New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1971

A new technique for steady state and transient analyses of
incompressible flow networks

George V. Catanzaro
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

6‘ Part of the Mechanical Engineering Commons

Recommended Citation

Catanzaro, George V., "A new technique for steady state and transient analyses of incompressible flow
networks" (1971). Theses. 1499.

https://digitalcommons.njit.edu/theses/1499

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.


https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1499?utm_source=digitalcommons.njit.edu%2Ftheses%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



Mew |ersey’s Science &
Technology University

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



A NEW TECHNIQUE FOR STEADY STATE AND
TRANGIENT ANALYSES OF INCOMPRESSIBLE FLOW NETWORKS
BY
GEORGE V. CATANZARO

A THESIS
PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE
OoF
MASTER OF SCIENCE IN MECHANTICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to

the rights of the author. Bibliographical references
may be noted, but passages must not be copied without
pernission of the College and without credit being
given in subsequent written or published work.

Newark, New Jersey

1971



ABSTRACT

A new technique for the calculation of the transient
or the steady-state mass flow rate and pressure distribu-
tion in incompressible flow networks is presented. TEmploy~
ing the matrix method of network analysis, the nodal
continuity and branch momentum equations are solved simul-
taneously to obbtain explicit relations giving the unknown
nodal pressures and branch mass flow rates. In this manner,
the transient or the steady-stabte behavior of incompressible
flow networks with arbitrary configuration having nodal
sources and sinks as well as branch transducers can be
deternired. In contrast with the conventional steady-
state network analysis methods, the new technique can be
extended te the unsteady analysis of compressible flow in
networks having an arbitrary configuration with heatb
transfer and phasse change. To ascertain the saccuracy of
the solution, a numerical stability and convergence ana-
lysis is performed which provides an estimule for the
upper bound of the time increment needed Toxr a stable and
convergent'solution. The new technique can be applied to
the treatment of transient problems such as flow coast-
down studies resulting from loss of pumping power in
nuclear water reactors, hydraulic transients of the ccol-
ing system for large steam power plants as well as the
steady-state asnalysis of wabter distribution networks. The

latter application is demonstrated in this study.
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FART ONE

ANATLYTTCAL FORMULATION AND RESULTS




I. INTRODUCTION

Computation of steady-state or transient mass flow
rate and pressure distribution in fluid networks with
given geometric configuration and dimensions is a common
problem in many branches of engineering. The design of
municipal water and gas distribution systems as well as
the dynamic analysis of thermal systems in conventional
and nuclear power plants are a few typical examples. In
the order of their analytical complexity, the problem of
fluid flow in networks may be divided into the following

categories:

a) Steady-state, isothermal, incompressible flow
b) Transient, isothermal, incompressible flow

¢) Transient, compressible flow with heat transfer
d) Transient, compressible flow with heat transfer

and phase change.

The solution to the above network problems has been
generally obtained on digital computers. Several diffi-
culties have been observed in these numerical solutions:
1) When the number of network nodes and branches become
large, the computer storage requirement and running
time for the solution become excessive.

2) The iterative procedure, used for the solution of
steady-state problems do not always converge or may
at times converge very slowlye.

%) The time integration used for the solution of transient



problems may become numerically unstable or non-
convergent.

4) The computer programs are not sufficiently general
to treat networks of any arbitrary configuration

with all system components encountered in practice.

These difficulties become more severe as one moves
from problems in the "a" category to "d". This situation
indicates that new techniques for the solution of fluld
networks are needed. To facilitate this development,
the new technigue may first be divised for problems in
the "a" or "b" category and later extended to "c" and "ad"

categories.

This study presents one such new technique for the
solution of isothermal, incompressible fluid flow in net-
works under steady-state or Ltransient conditions. In
contrast with conventional steady-state network analysis
methods, this new technique can be extended to the unsteady
analysis of compressible flow networks having an arbitrary
configuration with heat transfer and phase change. In
the present work, the matrix method of network analysis
(5)* is applied to the nodal continuity and branch momen-
tum equations. In this manner, explicit relations for

the unknown nodal pressures and branch mass flow rates

* Underlined numbers in parentheses designate references
on page 41



are obtained. The present formulation is set up for

the solution of problems in the "b" category; i.e., the
analysis of isothermal, incompressible fluid flow in net-
works under transient conditions. Employing the present
formulation, problems in the "a" category, i.e., the
analysis of isothermal, incompressible fluid flow in net-
works under steady-state conditions, can be readily
solved by the application of the dynamic relaxation
technique (17) as shown later in this study. The exten-
sion of the present formulation to problems in "c" and "4d"
categories require further mathematical development and
is currently in progress by other investigators at the

Newark College of Engineering.



ITl. REVIEW OF PREVIOUS WORK

The most widely used method for the solution of
problems in the "a" category, i.e., the analysis of
isothermal, incompressible flow in networks under steady-
state conditions, is the well-known Hardy Cross iterative
procedure. This procedure is commonly divided into
1) the nodal method, and 2) the loop method (3). In the
nodal method, the nodal heads are continually corrected
until the mass flow rates at each node is balanced. In
the loop method, the mass flow rates are initially
assumed for each pipe branch so that a mass balance is
maintained at each junction. The head loss between any
two junctions is then calculated for each possible path
between those points. The mass flow rate distribution is
then adjusted until the head loss between any two junc-
tions for each possible path between those points are
sufficiently close. ZEmploying the Hardy Cross relaxation:
techniques, Hoag and Weinberg (2), Graves and Branscome (8),
Adams (1), Dillingham (&) and Rosenhan (20) and a number
of other investigators develoved digital computer prograns
to perform hydraulic network analyses. These programs are
at times hampered by numerical instability and slow ratbe
of convergence. Various technigues for improving the
convergence problem are discussed in a number of the above
references., However, these technigues cannot guarantee the

convergence of the numerical solution.



The second method used for the analysis of iso-
thermal, incompressible flow in mnetworks under steady-
state conditions is the direct solution method. In
this method, the continuity and momenbtum equations are
first expressed for every network node and branch
resnectively. The momentum equations are then solved
algebraically for the unknown branch flows in terms of

the nodal pressures. Substlituting these unknown mass
flow rates into the continuity equations, a system of
nonlinear simultaneous equations for nodal pressures are
obtained. These equations are then solved by using
elther the Newton-Raphson method or by the direct solu-
tion of the simultaneous linearized equations. Employing
the direct solutions method, Martin and Peters (12),
Pitchai (18), Shamir and Howard (21), and Marlow et al
(11) developed digital computer programs to perform
hydraulic network analyses. These »rograms require a
larger computer memory storage, as compared to the prograns
based on the Hardy Cross Method (3, 21l) and are at times
hampered by the divergence of the numerical solution.
This latter difficulty may be overcome if a good initial

puess for the solution is available (21).

A systematic approach to the analysis and synthesis
of complex networks involving unsteady flow has been reported

by A. Reisman (19). This study presents a generalized



structural and mathematical framework to analyze or
synthesize a large clasgs of fluid systems where transient
behavior is of primary interest. However, the network
analysis and the computer nrogram required for the numeri-
cal treatment of complex fluld systems have not been
presented in this article. Instead, the need for the
development of a computer orogram with sufficient flexi-
bility to simulate fluid nebtworks with an arbibtrary con-

figuration i1s emphasized.

Analog computer methods, based on nonlinear electrical
resistances, have been employed by McIlroy (1l3), McPherson
and Radziul (14), Barker (2), Kiyose (10) and many others.
The merit of this approach is that, once the circuits have
been prepared, the required solutions are obtained instan-
taneously. The disadvantages of the analog computer
method are that the simulation of large networks require
a large number of analog components and considerable time
for setting up the méchine. For these reasons, digital
machines are considered more flexible than analog computers

and are generally preferred in this type of study.

The foregoing survey indicates thsat new techniques
for the solution of fluid networks are needed. Recently,
a new method suitable for both transient and steady-state
analyses of isothermal, incompressible fluid networks was

presented by A.N. Nahavandi (l@). The main distinctive
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features of this method asre that: 1) it lends itself to
a linkage with the matrix method of network analysis; and
2) the extension of the method to the unsteady analysis of
compressible flow in networks having an arbitrary configu-
ration with heat transfer and phase change, seems to be
feasible. This method constitutes the foundstion for the

present study.



11T, SCOFE AND OBJLCTIVES OF THE PRESENT STUDY

The main objectives of the present study are as

follows:

1) To expand the method developed by Nahavandi (16) for
the transient and steady-state analyses of isothermal,
incompressible flow nebtworks and to link this procedure
with the matrix method of network analysis (5) often
used in the study of D.C. electrical networks.

2) To develop a digital computer program for the tran-
sient and steady-state analyses of complex hydraulic
networks based on this new technique.

