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ABSTRACT

A new technique for the calculation of the transient

or the steady-state mass flow rate and pressure distribu-

tion in incompressible flow networks is presented. Employ-

ing the matrix method of network analysis, the nodal

continuity and branch momentum equations are solved simul-

taneously to obtain explicit relations giving the unknown

nodal pressures and branch mass flow rates. In this manner,

the transient or the steady-state behavior of incompressible

flow networks with arbitrary configuration having nodal

sources and sinks as well as branch transducers can be

determined. In contrast with the conventional steady-

state network analysis methods, the new technique can be

extended to the unsteady analysis of compressible flow in

networks having an arbitrary configuration with heat

transfer and phase change. To ascertain the accuracy of

the solution, a numerical stability and convergence ana-

lysis is performed which provides an estimate for the

upper bound of the time increment needed for a stable and

convergent solution. The new technique can be applied to

the treatment of transient problems such as flow coast-

down studies resulting from loss of pumping power in

nuclear water reactors, hydraulic transients of the cool-

ing system for large steam power plants as well as the

steady-state analysis of water distribution networks. The

latter application is demonstrated in this study.
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I. INTRODUCTION
	 2

Computation of steady-state or transient mass flow

rate and pressure distribution in fluid networks with

given geometric configuration and dimensions is a common

problem in many branches of engineering. The design of

municipal water and gas distribution systems as well as

the dynamic analysis of thermal systems in conventional

and nuclear power plants are a few typical examples. In

the order of their analytical complexity, the problem of

fluid flow in networks may be divided into the following

categories:

a) Steady-state, isothermal, incompressible flow

b) Transient, isothermal, incompressible flow

c) Transient, compressible flow with heat transfer

d) Transient, compressible flow with heat transfer

and Phase change.

The solution to the above network problems has been

generally obtained on digital computers. Several diffi-

culties have been observed in these numerical solutions:

1) When the number of network nodes and branches become

large, the computer storage requirement and running

time for the solution become excessive.

2) The iterative procedure, used for the solution of

steady-state problems do not always converge or may

at times converge very slowly.

3) The time integration used for the solution of transient



3
problems may become numerically unstable or non-

convergent.

4) The computer programs are not sufficiently general

to treat networks of any arbitrary configuration

with all system components encountered in practice.

These difficulties become more severe as one moves

from problems in the "a" category to "d". This situation

indicates tht new techniques for the solution of fluid

networks are needed. To facilitate this development,

the new technique may first be divised for problems in

the "a" or "b" category and later extended to "c" and "d"

categories.

This study presents one such new technique for the

solution of isothermal, incompressible fluid flow in net-

works under steady-state or transient conditions. In

contrast with conventional steady-state network analysis

methods, this new technique can be extended to the unsteady

analysis of compressible flow networks having an arbitrary

configuration with heat transfer and phase change. In

the present work, the matrix method of network analysis

(Σ)* is applied to the nodal continuity and branch momen-

tum equations. In this manner, explicit relations for

the unknown nodal pressures and branch mass flow rates

* Underlined numbers in parentheses designate references
on page 41
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are obtained. The present formulation is set up for

the solution of problems in the "b" category; i.e., the

analysis of isothermal, incompressible fluid flow in net-

works under transient conditions. Employing the present

formulation, problems in the "a" category, i.e., the

analysis of isothermal, incompressible fluid flow in net-

works under steady-state conditions, can be readily

solved by the application of the dynamic relaxation

technique (17) as shown later in this study. The exten

sion of the Present formulation to problems in "c" and "d"

categories require further mathematical development and

is currently in progress by other investigators at the

Newark College of Engineering.
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II. REVIEW OF PREVIOUS WORK

The most widely used method for the solution of

problems in the "a" category, i.e., the analysis of

isothermal, incompressible flow in networks under steady-

state conditions, is the well-known Hardy Cross iterative

procedure. This procedure is commonly divided into

1) the nodal method, and 2) the loop method (3). In the

nodal method, the nodal heads are continually corrected

until the mass flow rates at each node is balanced. In

the loop method, the mass flow rates are initially

assumed for each pipe branch so that a mass balance is

maintained at each junction. The head loss between any

two junctions is then calculated for each possible path

between those points. The mass flow rate distribution is

then adjusted until the head loss between any two junc-

tions for each possible path between those points are

sufficiently dlose. Employing the Hardy Cross relaxation

techniques, Hoag and Weinberg (9), Graves and. Branscome (8),

Adams (1), Dillingham (6) and Rosenhan (20) and a number

of other investigators developed digital computer programs

to perform hydraulic network analyses. These programs are

at times hampered by numerical instability and slow rate

of convergence. Various techniques for improving the

convergence problem are discussed in a number of the above

references. However, these techniques cannot guarantee the

convergence of the numerical solution.
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The second method used for the analysis of iso-

thermal, incompressible flow in networks under steady -

state conditions is the direct solution method. In

this method, the continuity and momentum equations are

first expressed for every network node and branch

respectively. The momentum equations are then solved

algebraically for the unknown branch flows in terms of

the nodal pressures. Substituting these  unknown mass

flow rates into the continuity equations, a system of

nonlinear simultaneous equations for nodal pressures are

obtained. These equations are then solved by using

either the Newton-Raphson method or by the direct solu-

tion of the simultaneous linearized equations. Employing

the direct solutions method, Martin and Peters (12),

Pitchai (18), Shamir and Howard (21), and Marlow et al

(11) developed digital computer programs to perform

hydraulic network analyses. These Programs require a

larger computer memory storage, as compared to the programs

based on the Hardy Cross Method (3, 21) and are at times

hampered by the divergence of the numerical solution.

This latter difficulty may be overcome if a good initial

guess for the solution is available (21).

A systematic approach to the analysis and synthesis

of complex networks involving unsteady flow has been reported

by A. Reisman (19) This study presents a generalized
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structural and mathematical framework to analyze or

synthesize a large class of fluid systems where transient

behavior is of primary interest. However, the network

analysis and the computer program required for the numeri-

cal treatment of complex fluid systems have not been

presented in this article. Instead, the need for the

development of a computer program with sufficient flexi-

bility to simulate fluid networks with an arbitrary con-

figuration is emphasized.

Analog computer methods, based on nonlinear electrical

resistances, have been employed by McIlroy (13), McPherson

and Radziul (14), Barker (2), Kiyose (10) and many others.

The merit of this approach is that, once the circuits have

been prepared, the required solutions are obtained instan-

taneously. The disadvantages of the analog computer

method are that the simulation of large networks require

a large number of analog components and considerable time

for setting up the machine. For these reasons, digital

machines are considered more flexible than analog computers

and are generally preferred in this type of study.

The foregoing survey indicates th it new techniques

for the solution of fluid networks are needed. Recently,

a new method suitable for both transient and steady-state

analyses of isothermal, incompressible fluid networks was

presented by A.N. Nahavandi (16). The main distinctive
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features of this method are that: 1) it lends itself to

a linkage with the matrix method of network analysis; and

2) the extension of the method to the unsteady analysis of

compressible flow in networks having an arbitrary configu-

ration with heat transfer and phase change, seems to be

feasible. This method constitutes the foundation for the

present study.



