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ABSTRACT

The basic principles of stability analysis are set forth,
including the development of a mathematical model, steady state
analysis, integration of the dynamic system equations, and
predictions of transient responses. The equations for the
mathematical model are developed for a continuous stirred tank
reactor with a cooling jacket, containing an autocatalytic re-—
action, in unsteady state operation. These equations are
numerically integrated to obtain a good picture of reactor
dynamics about the steady state. State variable methods, in-
cluding the classical linearization theorems and Lyapunov's
Second Method, are utilized to predict bounds of stable reactor
behavior. A discussion of the short comings of each method is
presented. Finally the results are compared and recommendations

are set forth.
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PREFACE

The name Lyapunov is known to nearly all control engineers
as the developer of Lyapunov Functions and as the author of
Lyapunov'’s Second Method. Since control theory is being used
in such diverse applications as space travel, computer auto-
mation and the production of muclear energy, specific facets
and applications of Lyapunov's Second Method are explored and
compared here. Once the non-linear state model for a chemical
reactor is developed, it could just as easily be a model of a space
vehicle in motion or of a nuclear reactor in operation. The

applications presently and in the future are infinite.

Grateful acknowledgment is made to Dr. Hung T. Chen for his
helpful suggestions and corrections, and to Dr. Andrew U. Meyer
for his thoughtful advice.

D.E.R.

June, 1971
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INTRODUCTION

In the course of reactor design and operation, it is often
necessary to determine whether the operation will be stable or un-
stable as well as the bounds of stable behavior. There are various
methods for determining regions of stable and asymptotically stable
behavior. Several of these will be explored and compared here
using an autocatalytic reaction frequently found in polymer term-

ination

A+ R — R+ R

A steady state analysis was accomplished by solving for the steady
state concentrations as a function of temperature and flow rate.
Steady state trajectories could then be plotted and the character-
istics could therefore be examined. A dynamic system analysis was
performed by various techniques. One basic approach is the numer-
ical integration of the dynamic system equations. Linearization

of the dynamic equations (8), various types of Lyapunov functions

(2, 4, 8, 11), including those due to interpretations of Krasovskii's
Theorem ( 3, 7, 9, 10), will be utilized to determine reactor sta-

bility. Finally, the methods will be compared and discussed.



REACTOR ANALYSTS BY COMPUTATION

The Mathematical Model
Consider an ideal CSTR with a cooling jacket in which there
occurs the irreversible, exothermic, second order termination re-

action
A+R>R+R

If one assumes constant physical and thermochemical properties,
constant coolant temperature, the reactor performance may be des—
cribed by the following material balance equations for species

A and R and the thermal energy balance.

- _AE

Vg S - vy Kgpp &7 RT - Q(Cu~Cy;) (1)
AR
dCR _ - RT

VR =45 " VR K CACR e - Q(CR—CRi) (2)

i __AE
OVRC, —q5~ = ~AHVRKC,Cr e BT -pQC, (T-Ty) (3)
_UAR(T-TC)

The symbology used here is explained in Table I.
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TABLE T
Meaning Value
‘Ei&ﬁélewl ExXample 2

Density 50 lb/ft3 .9 grams/cc
Reactor Volume 100 £t 88947 cc
Heat Capacity 1 Btu/lb °R .33 gal/cc °K
Heat of Reaction ~5000Btu/1b ~16,400 cal/gmole
Reaction Constant 10°%/1b hr 1.255X10 ' “cc/gmole-sec
Activation Energy 21240 Btu/1b mole 16770 cal/gmole
Heat Transfer Coefficient 5 Btu/ft® hr °R 0 cal/cm’sec
Heat Transfer Area 200 ft2 0 cm2
Reactant Flow Rate 100 fta/hr .593 cc/sec
Coolant Temperature 520 °R (Arbitrary) °K
Inlet Temperature 615 °R 300 °K
Inlet Concentration, A .2 lb/ft3 .01 gmole/cc
Inlet Concentration, R .2 1b/ft3 .0001 gmole/ce
Gas Constant 1.987 Btu/1b mole °R  1.987 cal/gmole °K
Concentration, gii dimension-less dimension-less
Concentration, -%iT_ dimension-less dimension-~less
Temperature, T/T* : dimension-less dimension-less
Time, Q@/VR dimension—-less dimension-less
Characteristic Temperature,

Uap Tg 719 °R 300 °K

PQ Cp
State Variable Constant .139 £t hr/1b .002878 cc sec/gmole
Dimension~Less Constant .483 .00567
Dimension-Less Constant 1.2 1.0
State Variable Constant 5. ftahr/lb 100. cc sec/gmole

Dimension~Less Constant 2.23 56.13



Steady State Analysis

Equations 1, 2, 3 describe the steady state behavior of the
system when the left hand sides are set equal to zero. Steady state
concentrations can be found as a function of temperature by solving
the first two equations simultaneously for Cj ‘or Cr. Once the steady
state concentrations are determined for given inlet conditions, the
heat generation and removal terms of Equation 3 can be evaluated.

For increasing steady state temperatures, the amount of heat generated
will increase according the reaction rate. Above a certain tempera-
ture, however, the slope will start to decrease due to the fact that
most of the species A present is reacting and this limits the react-
ion rate. The heat removed line is just the heat loss of the reactor
due to the exit stream of heated product. These two terms are shown
in Figure 1. Various inlet temperatures will cause the heat removed
line to intersect with the heat generated curve at various places.

The physical parameters used are listed in Table I under "Example

1. However, the reactor operation was assumed to be adiabatic

in this case thus the heat tranéfer coefficient was set to zero.