3) To verify the results of the present sbtudy against
the results of another computer program based on the

Hardy Cross method.

The present study provides the following flexibilities:

a) The hydraulic network considered may consist of any
arbitrary number of nodes and branches connected
according to any desired configuration. A node is
defined as any point in the system at which either
three or more flows meet or network geometric dimen-
sions change. A branch is defined as the line connec-
ting any two nodes.

b) Any node may be connected to a number of other nodes,

¢) Sources and sinks with given input and output mass

flow rates may be introduced at any node.
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d) Every branch may include a transducer, such as a

pump or a bturbine, whose differential head versus

flow characteristic is knowne.

The present analysis is based on the following
simplifying assumptions:

a) The fluid flow in the system is considered incom-
pressible, isothermal znd turbulent. No mass storage
is gllowed at any node or within any branch. Further-
more, the wave pronagation effect, heat transfer and
phase change are not considered in the analysis. In
other words, this study presents a procedure for the
solution of »roblems in categories "a" and "b" dis-
cussed in the introduction.

b) The friction factor for head loss calculations is based
on correlations developed under steady-state conditions.
In other words, the frequency-dependence of friction
is ignored in the present analysis. Two types of
frictional head loss correlations are emnloyed:

1) Darcy-Weisbach frictional head loss equation with
curve-fitted Moody's friction factor correlation (4,
15); and 2) Hazen-Williams frictional head loss equa-

tion (9, 21).

The present analysis can be applied to the treatment
of many engineering problems. A few tynical examples of

such applications follows:
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In the area of transient analysis, the present

study may be applied to the solution of: 1) flow coast-
down problems resulting from loss of pumping power in
nuclear water reactors (7); and 2) hydraulic transients

of the cooling system for large steam power plants (19).

In the area of steady-state analysis, the present
study may be applied Lo the solution of water distribution
netwerks. To understand this particular application, it
should be borne in nmind that the hydraulic transient solu-
tion can be made to approach asymptotically to the steady-
state solutlon if the system boundary conditions are kept
unchanged during the dynamic study. Thus, to perform a
steady-state analysis of a water distribution network, the
initial flow distribution is assumed. The system source
and sink pressures and nmass flow rates are then held
constant during the transient analysis. Under these cone-
ditions, the nodal pressures and branch mass flow rates
approach asymptotically to steady-state values., This
parvicular apnlication is commonly known as dynamic

relaxation (17) and is further discussed in this report.
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IV, MATHEMATICAL FORMULATION

In the present analysis, first the pressure drop

versus pressure, nodal continuity, and branch momentum

¢

equations sre expressed in matrix form. These equations
are then golved to obtain explicit relations for unknown
nodal pressures and branch mass flow rates as follows.
An illustrative example for this procedure is presented
in the Appendix.

The branch pressure drop array Ap, designating the
pressure drop in the pesitive flow direction, is related
to nodal pressures p by

fadd - [a]  {o} (1)
where A is the connection matrix defined as follows:
Every branch of the network, under investigation, is first
given an arbitrary positive orientetion cr direction (see
Fig. 1). The connesction matrix for branches and nodes 1is
then defined as a matrix whose elements are +1, -1, or O.
only. The rows of the connection matrix correspond to the
network branches such that the maximum number of rows are
equal to the maximum number of system branches. The columng
of the connection matrix correspond to the networlt ncdes
such that the maximum number of columns are ecual tec the
maximum number of system nodes. If the braanch orientation
is "away" from the node, the corresponding element of the
connection matrix is +1. If the branch orientation is

"toward" the node, the corresponding element of The con-
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nection mabtrix is ~l. If the branch and the unocde do not

meet, the corresponding element of the connection matrix

is 0.

The nodal continulty equation, considering both the
branch flow and the nodal source and sink (input and out-

put) flows is given by the following matrix equation:

4 {m} + {ﬁio} - {0} (2)

where AT is the transvose of the connection matrix and @i

and My, 8re the branch flow and the nodal source and sink

(input and output) flow arrays respectively.

The branch momentum equation in finite difference form
in time, relating the contributions of inertia, eleva-
tional, frictional and pump head to the branch pressure

drop is given by the following matrix equation:

. e O .
{ﬂ-i«-»ﬂ‘i-} = {%5 (1/4-4 AP + PAZ +(H - F)} (3)
where | 0 o}
1 £/ : n |
{%} {égf) < D ) = 2 s :} (4)
and : 6 533
{f} {.0055 [1.+ ( . x10° §+ l%;—) }}(5)

In the above relations, a, D, L and I, represent the

i

H

branch flow cross-sectional area, hydraulic diameter,
length and equivalent length respectively. The inertia
term is based on a forward finite difference form in time

as the difference between the updated and the present
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Yalues of the mass flow rabes (M and fm°) divided by the

time increment h. A criterion for the selection of this
time increment will be presented later. Values of 47, H,
F and R, represent the branch elevational head, pump head
rise, frictional head loss and Reynolds Number; while& , f
and/gdesignate pipe absclute roughness, fluid friction

factor and densitye.

Equations (4) and (5) above represent Moody's method
(4,15) for the calculation of frictional head loss. In
order to be able to check the results of the present analy-
sis against those of Reference (20), provisions to replace
Moody's method by Hazen-Williams' method (39,21) are incor-
porated in the program. In the context of our present

formulation, the Hazen-Williams' formulation is given by

o3
7 - 5.0% (IJ ﬁo lﬁol 7 (4a)
- 01185 F;QBE) Dl.IE‘; aIOBS

The quentity C, the Hazen-Williams' coefficient, depends on

the typre and the condition of the conduit and is tabulated

in Reference (20).

If a network consists of J branches and i nodes, egua-
tions (1), (2) and (3) constitute a set of 2j+ 1 algebraic
equations in 2j + i ﬁnknowns. These unknowns are branch
pressure drops, branch mass flow rates and nodal pressures.
To solve the above system of algebraic equations, we eli-

minate the pressure drops and mass flow rates among



15

equations (1), (2) and (3) to obtain a single matrix
equation for the unknown nodal pressures. Solving the

matrix equation (3) for & array, one obtains

{rﬁ} = {m} + {144 YAD + YPAZ + PYE - b’F} (6)
where {X} _ {g%p_}

Substituting the Ap array from equation (1) into equation

(6) and substituting the resulting equation into equation

CTA L el [0
T B

Solving equation (7) for the unknown nodal pressure array
gives

O [ - pare-prn - ]
30 L

RSN A

Having the nodal pressures from equation (8), one can readily

He

calculate the branch pressure drops and mass flow rates from
equations (1) and (6) respectively. It is important to
realize that [144%] is a diagonal matrix having branch

¥ts along its diagonal and zero elsewhere.
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The main distinctive feature of the present analysis

is that the steady-state as well as the transient nodal
pressures and branch mass flow rates are calculated by the
time-integration of the network transient equations as
given above. Initial values of the branch mass flow rate
array ﬁo are assumed such that continuity equations are
satisfied at each node between branch flows ﬁo and nodal
source and sink flows mjge Care must be taken not to

confuse values of f° and éi The former quantity repre-

0*
sents the present values of the mass flow rates which vary
during the problem solution; while the latter desighates
fixed known flow quantities entering or leaving the systen
at various nodes. TFollowing every application of equations
(8), (1) and (6), the updated values of the branch mass
flow rates are computed. The present values of the branch
nass flow rates are then set equal to Tthe updated values
and the application of equations (8), (1) and (6) are con-
tinued. TFor steady-state analyses, this procedure is

continued until the values of branch mass flow rates con-

verge within a prescribed error.

To perform a transient analysis, the converged steady-
state mass flow rates are entered as the initial values
for ﬁo array. The problem solution is then restarted
under the new prevalling conditions until & new set of
steady-state mass flow rates is reached. This latter

application can be made more clear by considering an
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example such as the flow coast-down problem resulting from
loss of pumping power in a nuclear water reactor. Prior
to the initiation of the pump coast-down transient study,
the present analysis is emvployed once to bring the system
to steady-state. The loss of pumping power is then ini-
tiated and the present analysis is employed for the second
time to determine the flow behavior during the pump coast-

down.,

It should be noted that calculation of nodal pressures
from equation (8) involves the inversion of matrix M. The
elements of this matrix are independent of flow and the
inversion procedure can be performed only once at the
beginning of analysis. Furthermore, multiplications of M
inverse by A transpose and M inverse by ﬁio are also inde-
pendent of time and czn also be performed once at the
beginning of the analysis. The remaining operations indi-
cated by equation (8) are time dependent and should be
performed once in every btime increment during the transient
calculations. For large networks, the order of mabvtrix A
becomes large. This will obviously increase the computer
running time for inversion, multiplications and other opera-
tions described above. This situation, however, will not

create any complication in the analysis.
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Vo NUMERICAL SOLUTION 1

The numerical solution to the prcblem ie obtained by
solving equations (8), (1) and (&) on a digital computer.
The input data for this analvysis consists of network topo-
gravhy, geometric dimensicns, hydraulic properties,
problem initial conditions and centrol variables. The

nain input data in this study are as follows:

1) The connection matrix A (only the non-zero terms are
entered as input data).

