New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

Spring 5-31-1965

The rimo filter

Richard Thomas Modafferi Newark College of Engineering

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Electrical and Electronics Commons

Recommended Citation

Modafferi, Richard Thomas, "The rimo filter" (1965). *Theses*. 1547. https://digitalcommons.njit.edu/theses/1547

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

THE RIMO FILTER

BY

RICHARD THOMAS MODAFFERI

A THESIS

.

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1965

APPROVAL OF THESIS

FOR

DEPARTMENT OF ELECTRICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

وتشعيلها متخاورة وتشاول الم

NEWARK, NEW JERSEY

JUNE, 1965

ABSTRACT

Up to the present time, there has existed no general method for obtaining the pole locations of minimum-phase constant time delay filters of desired selectivity. Since constant time delay filters are necessary for low distortion FM transmission, and minimum-phase filters are easy to construct and align, a general method for locating the poles of minimum-phase constant time delay filters would be of considerable importance. Presented in this paper is a procedure for locating the poles of minimum-phase constant time delay filters of desired selectivity, using a FORTRAN digital computer program. Two experimental FM receivers were built to test the new filter characteristic, and the performance of these receivers is discussed.

TABLE OF CONTENTS

INTRODUCTION
APPLICATION OF THE RIMO FILTER TO THE FM IF AMPLIFIER 31. CONCLUSION
REFERENCES
APPENDIX

TABLE OF CONTENTS, APPENDIX

PART 1, EXPERIMENTAL FM RECEIVERS

Performance data on Butterworth tuner	of Ref.	1Al.
Performance data on Rimo filter tuner		
Photograph of Rimo filter tuner		A3.
Schematic diagram for Rimo filter tun	er	
Performance data on Rimo filter radio		
Photograph of Rimo filter radio		

PART 2, RIMO FILTER COMPUTER PROGRAM

Computer program			••••••A7•	
Program flow chart			All.	
Output data for 10	-pole hybrid	rimo filte	rA19.	

PART 3, THREE RIMO FILTERS

Three pole pure Rimo filter	
Three pole Bessel filter (to	compare with Rimo filter). A38.
Nine pole hybrid Rimo filter	
Ten pole hybrid Rimo filter	••••••••••••••••••••••••••••••••••••••

ACKNOWLEDGEMENTS

.....A47.

LIST OF FIGURES

Fig.	1.	Delay Equalization of a Bandpass filter 3.
Fig.	2.	Three Rimo Filters 5.
Fig.	3.	Phase response of a bandpass filter having poor phase linearity
Fig.	4.	Three poles to be adjusted by the computer to give minimum delay error8.
Fig.	5.	Pole locations for a 5-pole Butterworth function13.
Fig.	6.	Graphical Representation of Computer Statement 25 16.
Fig.	7.	Functional Block Diagram for the Tuner
Fig.	8.	Functional Block Diagram for the Radio 33.

LIST OF TABLES

Table 1.	List of Computer Program Variables 11.
Table 2.	Fixed Poles 14.
Table 3.	Movable Poles 14.
Table 4.	Initial Values For Program Control Variables 14.
Table 5.	Output Data 18.
Table 6.	Summary of Pole Movements 22.
Table 7.	Summary of Changes in Program Variable DEL 24.
Table 8.	Summary of Changes in Program Variable DEL 25.
Table 9.	Initial Data for a New Pole Movement 27.

INTRODUCTION

With the advent of stereo FM broadcasting, very stringent requirements have been set for the design of a suitable receiver. In particular, one important aspect of FM receiver design - the IF amplifier - has been largely neglected in tuners and receivers intended for the consumer market. For the most part, these circuits fall into a general stereotype consisting of amplifier stages which are permitted to act as limiters on strong signals combined with tuned circuits of insufficient selectivity - a sacrifice necessary to obtain nearly constant time delay to the signal. Since many shortcomings in performance which arise in commercial tuner and receiver designs can be traced at least in part to the IF amplifier, it might be that the application of some new ideas would cause some improvement in FM IF amplifier performance. One factor that is of considerable importance in any new design is the cost. New designs must be commercially feasable: economical in materials, easy to construct and align, and reliable.

In seeking a means to improve on the solution of the FM IF amplifier problem, the writer has devised a new class of linear-phase filters which will be the main subject of this paper. The study will continue with a discussion of a unique FM IF amplifier system designed to make most effective use of the new filter characteristic. Consideration of the use of the new IF amplifier in an experimental FM stereo receiver will be reserved for the final sections.

IF AMPLIFIER BANDPASS CHARACTERISTICS

Originally, some quite ordinary design approaches to the FM IF amplifier problem were investigated. Initially a minimum phase filter amplifier of nominally constant time delay based upon cascaded synchronously tuned stages was constructed. Next an amplifier using a system of stagger-damped stages giving a Bessel characteristic was tried. Both were rejected because of insufficient selectivity.

Another design effected a compromise by using a selective minimum-phase characteristic, such as Butterworth, which had fair phase characteristics with good enough selectivity to provide good alternate channel reception in most cases.

The Butterworth tuner gave rather good performance² and probably justifies the lack of initiative that has been evident in commercial tuner designs - most of which use some type of flat-amplitude minimumphase filter amplifier. But the Butterworth tuner still suffered from both inadequate selectivity and serious overloading of the IF amplifier on strong signals.

One of the well known characteristics of a selective, flat-amplitude minimum-phase filter is that the time delay increases from the mid-band toward the band edges. It occurred to this writer that if a single tuned circuit is placed in cascade with the aforementioned

- 1. The writer used this approach in an earlier paper, Ref. 1.
- 2. Performance data and specifications of this early tuner, extracted from Ref. 1, appear in the appendix.

filter and tuned to its midband frequency, some delay equalization will be obtained as qualitatively shown in Fig. 1.

Fig. 1. Delay equalization of a bandpass filter. (a) Time delay for a hypothetical bandpass filter, (b) Time delay for a single tuned circuit, and (c) Time delay for the bandpass filter and single tuned circuit in cascade.

The concept outlined in Fig. 1 can be expanded. The question was asked: If the poles of a minimum-phase filter can be adjusted to give any desired amplitude shape, might not they also be adjustable to give any desired phase response? In particular, if the pole locations of linear-phase all-pole filters of any desired selectivity could be determined, a whole new approach to the FM IF amplifier design problem would be generated.

There has existed no general method for easily obtaining the pole locations for minimum-phase constant time delay filters of any desired selectivity. Of the known filters in the minimum-phase class with nominally constant time delay - Bessel, Gaussian, and Butterworth-Thompson - the problem is either one of insufficient selectivity or of less than optimum time delay characteristics. Highly selective filters of constant time delay may be realized by adding an all-pass delay equalizer to a Butterworth or Legendre filter, but the physical construction and alignment of these all-pass delay equalizers at 10.7 MC (the FM IF amplifier frequency) is so nearly impossible as to rule out any consideration for their use in a commercially feasable FM receiver.

THE RIMO FILTER

Presented in this paper are several of a new class of minimumphase filters, having nominally constant time delay and moderately flat amplitude response inside their passbands, and high selectivity outside their passbands. The pole locations for these filters were obtained by computer solution, and some of the resulting pole constellations are found to allow the design of a selective, low distortion FM IF amplifier.

The basic concept of the Rimo³ filter is simple but requires a high speed digital computer to obtain the pole locations. Applying the Rimo filter concept begins with the placing of some number of poles in the S-plane and adjusting from just one to all of these poles until minimum delay error occurs in the passband. An almost infinite variety is then possible, with Fig. 2 on page 5 showing three possibilities. In filters (1) and (2), poles (X) form a standard minimum-phase filter, and poles (+) may be considered as a separate delay equalizer: These are "hybrid" Rimo filters. In (3), all the poles were adjusted to give minimum delay error; this is a "pure" Rimo filter.⁴

3. A name generated by taking the first two letters from RIchard MOdafferi.

^{4.} Pole locations for "pure" Rimo filters approximate those for Bessel filters, with the two tending to become more nearly identical as the number of poles increases.

Fig. 2. Three Rimo filters. In equalizing the time delay in the passband, poles (+) were moved and poles (\times) were held fixed. Although the poles \times and + of filters (1) and (2) are shown split into two definite sections (which may be considered as a filter plus a delay equalizer), this is not mandatory. The Rimo filter may be realized in any manner particular to minimum-phase filters.

A general computer program has been written in IBM Fortran to allow any number of poles from four to twenty to be placed in the S-plane. Up to ten of these poles may be fixed, and up to ten of them may be movable to give minimum delay error. For example, the designer may select a five-pole Butterworth filter, add five more poles, and locate the ten poles of a hybrid Rimo filter by using the computer to adjust the five added poles to equalize the delay of the Butterworth filter. When the pole locations have been determined, the filter may be realized by any synthesis methods the designer chooses.

BASIC THEORY OF THE RIMO FILTER COMPUTER SOLUTION

In order to obtain a linear-phase characteristic from an arbitrary number of poles placed in the S-plane, a computer program is required whose operation is entirely automatic and convergent; i.e., the computer must accept the given poles and move them quickly without equivocation into what should be one and only one optimum constellation. Some thoughts on this idea will now be presented.

Given any number of poles in the S-plane, one may obtain minimum delay error by moving all of the poles out to infinity. The resulting filter then could be realized as a ladder structure consisting of series open circuits and shunt short circuits - a realization of no practical value. Thus the first consideration in writing the computer program is that of keeping the given poles clustered symmetrically about the mid-band frequency so that some kind of selective filter will result. This is most easily accomplished by specifying the mid-band time delay and holding this value constant

during execution of the program, automatically forcing all of the poles to remain near the mid-band frequency.

If one plots the phase response of a hypothetical narrow band minimum-phase bandpass filter, and superimposes on this curve a straight line drawn tangent to the phase curve at the mid-band frequency, the result in Fig. 3 may be obtained.

Fig. 3. Phase response of a bandpass filter having poor phase linearity. Curve (A) is phase characteristic of filter, line(B) is drawn tangent to phase curve at the mid-band frequency. The shaded area between (A) and (B) is a measure of the phase error.

If a computer program can be set up such that the shaded area in Fig. 3 is automatically reduced as poles are moved, the problem will be solved, since a filter having a straight line phase shift will have constant delay.

OUTLINE OF THE COMPUTER SOLUTION

The method of the computer program will be shown by consideration of a simple example. Given the three poles of Fig. 4,

let them be adjusted to give minimum delay error in the passband.⁵ The computer will first calculate the mid-band time delay for the three poles. This value of time delay is then stored and any subsequent pole movements are controlled in such a manner as to hold this initial time delay essentially constant. Next, the phase shift for the three poles is calculated at frequencies along the $j\omega$ axis beginning at the mid-band frequency and ending at an arbitrary point selected by the programmer - this ending point usually being just beyond the imaginary coordinate of the last poles (Pl and P3 of Fig. 4).

Fig. 4. Three poles to be adjusted by the computer to give minimum delay error.

The values of phase shift are then compared with those values obtained from a straight line drawn through the phase characteristic for the initial pole positions, as in Fig. 4. With the lines A and B of Fig. 3 determined in the computer, it next calculates the magnitude of the shaded area between them and stores this number.

Now a pole is moved. First, the middle pole is moved a small distance along the real axis with other poles remaining fixed at their initial locations. Then the shaded area is recalculated. If it

5. The result will approximate an n = 3 Bessel filter.

is less, indicating lower phase error, the pole is moved again in the same direction until the value of the area passes through a minimum. Upon passing through the minimum, the pole is moved back to the location giving minimum delay error and left at this point. If upon the initial movement of pole P2 in the real direction the area had become larger rather than smaller, the pole movement would have been reversed and a minimum sought.

Next, poles Pl and P3 are moved in the real direction as a conjugate pair until the area function is again minimized. Following this, poles Pl and P3 are moved in the imaginary direction to seek an area minimum. Now all three poles have been moved in all possible directions to minimize the delay error. However, due to interactions between the poles upon the delay error, the entire process is generally repeated for a number of complete cycles.

Usually, four or more complete cycles of pole movement will complete the minimization of the delay error. How quickly the solution is arrived at depends on many factors, including how close to the optimum the starting pole constellation was, and for what percent of the passband a linear phase response is desired.

There exist refinements in the program which allow the operator to exercise some control over the results. The initial value of pole movement increment is adjustable. Assuming that a rough solution is required, the poles may be adjusted in large steps to arrive quickly at a result good enough for an evaluation.

The programmer may decide to equalize the delay over the whole passband, or choose equalization near the mid-band frequency only - the

latter giving somewhat better amplitude characteristics. Using the program, any known all pole filter may have poles added to it and then have these added poles adjusted to give minimum delay error to the combination. The program is limited, however, to the poles of minimum-phase filters, although modifications to include poles and zeros of nonminimum-phase filters are not impossible.

DESIGN OF RIMO FILTERS USING THE COMPUTER PROGRAM

Introduction

Realization of a Rimo filter begins with choosing the desired selectivity. A given selectivity can be satisfied by several pole constellations, but by referring to the normalized data in the appendix, the approximate number of poles required for linear-phase filters of desired selectivity may be determined by examining the amplitude responses for the tabulated Rimo filters. If the design criteria can be met by one of the pole plots in the appendix, the location of the poles is thus finished and the realization of the filter can proceed to any synthesis method the designer chooses.

If the **mquirements** cannot be met by one of the pole plots in the appendix, or if the designer wishes to equalize the delay of some filter he already has, the computer program will have to be used.

Explanation of the Computer Program

During the forthcoming discussion of the actual programming of the computer to design a Rimo filter, the program and its flow chart will be covered in detail. A through understanding of the operation of the program is essential in order for one to achieve maximum results.

6. The program and flow chart appear in Appendix, pages 7 to 18.

Table no. 1 below lists the variables which are used by the computer in working the program. Some of these variables are used by the programmer in initializing the problem; others are used only by the computer in working out the program. This table should be referred to as the discussion of the program and its flow chart progresses.

TABLE 1.