III. SCOPE AND OBJECTIVES OF THE PRESENT STUDY

The main objectives of the present study are as

follows:

1) To expand the method developed by Nahavandi (16) for

the transient and steady-state analyses of isothermal,

incompressible flow networks and to link this procedure

with the matrix method of network analysis (5) often

used in the study of D.C. electrical networks.

2) To develop a digital computer program for the tran-

sient and steady-state analyses of complex hydraulic

networks based on this new technique.

3)  To verify the results of the present study against

the results of another computer program based on the

Hardy Cross method.

The present study provides the following flexibilities:

a) The hydraulic network considered may consist of any

arbitrary number of nodes and branches connected

according to any desired configuration. A node is

defined as any point in the system at which either

three or more flows meet or network geometric dimen-

sions change. A branch is defined, as the line connec-

ting any two nodes.

b) Any node may be connected to a number of other nodes,c)

Sources and sinks with given input and output mass

flow 

	

rates may be introduced at any node.
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d)  Every branch may include a transducer, such as a

pump or a turbine, whose differential head versus

flow characteristic is known.

The present analysis is based on the following

simplifying assumptions:

a) The fluid flow in the system is considered incom-

pressible, isothermal and turbulent. No mass storage

is allowed at any node or within any branch. Further-

more, the wave propagation effect, heat transfer and

phase change are not considered in the analysis. In

other words, this study presents a procedure for the

solution of problems in categories "a" and "b" dis-

cussed in the introduction.

b) The friction factor for head loss calculations is based

on correlations developed under steady-state conditions.

In other words, the frequency-dependence of friction

is ignored in the present analysis. Two types of

frictional head loss correlations are employed:

1) Darcy-Weisbach frictional head loss equation with

curve-fitted Moody's friction factor correlation (4,

15); and 2) Hazen-Williams frictional head loss e

quation (9, 21).

The present analysis can be applied to the treatment

of many engineering problems. A few typical examples of

such applications follows:
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In the area of transient analysis, the present

study may be applied to the solution of: 1) flow coast -

down problems resulting from loss of pumping power in

nuclear water reactors (7); and 2) hydraulic transients

of the cooling system for large steam power plants (19).

In the area of steady-state analysis, the present

study may be applied to the solution of water distribution

networks. To understand this particular application, it

should be borne in mind that the hydraulic transient solu-

tion can be made to approach asymptotically to the steady-

state solution if the system boundary conditions are kept

unchanged during the dynamic study. Thus, to perform a

steady-state analysis of a water distribution network, the

initial flow distribution is assumed. The system source

and sink pressures and mass flow rates Pre then held

constant during the transient analysis. Under these con-

ditions, the nodal pressures and branch mass flow rates

approach asymptotically to steady-state values. This

particular application is commonly known as dynamic

relaxation (17) and is further discussed in this report.
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IV. MATHEMATICAL FORMULATION

In the present analysis, first the pressure drop

versus pressure, nodal continuity, and branch momentum

equations are expressed in matrix form. These equations

are then solved to obtain explicit relations for unknown

nodal pressures and branch mass flow rates as follows.

An illustrative example for this procedure is presented

in the Appendix.

The branch pressure drop array Δp, designating the

pressure drop in the positive flow direction, is related

to nodal pressures p by

where A is the connection matrix defined as follows:

Every branch of the network, under investigation, is first

given an arbitrary positive orientation or direction (see

Fig. 1). The connection matrix for branches and nodes is

then defined as a matrix whose elements are +1, -1, or 0.

only. The rows of the connection matrix correspond to the

network branches such that the maximum number of rows are

equal to the maximum number of system branches. The columns

of the connection matrix correspond to the network nodes

such that the maximum number of columns are equal to the

maximum number of system nodes. If the branch orientation

is "away" from the node, the corresponding element of the

connection matrix is +1. If the branch orientation is

"toward" the node, the corresponding element of the con-
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nection matrix is -1. If the branch and the node do not

meet, the corresponding element of the connection matrix

is 0.

The nodal continuity equation, considering both the

branch flow and the nodal source and sink (input and out-

put) flows is given by the following matrix equation:

where AT is the transpose of the connection matrix and A

and mio are the branch flow and the nodal source and sink

(input and output) flow arrays respectively.

The branch momentum equation in finite difference form

in time, relating the contributions of inertia, eleva-

tional, frictional and pump head to the branch pressure

drop is given by the following matrix equation:

In the above relations, a, D, L and f represent the

branch flow cross-sectional area, hydraulic diameter,

length and equivalent length respectively. The inertia

term is based on a forward finite difference form in time

as the difference between the updated and the present
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Values of the mass flow rates (m and mo) divided by the

time increment h. A criterion for the selection of this

time increment will be presented later. Values of AZ, H,

P and. Rn represent the branch elevational head, pump head

rise, frictional head loss and Reynolds Number; 	 f

and ρ designate pipe absolute roughness, fluid friction

factor and density.

Equations (4) and (5) above represent Moody's method

(4,10 for the calculation of frictional head loss. In

order to be able to check the results of the present analy-

sis against those of Reference (20), provisions to replace

Moody's method by Hazen-Williams' method (9,21) are incor-

porated in the program. In the context of our present

formulation, the Hazen-Williams' formulation is given by

The quantity C, the Hazen-Williams' coefficient, depends on

the type and the condition of the conduit and is tabulated

in Reference (20).

If a network consists of j branches and i nodes, equa-

tions (1), (2) and (3) constitute a set of 2j + i algebraic

equations in 2j + i unknowns. These unknowns are branch

pressure drops, branch mass flow rates and nodal pressures.

To solve the above system of algebraic equations, we eli-

minate the pressure drops and mass flow rates among
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equations (1), (2) and (3) to obtain a single matrix

equation for the unknown nodal pressures. Solving the

matrix equation (3) for A array, one obtains

Substituting the Δp array from equation (1) into equation

(6) and substituting the resulting equation into equation

(2) yields

Solving equation (7) for the unknown nodal pressure array

gives

Having the nodal pressures from equation (8), one can readily

calculate the branch pressure drops and mass flow rates from

equations (1) and (6) respectively. It is important to

realize that [144δ] is a diagonal matrix having branch

' s along its diagonal and zero elsewhere.
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The main distinctive feature of the present analysis

is that the steady-state as well as the transient nodal

pressures and branch mass flow rates are calculated by the

time-integration of the network transient equations as

given above. Initial values of the branch mass flow rate
.0

array m are assumed such that continuity equations are
.0

satisfied at each node between branch flows m and nodal

source and sink flows Ai o . Care must be taken not to
•confuse values of m O and m. . The former quantity repre-

sents the present values of the mass flow rates which vary

during the problem solution; while the latter designates

fixed known flow quantities entering or leaving the system

at various nodes. Following every application of equations

(8), (1) and (6), the updated values of the branch mass

flow rates are computed. The Present values of the branch

mass flow rates are then set equal to the updated values

and the application of equations (8), (1) and (6) are con-

tinued. For steady-state analyses, this procedure is

continued until the values of branch mass flow rates con-

verge within a prescribed error.