The branch actual length I, equivalent length If,

W)
[_—

hydraulic diameter D, nodal elevation Z arrays.

3) The fluid density/o , Viscosity U, and pipe absolute
roughness €.

4) The pumps locabtions and their head versus volumetric
flow characteristics,.

5) Initial branch mass flow rates 5°,

6) Nodal sink and source mass flow rates mj,.

7) Integration time increment h and steady-state flow

convergence errol.

The numeriecal calenlations can be conveniently divided
into twe groups. The first group consists of mathematlcal
operations performed once at the beginning of the program.
The assembly of the connection matrix and its transpose,
the formation of matrix M defined by equation (9) and its
inverse as well as the cealculation of all flow-iadependent

terms in equations (8) and (1) are among this group. The
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second group consists of iterative operations performed
after each time increment. The calculation of branch
frictional head loss and pump pressure rise as well as

the computation of all flow-dependent terms in equations
(8) and (1) are among this group. Classification of the
numerical calculations into the above groups increases the
computational efficiency of the program and reduces the

computer running time.

To perform the required mathematical computations,
a number of matrix operation subroutines, such as matrix
addition, subtraction, multiplication, inversing and
transposing were needed. These subroutines were obtained

from Reference (22).



VI. NUMERTCAL STABITITY ANALYSIS 20

The present analysis is based on the numerical inte-
gration of the branch momentum differential equations
(equation 3). To obtain a convergent solution, it is
necessary that The selected time increment h for this
integration be smaller than the minimun "time constant”
assoclated with these equations by a "good" margin. The
momentum equations are nonlinear and an accurate calcula-
tion of their "time constants"™ cannot be readily made prior
to their numerical solution. Fortunately, the accurate
calculation of these "time constants" are not necessary
and a conservative estimate is all that is needed for the
purpose of obtaining a convergent solution. This objective
can be achieved by making a number of simplifying assump-
tions. TFirst, since the dependence of the friction fac-
tor and the pump head on mass flow rate is generally weak,
it is reasonable to assume that these two variables are
flow-independent. Becond, the stability analysis will be
performed on the linearized momentum eqguations. This
assumption is heuristically Jjustified because the linear-
ized equations approximate the nonlinear equations in small
time regions. If the linearized solution 1s convergent
for every time increment, the overall nonlinear solution
will also be convergent. It should be further emphasized
that these simplifying assumptions are made only for the
stability analysis and not for the actual analysis presented

in this study.
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Based on the above assumptions, the branch momentum

equation may be expressed by

L an 2
“ag r + Km = C (10)
where
1 £I ) 1
- o (5 =z (11)

and ¢ represents the sum of the pressure drop, the eleva-
tional head and the pump hesd rise. BSince the linearized
equation will be used only within a small time increment,
we can treat’both K and ¢ as constants and find the varia-

tion of equation (10)

L 4aém) 0 sp = O 1

Equation (12) defines a linear differential equation in
§% at each value of H° for each time increment h. The

time constant for this linear differential equation is

T, = L/ oKag m (13)

Substituting equation (11) into (13), the final expression

for branch time constants becone
T _-=<TrD5 /—’L) urr, B° (14)
o)

Experience with the operation of the present program has
indicated that if for each inbtegration step, the time
increment is smaller than the minimum time constant by a

margin of 20, i.e. if:

Y; min

h< 35— (15)
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the numerical integration is convergent. Thus, to obtain

a convergent solution, the branch time constants are com-
puted from equation (14) prior‘to each integration step
and their minimum value is selected. The time increment
for the next time interval is then chosen to be one twen-
tieth of the minimum time constant. This margin of "20%
has proved to be satisfactory for the present analysis and
has resulted in a convergent solution. In the event that
approximate values of the steady-state flows are known
from a previous run, it is more economical to compube the
time increment on the basis of these flows. The time incre-
ment can then be held constant throughout the dynamic ana-
lysis. This latter method is used in The computer program

presented in this study.

The reason for using the minimum time constant can be
made clear by the following argument. Any arbitrary net-
work consists of a number of parallel and series branches.
For parallel branches, the line with minimum time constant
has the fastest time response and should therefore be used
for numerical stability purposes. For a J number of series
branches, the equivalent time constant can be easily shown

to be

J . j
T- ¢ L Z A LR ¢ O (16)
n=1 ag /, n=1

This equivalent time constant, can be readily shown to be
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larger than the smallest time constant among these branches.
Consequently, the minimum time constant branch provides a
conservative estimate for usage in the numerical stability

analysis.

When the transient sclution is of no interest and only
the final steady-state values are desired, the time incre-
ment criterion is not as stringent as indicated by equation
(15). The time increment can be increased to the order of
the system minimum time constant or even higher leading to
a large reduction in computer running Uime. The increase
in the time increment reduces the actual branch time
constants without adversely affecting the steady-state

results,

It should be further emphasized that numerical in-
stability and lack of convergence constitubte two major
hazards of any numerical integration scheme. Numerical
oscillations are caused by computational round-off errors
and the lack of convergence in the result of integration
truncation error. Both the numerical instability and the
lack of convergence problems can be overcome by the intro-
duction of an appropriate upper bound for the integration

time step h as indicated by equation (15).



VIT. PRESENTATION OF RESULTS 24

The new computational technique, developed in this
study, is verified by employing the present digital pro-
gram to determine the flow and pressure distribution in
the hydraulic network shown on Figure 1. A steady-state
numerical solution to this problem, based on the Hardy
Crogss method is available (gg) and is used to check the
correctness of the present dynamic analysis. The hydraulic
network, shown on Figure 1, represents a typical city water
distribution system. All system nodes and branches are
numbered independently and positive flow directions are
shown by arrows. Walter enters the system through branch 1,
at a rate of 2825 gpm with a constant pressure of 60 psi,
and leaves the system through branches 30, 31, 32, 34 and
35 at 450, 400, 500, 650 and 825 gpm respectively. The
length, internal diameter, and elevational difference for
every system branch is specified in Table 1. In order to
be able to match the present results against those of Ref-
erence (20), no booster pump is placed in any branch and
the equivalent length of each branch is taken equal to its
actual length. It should be pointed out that the present
analysis is not restricted by these assumptions. These
restrictions are introduced to obtain a meaningful compari-
son between the results of the present study and those of

Reference (20).

Typical transient results are demonstrated on Figures
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2 and 3. The final steady-state results are shown on

Tables 2 and 3 for all system branchese.

The above results are obtained by the application of
the digital computer program developed for this study,
designated as HYTRAN, which stands for Hydraulic Transient
Analysis. The convergence criterion for reaching steady
state was initially based on the relative mass flow rate
error. This value was compubted by subtracting the present
values of the branch mass flow rates #° from the updated
values of the branch mass flow rates A and dividing the
result by the updated values of the branch mass flow rates
M. The absolute values of these relative errors were
compared with a quantity designated as steady—state flow
convergence error. When the relative mass flow rate
errorgs for all branches are smaller than the steady-state
flow convergence error, steady-state conditions were

considered to be reached.

Experience with the usage of this convergence criterion
during the debugging of the HYTRAN program showed that
thig criterion is not desirable. A better criterion
based on a fluid acceleration, defined by (1-12°)/h, proved

to be more satisfactorye.
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TABLE T -~ GEOMETRIC SPECIFICATIONS FOR THE HYDRAULIC 27
NETWORK SHOWN ON FIG. 1

Elevation
Branch No, Diameter D,In. Length L,Ft. Difference AZ,Pt.