(a) Variables Used by the Programmer

NF.....number of fixed poles NV.....number of movable poles I.....equal to zero for odd number of fixed poles equal to one for even number of fixed poles NI.....equal to zero for odd number of movable poles equal to one for even number of movable poles MOOD DELLused collectively to control pole movements COW MOO YY(NN)......dimensioned array for the movable poles X(N).....dimensioned array for the fixed poles Y(N)' FB.....area weighting function CONST.....area weighting function REFER.....initial value for weighted area

(b) Variables Used by the Computer Only

INDEX.....cumulative number of pole movements made POSER.....maximum positive phase error, radians ERNEG.....frequency of maximum positive phase error NEGFQ.....frequency of maximum negative phase error TABLE 1, CONTINUED

ERFNC	weighted area between linear-phase line and
	filter phase curve.
FEE	.phase angle to the fixed poles.
FEEE	.phase angle to the movable poles.
MOD	.control variable used in locating point of
	minimum phase error during movement of a pole.
M	.variable controlling computed GO TO.
N	.index on dimensioned variable for fixed poles.
NN	.index on dimensioned variable for movable poles.
NE	dummy variable used to set value for NSFP.
NNE	dummy variable used to set value for NSVP.
NSFP	equal to one for odd number of fixed poles,
	equal to two for even number of fixed poles.
NSVP	equal to one for odd number of movable poles,
D 177	equal to two for even number of movable poles.
	actual distance a pole is moved in 5-plane.
INDIX	number punched in output data. Gives total
	number of pore movements accumulated by
	minimum delar encon
	minimum deray error.
ERRA.	
ERRIL	departure from linear phase, in radians, at
	normalized frequencies of 5 10 15 300
	HOLINGITINED ILEGRETICIES OF JO TOO TJOO TOO
	radians/second.
	radians/second.
мм	radians/second.
MM	radians/second. dummy variable used to control exit of computed GO TO loop.
мм	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable.
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K.
MM K F ANG(K)	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K
MM K F ANG(K)	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100.
MM K F ANG(K) FE(K)	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. sphase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical
MM K F ANG(K) FE(K) ANGL	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency.
MM K F ANG(K) FE(K) ANGL ERR(K)	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100.
MM K F ANG(K) FE(K) ANGL ERR(K) DELTA	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. dummy used to accumulate summing of the
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. dummy used to accumulate summing of the weighted errors. (see ERFNC below)
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. dummy used to accumulate summing of the weighted errors. (see ERFNC below) weighted area function resulting from the continued summing of DETTA
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. dummy used to accumulate summing of the weighted errors. (see ERFNC below) weighted area function resulting from the continued summing of DELTA. FRE(K) multiplied by a thousand Used to
MM	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. dummy used to accumulate summing of the weighted errors. (see ERFNC below) weighted area function resulting from the continued summing of DELTA. ERR(K) multiplied by a thousand. Used to control IE statement which in turn controls
MM K F ANG(K) FE(K) ANGL ERR(K) DELTA ERFNC JERR(K)	radians/second. dummy variable used to control exit of computed GO TO loop. fixed point frequency variable. floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. dummy used to accumulate summing of the weighted errors. (see ERFNC below) weighted area function resulting from the continued summing of DELTA. ERR(K) multiplied by a thousand. Used to control IF statement which in turn controls output data punched for NEGFO. ERNEG. KOSFO.
MM K F ANG(K) FE(K) ANGL ERR(K) DELTA JERR(K) JERR(K)	radians/second. .dummy variable used to control exit of computed GO TO loop. .fixed point frequency variable. .floating point frequency variable. Always equal numerically to K. phase angles to all poles at frequencies K for all K from 1 to 100. .phase angles to fixed poles only at frequencies K for all K from 1 to 100. phase angle to all poles at frequency K equal to one only. Also equal to the numerical value of the normalized time delay in seconds for the mid-band frequency. phase error as departure from linear-phase for all K from 1 to 100. .dummy used to accumulate summing of the weighted errors. (see ERFNC below) weighted area function resulting from the continued summing of DELTA. ERR(K) multiplied by a thousand. Used to control IF statement which in turn controls output data punched for NEGFQ, ERNEG, KOSFQ, and POSER.

TABLE 1, CONTINUED

KLUNK.....controls direction of initial movement of a pole; reverses movement direction if initial movement causes an increase in phase error.

The logic of the computer program will be most easily understood if the above table is used in conjunction with the flow chart in following the program.

Consideration of a specific example will show how the program operates: five movable poles will be adjusted to equalize the delay of a five-pole minimum-phase filter. Given in Fig. 5 below are the poles of a five-pole Butterworth function, taken from Ref. 2, page 331.

P4 X				
P2 ×		Р4	0. 309	+ j0.951
		P 2	0.809	+ j0.588
Pl X	$-\omega_{o}$	Pl	1.000	+ j0.000
		P3	0.809	-j0.588
P3 X		P5	0.309	-j0,951
P5 ×				

Fig. 5. Pole locations for a five-pole Butterworth function. (L.H.P. poles only)

Before insertion into the computer, the poles must be normalized such that the imaginary parts of the outermost poles (those farthest from the mid-band frequency) have an absolute value at or slightly below 100.000.⁷ This is most conveniently done by multiplying the real and imaginary parts of all poles in Fig. 5 by 100.000 with the resulting values appearing in Table 2 below.

TABLE 2

Fixed poles :	scaled fo:	r insertion	into	the	computer
X(1)100 X(2)80 X(3)80 X(4)30 X(4)30	0.000 0.902 0.902 0.902 0.902	₩	Y(1) Y(2) Y(3) Y(4) Y(5)		0.000 58.779 58.779 58.779 95.106

A guess based on a graphical study of this pole configuration led to placing the five movable poles as follows:

TABLE 3

Movable poles scaled for insertion into the computer

XX(1)100.000	YY(1) 0.000
XX(2) 99.000	YY(2) 30.500
XX(3) 99.000	YY(3)30.500
xx(4)154.000	YY(4)107.000
xx(5)154.000	YY(5)107.000

Initial values for NF, NV, I, MOOD, DELL, COW, and MOO were set up as in Table 4.

TABLE 4

Initial	values	for	the	program	control	variables
NF NV I NI	5				MOOI DELL COW	00 L0.0

7. Real parts for the poles in the L.H.P. are given plus signs in order to simplify the input data. The program is set up in such a manner that this causes no problem.

An arbitrarily large number is chosen to initialize the value for REFER:

REFER.....1715.966

When the above input data has been punched on cards according to the relevant FORMAT statements, the program is compiled. The data cards from tables 2, 3, and 4 are read in along with REFER and the computer is started.

Normally, all sense switches are left OFF and the computer proceeds from statement 410 to statement 21, initializing the various control variables as follows.

$$MOD = MOOD = 0$$

$$M = NI + 1 = 0 + 1 = 1$$

$$N = I = 0$$

$$NN = NI = 0$$

$$30 \text{ NNE} = NN = 0$$

$$32 \text{ NE} = N = 0$$

$$35 \text{ NSFP} = NE = 0$$

$$NSVP = NNE = 0$$

$$DEL = DELL = 2.7$$

$$250 \text{ K} = 1$$

$$21 \text{ F} = \text{ K} = 1$$

Statement no. 21 actually begins the problem solving phase of the program. This will become more evident with the consideration of a few more steps:

22 N = N + 1 = 0 + 1 = 1 NSFP = NSFP + 1 = 0 + 1 = 1 25 FEE = FEE + ATANF((Y(N) - F)/X(N))or 25 FEE = 0 + ATANF(0.000 - 1)/(100.000)which is -0.0099996666 radian.

The situation existing in the computer as statement 25 is executed is shown in Fig. 6 below. Only the relevant pole X(1), Y(1) is shown.

Fig. 6. Graphical representation of statement n. 25 with the computer executing this statement at the first pole for frequency equal to one.

Note that the angle FEE is made to come out as a negative quantity by subtracting the frequency 1 from the Y value of the pole. This is consistent with reality, as the phase contributed by a pole in the L.H.P. is negative for frequencies above the imaginary part of the pole.

After computing FEE, the machine proceeds to the next pole X(2), Y(2) by the following steps:

22 N = N + 1 = 1 + 1 = 2NSFP = NSFP+1 = 2 25 FEE = FEE + ATANF((Y(N) - F)/X(N)) or FEE = -.099996 + ATANF(58.779 - 1)/(80.902) which is +0.61018317 radian.

This process continues until FEE is summed for all of the fixed poles at the frequency F = K = 1. Then the phase angle contributed by all of the poles at frequency 1 is stored as:

24 FE(K) = FEE

FE(1) = -0.032360900 radian.

next the phase angle to the movable poles is calculated, using a method similar to that for the fixed poles. This process is contained in statements 23 to 13 inclusive and will not be explained in detail.

Statement 14 is executed only if there are no fixed poles. Thus the procedure passes on to statement 15 where the total phase angle to all of the poles - fixed and movable - is stored in ANG(1) as:

or	$\Delta NG(1) = 1$	FF(1) + FFFF	
and	ANG(1) =	-0.069569700	radian.

The variables controlling the calculation of phase angle are now reinitialized so that the computation of these angles can be carried out for frequency F = K = 2.

16 FEE = 0.
FEEE = 0.

$$N = I = 0$$

 $NN = NI = 0$
 $NSFP = NE = 0$
 $NSVP = NNE = 0$
998 ANGL = ANG(1) = -0.069569700 radian.

Statements 999 to 104 - 2, inclusive, control the storage of output data consisting of the normalized frequencies of maximum positive and negative phase error and the values, in radians, for these phase errors.

Statement 63 increments frequency to the next value as:

$$63 K = K + 1$$

17

or

$$K = 1 + 1 = 2$$

GO TO 21

The computer returns to statement 21 and follows the procedure outlined above for frequency F = K = 2 instead of F = K = 1. This process continues for frequencies 3,4, 5,...100. When the machine reaches frequency 100, it will have computed the entire phase curve⁸ for all of the given poles at 100 points along the frequency axis. Output data is then punched in accordance with statements 64 to 997, inclusive, as tabulated below:

TABLE 5

The	First	Set	of	Output	Data	Punched	by	\mathtt{the}	Comput	er
-----	-------	-----	----	--------	------	---------	----	----------------	--------	----

YY(1)....

YY(2)....

YY(3).... -30.500

YY(4).... 107.000

YY(5)...-107.000

0.000

30.500

INDEX....1 POSER....0.02123 radian KOSFQ....56 ERNEG....0.1750 radian NEGFQ....100 XX(1)....100.000 XX(2)....99.000 XX(3)....99.000 XX(4)....154.000 XX(5)....154.000

The actual output data as punched by the computer for four complete pole movement cycles using the data from tables 2, 3, and 4 with REFER of page 14 appears in the appendix on pages 19 through 34. Note how the first four lines of the output data correspond to table 5 above. Now examine the next four lines of the output data, observing that pole XX(1) has been moved 2.7 normalized units to the left along the real axis. How this was accomplished will now be explained.

8. That portion of curve (A) of Fig. 4 to the right of the mid-band frequency. By symmetry, the left hand portion is the same.

18

or

After punching the output data appearing above, the computer arrives at statement 997 + 1. In this statement, ERFNC, the weighted phase error area function, is compared with REFER, which is the arbitrarily large phase error area function read in the input data. Since ERFNC is less than REFER, the computer proceeds to statement 333.

333 KLUNK = KLUNK + 1 =
$$0 + 1 = 1$$

GO TO 252

Statement 252 replaces the old REFER, 1715.966, with the just calculated value for ERFNC, 83.811. When a pole has been moved and a new ERFNC calculated, it will be compared with this new value for REFER, 83.811, in order to ascertain whether the pole movement has made the phase error better or worse.

The series of arithmetic statements beginning with ERRA = ERR(5) and ending with ERRU = ERR(100) stores twenty values of phase error, in radians, for later output data. Statements 275 through 255 - 1 reset ERFNC, POSER, ERNEG, KOSFQ, and NECEFQ so that these may be recalculated for the next pole configuration.

Pole XX(1), YY(1) is now moved 2.7 units to the left by statement 255 as follows:

255 GO TO(253,260,280,270,290,261,262,266,265), M Since M = 1, the computer goes to statement 253 and executes it as below:

253 XX(1) = XX(1) + DEL

$$XX(1) = 100.000 + 2.700 = 102.700$$

GO TO 10

Pole XX(1) is now located at 102.700 and the computer has returned to statement 10 to begin a new cycle of calculations. This new cycle determines the output data appearing on lines five through eight in the output data printout on page 19 of the appendix.

By examining the output data, the progress of pole XX(1), YY(1) may be determined. Note that the pole continues to move in steps of 2.7 units until a point is reached where the relative magnitudes of ERFNC and REFER change. The pole continues to move to the left as long as ERFNC continues to be less than REFER. When a point is reached where ERFNC is calculated to be greater then REFER (line 8 on pageA19) the pole would either have been moved the wrong way initially or moved through a point of minimum delay error. In this case, the initial movement of the pole w_as in the wrong direction, since the computer was "fooled" by the initial read in value for REFER. ⁹

The motion of the pole is now reversed; i.e., it is now moved to the right toward the point of minimum delay error as follows:

251 IF(KLUNK) 258, 258, 259

9. Negligible machine time (in comparison to the total) is lost by this process. The writer once calculated REFER to two significant figures using a graphical process and a slide rule; this took forty hours. The machine used by the author(an IBM 1620) - quite a slow computer - will calculate refer for ten poles in about forty seconds.

or

Since KLUNK = 1,

or

259 MOD = MOD + 1MOD = 0 + 1 = 1

and since MOD = 3,

or

249 DEL = -DEL/3.DEL = -2.7/3. = -0.9

With DEL now equal to -0.9, the pole is moved to the right in successive steps of 0.9 units until the point of minimum delay error is again passed. DEL is then divided by three and its sign changed, and examination of the output data (appendix page A19) will show that the pole is now moved to the left in steps of 0.3 units until the minimum delay error point is passed for the third time.

