated a design based on highest possible
sensitivity. The low-noise RF amplifier now used in
the radio was originally used in the old tuner

of Ref. 1.






c - C
S X
[ A

CELAY ZQUA
MARTERS TH
DIMENSTON
DIMENSTON
DIMENS T OMN
DIMENSTON
DIMENSTOMN
DIMENSTON

LIZATION OF
E515 8Y RICHARD
KLTUYaY (10)
AXCL Y YY (1W)
AMG (100
ERR(1IGU)D
JERR(1TLW)
Fe(1u0)

FOINTRUM

MODAFFERI

PHASE FILTERD
ADVISOR RH HOGLSE.

502 INDEX = 0
’a POSER =
T ERNEG=Ua
KOSF Q=0
MNEGFQ=G
ERENG
Fis o=

t
R

11\:!.

FEE = Ue

Fiomk = Ue

CONST = 10

FALUNK = O

READ 400 X{1Yse X{(Z23s X{B)s x(4)s XK(D)
GUT s XALHEYs X{T)e X(8)s R(Y)s K10
GU0Ue YLLI)e Y(23s Y(3)e Y4)s vV(5)

READ 400, Y(S)s Y(7)a Y(8)s Y(9)s ¥ (10)
400 FORMAT (S5F Se3)
READA T o XX (1) o XA () 9 XX (3) s AX (4) XX (5)
READGUT oYY (1) oYY (2) oYY (3)aYY (4 Y(5)
READ 4Uls XX(6)s AX(7)s XKA(8)s KX(9)
READ 40la  YY(6)s YY(T)s YY(8)s YY)
401 FORMAT (5FEe3) ~

READSGUZ s NFe NVae Te BMIs MOUDs DELLs COws MOO
FORMAT (IR edX12adn [ 2ed X 24412 4xFdal s ZXFIelsdil 2)
REAL 410 REFER

FORMAT (F8e3)

MOD = MOQD

Moo= NI 1

Moo=l

NN = NI

IFI{NTY
NNE =
GO TO
S0 BINE = AN
IF(L)Y 3Zs
33 WNE = N - 1
GO TO 3%
NE = M
2 MEFE =
NSVF = NNE
DEL = DELL.
IF (MOD -~
Moo= Mo ]
RLUNKS = 0

e 3Bl
PN - ]
34

328 33

NE

39

263



AB.

DEL =
MGD = MOOD

INDIA = INDEX - 1 :
FUMCH 102s ITNUL<s ZRRAs ERKE s ERRCy ERRDs ERRE, ERRG
1o FORMAT (195681060 »
PUNCH 1CG3s ERFHs LRI, ERRUs B,
PUNCH 103s HRROs Lk e
1023 FORMAT(T7E1%e3)
TFAINT) S5hds ©S2s D00
fetale M = M
GO TO 857

MM = Mo ]

b b 9

N o) P T g It

TF Y = MMY SuUes 25D e zZus
weo= 1
IF (SENSE SelToeH Z2) DSuus S0l
ERINEN PALISE
IF (SEMSE SW]TCH 3) Sude D01
il T (onENDE SwWITOH 1)y 20,21
A FRINT 3
3 FORMAT (17H INSERT COMaTe PR
ACCERT 44 CONSTs Ft
% FORMAT(FSe3e Flelr)
Hl‘ o=
IF (INDEX)Y 22, 229 23
e N = N 4+ 1
MNOFF = NSFE

)
TF(NFE -~ )
.+.

o
22 2. 28
T

Ghel FEE = Fibo ATANE COYANY =F ) /2K (N)Y)
[F{NSFR = NF) 22 24 24

) FE () = FE&

73 NN = NN+ ]

NSV = NovE o+ 1
FEEE = FEFE 4 ATANF (YY (NN =F) /5 (NN )Y )
ITF NSV = NV )Y 3. 13, 13
1.2 IF (NF)Y 14s 145 10D
14 AMG(() = FEEE
Go TO 16
1% ANG () =
1o FEE = Coe
FEL = Ue
Moo= T
NRo= M
SR = NE
NSV = NNE
IF(INDEX) 928,998 99%
ANGL = ANG(1)
ERR ) =ANG (K ) = ANGL¥F
DELTA = CONDT #* LRR(K) % (Fb = F)
DELTA = ABSF(LRELTA)
ERFNC = ERFNC + LELTA
JERR(K) = 10000 e ®ERRIK)
IF(JERR(K) ) 6uUHZ408

Fim (y + Flki

58 IF (ERR(K) = POSER) 62, 62s 59
oY POSER = ERR{K)



ASg.