1 20 1 0
2 20 200 0
) 20 150 - 10
I 20 120 + 5
5 20 130 + 5
6 20 100 - 10
7 10 200 - 10
8 10 50 -5
9 10 100 - 40
10 10 100 - 40
11 8 80 - 10
12 a 50 + 5
13 8 200 0
14 ) 70 0
15 6 80 + 10
17 5 16 0
18 5 130 - 10
19 8 120 - 10
20 6 85 + 10
21 6 100 20
22 6 70 5
23 5 30 + 5
24 5 205 - 10
25 8 S0 0
26 5 20 0
27 5 20 - 5
28 p) 205 0
29 5 100 + 15
20 <) 200 - 15
31 8 75 + 5
32 5 300 + 20
33 6 100 - 5
o4 & 100 - 5
35 5 100 + 10
%6 10 200 0
37 10 300 - 30
38 5 200 5
59 6 100 213
40 6 100 -

43 5 50 - 5
4 5 5 0
45 5 5 - 2
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TARLE 2 - STEADY- STATE MASS PIOW RATES (lbs./sec.) FOR
THE HYDRAULIC NETWORK SHOWN ON FIG. 1

Present Analysis Present Analysis
Branch  Using Moody's Head Using Hazen-Williams' Refer-
No. Loss Equation Head Loss Eguation ence @0)
1 39247 392.7 392.7
2 274.0 271.6 2711
3 176.8 174.5 17%.7
5 4.9 741 739
6 5905 58.5 58.5
7 59.3 58.5 5843
8 101.9 100,.4 99.8
9 97.1 97.1 975
10 118.7 121.1 121.3
12 7543 767 76.7
13 42,1 42,9 42.9
14 27 ot 2646 26.7
17 27«9 28.0 28.0
18 279 28. 28.0
19 108.2 108.0 107.9
20 43,8 43%.6 43.5
21 31.7 31.7 31.7
22 71.1 71,4 71.3%
23 8.5 8.8 8.8
25 6l.1 61.8 61.7
26 80.8 81.3 81.2
27 3349 5544 55.4
28 2543 24 .6 24 .6
29 12.1 11.9 11.9
20 15.6 15.6 15.7
Bé i%-g 11.0 10.8
3 . 19.5 19.5
55 8"5 8-8 8-8
54 1%2.2 12.7 12.7
35 12.1 11.9 11.9
36 15.5 12.8 12.5
57 26.5 23.7 23.1
58 5542 33, 3%.7
39 52.6 524 52.4
40 62.6 62.6 6245
il 5546 55.6 55.6
&2 69.5 69.5 69.5
4% 90,3 90.% 90.%
4 90.3 90.% 90.%
45 114,77 14,7 114,77
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TABLE 3 - STEADY-STATE FRICTIOWAL HEAD LOSS (ft.) FOR
THE HYDRAULIC NETWORK SHOWN ON FIG. 1
Present Analysis Present Analysis
Branch Using Moody's Head  Using Hazen-Williams' Refer-
No. TLoss Eguation Head Loss Lquation ence @0)
1 .0 .0 .0
2 163 239 23
5 .052 079 .08
4 042 .063% .06
5 .008 014 01
6 .004 . 007 .01
7 « 294 409 40
8 .213% 278 .27
9 . 387 .523% .52
10 <575 .787 77
11 1.884 2249 2.20
12 <375 500 .49
13 048 .068 .07
14 321 JA402 « %9
15 1.085 1.341 1.31
16 .881 1.105 1.08
17 .196 o245 o 24
18 1.591 1.996 1.96
19 1.843% 2.267 2.22
20 .982 1.214 1.19
21 .609 . 792 .78
22 2.106 2.493 2,44
23 036 .054. .05
24 1.264 1.604 1.57
25 A4 .605 .59
26 2.022 2.201 2.16
27 «539 638 .63
28 2.079 2.474 2.43
29 479 .627 .61
30 . 305 429 43
31 .015 021 .02
32 1.850 2.348 2.30
53 047 074 .07
34 '109 0146 014
57 .093 .115 .11
38 3.468 4,338 4.25
39 1.655 2.012 1.97
40 2.%335 2.791 2. 74
41 024‘0 .272 '2'7
42 574 JAL2 .40
43 D.312 6.696 6.56
44 .631 669 <66

45 1.218 1.249 1.22
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Figures 2 and 3 show the typical time-variation of

mass flow rate and frictional head loss for branches 11
and 2%, An examination of these curves and Tables 2 and

% reveals the following features:

1) Application of Moody's and Hazen-Williams' frictional
head loss correlations affect the shape of the system
regponse curves. This is to be expected since the
coefficients and powers appearing in equations (5)
and (4a) are somewhat different. The difference
between values obtained from the application of Moody
and Hazen-Willisms is a function of branch diameter
and mass flow rate. For certain branches, the com-
bination of diameter and mass flow rate results in a
closer agreement between the response curves. The
choice between Moody's or Hazen-Williams' frictional
head loss correlation is a mabtter of personal prefer-
ence. In any event, both correlations yield comparable

results for practical purposes.

2) The steady-state values of branch flows and frictional
head losses obtained from the present analysis, using
Hazen-Williams' correlation are in a good agreement
with those of Reference (gg) which is also based on
the same correlation. This close agreement between
this analysis and Reference (20) verifies the correct-

ness of the new technique presented in this study.
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The apparent discrepancy between two frictional head
losses (for branch numbers 5 and 6) is most likely

due to data round-off in Reference (20).

Referring to the numerical stability analysis pre-
sented earlier, and noting that the system minimum
time constant, based on steady-state flow, is 2 sec.
(for branch 26), it can be concluded that the appli-
cation of a constant time increment equal to 2.0/20.
or h = .1 sec. throughout the analysis ensures a con-
vergent solution for the problem in hand. Setting

h = .1 sec., the steady-state conditions are reached
after 482 iterations with a relative flow convergence
error of less than .006 lb/sec2. Decreasing the time
increment to h = .05 sec. does not appreciably change
the dynamic results; while increasing the time increment
to h = .2 sec. affects the system response curves.
This test verifies the correctness of the numerical

stability analysis presented earlier in this study.

To provide a comparison between the computational btime
required by this new method against the computer pro-
gram presented in Reference (20), both programs were
run on an RCA Spectra 70/45 digital computer. For

the steady-state analysis, since the dynamic behavior
is of no interest, the time increment can be increased

to the same order of the system minimum time constant
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(% sec.)s This increase in the time increment reduces

the actual branch time constants and speeds up the
computer running time without adversely affecting the
steady-state results. The computer running time
required to obtaln steady-state solutions for the
above~mentioned hydraulic network problem is 108 sec.
for the present program and 134 sec. for the progran

presented in Reference (20).

The dynamic curves shown on Figures 2 and 3 have the
following physical significance. Let us assume that
at time t = O the branch mass flow rates are those
typically indicated in the PFigures, and the input pres-
sure and flow at branch 1 as well as the output flows
at branches %0, 31, %2, 34 and 35 remain constant.

The mass flow rate time histories in the system bran-
ches will then undergo a transient behavior typically
shown in the above Figures and will approach asymptot-
ically to final steady-state values. In other words,
in the present study, both the steady-state and tran-
sient solutions are obtained by a time-dependent
dynamic analysis. Values of dependent variables at
intermediate time points represent the actual system
behavior during & transient and are, therefore, physi-
cally meaningful. In contrast, the Hardy Cross and
the direct solution methods obtain the final steady-

state values after a number of iterations (9). For these
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analyses, values of dependent variables at these

intermediate points have no physical significance.



VIII. CONCLUSIONS 36

4 new technique for the steady~-state and transient
analyses of isothermal, incompressible flow in networks
is presented. In this method, the pressure drop versus
pressure, nodal continuity and branch momentum equations
are expressed in matrix form for networks with any arbi-
trary configuration. These eguations are then solved to
obtain explicit relations for unknown nodal pressures and

branch mass flow rates.

In contrast with the conventional steady-state network
analysis methods, the present technigue can be extended %o
the transient analysis of compressible flow in netwofks
with heat transfer and phase change. This extension is
currently under development by other investigators at the

Newark College of Engineering.

To ascertain the accuracy of the solution, a numerical
stabllity and convergence analysis is performed. This
analysis provides an estimate for the upper bound of the

time increment needed for a stable and convergent solution.

The new technique is applied to the analysis of a
water distribution network, The results obtained are in

agreement with the available solution.



IX. RECOMMENDATIONS 57

The new technique, presented in this study, can be
utilized in the development of more efficient and more
economical engineering tools needed for the design of more
complex fluid systems. Two such applications are described

hereunder:

1) This study can be extended to analyze thermal systems
involving compressible flow with heat transfer and
phase change. The new program will then be able %o
analyze power plant and processing plant networks under
steady-state and translient conditions more efficiently

and more economically than is presently possible.

2) The present program can debermine branch mass flow
rates and nodal pressures for a system with given con-
figuration and pipe diameters. The actual design of
hydraulic networks requires the selection of pipe
diameters to achieve a set of hydraulic and economic
objectives. The present program can be extended to
treat this design problem with improved efficiency and

€COTONY »

The present version of HYTRAN program may be improved

by incorporating the following modifications:

1) A subroutine may be added to the program to compube the

upper bound of the time increment automatically during
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3)

%8
the dynanic analysis. This feature is in contrast

with the presently hand-computed time increment used
as an input data to the program. The procedure for
the calculation of this upper bound is given in this

study.

A laminar pressure drop versus flow relationship may
be added to the program to provide a more accurate
calculation of frictional losses during laminar flow

regimes.