In order to return pole XX(1) to its optimum position, it is moved 0.3 units to the right and then left at this point which gives minimum delay error. (The minimum value for ERFNC is given in the output data as 71.627.)

The next pole - actually the conjugate pair XX(2), XX(3) - is moved 2.7 units to the left, beginning the system of movements that will soon locate this pair at the X coordinate giving minimum delay error. The process of pole movements continues until all of the poles have been moved, with single poles being moved in the X direction only and conjugate pairs being moved in both the X and Y directions. All of the pole movements are summarized in table 6 on the next page.

TABLE 6

Summary of Pole Movement Directions for 5 Movable Poles

pole	movements
XX(l), YY(l)	in X (real) direction
XX(2), YY(2) XX(3), YY(3) XX(4), YY(4) XX(5), YY(5)	in X and Y (imaginary) direction as a conjugate pair

A study of the output data from the beginning (appendix p.Al9) to the end (appendix p.A34) will reveal the pole movements summarized above.

Note that in the output data when the movement of a pole has been completed, three extra lines appear. Examine line 57 on page A20 of the appendix. The INDEX (actually INDIX) with a value of 13 states that it took thirteen pole movement steps to place the pole XX(1) in a position to give minimum ERFNC. Count up eight lines and note that the same number (now INDEX) appears at the start of line 49. At INDEX = 13, the pole has been located at the optimum position, four lines later the computer has determined that the point of minimum delay error has been passed, and seven lines later (line 61) the pole XX(1) has been relocated at its optimum position and the next pole movement (XX(2), XX(3)) has been executed.

The three extra lines of data appearing at each optimum pole position give the phase errors, in radians, at frequencies of 5, 10, 15,.... 100 normalized frequency units for the pole position given by the number, INDIX, punched at the start of the first of the three lines. Sometimes one or two of the phase errors punched at an optimum pole position will correspond to POSER or ERNEG. Since ERNEG, 1.871E-Ol radians, occurs at frequency 100, this value is also punched as the last entry on line 49.

When the computer has completed the entire cycle of pole movements for the first time, it arrives at statement 300 in the program and executes:

or

300 M = NI + 1M = 0 + 1 = 1

It then prints, on the typewriter, statement no. 77:

X-Y POLE SHIFT CYCLE COMPLETE

This tells the programmer that the machine is now going to reiterate the entire pole movement process. Execution of the program continues:

COW = COW + 1. = 0. + 1. = 1.0

and

5
$$MOO = MOO + 1 = 0 + 1 = 1$$

301 $DELL = DELL/3.0 = 2.7/3.0 = 0.9$
 $DEL = DELL = 0.9$
 $MOD = MOOD = 0$
 $GO TO 275$
275 $ERFNC = 0.$
 $POSER = 0.$
 $ERNEG = 0.$
 $KOSFQ = 0$
 $NEGFQ = 0$

255 GO TO(253,260,280,270,290,261,262,266,265), M

Since M = 1, the machine proceeds to statement 253, as shown on the next page.

$$253 XX(1) = XX(1) + DEL$$
$$XX(1) = 97.600 + 0.9 = 98.500$$

or

The entire cycle of pole movements thus begins anew with DEL starting out as 0.9 instead of 2.7. This will give a finer resolution in locating the optimum pole positions.

On the third cycle, DEL begins with a value of 0.3, and on the fourth, or final cycle, DEL begins with a value of 0.1. On the third and fourth cycles, the number of pole movement reversals decreases, with a corresponding reduction in the number of times the variable DEL is changed. A final solution is approaching and machine time will be saved if the number of back and forth pole movements is decreased. The relative values of COW and MOOD are the controlling factors in the number of back and forth movements of the poles as the cycles progress; tables 7 and 8 show some possibilities.

TABLE 7

Number of changes in the variable DEL, including that giving the final pole positioning, which occur for different values of COW with MOOD equal to zero.

COW	lst cycle	2nd cycle	3rd cycle	4th cycle
-2.0	4	4	4	4
-1.0	4	4	4	3
0.0	4	4	3	2
1.0	4	3	2	1

Line three of table 7 shows the pole movements executed by the program under discussion. As another example, consider the table on the following page, with MOOD set equal to +1 instead of 0.

10. If the initial movement of a pole is incorrect, one more change in the variable DEL than the number indicated in the table will occur.

TABLE 8

Number of changes for variable DEL, including final positioning, which occur for different values of COW with MOOD equal to +1.

COW	lst cycle	2nd cycle	3rd cycle	4th cycle
-2.0	3	3	3	2
<u></u> 0	د ۲	2	2	L
1.0	2	1		-

The programs of table 8 would take little machine time and would be useful in obtaining an approximate solution. Note that less than four movement cycles are possible. For line three of table 8, MOO will have to be initialized at one rather than zero to prevent a "hang up" on the nonexistent fourth cycle; similarly for line four, MOO will have to be initialized at two.

Returning to the program being discussed, table 9 below summarizes the actual pole movement steps which happen during the four complete pole movement cycles. Every single pole will have experienced each of these movements in the X direction, while every conjugate pair will have experienced each of these movements in both the X and Y directions.

TABLE 9

A Summary of the Pole Movement Increments for the Program Under Discussion

lst	cycle	2.7,	-0.9,	0.3,	-0.3
2nd	cycle	0.9,	-0.3,	0.1,	-0.1
3rd	cycle	0.3,	-0.1,	0.1	
4th	cycle	0.1,	-0.1		

Examination of the output data contained in the appendix will confirm the pole movement cycles outlined in table 9.

MOO is the variable which causes the execution of the program to cease. When MOO reaches the value four in statement 5 + 1, four complete pole movement cycles would have been completed. The following steps are then undertaken:

PRINT 107

and statement 107 is typed as:

FINAL X-Y POLE CYCLE COMPLETE. NEW DATA NEEDED

continuing,

PUNCH 108, ANGL

and ANGL is punched as

-69.830110E-03 (radians)

Evaluating the Result of the Computer Program

The programmer must then decide if the four pole movement cycles gave sufficient delay equalization. Two criteria exist which are used to ascertain the usefulness of the solution. The first involves the examination of ERFNC. If the value of ERFNC is observed to be rapidly decreasing at the end of the output data, then the optimum delay error point has not been reached and another set of pole movement cycles will be required.

To initiate a new set of pole movement cycles requires only the re-use of the final cards from the output data which give the last
optimum pole locations; these are lines 820 and 821 on page A34 of the appendix.¹¹ The last value of REFER may be used, or the arbitrary large value used earlier may be re-used. The same card originally used to initialize NF, NV, I, NI, MOOD, DELL, COW, and MOO may also be re-used, but a new one is generally punched. In most cases, it is better to start a second complete run with a reduced initial value¹² of DELL; i.e., a value of 1.8 or 1.2 may be used instead of the original value of 2.7.¹³ Below are summarized the data which might be read in for the next complete run of four cycles:

TABLE 9

Initial Data to Start a	New Four Cycle
Pole Movement	
XX(1) 94.700	NF5
XX(2) 99.000	NV5
XX(3) 99.000	I0
XX(4)158.000	NI0
XX(5)158.000	MOOD0
YY(1) 0.000	DELL1.8
YY(2) 30.300	COW0.0
YY(3)30.300	M000
YY(L) 105.600	
YY(5)105.600	

The second criterion for evaluating the result of the computer solution involves the determining of the absolute phase errors. If ERFNC is found to be nearly static in the output data as pole movements are executed, then the poles are in their optimum positions and further computation is not necessary. By multiplying ANGL (the last line of

11. Note that here REFER is static and a new run is not necessary.

- 12. Note the violence done to REFER by using the large value for initial DELL of 2.7 here. The pole position of tables 2 and 3 was nearly optimum.
- 13. Making DELL divisible by three makes the pole movement reversals easy to follow in the output data.

27

output data, page A34 of the appendix) by 5, 10, 15.....100 and comparing the results with the phase errors printed on line 827 to 829 of the output data (page A34 of the appendix), the magnitude of the phase or delay error for the pole constellation may be evaluated, as will now be shown:

ERR(35) is determined from the output data to be

1.057E-03 radians

and ANGL is

-69.830110E-03 radians

and

$$(ANGL)(35) = -2.4440$$
 radians.

Thus the phase error is 0.001057 radians in -2.4440 radians. Expressed as a per cent, the result is

phase error = 0.0433 %, leading.

Approximate time delay error in per cent may be established as follows:

ANGL = radians of phase shift at
$$F = K = 1$$

therefore

midband time delay =
$$\frac{\text{phase shift}}{\text{frequency 0 to l}} = \frac{\text{ANGL}}{1}$$

which evaluates as

0.069830110 seconds.

Delay error will be indicated by the departures which exist along the passband from the value of this midband time delay. The value of the time delay at F = K = 35 is determined approximately as:

which gives

0.069377 seconds @ frequency 35.

Thus the delay error with respect to the mid-band delay is given by:

DELAY ERROR,
$$\mathscr{S} = \frac{\text{MID-BAND DELAY} - \text{DELAY AT 35}}{\text{MID-BAND DELAY}}$$

or

DELAY ERROR,
$$\% = \frac{0.069830 - 0.069377}{0.069830} = 0.648 \%$$

A more accurate result, if needed, may be obtained by calling from the computer memory the final value of the entire array ERR(K). Resolution of ERR(K) to frequencies only one unit apart would then be possible, as opposed to the resolution of the punched data, which gives phase errors for frequencies five units apart. The equation for delay error given above can then be used to determine the delay error, as before.

Some Further Details

The possibility may arise that the delay error is excessive when the optimum pole constellation is reached, as indicated by no further reduction in ERFNC. Two possible reasons exist for the difficulty: (1) The delay error due to the fixed poles is so great that the specified number of movable poles cannot achieve delay equalization, and (2) delay equalization over too great a bandwidth is being attempted.

Resolving the difficulty involves either adding more movable poles and/or modifying the weighting of the error function. The adding of more poles is a fairly easy task, at least in principle, and needs no special explanation.

Modifying the weighting of the error function involves the adjustment of the two quantities CONST and FB. This is achieved by starting the program going with SENSE SWITCH ONE turned ON. The machine will then type:

INSERT CONST, FB

Using the typewriter, new values of CONST and FB are read into the program. Generally CONST will be left at the value 1.0, but to attach less importance to delay errors far removed from the mid-band frequency, FB is made smaller; it may be made less than 100, so that the computer will deliberately accentuate the delay error at the band edges in order to achieve less delay error near the mid-band frequency.

Generally, small values of FB and CONST will give a delay error characteristic tending toward an "equal ripple" condition, while large values for FB and CONST will produce a delay error characteristic tending toward a "maximally flat" condition.

Conclusion

The explanation of the computer program given here is by no means complete. Indeed, a full exposition would require a book and is beyond the scope of this paper. However, given a through understanding of the operation of the program for the given example above, the reader will, with further study of the program, its flow chart, and tables one through nine, come to a full understanding of its operation. To further assist the reader in comprehending the operation of the program, the complete set of input data used in computing all of the pole locations given in the appendix is given along with the relevant pole locations.

APPLICATION OF THE RIMO FILTER TO THE FM IF AMPLIFIER

The real usefulness of the Rimo filter lies in its application to FM transmission. Ideally, FM signals are sensitive to phase information only, and it is this characteristic that makes Rimo filters useful for FM transmission. These filters have nominally linear phase response and moderately rounded amplitude response within their passbands, and high attenuation outside their passbands. If an FM signal is applied to a Rimo filter, it will pass through with its important phase information negligibly distorted. The moderate amplitude distortion which results would be easily handled by a good limiter, while the high selectivity will effectively suppress alternate channel signals.

Full realization of the potential inherent in the Rimo filter concept utilized in an FM IF amplifier design requires some care in the layout of the system. Poles of a Rimo filter are chosen on the basis of required selectivity and allowable circuit complexity. Two experimental FM receivers have been built using the Rimo filter concept, the first being a "state of the art" tuner and the second being a table radio. Both use identical 5-pole Butterworth filters with five equalizer poles, with the equalizer poles being realized in a different manner in each.

A functional block diagram of the tuner is shown in Fig. 7, and that of the radio is shown in Fig. 8 on the next page.

Fig. 7. Functional block diagram for the tuner. The five interstage networks are the five equalizer poles (Pl through P5).

32

Note that in realizing the Rimo filter, the poles were split. The Butterworth portion, which comprises much of the selectivity, is a lumped passive filter following the mixer. The less selective equalizer poles are distributed as interstage networks between the IF amplifier stages. Some of the care in realizing the Rimo filter - amplifier system should now be evident. Overloading of the IF amplifier by strong alternate channel signals is reduced to a minimum by placing the selective Butterworth poles in a filter before the first IF amplifier. The less critical low-Q equalizer poles are placed in the IF amplifier beginning with the higher Q poles and ending with the lower Q poles. The single center pole is placed between the last IF stage and the limiter. Reserving the center pole for the final (output) position in a tuned amplifier is common practice, as it gives maximum output capability ¹⁴ in the center of the bandpass where it is generally most needed.

An FM tuner must accept signals which vary at the antenna input from levels of less than a microvolt to over a volt, and with this great variation still produce an output which is as free of noise and distortion as possible. Since the information contained in an FM signal is determined by phase only and not by amplitude, it might seem possible in an FM receiver to use a low-noise RF amplifier followed by the mixer, IF amplifier, and detector, and run the whole receiver at full gain at all times, using no AGC. However, under these conditions, when a relatively weak desired channel is being received among several strong near-by channels, all of the signals could arrive limited to the same amplitude level at the detector, causing crosstalk and distortion.

A better situation would result if the receiver were to have a highly selective, closely gain controlled IF amplifier preceding the limiter, and allow the limiter to smooth only the IF response in the desired channel. Off channel signals would then enter the limiter and detector at a lower level than the desired signal determined by the IF selectivity. Somewhat elaborate circuitry is used in the tuner to achieve a very constant input amplitude to the limiter and detector. The radio uses a standard AGC circuit which follows common design practice.

