New Jersey Institute of Technology
 Digital Commons @ NJIT

Theses

Spring 5-31-1965

The rimo filter

Richard Thomas Modafferi
Newark College of Engineering

Follow this and additional works at: https://digitalcommons.njit.edu/theses
Part of the Electrical and Electronics Commons

Recommended Citation

Modafferi, Richard Thomas, "The rimo filter" (1965). Theses. 1547.
https://digitalcommons.njit.edu/theses/1547

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

THE RTMO FILTER
BY
RICHARD THOMAS MODAFFERI
A THESIS
PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE

OF
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
1965

APPROVAL OF THESIS

FOR

DEPARTMENT OF ELEGTRICAL ENGINEERING
NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED: \qquad
\qquad
\qquad

NEWARK, NEW JERSEY JUNE, 1965

ABSTRACI

Up to the present time, there has existed no general method for obtaining the pole locations of minimum-phase constant time delay filters of desired selectivity. Since constant time delay filters are necessary for low distortion FM transmission, and minimum-phase filters are easy to construct and align, a general method for locating the poles of minimum-phase constant time delay filters would be of considerable importance. Presented in this paper is a procedure for locating the poles of minimum-phase constant time delay filters of desired selectivity, using a FORTRAN digital computer program. Two experimental FM receivers were built to test the new filter characteristic, and the performance of these receivers is discussed.

TABIE OF CONTENTS

INTRODUCTION 1.
IF AMPLIFIER BANDPASS CHARACTERISTICS 2.
THE RTMO FILTER 4.
BASIC THEORY OF THE RTMO FILTER COMPUTER SOLUTION 6.
OUITIINE OF THE COMPUTER SOLUTION 7.
DESIGN OF RIMO FIHTERS USING THE COMPUTER PROGRAM 10.
Introduction 10.
Explanation of the computer program 10.
Evaluating the result of the computer program 26.
Some further details 30.
Conclusion 31.
APPLICATION OF THE RTMO FITER TO THE FM IF AMPLIFIER 31.
CONCLUSION. 35.
REFERENCES 37.
APPENDIX 38.

PART 1, EXPERTMENTAL FM RECEIVERS

Performance data on Butterworth tuner of Ref. 1.Al. Performance data on Rimo filter tunerA2. Photograph of Rimo filter tuner .. Schematic diagram for Rimo filter tunerA4. Performance data on Rimo filter radio A5. Photograph of Rimo filter radioA6.

PART 2, RIMO FILTER COMPUTER PROGRAM

Computer program .. A7.
Program flow chart ...
Output data for 10-pole hybrid rimo filterAl9.

PART 3, THREE RIMO FILTERS
Three pole pure Rimo filterA35.
Three pole Bessel filter (to compare with Rimo filter). A38.
Nine pole hybrid Rimo filter ..
Ten pole hybrid Rimo filter Al4.

ACKMOMLEDGFMENTS

A47.

Fig. 1. Delay Equalization of a Bandpass filter 3.
Fig. 2. Three Rimo Filters ... 5.
Fig. 3. Phase response of a bandpass filter having poor phase linearity .. 7 .

Fig. 4. Three poles to be adjusted by the computer to give minimum delay error 8.

Fig. 5. Pole locations for a 5-pole Butterworth function13.
Fig. 6. Graphical Representation of Computer Statement 25 16.
Fig. 7. Functional Block Diagram for the Tuner 32.
Fig. 8. Functional Block Diagram for the Radio 33.
Table 1. List of Computer Program Variables 11.
Table 2. Fixed Poles 14.
Table 3. Movable Poles IH.
Table 4. Initial Values For Program Control Variables 14.
Table 5. Output Data 18.
Table 6. Summary of Pole Movements 22.
Table 7. Summary of Changes in Program Variable DEL: 24.
Table 8. Sumary of Changes in Program Variable DEL 25.
Table 9. Initial Data for a New Pole Movement 27.

With the advent of stereo FM broadcasting, very stringent requirements have been set for the design of a suitable receiver. In particular, one important aspect of FM receiver design - the IF amplifier - has been largely neglected in tuners and receivers intended for the consumer market. For the most part, these circuits fall into a general stereotype consisting of amplifier stages which are permitted to act as limiters on strong signals combined with tuned circuits of insufficient selectivity - a sacrifice necessary to obtain nearly constant time delay to the signal. Since many shortcomings in performance which arise in commercial tuner and receiver designs can be traced at least in part to the IF amplifier, it might be that the application of some new ideas would cause some improvement in FM IF amplifier performance. One factor that is of considerable importance in any new design is the cost. New designs must be commercially feasable economical in materials, easy to construct and align, and reliable.

In seeking a means to improve on the solution of the FM IF amplifier problem, the writer has devised a new class of linear-phase filters which will be the main subject of this paper. The study will continue with a discussion of a unique FM IF amplifier system designed to make most effective use of the new filter characteristic. Consideration of the use of the new IF amplifier in an experimental FM stereo receiver will be reserved for the final sections.

IF AMPLIFIER BANDPASS CHARACTERISTICS

Originally, some quite ordinary design approaches to the FM IF amplifier problem were investigated. Initially a minimum phase filter amplifier of nominally constant time delay based upon cascaded synchronously tuned stages was constructed. Next an amplifier using a system of stagger-damped stages giving a Bessel characteristic was tried. Both were rejected because of insufficient selectivity.

Another design effected a compromise by using a selective minimum-phase characteristic, such as Butterworth, which had fair phase characteristics with good enough selectivity to provide good alternate channel reception in most cases. ${ }^{1}$

The Butterworth tuner gave rather good performance ${ }^{2}$ and probably justifies the lack of initiative that has been evident in commercial tuner designs - most of which use some type of flat-amplitude minimumphase filter amplifier. But the Butterworth tuner still suffered from both inadequate selectivity and serious overloading of the IF amplifier on strong signals.

One of the well known characteristics of a selective, flat-amplitude minimum-phase filter is that the time delay increases from the mid-band toward the band edges. It occurred to this writer that if a single tuned circuit is placed in cascade with the aforementioned

1. The writer used this approach in an earlier paper, Ref. 1.
2. Performance data and specifications of this early tuner, extracted from Ref. I, appear in the appendix.
filter and tuned to its midband frequency, some delay equalization will be obtained as qualitatively shown in Fig. 1.

(c)

Fig. 1. Delay equalization of a bandpass filter. (a) Time delay for a hypothetical bandpass filter, (b) Time delay for a single tuned circuit, and (c) Time delay for the bandpass filter and single tuned circuit in cascade.

The concept outlined in Fig. I can be expanded. The question was asked: If the poles of a minimum-phase filter can be adjusted to give any desired amplitude shape, might not they also be adjustable to give any desired phase response? In particular, if the pole locations of linear-phase all-pole filters of any desired selectivity could be determined, a whole new approach to the FM IF amplifier design problem would be generated.

There has existed no general method for easily obtaining the pole locations for minimum-phase constant time delay filters of any desired selectivity. Of the known filters in the minimum-phase class with nominally constant time delay - Bessel, Gaussian, and ButterworthThompson - the problem is either one of insufficient selectivity or of less than optimum time delay characteristics. Highly selective filters of constant time delay may be realized by adding an all-pass
delay equalizer to a Butterworth or Legendre filter, but the physical construction and alignment of these all-pass delay equalizers at 10.7 MC (the FM IF amplifier frequency) is so nearly impossible as to rule out any consideration for their use in a conmercially feasable FM receiver.

THE RIMO FILTER

Presented in this paper are several of a new class of minimumphase filters, having nominally constant time delay and moderately flat amplitude response inside their passbands, and high selectivity outside their passbands. The pole locations for these filters were obtained by computer solution, and some of the resulting pole constellations are found to allow the design of a selective, low distortion FM IF amplifier.

The basic concept of the Rimo^{3} filter is simple but requires a high speed digital computer to obtain the pole locations. Applying the Rimo filter concept begins with the placing of some number of poles in the S-plane and adjusting from just one to all of these poles until minimum delay error occurs in the passband. An almost infinite variety is then possible, with Fig. 2 on page 5 showing three possibilities. In filters (1) and (2), poles (X) form a standard minimum-phase filter, and poles (H) may be considered as a separate delay equalizer: These are "hybrid" Rimo filters. In (3), all the poles were adjusted to give minimum delay error; this is a "pure" Rimo filter. 4
3. A name generated by taking the first two letters from RIchard MOdafferi.
4. Pole locations for "pure" Rimo filters approximate those for Bessel filters, with the two tending to become more nearly identical as the number of poles increases.

+		x	(1)
	x		
	$x+$		$-\omega_{0}$
+			
			x

(3)

Fig. 2. Three Rimo filters. In equalizing the time delay in the passband, poles (H) were moved and poles (X) were held fixed. Although the poles X and + of filters (1) and (2) are shown split into two definite sections (which may be considered as a filter plus a delay equalizer), this is not mandatory. The Rimo filter may be realized in any manner particular to minimum-phase filters.

A general computer program has been written in IBM Fortran to allow any number of poles from four to twenty to be placed in the S-plane. Up to ten of these poles may be fixed, and up to ten of them may be movable to give minimum delay error. For example, the designer may select a five-pole Butterworth filter, add five more poles, and locate the ten poles of a hybrid Rimo filter by using the computer to adjust the five added poles to equalize the delay of the Butterworth filter. When the pole locations have been determined, the filter may be realized by any synthesis methods the designer chooses.

BASIC THEORY OF THE RTMO FILTER COMPUTER SOLUTION

In order to obtain a linear-phase characteristic from an arbitrary number of poles placed in the $S-p l a n e$, a computer program is required whose operation is entirely automatic and convergent; i.e., the computer must accept the given poles and move them quickly without equivocation into what should be one and only one optimum constellation. Some thoughts on this idea will now be presented.

Given any number of poles in the $S-p l a n e$, one may obtain minimum delay error by moving all of the poles out to infinity. The resulting filter then could be realized as a ladder structure consisting of series open circuits and shunt short circuits - a realization of no practical value. Thus the first consideration in writing the computer program is that of keeping the given poles clustered symmetrically about the mid-band frequency so that some kind of selective filter will result. This is most easily accomplished by specifying the mid-band time delay and holding this value constant
during execution of the program, automatically forcing all of the poles to remain near the mid-band frequency.

If one plots the phase response of a hypothetical narrow band minimum-phase bandpass filter, and superimposes on this curve a straight line drawn tangent to the phase curve at the mid-band frequency, the result in Fig. 3 may be obtained.