Expansion and contraction losses can be made dependent
on the flow direction. The present version of HYTRANW

assumes identical lossesz in both flow directions.
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X. NOMEWCLATURE

K Connection matrix for branches and nodes as defined
in the text

a Branch flow cross-sectlonal area, ft2

C Hazen-YWilliams' coefficient

c A constant defined in the text

D Branch hydraulic diameter, ft

F Pressure loss due to friction, 1b/ft2

hi Friction factor

g Acceleration of gravity, 32.2 ft/se02

H mTransducer pressure differential (pump pressure
rise), ft

h Time increment, sec

K A constant defined by equation (11)

L Branch actual length, ft

T Branch equivalent length (Branch actual length plus
additional lengths allowed for fittings), ft

M A matrix defined by equation (9)

m Branch mass flow rate, lb/sec

ﬁio Nodal source and sink (input and ou?put) nass flow
rate (positive for source and negative for sink),
1b/sec
Nodal nressure, psi

0 Branch Reynolds Number ( = D 5 /a1l )
t Time, sec
Z Nodal elevations, ft

Greek Symbols

¥ A quantity defined in the text

AD Pressure drop along the positive flow direction, psi
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m A small variation of the branch mass flow rate,
1b/sec
Az Branch elevational difference along the positive
flow direction (elevation of node at the end of
the arrow minus elevation of the node at the head
of the arrow), ft
€ Pipe roughness, ft

I8 Fluild viscosity, 1lb/sec - f%

(7 Fluid density, lb/ft5

L Branch time constant, sec
Superscripts
o} Present wvalue
T Transpose of a matrix
Subsgerints

Min Minimum

Miscellaneous Symbols

[ ] Contains matrices

{.} Contains arrays
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XIT. APPENDIX 1. TLLUSTRATIVE EXAMPLE
FOR MATHEMATICAL FORMULATION

To demonstrate the mathematical formulation presented
in this study, an illustrative example for a simplified

network shown below is worked out in detail.

SUPPLY ouTPUT

For this configuration, equation (1) takes the following

form:
. - ~ _ ~ .
- 0
) AP2$ _ +1 1 J Py ? (17)
AP 0 +1 =1
- 4..1 - - - -

One may verify the correctness of equation (17) by a sim-

ple expansion as follows:

A pl = O. nt pl
AP, = P; - Po

Equations (18) are obviously the branch pressure drop
versus nodal pressure relations. It should be noted that
the supply pressure is considered as the reference pres-~
sure for all nodal pressurese. Furthermore, equation (2)

takes the following form.



-1 41
0 =1
0O O

L.

+1

-1 41
0 -1

-
0

simple expansion as

-ﬁl

...m2

+

— 3 - I hy
ﬁl 0 0
< %2 ! + 0 = 4 O (19)
" 30 ©
See mL}'- L. o - -
One may verify the correctness of equation (19) by a
follows:
Iﬂ2 + 1‘?15 = 0
IZ}.B -+ I?lq_ = O
m4 + ];1’50 = 0 (20)

Equations (20) are obviously the

tions for the system under consideration.

nodal continuity equa-

It should be

noted that mq, ﬁz, ﬁ; and my are the unknown branch flows;

while ﬁBo is the known flow output at node 3.

equation (%) takes the following form:

b |

h

® o
my-tts
$ h

° « O }
mé—mB
. « O
m4-m4
. Ei

It can be easily

branch momentum equations.

p—

Sk
Ll
i
Lo
a5g
Iz

a4g

I

(144 APy +
(144 APy +

(144 A Dz +

(Lau A Py +

Similarly,
PA Zl +f3H1 - Fl)
PAZE +PH, - F,)
[

seen that equations (21) corstitute the

As shown earlier, solving

equations (17), (19) and (21) provide explicit relations

for unknown nodal pressures and branch mass flow rates.

Applying equations (8) and (9) to the present case, one

obtains

(21)
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— 1 .
: -1 +1 +1 0 |ay/Iy O 0 0 -1 0 O
['¥}= (144gh) O -1 =1 +1 0 an/Lo 0 0 +1 -1 O (22)
0 0 0 -1 0 0 az/Ly 0 +1 =1 0
0 0 0 a/_;./I:q_ 0 +1 -1
Performing the multiplications indicated above, yields
(al/Ll)+(a2/L2)+(a5/L5) ~(a2/L2)-(a5/L3) 0
[M}: (lda4gh) '(32/L2)°(33/L3) (az/L2)+(a5/L3)+(a4/L4) “(34/54)
0 ~(a, /1) (a,/L,)
(23)

Inverting the above matrix, substituting into equation (8)
and performing the indicated matrix operations, the nodal
pressures are easily found. BSubsequently, employing equa-
tions (1) and (6), the branch pressure drop and mass flow

rates can be determined.
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T. DESCRIPTION OF HYTRAN PROGRAM &7

The program HYTRAN (Hydraulic Transient Analysis)
consists of a main program and several subroutine linked as
shown in Pigures 4 through 16. A tabular outine of the main
program and its subroutines together with their functions

is presented below and followed by a more detailed descrip-

tion.

MATN PROGRAM FUNCTION

MATIN Hydraulic Transient Analysis
SUBRCUTINES FUNCTION

MINV Matrix Inversion

GMPRD Matrix Multiplication

GMSUB Matrix Subtraction

GMTRA Matrix Transposition

SI FUNCTION Linear Interpolation

DPRINT Matrix Printout

Main Program

A detailed description of the MAIN program 1s presen-—
ted in the flow charts on Figures 4 through 15. This program

is employed to perform the following two main functions:

1) Mathematical operations performed once at the begin-

ning of the program which are described below:

a) Conversion of input data from engineering units
to ft-lb-sec. units.

b) Assembly of the transpose of the connection matrix
AT from CONP(J) and CONN(J) arrays defined later
in the description of input data.

¢) Transposition of the transpose of the connection

. T o . .
matrix A, to obtain the connectlion matrix A.



READ EIRUN
PRINT EIRUN

READ XIMAX,XJIMAX,XNMAX
PRINT XIMAX,XJMAX,XNMAX

_|READ COUNT,ERROR,DELTAT,DTPR
PRINT COUNT,ERROR,DELTAT,DTPR

READ RHO,VISC,ROUGH,GRAV
PRINT RHO,VISC,ROUGH,GRAV
READ FLAG1

PRINT FLAG1

KOUNT=1

TIME=0

TPR=0
IMAX=XIMAX
JIMAX=XJMAX
KMAX=IMAX*JMAX
NMAX =XNMAX
NCOUNT =COUNT

READ XL(J) J=1,JMAX
PRINT J,XL(J) J=1,JMAX
READ XLP(J) J=1,aJMAX
PRINT J,XLP(J) J=1,JMAX
READ D(J) J=1,JMAX
PRINT J,D(J) J=1,JMAX
READ EMO(J) J=1,JMAX
PRINT J,EMO(J) J=1,JMAX

~READ CONP(J) 3=1,JMAX

FRINT J, CONP(J) J=1,JMAX
READ CONN(J) J=1,JMAX
PRINT J,CONNCI) J=1,JMAX
READ Z(I) I=1,IMAX

PRINT I,2(I) I=1,IMAX
READ XM(I) I=1,IMAX

PRINT I,XM(I) I=l,IMAX

READ PB(N) N=1,NMAX
PRINT N,PB(N) f=1,NMAX

DO 1100 N=1,NMAX

Figure L
Flow Chart of HYTRAN MAIN Frogram

READ HEAD(M,N)
M=1,10

PRINT M,HEADMN)

M=1,10

84



DO 1101 N=1,NMAX

READ GPM(M,N)

M=1,10
1100 PRINT M,GPM(M,N)
M=1,10

PRINT IMAX,
JMAX , NMAX
DO 1,J=1,JMAX
COEFF=231.*RHO/ D(3)=Db(J)/12.
@-———‘ (60.%1728.) ™AREA(J)=(3,1416*D(J)**2/4
EMO(J)=EMO(J)*COEFF

Figure 5
Flow Chart of HYTRAN MAIN Program

&4



DO 8888 I=1,IMAX

(3{:) | IXM(T)=XM(I)*COEFE

PRINT J,D(J) J=1,JMAX

PRINT J,AREA(J) J=1,JMAX |
PRINT I,XM(I) I=1,IMAX

PRINT J,EMO(J) J=1,JMAX

DO 3 N=1,NMAX
DO 3 M=1,10

G i GPM(M,N) =
GPM(M, N)*COEFF

0s

Figure 6
Flow Chart of HYTRAN MAIN Program



DO 110 K=1,BMAX

e} L=0

PRINT M,GPM(M,N) L AT (K) =0
M=1,10 104 i
DO 111 J=1,JMAX
NP=CONP(J)
NN=CONN( ) 0
v INPL=NP+L*IMAX |
“INNL =NN+L* IMAX (NPL) H
L=L+l

+,-

112 AT(NPL)=1,

AT(NN1)=-1.