To perform a transient analysis, the converged steady-

state mass flow rates are entered as the initial values
.0

for m array. The problem solution is then restarted

under the new prevailing conditions until a new set of

steady-state mass flow rates is reached. This latter

application can be made more clear by considering an
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example such as the flow coast-down problem resulting from

loss of pumping power in a nuclear water reactor. Prior

to the initiation of the pump coast-down transient study,

the present analysis is employed once to bring the system

to steady-state. The loss of pumping power is then ini-

tiated and the present analysis is employed for the second

time to determine the flow behavior during the pump coast-

down.

It should be noted that calculation of nodal pressures

from equation (8) involves the inversion of matrix M. The

elements of this matrix are independent of flow and the

inversion procedure can be performed only once at the

beginning of analysis. Furthermore, multiplications of M

inverse by A transpose and M inverse by mio are also inde-

pendent of time and can also be performed once at the

beginning of the analysis. The remaining operations indi-

cated by equation (8) are time dependent and should be

performed once in every time increment during the transient

calculations. For large networks, the order of matrix A

becomes large. This will obviously increase the computer

running time for inversion, multiplications and other opera-

tions described above. This situation, however, will not

create any complication in the analysis.
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V. NUMERICAL SOLUTION

The numerical solution to the problem is obtained by

solving equations (8), (1) and (6) on a digital computer.

The input data for this analysis consists of network topo-

graphy, geometric dimensions, hydraulic properties,

problem initial conditions and control variables. The

main input data in this study are as follows:

1) The connection matrix A (only the non-zero terms are

entered as input data).

2) The branch actual length L, equivalent length if ,

hydraulic diameter D, nodal elevation Z arrays.

3) The fluid density to ρ, viscosity μ, and pipe absolute

roughness ε.

4) The pumps locations and their head versus volumetric

flow characteristics.

5) Initial branch mass flaw rates mo.

6) Nodal sink and source mass flow rates m-io.

7) Integration time increment h and steady-state flow

convergence error.

The numerical calculations can be conveniently divided

into two groups.. 1 The first group consists of mathematical

operations performed once at the beginning of the program..

The assembly of the connection matrix and its transpose,

the formation of matrix M defined by equation (9) and its

inverse as well as the calculation of all flow-independent

terms in equations (8) and (1) are among this group. The
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second group consists of iterative operations performed

after each time increment. The calculation of branch

frictional head loss and pump pressure rise as well as

the computation of all flow-dependent terms in equations

(8) and (1) are among this group. Classification of the

numerical calculations into the above groups increases the

computational efficiency of the program and reduces the

computer running time.

To perform the required mathematical computations,

a number of matrix operation subroutines, such as matrix

addition, subtraction, multiplication, inversing and

transposing were needed. These subroutines were obtained

from Reference (22).
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The present analysis is based on the numerical inte-

gration of the branch momentum differential equations

(equation 3). To obtain a convergent solution, it is

necessary that the selected time increment h for this

integration be smaller than the minimum "time constant"

associated with these equations by a "good" margin. The

momentum equations are nonlinear and an accurate calcula-

tion of their "time constants" cannot be readily made prior

to their numerical solution. Fortunately, the accurate

calculation of these "time constants" are not necessary

and a conservative estimate is all that is needed for the

purpose of obtaining a convergent solution. This objective

can be achieved by making a number of simplifying assump-

tions. First, since the dependence of the friction fac-

tor and the pump head on mass flow rate is generally weak,

it is reasonable to assume that these two variables are

flow-indeoendent. Second, the stability analysis will be

performed on the linearized momentum equations. This

assumption is heuristically justified because the linear-

ized equations approximate the nonlinear equations in small

time regions. If the linearized solution is convergent

for every time increment, the overall nonlinear solution

will also be convergent. It should be further emphasized

that these simplifying assumptions are made only for the

stability analysis and not for the actual analysis presented

in this study.
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Based on the above assumptions, the branch momentum

equation may be expressed by

where

and c represents the sum of the pressure drop, the eleva-

tional head and the pump head rise. Since the linearized

equation will be used only within a small time increment,

we can treat both K and c as constants and find the varia-

tion of equation (10)

Equation (12) defines a linear differential equation in

δm at each value of mo for each time increment h. The

time constant for this linear differential equation is

Substituting equation (11) into (13), the final expression

for branch time constants become

Experience with the operation of the present program has

indicated that if for each integration step, the time

increment is smaller than the minimum time constant by a

margin of 20. i.e. if:
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the numerical integration is convergent. Thus, to obtain

a convergent solution, the branch time constants are com-

puted from equation (l4) prior to each integration step

and their minimum value is selected. The time increment

for the next time interval is then chosen to be one twen-

tieth of the minimum time constant. This margin of "20"

has proved to be satisfactory for the present analysis and

has resulted in a convergent solution. In the event that

approximate values of the steady-state flows are known

from a previous run, it is more economical to compute the

time increment on the basis of these flows. The time incre-

ment can then be held constant throughout the dynamic ana-

lysis. This latter method is used in the computer program

presented in this study.

The reason for using the minimum time constant can be

made clear by the following argument. Any arbitrary net-

work consists of a number of parallel and series branches.

For parallel branches, the line with minimum time constant

has the fastest time response and should therefore be used

for numerical stability purposes. For a j number of series

branches, the equivalent time constant can be easily shown

to be

This equivalent time constant, can be readily shown to be
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larger than the smallest time constant among these branches.

Consequently, the minimum time constant branch provides a

conservative estimate for usage in the numerical stability

analysis.

When the transient solution is of no interest and only

the final steady-state values are desired, the time incre-

ment criterion is not as stringent as indicated by equation

(15). The time increment can be increased to the order of

the system minimum time constant or even higher leading to

a large reduction in computer running time. The increase

in the time increment reduces the actual branch time

constants without adversely affecting the steady-state

results.

It should be further emphasized that numerical in-

stability and lack of convergence constitute two major

hazards of any numerical integration scheme. Numerical

oscillations are caused by computational round-off errors

and the lack of convergence in the result of integration

truncation error. Both the numerical instability and the

lack of convergence problems can be overcome by the intro-

duction of an appropriate upper bound for the integration

time step h as indicated by equation (15).
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The new computational technique, developed in this

study, is verified by employing the present digital pro-

gram to determine the flow and pressure distribution in

the hydraulic network shown on Figure 1. A steady-state

numerical solution to this problem, based on the Hardy

Cross method is available (20) and is used to check the

correctness of the present dynamic analysis. The hydraulic

network, shown on Figure 1, represents a typical city water

distribution system. All system nodes and branches are

numbered independently and positive flow directions are

shown by arrows. Water enters the system through branch 1,

at a rate of 2825 gpm with a constant pressure of 60 psi,

and leaves the system through branches 30, 31, 32, 34 and

35 at 450, 400, 500, 650 and 825 gpm respectively. The

length, internal diameter, and elevational difference for

every system branch is specified in Table 1. In order to

be able to match the present results against those of Ref-

erence (20), no booster pump is placed in any branch and

the equivalent length of each branch is Laken equal to its

actual length. It should be pointed out that the present

analysis is not restricted by these assumptions. These

restrictions are introduced to obtain a meaningful compari-

son between the results of the present study and those of

Reference (20).

