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ABSTRACT

A mathematical analysis of the Geneva mechanism was conducted to

determine the potential of this device as a timing mechanism, and the

feasibility of replacing the widely used pallet and starwheel escape-

ment with a Geneva mechanism.

The primary objective of the study was to determine if the Geneva

mechanism will attain a terminal velocity, and if so, how much time is

required to reach this velocity.

To accomplish this objective, the differential equation of motion

for the system was derived using Lagrangian dynamics. The equation

was programmed and solved on a digital computer.

The study indicated that the Geneva mechanism does reach a terminal

velocity, and consequently can be used as a timing device. The mech-

anism, however, requires as much as fifty milliseconds to attain this

terminal velocity.
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INTRODUCTION

The runaway escapement of figure 1 is the classic timing device

in wide use today. Many watches, clocks, industrial timers, ordnance

fuzes, and countless other mechanical timing devices utilize this

mechanism. Although this device can be finely tuned to a high degree

of accuracy, the system is inherently inaccurate, dictating that an

accurate system be an expensive system.

The pallet and starwheel mechanism is inherently inaccurate since

its operation depends on impacts of the starwheel with the pallet.

Not only are losses involved as with any impact device, but angular

accelerations of the members become inefficiently high. With these

problems in mind, Dr. Frederick R. Tepper of Picatinny Arsenal pro-

posed the Geneva mechanism of figure 2 as a possible replacement.

This is the basic mechanism to which this study is addressed.

The objective of this study is to describe mathematically the

Geneva mechanism, and demonstrate its feasibility as a timing mech-

anism. In order to function as an accurate timing device, the mech-

anism must attain a terminal, or steady state, velocity. Also, the

mechanism must reach this terminal velocity in a time frame consistent

with the required accuracy of the timer (this is defined as the rise

time). Therefore, the existence of the terminal velocity and the length

of the rise time will determine the applicability of the Geneva mechan-

ism as a timing device.



RUNAWAY ESCAPEMENT

FIGURE 1



FOUR PIN MECHANISM

FIGURE 2
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CHAPTER I

DERIVATION OF THE EQUATION OF MOTION

The Geneva mechanism, in its usual application, consists of a

driver with a single pin, and a follower with from three to eighteen

slots. The most common application of this type of mechanism is as

an indexing device, where one revolution of the driver will index the

follower 1/n revolutions, where n is the number of slots in the follow-

er. The driver is usually assumed to rotate at a uniform angular vel-

ocity.

The single pin mechanism is relatively simple to analyze. However,

the intermittent motion of this device is undesirable for a timing

mechanism. One requirement for the Geneva escapement now becomes evi-

dent: the follower must engage at least one pin at all times. In

order to meet this condition, certain geometrical constraints are necess-

ary.

Figure 3. Geometry of the Geneva escapement (four pin, four

slot configuration shown).
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In the Geneva escapement of figure 3, at the instant the first

pin begins to leave the slot, the next Din must be entering the next

slot. In order to assure continuous motion, the velocity of the pin

at the point of entry and exit must be along the centerline of the

slot. Figure 4 represents the mechanism at the instant of exit of the

lead pin and entry of the next pin.

Figure 4. Geometry at pin entry and exit.

At this point in time,

and

In the large right triangle,

or

where
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kgain in the large right triangle of figure 4,

Equations 1-1 and 1-3 are the fundamental geometrical constraints

of the Geneva escapement. They assure continuous motion of the driver

and follower.

Only certain pin and slot combinations are permitted by equation

1-3, since only integral numbers of pins and slots are possible. The

only three possible combinations are:

SLOTS (n) 3 4 6

PINS (m) 6 4 3

Note that as n increases in equation 1-3, in decreases. The next inte-

gral number of pins is 2, which will not occur until n reaches infinity.

Scale drawings of the three possible configurations are given in

Appendix A. Examination of the drawings will show that these three

mechanisms meet the requirement that the trajectory of the pin as it

enters and exits the slot is coincident with the centerline of the slot.

Figure 5. General case for angular relationships.

From the geometry of figure 5,

and substituting equation 1-1,
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En figure 5, by the Law of Sines,

and substituting this relationship into equation 1-4,

Equation 1-6 is the fundamental angular relationship between the

driver and the follower.

