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ABSTRACT

The basic principles of stability analysis are set forth,

including the development of a mathematical model, steady state

analysis, integration of the dynamic system equations, and

predictions of transient responses. The equations for the

mathematical model are developed for a continuous stirred tank

reactor with a cooling jacket, containing an autocatalytic re

action, in unsteady state operation. These equations are

numerically integrated to obtain a good picture of reactor

dynamics about the steady state. State variable methods, in

cluding the classical linearization theorems and Lyapunov's

Second Method, are utilized to predict bounds of stable reactor

behavior. A discussion of the short comings of each method is

presented. Finally the results are compared and recommendations

are set forth.
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PREFACE

The name Lyapunov is known to nearly all control engineers

as the developer of Lyapunov Functions and as the author of

Lyapunov's Second Method. Since control theory is being used

in such diverse applications as space travel, computer auto-

mation and the production of nuclear energy, specific facets

and applications of Lyapunov's Second Method are explored and

compared here. Once the non-linear state model for a chemical

reactor is developed, it could just as easily be a model of a space

vehicle in motion or of a nuclear reactor in operation. The

applications presently and in the future are infinite.

Grateful acknowledgment is made to Dr. Hung T. Chen for his

helpful suggestions and corrections, and to Dr. Andrew U. Meyer

for his thoughtful advice.

D.E.R.

June, 1971
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INTRODUCTION

In the course of reactor design and operation, it is often

necessary to determine whether the operation will be stable or un

stable as well as the bounds of stable behavior. There are various

methods for determining regions of stable and asymptotically stable

behavior. Several of these will be explored and compared here

using an autocatalytic reaction frequently found in polymer term-

ination

A steady state analysis was accomplished by solving for the steady

state concentrations as a function of temperature and flow rate.

Steady state trajectories could then be plotted and the character

istics could therefore be examined. A dynamic system analysis was

performed by various techniques. One basic approach is the numer

ical integration of the dynamic system equations. Linearization

of the dynamic equations (8), various types of Lyapunov functions

(2, 4, 8, 11), including those due to interpretations of Krasovskii's

Theorem ( 3, 7, 9, 10), will be utilized to determine reactor sta-

bility. Finally, the methods will be compared and discussed.

1



REACTOR ANALYSTS BY COMPUTATION

The Mathematical Model

Consider an ideal CSTR with a cooling jacket in which there

occurs the irreversible, exothermic, second order termination re-

action

A + R + R

If one assumes constant physical and thermochemical properties,

constant coolant temperature, the reactor performance may be des-

cribed by the following material balance equations for species

A and R and the thermal energy balance.

2

The symbology used here is explained in Table I.



TABLE I

Symbol Meaning Value

Example 1 Example 2

ρ Density 50 1h/ft 3 .9 grams/cc

V
R

Reactor Volume 100 ft 3 88947 cc

CP Heat Capacity 1 Btu/lb °R .33 cal/cc °K

ΔH Heat of Reaction -5000Btu/lb -16,400 cal/gmole

K Reaction Constant 108ft3/lb hr 1,255X10
12
cc/gmole-sec

ΔE Activation Energy 21240 Btu/lb mole 16770 cal/gmole

U Heat Transfer Coefficient 5 Btu/ft 2 hr °R 0 cal/cm
2
sec

A
R

Heat Transfer Area 200 ft2 0 cm2

Q Reactant Flow Rate 100 ft
3
/hr .593 cc/sec

TC Coolant Temperature 520 °R (Arbitrary) °K

Ti Inlet Temperature 615 °R 300 °K

CAi Inlet Concentration, A .2 lb/ft3 .01 gmole/cc

CRi Inlet Concentration, R .2 lb/ft 3 .0001 gmole/cc

R Gas Constant 1.987 Btu/lb mole °R 	 1.987 cal/gmole °K

CA Concentration, CA

/C

Ai dimension-less dimension-less

CR Concentration, CR/CAi dimension-less dimension-less

T Temperature, T/T* dimension-less dimension-less

θ Time, Qθ/VR dimension-less dimension-less

T* Characteristic Temperature,

UAR 	 T

C/ρQ CP
719 °R 300 °K

A1 State Variable Constant .139 ft 3hr/lb .002878 cc sec/gmole

A2 Dimension-Less Constant .483 .00567

B Dimension-Less Constant 1.2 1.0

D 1 State Variable Constant 5. ft
3
hr/lb 100. cc sec/gmole

D2 Dimension-Less Constant 2.23 56.13
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Steady State Analysis

Equations 1, 2, 3 describe the steady state behavior of the

system when the left hand sides are set equal to zero. Steady state

concentrations can be found as a function of temperature by solving

the first two equations simultaneously for C A or CR. Once the steady

state concentrations are determined for given inlet conditions, the

heat generation and removal terms of Equation 3 can be evaluated.

For increasing steady state temperatures, the amount of heat generated

will increase according the reaction rate. Above a certain tempera

ture, however, the slope will start to decrease due to the fact that

most of the species A present is reacting and this limits the react

ion rate. The heat removed line is just the heat loss of the reactor

due to the exit stream of heated product. These two terms are shown

in Figure 1. Various inlet temperatures will cause the heat removed

line to intersect with the heat generated curve at various places.

The physical parameters used are listed in Table I under "Example

1". 	 However, the reactor operation was assumed to be adiabatic

in this case thus the heat transfer coefficient was set to zero.

The three inlet temperature lines intersect the heat generated curve

in three, two and one places. This demonstrates the existence of

regions having three, two, and one steady states. Note that the exis

tence of two or any even number of steady state points is unique to a

given set of conditions as this means that the heat removed line is



Figure 1 HEAT GENERATED AND REMOVED VS. TEMPERATURE
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tangent to the heat generated curve at one or more places.

By varying flow rates, steady state temperature and concen

trations will vary. By solving Equations 1, 2, 3 at different flow

rates, the variation of steady state temperature and concentration

can be found. Various flow rates will produce one, two, or three

steady states as was shown before. This method was used to produce

Figures 2 and 3. The metric units in Table I were used since the

region having three steady states was quite large and physically

possible. In Figures 2 and 3, as the residence time in the reactor

increases, the steady states increase from one to two until three.

The range of residence times having three steady states is about

six orders of magnitude. At still higher residence times, the

number of steady states decrease from three to two until one is

reached. Although Figures 2 and 3 are similar, the differences are

significant. The steady state temperatures are widely separated at

the high and low steady states for different inlet temperatures.

This could be important if temperature were critical to the reaction.

The high and low steady state concentrations are fairly independent

of inlet temperature and correspond to one hundred and zero percent

conversion. The constraint of material balance and positive con-

centrations evidently places a limit on steady state concentration

that has no counterpart in steady state temperature.



Figure 2 PLOT OF STEADY STATE TEMPERATURE AGAINST RESIDENCE TIME



Figure 3 PLOT STEADY STATE CONCENTRATION AGAINST RESIDENCE TIME
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Transient Analysis

The transient behavior of the reactor can be determined by

integration of equations 1, 2, 3, Numerical integration was per

formed on a digital computer using the four point Runge-Kutta method,

modifyed by Gill. Having chosen the Example 1 in Table I, one

could then start with various initial temperatures and concentrations

and integrate the equations until a steady state point was reached

or something else occured such as an instability. Different initial

or starting temperatures and concentrations traced different trajec

tories as the system returned to steady state. Dimensionless

quantities CA , CR, T were used to calculate the points, rather than

the dimensioned quantities. The symbols used to obtain these values

is shown in Table I. The projection of several trajectories on the

CR=0, CA=0, and T=0 planes is shown by Figure 4, 5, 6, respectively.

The apparent crossing of the trajectory curves is not real and is

due to the projection of three dimensions on two.

An attempt was made to see what effect a variation in inlet

temperature or concentration would have on reactor operation. The

reactor was assumed to be at steady state. Inlet temperature and

concentrations were impulsed and step changed and the equations

were integrated. If an inlet variable was impulsed, the systems

followed as trajectory away from steady state and then returned.