Fig. 3. Phase response of a bandpass filter having poor phase linearity. Curve (A) is phase characteristic of filter, line(B) is drawn tangent to phase curve at the mid-band frequency. The shaded area between (A) and (B) is a measure of the phase error.

If a computer program can be set up such that the shaded area in Fig. 3 is automatically reduced as poles are moved, the problem will be solved, since a filter having a straight line phase shift will have constant delay.

OUTLINE OF THE COMPUTER SOLUTION

The method of the computer program will be shown by consideration of a simple example. Given the three poles of Fig. 4,
let them be adjusted to give minimum delay error in the passband. 5 The computer will first calculate the mid-band time delay for the three poles. This value of time delay is then stored and any subsequent pole movements are controlled in such a manner as to hold this initial time delay essentially constant. Next, the phase shift for the three poles is calculated at frequencies along the $j \omega$ axis beginning at the mid-band frequency and ending at an arbitrary point selected by the programmer - this ending point usually being just beyond the imaginary coordinate of the last poles (PI and P3 of Fig. 4).

Fig. 4. Three poles to be adjusted by the computer to give minimum delay error.

The values of phase shift are then compared with those values obtained from a straight line drawn through the phase characteristic for the initial pole positions, as in Fig. 4. With the lines A and B of Fig. 3 determined in the computer, it next calculates the magnitude of the shaded area between them and stores this number.

Now a pole is moved. First, the middle pole is moved a small distance along the real axis with other poles remaining fixed at their initial locations. Then the shaded area is recalculated. If it
5. The result will approximate an $n=3$ Bessel filter.
is less, indicating lower phase error, the pole is moved again in the same direction until the value of the area passes through a minimum. Upon passing through the minimum, the pole is moved back to the location giving minimum delay error and left at this point. If upon the initial movement of pole P2 in the real direction the area had become larger rather than smaller, the pole movement would have been reversed and a minimum sought.

Next, poles Pl and P3 are moved in the real direction as a conjugate pair until the area function is again minimized. Following this, poles PI and P3 are moved in the imaginary direction to seek an area minimum. Now all three poles have been moved in all possible directions to minimize the delay error. However, due to interactions between the poles upon the delay error, the entire process is generally repeated for a number of complete cycles.

Usually, four or more complete cycles of pole movement will complete the minimization of the delay error. How quickly the solution is arrived at depends on many factors, including how close to the optimum the starting pole constellation was, and for what percent of the passband a linear phase response is desired.

There exist refinements in the program which allow the operator to exercise some control over the results. The initial value of pole movement increment is adjustable. Assuming that a rough solution is required, the poles may be adjusted in large steps to arrive quickly at a result good enough for an evaluation.

The programmer may decide to equalize the delay over the whole passband, or choose equalization near the mid-band frequency only - the
latter giving somewhat better amplitude characteristics. Using the program, any known all pole filter may have poles added to it and then have these added poles adjusted to give minimum delay error to the combination. The program is limited, however, to the poles of minimum-phase filters, although modifications to include poles and zeros of nomminimum-phase filters are not impossible.

DESIGN OF RTMO FILTERS USING THE COMPUTER PROGRAM

Introduction

Realization of a Rimo filter begins with choosing the desired selectivity. A given selectivity can be satisfied by several pole constellations, but by referring to the normalized data in the appendix, the approximate number of poles required for linear-phase filters of desired selectivity may be determined by examining the amplitude responses for the tabulated Rimo filters. If the design criteria can be met by one of the pole plats in the appendix, the location of the poles is thus finished and the realization of the filter can proceed to any synthesis method the designer chooses.

If the quirements cannot be met by one of the pole plots in the appendix, or if the designer wishes to equalize the delay of some filter he already has, the computer program will have to be used.

Explanation of the Computer Program

During the forthcoming discussion of the actual programming of the computer to design a Rimo filter, the program and its flow chart will be covered in detail. ${ }^{6}$ A through understanding of the operation of the program is essential in order for one to achieve maximum results.
6. The program and flow chart appear in Appendix, pages 7 to 18.

Table no. I below lists the variables which are used by the computer in working the program. Some of these variables are used by the programer in initializing the problem; others are used only by the computer in working out the program. This table should be referred to as the discussion of the program and its flow chart progresses.

TABLE 1.

(a) Variables Used by the Programmer

```
NF...............number of fixed poles
NV.............number of movable poles
I.............equal to zero for odd number of fixed poles
                        equal to one for even number of fixed poles
NI.............equal to zero for odd number of movable poles
                        equal to one for even number of movable poles
MOOD
DELL
COW .........used collectively to control pole movements
MOO
XX(NN)
YY(NNI)}\mathrm{ .........dimensioned array for the movable poles
X(N)
FB.............area weighting function
CONST...........area welghting function
REFER..........initial value for weighted area
```

(b) Variables Used by the Computer Only

INDEX...........cumulative number of pole movements made POSER............maximum positive phase error, radians ERNEG............maximum negative phase error, radians KOSFQ............frequency of maximum positive phase error NEGFQ...........frequency of maximum negative phase error

TABLE 1, CONTINUED

TABLE 1, CONTINUED
KLUNK. \qquad
a pole; reverses movement direction if initial movement causes an increase in phase error.
 movements taken during full execution of the program.

The logic of the computer program will be most easily understood if the above table is used in conjunction with the flow chart in following the program.

Consideration of a specific example will show how the program operates: five movable poles will be adjusted to equalize the delay of a five-pole minimum-phase filter. Given in Fig. 5 below are the poles of a five-pole Butterworth function, taken from Ref. 2, page 331.

P4 \times				
P2 \times	- ω_{0}	P 4	0.309	$+j 0.951$
		P2	0.809	+ j0.588
P1 \times		P1	1.000	+ j0.000
		P3	0.809	-j0.588
P3 x		P5	0.309	-j0.951
P5 \times				

Fig. 5. Pole locations for a five-pole Butterworth function. (L.H.P. poles only)

Before insertion into the computer, the poles must be normalized such that the imaginary parts of the outermost poles (those farthest from the mid-band frequency) have an absolute value at or slightly
below 100.000. 7 This is most conveniently done by multiplying the real and imaginary parts of all poles in Fig. 5 by 100.000 with the resulting values appearing in Table 2 below.

TABLE 2

Fixed poles scaled for insertion into the computer

X(1)......100.000	$Y(1) \ldots . . .0 .000$
X(2)...... 80.902	$Y(2) \ldots . . .58 .779$
X(3)...... 80.902	$Y(3) \ldots . .0-58.779$
X(4)...... 30.902	$Y(4)995 .106$
X(5)...... 30.902	Y(5)..... - 95.106

A guess based on a graphical study of this pole configuration led to placing the five movable poles as follows:

TABLE 3

Movable poles scaled for insertion into the computer

XX (1)......100.000	YY(1)...... 0.000
XX(2)...... 99.000	YY(2)...... 30.500
XX (3)...... 99.000	YY(3)...... -30.500
XX(4)......154.000	YY(4)......107.000
xx(5)......154.000	YY(5).....-107.000

Initial values for $N F, N V$, I, MOOD, DELL, COW, and MOO were set up as in Table 4.

TABLE 4
Initial values for the program control variables

NF........ 5	MOOD. 0
NV. 5	DELL....... 2.7
I. 0	COW. 0.0
NI. 0	MOO. 0

7. Real parts for the poles in the L.H.P. are given plus signs in order to simplify the input data. The program is set up in such a manner that this causes no problem.

An arbitrarily large number is chosen to initialize the value for REFER:

REFER .1715 .966

When the above input data has been punched on cards according to the relevant FORMAT statements, the program is compiled. The data cards from tables 2, 3, and 4 are read in along with $R E F F R$ and the computer is started.

Normally, all sense switches are left OFF and the computer proceeds from statement 410 to statement 21 , initializing the various control variables as follows.

$$
\begin{aligned}
& M O D=M O O D=0 \\
& M=N I+1=0+1=1 \\
& N=I=0 \\
& N N=N I=0 \\
& 30 \mathrm{NNE}=\mathrm{NN}=0 \\
& 32 \mathrm{NE}=\mathrm{N}=0 \\
& 35 \mathrm{NSFP}=\mathrm{NE}=0 \\
& \mathrm{NSVP}=\mathrm{NNE}=0 \\
& \mathrm{DEL}=\mathrm{DELI}=2.7 \\
& 250 \mathrm{~K}=1 \\
& 21 \mathrm{~F}=\mathrm{K}=1
\end{aligned}
$$

Statement no. 21 actually begins the problem solving phase of the program. This will become more evident with the consideration of a feve more steps:

$$
\begin{aligned}
& 22 \mathrm{~N}=\mathrm{N}+1=0+1=1 \\
& \operatorname{NSFP}=\operatorname{NSFP}+1=0+1=1 \\
& 25 \mathrm{FEE}=\mathrm{FEE}+\operatorname{ATANF}((\mathrm{Y}(\mathrm{~N})-\mathrm{F}) / \mathrm{X}(\mathrm{~N})) \\
& 25 \mathrm{FEE}=0+\operatorname{ATANF}(0.000-1) /(100.000) \\
& -0.0099996666 \text { radian. }
\end{aligned}
$$

or
which is

The situation existing in the computer as statement 25 is executed is shown in Fig. 6 below. Only the relevant pole $X(1)$, $Y(I)$ is shown.

Fig. 6. Graphical representation of statement n. 25 with the computer executing this statement at the first pole for frequency equal to one.

Note that the angle FEE is made to come out as a negative quantity by subtracting the frequency I from the Y value of the pole. This is consistent with reality, as the phase contributed by a pole in the L.H.P. is negative for frequencies above the imaginary part of the pole.

After computing FEE, the machine proceeds to the next pole $X(2), Y(2)$ by the following steps:

$$
\begin{aligned}
& 22 \mathrm{~N}=\mathrm{N}+I=I+1=2 \\
& \mathrm{NSFP}=\mathrm{NSFP}+1=2 \\
& 25 \mathrm{FEE}=\mathrm{FEE}+\operatorname{ATANF}((\mathrm{Y}(\mathrm{~N})-\mathrm{F}) / \mathrm{X}(\mathrm{~N}))
\end{aligned}
$$

or
which is

$$
+0.61018317 \text { radian. }
$$

This process continues until FEE is summed for all of the fixed poles at the frequency $F=K=1$. Then the phase angle contributed by all of the poles at frequency 1 is stored as:

$$
24 \mathrm{FE}(\mathrm{~K})=\mathrm{FEE}
$$

or

$$
\mathrm{FE}(I)=-0.032360900 \quad \text { radian }
$$

next the phase angle to the movable poles is calculated, using a method similar to that for the fixed poles. This process is contained in statements 23 to 13 inclusive and will not be explained in detail.