To find the relationship between the angular velocities of the

two members, differentiate equation 1-6 with respect to time.

To find the relationship between the angular accelerations of

the two members, differentiate equation 1-7 with respect to time.



Lagrange's Equation may now be considered. Since the system

under study is not frictionless, Lagrange's Equation for a

non-conservative system applies:

where: T =total kinetic energy of the system;

qK < generalized coordinates necessary to completely describe

the system (k 1,2,3,....);

QK = qK component of the generalized force representing all

forces acting on the system, excluding inertial forces

(included on the left side of 1-9) and constraint forces

(drop out of Lagrange's Equation). In particular, QK

includes the driving torque and the frictional torque;

conservative forces are zero (i.e. no potential energy).

The system under consideration has one degree of freedom (9):

therefore, equation 1-9 reduces to

To find the generalized torque, Qe, consider a virtual displacement

δθ. Then the virtual work done is

or 	 Qe = τ

where τ is the resultant torque acting on the system; that is, the

vector sum of the driving torque and all frictional torques.

There are three frictional torques in the system: the driver

8
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bearing friction, the follower bearing friction, and the friction of

the pin sliding in the slot. The frictional torque contributed by

the driver and follower bearings will be ignored in this analysis.

Therefore the generalized torque is

where τ1 is the driving torque, and τ2 is the frictional torque of the

driving pin. The absolute value of τ2 is used, since the friction

torque must always oppose the driving torque, which is taken to be

positive. With this generalized torque, Lagrange's equation re-

duces to

Let μN be the friction between the pin and slot, where μ is the

dynamic coefficient of friction, and N is the normal force trans-

mitted from pin to follower (i.e. the driving force). Then figure 5

can be extended as follows:

Figure 6. Frictional torque about the driver bearing.

Here the assumption has been made that the pin diameter and the slot

width are much less than r, and consequently have been neglected.

The frictional torque about the center of rotation of the driver

is

This torque must always oppose the driving torque, which is taken

as positive (ccw). Therefore,

and from equation 1-1,

From equation 1-6, the following triangle can be drawn.



From this triangle, sin 0 is found to be

and the frictional torque becomes

To find N, draw the free body diagram of the follower.

10

Figure 7. Free body diagram of the follower.

Taking moments about o;

From equations 1-5 and 1-11.

substituting this and equation 1-8 into the moment equation,



And finally, substituting into equation 1-12,

since r and lc are always positive.

For the rest of the generalized torque term, the mechanism is

assumed to be driven by a constant torque negator spring (see

Appendix C), such that

τ1= K 	 (1-15)

where K is the torsional spring rate in inch-pounds per radian,

and is constant.

Thus the right side of Lagrange's Equation (1-10) has been deter-

mined. The left side involves derivatives of the total kinetic energy

of the system. This is simply the sum of the rotational energies of

the driver and follower.

Substituting equation 1-7 for (15/

11

For Lagrange's Equation,



For the remaining term in Lagrange's Equation,

12

Now the left side of equation 1-10 can be written;



Substituting equations 1-14, 1-15, and 1-17 into equation 1-10,

And the equation of motion is:

Eouation 1-15 has one possible flaw. If the quantity

(1+a2-2acos θ)

should ever become zero, the equation would not be valid at that

point (or points). Let θ∞ be the assumed point at which the assumed

singularity exists. Then

13

For θ∞ to exist,

This is only true for a= 1. But from equation 1-2,
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This is only true for n= 2 (remember n must be an integer). Since

n = 2 has been previously ruled out (see equation 1-3), 1-18 contains

no singularities.

To simplify equation 1-18, make the following substitutions:

Then the equation of motion becomes

This differential equation will be solved by digital computer

(see Appendix B).



CHAPTER II

PARAMETRIC STUDY

The object of this study is to determine the feasibility of the

Geneva mechanism as a timing device; optimization is beyond the scope

of this paper. The former is demonstrated in this parametric study

by showing that for the mechanisms studied, a terminal velocity is

attained, and that variations in the parameters of the system have

small and predictable effects on the motion of the system.

Having found the equation of motion for the system, six para-

meters become evident:

n: the number of slots in the wheel;

θe: the angular position of the pin as it enters the slot;

μ: the coefficient of friction between the pin and slot;

K: the torsional spring constant of the driving spring;

If: the polar moment of inertia of the follower;

I0: the polar moment of inertia of the driver.