14. Tuned amplifiers generally have an odd number of poles to allow the placing of the single odd pole at the output position.

The remainder of the circuitry in the tuner follows somewhat standard practice. The four-tube front end gives the required 45 db of gain before the first IF grid, with delayed AGC applied to the two RF stages. The 6BA7 mixer, although noisy, has excellent overload capability and good conversion gain. A schematic and performance characteristics of the tuner are presented in the appendix.

The table radio uses a Rimo filter in addition to otherwise orthodox circuitry. Performance data appear in the appendix.

Considerable work on both the tuner and radio remains unfinished, with neither unit in a static condition and both still undergoing constant experimentation. Among some things awaiting further study are a multiplex decoder for the tuner, and an investigation of distortion of the signal caused by imperfect limiting.

CONCLUSION

In the field of minimum-phase filters, the Rimo filter is to phase sensitive signals as the flat-amplitude approximations are to amplitude sensitive signals. Using the charts or the computer program presented in the appendix, the designer may choose the poles of a minimum-phase constant delay filter of any desired selectivity, in a manner exactly analogous to the selection of a minimum-phase flat amplitude filter of any desired selectivity.

In both the tuner and radio, the result of the application of the Rimo filter concept to the IF amplifier design has been gratifying. The performance of the tuner is nothing short of excellent, and the reception of stereo broadcasts from distant stations has been of 15. An Eico model MX-99multiplex decoder is presently in use with the tuner.

35

consistently good quality. In many cases, these distant signals are not audible on other tuners due to their poor selectivity.

The Rimp filter concept as presented in this paper is very incomplete - indeed it is only a beginning. The Rimo filter is still in its genesis and much experimentation with the computer program will be necessary before any general conclusions can be made concerning these filters. Among the aspects in consideration for future exploration is the effect of the area weighting function on the amplitude and phase response of Rimo filters.

An important aspect to be pursued is the determination of exact solutions for maximally-flat and equal-ripple time delay filters using the computer program - if such solutions exist.

Current plans call for a continued research in Rimo filters beyond this thesis with the abovementioned ideas forming the basis for the future investigation.

REFERENCES

PARTICULAR

1. Modafferi, R. "A New Design A Distortion 10. Newark College December 1963.	7 MC IF Amplifier" of Engineering, (Unpublished)

Network Analysis and Synthesis New York: John Wiley & Sons, 1962 2. Kuo, F.F.

GENERAL

3.	Tibbs, C &		
	Johnstone, G	Frequency Modula	ation Engineering
		New York: John V	Viley and Sons, 1956
		Second Edition,	revised.

.

THE RIMO FILTER

APPENDIX

PERFORMANCE DATA, BUTTERWORTH TUNER

taken from Ref. 1,

page 27.

- IHFM SENSITIVITY:Local: 2uv across 75 ohmsDistant: 0.7 uv across 75 ohms
- LOCAL OSCILLATOR DRIFT. Less than 2KC after 5 minute warmup and 10% line voltage change
- CAPTURE RATIO: 3 DB
- TUNING RANGE: 86.5 to 110 MC
- NOISE FIGURE: distant: 2.1 DB
- SPURIOUS RESPONSES: distant: down at least 60 DB local: down at least 84 DB
- INPUT VSWR: less than 1.2:1 referred to 75 ohm input
- RATIO DETECTOR BANDWIDTH: 800 KC peak to peak
- AUDIO OUTPUT: 1 volt nominal at 1KC, 100% modulation
- SIGNAL TO NOISE RATIO: 70 DB or greater for input 1000 uv

additional data

NUMBER OF VACUUM TUBES	12
NUMBER OF SEMICONDUCTORS	15
HARMONIC DISTORTION:	Less than 0.3% for 100% modulation, 50 CPS to 15KCPS, 1000 uv input

Note: A simpler version of this tuner was constructed, using ll tubes and three semiconductors, and gave essentially the same performance as listed above. It is still in use.

PERFORMANCE DATA, RIMO FILTER TUNER

1.5uv across 75 ohms
Less than 2KC after 5 minute warmup and 10% line voltage change
2 DB
86.5 to 110 MC
6 DB
image and second harmonic oscillator conversion, down at least 90 DB; all other spurious down at least 100 DB
less than 1.2:1 referred to 75 ohms
1.5 MC peak to peak
2.0 volts nominal at 1KC, 100% modulation
70 DB or greater for input 50 uv

NUMBER OF VACUUM TUBES	14, less multiplex decoder
NUMBER OF SEMICONDUCTORS	5
HARMONIC DISTORTION	essentially unmeasurable in mono or stereo on available test equipment; distortion in stereo mode on frequencies not subharmonically related to 19KC is probably less than 1%
IF BANDWIDTH:	@6DB: 221 KC
	@60 DB: 594 KC

@90 DB: 865 KC

* An audio output stage has been added to the tuner and does not appear in the schematic.

The Rimo filter tuner. The front end chassis, left front, is a carry-over from the original tuner built in 1962. The space on the right front is reserved for a cathode-ray tuning indicator similar to that now used on the Marantz model 10 tuner. An Eico MX-99 multiplex decoder is now in use with this tuner, and present plans are to keep it as its performance is entirely satisfactory. The rectangular box on top of the front end chassis is the Butterworth filter; note the five trimmer screws. By using a cable and plug format for the filter, it may be easily disconnected and another one substituted; this facilitated experimentation in the early stages of the tuner design.

A 4:

PERFORMANCE DATA, TABLE RADIO

IHFM SENSITIVITY:

0.5uv across 300 ohms

LOCAL OSCILLATOR DRIFT:

less than 25KC after 10 minutes warmup

image down at least 35 DB,

all other spurious down at least

CAPTURE RATIO:

TUNING RANGE:

NOISE FIGURE:

SPURIOUS RESPONSES:

INPUT VSWR:

RATIO DETECTOR BANDWIDTH:

40 DB 3:1 approx.

2.1 DB

6 DB, approx.

87 to 109 MC

300 KC

EFFECTIVE AUDIO FREQUENCY RANGE

100 cycles to 15 KC

AUDIO OUTPUT

3 watts

Note: The front end in this radio has been designed to operate from a built in cabinet antenna, which dictated a design based on highest possible sensitivity. The low-noise RF amplifier now used in the radio was originally used in the old tuner of Ref. 1.

The Rimo filter radio. This experimental radio was built with the idea of incorporating a high quality circuit in a small cabinet, allowing quality FM reception anywhere within reach of a power line outlet. The very high sensitivity of the radio makes good reception possible with the built in antenna, even in weak signal areas. At Liberty, NY, most of the New York City stations were received, at a distance of more than 100 miles.

```
DELAY EQUALIZATION OF MINIMUM PHASE FILTERS
\begin{array}{c} C & \downarrow C \\ C & \downarrow C \\ C & \downarrow C \end{array}
      MASTERS THESIS BY RICHARD MODAFFERI ADVISOR RH ROSE.
      DIMENSION X(10)+Y(10)
  ÷.,
      DIMENSION XX(10), YY(10)
      DIMENSION ANG(100)
      DIMENSION ERR(100)
      DIMENSION JERR(100)
      DIMENSION FE(100)
502
      INDEX = 0
      POSER =0.
  $ 2
      ERNEG=U.
      KOSFQ=0
      NEGFQ=0
      ERFNC =0.
      FB = 110.
      FEE = U.
      FEEE = 0.
      CONST = 1.0
      KLUNK = 0
      READ 400, X(1), X(2), X(3), X(4), X(5)
      READ 400, X(6), X(7), X(8), X(9), X(10)
      READ 400, Y(1), Y(2), Y(3), Y(4), Y(5)
      READ 400, Y(6), Y(7), Y(8), Y(9), Y(10)
400
      FORMAT(5F8.3)
       READ401,XX(1),XX(2),XX(3),XX(4),XX(5)
       READ401, YY(1), YY(2), YY(3), YY(4), YY(5)
       READ 4 \cup 1, XX(6), XX(7), XX(8), XX(9)
       READ 401, YY(6), YY(7), YY(8), YY(9)
      FORMAT (5F8.3)
401
       READ402, NF, NV, I, NI, MOOD, DELL, COW, MOO
       FORMAT(12,4X12,4X12,4X12,4X12,4XF4.1,2XF3.0,4X12)
402
       READ 410. REFER
       FORMAT (F8.3)
41°
       MOD = MOOD
       M = NI + 1
       N = I
       NN = NI
       IF(NI) 30, 30, 31
       NNE = NN -1
31
       GO TO 34
30
       NNE = NN
       IF(I) 32, 32, 33
34
       NE = N - 1
33
       GO TO 35
       NE = N
 32
 35
       NSFP = NE
       NSVP = NNE
       DEL = DELL
       IF (MOD - 3) 250, 263, 263
 10
       M = M + 1
 263
       KLUNK = 0
```

```
DEL = DELL
      MOD = MOOD
      INDIX = INDEX - 1
      PUNCH 102, INDIX, ERRA, ERRB, ERRC, ERRD, ERRE, ERRG
102
      FORMAT (15,6E10.3)
      PUNCH 103, ERRH, ERRI, ERRJ, ERRK, ERRL, ERRM, ERRN
      PUNCH 103, ERRO, ERRP, ERRQ, ERRR, ERRS, ERRT, ERRU
103
      FORMAT(7E10.3)
      IF(NI) 555, 555, 556
555
      MM = MM
      GO TO 557
556
      MM = M - 1
      IF(NV - MM) 300, 255, 255
557
      K = 1
250
      IF (SENSE SWITCH 2) 500, 501
      PAUSE
500
      IF (SENSE SWITCH 3) 502. 501
501
      IF (SENSE SWITCH 1 ) 20,21
20
      PRINT 3
      FORMAT (17H INSERT CONST, FB)
З
      ACCEPT 4, CONST, FB
      FORMAT(F5.3, F3.0)
4
      F = K
尺1
      IF (INDEX) 22, 22, 23
22
      N = N + 1
      NSFP = NSFP + 1
      IF (NF - N) 23, 25, 25
      FEE = FEE + ATANF((Y(N) -F)/X(N))
25
      IF(NSFP - NF) 22, 24, 24
24
      FE(K) = FEE
23
      NN = NN + 1
      NSVP = NSVP + 1
      FEEE = FEEE + ATANF((YY(NN)-F)/XX(NN))
      IF(NSVP - NV) 23, 13, 13
13
      IF (NF) 14, 14, 15
      ANG(K) = FEEE
14
      GO TO 16
      ANG(K) = FE(K) + FEEE
15
      FEE = 0
16
      FEEE = 0.
      N = I
      NN = NI
      NSFP = NE
      NSVP = NNE
      IF(INDEX) 998,998,999
998
      ANGL = ANG(1)
999
      ERR(K) =ANG(K) - ANGL*F
      DELTA = CONST * ERR(K) * (FB - F)
      DELTA = ABSF(DELTA)
      ERFNC = ERFNC + DELTA
      JERR(K) = 10000 \bullet * ERR(K)
      IF(JERR(K)) 60,62,58
      IF (ERR(K) - POSER) 62, 62, 59
58
59
      POSER = ERR(K)
```

```
KOSFQ = K
      GO TO 62
      IF (ERNEG + ERR(K)) 61, 62, 62
60
      ERNEG = -ERR(K)
61
      NEGFQ = K
      IF(K-100) 63, 64, 65
62
      PRINT 104
65
      FORMAT(22H FREQUENCY EXCEEDS 100)
104
      PAUSE
      GO TO 502
63
      K = K + 1
      GO TO 21
      INDEX = INDEX + 1
64
      PUNCH 100, INDEX, POSER, KOSFQ, ERNEG, NEGFQ
      FORMAT(110, E10.3, 110, E10.3, 110)
100
      PUNCH 101, XX(1), XX(2), XX(3), XX(4), XX(5)
      PUNCH 101, YY(1), YY(2), YY(3), YY(4), YY(5)
101
      FORMAT(5F8.3)
      1F(NV - 5) 149, 149, 150
      PUNCH 101, XX(6), XX(7), XX(8), XX(9)
150
      PUNCH 101, YY(6), YY(7), YY(8), YY(9)
      PUNCH 997, ERFNC, REFER
149
997
      FORMAT (2F20.3)
      IF (ERFNC - REFER) 333, 333, 251
      KLUNK = KLUNK + 1
333
      GO TO 252
      IF(KLUNK) 258, 258, 259
251
      DEL = -DEL
258
      KLUNK = KLUNK + 1
      GO TO 252
259
      MOD = MOD + 1
      IF(MOD - 3) 249, 264, 264
      DEL = -DEL
264
      GO TO 275
249
      DEL = -DEL/3.
      REFER = ERFNC
252
      ERRA = ERR(5)
      ERRB = ERR(10)
      ERRC = ERR(15)
      ERRD = ERR(20)
      ERRE = ERR(25)
      ERRG = ERR(30)
      ERRH = ERR(35)
       ERRI = ERR(40)
       ERRJ = ERR(45)
       ERRK = ERR(50)
       ERRL = ERR(55)
       ERRM = ERR(60)
       ERRN = ERR(65)
       ERRO = ERR(70)
       ERRP = ERR(75)
       ERRQ = ERR(80)
       ERRR = ERR(85)
       ERRS = ERR(90)
```

	CRRI = CRR(AD)
	ERRU = ERR(100)
275	ERFNC = 0.
	POSER = 0.
	ERNEG = 0.
	KOSFQ = 0
	NEGFO = 0
255	GO TO (253, 260, 280, 270, 290, 261, 262, 266, 265), M
253	XX(1) = XX(1) + DEL
~	GO TO 10
200	XX(Z) = XX(Z) + DEL
	XX(3) = XX(3) + DEL
	GO TO 10
220	YY(z) = YY(2) + UEL
	YY(3) = YY(3) - DEL
A B	GO TO 10
270	XX(4) = XX(4) + UEL
	XX(5) = XX(5) + DEL
10.00	GO TO 10
290	YY(4) = YY(4) + OUL
	YY(5) = YY(5) - DEL
~ ~ •	GO TO TO
601	XX(6) = XX(6) + DEL
	XX(7) = XX(7) + DEL
	GO FO 10
262	YY(6) = YY(6) + DEL
	YY(7) = YY(7) - DEL
	GO TO 10
265	XX(8) = XX(8) + DEL
	XX(9) = XX(9) + UEL
	GO TO 10
.20D	YY(B) = YY(B) + DEL
	YY(9) = YY(9) - DEL
	GO TO 10
300	M = NI + 1
	PRINT 77
<i>i</i> (FORMAT(31H X-Y POLE SHIFT CYCLE COMPLETE)
	COW = COW + 1
	IF(COW - 1.5) 5.5 6
0	MOOD = MOOD + 1
5	MOO = MOO + 1
" ()	IF (MUU - 4) 301, 100, 106
501	DELL = DELL/3.V
	DEL = DELL
	MOD = MOOD
104	
100	- MRINE IVA - Foomat Aamu Final VV oole avale aomolete New Data Newson N
$1 \le I$	- FURMAT 1475 FINAL AT MULE UTULE UUMMLETE® NEW DATA NEEDEU®J - Dunga 1881. Angi
108	
1 - C)	GO = TO = SO2
	END

A12.