KOSEQ = K

GO TO &2

0 IF (ERNEG + ERR(KE)) &1 5624 62
&1 FRMNED = «ERR{K)

NECFQ = i

IFIK=-100) G3: 04s &2

PRINT 1o

FORMAT(SZH FREGQUENCY SxXCEELS 100D

PAUSE
GO TO ©0&
&H3 Koom Ko+ 1
GO TO 21
£ INDER = INDEX + 1

DUNCH 10Gs INDEXs FPOSER, KO3FGs CRNEGs NEIGFQ
100 FORMAT(I1C0eE 1034 11010321109

PUNCH 1018 KX (1)eXX(2)a {3y e XX {(4)e XX(E

FPUMCH 101 e YY (13 aYY{Z2)aYY {3 aYY(HDIs¥YY (D
101 FORMAT (5F Ee3)

TFANV = $5) 149, 1494 190

)
)

120 PUNCH 1018 XX {6)e XAX(T7)s XKX(&)s XX(F)
PUNCH 101e YY{EYe YYLT7T)e YY(8)s YY)
145 PUNCH Y97 e tﬂFMCa ReFik
EEa FORMAT (2F20e3)
TFA{ERFNG -~ REFER)Y 333+ 333. 291
333 KILUNK = KLUNKD + 1
GO TGO 252
Vidan IF (RKLUNK ) 2586 208, 2D9Y
aats DEL = =Dt

KLUNK = KLUNE + 1
GO TO 252

2L MoD = 00D + 1

IF(MOD ~ 3) 249 <o 204
Zd DELL = =Diio

GC TO 275
Z4a Dbl = =DEL/ 3

2oz REFER = ERFNC

ERRA = ERR(S)

ERRO = ERR(O1O}
ERRC = ERR(1D)
ERRD = ERR(Z20)
ERRE = ERR(25)
ERRG = ERR(30)
ERRH = ERR(325)
ERRI = ERR(40)
ERRJ = ERR(45)
CRRK = ERR(DO)
ERRL = ERR(33)
ERRM = ERR(60)
ERRN = ERR(OD)
ERRO = ERR(70)
ERRP = ERR(7S)
ERRG = ERR((80)
ERRR = ERR(ED)
ERRS = ERR(Z0)



29

20

2T

26

POLLR = Ue

ERNEG = Oe

HLOoHW = O

NE

XAXL1y + Ll
0

ALY + bl
XX A3y + DEL
0

YY (2) + Lkl
YY {4y - il

GO TO
K (e
KX O35
GO TGO
YY ()
Y (2)
S0 TO

L A
AN ( b d

o o~

- i

o

KX (4

o ki
-+
-
o
-

HXAD) = XA{(Dy + il
GO TO 10
YY 4y = YY 4y 4+ unl
WY (my o= oYY Ry - Ul
GO TO 12
XAl = XNXAG)Y 4+ LEL

H¥ATY = XX (7)Y + LBl
GO TO O

YY (&) YY (&) + Ll
YY(T) = ¥YY(7)y -~ bl
GO TO LG

WK Ao)
Wy
S0 T 10

Yy 1) vY (&) + oLl
YY (IY = oYY ()Y = LDl
GO TO 10

Moo= NT 4+ 1

PRINT 77

H

KXoy + el
XYy + ol

1]

N

FORMAT(31H X=Y ROLE SHIFT oy Cli COMPLE Tk e

COW = COwW + 1la

IF (COW = 1e5) B8 D49 6
MOCLD = MoCDh + ]

MO0 = MOU 4+ 1

IF (MQU = 4) 301s 10os 106
CELL = DELLA3.U

btle = DELL.

MOD = WoCD

GO TO 275

PRINT 107

FORNMAT (471 FINAL XY POLE CQYCLE COMPLETE e

PUNCH 108 s ANGL
FORMAT(EL 4ea00)
GO TC 202

END

P 3e F6Us cous 2700 250 261 e

s PR

s Te X

N

A1o.

260 ) e i

LATA

MEEiDE e )



502 INDEX = O

START

N

DIMENSION X, Y.
DIMENSION XX, YY.
DIMENSION ANG.
DIMENSION ERR,JERR
DIMENSION FE.

Y

¥4 [

- |FEE,FEEE, KLUNK = 0

INDEX, POSER, ERNEG,
KOSFQ, NEGFQ, ERFNG,

FB=110, CONST= 1.

wr

Read fixed poles, movable poles, ’
NF, NV, I, NI, MCOD, DELL,COW,MO0,REFER

o

30

MOD = MOOD |
M=NI + 1

i

N I
NN = NI

IF(NI)

31

30

N

NNE
NN -1

GO TO 3L

A1l



0H

NE

i

A4

V35

NSFP = NE

250

10

250

IF(MOD=-3)

263

A1z,



A13,

’] QB

4

/ L \
KQOPRII\ITB )

CACCEP‘I‘ CONSE, FB)

< M

X
PUNCH TNDIX,
_ PHASE FRRORS.