Typical transient results are demonstrated on Figures
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2 and 3. The final steady-state results are shown on

Tables 2 and 3 for all system branches.

	

The above results are obtained by the application of

the digital computer program developed for this study,

designated as HYTRAN, which stands for Hydraulic Transient

Analysis. The convergence criterion for reaching steady

state was initially based on the relative mass flow rate

error. This value was computed by subtracting the present

values of the branch mass flow rates 1 ° from the updated

values of the branch mass flow rates 1 and dividing the

result by the updated values of the branch mass flow rates

1. The absolute values of these relative errors were

compared with a quantity designated as steady-state flow

convergence error. When the relative mass flow rate

errors for all branches are smaller than the steady-state

flow convergence error, steady-state conditions were

considered to be reached.

	

Experience with the usage of this convergence criterion

during the debugging of the HYTRAN program showed that

this criterion is not desirable. A better criterion

based on a fluid acceleration, defined by (m-mo)/h, proved

to be more satisfactory.



Figure 1
A Typical City Water Distribution System Employed to Verify
the New Computational Technique Presented in This Study



TABLE I - GEOMETRIC SPECIFICATIONS FOR THE HYDRAULIC 27
NETWORK SHOWN ON FIG. 1

Branch No Diameter D, In. Len th L Ft.
ElevationDifference ΔZ, Ft.

1 20 1 0
2 20 200 0
3 20 150 - 10
4 20 120 +  5
5 20 130 +  5
6 20 100 10
7 10 200 - 10
8 10 50 -  5
9 10 100 - 40

10 10 100 - 40
11 8 80 - 10
12 8 50 +  5
13 8 200 0
14 6 70 0
15 6 80 + 10
16 5 72 0
17 5 16 0
18 5 130 - 1019 8 120 - 10
20 6 85 + 10
21 6 100 + 2022 6 70 +  523 5 30 +  524 5 205 - 1025 8  90

026 5 20
27 5 30 -  5
28 5 205 029 5 100 + 1530 6 200 - 1531 8 75 +  532 5 300 + 20
33 6 100 -  5
34 6 100 535 5 100 10+36 10 200 037 10 300 30-38 5 200 +  539 6 100 - 1040 6 100 -  541
42

5 5 5
43 5 5 5

5 50 044 5 5 -  545 5 6 5



Figure 2
Typical Time Variation of Mass Flow Rate and Frictional Head Loss for Branch 11



Figure 3

Typical Time Variation of Mass Flow Rate and Frictional Head Loss for Branch 23
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TABLE 2 - STEADY- STATE MASS FLOW RATES (lbs./sec.) FOR
THE HYDRAULIC NETWORK SHOWN ON FIG. 1

Branch

No.

Present Analysis
Using Moody's Head

Loss Equation

Present Analysis
Using Hazen-Williams'
Head Loss Equation

Refer-

ence (20)

1 392.7 392.7 392.7

2 274.0 271.6 271.1

3 176.8 174.5 173.7

4 176.8 174.5 173.7

5 74.9 74.1 73.9
6 59.3 58.5 58.3

7 59.3 58.5 58.3
8 101.9 100.4 99.8

9 97.1 97.1 97.5
10 118.7 121.1 121.3
11 134.2 133.9 133.8
12 75.3 76.7 76.7
13 42.1 42.9 42.9
14 27.4 26.6 26.7
15 47.5 47.5 47.5
16 27.9 28.0 28.0
17 27.9 28.0 28.0
18 27.9 28.0 28.0
19 108.2 108.0 107.9
20 43.8 43.6 43.5
21 31.7 31.7 31.7
22 71.1 71.4 71.3
23 8.5 8.8 8.8
24 19.7 19.5 19.5
25 61.1 61.8 61.7
26 80.8 81.3 81.2
27 33.9 33.4 33.4
28 25.3 24.6 24.6
29 12.1 11.9 11.9
30 15.6 15.6 15.7
31 11.8 11.0 10.8
32 19.7 19.5 19.5
33 8.5 8.8 8.8
34 13.2 12.7 12.7
35 12.1 11.9 11.9
36 15.5 12.8 12.5
37 62.5 23.7 23.1
383 33.2 33.8 33.7
39 52.6 52.4 52.4
40 62.6 62.6 62.5
41 55.6 55.6 55.6
42 69.5 69.5 69.5
43 90.3 90.3 90.3
44 90.3 90.3 90.3
45 114.7 114.7 114.7
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TABLE 3 - STEADY-STATE FRICTIONAL HEAD LOSS (ft.) FOR

THE HYDRAULIC NETWORK SHOWN ON FIG. 1

Branch
No.

Present Analysis
Using Moody's Head.
Loss Equation

Present Analysis
Using Hazen-Williams'
Head Loss Equation

Refer-
ence (20)

1 .0 .0 .0
2 .163 .239 .23
3 .052 .079 .08
4 .042 .063 .06
5 .008 .014 .01
6 .004 .007 .01
7 .294 .409 .40
8 .213 .278 .27
9 .387 .523 .52

10 .575 .787 .77
11 1.884 2.249 2.20
12 .375 .500 .49
13 .048 .068 .07
14 .321 .402 .39
15 1.085 1.341 1.31
16 .881 1.105 1.08
17 .196 .245 .24
18 1.591 1.996 1.96
19 1.843 2.267 2.22
20 .982 1.214 1.19
21 .609 .792 .78
22 2.106 2.493 2.44
23 .036 .054 .05
24 1.264 1.604 1.57
25 .447 .605 .59
26 2.022 2.201 2.16
27 .539 .638 .63
28 2.079 2.474 2.43
29 .479 .627 .61
30 .305 .429 .43
31 .015 .021 .02
32 1.850 2.348 2.30
33 .047 .074 .07
34 .109 .146 .14
35 .239 .313 .31
36 .022 .024 .02
37 .093 .115 .11
38 3.468 4.338 4.25
39 1.655 2.012 1.97
40 2.335 2.791 2.74
41 .240 .272 .27
42 .374 .412 .40
43 6.312 6.696 6.56
44 .631 .669 .66
45 1.218 1.249 1.22
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Figures 2 and 3 show the typical time-variation of

mass flow rate and frictional head loss for branches 11

and 23. An examination of these curves and Tables 2 and

3 reveals the following features:

1) Application of Moody's and Hazen-Williams' frictional

head loss correlations affect the shape of the system

response curves. This is to be expected since the

coefficients and rowers appearing in equations (5)

and (4a) are somewhat different. The difference

between values obtained from the application of Moody

and Hazen-Williams is a function of branch diameter

and mass flow rate. For certain branches, the com-

bination of diameter and mass flow rate results in a

closer agreement between the response curves. The

choice between Moody's or Hazen-Williams' frictional

head loss correlation is a matter of personal prefer-

ence. In any event, both correlations yield comparable

results for practical purposes.