The three inlet temperature lines intersect the heat generated curve
in three, two and one places. This demonstrates the existence of
regions having three, two, and one steady states. Note that the exis-
tence of two or any even number of steady state points is unique to a

given set of conditions as this means that the heat removed line is
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tangent to the heat generated curve at one or more places.

By varying flow rates, steady state temperature and concen-
trations will vary. By solving Equations 1, 2, 3 at different flow
rates, the variation of steady state temperature and concentration
can be found. Various flow rates will produce one, two, or three
steady states as was shown before. This method was used to produce
Figures 2 and 3. The métric units in Table I were used since the
region having three steady states was quite large and physically
possible. 1In Figures 2 and 3, as the residence time in the reactor
increases, the steady states increase from one to two until three.
The range of residence times having three steadystates is about
six orders of magnitude. At still higher residence times, the
number of steady states decrease from three to two until one is
reached. Although Figures 2 and 3 are similar, the differences are
gsignificant. The steady state temperatures are widely separated at
the high and low steady states for different inlet temperatures.
This could be important if temperature were critical to the reaction.
The high and low steady state concentrations are fairly independent
of inlet temperature and correspond to one hundred and zero percent
conversion. The constraint of material balance and positive con-
centrations evidently places a limit on steady state concentration

that has no counterpart in steady state temperature.
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Transient Analysis

The transient behavior Qf the reactar can be determined hy
integration of equations 1, 2, 3, Numerical integration was per-—
formed on a digital computer using the four point Runge-Kutta method,
modifyed by Gill. Having chosen the Example 1 in Table I, one
could then start with various initial temperatures and comcentrations
and integrate the equations until a steady state point was reached
or something else occured such as an instability. Different initial
or starting temperatures and concentrations traced different trajec~—
tories as the system returned to steady state. Dimensionless
quantities EA, Eh, T were used to calculate the points, rather than
the dimensioned quantities. The symbols used to obtain these values
is shown in Table I. The projection of several trajectories on the
Eﬁ=0, EA=O, and T=0 planes is shown by Figure 4, 5, 6, respectively.
The apparent crossing of the trajectory curves is not real and is

due to the projection of three dimensions on two.

An attempt was made to see what effect a variation in inlet
temperature or concentration would have on reactor operation. The
reactor was assumed to be at steady state. Inlet temperature and
concentrations were impulsed and step changed and the equations
were integrated. If an inlet variable was impulsed, the sSystems
followed as trajectory away from steady state and then returned.

If theinlet variable was step changed, the system followed the same
trajectory but did not return to steady state. Interestingly enough
only two trajectories were traced. These are labeled @and@ in

Figure 4. This was.due to the fact that the variables used were coupled,

i.e. varying of any one always resulted in varying of the other two.



CONCENTRATION o©OF

Figure 4 TRAJECTORY PLOT OF C VS. T
bWt T T T - ' : . :
La B STEADi STATE R
L (S &
K=
<L._
e
s
S /
1 1 i 1 e ———ny 4 o |
(=] .
> o - ¢ [ [ A 5
TEMPEKATURE

20

0T



Figure 5 TRAJECTORY PLOT OF Cy VS. T
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Therefore, any control force that varied less than all three inlet
conditions simultaneously would not be satisfactory for control
purposes. It should be noted that there is no way to decouple the
variables since this is a non—linear system. The trajectories did
show that the reactor was asymptotically stable over large variations
in inlet parameters. Only when initial conditions were distributed
in unlikely regions of state space did the reactor begin to show
instability. On the previously mentioned Figure 6, it seems that
there is only a narrow corridor in the approach to steady state.

At more elevated temperatures, this corridor becomes harder to reach

and the reactor becomes less stable.

The Example 2 1listed in Table I were chosen because the
three steady state region was quite large. This was apparent on
Figure 2 and 3. Just as before, numerical integration was used to
determine trajectories once initial conditions were selected. Since
there were three steady state points, the initial temperature and
concentrations were chosen near each to see if the reactor trajec-—
tories would lead there or to another steady state point. The re-
sults were then plotted, again using dimensionless variables. Figures
7 and 8 show the trajectories projected on the Ek=0 and the T=0
planes respectively. The significance of the three steady states
lying on a straight line is due to a material balance. The high
temperature steady state, which corresponds to low.EA, was not ap-

proached directly by the trajectories near it. Rather, the reactor
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system seemed to wander about the region, in some cases falling
back to the lowest steady state and in some others, becoming un~
stable. Any trajectory passing through or near the middle steady
state as though the point was did not exist. The regions of
asymptotic stability are evidently relatively small for the high

steady state and relatively large for the low steady state.
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Reactor Stability by Integration

A very basic technique for determining reactor stability is
that of integration of the dynamic equations. The use of numerical
integrating routines 6n a digital computer allows system equations
to be evaluated easily and quickly. This was done before in order
to determine trajectories as the reactor returned to steady state.
In order to determine regions of asymptotic stability, it was nec-
essary to continue extending trajectory curves further away from the
steady state point until the reactorno longer returned to steady
state. Theée points would then be outside the region of asymptotic
stability of the reactor. As the reactor trajectory passed through
certain regions of state space, increasing temperature or concen-—
tration éaused a 1érger increase in reaction rate. Since the re-
action was exothermic, more heat was produced and the temperature
continued to rise. The reactor trajectory was then getting further
and further away from steady state. In the cases where this con-
tinued an explosion would likely result. The regions in state space
where this phenomonon occurs are called unstable. Numerical inte-
gration could thus delineate the regions of state space where all
trajectories starting inside the region would return at least as-—

ymptotically to the steady state point.