A13. ø В 20 PRINT 3 PUNCH INDIX, PHASE ERRORS. ACCEPT CONST, FB 555 556 IF(NI) MM = M

A

A

IF (SENSE SW.

1

21 $\mathbf{F} = \mathbf{K}$

22

N = N + 1

IF(INDEX)

22

23

off

21

on 20

A14.

A15.

A 16.

A17.

TRI	MING TEST ON TU	HER DESIGN. MAY	7, 1965.	
	1 2.123E-02	56 1.750E-01	100	1
100 . 000	99,000 99,000	154.000 154.000		2
\odot_{\bullet} úqn	30.500 -30.500	107.000-107.000		3
	83.811	1715.966		4
	2 3.260E-02	57 1.617E-01	100	5
102.700	99 . 000 99 . 000	154.000 154.000		6
0 . 600	30,500 -30,500	107.000-107.000		7
	111.874	83.811		8
	3 2.885L-02	57 1.661E-01	100	9
101 . 800	99 . 000 99. 00 0	154.000 154.000		10
00 0 000	30,500 -30,500	107.000-107.000		1 1
	102.341	111.874		12
	4 2.506E-02	57 1.705E-01	100	13
100.900	99 . 000 99 . 000	154.000 154.000		14
6 . 006	30,500 -30,500	107.000-107.000		15
	92.968	102.341		16
	5 2.123E-02	56 1.750E-01	100	17
100.000	99.000 99.000	154.000 154.000		18
0000	30 . 500 -30.5 00	107.000-107.000		19
	83.811	92.968		20
	6 1.736E-02	56 1.795E-01	100	21
99.100	99.000 99.000	154.000 154.000		
0,000	30,500 -30,500	107.000-107.000		23
	76.497	83.811		24
	7 1.3455-02	56 1.841E-01	100	25
98.200	99 .0 00 99.000	154.000 154.000		26
0000	30,500 -30,500	107.000-107.000		~ 27
	72.439	76,497		28
	8 9•494E-03	55 1.887E-01	100	29
97.300	99.000 99.000	154.000 154.000	_	30
0000	30,500 -30,500	107.000-107.000		. 31
	71.790	72.439		32
	9 5 , 503E-03	55 1.933E-01	- 100	33
96.400	99.000 99.000	154.000 154.000		34
000.00	30,500 -30,500	107.000-107.000		35
	74.858	71.790		36
1	0 6.840E-03	55 1.918E-01	100	37
96.700	99.000 99.000	154.000 154.000		38
0000	30,500 -30,500	107.000-107.000		39
	73.393	74.858		40
1	1 8.170E-03	55 1.902E-01	100	41
97.000	99.000 99.000	154.000 154.000	_	42
0.000	30.500 -30.500	107.000-107.000		43
	72.375	73.393		44
1	12 9.494E-03	55 1.887E-01	100	45
97.300	99.000 99.000	154.000 154.000	-	46
000 . 0	30.500 -30.500	107.000-107.000		47
	71.790	72.375		48
1	13 1.081E-02	55 1.871E-01	100	49

97.6000	99.000	99 . 000	154.000	154.000		50
0.000	30.500	-30.500	107.000-	-107.000		51
	71.	627		71.790		52
1 =	4 1.213E	* * ⊖ <u>≥</u>	56 1.	856E-01	100	53
97.900	99.000	99.000	154.000	154.000		54
0.000	30.500	-30.500	107.000-	-107.000		55
	71.	839		71.627		56
13-1.1	14E -0 3-5-	-171H-01	3-2.728E-	-03-2.699	F-03-1.967F-03-4	1.894F-04
1.6805.00	3 4 • 357 E	-03 7.19	91E-03 9.	618E-03	1.081E-02 9.642E	-03 4.672E-0
-5.760E-0.	3-2-328E	-02-4-89	95E-02-8	236E-02-	1.206E=01=1.5826	-01-1.871E-0
- 13	5 3.068E		58 1	615E-01	100	60
97.600	101.700	101.700	154.000	154.000		61
0.000	30.500	-30.500	107.000-	-107.000		62
	1034	312		71.627		63
1 ,	100 1 6 1.0816		in 55, 1.	9715-01	100	- CO
97.600	-93*000 -1 * 0017	99.040	154-000	154-000	100	65
0.000	30.500	-30-500	107.000-	107.000		66
•••••••••	71.	627	1078000-	107.312		67
1	7 0.000F	027 '~99	0 2.	1345-01	100	69
97.600	96.300	96.300	154.000	154-000	100	60
0.000	30.500	-30.500	107.000-	-107.000		7 0
	122.	869	1010000	71.627		70
1	8 0.U00E	(mig Q	02	0465-01	1 00	72
97.600	97.200	97.200	154.000	154.000	1.00	73
0.000	30.500	-30.500	107.000-	-107.000		74
	96.	319		122.869		75
1	9 4.153E		55 1	958F-01	1.00	76
97.600	98.100	98.100	154.000	154.000	200	77
0 . 000	30.500	-30.500	107.000.	-107.000		78
	76.	518		96.319		79
ê.	0 1.081E	-02	55 1	871E-01	100	80
97.600	99 . 000	99 . 0u0	154.000	154.000		81
$\cup \bullet 000$	30.500	-30.500	107.000.	-107.000		82
	71.	627		76.518		83
i d	1 1.746E	02	56 14	•785E-01	100	84
97.600	99.900	99.900	154.000	154.000		85
0,000	30,500	-30-500	107.000	-107.000		86
	75.	934		71.627		87
2	2 1.525E	-02	56 1	•814E-01	100	88
97.100	99.600	99•6UU	154.000	154.000		89
0 . 000	30,500	-30.500	107.000	-107.000		90
	73.	577		75.934		91
2	3 1 . 303E	5 ~ 02	56 1	•842E-01	100	92
97 . 600	99 . 300	99 . 300	154.000	154.000		93
$\cup \bullet \cup 0 \cup$	30.500	-30•500	107.000	-107.000		94
	72	129		73.577		95
ن سن	4 1.0816	-02	55 1	•871E-01	100	96
97.600	99.000	99.000	154.000	154.000		97
9 . 000	30.500	-30.500	107.000	-107.000		98
	71.	•627		72.129		99

 	ン (301011日一)3	85 1 . 960E-01	100	100
97.600	Dr. 710 98.7	0 184.000 154.000		100
. ∿ o 1000	.3.500 ~30.5	0 107.000-107.000		102
	72.123	71.627		102
24-1.1	142-03-20171E-	-03-2.7280-03-2.69	9E-03-1.96	7E-03-4.894E-04
1.680E-	- 4.357L-03 7	.191E-03 9.618E-03	1.0515-02	9.642E-03 4.672E-03
-5.76.1L-1	3-2. 32 8Em 2-4	•895E-02-8•236E-02-	-1.206E-01-	-1.582E-01-1.871E-01
	o 2.1296-02	US 1.785E-01	100	107
97 . 640	-99.000 -99.00	0 154.000 154.000		108
しょこうし	33.200 -33.2	.0 107.000-107.000		109
	87.565	71.627		110
2	7 I.J.K.1E-02	55 1.871E- 01	100	111
97 . 6000	199.00 - 99.00	-v 154.000 154. 000		112
1.00C	30.0500 -30.056	20 107.000-107.000		113
	71.627	87.565		114
2). Iron	5 101145-63	55 1.951E-01	100	115
97.6000	990000 9900	.0 154.000 154.000		116
0 . 00f	27.800 -27.8	00 107.000-107.000		117
	63.671	71.627		118
	≠ 4•261E∞03	95 1.925E-01	100	119
97 . 600	- 99.0.0 - 99.0.	00 154.000 154.000		120
$\nabla \cdot \bullet \cup \cup$	28.7.06 -28.71	JU 107.000-107.000		121
	76•77s	83.871		122
3	/04942-03	55 1 . 899E-01	100	123
97.6000	99	.e 154.000 154. 000		124
0.000	29.600 -29.60	-6 107.600-107.000		125
	72•762	76.775		126
3	1 1.6816-02	55 1.871E-01	100	127
$\mathcal{T} \bullet \mathcal{T} \bullet \mathcal{T} \oplus \mathcal{T} \oplus \mathcal{T}$	199 . 000 99 . 0	JU 154.000 154.000		128
19 e (9 9 9 9	34.500 -30.5	00 107.000-107.000		129
	(1.627	72.762		130
می است است و ۲۰۰ و ۲۰	/. 1 04∠2t⇔02	56 1•843E-01	100	131
プイ いろしい	99.000 99.00	JU 154.000 154.000		132
● 000	······································	UU 107.000-107.000		133
	/3.489	71.627		134
C 7	3 1 • 3U/t_=U2	56 1 . 853E-01	100	135
	199.00 11.10 11.10	00 154.000 154.000		136
17 🐵 (J (J (J (J	1 • 1 0 •	00 107.000-107.000		137
	72.523	73•489		138
97.601	+ 10193Emuz	56 1.862E-01	100	139
Caller Caller	- 22.000 - 33. 00	00 154.000 154.000		140
a 🖷 se serve	71.406	00 107.000-107.000		141
2		120023		142
97 . table	- +•+016702 - 991670	$25 1.871 \pm 01$	100	143
0 - 1 - 5 - 70		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		144
		-107.000		145
	11001 11001	71.889		146
97.600	- 99.000 an e	10-150-100 150-150-00	100	147
0.000		HE 167 CONT.07 CON		148
		SS I97€990-107€000		149

	71.	671		71.627		1	50
35-1.1	- Alter and Contained	1.171E-0.	3-2.728E.	-03-2.699	E-03-1.967	E-03-4.894E-04	
1.680E-0.	3 4 . 3576	-03 7.19	91E-03 9	•618E-03	1.081E-02	9.642E-03 4.67	'2E-03
-5.76VE-5	3-2 . 3288	2-02-4.09	951-02-8	•236E-02-	1.206E-01-	-1.582E-01-1.87	'1E-01
31	7 1.4336	_ m () <u>2</u>	56 1	796E-01	100	1	54
97.600	99.000	99.000	156.700	156.700		1	55
$\cup \bullet \cup \cup \cup$	30.500	-30.5vC	107.000	-107.000		1	56
	71.	.792		71.627		1	57
31	8 1.0816	_ ~~ 0 2	55 1	871E-01	100	1	58
97.600	29.00CC	99.000	154.000	154.000		1	59
$0 \circ 0 \circ 0$	30.500	-30.500	107.000.	-107.000		1	60
	71.	•627		71.792		1	.61
3	, 7.382t	Í⇔0.⊒	55 1	•948E-01	100	1	. 62
97.600	99 . 090	99 . 000	151.300	151.300		1	.63
0000	30.500	-30,500	107.000.	-107.000		1	.64
	73.	•537		71.627		1	65
4	. s.b23i	j 🛥 () 🛃	55 1	922E-01	100	1	66
97.600	99.0.0	99 • 0 ŪŪ	152.200	152.200		1	.67
0000	36.500	-30.500	107.000.	-107.000		1	. 68
	72.	643		73.537		1	. 69
4	1 9.0006	3-03	55 1.	897E-01	100	1	.70
97.600	99 . 000	99.0000	153.100	153.100		1	71
0,000	30.500	-3(. 5v0	107.000.	-107.000		1	72
	72.	• 0 1 0		72.643		1	173
4.	2 1.0818	See () (P	55 1	871E-01	100	1	74
97.600	99.000	99.000	154.000	154.000	-	1	75
0000	30.500	-30.500	107.000	-107.000		1	76
	71.	627		72.010		1	77
4.	3 1.1985	S-02	56 1	846E-01	100	1	178
97 . 600	99.000	99.000	154.900	154.900		1	179
0 . 000	J0 . 500	-30.500	107.000	-107.000		1	180
	71.	460		71.627		1	181
4.	4 1.315E	Im() <u>2</u>	56 1	821E-01	100	1	182
97.600	99 . 000	99.000	155.800	155.800			183
0,000	30,500	-30.5-0	107.000.	-107.000		:	184
	71.	.501		71.460			185
4	5 1.2768		56 1	829E-01	100		186
97.600	09 . 000	99.000	155.500	155,500			187
0000	30,500	-30.500	107.000	-107.000			188
	71.	471		71.501			189
4	6 1.2375	i-02	56 1	•838E-01	100		190
97.600	99.000	99.000	155.200	155.200			191
Ú,000	30.500	-30,500	107.000	-107.000			192
	-71	• 459		71•471			193
4	7 1.1988	E-02	56 1	•846E-01	100		194
97.600	99 ,000	99 . 000	154.900	154.900			195
0.000	30,500	-30.500	107.000	-107.000			196
	71	4 60		71.459			197
46-1.U	74E-03-1	-930E-03	3-2 . 365E-	-03-2.209	E-03-1.34	7E-03 2.658E-0	4
2.576E-U	3 5.4018	2-03 8.39	90E-03 1	•097E-02	1.234E-02	1.135E-02 6.5	68E-03
-3.672E-0	3-2.099E	-02-4.64	45E-02-7	965E-02-	1.177E-01-	-1.550E-01-1.8	38E-01