If the inlet variable was step changed, the system followed the same

trajectory but did not return to steady state. Interestingly enough

only two trajectories were traced. These are labeled 1 and 2 in

Figure 4. This was due to the fact that the variables used were coupled,

i.e. varying of any one always resulted in varying of the other two.



Figure 4 TRAJECTORY PLOT OF CA VS.



Figure 5 TRAJECTORY PLOT OF C R. VS. T



Figure 6 TRAJECTORY PLOT OF CR VS. CA
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Therefore, any control force that varied less than all three inlet

conditions simultaneously would not be satisfactory for control

purposes. It should be noted that there is no way to decouple the

variables since this is a non-linear system. The trajectories did

show that the reactor was asymptotically stable over large variations

in inlet parameters. Only when initial conditions were distributed.

in unlikely regions of state space did the reactor begin to show

instability. On the previously mentioned Figure 6, it seems that

there is only a narrow corridor in the approach to steady state.

At more elevated temperatures, this corridor becomes harder to reach

and the reactor becomes less stable.

The Example 2 listed in Table I were chosen because the

three steady state region was quite large. This was apparent on

Figure 2 and 3. Just as before, numerical integration was used to

determine trajectories once initial, conditions were selected. Since

there were three steady state points, the initial temperature and

concentrations were chosen near each to see if the reactor trajec

tories would lead there or to another steady state point. The re

sults were then plotted, again using dimensionless variables. Figures

7 and 8 show the trajectories projected on the CR=0 and the T=0

planes respectively. The significance of the three steady states

lying on a straight line is due to a material balance. The high

temperature steady state, which corresponds to low CA , was not ap

proached directly by the trajectories near it. Rather, the reactor



Figure.7 TRAJECTORY PLOT CA VS. T , 3 STEADY STATE CASE
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Figure 8 TRAJECTORY PLOT OF C R. VS. CA , 3 STEADY STATE CASE



system seemed to wander about the region, in some cases falling

back to the lowest steady state and in some others, becoming un

stable. Any trajectory passing through or near the middle steady

state as though the point was did not exist. The regions of

asymptotic stability are evidently relatively small for the high

steady state and relatively large for the low steady state.

16
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Reactor Stability by Integration 

A very basic technique for determining reactor stability is

that of integration of the dynamic equations. The use of numerical

integrating routines on a digital computer allows system equations

to be evaluated easily and quickly. This was done before in order

to determine trajectories as the reactor returned to steady state.

In order to determine regions of asymptotic stability, it was nec-

essary to continue extending trajectory curves further away from the

steady state point until the reactor no longer returned to steady

state. These points would then be outside the region of asymptotic

stability of the reactor. As the reactor trajectory passed through

certain regions of state space, increasing temperature or concen-

tration caused a larger increase in reaction rate. Since the re-

action was exothermic, more heat was produced and the temperature

continued to rise. The reactor trajectory was then getting further

and further away from steady state. In the cases where this con-

tinued an explosion would likely result. The regions in state space

where this phenomonon occurs are called unstable. Numerical inte-

gration could thus delineate the regions of state space where all

trajectories starting inside the region would return at least as-

ymptotically to the steady state point.

Although numerical integration was the most straight forward

technique employed here, it was also the most time consuming, both
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in man and computer time. The numerical integrating routine checked

its accuracy by determining the linearity of the system. If the

system was not linear enough in the time increment used, the time

increment was halved and the process repeated, In doing the pre-

vious trajectory plots, the system was fairly linear. However, as

it became necessary to increase concentration and temperature to

find instability, the equations became extremely non-linear, due in

large part to the Arrhenius Rate Law. Determining the trajectory

of just one point began to take much computer time, Fortunately,

a Control Data 6600 computer was available. Even so, the use of

numerical integration became a costly and time consuming procedure.

After much effort, points were calculated where trajectories just

returned to steady state. The points were plotted on Figure 9.

The Example 1 of Table I was used. Initial concentrations at

five different initial temperatures were tested. The regions are

seen to be decreasing and changing shape with increasing temperature.

Due to the extreme non-linearity of the system, the approximate

error is ±10%. Though this error appears large, the regions are

still more than double the size determined by any other method

that will be attempted i.e. Linearization, Lyapunov's Second Method,

Krasovskii's Theorem.



Figure 9 REGIONS OF ASYMPTOTIC STABILITY BY NUMERICAL INTEGRATION



REACTOR ANALYSIS BY STATE PLANE METHODS

The State Model

In order to apply general stability techniques, a state model

must be formulated. If the dimensionless variables of Table I are

utilized, Equations 1, 2, 3 become:

20

(where A l , B, A2, D1, D2 are constants, r is the rate of reaction).

Since these dimensionless equations contain constants and do not

meet the requirement of state that ff(xx)= θ, a further trans

formation is necessary. A good choice of state variables is the

deviation from steady state. Thus



After Equations 4, 5, 6 are transformed, and the steady state

equations subtracted, the resulting state equations are:

21



Stability By Linear Analysis (8)

The usual technique used to determine the linear character

istics of a system when ff(xx) is analytic, is linearization in

a Taylor series expansion about the origin. Here

The stability of the unforced linear system can be determined by

finding the eigenvalues of the ∩ matrix. If all the eigenvalues

are negative, the system trajectory will be composed of only decay

ing exponentials and the system will be asymptotically stable. If,

however, any eigenvalue is positive, the system is unstable. One

glaring error in this is obvious. Regardless of the initial con

ditions, the system will be asymptotically stable when all eigen

values are negative. This is known as asymptotic stability in the

large and can not be valid for this reactor system. The closer

the system is to steady state, the better the system can be repre

sented by a linear system. Even at steady state, however, linear

ization is not perfect because the reactor is still non-linear.

Since the RAS will be infinite or non-existent, it was senseless to

compare size. It was decided, instead, to examine the stability

of the steady state points in the three steady state region. This

was done by calculating the ∩ matrix for the points shown on

Figure 2. The state transition matrix and the eigenvalues were

22
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calculated using a computer program found in the appendix of (5).

The points which were stable were noted. The results were plotted

in Figure 10. It seems that none of the high steady state points

are stable and only a small section of the low ones. This may be

true because of high temperatures or flow rates involved. However,

numerical integration later showed that some of the high steady

state points at low flow rates and more of the low steady state

points are stable. Oddly enough, both linear analysis and numerical

integration showed that a middle steady state point, at 332 °K, is

stable. This is not physically possible.



Figure 10 STEADY STATE STABILITY BY LINEAR ANALYSIS



Stability Using. Linear Approximation (8)

A basic technique involves the approximation of linearity for

a non-linear system. The method to be used here involves grouping

the non-linear terms into a function called "g". If the linear

part is asymptotically stable in the large and if the non-linear

part tends towards zero near the origin, then the system must be

stable near the origin. The method assumes that the contribution

of the non-linear part of the system to instability is small. This

is not the case for a reactor system and the results should show

this.

The linear approximation theorem can be summarized as follows.

Consider the non-linear system

Define the constant matrix ∩ and the function g (xx) by

If d xx/dt = ∩ xx is asymptotically stable in the large, and if

The system is therefore asymptotically stable at the origin. The

double bars signify the norm of a vector.

25
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Using Equations 7, 8, 9, the following is obtained.

The eigenvalues of the ∩ matrix are obviously all negative.

Thus, the linear system is asymptotically stable in the large.

The regions of asymptotic stability (R.A.S.) predicted by this

theorem depend upon the region of state space where the limit of

the norm of the rate expression g(xx) divided by the norm of xx

approaches zero as the norm of xx 	 approaches zero. The results

obtained were deviations from steady state as follows (Using the

Example 1, Table I).

Temperature 	 ± 10.2 °R

Concentration A 	 ± .041 lb/ft 3

Concentration R	 ± .019 lb/ft 3

The results were quite insignificant compared with the other methods

used here. The real problem involved the rate expression g(*).