Statement 14 is executed only if there are no fixed poles. Thus the procedure passes on to statement 15 where the total phase angle to all of the poles - fixed and movable - is stored in $\operatorname{ANG}(1)$ as:

$$
15 \mathrm{ANG}(\mathrm{~K})=\mathrm{FE}(\mathrm{~K})+\mathrm{FEEE}
$$

or

$$
\operatorname{ANG}(I)=F E(I)+F E E E
$$

and

$$
\operatorname{ANG}(1)=\quad-0.069569700 \quad \text { radian. }
$$

The variables controlling the calculation of phase angle are now reinitialized so that the computation of these angles can be carried out for frequency $F=K=2$.

$$
\begin{aligned}
& 16 \mathrm{FEE}=0 \\
& \text { FEEE }=0 \\
& N=I=0 \\
& \mathrm{NN}=\mathrm{NI}=0 \\
& \mathrm{NSFP}=\mathrm{NE}=0 \\
& \text { NSVP }=\mathrm{NNE}=0 \\
& 998 \mathrm{ANGL}=\operatorname{ANG}(1)=-0.069569700 \text { radian. }
\end{aligned}
$$

Statements 999 to $104-2$, inclusive, control the storage of output data consisting of the normalized frequencies of maximum positive and nagative phase error and the values, in radians, for these phase errors.

Statement 63 increments frequency to the next value as:

$$
63 K=k+1
$$

or

$$
\begin{aligned}
& \mathrm{K}=1+1=2 \\
& \mathrm{GO} \mathrm{TO}_{21}
\end{aligned}
$$

The computer returns to statement 21 and follows the procedure outlined above for frequency $F=K=2$ instead of $F=K=1$; This process continues for frequencies $3,4,5, \ldots$. 100. When the machine reaches frequency 100, it will have computed the entire phase curve ${ }^{8}$ for all of the given poles at 100 points along the frequency axis. Output data is then punched in accordance with statements 64 to 997, inclusive, as tabulated below:

TABLE 5

The First Set of Output Data Punched by the Computer

```
INDEX.....I
    YY(1).... 0.000
POSER.....0.02123 radian
KOSFQ.... . }5
ERNEG.....0.1750 radian
XX(1).... 100.000
XX(2)..... 99.000
XX(3)..... 99.000
XX(4).....154.000
xx(5).....154.000
```

The actual output data as punched by the computer for four complete pole movement cycles using the data from tables 2, 3, and 4 with REFER of page 14 appears in the appendix on pages 19 through 34. Note how the first four lines of the output data correspond to table 5 above. Now examine the next four lines of the output data, observing that pole $X X(1)$ has been moved 2.7 normalized units to the left along the real axis. How this was accomplished will now be explained.
8. That portion of curve (A) of Fig. 4 to the right of the mid-band frequency. By symmetry, the left hand portion is the same.

After punching the output data appearing above, the computer arrives at statement $997+1$. In this statement, ERFNC, the weighted phase error area function, is compared with REFER, which is the arbitrarily large phase error area function read in the input data. Since ERFNC is less than REFER, the computer proceeds to statement 333.

$$
\begin{aligned}
& 333 \mathrm{KLUNK}=\mathrm{KLUNK}+1=0+1=1 \\
& \text { GO TO } 252
\end{aligned}
$$

Statement 252 replaces the old REFER, 1715.966, with the just calculated value for ERFNC, 83.811. When a pole has been moved and a new ERFNC calculated, it will be compared with this new value for REFER, 83.811, in order to ascertain whether the pole movement has made the phase error better or worse.

The series of arithmetic statements beginning with $\operatorname{ERRA}=\operatorname{ERR}(5)$ and ending with $\operatorname{ERRU}=\operatorname{ERR}(100)$ stores twenty values of phase error, in radians, for later output data. Statements 275 through 255-1 reset ERFNC, POSER, ERNEG, KOSFQ, and NEGFQ so that these may be recalculated for the next pole configuration.

Pole $X X(1), Y Y(1)$ is now moved 2.7 units to the left by statement 255 as follows:

$$
255 \text { GO TO }(253,260,280,270,290,261,262,266,265), \text { M }
$$

Since $M=1$, the computer goes to statement 253 and executes it as below:

$$
253 X X(1)=X X(1)+D E L
$$

or

$$
\begin{aligned}
& \operatorname{XX}(1)=100.000+2.700=102.700 \\
& \text { GO TO } 10
\end{aligned}
$$

Pole $X X(1)$ is now located at 102.700 and the computer has returned to statement 10 to begin a new cycle of calculations. This new cycle determines the output data appearing on lines five through eight in the output data printout on pagell9 of the appendix.

By examining the output data, the progress of pole $X X(1), Y Y(1)$ may be determined. Note that the pole continues to move in steps of 2.7 units until a point is reached where the relative magnitudes of ERFNC and REFER change. The pole continues to move to the left as long as ERFNC continues to be less than REFER. When a point is reached where ERFNC is calculated to be greater then REFER (line 8 on page A19) the pole would either have been moved the wrong way initially or moved through a point of minimum delay error. In this case, the initial movement of the pole $w_{a} s$ in the wrong direction, since the computer was "fooled" by the initial read in value for REFER. 9

The motion of the pole is now reversed; i.e., it is now moved to the right toward the point of minimum delay error as follows:

251 IF(KLUNK) 258, 258, 259
9. Negligible machine time (in comparison to the total) is lost by this process. The writer once calculated REFER to two significant figures using a graphical process and a slide rule; this took forty hours. The machine used by the author(an IBM 1620) - quite a slow computer - will calculate refer for ten poles in about forty seconds.

Since KLUNK $=1$,

$$
259 \mathrm{MOD}=\mathrm{MOD}+1
$$

or

$$
M O D=0+1=1
$$

and since $\operatorname{MOD}=3$,

$$
249 \text { DEL }=-D E L / 3
$$

or

$$
D E L=-2.7 / 3 .=-0.9
$$

With DEL now equal to -0.9 , the pole is moved to the right in successive steps of 0.9 units until the point of minimum delay error is again passed. DEL is then divided by three and its sign changed, and examination of the output data (appendix page A19) will show that the pole is now moved to the left in steps of 0.3 units until the minimum delay error point is passed for the third time.

In order to return pole $X X(1)$ to its optinum position, it is moved 0.3 units to the right and then left at this point which gives minimum delay error. (The minimum value for ERFNC is given in the output data as 71.627.)

The next pole - actually the conjugate pair $X X(2), X X(3)$ - is moved 2.7 units to the left, beginning the system of movements that will soon locate this pair at the X coordinate giving minimum delay error. The process of pole movements continues until all of the poles have been moved, with single poles being moved in the X direction only and conjugate pairs being moved in both the X and Y directions. All of the pole movements are summarized in table 6 on the next page.

TABLE 6

Summary of Pole Movement Directions for 5 Movable Poles

pole	movements
$X X(1), Y Y(1)$	in X (real) direction
$X X(2), Y Y(2)$	in X and Y (imaginary)
$X X(3), Y Y(3)$	direction as a conjugate pair
$X X(4), Y Y(4)$	
$X X(5), Y Y(5)$	

A study of the output data from the beginning (appendix p.Al9) to the end (appendix p.A34) will reveal the pole movements summarized above.

Note that in the output data when the movement of a pole has been completed, three extra lines appear. Examine line 57 on page A20 of the appendix. The INDEX (actually INDIX) with a value of 13 states that it took thirteen pole movement steps to place the pole XX(1) in a position to give minimum EifNC. Count up eight lines and note that the same number (now INDEX) appears at the start of line 49. At INDEX $=13$, the pole has been located at the optimum position, four lines later the computer has determined that the point of minimum delay error has been passed, and seven lines later (ine 61) the pole $X X(1)$ has been relocated at its optimum position and the next pole movement ($\mathrm{XX}(2)$, $\mathrm{XX}(3)$) has been executed.

The three extra lines of data appearing at each optimum pole position give the phase errors, in radians, at frequencies of 5, 10, 15,...... 100 normalized frequency units for the pole position given by the number, INDIX, punched at the start of the first of the three lines.

Sometimes one or two of the phase errors punched at an optimum pole position will correspond to POSER or ERNEG. Since ERNEG, 1.871E-01 radians, occurs at frequency 100 , this value is also punched as the last entry on line 49.

When the computer has completed the entire cycle of pole movements for the first time, it arrives at statement 300 in the program and executes:

```
        300 M = NI + I
or
    M=0+1=1
```

It then prints, on the typewriter, statement no. 77:

X-Y POLE SHIFT CYCLE COMPLETE

This tells the programmer that the machine is now going to reiterate the entire pole movement process. Execution of the program continues:

$$
\text { COW }=\text { COW }+1 .=0 .+1 .=1.0
$$

and

$$
\begin{array}{ll}
5 & \text { MOO }=M O O+1=0+1=1 \\
301 & D E L L=D E L L / 3.0=2.7 / 3.0=0.9 \\
D E L=D E L L=0.9 \\
M O D=M M O D=0 \\
\text { GO TO } 275 \\
275 & \text { ERFNC }=0 . \\
& \text { POSER }=0 . \\
& \text { ERNEG }=0 . \\
& \text { KOSFQ }=0 \\
\text { NEGFQ }=0 \\
255 & \text { GO TO } 253,260,280,270,290,261,262,266,265), M
\end{array}
$$

Since $M=1$, the machine proceeds to statement 253 , as shown on the next page.
$253 X X(1)=X X(1)+D E L$
or

$$
x x(1)=97.600+0.9=98.500
$$

The entire cycle of pole movements thus begins anew with DEL starting out as 0.9 instead of 2.7. This will give a finer resolution in locating the optimum pole positions.

On the third cycle, DEL begins with a value of 0.3 , and on the fourth, or final cycle, DEL begins with a value of 0.1 . On the third and fourth cycles, the number of pole movement reversals decreases, with a corresponding reduction in the number of times the variable DEL is changed. A final solution is approaching and machine time will be saved if the number of back and forth pole movements is decreased. The relative values of $C O W$ and $M O O D$ are the controlling factors in the number of back and forth movements of the poles as the cycles progress; tables 7 and 8 show some possibilities. 10

TABLE 7

Number of changes in the variable DEL, including that giving the final pole positioning, which occur for different values of COW with MOOD equal to zero.

COW	1st cycle	2nd cycle	3 rd cycle	4th cycle
-2.0	4	4	4	4
-1.0	4	4	4	3
0.0	4	4	3	2
1.0	4	3		

Line three of table 7 shows the pole movements executed by the program under discussion. As another example, consider the table on the following page, with MOOD set equal to +1 instead of 0 .
10. If the initial movement of a pole is incorrect, one more change in the variable DEL than the number indicated in the table will occur.