TS

Figure 7
Flow Chart of HYTRAN MAIN Program



CALL DPRINT
(AT, IMAX,IMAX)

(A, IMAX , IMAX)

CALL DPRINT

DO 25 J3=1,JMAX

__|CALL GMTRA
(AT,A, IMAX,JMAX)

CALL GMPRD
(A,Z,28,J¥AX,
IMAX,1)

PRINT ZB(3)

GAMMA (J)=AREA (1) *GRAV*RHO/XL(J)
GAMMA (1)=GAMMA (J)*DELTAT

Figure 8

Flow Chart of HYTRAN MAIN Program

4



J=1

DO 9929 Jl=1,HKMAX

J=J+1

5828 |

PROD(J31)=A(J1)*
GAMMA(J)

CALL DPRINT
(PROD, JMAX,
IMAX)

Figure 9
Flow Chart of HYTRAN MAIN Program
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CALL GMPRD //////A\\\ 0 CALL DPRINT
-—-m=s-— (AT,PROD,R, (FLAGL-1.) \ 125 (R, IMAX, IMAX) F—

JMAX, IMAX) N /

+y=

CALL MINV
(R, IMAX,DET,

~<(FLAGLL) >
LSPACE ,MSPALE) .

DO 27 J=1,JMAX

CALL DPRINT
<:§:}—————e» (R, IMAX, NARA 3

IMAX)

"

Figure 10
Flow Chart of HYTRAN MAIN Program



GPMX(I)=GPM(I,N)

_ _HEADX(I)=HEAD(I,N)
J=PB(N) H(3)=SI(GPMX,HEADX, 5( u >

EMO(J),10)

REYN(J)=D(I)*ABS(EMO(JI))/AREA(J)*VISC)

FRIC(J)=.0055%(1,+(2.*10DEL4*ROUGH/D(J)
10EG/REYN(J)**,333)

, FF(J)=((FRIC(I)*XLP(I)*ABS(EMD(I))*EMO(I) )/

143 (D(J)*2.*32 ,2*RHO*RHO* (AREA(J)**2))) ___,;<:::>

F(3)=FF(3)=-ZB(3)

SUM(J)=GAMMA () *(F(J)+H(J))=EMD(T)

v

CALL GMsu8 (RRR,RM,P,IMAX,1)

CALL GMPRD (RR,SUM,RRR,IMAX,JMAX,1) f<:::>
W
CALL GMPRD (A,P,DELP,JMAX,IMAX,1)

Figure 11
Flow Chart of HYTRAN MAIN Program
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RN
,/// \\\\ +,0

3

(TIME-TFR) >t

\l/ J,-

PRINT J,REYN(J) J=1,3MAX

( PRINT PRINT J,FRIC(J) J=1,JIMAX
(:::}__-a- >| PRINT J,5UM(3) J=1,3MAX ——nﬂma(:::>
TIME PRINT J,DELP(J) J=1,3MAX

PRINT I,RRR(I), I=1,IMAX

DO 301 J=1,JMAX

E(3)=H(3)~DELP(1)
EM(J)=EMD(J)-GAMMA(J)
*(E(3)+F(3))

TIME-TPR

\

S

msimte

\_

Figure 12
Flow Chart of HYTRAN MAIN Program
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453 ]

PRINT
TIME

DO 2076 J=1,JIMAX

PRINT

DO 452 I=1,IMAX

PRINT

EM(J)LB/SEC

EM(J),GPM

EMG(2)=EM(J) _‘=:F_${3§§>
COEFF

PP(I)=

®—

PRINT I,PP(I)
I=1,IMAX

P(I)/1Lb.,

452 \\_“__w-«a<g%{>

DO 61 J=2,JdMAX

PRINT

FF(3),FT.

.\ TPR=TPR+DTPR

Figure 13

Flow Chart of HYTRAN MAIN Frogram
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s, ;N

~ i
(o | ABSCCEMCD)-

S” i

REL(J)éi

EMO{J))/DELTAT

s ey

D032 =2, JMAX.

PRINT
PRINT
PRINT

PRINT

PRINT
PRINT
PRINT

TIME
J,EMB(3) J=1,3MAX
J,EM(3)  J=1,JMAX
I,PP(I)
J,FF(J) J=1,JMAX
J,REL(J) J=1,JMAX
KOUNT

I=1,IMAX |

STOP

Figure 14
Flow Chart of HYTRAN MAIN Program

KOUNT =HOUNT +1

TIME=TIME+
DELTAT

—®

8g



DO 10 J=2,JMAX

EMO(J)=EM(I)

-
-n
S

10 b4 GO TO 1110

PRINT ERROR

END

= STOP

MESSAGE

Flow Chart of HYTRAN MAIN Program

Figure 15
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START

IJ=I*]

Kl=1

B(M)=A(K)

M=M+1

PRINT M,B(M)
M=1,J

Kl=K1+1

RETURN

END

Figure 16
Flow Chart of Subroutine DPRINT

I M=

PRINT Kl

a9



a)

e)
£)
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Multiplication of the connection matrix A by nodal
elevation array Z to obtain branch height differ-
ence AZ.

Formation of matrix M defined by equation (9).

1 T

Formation of products M ~. A" and M-l. ﬁio

required by equation (8).

2) TIterative operations performed after each time incre-

ment as described below:

a)

b)

c)

a)

e)

MINV

Calculation of branch static, transducer and fric-
tional heads and their multiplication by'X.
Summation of the above terms and the present
values of the branch mass flow rates required by
equation (8).

Multiplication of M T. AT by the result obtained

under (b) above and subtraction of m=t

. M3, from
this product to form the pressure array p as indi-
cated by equation (8).

Calculation of branch pressure drop array Ap from
equation (1).

Calculation of branch mass flow rate array from

equation (6).

Matrix Inversion Subroutine

This subroubtine is used to invert matrices. It is

used only once at the beginning of the program to invert

matrix M designated by equation (9). UMINV is a standard
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subroutine from reference (22) and its calling sequence is:

CALL MINV (A,N,D,L,M)

A

N

M

i

Input matrix, destroyed in computation
and replaced by resultant inverse.

Order of matrix A

Resultant determinant (not used in this
analyric)

Work vector of length N

Work vector of length N

GMPRD Matrix Product Subroutine

This subroutine 1s used for the multiplication of

matrices, as discussed above. It is a standard subroutine

from reference (22) and its calling sequence is:

CATL GMPRD (A,B,R,H,M,L)

=u B o< B S

=

i

L

i

i

Name of first input matrix

Name of second input matrix

Name of output matrix

Number of rows in A

Number of columns in A and rows in B

Wumber of columns in B

GMSUB Matrix Subtraction Subroutine

This subroutine is used for the subtraction of two

matrices.,

It occurs once in the program to perform the

matrix subtraction indicated by equation (8). It is a

standard subroutine from reference (22) and its calling

sequence is:
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CALL GMSUB (4,B,R,IN,HM)

A = lame of first input matrix
= Name of second input matrix
R = Name cof oubtput matrix
Il = Number of rows in A, B and R
M = Humber of columns in A, B and R

GMTRA Matrix Transposition Subroubtine

This subroutine is used to transpose matrices. It is
used once in the program to transpose the connection
matrix A to AT. It is a standard subroutine from refer-
ence (22) and its calling sequence is:

CALL GMTRA (A,R,N,M)
A= Name of matrix to be transposed

R Name of resultant matrix

]

=
=
it

Humber of rows of A and columns of R

=
A
il

Humber of columns of A and rows of R

SI FUNCTICN Iinear Interpclation Subroutine

This function is used to interpolate values in the
head versus volumetric flow tables for transducers (pumps).
It is a standard subroutine and its calling sequence is:

FUNCTION ST (XTBL, YTBL, X, N)

ZTRL = Independent variable table
YTBL = Dependent variable table
X = Value of independent variable

N

il

Number of points in table
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DPRIHNT Mabtrix Printout Subroutine

This subroutine, charted on Figure 16, is used for
printing the following matrices: AT, A, M and its inverse.
These matrices can be printed at the users option, for
debugging purnoses, by setting appropriate values for
FLAG 1 as shown in the description of input data. The
calling sequence of this subroutine is:

CATL, DPRIWT (A,I,J)

A = Name of matrix to be printed
T = Number of rows in matrix
J = Number of columns in mabrix
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The input data can be divided into two groups:

1) Non-subscripted variables

2) Subscripted variables
A brief description of each input variable appears in the
program listing to aid in checking the program. A more
detailed description of input data is presented in this
section. The procedure used for labeling the input data

is described below:

A1l non-subscripted variables are identified by the
prefix "FIX", followed by two numbers. The first number
indicates the card number and the second indicates the
order of the variable on that card. For example, FIX 2-3
ZNMAX denotes that the variable XNMAX is a non-subscripted
variable appearing as the third value on card number 2.
A1l subscripted variables are identified by a prefix "VAR"
followed by one number. For example, VAR 7 7 denotes
that Z is a subscripted variable appearing as the seventh
set of arrays in the input data. Each card contains 6
values of Z(I). All input data are entered using the

FORMAT E1O.%.