2) The steady-state values of branch flows and frictional

head losses obtained from the present analysis, using

Hazen-Williams' correlation are in a good agreement

with those of Reference (20) which is also based on

the same correlation. This close agreement between

this analysis and Reference (20) verifies the correct-

ness of the new technique presented in this study.
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The apparent discrepancy between two frictional head

losses (for branch numbers 5 and 6) is most likely

due to data round-off in Reference (20).

3) Referring to the numerical stability analysis pre-

sented earlier, and noting that the system minimum

time constant, based on steady-state flow, is 2 sec.

(for branch 26), it can be concluded that the appli-

cation of a constant time increment equal to 2.0/20.

or h = .1 sec. throughout the analysis ensures a con-

vergent solution for the problem in hand. Setting

h = .1 sec., the steady-state conditions are reached

after 482 iterations with a relative flow convergence

error of less than .006 lb/sec 2 . Decreasing the time

increment to h = .05 sec. does not appreciably change

the dynamic results; while increasing the time increment

to h = .2 sec. affects the system response curves.

This test verifies the correctness of the numerical

stability analysis presented earlier in this study.

4) To provide a comparison between the computational time

required by this new method against the computer pro-

gram presented in Reference (20), both programs were

run on an RCA Spectra 70/45 digital computer. For

the steady-state analysis, since the dynamic behavior

is of no interest, the time increment can be increased

to the same order of the system minimum time constant
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(3 sec.). This increase in the time increment reduces

the actual branch time constants and speeds up the

computer running time without adversely affecting the

steady-state results. The computer running time

required to obtain steady-state solutions for the

above-mentioned hydraulic network problem is 108 sec.

for the present program and 134 sec. for the program

presented in Reference (20).

5) The dynamic curves shown on Figures 2 and 3 have the

following physical significance. Let us assume that

at time t = 0 the branch mass flow rates are those

typically indicated in the Figures, and the input pres-

sure and flow at branch 1 as well as the output flows

at branches 30, 31, 32, 34 and 35 remain constant.

The mass flow rate time histories in the system bran-

ches will then undergo a transient behavior typically

shown in the above Figures and will approach asymptot-

ically to final steady-state values. In other words,

in the present study, both the steady-state and tran-

sient solutions are obtained by a time-dependent

dynamic analysis. Values of dependent variables at

intermediate time points represent the actual system

behavior during a transient and are, therefore, physi-

cally meaningful. In contrast, the Hardy Cross and

the direct solution methods obtain the final steady-

state values after a number of iterations (9). For these



analyses, values of dependent variables at these

intermediate points have no physical significance.

35



VIII. CONCLUSIONS
	 36

A new technique for the steady-state and transient

analyses of isothermal, incompressible flow in networks

is presented. In this method, the pressure drop versus

pressure, nodal continuity and branch momentum equations

are expressed in matrix form for networks with any arbi-

trary configuration. These equations are then solved to

obtain explicit relations for unknown nodal pressures and

branch mass flow rates.

In contrast with the conventional steady-state network

analysis methods, the present technique can be extended to

the transient analysis of compressible flow in networks

with heat transfer and phase change. This extension is

currently under development by other investigators at the

Newark College of Engineering.

To ascertain the accuracy of the solution, a numerical

stability and convergence analysis is performed. This

analysis provides an estimate for the upper bound of the

time increment needed for a stable and convergent solution.

The new technique is applied to the analysis of a

water distribution network. The results obtained are in

agreement with the available solution.
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IX. RECOMMENDATIONS 

The new technique, presented in this study, can be

utilized in the development of more efficient and more

economical engineering tools needed for the design of more

complex fluid systems. Two such applications are described

hereunder:

1) This study can be extended to analyze thermal systems

involving compressible flow with heat transfer and

phase change. The new program will then be able to

analyze power plant and processing plant networks under

steady-state and transient conditions more efficiently

and more economically than is presently possible.

2) The present program can determine branch mass flow

rates and nodal pressures for a system with given con-

figuration and pipe diameters. The actual design of

hydraulic networks requires the selection of pipe

diameters to achieve a set of hydraulic and economic

objectives. The present program can be extended to

treat this design problem with improved efficiency and

economy.

The present version of HYTRAN program may be improved

by incorporating the following modifications:

I) A subroutine may be added to the program to compute the

upper bound of the time increment automatically during
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the dynamic analysis. This feature is in contrast

with the presently hand-computed time increment used

as an input data to the program. The procedure for

the calculation of this upper bound is given in this

study.

2) A laminar pressure drop versus flow relationship may

be added to the program to provide a more accurate

calculation of frictional losses during laminar flow

regimes.

3) Expansion and contraction losses can be made dependent

on the flow direction. The present version of HYTRAN

assumes identical losses in both flow directions.
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X. NOMENCLATURE

Connection matrix for branches and nodes as defined
in the text

a 	 Branch flow cross-sectional area, ft 2

C 	 Hazen-Williams' coefficient

c 	 A constant defined in the text

D Branch hydraulic diameter, ft

Pressure loss due to friction, lb/ft 2

f Friction factor

Acceleration of gravity, 32.2 ft/sec 2

H Transducer pressure differential (pump pressure
rise), ft

h Time increment, sec

K A constant defined by equation (11)

Branch actual length, ft

Branch eouivalent length (Branch actual length plus
additional lengths allowed for fittings), ft

A matrix defined by eouation (9)

Branch mass flow rate, lb/sec

Nodal source and sink (input and output) mass flowmio rate (positive for source and negative for sink),
lb/sec

p 	 Nodal pressure, psi

Rn Branch. Reynolds Number ( 	 D m0 /all)

t Time, sec

Nodal elevations, ft

Greek_flymbols

A quantity defined in the text

Ap 	 Pressure drop along the positive flow direction, psi
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δm 	 A small variation of the branch mass flow rate,

lb/sec

ΔZ 	 Branch elevational difference along the positive
flow direction (elevation of node at the end of
the arrow minus elevation of the node at the head
of the arrow), ft

ε 	 Pipe roughness, ft

μ	 Fluid viscosity, lb/sec - ft

ρ	 Fluid density, lb/ft3

τ	 Branch time constant, sec

Superscripts

o	 Present value

T	 Transpose of a matrix

Subscripts

Min

	

Minimum

Miscellaneous Symbols

[] 	 Contains matrices

{} 	 Contains arrays
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XII. APPENDIX 1. ILLUSTRATIVE EXAMPLE

FOR MATHEMATICAL FORMULATION

To demonstrate the mathematical formulation presented

in this study, an illustrative example for a simplified

network shown below is worked out in detail.

For this configuration, equation (1) takes the following

form:

One may verify the correctness of equation (17) by a sim-

ple expansion as follows:

Equations (18) are obviously the branch pressure drop

versus nodal pressure relations. It should be noted that

the supply pressure is considered as the reference pres-

sure for all nodal pressures. Furthermore, equation (2)

takes the following form.



One may verify the correctness of equation (19) by a

simple expansion as follows:

Equations (20) are obviously the nodal continuity equa-

tions for the system under consideration. It should be

noted that m 1, m2 , m3 and m4 are the unknown branch flows;

while m30 is the known flow output at node 3. Similarly,

equation (3) takes the following form:

44.