Although numerical integration was the most straight forward

technique employed here, it was also the most time consuming, both



in man and computer time. The numerical integrating routine checked
its accuracy by determining the linearity of the system. If the
system was not linear enough in the time increment used, the time
increment was halved and the process repeated, In doing the pre-
vious trajectory plots, the system was fairly linear. However, as
it became necessary to increase concentration and temperature to
find instability, the equations became extremely non-linear, due in
large part to the Arrhenius Rate Law. IDetermining the trajectory

of just one point began to take much computer time, Fortunately,

a Control Data 6600 computer was available. Even so, the use of
numerical integration became a costly and time consuming procedure.
After mueh effort, points were calculated where trajectories just
returned to steady state. The points were plotted on Figure 9.

The Example 1 of Table I was used. Initial concentrations at
five different initial temperatures were tested. The regions are
seen to be decreasing and changing shape with increasing temperature
Due to the extreme non-linearity of the system, the approximate
error is 110%. Though this error appears large, the regions are
still more than double the size determined by any other method

that will be attempted i.e. Linearization, Lyapunov's Second Method

Krasovskii's Theorem.

18

]



Figure 9 REGIONS OF ASYMPTOTIC STABILITY BY NUMERICAL INTEGRATION
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REACTOR ANALYSIS BY STATE PLANE METHODS

The State Model

In order to apply general stability techniques, a state model
must be formulated. If the dimensionless variables of Table I are

utilized, Equations 1, 2, 3 become:

dT —
£ %0)=—¢ = Mr-BT+4,  Where¥p = | X, (4)
£,000= 48 _ T, +1 X (5)
2 46 = Dyr - Gy 2
d ¢ —
£,(%)= 5 = Dyr - Cg + Dy X4 (6)

(where Ay, B, Ay, Dy, D, are constants, r is the rate of reaction).
Since these dimensionless equations contain constants and do not
meet the requirement of state that ﬂﬁ(%%): Q , a further trans-—
formation is necessary. A good choice of state variables is the
deviation from steady state. Thus

= T - Tgg

X3= Cp - Cass

X3= Cgp — Cgsg

]
~
x
~
]

T - Iss



After Equations 4, 5, 6 are transformed, and the steady state

equations subtracted, the resulting state equations are:

x= A6 K)-BX
%= 06 XD - X,

X,= D,G (g(") - X,

21

7
(8)
)]
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Stability By Linear Analysis (8)

The usual technique used to determine the linear character-
istics of a system when1¢3(%§’) is analytic, is linearization in

a Taylor series expansion about the origin. Here

The stability of the unforced linear system can be determined by
finding the eigenvalués of the @matrix. If all the eigenvalues
are negative, the system trajectory will be composed of only decay-
ing exponentials and the system will be asymptotically stable. If,
however, any eigenvalue is positive, the system is unstable. One
glaring error in this is obvious. Regardless of the initial con-
ditions, the system will be asymptotically stable when all eigen—
values are negative. This is known as asymptotic stability in the
large and can not be valid for this reactor system. The closer

the system is to steady state, the better the system can be repre-
sented by a linear system. Even at steady state, however, linear-
ization is not perfect because the reactor is still non-linear.
Since the RAS will be infinite or non-existent, it was senseless to
compare size. It was decided, instead, to examine the stability

of the steady state points in the three steady state region. This
was done by calculating the/?h.matrix for the points shown on

Figure 2. The state transition matrix and the eigenvalues were
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calculated using a computer program found in the appendix of (5).
The points which were stable were noted. The results were plotted
in Figure 10. It seems that none of the high steady state points
are stable and only a small section of the low ones. This may be
true because of high temperatures or flow rates involved. However,
numerical integration later showed that some of the high steady
state points at léﬁ flow rates and more of the low steady state
points are stable. 0ddly enough, both linear analysis and numerical
integration showed that a middle steady state point, at 332°K, is

stable. This is not physically possible.
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Stability Using. Linear Approximation (8)

A basic technique involves the approximation of linearity for
a non-linear system. The method to be used here involves grouping
the non~linear terms into a function called "g". If the linear
part is asymptotically stable in the large and if the non-linear
part tends toﬁards zero near the origin, then the system must be
stable near the origin. The method assumes that the contribution
of the non-linear part of the system to instability is small. This
is not the case for a reactor system and the results should show

this.

The linear approximation theorem can be summarized as follows.

Consider the non-linear system

L SRRt 2

Define the constant matrix ) and the function g (&) by

£ (X0 = A%t s (%)

. d % - {F;P%kis asymptotically stable in the large, and if
dt ‘

lim e (%) [l .
|1 2K |1+0 TH % 1l

The system is therefore asymptotically stable at the origin. The

double bars signify the norm of a vector.

25
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Using Equations 7, 8, 9, the following is obtained.

ro7 17771
Xr{ B 0 0 Xy Ay %
£

. |
X, = i 0 -1 0 L+ |-D,iG
\ :

b Xa_i LO 0 -1 X, D,

;.u et R s »

The eigenvalues of the ﬁ% matrix are obviously all negative.
Thus, the linear system is asymptotically stable in the large.
The regions of asymptotic stability (R.A.S.) predicted by this
theorem depend upon the region of state space where the limit of
the norm of the rate expression g(gfﬁ divided by the norm onS?
approaches zero as the norm offs? approaches zero. The results
obtained were deviations from steady state as follows (Using the

Example 1, Table I).