TABLE 8

Number of changes for variable DEL, including final positioning, which occur for different values of COW with MOOD equal to +1 .

COW	Ist cycle	2nd cycle	3 rd cycle	4 th cycle
-2.0	3	3	3	2
-1.0	3	3	2	1
0.0	3	2	1	-
1.0	2	1	-	-

The programs of table 8 would take little machine time and would be useful in obtaining an approximate solution. Note that less than four movement cycles are possible. For line three of table 8, MOO will have to be initialized at one rather than zero to prevent a "hang up" on the nonexistent fourth cycle; similarly for line four, MOO will have to be initialized at two.

Returning to the program being discussed, table 9 below summarizes the actual pole movement steps which happen during the four complete pole movement cycles. Every single pole will have experienced each of these movements in the X direction, while every conjugate pair will have experienced each of these movements in both the X and Y directions.

TABLE 9

A Summary of the Pole Movement Increments for the Program Under Discussion

| 1st cycle | $2.7,-0.9,0.3,-0.3$ |
| :--- | :--- | :--- |
| 2nd cycle | $0.9,-0.3,0.1,-0.1$ |
| 3rd cycle | $0.3,-0.1,0.1$ |
| 4th cycle | $0.1,-0.1$ |

Examination of the output data contained in the appendix will confirm the pole movement cycles outlined in table 9.

MOO is the variable which causes the execution of the program to cease. When MOO reaches the value four in statement $5+1$, four complete pole movement cycles would have been completed. The following steps are then undertaken:

PRINT 107
and statement 107 is typed as:

FINAL X-Y POLE CYCLE COMPLETE. NEW DATA NEEDED
continuing,

PUNGH 108, ANGL
and ANGL is punched as
-69.830110E-03 (radians)

Evaluating the Result of the Computer Program
The programner must then decide if the four pole movement cycles gave sufficient delay equalization. Two criteria exist which are used to ascertain the usefulness of the solution. The first involves the examination of ERFNC. If the value of FRFNC is observed to be rapidly decreasing at the end of the output data, then the optimum delay error point has not been reached and another set of pole movement cycles will be required.

To initiate a new set of pole movement cycles requires only the re-use of the final cards from the output data which give the last
optimum pole locations; these are lines 820 and 821 on pageA34 of ${ }^{11}$ The last value of REFER may be used, or the arbitrary large value used earlier may be re-used. The same card originally used to initialize NF, NV, I, NI, MOOD, DELL, COW, and MOO may also be re-used, but a new one is generally punched. In most cases, it is better to start a second complete run with a reduced initial value ${ }^{12}$ of DELL; i.e., a value of 1.8 or 1.2 may be used instead of the original value of 2.7. ${ }^{13}$ Below are summarized the data which might be read in for the next complete run of four cycles:

TABLE 9
Initial Data to Start a New Four Cycle Pole Movement

xx (1)..... 94.700	NF. 5
XX (2)...... 99.000	NV......... 5
XX(3)...... 99.000	I........... 0
Xx(4)..... 158.000	NI. 0
Xx(5)..... 158.000	MOOD. 0
YY(1)..... 0.000	DETL. . . . 1.8
YY(2)..... . 30.300	COW. 0.0
YY(3)...... -30.300	MOO.

The second criterion for evaluating the result of the computer solution involves the determining of the absolute phase errors. If ERRNC is found to be nearly static in the output data as pole movements are executed, then the poles are in their optimum positions and further computation is not necessary. By multiplying ANGL (the last line of
11. Note that here REFER is static and a new run is not necessary.
12. Note the violence done to REFER by using the large value for initial DELL of 2.7 here. The pole position of tables 2 and 3 was nearly optimum.
13. Making DELL divisible by three makes the pole movement reversals easy to follow in the output data.
output data, pageA34 of the appendix) by 5, 10, 15...... 100 and comparing the results with the phase errors printed on line 827 to 829 of the output data (page 134 of the appendix), the magnitude of the phase or delay error for the pole constellation may be evaluated, as will now be shown:
$\operatorname{ERR}\left(35^{\circ}\right)$ is determined from the output data to be
1.057E-03 radians
and $A N G L$ is

$$
-69.830110 \mathrm{E}-03 \text { radians }
$$

and

$$
(\text { ANGL })(35)=\quad-2.4440 \text { radians }
$$

Thus the phase error is 0.001057 radians in -2.4440 radians. Expressed as a per cent, the result is

$$
\text { phase error }=0.0433 \% \text {, leading. }
$$

Approximate time delay error in per cent may be established as follows:

$$
\text { ANGL }=\text { radians of phase shift at } F=K=1
$$

therefore

$$
\text { midband time delay }=\frac{\text { phase shift }}{\text { frequency } 0 \text { to } I}=\frac{\text { ANGL }}{1}
$$

Delay error will be indicated by the departures which exist along the passband from the value of this midband time delay. The value of the time delay at $\mathrm{F}=\mathrm{K}=35$ is determined approximately as:

PHASE SHIFT IN

or

which gives

$$
0.069377 \text { seconds @ frequency } 35 .
$$

Thus the delay error with respect to the mid-band delay is given by:

$$
\text { DELAY ERROR, } \%=\frac{\text { MDD-BAND DELAY }- \text { DELAY AT } 35}{\text { MID-BAND DELAY }}
$$

or
DELAY ERROR, $\%=\frac{0.069830-0.069377}{0.069830}=0.648 \%$.

A more accurate result, if needed, may be obtained by calling from the computer memory the final value of the entire array $\operatorname{ERR}(K)$. Resolution of $\operatorname{ERR}(K)$ to frequencies only one unit apart would then be possible, as opposed to the resolution of the punched data, which gives phase errors for frequencies five units apart. The equation for delay error given above can then be used to determine the delay error, as before.

Some Further Details

The possibility may arise that the delay error is excessive when the optimum pole constellation is reached, as indicated by no further reduction in ERFNC. Two possible reasons exist for the difficulty: (1) The delay error due to the fixed poles is so great that the specified number of movable poles cannot achieve delay equalization, and (2) delay equalization over too great a bandwidth is being attempted.

Resolving the difficulty involves either adding more movable poles and/or modifying the weighting of the error function. The adding of more poles is a fairly easy task, at least in principle, and needs no special explanation.

Modifying the weighting of the error function involves the adjustment of the two quantities CONST and FB. This is achieved by starting the program going with SENSE SWITCH ONE turned ON. The machine will then type:

INSERT CONST, FB
Using the typewriter, new values of CONST and FB are read into the program. Generally CONST will be left at the value 1.0 , but to attach less importance to delay errors far removed from the mid-band frequency, FB is made smaller; it may be made less than 100 , so that the computer will deliberately accentuate the delay error at the band edges in order to achieve less delay error near the mid-band frequency.

Generally, small values of FB and CONST will give a delay exror characteristic tending toward an "equal ripple" condition, while large values for $F B$ and CONST will produce a delay error characteristic
tending toward a "maximally flat" condition.

Conclusion

The explanation of the computer program given here is by no means complete. Indeed, a full exposition would require a book and is beyond the scope of this paper. However, given a through understanding of the operation of the program for the given example above, the reader will, with further study of the program, its flow chart, and tables one through nine, come to a full understanding of its operation. To further assist the reader in comprehending the operation of the program, the complete set of input data used in computing all of the pole locations given in the appendix is given along with the relevant pole locations.

APPLICATION OF THE RTMO FIITER TO THE FM IF AMPLIFIER

The real usefulness of the Rimo filter lies in its application to FM transmission. Ideally, FM signals are sensitive to phase information only, and it is this characteristic that makes Rimo filters useful for FM transmission. These filters have nominally linear phase response and moderately rounded amplitude response within their passbands, and high attenuation outside their passbands. If an FM signal is applied to a Rimo filter, it will pass through with its important phase information negligibly distorted. The moderate amplitude distortion which results would be easily handled by a good limiter, while the high selectivity will effectively suppress alternate channel signals.

Full realization of the potential inherent in the Rimo filter concept utilized in an FM IF amplifier design requires some care in the layout of the system. Poles of a Rimo filter are chosen on the
basis of required selectivity and allowable circuit complexity. Two experimental FM receivers have been built using the Rimo filter concept, the first being a "state of the art" tuner and the second being a table radio. Both use identical 5-pole Butterworth filters with five equalizer poles, with the equalizer poles being realized in a different manner in each.

A functional block diagram of the tuner is shown in Fig. 7, and that of the radio is shown in Fig. 8 on the next page.

POWER
SUPPLY

Fig. 7. Functional block diagram for the tuner. The five interstage networks are the five equalizer poles (PI through P5).

Fig. 8. Functional block diagram for the radio. The equalizer poles are realized as two double-tuned and one single tuned interstage.

Note that in realizing the Rimo filter, the poles were split. The Butterworth portion, which comprises much of the selectivity, is a lumped passive filter following the mixer. The less selective equalizer poles are distributed as interstage networks between the IF amplifier stages. Some of the care in realizing the Rimo filter - amplifier system should now be evident. Overloading of the IF amplifier by strong alternate channel signals is reduced to a minimum by placing the selective Butterworth poles in a filter before the first IF amplifier. The less critical low-Q equalizer poles are placed in the IF amplifier beginning with the higher Q poles and ending with the
lower Q poles. The single center pole is placed between the last IF stage and the limiter. Reserving the center pole for the final (output) position in a tuned amplifier is common practice, as it gives maximum output capability 14 in the center of the bandpass where it is generally most needed.

An FM tuner must accept signals which vary at the antenna input from levels of less then a microvolt to over a volt, and with this great variation still produce an output which is as free of noise and distortion as possible. Since the information contained in an FM signal is determined by phase only and not by amplitude, it might seem possible in an FM receiver to use a low-noise RF amplifier followed by the mixer, IF amplifier, and detector, and run the whole receiver at full gain at all times, using no AGC. However, under these conditions, when a relatively weak desired channel is being received among several strong near-by channels, all of the signals could arrive limited to the same amplitude level at the detector, causing crosstalk and distortion.

A better situation would result if the receiver were to have a highly selective, closely gain controlled IF amplifier preceding the limiter, and allow the limiter to smooth only the IF response in the desired channel. Off channel signals would then enter the limiter and detector at a lower level than the desired signal determined by the IF selectivity. Somewhat elaborate circuitity is used in the tuner to achieve a very constant input amplitude to the limiter and detector. The radio uses a standard AGC circuit which follows common design practice.
14. Tuned amplifiers generally have an odd number of poles to allow the placing of the single odd pole at the output position.