It can be easily seen that equations (21) constitute the

branch momentum equations. As shown earlier, solving

equations (17), (19) and (21) provide explicit relations

for unknown nodal pressures and branch mass flow rates.

Applying equations (8) and (9) to the present case, one

obtains



Performing the multiplications indicated above, yields

Inverting the above matrix, substituting into equation (8)

and performing the indicated matrix operations, the nodal

pressures are easily found. Subsequently, employing equa-

tions (1) and (6), the branch pressure drop and mass flow

rates can be determined.

45
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USER'S MANUAL



I. DESCRIPTION OF HYTRAN PROGRAM 	 47

The program HYTRAN (Hydraulic Transient Analysis)

consists of a main program and several subroutine linked as

shown in Figures 4 through 16. A tabular outline of the main

program and its subroutines together with their functions

is presented below and followed by a more detailed descrip-

tion.

MAIN PROGRAM
	

FUNCTION

MAIN
	

Hydraulic Transient Analysis

SUBROUTINES 	 FUNCTION

MINV 	 Matrix Inversion
GMPRD 	 Matrix Multiplication
GMStJB 	 Matrix Subtraction
GMTRA 	 Matrix Transposition
SI FUNCTION 	 Linear Interpolation
DPRINT 	 Matrix Printout

Main Program

A detailed description of the MAIN program is presen-

ted in the flow charts on Figures 4 through 15. This program

is employed to perform the following two main functions:

1) Mathematical operations performed once at the begin-

ning of the program which are described below:

a) Conversion of input data from engineering units

to ft-lb-sec. units.

b) Assembly of the transpose of the connection matrix

AT from CONP(J) and CCNN(J) arrays defined later

in the description of input data.

c) Transposition of the transpose of the connection

matrix AT , to obtain the connection matrix A.



Figure 4
Flow Chart of HYTRAN MAIN Program



Figure 5
Flow Chart of HYTRAN MAIN Program



Figure 6

Flow Chart of HYTRAN MAIN Program



Figure 7
Flow Chart of HYTRAN MAIN Program



Figure 8
Flow Chart of HYTRAN MAIN Program



Figure 9
Flow Chart of HYTRAN MAIN Program



Figure 10

Flow Chart of HYTRAN MAIN Program



Figure 11

Flow Chart of HYTRAN MAIN Program



Figure 12

Flow Chart of HYTRAN MAIN Program



Figure 13

Flow Chart of HYTRAN MAIN Program



Figure 14

Flow Chart of HYTRAN MAIN Program



Figure 15

Flow Chart of HYTRAN MAIN Program



Figure 16
Flow Chart of Subroutine DPRINT



61

d) Multiplication of the connection matrix A by nodal

elevation array Z to obtain branch height differ-

ence 	 Z.

e) Formation of matrix N defined by equation (9).f)

Formation of Products M -1 . AT and M-1 mio

required by equation (8).

2) Iterative operations performed after each time incre-

ment as described below:

a)

Calculation of branch static, transducer and fric-

tional heads and their multiplication by δ.

b)

Summation of the above terms and the present

values of the branch mass flow rates required by

equation (8).

c) Multiplication of M
-1

. A
T 

by the result obtained

under(b) above and subtraction of M-1. mio from

this product to form the pressure array p as indi-

cated by equation (8).

d)

Calculation of branch pressure drop array Δp from

equation (1).

e) Calculation of branch mass flow rate array from

equation (6).

MINV Matrix Inversion Subroutine

This subroutine is used to invert matrices. It is

used only once at the beginning of the program to invert

matrix M designated by equation (9). MINV is a standard
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subroutine from reference (22) and its calling sequence is:

CALL MINV (A,N,D,L,M)

A = Input matrix, destroyed in computation

and replaced by resultant inverse.

N = Order of matrix A

D = Resultant determinant (not used in this

analysis)

L = Work vector of length N

M = Work vector of length N

GMPRD Matrix Product Subroutine

This subroutine is used for the multiplication of

matrices, as discussed above. It is a standard subroutine

from reference (22) and its calling sequence is:

CALL GMPRD (A,B,R,N,M,L)

A = Name of first input matrix

B = Name of second input matrix

R = Name of output matrix

N = Number of rows in A

M = Number of columns in A and rows in B

L = Number of columns in B

GMSUB Matrix Subtraction Subroutine

This subroutine is used for the subtraction of two

matrices. It occurs once in the program to perform the

matrix subtraction indicated by equation (8). It is a

standard subroutine from reference (22) and its calling

sequence is:
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CALL GMSUB (A,B,R,N,M)

A = Name of first input matrix

B = Name of second input matrix

R = Dame of output matrix

N = Number of rows in A, B and R

M = Number of columns in A, B and R

GMTRA Matrix Transposition Subroutine

This subroutine is used to transpose matrices. It is

used once in the program to transpose the connection

matrix A to A
T . It is a standard subroutine from refer-

ence (22) and its calling sequence is:

CALL GMTRA (A,R,N,M)

A = Name of matrix to be transposed

R = Name of resultant matrix

N = Number of rows of A and columns of R

M = Number of columns of A and rows of R

SI FUNCTION Linear Interpolation Subroutine

This function is used to interpolate values in the

head versus volumetric flow tables for transducers (pumps).

It is a standard subroutine and its calling sequence is:

FUNCTION SI (XTBL, YTBL, X, N)

XTBL = Independent variable table

YTBL = Dependent variable table

X = Value of independent variable

N = Number of points in table
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DPRINT Matrix Printout  Subroutine

This subroutine, charted on Figure 16, is used for

printing the following matrices: AT, A, M and its inverse.

These matrices can be printed at the users option, for

debugging purposes, by setting appropriate values for

FLAG 1 as shown in the description of input data. The

calling sequence of this subroutine is:

CALL DPRINT (A,I,J)

A = Name of matrix to be printed

I = Number of rows in matrix

J = Number of columns in matrix
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The input data can be divided into two groups:

1) Non-subscripted variables

2) Subscripted variables

A brief description of each input variable appears in the

program listing to aid in checking the program. A more

detailed description of input data is presented in this

section. The procedure used for labeling the input data

is described below:

All non-subscripted variables are identified by the

prefix "FIX", followed by two numbers. The first number

indicates the card number and the second indicates the

order of the variable on that card. For example, FIX 2-3

XNMAX denotes that the variable XNMAX is a non-subscripted

variable appearing as the third value on card number 2.

All subscripted variables are identified by a prefix "VAR"

followed by one number. For example, VAR 7 Z denotes

that Z is a subscripted variable appearing as the seventh

set of arrays in the input data. Each card contains 6

values of Z(I). All input data are entered using the

FORMAT ElO.3.

Non-subscripted Variables

FIX 1-1 EIRUN Run Number. This quantity is used for

identification of successive computer runs.

FIX 2-1 XIMAX Maximum Number of Nodes. This number

represents the maximum number of nodes in the system being
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analyzed. These nodes are the points on Figure 1 denoted

by the non-encircled numbers.