Temperature + 10.2 °R
CohcentratiOn A + .04l 1b/ft®
Concentration R £ .019 1b/ft?

The results were quite insignificant compared with the other methods
used here. The real problem involved the rate expression g(as?).
Since it contained the ArrheniusRate Law and the product of concen-
trations C, and Cp, it was the sole cause of instability and non-
linearity for this system. The attempt to deal with it as a trival

quantity was doomed to failure.



27

Formulation of Lyapunov Functions .

In previous works (l1-4, 6-11), Lyapunov's Direct Method is
employed to find regions of asymptotic stability. Various tech-
niques are used to formulate and apply Lyapunov functions. Briefly,
Lyapunov's Direct Method can be summarized as follows. Consider a

system characterized as follows:

-—j{f- - £1(X%) with £(0) =@

Suppose there exists a scalar function V(X¢) which for some number

€>0 satisfies the following in the region | ] &i l_<_€.

a. V(&! >0 for ),Q#o

b. V(0)=0
c. V(& ) has continuous partial derivatives with respect
to %
d. dv <o
d t

Then the system is asymptotically stable at the origin.
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Stability by Calculating the Time Derivative

An early and general method used to apply Lyapunov functions
can be found in (8). Briefly, this method involves the formulation
of a Lyapunov function and the computation of its time derivative
using the chain rule formula

e LT fow
If this derivative is negative for all points in and on the Lyapunov
function, a larger Lyapunov contour can be tested. The smallest
contour which has a point at zero time derivative will define the
area of asymptotic stability where all trajectories will return to
the origin. Application of this theorem proved difficult. Firstly,
a Lyapunov function had to be selected. There were infinite

possibilities and each Lyapunov function had a different in shape.

Though there were no restrictions on the Lyapunov functions as with
other methods (7-10), no guide was available for choosing a function
for a chemical reactor system either. After several possible
Lyapunov functions were tested, the function Which yielded the
largest RAS was the one which included both concentrations and the
temperature squared as state variables in one of the terms. This
was probably due to the effect of the rate expression omn the system.

Each Lyapunov function had to be tested for a negative time derivative
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at a grid of points. The computer program Which was used, tested
each contour at twenty points spaced over all four quadrants of

the concentration plane. Each function was evaluated at five
distinct temperature intervals. The largest contour V(4 )=K to
have all points with a negative time derivative was noted for each
Lyapunov function. These contours were plotted in Figure 11.
However, the plot be must qualifyed. It was realized that no
physical reactor can have negative concentrations during either
steady or unsteady state operation. Therefore, no reactor can

have a trajectory passing through those areas of state space cor-
responding to a negative concentration. All trajectories starting
in regions of positive concentration must stay there. The restrict-
ion of a Lyapunov function having all points in a negative time
derivative zone was then relaxed somewhat. Only points on the
Lyapunov function which corresponded to positive concentrations were
tested for a negative time derivative. What the situation was at
other points was irrelevant since the reactor system could never get
there! This assumption resulted in roughly 507 increases in the
RAS. 1In Figure 11, these contours are seen to vary in shape and
size as the temperature changes. Note that there is only one steady
state point present. This is due to the fact that the Example 1

of Table I was used for this calculation. The limits on the contours
do not extend to the axis because the system is very stable in these

regions as the rate term is a function of both concentrations.
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The three steady state region was also investigated but in a
slightly different manner. Instead of seeing how big the regions
of asymptotic stability Were; it was decided to see which steady
state points had any regions at all. This was accomplished by
taking points + .01%Z about a steadf state point and seeing if all
the points had a negative time derivative. This was done for each
steady stgte point found on the iniet temperature equals 300°K
curve in Figure 2, This was how Figure 12 was constructed. The
steady state points which were asymptotically stable within the
small area selected are labeled stable, although it is really
stable in the small. This plot is in sharp contrast to Figure 10
where the points were either unstable or stable in the large.

In Figure 12 the low steady state is stable over flow ranges 3
orders of magitude more than that of Figure 10. Also the high
steady state is stable for a variation in flow rate. One middle
steady state point, that at 332°K had a RAS. Numericél in-
tegration yielded the same results as that shown in Figure 12.
It was completely baffling how a middle steady state point not
only was stable itself but also had a small region of asymptotic
stability around it. Evidently the instability of the point was
smaller than the truncation and propogation error of the fifteen

decimal place word on the CDC 6600 used for all calculatioms.
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Stability Using an FEarly Krasovskii Theorem

A limited region of asymptotic stability can be found by an
early interpretation of Krasovskii Theorem (7), briefly summarized

as follows. The non-linear system
dX -
X%, £(0)-0

is asymptotically stable at the origin if the matrix
[F X - ) 4 (2 ECHT
3 > X%

is negative definite for all 3?; furthermore,
V()= £ £(%)
is a Lyapunov function.