The remainder of the circuitry in the tuner follows somewhat standard practice. The four-tube front end gives the required 45 db of gain before the first IF grid, with delayed AGC applied to the two RF stages. The 6BA7 mixer, although noisy, has excellent overload capability and good conversion gain. A schematic and performance characteristics of the tuner are presented in the appendix.

The table radio uses a Rimo filter in addition to otherwise orthodox circuitry. Performance data appear in the appendix.

Considerable work on both the tuner and radio remains unfinished, with neither unit in a static condition and both still undergoing constant experimentation. Among some things awaiting further study are a multiplex decoder for the tuner, and an investigation of distortion of the signal caused by imperfect limiting.

CONCLUSION

In the field of minimum-phase filters, the Rimo filter is to phase sensitive signals as the flat-amplitude approximations are to amplitude sensitive signals. Using the charts or the computer program presented in the appendix, the designer may choose the poles of a minimun-phase constant delay filter of any desired selectivity, in a manner exactly analogous to the selection of a minimum-phase flat amplitude filter of any desired selectivity.

In both the tuner and radio, the result of the application of the Rimo filter concept to the IF amplifier design has been gratifying. The performance of the tuner is nothing short of excellent, and the reception of stereo broadcasts 15 rom distant stations has been of
15. An Eico model MX-99multiplex decoder is presently in use with the tuner.
consistently good quality. In many cases, these distant signals are not audible on other tuners due to their poor selectivity.

The Rimp filter concept as presented in this paper is very incomplete - indeed it is only a beginning. The Rimo filter is still in its genesis and much experimentation with the computer program will be necessary before any general conclusions can be made concerning these filters. Among the aspects in consideration for future exploration is the effect of the area weighting function on the amplitude and phase response of Rimo filters.

An important aspect to be pursued is the determination of exact solutions for maximally-flat and equal-ripple time delay filters using the computer program - if such solutions exist.

Current plans call for a continued research in Rimo filters beyond this thesis with the abovementioned ideas forming the basis for the future investigation.

REFERENCES

1. Modafferi, R. "A New Design Approach for a Low Distortion 10. 7 MC IF Amolifier" Newark College of Engineering, December 1963. (Unpublished)
2. Kuo, F.F. Network Analysis and Synthesis New York: John Wiley \& Sons, 1962

GENERAL
3. Tibbs, C \& Johnstone, G Frequency Modulation Engineering

New York: John Wiley and Sons, 1956 Second Edition, revised.

THE RTMO FIITER

APPENDIX
page 27.

IHFM SENSITIVITY:	Local: 2uv across 75 ohms Distant: 0.7 uv across 75 ohms
LOCAL OSCIILATOR DRIFT.	Less than 2 KC after 5 minute warmup and 10% line voltage change
CAPTURE RATIO:	3 DB
TUNING RANGE:	86.5 to 110 MC
NOISE FIGURE:	distant: 2.1 DB
SPURIOUS RESPONSES:	distant: down at least 60 DB local: down at least 84 DB
INPUP VSWR:	less than 1.2:1 referred to 75 ohm input
RATIO DETECTOR BANDWIDTH:	800 KC peak to peak
AUDIO OUTPUT:	1 volt nominal at $1 \mathrm{KC}, 100 \%$ modulation
SIGNAL TO NOISE RATIO:	70 DB or greater for input 1000 uv

NUMBER OF VACUUM TUBES 12
NUMBER OF SEMICONDUCTORS 15
HARMONIC DISTORTION: Less than 0.3% for 100% modulation, 50 CPS to $15 \mathrm{KCPS}, 1000$ uv input

Note: A simpler version of this tuner was constructed, using 11 tubes and three semiconductors, and gave essentially the same performance as listed above. It is still in use.

IHFM SENSITIVITY:
LOCAL OSCILLATOR DRIFT:

CAPTURE RATIO:
TUNING RANGE:
NOISE FIGURE:
SPURIOUS RESPONSES:

INPUT VSWR:
RATIO DETECTOR BANDWIDTH:
AUDIO OUTPUT: *
SIGNAL TO NOISE RATIO:

NUMBER OF VACUUM TUBES
NUMBER OF SEMICONDUCTORS
HARMONTC DISTORTION

IF BANDWIDTH:
1.5uv across 75 ohms

Less than 2KC after 5 minute warmup and 10% line voltage change

2 DB
86.5 to 110 MC

6 DB
image and second harmonic oscillator conversion, down at least 90 DB ; all other spurious down at least 100 DB
less than $1.2: 1$ referred to 75 ohms
1.5 MC peak to peak
2.0 volts nominal at $1 \mathrm{KC}, 100 \%$ modulation

70 DB or greater for input 50 uv

14, less multiplex decoder
5
essentially unmeasurable in mono or stereo on available test equipment; distortion in stereo mode on frequencies not subharmonically related to 19 KC is probably less than 1%
@6DB: 221 KC
@60 DB: 594 KC
©90 DB: 865 KC

[^0] appear in the schematic.

The Rimo filter tuner. The front end chassis, left front, is a carry-over from the original tuner built in 1962. The space on the right front is reserved for a cathode-ray tuning indicator similar to that now used on the Marantz model 10 tuner. An Eico MX-99 multiplex decoder is now in use with this tuner, and present plans are to keep it as its performance is entirely satisfactory. The rectangular box on top of the front end chassis is the Butterworth filter; note the five trimmer screws. By using a cable and plug format for the filter, it may be easily disconnected and another one substituted; this facilitated experimentation in the early stages of the tuner design.

IHFM SENSITIVITY:	0.5 uv across 300 ohms
LOCAL OSCILLATOR DRIFT:	less than 25 KC after 10 minutes warmup
CAPTURE RATIO:	6 DB , approx.
TUNING RANGE:	87 to 109 MC
NOISE FIGURE:	2.1 DB
SPURIOUS RESPONSES:	image down at least 35 DB , all other spurious down at least 40 DB
INPUT VSWR:	3:1 approx.
RATIO DETECTOR BANDWIDTH:	300 KC
EFFECTIVE AUDIO FREQUENCY RANGE	100 cycles to 15 KC
AUDIO OUTPUT	3 watts
Note: The front end in this radio has been designed to operate from a built in cabinet antenna, which dictated a design based on highest possible sensitivity. The low-noise RF amplifier now used in the radio was originally used in the old tuner of Ref. 1.	