Note that the first two parameters, n and 00 , are not independent and

can be considered as a single parameter (and incidently, the only geo-

metric parameter). Thus there are four parameters for each of the

three mechanisms (i.e. the three, four, and six pin mechanisms). For

simplicity, the moments of inertia will be fixed. The sizes of the

driver and follower are both taken to be approximately 0.5 inch in

diameter and 0.1 inch in thickness, and the material is taken to be

steel (.283 lb/in 3 ).

This is an approximate value, and the moments of inertia used in this

parametric study did vary somewhat from this figure.

Figures 8 through 11 	 a summary of the computer analysis

done on the mechanisms. Figure 8 shows the velocity of the mechanism

as a function of time for a typical set of parameters. Changing para-



DRIVER AND FOLLOWER ANGULAR VELOCITIES
FOR THE FOUR PIN MECHANISM

FIGURE 8
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meters will not change the shape of the curve, but will change the

magnitude of the velocity, the period of the oscillations, and the

rise time (see below). The following discussion applies in general

to any of the three mechanisms, but refers in particular to figure 8.

The rise time of the mechanism shown is 0.025 seconds; since by

the first minimum in velocity, the driver has achieved its steady

state velocity profile. The average terminal velocity, as used here,

is simply the arithmetical average of the peak and minimum velocity.

The period of oscillation is the time between peaks of velocity, and

is a measure of the resolution of the mechanism (for example, a typ-

ical watch might have a resolution of one second, if the pallet

oscillates once a second).

The peaks in driver velocity represent the point of entry of the

pin into the slot (distance between peaks is 90 ° for the four slot

mechanism). In other words, the driver velocity is a maximum at pin

entry. Since the trajectory of the pin must be coincident with the

centerline of the slot for proper entry (and exit) of the pin, the

follower must be instantaneously stationary. This can be seen in the

graph, since the peaks in driver velocity coincide with the zero

points (minima) in the follower velocity. As the driver continues

to turn through the entry point, the follower will pick up speed as

the driver, transferring its energy to the follower, slows down. When

the pin and slot are on the line between the centers of rotation, the

driver velocity is a minimum and the follower velocity is a maximum.

Having passed the centerline, the driver velocity increases (and the

follower velocity decreases) until it again reaches a maximum as the

pin leaves the slot. If terminal velocity has been reached, the vel-

ocity of the pin leaving the slot will be the same as when it entered.

Three general statements can be made regarding the parametric

graphs for the driver (figures 9, 10, and 11):

1. The greater the driving torque, the lower the rise time,

and the greater the terminal velocity. The rise time will, however,

reach a certain minimum (a function of the coefficient of friction)

beyond which increases in the driving torque will no longer reduce the



RISE TIME OF
THREE PIN MECHANISM

TERMINAL VELOCITY OF
THREE PIN MECHANISM

FIGURE 9



RISE TIME OF
FOUR PIN MECHANISM

TERMINAL VELOCITY OF FOUR PIN MECHANISM

FIGURE 10



RISE TIME OF
SIX PIN MECHANISM

TERMINAL VELOCITY OF
SIX PIN MECHANISM

FIGURE 11
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rise time (due to the finite inertia of the system).

2. The more frictionless the system, the greater is the

rise time. The limiting case would be a frictionless system, which

will never reach a terminal velocity (the velocity mill go to infinity).

3. An almost linear relationship exists between the

terminal velocity and the driving torque.



CONCLUSIONS

Three important conclusions can be drawn as a result of this

study:

1. The Geneva mechanism can be used as a timing device.

2. Small variations in the parameters of the system

will not seriously affect the motion.

3. Only three geometrical configurations will work in a

timing application: the three pin / six slot mechanism; the four

pin / four slot mechanism; and the six pin / three slot mechanism.

22
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RECOMMENDATIONS

Since the Geneva mechanism will work as a timing device, further

study is warranted. The following areas should be addressed in any

subsequent work.

1. The rise times of the mechanisms examined were not fast

enough to allow use of the Geneva mechanism as a short period (i.e.

milliseconds) timer. Extensive work is required to optimize the

masses to achieve smaller rise times.

2. Excessively high spring rates cause significant cyclic

oscillations in the magnitude of the peak velocity of the driver.