Utilizing equations 7, 8, 9, £(0)=¢ since G(ﬁ?) is the de-

viation of the rate from steady state.

pes -
3£ (%)
3 (%) = "‘B+A1G'l Ale A1G3
—D1G1 "l—Dle _D1G3
DlGl D1G2 —‘l+D1G3

G,, G,, G, are the partial derivatives of G with respect to X,, X,,

Xg. It should be noted that the Lyapunov function is unique in this
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case. It is just f12+f22+f32. Certainly, there is no problem form-
ulating the Lyapunov function. However, due to the fact that var-
ious Lyapunov functions cover various areasof state space, the RAS
determined here should be very comservative. A computer program was
formulated to calculate points on a Lyapunov function V(é‘?)=K. A
grid of twenty points, five in each concentration-concentration
quadrant were tested to see if ‘F ()&) was negative definite. If
it was, a larger K was used to calculate the Lyapunov function and
the process repeated. The largest'VG%‘?)=K to satisfy the con-
straints was plotted on Figure 13 at various temperature intervals.
The Example 1 of Table I was again used to generate the one
steady state region. The Lyapunov functions generated were ellip-
soidal in shape and expanded with decreasing temperature. The
ellipsoidal shape is due to the squaring of the state variable ex-
pressions. In this case, the attempt was again made to increase

the RAS by only testing the constraints on areas of positive con-—
centration only. Small increases were noted in the RAS at two of
the temperatures shown. This was probably due to the fact that the
functions were ellipsoidal and probably violated the constraints in

several quadrants at about the same distances from steady state.



21

ConNCEN TRATION ©OF R,

Figure 13 REGIONS OF ASYMPTOTIC STABILITY USING AN EARLY KRASOVSKII THEOREM

T T T T T T T T
@ sTEpO{ STATE
1§ b= =
5K -
12)- -
q — -
L -
T=630°R
3 -
[ ]

I 1 1 1 1 ] 1

o ! 2 3 + 5 il S a [¥e)
confcENTRATESON OF A, Cu

Gg



36

Stability Using the General Krasovskii Theorem
Luecke and Mc Guire gave a superior interpretation of Krasovskii
Theorem (10). The non~-linear system

AT IS =0

d t

is asymptotically stable at the origin if there exist constant,

symmetric, positive definite matrices@ and@such that

Foe - <—§f7g;—>T P+ (@_gi @)

is negative definite for all )5(; furthermore,

V(%) = le@f

is a Lyapunov function. Luecke and Mc Guire show that astute choice
of the matrix @ , when using Krasovskiis Theorem, can significantly
enlarge the resulting stability region. The whole draw back is in
choosing the right matrices in order to enlarge the RAS. As suggested
by Luecke and Mc Guire, a f@ matrix was chosen in an attempt at nor-
malization of the state variables. It was assumed that the same type
of normalization would work here with three state variables as it did

in their case with two. This approach yielded a{?)matrix of

1.79 0 0
0 4.73 0
0 0 1

“ ’l

It should be noted that the resulting Lyapunov function is similiar
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to the one formulated in the previous section except that the or-
ientation about the steaéy state is different. In other words, the
flz, f22, f32 of the previous section are multiplyed by constant
terms. No cross products were attempted because there was no way
to determine which would be beneficial and also because some might
causeV( &)4) for some ﬁ?* @, invalidating the entire Lyapunov
function. The matrix @proved easy to choose. Before adding in
@ , F11 was ﬁegative, F,,, Fy5 were positive and the rest of the
matrix was zero. Thus, very large values of Q,, and Qz,; could be
used to maintainE being negative definite. The real constraint
was F,, being negative. Once the Lyapunov function V(%)=K was
calculated, the computer checked each of twenty points to ensure
that F was negative definite and K was incremented until points
were in violation of the constraint. As before, the Example 1
of Table I Was wused. The largest Lyapunov functions are plotted
in Figure 14. The resulting shapes are diamond-like. It was
attempted to enlarge the RAS by ignoring points in the other three
quadrants not shown on the graph. Probably due to the fact that
the state variables were normalized, the constraints were bé.ing
violated by the points in all the quadrants at about the same dis-

tance from steady state. This procedure was then abandoned.
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CONCLUSION

It has been shown that the operation of a reactor in a three
steady state region will be stable at best, at the high and low
steady state and unstable at the middle steady state. The fact
that the high steady state may show stability can be very useful.
For instance, a low inlet temperaturevcould be used in conjunction
with a controller to keep a high conversion at a high flow rate
with comparatively little expenditure of energy. A region of two
or even four steady states is a physically unlikely situation in
that the heat removed line must be tangent to the heat generated
curve in one or more places. Regions of five steady states were
found on calculating the graphs of steady state temperature and
concentration against residence time. However, the two steady
states that were found lying below inlet temperature had con-
centrations of species A greater than inlet. Therefore,Athese

were mathematical solutions only and were not plotted.

Of all the techniques used to determine reactor stability,
numerical integration gave the largest and probably most accurate
picture of reactor stability and dynamics. There are many reasons
for this. The region of asymptotic stability is larger than that
area of state space covered by a given Lyapunov function having a
negative time derivative. Since Lyapunov functions are a type of
energy function, any trajectory having the littlest increase in

energy as defined in the function will be beyond the scope of this
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approach. However, there is no available technique to delineate
areas of state space having a non-negative time derivative which
are stable with respect to the origin. Besides being limited in
scope, Lyapunov functions are by no means unique to a given system.
Various functions will cover various areas of state space. The
Lyapunov functions formulated here varied widely in shape. The
Lyapunov function used in calculating the time derivative and that
used in satisfying the early Krasovskii Theorem were typical.

Both were ellipsoidal in shape. The resulting Lyapunov function
formulated using Luecke and Mc Guire's approach was almost a

diamond. These are shown in Figure 15.

The linear approximation theorem and linear analysis gave very
poor results for this reactor system. This was due to the fact
that the instability in the reactor is caused by the Arrhenius Rate
Law. The higher the temperature rises, the more unstable and non-
linear the system becomes. Thus the approximation of linearity for

this system is not good for détermining stability.