48 1.9832-02 57 1.726E-01 100 201 97.600 99.000 99.000 155.200 155.200 202 J.U.C 3J.500 -3C.500 109.700-109.700 203 77.730 71.459 204 49 1.237E-02 56 1.838E-01 100 205 97.600 99.000 99.000 155.200 155.200 206 0.000 30.500 -30.500 107.000-107.000 207 71.459 77.730 208 50 5.019E-03 55 1.948E-01 100 209 97.600 99.000 99.000 155.200 155.200 210 30.500 -30.500 104.300-104.300 211 75.272 71.459 212 51 7.462E-03 55 1.911E-01 100 213 97.600 99.000 99.000 155.200 155.200 214 U.U00 30,500 -30,500 105,200-105,200 215 72.716 75.272 216 52 9.903E-03 55 1.874E-01 100 217 97.600 99.000 99.000 155.200 155.200 218 30,500 -30,500 106,100-106,100 219 71.479 72.716 220 53 1.237E-02 56 1.838E-01 100 221 97.600 99.000 99.000 155.200 155.200 222 0.000 30.500 -30.500 107.000-107.000 223 71.459 71.479 224 56 1.800E-01 100 225 226 227 71.459 228 56 1.813E-01 100

54 1.4856-02 97.600 99.000 99.000 155.200 155.200 6,000 30,500 -30,500 107,900-107,900 72.525 55 1.402E-02 229 97.600 99.000 99.000 155.200 155.200 230 0.000 30.500 -30.500 107.600-107.600 231 72.050 72.525 232 56 1.320E-02 56 1.825E-01 100 233 97.600 99.000 99.000 155.200 155.200 234 0.000 30.500 -30.500 107.300-107.300 235 71.674 72.050 236 57 1.237E-02 56 1.838E-01 100 237 97.600 99.000 99.000 155.200 155.200 238 0.000 30.500 -30.500 107.000-107.000 239 71.459 71.674 240 58 1.154E-02 56 1.850E-01 100 241 97.600 99.000 99.000 155.200 155.200 242 0.000 30.500 -30.500 106.700-106.700 243 71.330 71.459 244 59 1.072E-02 56 1.862E-01 100 245 97.600 99.000 99.000 155.200 155.200 246 30.500 ~30.500 106.400-106.400 0000 247 71.330 71.351 248

-U_006

000 00

58-1.1:3E-03-2.088E-03-2.600E-03-2.523E-03-1.737E-03-1.991E-04 2.037E-03 4.790E-03 7.709E-03 1.023E-02 1.153E-02 1.047E-02 5.634E-03 -4.660E-03-2.203E-02-4.754E-02-8.078E-02-1.189E-01-1.562E-01-1.850E-01 END OF POLE SHIFT CYCLE. 252

A23.

ė	0 1.550	E-02	56 1.804E-01	100	254
98,500	99.000	99.000	155.200 155.200	100	204
6 . 000	30,500	-30.500	106.700-106.700		255
	73	• 595	71-330		256
é	1 1.1541	F-02	56 1.950F 01	100	257
97.600	99.000	99.000	155,200 155,200	100	258
0.000	30.500	-30-500			259
-	71	e330	100.700-108.700		260
6	2 7.548	₽ ~~ () 3			261
96.700	- 99.000	- 99-000	155.200 155 000	TOO	262
0.000	30,500		106.700-106 700		263
•	72	_ 5000	100.700-108.700		264
Č.	R S.SSS	5 m N 3			265
97.000	99.000			100	266
0.000	30,500	-30.500	104 700 104 700		267
		-30.300	108.700-108.700		268
<i>L</i> .	A 1 0010	e /4 /	066.051		269
07.200	-4 100210 	2 ····································	56 1.865E-01	100	270
0.000	- 99 . 000	99.000	155.200 155.200		271
000 0 00	- 30 0 200	-30.500	106.700-106.700		272
	(1)	• 348	71.747		273
07 4.44	5 1.e1 546	<u> </u>	56 1.850E-01	100	274
77.500	- 99 . 000	99.000	155.200 155.200		275
0.000	90.000	-30.500	106.700-106.700		276
	71.	•330	71.348		277
07 000	6 1.287t	1-02	56 1.835E-01	100	278
970900	99.000	99.000	155.200 155.200		279
U • U O U	30.500	-30 . 500	106.700-106.700		280
	71.	•719	71.330		281
6	7 1•243E	E-02	56 1•840E-01	100	282
97.800	99 ° 000	99 . 0u0	155.200 155.200		283
0000	30,500	-30,500	106.700-106.700		284
	71.	•550	71.719		285
6	5 1.1 995	1- 02	56 1.845E-01	100	286
97.700	99 . 000	99.000	155.200 155.200		287
000	30 . 500	-30.506	106.700-106.700		288
	71.	424	71.550		289
6	9 1.1546	02	56 1.850E-01	100	290
97.600	93 ° 000	99 . 000	155.200 155.200		291
000.00	30,500	-30.500	106.700-106.700		292
	71.	3 30	71.424		293
70	0 1.011 0E	02	56 1.855E-01	100	294
97.500	990000	99:000	155.200 155.200		295
00000	30,500	-30.500	106.700-106.700		296
	71.	288	71.330		297
7	1 1. 0 66E		56 1.860E-01	100	298
97.400	99.000	99.000	155.200 155.200		299
0.000	30.500	-30.500	106.700-106.700		300
	71.	295	71.288		301
70-1.2	-6E-03-2	2.192E-00	3-2.754E-03-2.724	4E-03-1.983E-03-4.	871E-04
1.712E-0.	3 4.430E	-03 7.31	9E-03 9.815E-03	1.109E-02 1.001E-	02 5.161F-0

-5.146E-03-2.253E-02-4.804E-02-8.128E-02-1.194E-01-1.567E-01-1.855E-01
.

7	α 1.77 βΕ	O 2	56 1.769E-01	100	305
97.500	59 . 900	99 . 900	155.200 155.200		306
000 . 0	30 . 500	-30.5v0	166.700-106.700		307
	75.	717	71.288		308
7	75 1.110b	- ••• C 2	56 1.855E-01	100	309
97.500	99 . 000	99.000	155.200 155.200		310
0.000	30.500	-30.500	106.700-106.700		311
	71.	288	75.717		312
7	4 4.432E	-03	55 1.942E-01	100	313
97.500	93 . 100	98.100	155.200 155.200		314
$\dot{\Theta} \bullet \Theta \odot \Theta$	30 . 500	-30.500	106.700-106.700		315
	75.	931	71.288		316
7	5 6.6616		55 1.913E-01	100	317
97.5UC	오 닝 ∎4 € 0	98.400	155.200 155.200		318
0 . 000	30.500	-30.500	106.700-106.700		319
	73.	214	75.931		320
7	6 8.881E	ana () 🕃	55 1.884E-01	100	321
97.500	98 . 700	98.700	155.200 155.200		322
C.U00	30.500	-30.500	106.700-106.700		323
	71.	729	73.214		324
7	7 1.110E		56 1.855E- 01	100	325
97.500	99 . 000	99.000	155.200 155.200		326
0.000	30.500	~30.500	106.700-106.700		327
	71.	288	71.729		328
7	8 1.333 E	-02	56 1.826E-01	100	329
97.500	09 . 300	99 . 300	155.200 155.200		330
0 00	30 . 500	-30.500	106.700-106.700		331
	71.	837	71.288		332
7	'9 1. 2596	-02	56 1•836E-01	100	333
97.500	99.200	99 . 200	155.200 155.200		334
U,OUC	30.500	-30,500	106.700-106.700		335
	71.	563	71.837		336
8	1.185E	-02	56 1.845E-01	100	337
97.500	99 .1 00	99•100	165.200 155.200		338
0000	30,500	-30,500	106.700-106.700		339
	71.	373	71.563		340
8	0 1 1.∎11 0E	-02	56 1.855E-01	100	341
97 . 500	99 . 000	99000	155.200 155.200		342
0.000	30.500	-30.500	106.700-106.700		343
	71.	288	71.373		344
8	1.036E	-02	56 1•865E-01	100	345
97.500	98°300	98•900	155.200 155.200		346
0000	30.500	-30.500	106.700-106.700		347
	71.	332	71.288		348
81-1-2	ь-6 <u>с</u> -0 3- 2	•192E-0	3-2.754E-03-2.724	E-03-1.983E-03-4	•871E-04
1 • 712E-0	5 4.430E	-03 7.3	19E-03 9.815E-03	1.109E-02 1.001E	-02 5.161E-03
-5.146E-0	3-2•253E	-02-4.80)4E-02-8.128E-02-	-1.194E-01-1.567E-	-01-1.855E-01
8	3 1.451E	02	56 1.827E-01	100	352
97 . 50u	99.000	99.000	155.200 155.200		- 353
000	31.400	-31.400	106.700-106.700		354

73.239 71.288 355 84 1•110E=02 56 1.855E-01 100 356 97.500 99.000 99.000 155.200 155.200 357 U,000 30,500 -30,500 106,700-106,700 358 71.288 73.239 359 85 7.779E-03 56 1.882E-01 100 360 97.500 99.000 99.000 155.200 155.200 361 0.000 29.600 -29.600 106.700-106.700 362 72.327 71.288 363 86 8.879E-03 56 1.873E-01 100 364 97.500 99.000 99.000 155.200 155.200 365 0.000 29.900 -29.900 106.700-106.700 366 71.671 72.327 367 87 9**0**988E-03 56 1.864E-01 100 368 97.500 99.000 99.000 155.200 155.200 369 0.000 30.200 -30.200 106.700-106.700 370 71.327 71.671 371 88 1.10E-02 56 1.855E-01 100 372 97.500 99.000 99.000 155.200 155.200 373 0.000 30.500 -30.500 106.700-106.700 374 71.288 71.327 375 89 1.223E-02 56 1.846E-01 100 376 97.500 99.000 99.000 155.200 155.200 377 0.000 30.860 -30.800 106.700-106.700 378 71.599 71.288 379 90 1.185E-02 56 1.849E-01 100 380 97.500 99.000 99.000 155.200 155.200 381 0.000 30.700 -30.700 106.700-106.700 382 71.457 71.599 383 91 1.148E-02 56 1.852E-01 100 384 97.500 99.000 99.000 155.200 155.200 385 0.000 30.600 ~30.600 106.700~106.700 386 71.348 71.457 387 96 1.110E-02 56 1.855E-01 100 388 97.500 99.000 99.000 155.200 155.200 389 0.000 30.500 -30.500 106.700-106.700 390 71.288 71.348 391 56 1.858E-01 95 1.073E-02 100 392 97.500 99.000 99.000 155.200 155.200 393 0.000 30.400 -30.400 106.700-106.700 394 395 71.266 71.288 94 1.0365-02 56 1.861E-01 100 396 97.500 99.000 99.000 155.200 155.200 397 0.000 30.300 -30.300 106.700-106.700 398 71.285 71.266 399 93-1.25%E-03-2.295E-03-2.906E-03-2.921E-03-2.221E-03-7.614E-04 1.406E-03 4.100E-03 6.969E-03 9.451E-03 1.071E-02 9.642E-03 4.784E-03 -5.519E-03-2.289E-02-4.840E-02-8.163E-02-1.197E-01-1.570E-01-1.858E-01

56 1.833E-01

100

403

404

95 1.191E-02

97.500 99.000 99.000 156.100 156.100

A26.

0.000	30,400 -30,400	106.700-106.700		405
	71.065	71.266		406
Q.	6 1.310E-02	56 1.808E-01	100	407
97.500	97.000 99.000	157.000 157.000		408
0.000	30,400 -30,400	106.700-106.700		409
	71.055	71+065		410
9	7 1.4295-02	56 1.782E-01	100	411
97.500	99.000 99.000	157.900 157.900		412
0.000	30.400 -30.400	106.700-106.700		413
	71.311	71.055		414
Ģ	5 1.389E-02	56 1.791E-01	100	415
97.500	99.000 99.000	157.600 157.600	-	416
0.000		106.700-106.700		417
- • • • • •	71.207	71.311		418
(J	9 1.350E-02	56 1.799E-01	100	419
97.500	99.000 99.000	157.000 157.300	·	420
0,000	30.400 -30.400	106.700-106.700		421
	71.130	71.207		422
10	V 1.3106-62	56 1.808E-01	1.00	423
97.500	99.000 99.000	157.000 157.000		424
0000	30.400 -30.400	106.700-106.700		425
	71.055	71 • 1.30		426
1.0	1 1.2705-02	56 1.816E-01	100	427
97.500	09.000 99.000	156.700 156.700	P	428
0.000	30.400 -30.400	106.700-106.700		429
	710040	71.055		430
1 0	2 1.231E-02	56 1.824E-01	100	431
97.500	99.000 99.000	156•400 156•400		432
J ∂ 000	30.400 -30.400	106.700-106.700		433
	71.037	71.040		434
1 -	3 1.1918-02	56 1.833E-01	100	435
97.500	99.000 99.000	156.100 156.100		436
$0 \circ 0 \circ 0$	30.400 -30.400	106.700-106.700		437
	71.065	71.037		438
1 U	4 1.205E-02	56 1.830E-01	100	439
97.500	99.000 99.000	156.200 156.200		440
0000	30.400 -30.400	106.700-106.700		441
	71.055	71.065		442
ែ	5 1.218t-02	56 1.827E-01	100	443
97.500	99 . 000 99 . 0J0	156.300 156.300		444
0.000	30.400 -30.400	106.700-106.700		445
	71.046	71.055		446
1.6	o 1.231E-02	56 1.824E-01	100	447
97.500	99.000 99.000	156.400 156.400		448
0 . 000	30,400 -30,400	106.700-106.700		449
	71.037	71.046		450
10	7 1•244E-02	56 1.822E-01	100	451
97.500	99 . 000 99 . 000	156•500 156•500		452
J 0 00	30.400 -30.400	106.700-106.700		453
	71.038	71.037		454