This phenomenon should be investigated.

3. Finite pin and slot dimensions should be included in the

analysis. This would be included in the moment equation used in the

derivation of equation 1-1, the friction torque. Also, bearing

friction should be included (it is not necessarily constant).

4. A quantitative assessment of the mechanism's accuracy should
be made.

5. Angular accelerations of the members seemed high. Any

further work should include an investigation of these accelerations

and how they might affect the mechanism's accuracy.

6. A prototype should be built and tested to verify the analytical

results.

7. In any further studies, the average terminal velocity should

redefined (see page 17 for the definition as used here). A more

appropriate definition would he based on the time required for the

mechanism to complete one (or a part of one) revolution.



APPENDIX A

SCALE DRAWINGS

In order to construct scale drawings of the three possible con-

figurations, the following computations were necessary.

Let Rz 1.000 for simplicity.

211.



FOUR PIN MECHANISM

SCALE: 2 to 1

FIGURE 12



SIX PIN MECHANISM

26

SCALE: 21/2. to 1

FIGURE 13



THREE PIN MECHANISM
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SCALE: 11/4 to 1 

FIGURE 111.
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APPENDIX B

COMPUTER PROGRAM

The equation of motion was solved on a CDC 6500 digital computer.

The program utilized is called MIMIC, a program used to solve systems

of ordinary differential equations. MIMIC is simply a series of

FORTRAN subroutines which have been designed to aid the user in the

solution of his problem. To demonstrate the use of MIMIC, consider

the following differential equation:

The first step in the solution is to solve the equation for the high-

est order derivative,

The mathematical portion of the program would then be

In these equations, 1DX and 2DX represent the first and second deriva-

tives respectively, and A and B are the initial (t 0) values of X

and x respectively. INT is the command to the computer to use the

integration subroutine.

In solving these equations, the computer will use the values of A

and B to calculate the initial value of 2DX. Then with the integration

subroutine, this value is used to calculate the second (t 048t) value

of 1DX, which is in turn used to calculate the second value of x.

These steps keep repeating until the computer is told to stop. The

error incurred by the use of the value of 2DX at t n to compute the

values of 1DX and x at t n+1 can be made negligible by proper choice of

the increment of t, which is automatically taken care of in the

MIMIC program.

The heart of the MIMIC program is the integration subroutine.

This subroutine makes use of a fourth order, variable step, Runge-
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Kutta method. The equation to be integrated is of the form

In this method, the function to be integrated is divided into a

finite number of intervals (xn,xn+1) of width h. Each interval is

in turn divided into four subintervals of widths h/6, h/3, h/3, and

h/6. The integral of f(x,y) over the whole interval h is computed

as the sum of the integrals over the four subintervals. the function

f(x,y) is taken to be constant over each of the subintervals.

To solve the equation

given that y = y0 at x = x0 ; y =yn at x = xn; y = yn+1 at x = (xn+h) , the

following equation can be solved.

where

There are two main advantages to this approach. First, it re-

quires only an initial point to start the integration. Knowing the

values of yo and x0, y1 may be computed, and the integral over the

subinterval computed. Knowing y1 and x1 = xo+h, y2y be computed,

and so on. The other advantage of the Runge - Kutta method is small

truncation errors, of the order of h 5. The step size h is automati-

cally adjusted by the integration subroutine to keep the relative

error (determined by comparing the values of y n+1 by computing

first with two half steps and then with one full step) at less than

5x10-6

In order to solve equation 1-19 with MIMIC, it must first be

solved for the highest order derivative. In its present form,

the equation cannot be solved for θ. To eliminate the problem,
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let

Then define S such that

Equation 1-19 then becomes

Which is of the form required by the computer.

A printout of the actual program used is given below. The first

seven cards are control cards. The PAR card lists the parameters

which will be found on data cards at the end of the program. Any

number of values for the parameters can be read in, and the program

will run separately for each individual set of parameters. In this

way, the effect of varying a parameter (spring constant, coefficient

of friction, etc) can be observed. The next card, DT, simply sets

the time increment between printout data points.

G,H,I,J, and L are equations for the factors of equation 1-18.