Since it contained the Arrhenius Rate Law and the product of concen

trations CA and CR, it was the sole cause of instability and non-

linearity for this system. The attempt to deal with it as a trival

quantity was doomed to failure.
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Formulation of Lyapunov Functions 

In previous works (1-4, 6-11), Lyapunov's Direct Method is

employed to find regions of asymptotic stability. Various tech-

niques are used to formulate and apply Lyapunov functions. Briefly,

Lyapunov's Direct Method can be summarized as follows. Consider a

system characterized as follows:

Suppose there exists a scalar function V( )k) which for some number

E>0 satisfies the following in the region ,I d!

Then the system is asymptotically stable at the origin.
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Stability by Calculating the Time Derivative 

An early and general method used to apply Lyapunov functions

can be found in (8). Briefly, this method involves the formulation

of a Lyapunov function and the computation of its time derivative

using the chain rule formula

If this derivative is negative for all points in and on the Lyapunov

function, a larger Lyapunov contour can be tested. The smallest

contour which has a point at zero time derivative will define the

area of asymptotic stability where all trajectories will return to

the origin. Application of this theorem proved difficult. Firstly,

a Lyapunov function had to be selected. There were infinite

possibilities and each Lyapunov function had a different in shape.

Though there were no restrictions on the Lyapunov functions as with ,

other methods (7-10), no guide was available for choosing a function

for a chemical reactor system either. After several possible

Lyapunov functions were tested, the function which yielded the

largest RAS was the one which included both concentrations and the

temperature squared as state variables in one of the terms. This

was probably due to the effect of the rate expression on the system.

Each Lyapunov function had to be tested for a negative time derivative
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at a grid of points. The computer program which was used, tested

each contour at twenty points spaced over all four quadrants of

the concentration plane. Each function was evaluated at five

distinct temperature intervals. The largest contour 	 to

have all points with a negative time derivative was noted for each

Lyapunov function. These contours were plotted in Figure 11.

However, the plot be must qualifyed. It was realized that no

physical reactor can have negative concentrations during either

steady or unsteady state operation. Therefore, no reactor can

have a trajectory passing through those areas of state space cor-

responding to a negative concentration. All trajectories starting

in regions of positive concentration must stay there. The restrict-

ion of a Lyapunov function having all points in a negative time

derivative zone was then relaxed somewhat. Only points on the

Lyapunov function which corresponded to positive concentrations were

tested for a negative time derivative. What the situation was at

other points was irrelevant since the reactor system could never get

there! This assumption resulted in roughly 50% increases in the

RAS. In Figure 11, these contours are seen to vary in shape and

size as the temperature changes. Note that there is only one steady

state point present. This is due to the fact that the Example 1

of Table I was used for this calculation. The limits on the contours

do not extend to the axis because the system is very stable in these

regions as the rate term is a function of both concentrations.



Figure 11 REGIONS OF ASYMPTOTIC STABILITY BY LYAPUNOV TIME DERIVATIVE METHOD
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The three steady state region was also investigated but in a

slightly different manner. Instead of seeing how big the regions

of asymptotic stability were, it was decided to see which steady

state points had any regions at all. This was accomplished by

taking points ± .01% about a steady state point and seeing if all

the points had a negative time derivative. This was done for each

steady state point found on the inlet temperature equals 300°K

curve in Figure 2. This was how Figure 12 was constructed. The

steady state points which were asymptotically stable within the

small area selected are labeled stable, although it is really

stable in the small. This plot is in sharp contrast to Figure 10

where the points were either unstable or stable in the large.

In Figure 12 the low steady state is stable over flow ranges 3

orders of magitude more than that of Figure 10. Also the high

steady state is stable for a variation in flow rate. One middle

steady state point, that at 332°K had a RAS. Numerical in

tegration yielded the same results as that shown in Figure 12.

It was completely baffling how a middle steady state point not

only was stable itself but also had a small region of asymptotic

stability around it. Evidently the instability of the point was

smaller than the truncation and propogation error of the fifteen

decimal place word on the CDC 6600 used for all calculations.



Figure 12 STEADY STATE STABILITY USING LYAPUNOV FUNCTIONS



Stability Using an Early Krasovskii Theorem

A limited region of asymptotic stability can be found by an

early interpretation of Krasovskii Theorem (7), briefly summarized

as follows. The non-linear system

is asymptotically stable at the origin if the matrix

is negative definite for all xx; furthermore,

is a Lyapunov function.

Utilizing equations 7, 8, 9, f(0)=0, since G(xx) is the de-

viation of the rate from steady state.

33

G1, G2 , G 3 are the partial derivatives of G with respect to X1, X2

, X3. It should be noted that the Lyapunov function is unique in this
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case. It is just f 1 2+f 2 2+f 3 2 . Certainly, there is no problem form

ulating the Lyapunov function. However, due to the fact that var

ious Lyapunov functions cover various areas of state space, the RAS

determined here should be very conservative. A computer program was

formulated to calculate points on a Lyapunov function V(xx)=K. A

grid of twenty points, five in each concentration-concentration

quadrant were tested to see if FF(xx) was negative definite. If

it was, a larger K was used to calculate the Lyapunov function and

the process repeated. The largest V(xx)=K to satisfy the con

straints was plotted on Figure 13 at various temperature intervals.

The Example 1 of Table I was again used to generate the one

steady state region. The Lyapunov functions generated were ellip

soidal in shape and expanded with decreasing temperature. The

ellipsoidal shape is due to the squaring of the state variable ex

pressions. In this case, the attempt was again made to increase

the RAS by only testing the constraints on areas of positive con

centration only. Small increases were noted in the RAS at two of

the temperatures shown. This was probably due to the fact that the

functions were ellipsoidal and probably violated the constraints in

several quadrants at about the same distances from steady state.



Figure 13 REGIONS OF ASYMPTOTIC STABILITY USING AN EARLY KRASOVSKII THEOREM
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Stability Using the General Krasovskii Theorem

Luecke and Mc Guire gave a superior interpretation of Krasovskii

Theorem (10). The non-linear system

is asymptotically stable at the origin if there exist constant,

symmetric, positive definite matrices PP and Q such that

is negative definite for all xx; furthermore,

is a Lyapunov function. Luecke and Mc Guire show that astute choice

of the matrix PP 	 , when using Krasovskiis Theorem, can significantly

enlarge the resulting stability region. The whole draw back is in

choosing the right matrices in order to enlarge the RAS. As suggested

by Luecke and Mc Guire, a PP matrix was chosen in an attempt at nor

malization of the state variables. It was assumed that the same type

of normalization would work here with three state variables as it did

in their case with two. This approach yielded a PP matrix of

It should be noted that the resulting Lyapunov function is similiar
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to the one formulated in the previous section except that the or

ientation about the steady state is different. In other words, the

f 1 2 , f 2 2 , f 3 2 of the previous section are multiplyed by constant

terms. No cross products were attempted because there was no way

to determine which would be beneficial and also because some might

causeV(xx)<0 for some xx ≠ O, invalidating the entire Lyapunov

function. The matrix Q proved easy to choose. Before adding in

Q, Fil was negative, F22 , F 33 were positive and the rest of the

matrix was zero. Thus, very large values of Q 22 and Q33 could be

used to maintain FF being negative definite. The real constraint

was F 11 being negative. Once the Lyapunov function V(xx)=K was

calculated, the computer checked each of twenty points to ensure

that FF was negative definite and K was incremented until points

were in violation of the constraint. As before, the Example 1

of Table I was used. The largest Lyapunov functions are plotted

in Figure 14. The resulting shapes are diamond-like. It was

attempted to enlarge the RAS by ignoring points in the other three

quadrants not shown on the graph. Probably due to the fact that

the state variables were normalized, the constraints were being

violated by the points in all the quadrants at about the same dis

tance from steady state. This procedure was then abandoned.



Figure 14 REGIONS OF ASYMPTOTIC STABILITY-EXTENDED KRASOVSKII
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CONCLUSION

It has been shown that the operation of a reactor in a three

steady state region will be stable at best, at the high and low

steady state and unstable at the middle steady state. The fact

that the high steady state may show stability can be very useful.