106-1.1	ي معرف لي معر _{ما} ركاني	3•050E−00	3-2.5376-03-2.4246	-03-1.592E-03	4•900E-06
2.3156-0	. velaci	-00 0 .1 8	526-03 1.082E-02 1	•226E-02 1.136	E-02 6.693E-
3•417E-0	3-1. . 0596		39E-02-7.891E-02-1	•168E-01-1•539	E-01-1.824E-
1 U	5 1.4758	-02	56 1.788E-01	100	458
97.500	09. .	99 . 000	156.400 156.400		459
0000	3. . 400	-30.490	107.600-107.600		460
	71.	957	71.037		461
1 4	2 1.2310	*** (, <u>2</u>	56 1•824E-01	100	462
97.500	99.000	99 . 050	156•400 156•400		463
0,000	39 . 490	-30,400	106.700-106.700		464
	71.	037	71.957		465
1 1		_ ~ 03	56 1.861E-01	100	466
97.500	47 . 000	99.000	156.400 156.400		467
$\cup_{\bullet}\cup\cup\bigcirc$	o ⊜4° \`	-30,400	105.800-105.800		468
	71.	187	71.037		469
11	1 1.00686		56 1 . 849E-01	100	470
97.500	944 . (2023)	99 . 000	156.400 156.400		471
0.0000	3. •4.00	~30.400	106.100-106.100		472
	71.	.012	71.187		473
1 1	< 1.∎1 49€		56 1•836E-01	100	474
97.500	1212 .44100	99 . 000	156.400 156.400		475
に責任任任	2° •4 <u>-</u> 0	-30.400	166400-106400		476
	70.	∎96U	71.012	1.00	477
11	C 101010	_ ~ ∪ ∠.	36 I.824E-01	100	478
97.600	· [::::::::::::::::::::::::::::::::::::	99.000 	156•400 156•400		479
0.0000	30 0 4 0.00	-3'.94UU	100.700-106.700		480
	/1 •	•037	70.960	•	481
11	4 102/240	_ === (_) <u>~</u>	56 1.828E-01	100	482
91.500	영양 ㅎ Uel -	90 . 000	156.400 156.400		483
0.000	200 6 400	3(•400	106.600-106.600		484
	11	• UUB 		• 6.0	485
07 500	5 fel//	imilie Anno Aria		LOO	486
97.500		99.000			487
	1.24 6 6 26.	-3004-0	105.500~105.500		488 488
		● 27 19 		1.0.0	409
07 800	C 1 ● 14 \/0.	u⇔0⊒ 	06 10836E-01	100	490
910000	- ダブ @ じゃし。 - シャール うん		106 400 106 400		491 402
	21.04.17 76.	-930 0 400	70-979		494 203
1 1	7 1,122	• 200 	56 1.841F-01	100	404
97.500			156-400 156-400	1.000	495
0.0000	5 5 5	-30-400	106.300-106.300		496
	70.	956	70.960		497
11	5 1.JOSE	E-02	56 1.845E-01	100	498
97.50r			156.400 156.400	e t	499
0.a.C.0.C	30.410		106.200-106.200		500
	7 0	20 0 -00	70.956		501
	F 1. 1	• .• (100.00		~~~*

-4.718t-03-2.196t-02-4.732E-02-8.040E-02-1.183E-01-1.555E-01-1.841E-01

PROGRAM RESTARTED WITH LAST POLE POSITIONS FROM ABOVE.

	1 2.6798	() <u>2</u>	58 1 . 584E-01	100	512
97 . 500	99 . 034	99 . 000	156.400 156.40 0		513
0,000	30 . 400	-30,400	106.200-106.200		514
	85.	536	70.956		515
	6 8.4448	[m]() <u>2</u>	58 1.600E-01	100	516
97.200	919 . (1993)	99 . 000	156.400 156.400		517
0,000	30.400	-30.400	106.200-106.200		518
	60 Z .	301	85.536		519
	3 2.308:		58 1.615E-01	100	520
96 . 900	990 6 000	99 . uuu	106.400 156.400		521
U , 000	30,400	-30.400	106.200-106.200		522
	79 .	458	82.301		523
	H 2.1710	-02	58 1.631E-01	100	524
96 . 600	99 . 000	99 . 0-0	156.400 156.400		525
0.000	3-1-4-61	-36.400	106.200-106.200		526
	76 e	918	79.458		527
	5 2.033E	as () <u>2</u>	58 1.646E-01	1 O C	528
95,300	994 , 060	99 . 000	156.400 156.400		529
0 , 0000	31,400	-30.400	106.200-106.200		530
	74.	788	76.918		531
	6 1.895E	C2	58 1•662E-01	100	532
96.COC	99 . 000	99.000	156•400 156•400		533
9 000	30.400	-30,400	106.200-106.200		534
	72.	964	74.788		535
	7 1.7575		58 1.677E-01	100	536
95 . 700	99 . 9961	99 . 050	156.400 156.400		537
0,000	30,400	-30,400	106.200-106.200		538
	71.	523	72.964		539
	ರ 1.618ರ	. m() 2	57 1.693E-01	100	540
95.400	99 . 000	99.000	156.400 156.400		541
0.000	30,400	~30 , 4€0	106.200-106.200		542
	70.	397	71.523		543
	9 1.4798	-02	57 1.709E-01	100	544
95.100	99 . 0000	99.000	156.400 156.400		545
0,000	30.400	-30.400	105.200-106.200		546
	690	673	70•397		547
:	10 1 . 340E	-02	57 1.724E-01	100	548
94.800	$\odot (J_{\bullet}(), C)$	99 . 000	156.400 156.400		549
0 . 000	30,400	-30.400	166.200-106.200		550
	69.	277	69.673		551
	11 1.200E	····() 2	57 1.740E-01	100	552
94 .500	95 . 000	99 . 000	156.400 156.400		553
0.000	30.400	-30,400	106.200-106.200		554
	69.	286	69.277		555
Ĵ	LZ 1.247E	U2	57 1.735E-01	100	556
94.600	99 . 000	99.000	156.400 156.400		557
0.000	20 .4 00	-30 . 400	106.200-106.200		558
	69.	256	69•286		559

13 1.293E-02 57 1.730E-01 100 560 94.700 99.000 99.000 156.400 156.400 561 0.000 34.400 -30.400 106.200-106.200 562 69.250 69.256 563 57 1.724E-01 14 1.340E=02 100 564 94.800 99.000 99.000 156.400 156.400 565 0.000 30.400 -30.400 106.200-106.200 566 69.277 69.250 567 13-1.476L-03-2.705E-63-3.459E-03-3.544E-03-2.824E-03-1.237E-03 1.1736-03 4.231L-03 7.590E-03 1.068E-02 1.268E-02 1.246E-02 8.562E-03 -6.819E-04-1.0001L-02-4.118E-02-7.310E-02-1.098E-01-1.457E-01-1.730E-01 15 1.5196-02 57 1.701E-01 100 571 94.700 - 49.304 - 99.300 156.400 156.400 572 0,000 30,400 -30,400 106,200-106,200 573 69.806 69.250 574 16 1.2935-02 57 1.730E-01 100 575 94.700 99.000 99.000 156.400 156.400 576 0.000 30.400 -30.400 106.200-106.200 577 69.250 69.806 578 17 1.67E-02 57 1.759E-01 100 579 94.700 98.700 98.700 156.400 156.400 580 U.U.U.U.U. 3U.400 -30.400 106.200-106.200 581 69:573 69.250 582 18 1.142E-02 57 1.749E-01 100 583 94.700 98.800 98.800 156.400 156.400 584 0.000 31.400 -30.400 106.200-106.200 585 69•345 69.573 586 19 1.218E-02 57 1.739E-01 100 587 94.700 98.990 98.900 156.400 156.400 588 0.000 34.400 -36.400 106.200-106.200 589 69•260 69.345 590 20 1.293E-02 57 1.730E-01 100 591 94.700 99.000 99.000 156.400 156.400 592 U.U.U.U. 30.400 -30.400 106.200-106.200 593 69.250 69.260 594 21 1.3695-02 57 1.720E-01 100 595 94.700 99.100 99.100 156.400 156.400 596 0.000 30.400 -30.400 106.200-106.200 597 69.327 69.250 598 20-1.476L-03-2.705E-03-3.459E-03-3.544E-03-2.824E-03-1.237E-03 1.1736-03 4.2316-03 7.5906-03 1.0688-02 1.2688-02 1.2468-02 8.5628-03 -6.819E---4-1.691E-02-4.118E-02-7.310E-02-1.098E-01-1.457E-01-1.730E-01 22 1.406±-02 57 1.721E-01 100 602 94.700 99.000 99.000 156.400 156.400 603 U.JJU SH.700 -30.700 106.200-106.200 604 69.250 69.485 605 23 1.293E-02 57 1.730E-01 100 606 94.700 99.000 99.000 156.400 156.400 607 0.000 30.400 -30.400 106.200-106.200 608 69.250 69.485 609

.

21	4 1.1020	-02	57 1.739E-01	100	610
94.700	99 .	99 . 000	156.400 156.400		611
0.000	30.10	-30.100	106.200-106.200		612
	69 .	291	69+250		613
2	5 1.2198	** 0.2	57 1.736E-01	1 0 0	614
94 .7 00	99.000C	99.000	156.400 156.400	-	615
$\cup_{\bullet} \cup \cup ()$	30.200	-30.200	106.200-106.200		616
	69.	245	69.291		617
2	o 1.2566	-62	57 1.733E-01	100	618
94.700	99 . 000	99.000	156.400 156.400		619
J⊜ÚJC	30.300	-30:300	106.200-106.200		620
	69 •	238	69.245		621
ĉ	7 1.293E	-mas (57 1.730E-01	100	622
94.700	99 <mark>-</mark> Gell	99 . 040	156.400 156.400		623
0 . 000	3 •400	∽ 30 ₀ 400	106.200-106.200		624
	ပံြန	250	69•238		625
26-1.5	これビージンー2	•8~8E-01	-3.611E-03-3.74	1E-03-3.061E-03-1.5	10E-03
8.689E-9	4 J.002L	-03 7.24	1E-03 1.032E-02	1.231E-02 1.208E-0	2 8.187E-0
			67 1 704E 01	-1.101E-01-1.460E-0	1-1•/33E-0
94 . 700	0 10297L	-902 -902	156.700 156.700	100	629
	i ne in	-30.300 -30.300	106.200-106.200		631
•		162	A9,238		632
<u></u>	0 1.334F	ene. D	57 1.716E-01	100	633
94.700	99 . (A. A.	99 . 000	167.000 157.000	1000	634
0 . 000	34 . 35.55	~30.300	106.200-106.200		635
	69.	113	69.162		636
ئے	< 1.379E	02	57 1.707E-01	100	637
94.700	99 . 000	99 . 000	157.300 157.300		638
Ú 💊 U Ú C	30.300	-30°300	106.200-106.200		639
	69.	107	69•113		640
3	1 1.4205	- ~ 02	⇒8 1•699E-01	100	641
94.700	99 . 000	99.000	157.600 157.600		642
U.UUU	30 . 344	-30.300	106.200-106.200		643
	69 ø	130	69.107		644
14	VZ 1.4466E	i=02	57 1.702E-01	100	645
94.700	99 . 000	99.0000	157.500 157.500		646
C.000	30,0300	-30.300	1-6.200-106.200		647
	69 .	121	69•130		648
en e	G 1 ∎3938	- ** 02	57 1.705E-01	100	649
94 . 700	930 20	99.000	157.400 157.400		650
/ .	1		106.200-106.200		651
	69. 67. 1. 2200		69•121 57 1.7075.01	1 6.65	652
94 - 7-10	シー・エッジインU - ゴビネーション		157-100 157 200	100	600
	2 27 10 K.C.N. K.Z. 2 (1) - 10 - 11 -		1/6.200-104 200		654
	ം പറഞ്ഞ പോസം ചെയ്തും	-300300	1000200""IUO0200 20.119		650
4 - 1	1,365F		57 1.710E-01	100	600 657
94 .7 00	-99 . 0(-0	99.000	157.200 157.200	L	658
0.000	30.300	~30.300	106.200-106.200		658
					009

	69 .	109		69.107			660
34-104	Jol = Jos = 3	•621E-00	5-3 . 328E-	-03-3.360	E-03-2.580	E-03-9.256E-	-04
1.•562L-0	3 4 . 798£	-03 801c	55E-03 1	•137E-02	1.3492-02	1.3398-02 9	•635E-(
5•382d~~	4-1•553E	-02-3.98	04 <u>1-02-7</u>	•139E-02-	-1.079E-01-	-1.436E-01-1	•707E-C
د.	6 1.461E		58 1	€695E-01	100		664
94.700	99 . 000	33°000	157.300	157.300			665
0.000	36 . 360	-30 -3 00	106.500	-106.500			666
	69 .	270		69•107			667
3	7 1.379E	ہے ن م	57 1	₀707E-01	. 100		668
94.700	99 . 000	99 . 040	157.300	157.300			669
000 .	30.300	∞30 ₀ 300	106.200	-106,200			670
	690	107		69.270			671
ى]	8 1.2 978	- ~ () 21	57 1	•719E-01	100		672
94.700	99 0 000	99 . 000	157.300	157.300			673
0 . 000	32 0 301	-30.3.Ú	105.900	-105,900			674
	69.	<u>े</u> 54		69•107			675
J.	9 1. 215E	- ••• Q 2	57 1	•731E-01	100		676
94.700	99 00 000	99.0JU	157.300	157.300			677
0 . 000	3 . 300	-30.300	105.600	-105.600			678
	69 .	119		69.054			679
4	0 1.242E		57 1	•727E-01	100		680
94 .700	99 . 000	99 . 000	157.300	157.300			681
6 . 000	30.300	-30.300	105.700	-105.700			682
	69.	095		69•119			683
4	1 1.27CE	-02	57 1	•723E-01	100		684
94 • 700	99 . 000	99 . 000	157.300	157.300			685
0000	30,300	~36.360	105.800	-105.800			686
	69 .	074		69.095			687
¢.	2 1.2975		57 1	•719E-01	100		688
94 . 700	99 ° 900	99•0UC	157:300	157.300			689
0 . 000	30 .3 00	-30-300	105.900	-105.900			700
	69.	054		69•074			701
4	3 1.324E	02	57 1	•715E-01	100		702
94.700	99 . 000	99 . 000	157.300	157.300			703
0 • 0 0 • 0	30.300	-30.300	106.000	-106.000			704
	စမ္း	<u>ິ</u> 55		69.054			705
42-1.5	126-03-2	2.775E-0.	3-3.559E	-03-3.66	7E-03-2.96	1E-03-1.380E	E-03
1.U35E-0	3 4 . 111E	-03 7.5	UUE-03 1	.063E-02	1.269E-02	1.254E-02 8	3.723E-0

-4.271E-04-1.684E-02-4.070E-02-7.249E-02-1.091E-01-1.448E-01-1.719E-0

THIRD POLE SHIFT CYCLE COMPLETE.