FIX 2-2 XJMAX Maximum Number of Branches. This value

represents the maximum number of branches in the system

being analyzed. These are the lines on Figure 1 denoted

by the encircled numbers. As can be noted from Figure 1,

the branch numbers do not have to correspond with node

numbers.

FIX 2-3 XNMAX Maximum Number of Transducers (Pumps).

This quantity describes the maximum number of transducers

(pumps) in the system being analyzed. It should be noted

that any flow device or restrictions whose flow versus

head characteristics are known can be included in this

category.

FIX 3-1 COUNT Maximum Allowable Number of Iterations.

This number represents the maximum number of iterations

allowed in the analysis and is a safety device to stop

the computer in the event of program error. The value of

COUNT is calculated by

Since the maximum problem physical time is not known before

the problem solution, a suggested value of COUNT is 1000.

If more transient time is required, an error message will

appear on the output sheet and COUNT should then be

increased. Steady-state solutions generally use large
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time increments and require fewer iterations. Thus, the

value of COUNT = 1000 is generally adequate for steady-

state analyses.

FIX 3-2 ERROR Steady-State Flow Convergence Error.

This value represents the steady-state flow convergence

error. Steady-state conditions are considered to be

reached when

FIX 3-3 DELTAT Time Increment, Sec. This variable

specifies the time increment for each integration step.

It is equivalent to h, presented earlier in the text.

The criterion for its selection is discussed in the sec-

tion on "Numerical Stability Analysis". The time incre-

ment is selected by first calculating all branch time

constants using equation (14) and then setting the time

increment equal to 1/20 of the minimum time constant as

specified by equation (15).

FIX 3-4 DTPR Printout Interval, Sec. This number

specifies the desired time interval for the printout of

the transient solution. It is used to avoid the printing

of results after every iteration and minimize computer

running time. For the transient case, a suggested value

of 10 times DELTAT proved satisfactory for this quantity.

For the steady-state solution when only the final conver-

ged value is desired, DTPR should be of the order 1000
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FIX 4-1 RHO Fluid Density lbs/cu.ft. This number spe-

cifies the density of the fluid flowing in the hydraulic

network.

FIX 4-2 VISO Fluid Viscosity lb/ft-sec. This number

represents the viscosity of the fluid in the system.

FIX 4-3 ROUGH Pine Absolute Roughness, ft. This

quantity represents the absolute roughness of pipes used

in the network. The program divides this quantity by

the hydraulic diameter to obtain relative roughness.

FIX 4-4 GRAV Gravitational Acceleration ft/sec 2
. This

number represents the force of gravity acting on the

system under investigation (32.2 ft/sec 2 ).

FIX 5-1 FLAG 1 Printout Indicator. This parameter

is used primarily for debugging purposes. It controls

the printing of the following variables defined later in

the description of the output data.

IMAX, JMAX, NMAX, D(J) , AREA(J) , XM(I), EMO(J),

GPM(M,N), AT , A, ZB(J), PROD(Jl), R, REYN(J),

FRIC(J), F(J), SUM(J), RR, E(J), RRR, P(I), DELP(J)

Assigning a value of 1 to FLAG 1 prints the above varia-

bles and a value of 0 eliminates printing.
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Subscripted Variables

VAR 1 XL(J) Branch Actual Length, Ft. These values

represent the actual developed length of each pipe branch.

VAR 2 XLP(J) Branch Equivalent Length, Ft. These

values define the branch equivalent length composed of

actual length XL(J) plus the resistance due to valves,

fittings, expansions and contractions and other flow res-

trictions expressed in terms of pipe length.

VAR 3 D(J) Branch Hydraulic Diameter, Inches. These

values represent the hydraulic diameter of each branch.

The hydraulic diameter for round pipes is equal to their

actual inside diameter. The hydraulic diameter for pipes

other than circular cross section is equal to four times

their volume divided by their wetted surface.

VAR 4 EMO(J) Branch Initial Mass Flow Rate, GPM.

These values define the initial mass flow rates in each

branch. For steady-state analysis, these values are

assumed without any restriction except that continuity

equations must be satisfied at each node. For transient

analysis, the prevailing steady-state values should be

entered. These values may be obtained either from a

previous run on this program or from other sources.

VAR 5 CONP(J) Positive Branch Node, VAR 6 CONN(J)

Negative Branch Node. A node is defined as any point in
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the system at which three or more flows meet or network

geometric dimensions change. A branch is defined as a

line connecting two nodes. The nodes and the branches

of the hydraulic network are numbered separately starting

from 0 for nodes and 1 for branches without skipping

any number. The node numbered 0 should correspond to

the point in the system where the pressure is known. The

branch number 1 corresponds to the branch connected to

node O. Every branch in the system is given an arbitrary

positive orientation or direction designated by an arrow.

The flow is considered positive when it is along this

positive direction and negative when it is against this

positive direction. The node located at the tail of the

arrow is designated as the "sending node" for that branch

and the node located at the head of the arrow is desig-

nated as the "receiving, node". The value of CONP(J) and

CONN(J) represent the node number corresponding to branch

J for the sending node and the receiving node, respectively.

For example, the values of CONP(J) and CONN(J) for J .36

and J 37 in Figure 1 will become:

J = 36 J =22

CONP(J) 9 8

CONN(J) 10 9

The CONP(J) and. CONN(J) arrays are used by the program

to assemble the connection matrix. All CONP(J) nodes

contribute a value of +1 to the connection matrix, and

all CONN(J) nodes contribute a -1 to the connection

matrix.
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VAR 7 Z(I) Node Elevation, Ft. These values denote

the algebraic value of height of each node in the system

with respect to node 0 taken as a datum.

VAR 8 XM(I) Nodal Mass Flow Rate GPM. These values

represent flow rates entering or leaving the system nodes.

Flow entering a system node is designated as negative.

Flow leaving the system node is designated as positive.

In an open system, these flows represent the network

load and are known. In a closed system, these values

are zero and must be entered as such.

VAR 9 PB(N) Branch Locations of Transducers (Pumps).

These variables define the branch location of the trans-

ducers in the system. A typical input data card would

appear as follows:

7 	 10 	 12 	 22 	 37 	 4

This would indicate that transducer number 1 is located

in branch 7, transducer number 2 is located in branch

10,...etc. If there are no pumps in the system, this

array may be omitted by setting XNMAX equal to zero. This

will omit the entry of these values.

VAR 10 HEAD(M,N) Transducer Head, Ft. This array

specifies the head variation for each transducer in the

system. The value of M represents the running index for

the points in the table for transducer number N.
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VAR II GPM(M,N) Transducer Volumetric Flow Rate, GPM.

This array specifies the volumetric flow rate variation

for each transducer in the system. These values together

with those in VAR 10 define the flow versus head charac-

teristics of the transducer. The value of transducer

head used in the analysis is determined by the interpo-

lation subroutine (SI FUNCTION) described earlier.
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The output data can be conveniently divided into

the following groups:

1)Input Data Printout

All input data are printed out and labeled using

variable names defined in the description of input data.