For instance, a low inlet temperature could be used in conjunction

with a controller to keep a high conversion at a high flow rate

with comparatively Little expenditure of energy. A region of two

or even four steady states is a physically unlikely situation in

that the heat removed line must be tangent to the heat generated

curve in one or more places. Regions of five steady states were

found on calculating the graphs of steady state temperature and

concentration against residence time. However, the two steady

states that were found lying below inlet temperature had con-

centrations of species A greater than inlet. Therefore, these

were mathematical solutions only and were not plotted.

Of all the techniques used to determine reactor stability,

numerical integration gave the largest and probably most accurate

picture of reactor stability and dynamics. There are many reasons

for this. The region of asymptotic stability is larger than that

area of state space covered by a given Lyapunov function having a

negative time derivative. Since Lyapunov functions are a type of

energy function, any trajectory having the littlest increase in

energy as defined in the function will be beyond the scope of this

39



40

approach. However, there is no available technique to delineate

areas of state space having a non-negative time derivative which

are stable with respect to the origin. Besides being limited in

scope, Lyapunov functions are by no means unique to a given system.

Various functions will cover various areas of state space. The

Lyapunov functions formulated here varied widely in shape. The

Lyapunov function used in calculating the time derivative and that

used in satisfying the early Krasovskii Theorem were typical.

Both were ellipsoidal in shape. The resulting Lyapunov function

formulated using Luecke and Mc Guire's approach was almost a

diamond. These are shown in Figure 15.

The linear approximation theorem and linear analysis gave very

poor results for this reactor system. This was due to the fact

that the instability in the reactor is caused by the Arrhenius Rate

Law. The higher the temperature rises, the more unstable and non-

linear the system becomes. Thus the approximation of linearity for

this system is not good for determining stability.

Upon reviewing the various techniques for employing Lyapunov

functions, several things became apparent. First of all, both inter

pretations of Krasovskii theorem limit the possible types of Lyapunov

functions. In the restricted Krasovskii Theorem, the Lyapunov

function is unique, i.e. it is just the product of the transpose of

the PP matrix and itself or f 12 + f 22 + ....f n2 where n is the



Figure 15 REGIONS OF ASYMPTOTIC STABILITY BY DIFFERENT METHODS AT 540°R
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number of state variables. Even in the extended Krasovskii Theorem,

the Lyapunov function is limited to linear combinations of the pre-

viously mentioned terms and their first order cross products. The

method of calculating the time derivative by the chain rule ( V  ) T

f(*) enables one to pick Lyapunov functions without any restrict-

ions other than those of Lyapunov. For this system, this unrestrict-

ed ability to pick Lyapunov functions made all the difference in the

world. By trial and error, a Lyapunov function was found that most

closely characterized the total energy of the system. Thus it gave

a larger region of asymptotic stability than anything possible using

Krasovskii techniques. Since the temperature and concentrations

used here were all inter-related, it seems logical that second order

cross products be included in any attempt at characterizing the

total energy of this system. What apparently is lacking todate is

a study of the inter-relationship of a given Lyapunov function and

the type of system that it represents.
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RECOMMENDATIONS 

Despite the multitude of methods available to predict non-linear

system response, the most accurate and uncomplicated method remains

numerical integration. For linear systems, state variables are a

blessing. They allow an analytic analysis of system response. Effects

of distrubances and control forces can be found easily, especially

when the state variables are decoupled from one another. However,

state methods were of little use here. Linearization of this reactor

system yielded very poor results. Applications of Lyapunov's Second

Method fared not much better. Most methods employed here required

computer programs. As long as such programs are necessary, numerical

integration should be employed. Routines are already written which

make numerical integration more accurate than any other method avail-

able. As time progresses, the advent of faster and cheaper digital

hardware, combined with prewritten software, will probably cause

computers to be used exclusively for the prediction of non-linear

system response.
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APPENDIX



APPENDIX I

Numerical Integration

Program THESIS reads in physical parameters including

inlet conditions. It then calls routine CINT.

Routine CINT searches large ranges of temperature for

the heat balance equation to change sign. When a sign change is

found it lists the root of the equation under steady state points.

The heat balance equation and the steady state concentrations are

evaluated in routine FCT.

Program THESIS then reads the initial temperature and con-

centrations. In a section called subroutine RKGS, the initial

conditions are listed, the derivatives evaluated and the equations

integrated using a fourth order Runge-Kutta method. In a section

called FCT, the derivatives are calculated. A section called OUTP

is used to output results.
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THESIS FORTRAN EXTENDED VERSION 2.0 	 	 05/07/71	 PROGRAM THESIS (INOUT,OUTPUT,TAPES=INPUT,TAPES=OUTPUT)	 DIMENSION Y(3),DERY(3),AUX(2,4),A(4),B(4),C(4),PRMT(5)	 COMMON VR,DELA,CP,8,AR,RMO,DELE,TO,Q,CAI,CRI,TI,KCC 	 MAIN PROGRAMC 	 ------------------------------------------------------------------------	 REAL K	 LI=5	 LQ=5	 R=1CC 	 READ PARAMETERSC	 READ(LI,102)VR,DELA,CP,Q,RHODELE,TC8845 	 READ(LI,102)Q,CAI,CRI,TI,K102 	 FORMAT(OFLC,P)	 DO B5 JJ=1,109	 WRITE(LO,98)83 	 FORMAT(1H1)	 DELA=ABS(DFLH)	 K=1,2558+12	 RT=18,CC 	 SET INITIAL CONDITIONSC	 READ(LI,92)V,G92 	 FORMAT(4810,41)	 CALL CIRT(Y)CC 	 SUBROUTINE PKGSC 	 ------------------------------------------------------------------------	 PRMT(1)=Q	 PRMT(2)=RT	 PRMT(3)=.2	 PRMT(4)=1.8+100	 DERY(1)=1./2001.	 DERY(2)=1000./2001.	 DERY(3)=1000./2001.	 2018=2	 DO 1 I=1,BOTH1 	 AUX(8,1)=26666667*DERY(I)	 X=PRMT(1)	 XEND=PRMT(2)	 H-PRMT(3)	 PRMT(5)=Q.C 	 CALL FOT(X,Y,DERY)649 	 NCAL=2	 GO TO END201 	 CONTINUECC 	 ERROR TESTC	 IF(H*(XENO-X))38,37,2



PROGRAM 	 	 THESIS FORTRAN EXTENDED VERSION 2.0 	 05/07/71	 C	 C 	 	 PREPARATIONS FOR RUNGE-KUTTA METHOD	 C	 	 2 	 A(1)=.5	 	 	 A(2)=.2928932	 	 	 A(3)=1.707107	 	 	 A(4)=.1666667	 	 	 B(1)=2.	 	 	 B(2)=1.	 	 	 B(3)=1.	 	 	 B(4)=2.	 	 	 C(1)=.5	 	 	 C(2)=.2028932	 	 	 C(3)=1.707107	 	 	 C(4)=.5	 C	 C 	 	 PREPARATIONS OF FIRST RUNGE-KUTTA STEP	 C	 	 	 DO J I=1.NOTM	 	 	 AUX(1,1)=Y(I)	 	 	 AUX(2,1)=DERY(I)	 	 	 AUX(3,1)=0.	 	 3 	 AUX(6,1)=0.	 	 	 IREC=0	 	 	 M=R+H	 	 	 IHLF=-1	 	 	 ISTEP=0	 	 	 IEND=0	 C	 C	 	 START OF A RUNGE-KUTTA STEP	 C	 C 	 4 	 IF((X+H-XEND-X)*R)17,6,5	 	 5 	 H=XEND-X	 	 6 	 IEND=1	 C	 C 	 	 RECORDING OF INITIAL VALUES OF THIS STEP	 C     7 	 CALL OUTPUT(X,Y,DERY,IREC,NDI6,PRMT)	 7 	 	 LCAL=1	 	 	 GO TO 300	 301 	 	 CONTINUE	 8 	 ITEST-9	 9 	 ISTEP=ISTEP+1	 C	 C 	 START OF INNERHOST BUNGE-KUTTA LOOP	 C	 	 	 J=1	 10 	 AJ=A(J)	 	 	 BJ=B(J)	 	 	 CJ=C(J)	 	 	 DO 11 I=1.NDIM	 	 	 R1=H*DERY(I)	 	 	 R2=AJ*(r1-bj*aux(6,i))