\ WE=M-1

N=N+1
4 v
to +0
NSFP 23 255
NSFP + 1
23/ 25
<_IF(NF -N)
b |
to h ‘
23 ‘ >

FEE = FEE + ATANF
((Y(W)-F)/x(N))

22 )\ 2l ‘
1o 22 IF (NSFP-NF) >—%—FE(K) = FEE “"]
‘r
X_‘ .
, . 23




FEEE = FEEE + ATANF NSVP =

mn

(L) -F)/xx () | NSTP + 1 |

A1l,

23 A

NN=NN+1

[N

ANG(K) = ANG(R) = |
FEEE FE(K)+ FEEE
s { l
l
GO 10 .
[ 16 i’ FEE = Q.
I
FEEE = 0. |
N =1
Y

]

ANGL =
ANG(1)

to 999

o 999



A1s,

A_ [
{( 999
FRR(K) =

ANG(K)
=ANGLAH

Y

DELTA = CONST+ERR (K)
(FB -~ F)

Y
DELTA =
ABSF(DELTA)

L

ERFNC =
ERFNGHD EX!
‘

Y

JERR(X) =
10003ERR(K)

ERNEG = POSER = |
-ERR(K) \ ERR(X)

Y (

NEGFQ = K . KOSFQ = K |




A6,

¥A }B

o
K=K+1 INDEX = : CPRINT 10l )
L4

C )

— -
to PUNCH INDEX,POSER, )
2l KOSFQ,ERNEG, NEGFQ
PAUSE %o
Punch location of GO TO 502 7 502
movable poles '

A G

@NCH ERFNC, REFER)

258

MOD =
GO TO 252 MOD + 1

KLUNK =
KLUNK +. 1
GO TO 252

DEL =
-DEL/3.

N

to
252

252

REFER =
EBFNC

ERRA = i 275
ERR(5) | ‘ ERFNC =0,

¥




A17.

POSER = O. |
ERNEG = O,
¥OSFQ = 0
NEGFQ = O
W
‘o GO"ITO——\ 00
10 (253,260, 280...300), W20
265
GO TO 10
\
7 - (XxX(L)=  |_ _ _ etc. YY(8)=YY(8)
+DEL
XX (1) + DEL o
Y . | I
— <
300
M= NI+

\

PRINT 77
XY POLE SHIFT CYCLE COMPLETE

A

n

MO0 + 1 MOCD + 1




k18,

DELL = 107
DELL/30 ¥
¥ ( 107 FINAL XY POLE CYCLE
COMPLETE. NEW DATA NEEDED,
DEL = DELL \
W PUNCH
108
MOD = MOOD f
( 108 ANGL )
N/
\
GO TO 502
GO TO 275 ?
to
502
«— ¥
to 275
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NOTE: The last four cards from the output data were accidentally
lost. The above data was copied from an earlier printout of

the same data.
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THREE POLE PURE RIMO FILTER

X normalized pole
P2 locations

F1 99,900 + j0,000
X p1 P2 75.000 + j75.000

P3 75.000 ~375.000
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THREE POLE BESSEL FILTER

X
F2 normalized pole
locations
P ¥ P1 100,000 + j0,000
P2 79,100 + j75.500
P>3< P3 79.100  -3j75.500

NOTE: The pole locations for this fllter were fed into the
computer as initial data for 1ocan.ng the poles of a three
pole pure Rimo filter (the filter of appendix, p. 35.)
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NINE POLE HYBRID RIMO FILTER

A

P8 X X pp

X P1
P7

P9 X 4 p3

P3
P5

P7
P8

normalized pole
locations

100.000 + 30,000
80.902 + j58.779
80,902 -3j58.779
30.902 4 j95.106
30.902 -3j95.106

107.900 + j20.L00
107.900  -320.400
102.300 4 355.000
102,300, -355.000

INTTTAL, VALUES FOR PROGRAM CONTROL VARIABLES
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TEN POLE HYBRID RIMO FILTER

P9 . it
P4

PT x
1% X pg
Pg¥

p3
P10 p5
¥ X

Fl
P2
P3
Pl
F5

P6
P7
P8
P9

normalized

pole

locations

100,000
80. 902
80,902
30,902
30,902

944700
$9.000
99.000
158.000

P10 158,000

INTTIAL VALUES FOR PROGRAM CONTROL VARIABLES
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