Non-subscripted Variables

FIX 1-1 EIRUN Run Number. This cuantity is used for

identification of successive computer runs.

BTX 2=1 XIMAX Maximum Number of Nodes. This number

represents the maximum number of nodes in the system being
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analyzed. These nodes are the points on Figure 1 denoted

by the non-encircled numbers.

PIX 2~2 XJMAX Maximum Number of Branches. This value

represents the maximum number of branches in the system
being analyzed. These are the lines on Figure 1 denoted
by the encircled numbers. As can be noted from Figure 1,
the branch numbers do not have o correspond with node

numbers.

PIX 2-3 XNMAX Maximum Number of Transducers (Pumps).

This quantity describes the maximum number of transducers
(pumps) in the system being analyzed. It should be noted
that any flow device or restrictions whose flow versus
head characteristics are known can be included in this

categonry.

PIX %=1 COUNT Maximum Allowable Number of Iterations.

This number represents bthe maximum number of iteratlons
allowed in the analysis and is a safety device to stop
the computer in the event of program error. The value of
COUNT is calculated by

: Maximum problem physical time
COUNT = AT

Since the maximum problem physical time is not known before
the problem solution, a suggested value of COUNT is 10C00.
If more transient time is required, an error message will
appear on the output sheet and COUNT should then be

increased. Steady-state solutions generally use large



67

time increments and require fewer iterations. Thus, the
value of COUNT = 1000 is generally adequate for steady-

state anslyses.

FIX 3-2 ERROR Steady-State Flow Convergence Error.

This value represents the steady-state flow convergence
error. oSteady-state conditions are considered te be
rgached when

m-T <  ERROR.

FIX 3-3 DELTAT Time Increment, Sec. This variable

specifies the time increment for each integration step.
It is equivalent to h, presented earlier in the text.
The criterion for its selectlion is discussed in the sec-
tion on "Numerical Stability Analysis". The time incre-
ment is selected by first calculating all branch time
constants using equation (14) and then setting the time
increment equal to 1/20 of the minimum time constant as

specified by equation (15).

FIX 3-4 DTPR Printout Interval, Sec. This number

specifies the desired time interval for the printout of
the transient solution. It 1s used to avoid the printing
of results after every iteration and minimize computer
running time. For the transient case, a suggested value
of 10 times DELTAT proved satisfactory for this quantity.
For the steady-state solution when only the final conver-

ged value is desired, DTPR should be of the order 1000
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times DELTAT.

PIX 4-1 RHO Rluid Density lbs/cu.ft. This number spe-

cifies the density of the fluid flowing in the hydraulic

networke.

FIX 4-2 VISC Fluid Viscosity lbs/ft-sec. This number

represents the viscosity of the fluid in the system.

FIX 4-% ROUGH Pipe Absolute Roughness, ft. This

quantity represents the absolute roughness of pipes used
in the network. The program divides this quantity by

the hydraulic diameter %o obtain relative roughness..

FIX 4-4 GRAV Gravitational Acceleration ft/secz. This

number represents the force of gravity acting on the

system under investigation (%2.2 ft/secg).

FIX 5-1 FLAG 1 Printout Indicator. This parameter

is used primerily for debugging purposes. It controls
the printing of the following variables defined later in
the description of the output data.
IMAX, JMAX, NMAX, D(J), AREA(J), (1), EMO(J),
GPM(M,N), AT, A, 7ZB(J), PROD(JL1), R, REYN(J),
FRIC(J), F(J), SuM(J), RR, E(J), RRR, P(I), DELP(J)

Assigning a value of 1 to FLAG 1 prints the above varlia-

bles and a value of O eliminates printing.
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Subscripted Variables

VAR 1 XL(J) Branch Actual Length, Ft. These values

repregent the actual developed length of each pipe branch.

VAR 2 XLP(J) Branch Equivalent Length, Ft. These

values define the branch equivalent length composed of
actual length ZL(J) plus the resistance due to valves,
fittings, expansions and contractionsg and other flow res-—

trictions expressed in terms of pipe length.

VAR 3 D(J) Branch Hydraulic Diameter, Inches. These

values represent the hydraulic diameter of each branch.
The hydraulic diameter for round pipes 1s equal to their
actual inside diameter. The hydraulic diameter for pipes
other than circular cross section is equal to four times

their volume divided by their wetted surface.

VAR 4 EMO(J) Branch Initial Mass FPlow Rate, GPM.

These values define the initial mass flow rates in each
branch. TFor steady-state analysis, these values are
assumed without any restriction except that continuity
equations must be satisfied at each node. For transient
analysis, the prevailing steady-state values should be
entered. These values may be obtained either from a

previous run on this program or from other sources.

VAR 5 CONF(J) Positive Branch Node, VAR 6 CONN(J)

Negative Branch Node., A node is defined as any point in
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the system at which three or more flows meet or network
geometric dimensions change. A branch is defined as a
line connecting two nodes. The nodes and the branches

of the hydraulic network are numbered separately starting
from O for nodes and 1 for branches without skipping

any number. The node numbered O should correspond to

the point in the system where the pressure is known. The
branch number 1 corresponds to the branch connected to
node O. Iivery branch in the system is given an arbitrary
positive orientation or direction designated by an arrow.
The flow is considered positive when it ig along this
positive direction and negative when it is against this
positive direction. The node locabted at the tail of the
arrow is designated as the "sending node" for that branch
and the node located at the head of the arrow is desig-
nated as the "receiving node". The value of CONP(J) and
CONN(J) represenlt the node number corresponding to branch
J for the sending node and the receiving node, respectively.
For example, the values of CONP(J) and CONN(J) for J =36

and J = 37 in Figure 1 will become:

J = 36 J = 3
CONP(J) 9 8
CONN(J) 10 9

The CONP(J) and CONN(J) arrays are used by the program
to assemble the connection matrix. All CONP(J) nodes
contribute a value of +1 to the connection matrix, and
all CONN(J) nodes contribute a -1 to the connection

mabrix.
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VAR 7 4(I) Node Elevation, Ft. These values denote

the algebraic value of height of each node in the system

with respect to node O taken as a datum.

VAR 8 {M(I) Nodal Mass Flow Rate, GPM.. These values

represent flow rates entering or leaving the system nodes.
Flow entering a system node is designated as negative.
Flow leaving the system node is designated as positivee.
In an open system, these flows represent the network

load and are known. In a closed system, these values

are zero and must be entered as such.

VAR 9 PB(N) Branch Locations of Transducers (Pumps).

These variables define the branch location of the trans-
ducers in the system. A typical input data card would
appear as follows:

7 10 12 22 37 4
This would indicate that transducer number 1 is located
in branch 7, transducer number 2 is located in branch
10,...etc. If there are no pumps in the system, this
array may be omitted by setting XNMAX equal %o zero. This

will omit the entry of these values.

VAR 10 HEAD(M,N) Transducer Head, Ft. This array

specifies the head variation for each transducer in the
system. The value of M represents the running index for

the points in the table for transducer number N.
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VAR IT GPM(M,N) Transducer Volumetric Flow Rate, GPM.

This array specifies the volumetric flow rate variation
for each transducer in the system. These values together
with those in VAR 10 define the flow versus head charac-—
teristics of the transducer. The value of transducer
head used in the analysis is determined by the interpo-

lation subroutine (SI FUNCTION) described earlier.
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The output data can be conveniently divided into
the following groups:

1) Input Data Printout

All input data are printed out and labeled using

variable names defined in the description of input data.

2) Debugging Printout

At the users option, under the control of FLAG 1,
described in the input data, the following calculated
variables may be printed out for debugging or checking

purposes. These data are classified into two groups:

a) Debugging printout for mathematical operations
performed once at the beginning of ths program labeled

a8 indicated below:

IMAX, JMAX, NMAX

These values are equivalent to XIMAX, XJMAX and
XNMAX, describted in the input data, after belng converted

to fixed mode.

D(J) Branch Hydraulic Diameter, Ft.

These values represent the branch hydrauvlic diameters

after being converted to feet.

AREA(J) Branch Cross-3ectional Area, Tt .2

These values specify the calculated branch flow cross-

sectional area.
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XM(T), EMO(T). GEM(H.N) 7

These quantities represent mass flow rates, as
defined previously in the description of input data,

after conversion from GPM to 1lb/sec.

AT Transpose of System Connection Matrix

This matrix is generated using the input variables

CONN and CONP and is printed under subroutine DPRINT.

A System Connection Matrix

This matrix is obtained by transposing matrix Am,

using GMTRA subroutine..