4	4 1.344E-02	57 1.714E-01	100	712
94.800	99 . 000 99 . 000	157.300 157.300		713
0.000	30,300 -30,300	105.900-105.900		714
	69.083	69.054		715
4	5 1.297E-02	57 1.719E-01	100	716
94.700	99 . 000 99.000	157.300 157.300		717
0 00 0	30.300 -30.300	105.900-105.900		718
	690054	69•083		719

4.	. I . Real	(م ر ا am ا	57 1	725E-01	100	720
94.60 Å		990 . U.L	157.300	157.300		721
1940 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 -	ing a the state		105.900-	-105.900		722
Na ♥ 12.1	ේ විදිදි මේ පිට මේ පිට	277		69.054		723
45-1-0		.775d-0.	S-3.559⊑-	-03-3.661	75-03-2.96)	1E-03-1.380E-03
1.350-0	. 4.1115	-03 7.5	NE-03 1.	•063E-02	1.269E-02	1.254E-02 8.723±-0
-4.2716-0	4-1-1-041	-12-4.1	102-02-70	249E-02-	·1•091€-01-	-1.448E-01-1.719E-01
e.]	7 1.3726		57 1.	710E-01	100	727
94.700	2-1-0	99 .1 00	157.300	157.300		728
3.000	31.03	-30.300	105.900-	-105.900		729
-	59.	131		69.054		730
44		en () e	⇒7 1.	719E-01	100	731
34.700	Section Constants	99 . 000	157.300	157.300		732
0.000	30.4.30	-30.300	105.900-	-105-900		733
••••		54		69.131		734
12	9 1 a 23 1 F	i and the second se	571.	729F-01	100	735
94.700		- 59 1934 - 9 1949	157.300	157.300		736
5.00 G	en a Cielen	- Bun Bun	105-9800-	-105.900		737
	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	./193.	• • • • • • • • • •	69.054		738
48-1-5	104	-77-E-0	4-3.550P-	02 0 094.	19-03-2-061	F-03-1.380F-03
1.0356	3 un 1115	-03 7 - S	70103 1 m	063E-02	1.2548-02	1.2548-02 8.7238-03
-4.2711-0	ವ-1.ಕ⊂ಾಡಕ	-02-4.0	7015-012-7.	240F=02-	1.091F-01-	-1.4486-01-1.719F-01
	1.1.3040		57 1.	7166-01	100	742
94.700	994∎CÉL		157.300	157.300		743
U.∎L C G	3. a.4. 1	-30.4VU	105.900-	-105-900		. 744
	69.	-059 		69.054		745
2)	1 1.2976		57 1.	719E-01	100	746
94.700	99. O. R.	99.0000	157.300	157.300		747
0 .00€	37.0300	~ 30 . 300	105.900-	-105.900		748
	د. €⊌ «	•∵54		69.089		749
1. , 1	2 1.2000		57 1.	723E-01	100	750
94.700	99 . A.A	99.0000	157.300	157.300		751
けっけいし	30 • 2000	~30•290	105.900-	-105.900		752
	(a 🖅 •	066		69.054		753
51-1.	1.303-2	2•775E-0.	3~3 . 5598-	03-3.667	E-03-2.961	E-03-1.380E-03
1 • U3555~~ (a 401111	-03 7.5	JUE-03 1.	,063E-02	1.2698-02	1.2548-02 8.7236-03
-4.2712-0	4-1.46246	<u>∪≥</u> 4•0	102-7.	249E-02-	1.091E-01-	-1.448E-01-1.719E-01
1.1	5 1.3116		57 1.	717E-01	100	757
94.700	္ ျမႇင္းင္း	99 . 0000	157+400	157.400		758
<1.€\$€\$€\$€\$	34 💊 1997)	~3€ 3∪0	105•900-	-105.900		759
	0424 •	∎⇒34		69 . 054		760
	4 1.03445	(1 <u>;; }</u>	57 1.	714E-01	100	761
94 • 7 - 93	• •	99 . 000	157.500	157.500		762
0 e 1 - 2 ()	ుహితంహిం 'ా -	30 . 300	105.900~	-105-900		763
		• 18		69.034		764
	น โดยีปละ	<u>.</u> ⊷02	57 1.	711E-01	100	765
문부 • 7 년은 1.11년년	- 22€00000 100 - 1	99.000	157.600	157.600		766
547 6 X - X - K -	الروالية ل ♦ 1 وف ر. مرد		105.900-	-105.900		767
i	الات - 1 02 -	•C10		69.01d	_	768
•	つ てゅうごに	from	5/ 1.	108に…01	100	769

94.700	-99 . 1	99 . 000	157.700 157.700)	770
Calibi	41. a 3.	~30.300	105.900-105.900)	771
	- •••	208	69.010)	772
tery."	7 1 . 7665	: mu ; : 2	57 1.705E-01	100	773
94.7.0	00010000000000000000000000000000000000		157.800 157.800)	774
		-30.300	105.900-105.900)	775
	مى بەرىپى مەربى	016	69.008	3	776
ie.,	5 1.379F	- 0 P	57 1.702E-01	100	777
04.700 ^{°°}	99 . 20	- 9 9 ,000	157.900 157.900)	778
0,000	20.00	-30.300	105.900-105.900)	790
-		• () () 4	69.006	, in the second s	791
2	7 1.37BE	. m 02	58 1.700E-01	1 00	792
94.700	ان و د ن در د ار	99 . 040	158.000 158.000		793
0.0000	30 • 31 P	- <u>3</u> 0,360	105.900~105.900)	794
	5 ⁷ 4	• <c3< td=""><td>69.004</td><td>ļ.</td><td>795</td></c3<>	69 . 004	ļ.	795
ţ	1.4578	_ ema () _24	58 1.697E-01	100	796
94.700	99 . 0	99 . 000	158.100 158.100)	797
C . C.Q.C	3-103-5	-30.300	105.900-105.900)	798
	بالاين	• O 1 O	69.003	3	799
5 9≖1 ∎4	Alata marana	<.eoz6⊟-0.	3-3 . 336E-03-3 . 36	7E-03-2•505E-03-9•	200E-04
1.5801-0	् य•7वयां	03 beza	25E-03 1•146E-02	1.301E-02 1.355E-	02 9.857E-(
8•184:	→~1 •>180	02-3•9%	22E-02-7.089E-02	-1.073E-01-1.430E-	01-1.7COE-0
(1 1 . 4 . 15	- ~ 02	58 1.6 96E-01	100	803
94.700	မမှန်ငင်	99 . Cr0	158.000 158.000		804
ပဲချင်းကိုပါ	ఎరం చిల్	-30 . 300	106.000-106.000	1	805
	69 e	.056	69.003		806
Ģ	2 1.3 935	_m02	58 1.700E-01	100	60 r
94.7.0	san an a n an ^{ar t}	99 . 000	158.000 158.000		208
0 , 0 0 0	30.300	-30 . 340	105.900-105.900	1	809
	، ار ان	•U03	69•056	1.00	811
Ó	J 1.3666	t=02	5/ 10/046-01	100	B12
94.700	199 . Could	99.000	158.000 158.000		813
$O \circ O O$	30 . 300	000،00-	103.800-103.800	,	814
	68.	•973		100	815
с. С. т. т. с. с.	1.0390	S⇔C∠ 	1000.001 #1 /00 100.000 160	100	816
94 • 799	Street Contractor Street Contractor	99.000	106 700-106 700		817
U 🖕 O U U	. ಭಗ್ಗ 🎍 ಭೆಗ್ಗಿಗೆ ಸಂಪ		100•700-100•700 1079-02		818
	()/14 • • • • •	•542 5.75		100	819
- COA - 77 (17)	(1) 主 ● ひまごふ - アイローズ につい		158.000 158.000		820
24079° C 636	200 9 1330 747 - 42340		105.600-105.600	3	821
Ne de la construction	್ಷ ಕ್ರಮಿಗಳು ಕ್ರಮಗಳು	-9000000 1924	68 . 942		822
	с. а. 1. св ^р а	· ····································	57 1.716E-01	100	823
94.700	-99∎5€7	- 99 . 000	158.000 158.000)	824
0.000	30,310	~30 . 300	105.500-105.500)	825
	c E i	•945	63 . 924	Ļ	826
65-1 5	15E-03-2	781 E-03-3	565E-03-3-672E-03-	-2.961E-03-1.371E-03	827
1 0ビクモ 01	י_ע_ש_ע_י געשריין ()3 7 EKEP_	1.073E-02 1.283F	-02 1.271E-02 8.952E-0	3 828
) 4.1728 - (, 1 6108 0	ノ」 1・202世世 10 1. 097日 1	02-7 199E-02-1-085E	-01-1. hule-01-1. 712E-0	01 8 29
-I+ J715-00	た。 して、 して、 して、 して、 して、 して、 して、 して、	12-4+02111-			830

-69.830110E-03

NOTE: The last four cards from the output data were accidentally lost. The above data was copied from an earlier printout of the same data.

THREE POLE PURE RIMO FILTER

COMPUTER PROGRAM INPUT, CONTROL VARIABLES

NF	0
NV	3
I	0
NI	0
MOOD	0
DELL	
COW	0
MOO	0.
סיז	٥١٢

тв	• • • • • •	• • • • • •	 • • • • • • • • • • • • • • •		• 110•
CONST			 	• • • • • • • • • • • • • • • • • • • •	. 1.0

THREE POLE BESSEL FILTER

NOTE: The pole locations for this filter were fed into the computer as initial data for locating the poles of a three pole pure Rimo filter (the filter of appendix, p. 35.)

NINE POLE HYBRID RIMO FILTER

INITIAL VALUES FOR PROGRAM CONTROL VARIABLES

NF	5
NV	4
Ι	0
NI	1
MOOD	l
DELL	2.7
COW	-2,
MOO	0.
FB	110.
CONST	1.0

TEN POLE HYBRID RIMO FILTER

× P9		PL	normalized pole locations							
	P2 × P7 X P1×× P6		P1 P2 P3 P4 P5	100.000 80.902 80.902 30.902 30.902	j0. 000 j58.779 -j58.779 j95.106 -j95.106					
Plo X	₽8× ₽3×	Р5 Х	P6 P7 P8 P9 P10	94.700 99.000 99.000 158.000 158.000	j0.000 j30.300 -j30.300 j105.500 -j105.500					

A 1 1

•

INITIAL VALUES FOR PROGRAM CONTROL VARIABLES

NF	5
NV	5
Ι	0
NI	0
MOOD	0
DELL	2.7
COW	0.
МОО	0

FB	110.
CONST	1.0

																															+
2				•					· · ·					F	РНА	SE	E	RRC	R	EX	PRI	55	ED	AS	PI	R-	CEI	NT			
													-	1	.8-	PO	LE	H	(BF	:D	R		F	ELT:	BR.						+
						ļ		- - -																							
•••••••••••••••••••••••••••••••••••••••		lead	dine	5								. - -																			+
					-																										
																													+-		
																	\mathbf{i}														
0			Λ^+	-																								$\frac{1}{1}$			Ŧ
		/-	Ϊ.						-									++			1										
	$\frac{1}{1}$																					V									
-1			8 m		-		•		- a. e ine			•										-1									
		PHA	SE I	GRRC	R	+																	·								+
		PER	CHA	r																				X							
-2					· .																				X						
																										X					_
		٦eg	oins																												
					-																										
								4									Ħ														
																							_								
2					++										-																-
					: _ - -			-	l		-																				
																			•												-
																															-
		** 						 	<u> </u>												• •			· · · ·					-+-+	-+	
	•						-	 							 				-											-	
																											T				-
					++-			-1	†-¦ †-¦																						-
							· · · · · · · · · · · · · · · · · · ·		N	DRM	AL	IZI	മ	F	RE	QU	EN	CY										• • • • • • • • • • • • • • • • • • •			
			0			20)				40					-6	0					BO					100)			F

ACKNOWLEDGEMENTS

The work presented in this paper is not entirely that of this writer. Invaluable help has come from various persons associated with the author in his work at BlonderTongue Laboratories, and it must needs be that their assistance and cooperation be here recorded. From Mr. B.H. Tongue and Mr. J.B. Glaab have come ideas and suggestions that have been useful in realizing the IF amplifier. Mr. I. Horowitz offered the 6BA7 mixer as a means to reduce spurious responses.

All the photographs used in the paper were taken by Mr. J.B. Glaab, who also did the developing and printing. The schematic of the tuner was drawn by Mr. C.J. Majko.

The typing of the copies was done by Mrs. C. Brienza, and the copies of the program flow chart were done by Miss L. Kruglow.

Finally, co-credit for the discovery of the Rimo filter must go to the writer's thesis advisor, Prof. R.H. Rose. It was he who thought of the computer-generated universal Rimo filter, amplifying upon the original idea of merely generating a single set of poles to design one IF amplifier; this investigator being just another in a long history of human endevor to see a tree but not the forest.