	



PROGRAM 	 THESIS 	 FORTRAN EXTENDED VERSION 2.0 	 05/07/71	 	 	 Y(I)=Y(I)+R2	 	 	 R2=R2+R2+R2	 	 11 	 AUX(6,I)+R2-CJ*R1	 	 	 IIF(J-3)12,15,15	 	 12 	 J=J+1	 	 	 IF(J-3)13,18,13	 	 13 	 X=X+,5*H	 C 	 14 	 CALL FCT(X,Y,DERY)	 14 	 	 ICAL=2	 	 	 GO TO 200	 202 	 	 CONTINUE	 	 	 GO TO 10	 C	 C 	 	 END OF INNERMOST RUNGE-KURRA LOOP	 C	 C 	 	 TEST OF ACCURACY	 	 15 	 IF(ITEST)16,16,20	 C	 C 	 	 IS CASE ITEST=0 THERE IS NO POSIBILITY FOR TESTING OF ACCURACY	 C	 	 16 	 DO 17 I-1,NOID	 	 17 	 AUX(4,I)=Y(I)	 	 	 ITEST=1	 	 	 ISTEP=ISTEP+ISTEP-2	 	 18 	 ISLF=ISLF+1	 	 	 X=X-H	 	 	 H=.5*H	 	 	 DO 19 I=1.NDIM	 	 	 Y(I)=AUX(1,I)	 	 	 DERY(I)=AUX(2,I)	 	 19 	 AUX(6,I)=AUX(3,I)	 	 	 GOTO 9	 C	 C	 	 IF CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE	 C	 	 20 	 IMOD=ISTEP/2	 	 	 IF(ISTEP-IMOD-IMOD)21,23,21,	 C 	 21 	 CALL FCT(X,Y,DERY)	 21 	 	 NCAL=3	 	 	 GO TO 200	 203 	 	 CONTINUE	 	 	 DO 22 I=1. NDIM	 	 	 AUX(5,I)=Y(I)	 	 22 	 AUX(7,I)=DERY(I)	 	 	 GOTO 9	 C	 C 	 	 COMPUTATION OF TEST VALUE DELT	 C	 	 23 	 DELT=1	 	 	 DO 24 I=1,NDIM		24	DELT=DELT+AUX(6,I)*ABS(AUX(4,I)-Y(I))			IF(DELT-PRMT(4))28,28,25	 C



THESIS 	 FORTAN EXTENDED VERSION 2.0 	 5/07/71
C 	 	 ERROR IS TOO GREATC	 25 	 IF(IHLF-10(26,36,36)	 26 	 DO 27 I=1,NDIN	 27 	 AUX(4,1)-AUX(5,1)	 	 ISTEP=ISTEP+ISTEP-4	 	 X=X-H	 	 IE,D=C	 	 GOTO 12CC 	 	 RESULT VALUES ARE GOODCC 	 28 	 CALL FCT(X,V,DERY)28	 	 NCAL=1	 	 GO TO 200204 	 	 CONTINUE	 	 GO 29 I=1,NDIM	 	 AUX(1,I)=Y(I)	 	 AUX(2,I)=DERY(I)	 	 AUX(3,I)=AUX(6,I)	 	 Y(I)=AUX(5,I)	 29 	 DERY(I)=AUX(7,I)C 	 	 CALL OUTP(X-H,Y,DERY,IHLF,NDIM,PRMT)	 	 LCAL=2	 	 X=X-H	 	 GO TO 300302 	 	 CONTINUE	 	 X=X+H	 30 	 DO 31 I=1,NDIM	 	 Y(I)=AUX(1,I)	 31 	 DERY(I)=AUX(2,1)	 	 IREC=IHLF	 	 IF(IEPD)32,32,39CC 	 	 INCREMENT GFTS DOUBLEDC	 32 	 IHLF=IMLF-1	 	 ISTEP=ISTEP/2	 	 H=H+H	 	 IF(IHLF)4,33,33	 33 	 IMOD=ISTEP/2	 	 IF(ISTEP-IMOD-IMOE)4,34,4	 34 	 IF(DELTA,D2*PRMT(4))35,35,4	 35 	 IHLF=IHLF-1	 	 ISTEP=ISTEP/S	 	 H=H+H	 	 GOTO 4CC	 	 RETURNS TO CALLING PROGRAMC	 36	 IHLF=11C 	 	 CALL FCT(X,Y,DERY)	 	 WRITE(LO,1131)X



PROGRAM	 	 THESIS FORTRAN EXTENDED VERSION 2.0	 05/07/71
	 1131	 	 FORMAT(IHE,EDX,DESINTEGRATION FAILED ,5X,GNAT TIME=,F10,4)	 	 	 LCAL=1	 	 	 GO TO 00	 205 	 	 CONTINUE	 	 	 GOTO 39	 	 37	 IHLF=12	 	 	 GOTO 39	 	 38	 IHLF=13	 C 	 39 	 CALL OUTP(X,Y,DERY,IHLF,NDIM,PRMT)	 39	 	 LCAL=8	 	 	 GO TO 300	 C	 C 	 	 SUBROUTINE	 C	 	 -----------------------------------------------------------	 200 	 	 CONTINUE	 C	 C 	 	 CHECK FOR UNREALISTIC CONDITIONS	 C	 	 	 IF(Y(1),GE,I,E+50 )GO TO 1121	 	 	 IF(Y(1),LE,10,)Y(1)=10	 C	 C 	 	 CALCULATE DERIVATIVES	 C	 	 	 DERY(1)=(-DELH*VR*K*Y(2)*7(3)*EXP(-DELE/R/Y(1))-RHO*Q*CP*(Y(1)-TI	 	 1        -Q*AR*(V(1)-TC))/(RHO*VR*CP)	 	 	 DERY(2)=-K*Y(2)*Y(3)*EXP(-DELE/R/Y(1)-Q/VR*Y(2)-CAI)	 	 	 DERY(3)=K*Y(2)*Y(3)*EXP(-DELE/R/Y(1)-Q/VR*(Y(3)-CRI)	 	 	 GO TO (201,202,203,204,205),NCAL	 1121 	 	 WRITE(LO,1122)	 1122 	 	 FORMAT(1HG,50X,16HREACTOR EXPLODED //)	 	 	 LCAL=3	 	 	 GO TO 400	 C	 C 	 	 SUBROUTINE OUTP	 C	 	 -------------------------------------------------------------	 300 	 	 CONTINUE	 	 	 XOP=X	 400 	 	 WRITE(LO,878)X,Y(1),Y(2),Y(3),IHLF	 878	 	 FORMAT(1HR,BHAT TIME=,F12,2,5X,SHTEMP=,E15,6,5X,7HCONC,A=,E15,6,	 	 1    5X,7HCONC,R=,E15,6,5X,IS)	 	 	 AAA=K*Y(2)Y(3)*EXP(-DELE/R/Y(1))	 	 	 BBB=Q/VB*(Y(2)-CAI)	 	 	 WRITE(LO,987)DERY,AAA,BBB	 987	 	 FORMAT(1HO,11HD(TEMP)/DT=,E11,4,5X,7HDCA/DT=,E11,4,5X,7HDCR/DT=,	 	 1 E11,1,EX,7HA-PROG=,E11,4,5X,7HA-LOST=,E11,4)	 	 	 YOLD=Y(1)	 340 	 	 GO TO (301,302,69),LCAL	 C	 C 	 	 TERMINATING ROUTINES	C		-------------------------------------------------------------	 69 	 	 CONTINUE	 68	 	 CALL EXIT	 	 	 END