The Rimo filter radio. This experimental radio was built with the idea of incorporating a high quality circuit in a small cabinet, allowing quality FM reception anywhere within reach of a power line outlet. The very high sensitivity of the radio makes good reception possible with the built in antenna, even in weak signal areas. At Liberty, NY, most of the New York City stations were received, at a distance of more than 100 miles.

```
C:C DELAY EQUALIZATION OF MINIMUN PHASE FILTERS
C E MASTERS THESIS BY RICHARO MODAFFERI ADVISOF RH ROSE.
    \therefore OIMENSION X (10) ,Y(10)
        DIMENSION XX(10), YY(10)
        DIMENSION ANG(100)
        UIMENSION ERR(100)
        OIMENSION JERR(1U0)
        DIMENSION FE(100)
50R INDEX = 0
    O POSER = 0
        ERNEG=1.
        KOSFO=0
        NEGFQ=O
        ERFNG=O
        FB=110.
        FEE=0.
        FEEE =0.
        CONST = 1.0
        KLUNK =0
        READ 400, x(1), x(2), x(3), x(4), <(5)
        READ 4(0, X(6), X(7), X(8), X(9), X(10)
        READ 400, Y(1), Y(2), Y(3), Y(4), Y(S)
        READ 400, Y(6), Y(7), Y(8),Y(9), Y(10)
400 FORMAT(5FS.3)
        REA04C1, XX(1), XX(2),XX(3), 人X(4), XX(3)
        REAU4U1,YY(1),YY(2),YY(3),YY(4),YY(5)
        REAU 4U1, XX(6), XX(7), XX(B), XX(9)
        REAL 4O1, YY(6), YY(7), YY(8),YY(9)
401 FORNAT (SFE.3)
        READ4UZ, NF, NV, I, NI, MOUD, DELL, COW. MOO
4O2 FORMAT(I2,4XI2.4XIZ,4XIZ,4XI2,4XF4.1, &XF3.0.4×IZ)
        REAL 410. REFER
4% FOFMAT (F8.3)
        MOD = MOOD
        m=NI+1
        N=I
        NN=NI
        IF(NI) 30, 30, 31
31 NNE =NN - 1
        GO TO 34
50}\quadNNE=N
34 IF(1) 32, 32, 33
33 NE=N-1
        GO TO 35
32
        NSVP = NNE
        DEL = DELL
10 IF (MOD - 3) 250. 263. 263
263 m=m+1
        KLUNK =0
```

```
    DEL = DELL
    MOD = MOOL
    INOIX = INDEX - - 1
    PUNCH 1OZ, INDIK, ERRA. ERRE, ERHC, ERRD, EFRE, ERRG
12
    FORINAT (IS.OE1O.S)
    PUNCH 1O3, ERPH, ERRI, ERRJ, ERKK, ERZL, EKRM, ERRN
    PUNOH 103, ERRO, ERFF, ERRQ, ERRH, ERHS, EHRT, EKRO
1O3 FORHAT(7E1O3)
    IF(N1) 503. 5S0.506
55S MM=m
    601055%
506 MM=M - 1
507 IF(NV - MM) 300. 25S. 255
2a0 k=1
    IF (SENSE SWITOH 2) bOU, 501
    PAUSE
    IF (GENSE SWITCH 3) 502. 501
SO1 IF (SENSE SWITCH 1 ) 20.21
2O FRINT 3
3 FORMAT (1TH INOERT CONGT, FB)
    ACCEPT 4. CONST, FE
4 FORMAT(F=.3. F3.U)
F1. F=K
    IF (INOEX) 22, 22, 23
    N=N+i
    NSFF=NSFP+1
    IF (NF - N) 23, <S, 25
25 FEE = FEE + ATANF((Y(N) FF)/X(N))
    IF(NSFE - NF) <2, 24, 24
24 FE(K) = FEE
23 NN =NN + 1
    NSVP=NSVP + 1
    FEEE = FEEE + ATANF ( (YY(NN)-FF)/XX(NN))
    IF(NSVF - NV) 23. 13, 13
1.3 IF (NF) 14. 14, 16
14 ANG(K) = FEEL
    GOTO16
15 ANG(K)=FE(K) + FELE
15 FEE = 0.
    FEEE =0.
    N=I
    NN=NI
    NSTP = NE
    NSVP = NNE
    IF(INDEX) 998.996.999
    ANGL = ANG(1)
998 ERRR(K) =ANG(K) - ANGL*F
    DELTA = CONST * ERR(K)* (FG - F)
    OELTA = AESF(DELTA)
    ERFNC = ERFNC + LELTA
    JERR(K)=10000*EFR(K)
    IF(JERR(K)) 60.62.58
58 IF (ERR(K) - POSER) 62. 62.59
S9 POSER = ERR(K)
```

```
KOSFQ=K
GOTO 62
60 IF (ERNEG + ERQ(K)) 61, 62, 62
61 ERNEG = -ERR(K)
    NEOFQ = K
62 IF(K-100) 63. 64. 65
65 PRINT 104
104 FORMAT(2ZH FREQUENEY EXCEELS 100)
    PAUSE
    GO TO SOC
63 k=k+1
    GO TO 21
S4 INDEX = INDEX + 1
    PUNCH 1OO, INDEX, POSER, KOSFQ, ERNEG, NEGFQ
100 FORHAT(110,E10.3,110,E10.3,110)
    PUNCH 1O1, XX(1), XX(2), XX(3), XX(4), XX(5)
    PUNCH 101, YY(1),YY(2),YY(3),YY(4),YY(5)
1O1 FORMAT(SFE.S)
    1F(NV - S) 149, 149. 150
150 PUNCH 101, <x(6), x<(7), Xx(8), XX(9)
    PUNCH 101, YY(6), YY(7), YY(8), YY(9)
14% PUNUH 9g7, ERFNC, REFER
997 FORMAT (2F2O.3)
    IF(RQFNC - REFER) 333. 333. 251
333 KLUNK = KLUNK + 1
    60 T0 252
251 IF(KLUNK) 250, 258, 259
25% OEL = -DEL
    KLUNK}=\mathrm{ KLUNK }+
    60 10 252
259 MOD = MOO + 1
    IF(MOD - 3) 249, 204. 264
204 DEL = -DEL
    GO TO 275
249 DEL = -DEL/3.
202 FEFER = ERFNC
    ERRA = ERR(5)
    ERRD = ERR(10)
    ERRC = ERR(15)
    ERRD = ERR(2O)
    ERRE = ERR(25)
    ERRG = ERR(30)
    ERRH = ERR(35)
    ERRI = ERR(40)
    ERRJ = ERR(45)
    ERRK = ERR(50)
    ERRL = ERR(55)
    ERRM = EFRR(60)
    ERRN = ERR(65)
    ERRO = ERR(70)
    ERRP = ERR(75)
    ERRQ = ERR(80)
    ERRR = ERR(E5)
    ERRS = ERR(90)
```

```
    HRT = GRF(G)
        AFGU}=\mathrm{ EtiR(100)
27a ERFNE=0.
    POSLR=O
    ERNFO=0
    KO2FO}=
    NEGO}=
```



```
253 < < (1) = XX(1) \div DEL
        60 T0 10
20}\timesx(\sigma)=x\times(z)+LE
        xx(3) = XX(3) + OEL
        GO TO 1O
2GOY(\therefore)=YY(Z)+ULL
        YY(S) =YY(3) - UtL
        60 TO 10
270 KX(4) = KX(4) + UEL
        KX(5) = KX(5) + LLL
        GO TO 1O
ZOCYY(4)=YY(4) + ULL
        Y(G)=YY(憂) - URL
        6OTO 10
26! XX(\sigma)= KX(6) + LEL
        XX(7) = XX(7) + DEL
        G0 10 10
26\Omega YY(\sigma) = YY(G) + UEL
        Y(7) = YY(7) - LEL
        GOTO 10
200 }\times\times(\sigma)=\times\times(\sigma)+NE
        X(9)= XX(9) + UtL
        GOT0 10
```



```
        Y(%)=YY(\sigma) - LiEL
        GOTO 10
30% M=NI+1
        PRINT 77
77 FORMAT(31H X-Y PGLE SHIFT OYCLE GOMPLETE O)
        COW}=\textrm{COW}+1
        IF (COW-1.5)5, 5, 5
B MOOL=MOOD + = 1
OMOO=N00+1
        IF (MOO-4) 301, 100.100
301 DELL = DELL,3.0
        HEL = DELL
        NOD = MOOO
        GO TO 275
16G PRINT 107
1% FORMAT (47H FINAL XY POLE CYCLE COMPLETE NEWV DATA NEEDEU (
        PUNCH 1OE, ANGL
13 FORMAT(E14.0)
        GOTO BOZ
        END
```


Al3.

Al4.

AIT.

	$12.1<3 t-G 2$	Se 1.750E-01	100	1-
10000	99.0090 .000	154.000154 .000		2-
- 0 ¢0	30. $50.30-36 \cdot 500$	107.000-107.000		3
	83.811	1715.966		4
	2 - c6of-32	57 1.617E-01	100	5
$102 \cdot 70$	99.000 .9 .0 .0	$154 \cdot 000154.000$		6
U603	$30 \cdot 500-30 \cdot 500$	107.000-107.000		7
	111.874	83.811		8
	3 3. 385 coz	$571.661 \mathrm{E}-01$	100	9
101.80%	99.00 99.000	154.000 154.000		10
-	3. 5 -3 - 30.500	107.000-107.000		11
	102.341	111.874		12
	$42.5060-62$	$571.705 E-01$	100	13
$100 \cdot 90$	9y u6 99.0.	154.000 154.000		14
1. 000	$30.50 \%-30.560$	107.000-107.000		15
	92.96e	102.341		16
	$52 \cdot 123-02$	$561.750 E-01$	100	17
$100 \cdot 00$	99.0099000	154.000 154.000		18
0.000	36.500-30.506	107.000-107.000		19
	83.811	92.968		20
	6 1.736E-02	561.795E-01	100	21
75.100	99.000 99.000	154.000154 .000		22
. 000	30. $500-30 \cdot 500$	107.000-107.000		23
	76.497	83.811		24
	$71.345 E-02^{3}$	$561.841 E-01$	100	25
90.200	99.000 99.000	154.000 154.000		26
0.000	30.500-30.500	107.000-107.000		27
	$72 \cdot 439$	76.497		28
	-9.494E-03	勺5 1.887E-01	100	29
$97 \cdot 300$	99.00099 .000	154.000 154.000		30
0.000	30.500-30.500	107.000-107.000		31
	71.790	72.439		32
	95.503E-03	$551.933 E-01$	100	33
90.400	99.000 99.000	154.000 154.000		34
-0ne	30.500-30.500	107.000-107.000		35
	74.858	71.790		36
	10.0.640t-03	5S 1.918E-01	100	37
$96 \cdot 700$	99.000 99.000	154.000 154.000		38
0.000	$30.500-30 \cdot 500$	107.000-107.000		39
	73.393	74.858		40
	$118.170 E-03$	$551.902 \mathrm{E}-01$	100	41
97.100	$99.000 \quad 99.000$	154.000 154.000		42
0.000	30. $500 \cdot 30 \cdot 500$	107.000-107.000		43
	72.375	73.393		44
	$12.494 \mathrm{E}-03$	5S 1.887E-01	100	45
97.300	99.00099 .000	154.000 154.000		46
U.000	$30 \cdot 500-30 \cdot 500$	107.000-107.000		47
	71.790	72.375		48
	31.081E-02	551.371E-01	100	49

```
97.000 9.060 y0.0ut 154.000 154.000 50
    U.000 v.W.G - 30.500 107.000-107.000 51
    71.627 71.790 52
```



```
    13-1.1,4E-03-1.171t-03-2.72&E-03-2.699E-03-1.907E-03-4.894E-04
    1.680E~.N 4.3576m03 7.191E-03 9.618E-03 1.081E-02 9.642E-0S 4.672E-0.
-5.760E-03-2.328E-02-4.095E-0<-8.236E-0飞-1.205E-01-1.502c-01-1.871E-0
    15 3.06et-02 681.615E-01 00
    97.600 101.700 101.700 154.000 154.000 61
    UNG% J00-30.b00 107.c00-107.000 62
                                    103.312 71.627
        101.0日1E-02 -5 1.871E-01
                                100
                                63
                                6 4
97.600 92.000 90.000 154.000 154.000
    0.000 30.500-30.500 107.000-107.000
                            71.627 103.312
:7 O.OOOE-99 O 2.134E-O1
        37.000 90.300 76.300 154.000 154.000
    0.000 30.500-30.500 107.000-107.000
                                122.869 71.627
        100.00E-50 U 2.046E-01
        7.000'夕7.200 97.0.00 104.000 154.000
    0.00 30.500-30.500 107.000-107.000
                            95.319 122.869
            154.153E-03 55 1.955E-01
97.000 90.100 98.100 154.000 154.000
    0.00 30.560-30.500 107.000-107.000
                            76.518 (ryme02 90.319
        100 68
        6 9
        70
        7 1
        100 72
        72
        7 4
        75
        100 76
97.000 90.000 90.000 154.000 154.000
        0.060 30.5%0-30.560 107.000-107.000
                        71.6c7 76.518
                    50 1.785E-01
97.000 99.900 g4.9w6 154.000 154.000
    0.020 30.500 -.30.500 107.000-107.000
        75.934 71.627
        Z2 1.GE5t-42 D6 1.B14E-01
    97.000 y.600 90.60 154.000 154.000
        0.000 30.500-30.500 107.000-107.000
                                75.934
            So 1.842E-01
    \/000 99.300 ge.300 154.600 154.000
    W.000 30.500-30.500 107.000-107.000
                                    73.577
            1 0 0
                65
                                    6 6
                            72
                            7
        100
                                    7 7
                                    78
                                    7 9
```



```
                                76
        97.000 9.00 y0.00 104.000 154.000
```