Upon reviewing the various techniques for employing Lyapunov
functions, several things became apparent. First of all, both inter-
pretations of Krasovskii theorem limit the possible types of Lyapunov
functions. In the restricted Krasovskii Theorem, the Lyapunov
function is unique, i.e. it is just the product of the transpose of

thefﬁpmatrix and itself or flz + f22 + ....fn2 where n is the
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number of state variables. Even in the extended Krasovskii Theorem,
the Lyapunov function is limited to linear combinations of the pre-
viously mentioned terms and their first order cross products. The
method of calculating the time derivative by the chain rule (—%%—)T
f(&) enables one to pick Lyapunov functions without any restrict-
ions other than those of Lyapunov. For this system, this unrestrict-
ed ability to pick Lyapunov functions made all the difference in the
world. By trial and error, a Lyapunov function was found that most
closely characterized the total energy of the system. Thus it gave
a larger region of asymptotic stability than anything possible using
Krasovskii techniques. Since the temperature and concentrations
used here were all inter-related, it seems logical that second order
cross products be included in any attempt' at characterizing the
total energy of this system. What apparently is lacking todate is

a study of the inter-relationship of a given Lyapunov function and

the type of system that it represents.
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RECOMMENDATTONS

Despite the multitude of methods available to predict non-linear
system response, the most accurate and uncomplicated method remains
numerical integration. For linear systems, state variables are a
blessing. They allow an analytic analysis of system response. Effects
of distrubances and control forces can be found easily, especially
when the state variables are decoupled from one another. However,
state methods were of little use here. Linearization of this reactor
system yielded very poor results. Applications of Lyapunov's Second
Method fared not much better. Most methods employed here required
computer programs. As long as such programs are necessary, numerical
integration should be employed. Routines are already written which
make numerical integration more accurate than any other method avail-
able. As time progresses, the advent of faster and cheaper digital
hardware, combined with prewritten software, will probably cause
computers to be used exclusively for the prediction of non-linear

system response.
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APPENDIX I

Numerical Integration

Program THESIS reads in physical parameters including

inlet conditions. It then calls routine CINT.

Routine CINT searches large ranges of temperature for
the heat balance equation to change sign. When a sign change is
found it lists the root of the equation under steady state points.
The heat balance equation and the steady state concentrations are

evaluated in routine FCT.

Program THESIS then reads the initial temperature and con-
centrations. In a section called subroutine RKGS, the initial
conditions are listed, the derivatives evaluated amd the equations
integrated using a fourth order Runge-Kutta method. 1In a section
called FCT, the derivatives are calculated. A section called OUTP

is used to output results.



TUEREYRS TR G
VEADLON o u

Wsuﬁl

);mﬁr?*“‘¥éﬁkﬁ
wh;fﬁ} ;ﬂﬂr,ﬁﬂ

w:‘ﬁwgf)
hwt”, i.

EL L e S Y el ) - e
Fﬁ%ZATi%kLa!%i
Cagl CLovtyY S o

.J 1‘5'3’??4(’ i":f, 5‘5«’ ?\nﬁ.ﬁ -

wmn-mmun-mnamuum———--mw—nunum*umwumumuunmMmnmmnnnmmmnnuuunnnnmumwm-

B . SRR
|
i

‘4Qn?ﬁwfﬁd3
>'?ﬂ?"”“*“é‘r( £y

am” (5 %0y | ) o
( ﬁQTCX{ﬁ;ﬁ&QV} ) . R

L;Qi"éTl e |

ERRBRTEST R k - i

IR e A D) 3,0




& - -
L)
o
.
b

o

gl

EPARATINGE OF FIAST ki fipmiKUTTA S

JO 0 Teia Ty

AUR(Es LY siERY L) ‘

RECHRTING OF YwITTAL YALWES OF TwYs STeb

A4 ARl ysily
IR . :
ST A%
FESIN L
I8TEPaL
- Enbw e e e e e e e e et s« et oo e
. ,
¢ STAAT OF & ByUNGU=-dUTTA STEW o i
o JF{{XApimXEND ) ®H ) Pobiata i o
B AR En e

e g £

ALL D TPUASYauERYp TREC W PRTY

LoaL=l
GO TC Grg

COLTimr |
ITEgT=y e e e oo e e e

[STEP=ISTEF#4

" START QF ITuMERANET TmKUTTA LOOP

NLF
Admdl))

gmi{t) :
adEl (d) e - i

P8 Ll J=lsnDiIM

RLsHRDEAY(TY - 4 - v ‘ , é
AmA {0 L I ALK (B T ) i




EFQITEOT ) diag Lfay 24

ik
15‘7 { R 2
iﬁ d =L -
D I RLE I RETIRTRN o S S
N KR, Hel
o bt 23 - ) ”
Eoa o »F TLodfioaT BskeyTTA Lol ) -
TE5T af AGCURACY - ) o

TR E TITES TR THERE 1§ 40 POSEIFILITY FOR TESTING

OF ACCURACY

G L Telanils
AP nlAlwpldeY (1) . . .
ITeSTey
IS TEPe STEPSSTRPes
I amﬁwaw i, bl
AB K= S B .
T |
LY LY felanbiA . .
V(E;g'xm ,ﬂ)@#},}
CERY (TimAtiA(@s] ) . . R
19 kuX(mallﬁﬂuX(BaI)
WH:QQTQ E e+ e e e
oo heonaSe ITESTe=i TELTI G ¢F ACCURACY 18 POSalphl .
D IMGNEISTRP/ ) I
LRl TaTetmIntumle QU0 Laetar'h
BhOUALL FUTIReYagRYY
1 b a3
B L = o
e COWTIWE
0O PR jmleiM ) . Y |
AUA (S TV eY (1) %
B2 AUX(PslYmDERY (L) - |
CHOMPUTATIBN GF TEST VALUE wELT ;
AAUELTET, ) |
G0 % Ymisnilb |
el g”;anLiT*aLX(mgiiwﬁﬂﬁiﬂuxt%pi)~Y{133
LPLDELTwPRIT L) ) BB, Bl