	 	 	 FORTRAN EXTENDED VERSION 2.0 	 05/07/71	 	 	 SUBROUTINE EXNT(Y)	 	 	 DIMENSION Y(3)	 	 	 COMMON VR,ELF,CP,D,AR,RHO,DELE,TC,Q,CAT,CRI,TI,K	 	 	 CRSS=1,	 	 	 NPATE(6,ES)	 	 25 	 FORMAT(18 ,20X,24HSTEADY STATEPOINTS ARE- )	 	 	 TLS=4,	 	 	 TRS=0,	 	 	 DO 202 J=1,505	 	 	 XLS=TL5	 	 	 XRS=TRS	 	 	 SL=FCT(TL5,CRSS)	 	 	 SR=FCT(TRS,CRSS)	 	 	 IF(SIGN(1,5L),EQ,SIGN(1,3R))GO TO 60	 	 3 	 DO ID I=1,25	 	 	 IF(XRS-XLS,LT,,DDI)GO TO 15	 	 	 XF=(XLS+XRS)/2,	 	 	 SL=FCT(XLS,CRSS)	 	 	 SR=FCT(XRS,CRSS)	 	 	 SM=FCT(XM,CRSS)	 	 	 IF(SIGN(1,SL),EQ,SIGN(1,SM))XLS=XM	 	 	 IF(SIGN(1,SR),EQ,SIGN(1,SM))XRS=XM	 	 	 IF(SIGN(1,SL),EQ,SOGN(1,SR))GO TO 66	 	 10 	 CONTINUE	 	 	 GO TO 67	 	 15 	 AA=CAI+CRI-CRSS	 	 	 WRITE(6,165) XN,AA,CRSS	 	 165 	 FORMAT(16 ,20X,HRTSS=,815,6,10X,52CASS-,E15,6,10X,5HCRSS=,E15,	 	 	 GO TO 60	 	 66 	 WRITE(6,166)	 	 166 	 FORMAT(1GN TWO ROOTS)	 	 	 XRS=X4	 	 	 GO TO 3	 	 67 	 WRITE(6,167)	 	 167 	 (FORMAT(BH NO ROOT)	 	 68 	 TLS=TLS++,	 	 268 	 TRS=TRS++,	 	 	 RETURN	 	 	 END
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FUNION 	 PCT 	 	 FORTRAN EXTENDED VERSION 2.0 	 05/07/71	 	 	 FUNCTION FCT(TSS,CRSS)	 	 	 REAL K	 	 	 COMMON YRMDFLH,CP,Q,AR,RHO,DELE,TC,QCAI,CRI,TI,K	 	 	 R=I	 	 	 AA=    EXP(-DELE/R/TSS)	 	 	 A=QR*K*Q*AA	 	 	 IF(A,LE,D)A=1,6.100	 	 	 Q=Q*Q-CAI*A-CRISA	 	 	 C=-Q*Q*CRI	 	 	 CRSS=Q.	 	 	 IF(Q*Q-2,*A*C)1, 20,30	 	 10 	 WRITE(6,12)A,B,C	 	 12 	 FORMAT(1H ,1GMIMAG, ROOT,3615.6)	 	 	 GO TO 25	 	 20 	 CRSS=-B/(A+A)	 	 	 GO TO 25	 	 30 	 CRSS=(-8+SQRT(8*8-4.*A*C))/(A+A)		25	FCT=-MELM*(Q*CRSS-Q*CRI)-RHO*Q*CP*(TSS-TI)-C*AR*(TSS-TQ)	 	 56 	 RETURN	 	 	 END



START OF NEW CALCULATION

TSTAR=  3.0000E+02    ALPHA=  1.5947E+08    BETA= 1.6566E+00    GAMMA= 1.0000E+00    DELTA= 2.813

			

STEADY STATE POINTS ARE-

			

TSS= 	 3.000008E+02 

		

CASS=  1.000000E-02

		

CRSS=  1.000001E-04

			

TSS= 	 6.430840E+02

		

CASS=  3.096494E-03

		

CRSS=  7.003506E-03

			

TSS=
	

7.819450E+02 	 	 CASS=  3.023204E-04 	 	 CRSS=  9.797686E-03

AT TIME= 	 0.00

	

TEMP=  8.400000E+02

	

CONC.A=  1.000000E-03 	 CONC.R=-0.

D(TEMP)/DT=-4.2497E+06 	 DCA/DT= 7.0829E+01 	 DCR/DT= 7.8699E-01 	 A-PROD= 0. 	 	 	 A-LOST=-7

TBAR= 	 2.800000E+00 	 	 CABAR=  1.000000E-01 	 	 CRBAR= 	 0.

AT TIME= 	 .00 	 TEMP= 5.485041E+02 	 CONC.A= 5.853118E-03 	 CONC.R= 	 8.422901E-05

D(TEMP)/DT=-1.9493E+06 	 DCA/DT= 3.2501E+01 	 DCR/DT= 2.5261E-01 	 A-PROD= 1.2849E-01 	 A-LOST=-3

TBAR= 	 1.828347E+00 	 	 CABAR=  5.853118E-01 	 	 CRBAR= 	 8.422901E-03

AT TIME= 	 .00 	 TEMP= 	 4.137462E+02 	 CONC.A=  8.101627E-01 	 CONC.R= 	 9.423267E-05

D(TEMP)/DT=-8.9510E+05 	 DCA/DT= 1.4939E+01

	

DCR/DT= 4.6713e-02

	

A-PROD= 1.3251E-03 	 A-LOST=-1

TBAR= 	 1.379154E+00

	

  	

CABAR=  8.101627E-01

	

	

CRBAR= 	

9.423267E-03

AT TIME= 	 .00 	

TEMP= 	

3.520324E+02

	

CONC.A=  9.131600E-03

	

CONC.R= 	 9.738036E-05

D(TEMP)/DT=-4.0948E+05 	 DCA/DT= 6.8341E+00

	

DCR/DT= 2.0659E-02 	 A-PROD= 4.3194E-05 	 A-LOST=-6

TBAR= 	 1.173441E+00 	 	 CABAR=  9.131600E-01 	

	

CRBAR= 	 9.738036E-03

AT TIME= 	 .00 	

TEMP= 	

3.238014E+02

	

CONC.A=  9.602763E-03

	

CONC.R= 	 9.880267E-05



AT TIME= 	

.00

	

TEMP=  3.108876E+02 	

C

ONC.A=  9.818290E-03

	

CONC.R=  9.945251E-05

D(TEMP)/DT=-8.5684E+04 	 DCA/DT=

1.4300E+00 	 DCR/DT= 4.3107E-03 	A-PROD= 1.9863E-0

6 	

	

A-LOST=-1

TBAR= 	

1.036292E+00 	 	 CABAR=  9.818290E-01 	 	 CRBAR= 	 9.945251E-03

AT TIME= 	

.00

	

TEMP=  3.04498E+02 	CONC.A=  9.974966E-05

	 CONC.R=9.974966e-05D(TEMP)/DT=-3.9195E+04 	 DCA/DT= 6.5415E-01

	

DCR/DT= 1.9714E-03

	

A-PROD= 1.1893E-06

		

A-LOST=-4

TBAR=

1.016601E+00 	 	 CABAR=  9.916879E-01

	

	

CRBAR= 	

9.974966E-03

AT TIME= 	

.00

	

TEMP=  3.022782E-02

	

C

ONC.A=  9.961978E-03 	CONC.R=  9.988555E-05

D(TEMP)/DT=-1.7929E+04 	 DCA/DT= 2.9923E-01

	

DCR/DT= 9.0161

E-04 	 A-PROD= 9.3417E-07

		

A-LOST=-2

TBAR=

1.007594E+00 	 	 CABAR=  9.961978E-01 	 	 CRBAR= 	9.988555E-03

AT TIME= 	

.00

	

TEMP=  3.010421E+02

	

CONC.A=  9.982607E-03	CONC.R=  9.994771E-05

D(TEMP)/DT=-8.2014E+03	DCA/DT= 1.3688E-01	DCR/DT= 4.1236E-04	A-PROD= 8.3523E-07		A-LOST=

-1

TBAR=

1.003474E+00 	 	 CABAR=  9.982607E-01

	

	

CRBAR= 	

9.994771E-03

AT TIME= 	

.00

	

TEMP=  3.004767E+02

	

C

ONC.A=  9.992044E-03	CONC.R=  9.997614E-05

D(TEMP)/DT=-

3.7516E+03	DCA/DT= 6.2613E-02	DCR/DT= 1.8860E+04	A-PROD= 7.9328E-07		A-LOST=

-6

TBAR=

1.00158E+00 	 	 CABAR=  9.992044E-01

	

	

CRBAR= 	

9.997614E-03

AT TIME= 	

.00

	

TEMP=  3.004767E+02

	

C

ONC.A=  3.002181E+02	CONC.R=  9.998914E-05

D(TEMP)/DT=-1.7161E+03	DCA/DT= 2.8641E-02	DCR/DT= 8.6261E-05	A-PROD= 7.7475E-07		A-LOST=-2
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APPENDIX II

Linearization

Program LONA reads in the steady state temperature and con-

centrations and the flow rate at which they were obtained. It

calculates the partial derivatives of the rate expression "0" with

respect to the three state variables. It then evaluates the

∩ matrix and calls a subroutine TRANS.