A,B,C,D, and E represent the factors of equation 1-19. F is as de-

fined previously in this appendix, except that in place of the

second derivative (2DX), the symbol OLD2DX is used. The second

derivative cannot be used to compute F, since the second derivative

itself depends on F (the computer cannot solve simultaneous equations),

To circumvent this problem, the equation for OLD2DX tells the computer

to use the previous value of 2DX (i.e. the value at t-DT/10) to

compute the current value of F. Knowing F, the computer can then

assign a value for S according to the above criteria.

SMT ("small time") is a logical control variable which is defined

as true when T (time) is less than or equal to zero, and false when

T is greater than zero. Thus the computer will see only those state-

ments controlled by SMT when T equals zero (it is never negative in

this problem). The SMT statements, then, are used to compute the



MIMIC COMPUTER PROGRAM

C 	 N=NUMBER OF SLOTS

C 	 COEFFICIENT OF FRICTION

C 	 K=SPRING RATE
C 	 IW=MOMENT OF INERTIA OF FOLLOWER 

C 	 IC=MOMENT OF INERTIA OF DRIVER
	 	 PAR(N.XO,U,K.,IW,I.C)

	

OT
	 I./SIN(3.1416/N)

	

H 	 (G*COS(X))-1.

	

	 G*SIN(X)

1.1+(G*G)(2.*G*COS(X))

(I*J*H)/(L*L*L)
(I*I*U*J)/(L*L*L)

O 	 (I*U*H)/(L*L) 	
K/IW

F 	 (C*1DX*10X)+(D*OLD2DX)
FSW(F,-1.,1..1.)

OLD2DX 	 TDL(2DX.,DT/10.,100.)
SMT 	 FSW(T,TRUE,TRUE,FALSE)

SMT 	 P 	 1.+(G*G)-(2.*G*COS(X0))
SMT 	 Q 	 (G*COS(X0))-1.
SMT 	 R 	 (IC/IW)+((Q*Q)/(P*P))
SMT 	 V 	 ABS(U*G*Q*SIN(X0))/(P*P))
SMT 	 2DX E/(R+V)

LGT 	 NOT(SMT)

LGT 	 2DX 	 (E-(B+(S*C))*(IDX*IDX))/(A+(S*D))
lDX 	 INT(2DX.0.)
THETA 	 INT(1DX.).)
THDEG 	 57.296*THETA
X 	 MOD(THETA.1.5708))+X0
XDEG 	 57,296*X
PHIDOT 	 (H*1DX)/L

FIN(T,.2)
HDP(TIME,DISPL,VEL,ACCEL,PHIDOT)
OUT(T,THETA,1DX,2DX,PHIDOT)

PLO(T,1DX)
SCA(.002.2.5)

ZER(0.,0.,)
PLO(T.PHIDOT)

ZER(0.,0.)

END

31
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initial value of the second derivative, 2DX. These statements are

simply equation 1-18 with the initial value of θ (-30°,-45°,or -60°)

and é (0 rad/sec) substituted, and solved for θ see Appendix D).

The equation for 2DX controlled by LGT ("large time"-this simply

shuts off the equation at t 0) is the primary equation in this

program. It is identical to the equation derived in this appendix.

1DX, the angular velocity of the driver, is the integral of 2DX,

with a value of zero at t =0.

THETA, the angular displacement of the driver, is equal to the

integral of 1DX. It will start from zero and increase for as long

as the program rims. However, the equation of motion was written

only for that part of the motion where the pin engages the slot

(±30°, ±45°,or ±60°). X is therefore the true variable which must be

used in the equations H through L, since it will vary only between

hose points where the pin engages the slot (literally, x is the mod-

ulo of THETA and 90 °, minus either 30 °,45°, or 60° ). This method is

alid because the problem can be considered to be a series of problems of

changing initial conditions. When each pin in its turn enters a slot,

t takes for initial values of velocity and acceleration the computed

values from the preceding pin (which is simultaneously leaving its

slot). The continuous motion of the mechanism is therefore a series

of discrete, single pin engagements.