Y 1 T
YT i

1
i

ubalEd : E—

GO OTe 2T

GO A4 fele M
AR Le L )=Y (1)
AURLeEs LimTie Y {11
AUK(32 1 AU Bat)
FLLYRALK (ST
9 DERY(T)=4A A(VPa Ll [

G LALL GUTPLA=Ma Yo DERYp IHLFant 1HaPRYT)

LGoLma

A b

50 To 35

HUR CONTINUF
X ok . . ;
Fu 00 HL Tehsanin
YOId®ALUN (s T ) R
3L DERY{T ) sAUX (e i)
JRECEIMLE .
IF{Te Y ae, fy 4t
b
G TRCHEYECT GETS TOWHLER T |
G e . -
. o (HLFRTLF=]
B ISTER=LSTER /e I
& = S A
: 53 TMODRISTED /7
IF(ISTEP=IMAL=) 100 )by sy .
e IF{DELT=, TewpPRMT (%) )39, 352%
A5 IHLFRTPLPm=L .
[STEP=ISTER /&
P bt B

GOTO @

RETURYS T0 {ALLTAG BRaoaay

SRRV e e
CALL POT(XaYaDERYD e
WRITE(LO) LERL)A




L OO P
e [
i

x‘%)

CLHECK PR GNREALISTIC COnDITIONS

e

Y GEL L ERLL 150 T 11RL
3" j aUﬂaiMs? ”’5342 “'Lm B

Cren e

. ) L%Q%gﬁmﬂwg

ubm”(ﬁlmﬂiﬂvﬁ 3*?43)*’%5 LE/R/YLL)Im /YR (Y (2 Y=CAT)
JFﬂvﬁﬁ?ﬁﬁinﬁﬁmYﬁaﬁmﬁX?ﬁ (K/N!YQLQi”mlvﬁ*i¥(#)rﬁﬂll
 TGlelds e A2l 2B ) p HCAL
X M«&T&Chﬁ*1$Jﬁ)

T FOAMAT (LHlip'aUXs LOHREACTOA eXFLORED //)
!w Lals ::2

CSVBEROITINE AUTPE

w”wmmmuuumumumﬁmwmmnwpumnﬂmmmmmuﬂnm-ﬂﬂunwMnmmﬂmwumnmmnmnmwwnnmmeT

CLOATINGE

1“*AT TI“F“:PB sd:h%: WThMﬁ=;rx%.w;§x;? CONT  Bea ELE s
1REs kLl BaXals)

ARRoR (i) a REXP (mPLLE/R/Y L))
oBNERG A RN (RO A
WHITE (LA BUTP I DEAYa AD A P
FORMAT (IO ALHEATENP ) /3 TRa Ll hpGXp THOCA/DTmaELL %o GR2 THDCR/ DT =,
Ehlg PaBXa PlinmPl ONspELL (H2 0o PriA=mLGSTopELL %)
?ﬁgfwviwb

G §

GEOTO (FULpIURLE)LCAL

“F‘"’%‘« 1 N %»:r KOWUTEYES

ﬂmmmwmnmnummn—mMmﬂ-mnmqnwm_n—wm-mnnnmmmm'wn-nnm-mﬁ&n-mn-mnmmmnnmnﬂ :
i

CLORT N
.w&g L Vﬁ}T

t: '\”4»




51

BEYEEYETY

el (i) el TO &

TLAYRO TR b S

5&%?{7(%

R TTT — .

B «)K%aah“ - . o
10 TO L

1] e st e s

o

R ahmia *sxym%“m
\:Wk£Wﬁ¢Wm3 Kias il ll H“ - o
: rgs AKX rriTE8 s ELG hip LR W CALSwa ELS B LTAs BHCORSSmpELG

mm&w’ Q(}?Q}

ROy e N ;

R~

S e e N . e S R S —




o mi  KARD ) )

oy

At

i, hY

ATEYN

(ECRINeRAORGROFR (TO BT )=

- - SR - .

- - S - ot

'

i

et - o . - - !
i

- - [ . i

i

i




START_OF NEW CALCULATION | | S

__TSTAR® 3.0000E402 ALPHA= 1,5947E+08  BETA= 1,6566E+00 GAMMA= 1,0000E+00 DELTA= 2,813

STEsQY STATE PQINTS ARE=
- TsSe , » 2
TSS=  6,430840E+02

3L000008E¢02 T GASSE T 1.G0G000E=NE

- 1.000001E=04
7:003506E-03

CRSS=

CASS=  3,096404E=03 CRSS=

“TSS=  7.B1G450E0Z

CASS=

3,023204E=04 = CRSSz=  9,797480E~03

AT Tink= 0,00 TEMP=  8,400000E+02

DUTERP) 70TS=4, 2497406

TBARE ~ Z2,800000E+00  CaBAR=

- DCA/DT= 7,0829E+01  DCR/DT= 7,.8680E=01

: 1,éqbdﬁﬁE_DihmmmmMmﬂw

CONCoA=  1,000000E=03 ONCeR= =0,

A=PRnD= 0, A= 0S§T==7

CRRARE T .