TRANS calculates the state transition matrix Φ (+) using

the relation

For initial conditions, within five decimal places of steady state,

TRANS outputs the unforced response. If it dies out, the steady

state point is assummed stable.



PROGRAM 	 LONG 	 FORTRAN EXTENDED VERSION 2.0 	 05/07/71	 	 	 PROGRAM LONG(INPUT,OUTPUT,TAPES=INPUT,TAPES=OUTPUT)	 	 	 DIMENSION A1(2,3),A2(3,3),A3(3,3)	 	 	 WRITE(6,5)	 	 1 	 FORMAT(161)	 	 12 	 REMS(5,1)TSS,CAMSS,CRRSS,R	 	 1 	 FORMAT(4212,5)	 	 	 A=.00186*4	 	 	 CADSS=CABSS*14A.	 	 	 CRESS=CRBSS*140.	 	 	 B=1	 	 	 D=180.	 	 	 Z=2.	 	 	 F=IRR	 	 	 XP=EXP(-1+42./ISS)	 	 	 G1=1.859226+12*CARSS*CRESS*XP*300./(TSS*TSS)	 	 	 G2=1.2558+2*CRBSS*XP	 	 	 G3=1.2558+2*CABSS*XP	 	 	 A11=-3+A*G1	 	 	 A21=-0*01	 	 	 A31=F*G1	 	 	 A12=A*G2	 	 	 A22=-6-8*G2	 	 	 A32=8*G2	 	 	 A13=A*G3	 	 	 A33=-E+F*G5	 	 	 A23=-B*G5	 	 	 A1(1,1)=A11	 	 	 A1(1,2)=A12	 	 	 A1(1,3)=A13	 	 	 A1(2,1)=A21	 	 	 A1(2,2)=A22	 	 	 A1(2,3)=A23	 	 	 A1(3,1)=A31	 	 	 A1(3,2)=A32	 	 	 A1(3,3)=A33	 	 	 WRITE(6,2)TSS,CABSS,CRBSS,Q	 	 2 	 FORMAT(//5X,4E11,4)	 	 	 CALL TRANS(A1)	 	 	 GO TO 14	 	 68 	 CALL EXIT	 	 	 END



SUBROUTINE 	 TRANS 	 FORTRAN EXTENDED VERSION 2.0 	 05/07/71	 	 	 SUBROUTINE TRANS(A)	 	 	 DIMENSION A(3,3),B(3,3),C(3,3),D(3,3),X(3),Y(3)	 	 	 T=1.2-US	 	 	 DO 1 I=1,3	 	 	 DO 1 J=1,3	 	 	 A(I,J)=T*A(I,J)	 	 	 C(I,J)=B,	 	 	 D(I,J)=A(I,J)	 	 1 	 B(I,J)=A(I,J)	 	 	 DO 5 IK=2,55	 	 	 DO 4 J=1,3	 	 	 DO 4 K=1,3	 	 4 	 C(I,J)=C(I,J)+A(I,K)*B(K,J)/IK	 	 	 DO 6 I=1,3	 	 	 DO 6 J=1,3	 	 	 B(I,J)=C(I,J)	 	 	 D(I,J)=D(I,J)+C(I,J)	 	 8 	 C(I,J)=D.	 	 9 	 CONTINUE	 	 	 DO 18 I=1,3	 	 11 	 C(I,I)=1	 	 	 DO 20 I=1,3	 	 	 DO 28 J-I,3	 	 28 	 D(I,J)=D(I,J)+C(I,J)	 	 	 Y(1)=.061	 	 	 Y(2)=.061	 	 	 Y(3)=.251	 	 	 DO 400 I=1,10	 	 	 DO 101 I=1,3	 	 	 X(I)=3	 	 	 DO 101 J=1,3	 	 101 	 X(I)=X(I)+D(I,J)*Y(J)	 	 	 DO 202 K=1,3	 	 200 	 Y(K)=X(K)	 	 	 WRITE(5,66)Y	 	 56 	 FORMAT(11X,8615,5)	 	 400 	 CONTINUE	 	 	 RETURN	 	 	 END



	 TSS 	 	 CASS 	 	 CRSS 	    Q9.0600e+02  1.6092e+02  1.0287E-02 	 1.9085E+04	 	 9.99002E-04 	 9.85991E-04   9.99010E-04	 	 9.98000E-04 	 9.97962E-04   8.98022E-04	 	 9.97020E-04 	 9.86975E-04   9.97024E-04	 	 9.96015E-04 	 9.86969E-04   9.90067E-04	 	 9.95022E-04 	 9.88445E-04   9.95061E-04	 	 9.94029E-04 	 9.85958E-04   9.94076E-04	 	 9.93037E-04 	 9.92535E-04   9.93093E-04	 	 9.92148E-04 	 9.91454E-04   9.92110E-04	 	 9.91257E-04 	 9.90853E-04   9.91128E-04	 	 9.90058E-04 	 9.84963E-04   9.90157E-047.9697E+02  3.5248E-03  1.8105E-05   1.6060E-06	 	 -0.129215+58 	 4.369902+57  -4.36990E-57	 	 -3.55185+119 	 1.96586+118  -1.90960+118	 	 -1.35212+190 	 2.34471+178  -2.34471+178	 	 -6.75257+240 	 3.64954+239  -3.64654+239	 	 -2.95391+301 	 1.54852+300  -1.59950+300
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APPENDIX III

Lyapunov Functions

Program LYAP outputs the reference temperature used and then

calculates the corresponding state variable X 1 . Fbr an initial

value of K, it calculates a Lyapunov Function. It searches for

the crossing the axis by the function and divides each quadrant

in five sections, each equally spaced apart. Points on the Lyapunov

function are calculated in each section. On points corresponding

to positive concentration, the program tests the matrix

for being negative definite. If it is, K is incremented, another

Lyapunov Function is calculated, and the process is repeated.

Once the matrix FF 	 is no longer negative definite, the program

points out the Lyapunov Function which caused this to happen and

prints a message that the reactor exploded.