Continuing, PHIDOT is the equation for the velocity of the follow-

er (equation 1-7). The FIN statement shuts off the program after the

motion has proceeded for 0.2 seconds. The remainder of the cards are

for the output commands (print and plot statements).
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APPENDIX C

CONSTANT TORQUE SPRING

The neg'ator spring is a constant force spring. It consists

of a long strip of spring steel (or other spring material) which

is wound onto a spool, much as the steel measuring tape used by

carpenters. A constant force is required to unwind the strip from

the spool; that is, a constant linear pull which causes the spool

to rotate on its axis. Conversely, a spring which is unwound from

its spool will tend to wind itself up on the spool, just as any

spring tends to return to its equilibrium position. Therefore, if

the free end of the spring is wound around a second spool, the

spring will exert an almost constant torque about the second spool

as it rewinds itself about the original spool. This device is called

the Negtator B Motor, and can develop as many as fifty turns of out-

put. A schematic drawing is shown below.

Figure 15. Neg'ator B Motor.
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APPENDIX D

COMPUTATION OF ACCELERATION AT TO 

The computer requires a value for the second derivative at t=0

in order to initiate the S/2DX loop as described in Appendix B.

e and 0 are known at t

θu depends on the configuration of the mechanism being analyzed (i.e.

three, four, or six pins).

Equation 1-19, with θ=0, is

Let R be the value of A at t0, and V be the value of D at t =O. E

remains the same (i.e. it is a constant of the motion). Then the

equation of motion at t -z 0 is

Now θ0 (acceleration at t 0 only) must always be positive, since the

mechanism starts from rest and must always begin its motion in the

direction of the positive torque of the driving spring. Therefore,

the equation of motion for t 0 can be written:

which is of the form to be used in the computer program. Note that

R is always positive, and thus the requirement that θ 0 be in the

direction of the torque K is satisfied.



APPENDIX E

SUMMARY OF COMPUTER RUNS

Six Pin Mechanism (I driver 
10 x 10

-6 
in lb sec

2 
;

Ifollower
 
6 x 10

-6
 in lb sec2 )

μ K
θmax θmin

Rise Time Period

in ib/rad rad/sec rad/sec sec sec

.20 .03 83 10 .101 .046

.20 .05 107 13 .078 .036

.20 .07 127 15 .074 .030

.20 .09 144 17 .051 .027

.25 .03 76 9 .092 .050

.25 .05 98 12 .084 .039

.25 .07 116 14 .061 .033

.25 .09 130 16 .047 .029

.30 .03 71 8 .073 .054

.30 .05 91 11 .057 .043

.30 .07 108 13 .036 .036

.30 .09 123 14 .034 .031

.35 .03 67 8 .070 .058

.35 .05 86 10 .o46 .046

.35 .07 102 12 .047 .039

.35 .09 116 14 .044 .034
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Four Pin Mechanism (I
driver = 3 x 10

-6 
in lb sec2;

Ifollower = 50 x 10-6 in lb sec2)

μ K
θmax θmin

Rise Time Period

in lb/rad rad/sec rad/sec sec sec

.20 .08 155 19 .056 .0b0

.20 .10 174 21 .050 .035

.20 .12 191 23 .046 .032

.20 .14 206 25 .034 .030

.25 .o8 134 17 .037 .043

.25 .10 150 19 .033 .039

.25 .12 164 21 .030 .035

.25 .14 178 23 .027 .033

.30 .08 11S 17 .037 .047

.30 .10 128 18 .030 .042

.30 .12 144 20 .029 .038

.30 .14 154 22 .027 .035

.35 .09 111 17 .028 .046

.35 .10 317 18 .026 .044

.35 .11 123 19 .024 .042

.35 .12 129 20 .023 .040

.35 .20 163 25 .028 .031
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Three Pin Mechanism (I
driver = 3 x 10

-6 
in lb sec

2 
;

Ifollower =40 x10 -6 in lb sec 2 )

μ K
θmax

θmin Rise Time Period

in lb/rad rd/sec rad/sec sec sec

.20 .08 144 61 .044 .018

.20 .10 161 68 .039 .017

.20 .12 176 74 .036 .015

.20 .14 191 8o .030 .014

.25 .08 140 58 .036 .020

.25 .10 156 65 .036 .018

.25 .12 171 71 .029 .015

.25 .14 184 77 .028 .015

.30 .08 136 56 .037 .020

.30 .10 152 63 .033 .018

.30 .12 167 69 .030 .016

.30 .14 180 74 .028 .015

.35 .08 133 54 .038 .021

.35 .10 148 61 .038 .018

.35 .12 163 67 .031 .017

.35 .14 176 72 .028 .015

37
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