AT TIRES

i

THARE

3! ':ME; ’ng

T DUTEFPT/0TE-E,95]10E+05

TTTTBARE T 1 ,379154E%00

AT TIFES

2OV

L x

T DTTERPT/DTE=4, 094BE% (5

00

T UTTERPT/DTE=],9493E+06
1. 828347TEs00

TEWP=  5,685041E402 CONCyAS
© DGA/BT= 3,2507E+0L  DCR/DTE 2,5

5¢853118E=03 He422901E~05

~ A=PRoD= 1,2849E=01

WEQNCgﬁéiv
A=l 08T==3,

CABAR=  5,853118E=0]

CRBARE  8,422901E=03

TEMPE  44137462E%02 ~  CONC.A=

- DCA/DT= 1.,4%3%E+01  DCR/DT=

CABAR=  B.101627E=01

TBLIRIEZ7E-03
G TLAEROE

CONCeR=  9,423267E=05
A=PROD= 1,3251E=03  A=~L0STz=l

- CRRAR=  9,423267E=03

TEMP=  3,520324E02 T CONC,AE

G, 131600E=03  cONCeR= 9,738036E~05

- DCA/DT= 6,A341E+00 DCR/DT=

2, 06B9E=02 A=PRnD= 4,3194E=05 A=L0ST==6,

T TBARE I, I73FETEF0U

CABAR=E  9,131600E=01

9,738036E=-03

CRRAR=

L
Lo

TEMPS 3, 238014E%02

iigDNCgA=

G BRATRIAE=03 CONCoR=  9,BB0267E=05



AT TINME=
~”ugTTE§FT?§TE:E;§§$4ﬁ1Qé“““

S0

TBAR=

;wx?m?rﬁggwwmmwww“

DITEMP) /LT==3,9158E+04

0L

TBARE  1.,016601E+00

DITEMP) /DT==1,7929E+04

TBARE  1,007594E+00

AT TIMES e

DITEMPT/70T==E,2014E403

TEAR= 1o0N34T4E+00

{
— AT TIMEE

DTTERPT/DT==3, T516E403

S0

mmngg%«ga ~-(}~ gvmm. R —

1993§292E469-~WWHM‘W

- TEMP=

© DCA/PRT= 2,9923E-01

TEMP=

TEMP= 3,108876E+02 CONC,A=

CDCA/DT= 1e4300E%00

- DCR/DT= 4,3107€-03

CABARS  9,818290E=01

5,818290F=03

CONCeR=  9,945251E=05

~ A=PROD= 1.9863E=0n = A=L08T==]|

CRBAR=  9,945251E=-03

© 3.049806E402  CONC, i

DCA/RTS 6,5415E=0]1 neR/dTs
" CABAR=

TEM?E 3!6221ééﬁiaéwww

1,2714E=03

9.9168798=0T

 CONCoA=  9,96197RE=03

8,916879E=023 (ONCeR=  9,974966E=05

A=PRAD= 1,1893E=04 A=l 18 T==4
CRRARE=  9,9749h4E=03

CONCaR=  9.98A3555E=05

DCR/DT=

CABAR=

9.0161F=04

6,96197BE=01  CAEARE

CA=PROD= 943417E=07 A=L0ST==2

 9,988555E=03

”§§§i§§ZIE¥§EWM””iCQ&C,A#

~5T3RRE07E=03

CONCoR=  9,994771E=05

- DCA/Z0T=E 1,368BE=01

DCR/DTE 4,1236E=06

- CABAR=  9,982607E=01

" CRRAR=  9,994771E~03

TA=PRoli= B,3E23E~07 A= OSTm=1

TEAP= — 3,004767E¥02 CONCl.A=

8,992044E=03

T CONCeR=  94997814E=D5

- DCA/DT= 6,42613E-072 DCR/0T=

1, B860E=04

K=PRODE 7.9328E=07  A=LOST==6

CRRAR=

9,997614E-03

e 0V

TTAT TIREE

TEWP=  3.002181E¥02

MCQNC3A=H

89,596361E=02 (CONC.R=z  9,998914E=05 ¢

"’ﬁtTEMP>(QT=a1.?1§1§*53

DCA/DT= 2,8641E=02 DCR/0T=

8;&251&*95

A=PROD= To7475E=07 A=|QST==2



55

APPENDIX II

Linearization

Program LONA reads in the steady state temperature and con-
centrations and the flow rate at which they were obtained. It
calculates the partial derivatives of the rate expression "G" with
respect to the three state variables. It then evaluates the ﬁﬁﬂ

matrix and calls a subroutine TRANS.

TRANS calculates the state transition matrix aE (1—) using

the relation

% (=T +Ae+ P22 +.....
2!

For initial conditions, within five decimal places of steady state,
TRANS outputs the unforced response. If it dies out, the steady

state point is assummed stable.
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APPENDIX III

Lyapunov Functions

Program LYAP outputs the reference temperature used and then
calculates the corresponding state variable X;. For an initial
value of K, it calculates a Lyapunov Function. It searches for
the crossing the axis by the funcfion and divides each quadrant
in five sections, each equally spaced apart. Points on the Lyapunov
function are calculated in each section. On points corresponding

to positive concentration, the program tests the matrix
F- by ppaf @

for being negative definite. If it is, K is increménted, another

Lyapunov Function is calculated, and the process is repeated.
Once the matrix ﬂE‘is no longer negative definite, the program
points out the Lyapunov Function which caused this to happen and

prints a message that the reactor exploded.
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