PROGRAM 	 LYAR 	 FORTRAN EXTENDED VERSION 2.0 	 04/07/71
	 	 	 FORTRAN LYAR(INPUT,OUTPUT,TAPES=INPUT,TAPES=OUTPUT)	 	 	 REAL %	 	 	 DIMENSION CAB(20),CRB(20)	 	 	 DIMENSION X30(2),AX2(20)AX3(20)	 	 	 DIMENSION TREF(5)	 	 	 DATA TREF/530.,580.,720.,918.,900./	 	 	 G1F(X1,X2,X3)=(X24+,6304)*(X3+1.3694)/((X1+.8419)*(X1+8419))	 	 1 	 *,706+6+08*EXP(-14,867/(X14.8419))	 	 	 G2F(X1,X2,X3)=1.908+06 *(X3+1,3694)*EXP(-14.867/(X1+,8419))	 	 	 G3F(X1,X2,X3)=G2=(X2+.6304)/(X3+1,3694)	 	 	 GF(X1,X2,X3)=(X3+A,3694)*(X2+,6304)*4,E0+6 *EXP(-14,867/(X1+,841	 	 1   ))-.875	 	 	 VF(X1,X2,X3)=1.75*(8*X1-A*G)**2+4,73*(X2+Q*G)**2	 	 	 A=.139	 	 	 B=1.2	 	 	 D=.5	 	 	 E=1.	 	 	 F=V	 	 	 JL=2	 	 	 WRITE(6,799)TREF(JL)	 	 769 	 FORMAT(161//45X,58TREF-,F10.0)	 	 	 X1=TREF(JL)/719.-.8419	 	 	 K=1.	 	 2 	 XRS3=1050	 	 	 DO 6 I=1.2	 	 	 X2=2.	 	 	 XLS3=0	 	 	 DO 5 I=I,20	 	 	 X =(XLS3+XRS3)/2	 	 	 C =GF(X1,X2,X3)	 	 	 COPT=G	 	 	 VL=VF(X1,X2,XLS3)-K	 	 	 G =GF(X1,X2,XRS3)	 	 	 VR=VF(X1,X2,XRS3)-K	 	 	 G =GF(X1,X2,XM)	 	 	 V5=VF(X1,X2,XM)-K	 	 	 IF(SIGN(1.,VL),NE,SIGN(1.,VM))XRS2=XM	 	 	 IF(SIGN(1.,VR),NE,SIGN(1.,VM))XLS3=XM	 	 	 IF(SIGN(1.,VR),EQ,SIGN(1.,VL))XRS3=0,	 	 5 	 CONTINUE	 	 	 X30(L)=XM	 	 6 	 XRS3=-1004	 	 	 DO B I=1,5	 	 	 AX3(I)=X30(1)*I/5	 	 	 AX3(I+10)=X30(I)	 	 	 AX3(I+5 )=X30(2)*I/5	 	 8 	 AX3(I+15)=AX3(I+5 )	 	 	 DO 10 L=1,20	 	 	 5G=1.	 	 	 IF(L,GT.10)SG=-1.	 	 	 XLS2=D.	 	 	 XRS2=1000.*SG	 	 	 X3=AX3(L)
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TREF= 	 630

CA-POINTS ARE= .63040 .63040 .63040 .63040 .63040 .63040 .63040 .63040 .63040
.63040 .63040 .63040 .63040 .63040 .63040 .63040 .63040 .63040

CR POINTS ARE= 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940
10.'6940 1.36940

1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940
K:= 	 1.0 C1= 	 -3.82 C2= 	 36.68

C2= 	 -73.62

G:= 3.37908 G1= 	 .95525 G2= 	 .04243 G3= 	 .00728

CA-POINTS ARE= .63040 .63040 .63040 .63040 .63040 .63040 .63040 .63040 .63040
.63040 .63040 .63040  .63040 .63040 .63040 .63040 .63040 .63040

CR POINTS ARE= 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940
1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940 1.36940

K= 	 11.0

C1=        -3.82

C2= 	 36.68 C3= 	 -73.62

G:= 3.37908

G1= 	 .95526 G2=         .04243 G3=         .00728

CA-POINTS ARE= -.67522 .66378 .65233 .64089 .63040 .98803 1.7876 6.87029 1.39429
-.35856 -.35093 -.34330 -.33567 .63040 -.55692 -1.02232 -2.51959 -1.07191CR POINTS ARE= 1.40697 1.44455 1.48212

1.51970
1.55727 77946 .18951 -.40043 -.940371.40697

1.44455 1.48212 1.51970
1.55727

.77946
.18951 -.40043 -.94037

K= 	 21.0 C1=   -2.39 C2=    25.37 C3= -53.52

G= 	 3.82884 G1=	 3.83338 G2= 	 .26003 G3= 	 .10966

CA-POINTS ARE=

.76105 .72291 .68857 .65806 .63135 1.23026 2.88012 4.41744 1.16732
-.45202 -.42341 -.39861 -.37573 -.35475 -.77627 -1.69180 -2.80569 -.98799

CR POINTS ARE= 1.47984 1.59027 1.70071
1.81114 1.02158

.70621 .04303 -.62016 -1.28334
1.47984 1.59027 1.70071 1.81114 1.02158

.70621
.04303 -.62016

-1.28334



CA-POINTS ARE= .93081 .82972 .74961 .68476 .63135 1.91500 8.78718 2.16105 .98994

-.63703 -.55311 -.48826 -.43295 -.38717 -1.39047 -5.14601 -1.92259 .86401
CR-POINTS ARE= 1.64387 1.91833 2.19280CR 	 POINTS 	 ARE= 	 .4,4-48( 	 1.91fl 	 .19280 	 2.467P7 	 2.74174 	 .54218 	 -■.28503 	 -).11225 	 P-2.46727

2.74174 .54218 -.28503 -1.11225 -1.93947
1.64387 1.91833 2.19280 2.46727 2.74174 .54218 -.28503 -1.11225 -1.93947

K=  61.0 C1= 	 .91 C2=   10.51 C3=   -22.16
..22.f6

G=  6.85002 G1= 	 6.81301 G2= _ 	 .46914 G3= 	 .10803

CA-POINTS ARE= .97277 .85451 .76296 .69048 .63135 2.14380 10.86237 1.97603 .96514
-.68090 -.58262 -.50543 -.44439 -.39289 -1.59452 -6.48306 -1.78007 -.84303

CR-POINTS ARE= 1.68850 2.00760 2.32670 2.64580 2.96490 .49755 -.37430 -1.24615 -2.11800
1.68850 2.00760 2.32670 2.64580 2.96490 .49755 -.37430 -1.24615 -2.11800

K= 	 71.0 C1=	 -.63 C2= 	 7.42 C3= 	 -15.64
G=  7. 41360 G1= 7.36755 G2= 	 .50732 G3= 	 .10803

CA-POINTS ARE= 1.01092 .87549 .77440 .69430 .63135 2.37849 10.86809 1.85015 .94797
-.72286 -.60842 -.52259 -.45393 -.39861 -1.80052 -7.05526 -1.68089 -.82586

CR-POINTS ARE= 1.73008

2.09076 2,45144
2.812123.17280 -.45597

-.45746
-1.37089 -2.2843 21.73008 2.09076 2,45144

2.812123.17280
-.45597 -.45746 -1.37089 -2.2843 2

K=   81.0 Cl= 	 -.37 C2= 	 4.45 C3= 	 -9.39
G= 	 7.93963 G1= 	 7.88416 G2= 	 .54289 G3=   .10803

CA-POINTS ARE= 1.04525 .89457 .78394 .69811 .63040 2.6188 9.44330 1.75860 .93462
-.75910 -.63131 -.53594 -.46156 .63040 -2.01414 -6.80921 -1.61360 -.81251

CR-POINTS ARE= 1.76937 2.16934 2.56931

2.96928
3.36926 .41706

-.53528 -1.48762
-2.43996

1.76937 2.16934 2.56931 2.96928 3.36926 .41706 -.53528 -1.48762
-2.43996

K= 91.0 C1=  -.24 C2= 	 2.78 	 C3= 	 -5.90
G= 	 8.21756 G1= 	 8.15862 G2= 	 .50807 G3= 	 .11945

CA-POINTS ARE= 1.67767 .91173 .79157 	 .7019318.63135 2.86677 7.05557 1.68802
.92318

-.79344 -.65038 -.54739 -.46728 .40434 -2.23348 -6.23892 -1.55256 -.80107CR-POINTS ARE= 1.80599 2.24258 2.67918 3.11577 3.55236.38006 -.60928 -1.59863 -2.58797
1.80599 	 2.24258 2.67918 	 3.11577

3.55236.38006 -.60928 -1.59863 -2.58797

K= 	 101.0 Cl= 	 .10 C2= 	 -1.18 C3= 	 2.50G= 	 8.89718 G1= 	 8.82735 G2= .60784 G3= 	 .l0803

*** REACTOR EXPLODED ***
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