62
6 7

```

6 1
```

```
\(71 \cdot 671\)
71.627
150
```



```
\(371.4365 \cdots 2001.796 \mathrm{E}-01 \quad 100\) 154
97.600 サ． \(9000150.700156 .700 \quad 155\)
－ 3 －5．－30．5ue 107．000－107．000 156
\(71.792 \quad 71.627 \quad 157\)
```



```
\(100 \quad 158\)
\(71.627 \quad 71 \cdot 792\)
```



```
100 159 100 161
```



```
\(73 \cdot 537 \quad 71 \cdot 527\)
\(51.922 E-01 \quad 100\)
162
163
164
165
4． \(5.5 \mathrm{Ci}-03\) ． 5 1．922E－01
```



```
－306 36．5．j－30．5u0 157．000－107．000
73.537
41 ．OUOE－U3 S \(1.897 E-01\)
97.004 90 9\％000 153．100 153.100
G．006 25．5－36．5世 107．000－107．000
\(72 \cdot 10 \quad 72.643\)
4210 － 4 － \(251.871 \mathrm{E}-1\)
97.600 9．0．0．0． 154.000154 .000
100
166
167
168
\(100 \quad 170\)
171
172
173
174
175
－－130－30．500 107．000－107．000 176
\(71.627 \quad 72.010\)
\(561.846 \mathrm{E}-01\)
\(97.000 \quad 9.000\) ．060 154．900 154．900
ज．JU 3．5．．－30．50U 1u7．00．－107．000
\(71.460 \quad 71 \cdot 627\)
\(441.315 \mathrm{EOE} 561.821 \mathrm{E}-\mathrm{O} 1\)
97.600 900．99．000 155．300 155．800
U．060 tr 5 －\(-36.5 .61070000-107.000\)
\(71.501 \quad 71.400\)
\(451.276 E-02561.929 E-01\)
\(97.60099 .0099 \cdot 000155.500155 .500\)
U000 3才．500－3．500 \(107.000 \mathrm{~m} 107 \cdot 000\)
71.501
```



```
97.000 y． \(90.99 .000155 \cdot 200 \quad 155.200\)
U．000 30． 200 －30．500 107．000－107．000
\(71.459 \quad 71.471\)
\(471.198 \mathrm{O}-\mathrm{O} \quad\) G6 1．846E－01
100
177
```



``` 178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
\(97.60099 .009 \quad 09.000154 .900 \quad 154.900\)
194
```



```
．000 3u．500－30．500 107．000－107．000 196 \(71.460 \quad 71.459\) 197
40－1． \(74 E-13-1 \cdot 930 E-U 3-2.365 E-03-2 \cdot 209 E-03-1.347 E-03 \quad 2.658 E-04\)
```



```
\(-3.672 E-5-2 \cdot 999-12-4.645 E-02-7.965 E-02-1 \cdot 177 E-01-1.550 E-01-1 \cdot 838 E-01\)
```



```
            1 0 0
                201
                        77.730
                            71.459
            06 1.338E=01 100
```



```
    0.000 20.500 - 30.500 107.000-107.000
        71.459 77.730
        5u v.019E-03 55 1.948E-01
        #060 *90, 79.000 155.c00 155.200
                        *0% -30.000 104.300-104.300
                            71.45y
    97.600 %.40<t-03 0000 150.000 155.200
    *v00 30.500-30.500 105.200-105.200
                        72.716 75.272
```



```
    0.000 30.500-30.500 106.100-106.100
        71.479
                            72.716
            56 1.838E-01
    9%000 %.0w% G%.000 155.200 155.200
    0030 30.500-30.500 107.000-107.000
                            71.459 71.479
        07.4 1.4850-02 D6 1.800E-01
    .0.000 99.000 155.200 155.200
    0000 50.500-30.500 107.900-107.900
        72.525
                                    71.459
        SE 1.402E-02 O6 1.813E-01
        7.000 99.000 09.000 155.200 155.200
```



```
        6.000 50.500-30.500 107.300-107.300
                                71.674 72.000
```



```
                                    71.459 71.674
                            56 1.85OE-O1 100
                                    240
    77.600 99.000 99.000 155.200 155.200
    0.000 30.500-30.500 106.700-106.700
                71.330 71.459
                            56 1.862E-01 100
                                    244
97.600 99.000 99.000 155.200 155.200 246
    0000 30.500-30.500 106.400-106.400 247
                        71.351 71.330
                                    202
```


203
204
208

```

```

 55 1.948E-01 100
 1,005 100.0.0.000 155.200
 100
    ```

```

 O
 *
 *
 203
 206
 207
 210
 211
 21z
 213
 214
 215
 216
 217
 217
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
    ```


```

 234
 235
 236
 0000 30.500-30.500 107.000-107.000 239
 241
 242
 243
 yy 1.072E-O2 S6 1.B62E-O1
 245
 247
 248
 5E-1.1,3E-03-2.088E-03-2.500E-03-2.523E-03-1.737E-03-1.991E-04
 2.037E- S 4.790E-03 7.709E-03 1.023E-02 1.153E-02 1.047E-02 5.634E-03
-4.660E-03-2.203E-02-4.754E-02-8.078E-02-1.189E-01-1.562E-01-1.850E-01
ENO OF POLE SHIFT CYCLE.
252

```

A24.
\[
\begin{aligned}
& 72.556 \\
& 268 \\
& 041 \text {.021E-02 } 56 \text { 1.865E-01 } \\
& 97.30090 .00099 .000155 \cdot 200155.200 \\
& \text { ) } 000 \text { 3. } 60-30.500106 .700-106.700 \\
& 71.747 \\
& 501.950 E-01 \quad 100 \\
& 97.040 \text {. 2000 00.000 155.200 155.200 } \\
& 0.00030 .500-30.500100 \cdot 700-106.700 \\
& 71.330 \quad 71.348 \\
& 50 \quad 1 \cdot 835 E-01 \\
& 100 \\
& 97.900 \text { 90.000 99.000 } 155.000 \quad 155.200 \\
& \text { 10.000 3n.500-30.500 106.700-106.700 } \\
& 71.710 \quad 71.330 \\
& 97.571 .243 E-02 \quad 561.840 \mathrm{E}-01 \\
& 97.800 \text { 99.000 99.040 156.200 155.200 } \\
& 0.000 \quad 30.500-30.500106 \cdot 700-106.700 \\
& 71.550 \\
& 71.719
\end{aligned}
\]
\(71.424 \quad 71.500\)
\(561.850 E-01\)
100
100
269
\(71 \cdot 348\)
271
272
273
274
275
276
277
278
279
280
2.1
282
283
284
285
\(0.00630 .500-30.5001\)
286
287
288
289
290
97.000 2.000 \(99.000 \quad 155.200 \quad 155.200\)
71.424
291
.000 30.500-30.000 106.700-106.700
292
\(71 \cdot 330\)
\(561.855 E-01\)
97.500 90.000 99.000 155.200 155.200
-000 30.500-30.600 106.700-106.700
71.330
293
294
295
296
297
71 1.066t-02 \(561.860 E-01\)
100
298
\(\begin{array}{lllll}97.400 & 99.000 & 9.000 & 155.200 & 155.200\end{array} \quad 299\)
\(\begin{array}{ll}71 \cdot 295 & 71 \cdot 283\end{array}\)
300
70-1. \(2 \cdot 6 E-03-2 \cdot 192 E-0.2-754 E-03-2 \cdot 724 E-03-1 \cdot 983 E-03-4 \cdot 871 E-04\)
```

 #.1.770Hmaz 50 1.769E-01 100 305
 97.50% 0.% ज9.0. 155.200 155.200 306
 0.00.50%-30540 106.700-106.700 307
 75.717 71.288 306
 7.1.1:4-02 56 1.055E-01 100
 97.500 t.000 09.000 155.200 155.200
 3 0 9
 000 90.00-30.500 100.700m100.700 311
 71.28e 75.717 312
 74.43EE-O3 55 1.942E-01
 100
 313
 97.500 95.1.0 90.100150.000 155.200 314
 0.06G 3.9%-5.-500 106.700-106.700 315
 71.288 316
 5%.O13t-01 100 317
 97.500 ,4.40% 90400 155.200 155.200 318
 0.00G su.but-36.500106.700-106.700 319
 73.214 75.931 320
    ```

```

 97.000 0.700 50.700 155.000 155.200 322
 G.000 30.500-30.000 106.700-100.700 323
 71.729 73.214 324
    ```

```

 327
    ```

```

 97.500 0, 300 90.300 1550<00 155.200 330
 O.000 30.009-30.500 100.700-100.700 331
 71.837 71.288 332
 7, 1.259E-02 56 1.830E-01
 100 333
 37.500, 1.000 Y0.200 150.200 155.200 334
 UN0.50.5% - 30.500 106.700-106.700 335
 71.063 71.037 336
    ```

```

 O00 30.500-30.500 106.700-100.700 339
 71.373 71.563
 71.563
 340
    ```

```

97.000 נ.000 90.000 155.200 155.200
71.288 71.373 344
0< 1.30t-6 - D6 1.365E-01 305
97.500 48.000 90.900 155.200 155.200 346
0.000 30.500-30.500 106.700-106.700 347
7.332 71.288
348
E1-1.2.EE-03-2.192E-0, 2.704E-03-2.724E-03-1.9e3E-03-4.071E-04
1.712E-4.4.4.30E-03 7.319E-03 9. 315E-03 1.109E-02 1.001E-0E 5.161E-OG
-5.146E-U5-2.25 3k-0E-4.8O4E-02-5.128E-02-1.194E-01-1.507E-01-1.855E-0 1
\&.3.451E-02 D6 1.827E-01 100 352
97.40W 听 99.000 155.200 155.200 353
0.000 31.400 -31.400 106.700-106.700 354

```
```

 73.234 71.288 355
    ```

```

 97.0u人 y. प|, y9.000 155.c00 155.200 357
 000 5.500-30.500 100.700-106.700 358
 71.28e 73.239 359
 0%7.779E-03 50 1.862E-01 300, 100 360
 0.000 29.500 --29.000 106.700-106.700
 72.327 71.288
 71.288
    ```


```

 U.100 20.000-29.900 106.700-106.700 366
 71.671 72.327
    ```

```

 0.000 30.000 -30. cu0 106.700-106.700
 71.327 71.671
 370
    ```

```

 100 372
 10.000 30.50% -30.500 106.700-106.700
 71.23e 71.327
 50, 1.345E-01
 1 0 0
 375
 *
 77.500 अ7.000 99.000 155.200 155.200 377
0.000 30.806 -30. 600 100.700-106.700
71.599 71.280
378
100 380
97.500 97.000 50.000 155.<00 155.200 381
U.000 30.760 - 30.700 106.700-106.700
71.457 71.599
382
H 1.148E-02 55 1.852E-01
1 0 0
383
97.500 9.000 90.000 150.200 155.200
384
71.346 71.457 367
%0110E-02 56 1.855E-01
100
71.348 71.457 367
388
97.500 70.000 99.000 155.200 155.200 389
0.000 30.500-30.500 106.700-100.700
71.288 71.348
390
56 1.858E-01
100
391
0.00 30.00-30.000 100.700-106.700-305
392
97.500 9.000 99.000 105.200 155.200 393
0.000 30.400-30.400 106.700-106.700
71.288
394