7B(J) Branch Elevational Difference Array, Ft.

These values represent the elevational difference
measured along the positive flow direction. For example,
referring to Figure 1, the branch elevational difference

for branch 38 is Z(18)-2(12).

PROD Matrix

This matrix is the product of the following two
matrices--the first matrix having branch ¥ 's along its
diagonal and zero elsewhere, and the other, the system

connection matrix A, as indicated by equation (9).

R_Metrix
This matrix is the product of the transpose of the
system connection matrix AT times the PROD matrix, repre-

sented by matrix M in equation (9).
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This matrix is the iavzsrse of the R matrix defined

above.

RR Matrix

This matrix is defined as the product of the inverse
of the R matrix times the transpose of the connection

matrix AT as required by equation (8).

RM Array
These values constitute an arrsy obtained by multi-
plying the inverse of the R matrix times the XM array

defined earliecr.

b) Debugging nrintout for mathematical operations
performed after each time integration labeled as indica-

ted below:

REYN(J) Reynolds Number

Reynolds Numbers are calculated as the product of
hydraulic diameter times mass flow rate divided by the
product of the flow cross-sectional area times fluid vis-
coslty. They are used to determine friction factors in

the system branches.

IPRIC(J) Friction Pachor

These quantities are calculated from equation (5)
based on Moody's Method to determine frictional head

loss in pinpes.
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These values dencte an intermediate calculation and
represent the quantity contained in the first set of braces

on the right-hand side of equation (8).

DELP(J) Total Branch Pressure Difference lb/ft2

These values rTepresent the total branch pressure

difference comvuted from equation (1).

RRR Array

These values constitute an array obtained by multi-

lving RR mabtrix by SUM arra both defined earlier,
J £ J ’

3) Variables Defining the Problem Solution

These variables are printed after every DTPR seconds
and define the problem transient solution. They are

labeled as indicated below:

EM{J) Branch Mass Flow Rate, GPM

TM(J) Branch Mass Flow Rate, lb/sec

P(I) Nodal Pressures, 1b/in2

FF(J) Branch Frictional Pressure Drop, Tt

4) TFinal Steady-State Printoub

The varisbles are printed only when steady~state con-

ditions are reached. They are labeled as indicated below.

REL(J) Bteady-State Convergence Brrop

These values represent the slope of the mass flow

rate time response curve at steady-state conditions.
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KOUNT Actuzl Humber of Iterations

This value renreseats the acbtual number of itera-

tions perf-rmed in order to reach steady-state conditions.

In addition to REL(J) and KOUNT, all information

stated under paragraph (3) above is also printed oub.
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To employ the HYTRAN compubter program effectively,
the user should familiarize himself with sections on the
mathematical formulation, numerical stability analysis,
and the presentation of results. He should then prepare
a diagram of the system to be analyzed and assign a sepa-
rate numbering system to nodes and branches as shown in
Figure 1. The nodal point in the system where the pres-~
sure is known is numbered as node zero and the remaining
nodes are numbered arbitrarily without skipping any number.
It should be emphasized that node zero in the hydraulic
network simulates a reservoir with known pressure and in-
finite water capacity. The algebraic sum of all XM(I)
will enter the system at node zero and the nodal pressures
in the system are determined with respect to the reservoir

pressure considered as datum.

The user should then prepare the input data in accord-
ance with the format and description given in part two,
section IT. These input data are then punched on cards
and assembled with the HYTRAN program together with a
number of control cards. These control cards vary from
one computer organization to the next. A sample of the
deck assembly for RCA Spectra-~70 is given below:

run time sec, no of oubtput lines
// JOB..‘I...IQ, IH’UI?..L’X}],..Q..-.D.QODZOCOOI.IC“:Q...‘Ql’
// TARAY TIST = YES, DEBUG = YES
// TFORTRN
HYTRAN PROGRANM DECK

// EXEC
INPUT DATA DECK
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After the program has been run, the user should
verify the following points:

1) Correctness of Input Data and KOUNT Error Message

The input data printed on output sheets should be
verified for possible errors in punching. Furthermore,
the output sheets should be examined for a possible error
message on KOUNT and proper action taken to rectify this
error condition as described in the description of input

data.

2) Convergence of the Transient Solution

The branch mass flow rates are then examined and plot-
ted. If the integration time step is properly selected
according to the numerical stability analysis described
earlier, the time variation of the branch flow rate will
be smooth and will not exhibit an oscillating pattern.
However, since the numerical stability criterion depends
on the anproximate vnlues of steady-state mass flow rates,
and these veslues are not exactly known before the problem
solution, the mass flow rate in the branch with fthe small-
est time constant may at times become oscillatory or non-
convergent. ‘“hen such a situation occurs, one should,
using the run performed, adjust the estimate of steady-
state mass flow rates to decrease the branch time constants
and therefore reduce the integrabion time step. To verify
the convergence of the transient solution, the user may

employ one of the following teclhniques:
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a) Determine the integration time increment based on

steady-state mass flow rates. If this integration
time increment is close to the one initially

employed, the solution has converged.
p ¢ 9 ]

b) ZEnter a value of time increment equal to one half
of the previous time increment and compare the

transient results on mass flow rabtes.

Vhen the user is not intiyeeted in the transient solu-
tion and he wishes to obtain only the final steady-state
solution, the time increment can be increased to the order
of the system minimum time constant or even higher, lead-

ing to a large reduction in computer running time.

3) Convergence of the Final Steady-State Solution

The convergence of the final steady-state values can
be determined by examining the branch mass flow rate
curves plotted earlier. If these curves approach asymp-
totically to constant steady-state values, the final
steady-state solution has been reached. If not, the value
of the steady-state convergence error (ERROR) should be

reduced.
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To assist the user in the modification of the HYTRAN
program, a list of some key variables with their corres-—
ponding analysis notation and their definition is presented
in this section.

Program Analysis
Notation Notation Description

A A Connection matrix for branches and
nodes as defined in the text

AREA a Branch flow cross-sectional area, ft
D D Pranch hydraulic diameter, £t
FF r Pressure loss due to friction, 1b/ft2
FRIC T Friction factor
GRAV g Acceleration of gravity, 32.2 ft/se02
H H Transducer pressure differential (pump
pressure rise), ft
DELTAT h Time increment, sec
X L Branch actual length, ft
XLP I Branch equivalent length (Branch
actual length plus additional lengths
allowed for fittings), ft
R M A matrix defined by equation (9)
M m Updated value of branch mass flow
rate, 1lb/sec
e
EMO m Present value of branch mass flow
rate, 1b
M ﬁio Nodal source and sink (input and out-
put) mass flow rate (positive for
source and negative for sink), lb/sec
P P Nodal pressure, psi
REYN R Branch Reynolds Humber ( = D fi°/all)
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Program Analysis

Nobation MNotation Description
TIME t Time, sec
Z Z Nodal elevations, ft
GAMMA ¥ A quantity defined in the text
DELP AD Pressure drop along the positive flow

direction, psi

ZB AZ Branch elevational difference along
the positive flow direction (elevation
of node at the tall of the arrow minus
elevation of the node at the head of
the arrow), £t

ROUGH € Pipe roughness, ft
VISC 88 Fluid viscosity, 1lb/sec - ft
RHO I Fluid density, :Lb/ft5

ERROR - Steady-state convergence error
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VI. HYTRAN FROGRAM LISTING 5

The HYTRAN program is written in FORTRAN-IV for
RCA Spectra Model 70/45 digital computer, A listing of

the HYTRAN program appears in the following pages.



FORTRAN _IVO30 SDUNCE PplinpAM e e
1 PRUGHAM IHYT[J\ i T T I )
2 C GATH PROGRA Ang,hFTWHﬁK“rfi?n"h METRY TRATISTEHT ANALYSTS
3 ¢ VLCATANZARD 6RAn HE o
4 nxmg!§11L«5J?qﬂo),g;iﬁp),XLw( SLCADY U080, PR S HEAD(LOSSY,
5 1 CPICLOr B s EMOCH0), XM C40) , GPHNXI1I0), HEADX(10) A
a DIAEASTON AT(2009)228(50) sGAMTA(KO),PRUD(200D),R(1ANDISLSPACE(40),
7 I PS!ACF(QO);H(HU),!fYﬂ(bpl;FQIF()d):?(ﬁd)f UM(ﬁo))PW<?0“0>Jd::;wmw_ﬂ-
8 2
9 3 -
10 € : B .
11 C FIX MU, HITATION DFSCRIPTIUN o R
12 C ‘
13 ¢ 1=l E{rUn RUE 1T, TESTGYNATTON )
14 ¢ o ) , ) .
15 €. 2=1 KT TAY AU UFNONES T T o
16¢C 272 XITAX AAY L F SRANCES ™ .
17 C _2-3 KAAX AAX, O TF PUNRS T ] o
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