```
\(0.00 \cdot 400-30\)
71.266 71.288 ..... 395
\(061.861 \in-01\)

100
```

 396
 97.500 अ9.0C 99.000 159.000 155.200 307
\sigma.000 30.300-30.300 106.700-106.700
397
71.285
71.266
398
399
93-1.2上GG-97-2.295E-03-2.906E-03-2.921E-03-2.221E-03-7.614E-04
1.406t-03 4. IOE-03 6.959E-03 9.451E-03 1.071E-02 9.042Em03 4.784E-03
-5.519E-N-2.2b9E-02-4.040E-02-8.163E-02-1.197E-01-1.570E-01-1.858E-01
951.191L-C2 501.833E-01 100
4 0 3
97.500 99.000 49.000 156.100 150.100 404

```





```

 71.037 461
 50.324E-01 100 462
 97.000 %.0.0156.400156.400 40, 403
 *000-5.50.40106.700-106.700 464
 71.27 71.957 465
 1: 60.40% 1.861E-01 100 406
 97.50 H.N00 156.400 150.400 467
 Uv00.4-30.4 1u6.004-105.000 468
 71.157 71.037
 50 1.349E-01 100
 469
 470
    ```

```

 0006 04 - 30.4.1) 1.6.100-106.100 47%
 71.12 71.187 473
    ```

```

 97.000 %.0.000 156.400 156.400 475
    ```

```

 11.1.E31Lma S01.324E-01 100 478
    ```

```

 60% 3 4-3.400100.700-100.700 480
 7.037 70.260
 100
 481
 48c
 97.00 %.000 136.400 156.400 4e3
 U.10C -4%-30.400 1v0.000-106.600 484
 71.0ん8 71.037 485
    ```


```

 U.0.4: -304.0105.000-100.500 480
 71.000 489
 11.1.14%-G% DE 1.836E-O1 100 490
 97.500 7.N% 25.000 156.400 156.400 491
 0.0.4.0.0.4.0106.400-106.400 49己
 70.979 493
 11%1.1ag\cdots62 50 1.G41E-01 100 494
 97.5.0.,.0.0.0w 156.400 156.400 495
 6.0!r.0.4-37.4:0 106.300-106.300 496
 70.960 497
 110 i 0.9F-02 10845E-01 100 498
 97.50% % % 000 150.400 150.400 499
 5 0 0
 5 0 1
    ```



    WH OF POLE BHIFT CYCLE.



```

 94.70, %'0. 150.400155.400 611
 U.00 1. -30140 106.201m100.200 612
 09.291 69.250 613
 2%1.21GE-02 57 1.736E-01 100 614
 94.700 %.0.000 106.400 150.400 615
    ```

```

 80
 69.291 017
 20 1.26t-02 b7 1.733E-01
 1 0 0
 6 1 8
 94.700 अ0, O00 150.400156.400 619
 ** 3.3.3.300 106.000-106.200 620
 69.238 69.245 621
 &71.2O3E-GQ DT1.730E-01 100 622
 94.700 * 6e.3
 624
 625
 20-1.6.4.3-2.0.0t-G4-3.011E-03-3.741E-03-3.061E-53-1.010E-03
    ```


```

 <゙ 1.<y7t-U2 571.724E-01 100 6&9
 94.7.%ツ.N0.556.700 156.700 630
 * 0.0-3.300 1.0.20-150.200 631
 0%.16% 69.238 632
    ```

```

 |.00 - -30.30 1-6.200-106.200 635
 69.112 69.162 636
    ```


```

 69.107 69.113
 100
 640
 50 1.6995-01
 641
 94.70% अ0: % U.0 157.000 157.600 642
 *-0. -0.3 - 30.3u0 100.ce-100.200
 69.107
 O7 1.7O2E-01
 100 645
    ```

```

 0.00% =3-30.3.0 1v6.200-106.200 647
 60121 69.130 648
    ```

```

 A.0.3.3...-30.30. 106.c00-100.200 651
 64112 69.121
 571.707E-O1 100 653
 y4.7u0 ध. % govev 157.300 157.300
 -30.300 106.c00-106.200
 69.112
 655
 656
 100 657
 94.700 9.* 90.000 157.200157.200
658
0.00 3.30-30.200 106.200-106.200
6 5 9

```
```

 30109
 69.107
 6 6 0
    ```



```

 xe 1.4ElL-Cz 001.695E-01 600 64
 94.760 0.4 9%006 157.300 157.300 665
 *' - 30.300 100.500-106.500
 69.107 667
 59.270 69.107
 100 668
    ```

```

 0.06 3.304-3.-300110.200-106.200 670
 69.107 69.270
 \a 1.<प7.-0z 50.000, 157.300 157.300
 100
 671
 60.54 69.107 675
    ```



```

 0.00 2.30.-30.340 105.000-105.000 678
 69.119 69.054 679
 | 1.4%- 5- 57-1.727E-01
 100 680
 94.700 #.008 99.000 157.300 157.300 681
 000.3.3-30.300 155.700-105.700 682
 09.195 69.119 683
 4! 1.27CE-02 57 1.723E-01 604
 94.709 g.06 g.0ut 157.300157.300 685
 0.000 30.300-30.300 105.000-105.000 686
 69.074 69.095 687
 4< 1.297上-02 571.719E-01 608
 94.700 Y. Y06 99.000 157.300 157.300 689
 0.00 30.306 - 30.300 106.900-100.900
 69.074
 100 702
 57 1.715E-01
 703
 704
 705
 42-1.612E-4-2.77,E-03-3.559E-03-3.067E-03-2.961E-03-1.380E-03
    ```

```

-4.271E-m,4-1.6与46-02-4.07OE-O2-7.249E-O2-1.OG1E-01-1.448E-01-1.719E-0
MHIHL POLE GHIFT GYCLE complEtE.

| 4 | 1.344-62 | $571.714 E-01$ | 100 | 712 |
| :---: | :---: | :---: | :---: | :---: |
| $94 \cdot 606$ | 9-aw 99000 | $157.300 \quad 157.300$ | | 713 |
| O.OC | $30.360-30 \cdot 300$ | 105.900-105.900 | | 714 |
| | 69.833 | 69.054 | | 715 |
| | 1.2974-02 | 571.719E-O1 | 100 | 716 |
| 94.700 | Y. 99.000 | $157 \cdot 300157 \cdot 300$ | | 717 |
| - 000 | 3n. $304-30 \cdot 300$ | 105.000-105.900 | | 718 |
| | 65.054 | 69.083 | | 719 |

```



NOTE: The last four cards from the output data were accidentally lost. The above data was copied from an earlier printout of the same data.

\section*{THREE POLE PURE RIMO FIUTER}
\begin{tabular}{|c|c|c|}
\hline X
P2 & & normalized pole locations \\
\hline & P1 & \(99.900+30.000\) \\
\hline X Pl & P2 & \(75.000+j 75.000\) \\
\hline P3 & P3 & \(75.000-j 75.000\) \\
\hline
\end{tabular}

COMPUTER PROGRAM INPUT, CONTROL VARIABLES
NF ..... 0
NV. ..... 3
I. ..... 0
NI. ..... 0
MOOD ..... 0
DELL ..... 2.7
COW ..... 0
1900. ..... 0.
FB ..... 110.
CONST ..... 1.0



THREE POLE BESSEL FILTER
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
x \\
P 2
\end{gathered}
\] & \multicolumn{3}{|r|}{normalized pole locations} \\
\hline PI \(X\) & P1 & 100.000 & \(+j 0.000\) \\
\hline & P2 & 79.100 & + 375.500 \\
\hline \(\times\) & P3 & 79.100 & -j75.500 \\
\hline
\end{tabular}

NOTE: The pole locations for this filter were fed into the computer as initial data for locaing the poles of a three pole pure Rino filter (the filter of appendix, p. 35.)



NINE POLE HYBRID RTMO FILTER


INITIAL VALUES FOR PROGRAM CONTROL VARIABLES
NF ..... 5
NV. ..... 4
I. ..... 0
NI. ..... 1
MOOD. ..... 1
DELL ..... 2.7
COW ..... \(-2\).
MOO ..... 0 .
FB ..... 110.
CONST ..... 1.0


\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\underset{\mathrm{P9}}{\mathrm{X}}
\]} & \multirow[b]{2}{*}{\({ }^{\text {P2 }} \times{ }^{\text {P4 }}\)} & \multicolumn{3}{|r|}{normalized pole locations} \\
\hline & & Pl & 100.000 & j0.000 \\
\hline & P7 \(\times\) & P2 & 80.902 & j58.779 \\
\hline & P7 X & P3 & 80.902 & -j58.779 \\
\hline & & \(\mathrm{P}_{4}\) & 30.902 & j95. 106 \\
\hline & \({ }_{P 1} \times \times{ }_{P 6}\) & P5 & 30.902 & -j95.106 \\
\hline & P8X & P6 & 94.700 & j0.000 \\
\hline & P8 & P7 & 99.000 & j30.300 \\
\hline & \({ }_{P 3} \times\) & P8 & 99.000 & - j 30.300 \\
\hline & 13 P5 & P9 & 158.000 & j1105.500 \\
\hline P10 & \(\times\) & P10 & 158.000 & -j105.500 \\
\hline
\end{tabular}

INITIAL VALUES FOR PROGRAM CONTROL VARIABLES
NF ..... 5
NV ..... 5
I ..... 0
NI ..... 0
MOOD ..... 0
DELL ..... 2.7
COW ..... 0.
MOO ..... 0
FB. ..... 110.
CONST ..... 1.0





\section*{ACKNOWLEDGEMAENTS}

The work presented in this paper is not entirely that of this writer. Invaluable help has come from various persons associated with the author in his work at BlonderTongue Laboratories, and it must needs be that their assistance and cooperation be here recorded. From Mr. B.H. Tongue and Mr. J.B. Glaab have come ideas and suggestions that have been useful in realizing the IF amplifier. Mr. I. Horowitz offered the 6BA7 mixer as a means to reduce spurious responses.

All the photographs used in the paper were taken by Mr. J.B. Glaab, who also did the developing and printing. The schematic of the tuner was drawn by Mr. C.J. Majko.

The typing of the copies was done by Mrs. C. Brienza, and the copies of the program flow chart were done by Miss L. Kruglow.

Finally, co-credit for the discovery of the Rimo filter must go to the writer's thesis advisor, Prof. R. H. Rose. It was he who thought of the computer-generated universal Rimo filter, amplifying upon the original idea of merely generating a single set of poles to design one IF amplifier; this investigator being just another in a long history of human endevor to see a tree but not the forest.```


[^0]:    * An audio output stage has been added to the tuner and does not