2)Debugging Printout

At the users option, under the control of FLAG 1,

described in the input data, the following calculated

variables may be printed out for debugging or checking

purposes. These data are classified into two groups:

a) Debugging printout for mathematical operations

performed once at the beginning of program labeled

as indicated below:

IMAX, MAX, NMAX

These values are equivalent to XIMAX, XJMAX and

XNMAX, described in the input data, after being converted

to fixed mode.

D(J) Branch Hydraulic Diameter, Ft.

These values represent the branch hydraulic diameters

after being converted to feet.

AREA(J) Branch Cross-Sectional Area, Ft.2

These values specify the calculated branch flow cross-

sectional area.
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XM(I), EMO(J), GPM(M.N)

These quantities represent mass flow rates, as

defined previously in the description of input data,

after conversion from GPM to lb/sec.

A
T 
Transpose of System Connection Matrix

This matrix is generated using the input variables

CONN and CONP and is printed under subroutine DPRINT.

A_System Connection Matrix

This matrix is obtained by transposing matrix A T ,

using GMTRA subroutine.

ZB(J) Branch Elevational Difference Array, Ft.

These values represent the elevational difference

measured along the positive flow direction. For example,

referring to Figure 1, the branch elevational difference

for branch 38 is Z(18)-Z(12).

PROD Matrix

This matrix is the product of the following two

diagonal and zero elsewhere, and the other, the system

connection matrix A, as indicated by equation (9).

R Matrix

This matrix is the product of the transpose of the

system connection matrix A
T 

times the PROD matrix, repre-

sented by matrix M in equation (9).
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Matrix

This matrix is the inverse of the R matrix defined

above.

RR Matrix

This matrix is defined as the product of the inverse

of the R matrix times the transpose of the connection

matrix A
T 

as required by equation (8).

RM Array

These values constitute an array obtained by multi-

plying the inverse of the R matrix times the XM array

defined earlier.

b) Debugging printout for mathematical operations

performed after each time integration labeled as indica-

ted below:

REYN(J) Reynolds Number

Reynolds Numbers are calculated as the product of

hydraulic diameter times mass flow rate divided by the

product of the flow cross-sectional area times fluid vis-

cosity. They are used to determine friction factors in

the system branches.

FRIC(J) Friction Factor

These quantities are calculated from equation (5)

based on Moody's Method to determine frictional head

loss in pipes.
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These values denote an intermediate calculation and

represent the quantity contained in the first set of braces

on the right-hand side of equation (8).

DELP(J) Total Branch Pressure Difference lb/ft 2

	

These values represent the total branch pressure

difference computed from equation (1).

RRR Array

These values constitute an array obtained by multi-

plying RR matrix by SUM array, both defined earlier.

3) Variables Defining the Problem Solution

These variables are printed after every DTPR seconds

and define the problem transient solution. They are

labeled as indicated below:

EM(J) 	 Branch Mass Flow Rate, GPM

EM(J) 	 Branch Mass Flow Rate, lb/sec

P(I) 	 Nodal Pressures, lb/in2

FF(J) 	 Branch Frictional Pressure Drop, Ft

4) Final Steady-State Printout

The variables are printed only when steady-state con-

ditions are reached. They are labeled as indicated below.

REL(J) Steady-State Convergence Error

These values represent the slope of the mass flow

rate time response curve at steady-state conditions.
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KOUNT Actual Number of Iterations

This value represents the actual number of itera-

tions performed in order to reach steady-state conditions.

In addition to REL(J) and KOUNT, all information

stated under paragraph (3) above is also printed out.
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To employ the HYTRAN computer program effectively,

the user should familiarize himself with sections on the

mathematical formulation, numerical stability analysis,

and the presentation of results. He should then prepare

a diagram of the system to be analyzed and assign a sepa-

rate numbering system to nodes and branches as shown in

Figure 1. The nodal point in the system where the pres-

sure is known is numbered as node zero and the remaining

nodes are numbered arbitrarily without skipping any number.

It should be emphasized that node zero in the hydraulic

network simulates a reservoir with known pressure and in-

finite water capacity. The algebraic sum of all XM(I)

will enter the system at node zero and the nodal pressures

in the system are determined with respect to the reservoir

pressure considered as datum.

The user should then prepare the input data in accord-

ance with the format and description given in part two,

section II. These input data are then punched on cards

and assembled with the HYTRAN program together with a

number of control cards. These control cards vary from

one computer organization to the next. A sample of the

deck assembly for RCA Spectra-70 is given below:

run time sec, no of output lines
// JOB.........HYTRAN,................................
// IIMM LIST . YES, DEBUG . YES
// FORTRAN
HYTRAN PROGRAM DECK
// EXEC
INPUT DATA DECK



79
After the program has been run, the user should

verify the following points:

1) Correctness of Input_Data and KOUNT Error Message

The input data printed on output sheets should be

verified for possible errors in punching. Furthermore,

the output sheets should be examined for a possible error

message on KOUNT and proper action taken to rectify this

error condition as described in the description of input

data.

2) Convergence of the Transient Solution

The branch mass flow rates are then examined and plot-

ted. If the integration time step is properly selected

according to the numerical stability analysis described

earlier, the time variation of the branch flow rate will

be smooth and will not exhibit an oscillating pattern.

However, since the numerical stability criterion depends

on the approximate values of steady-state mass flow rates,

and these values are not exactly known before the problem

solution, the mass flow rate in the branch with the small-

est time constant may at times become oscillatory or non-

convergent. When such a situation occurs, one should,

using the run performed, adjust the estimate of steady-

state mass flow rates to decrease the branch time constants

and therefore reduce the integration time step. To verify

the convergence ofthe transient solution, the user may

employ one of the following techniques:
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a) Determine the integration time increment based on

steady-state mass flow rates. If this integration

time increment is close to the one initially

employed, the solution has converged.

b) Enter a value of time increment equal to one half

of the previous time increment and compare the

transient results on mass flow rates.

When the user is not interested in the transient solu-

tion and he wishes to obtain only the final steady-state

solution, the time increment can he increased to the order

of the system minimum time constant or even higher, lead-

ing to a large reduction in computer running time.

3) Convergence_of the Final Steady-State Solution

The convergence of the final steady-state values can

be determined by examining the branch mass flow rate

curves plotted earlier. If these curves approach asymp-

totically to constant steady-state values, the final

steady-state solution has been reached. If not, the value

of the steady-state convergence error (ERROR) should be

reduced.
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To assist the user in the modification of the HYTRAN

program, a list of some key variables with their corres-

ponding analysis notation and their definition is presented

in this section.

Program
Notation

Analysis
Notation  Description

A A Connection matrix for branches and
nodes as defined in the text

AREA a Branch flow cross-sectional area, ft
2

D D Branch hydraulic diameter, ft

FF P Pressure loss due to friction, lb/ft
2

FRIC f Friction factor

GRAV g Acceleration of gravity, 32.2 ft/sec
2

H. H Transducer pressure differential (pump
pressure rise), ft

DELTAT h Time increment, sec

XL L Branch actual length, ft

XLP L Branch equivalent length (Branch
actual length plus additional lengths
allowed for fittings), ft

R N A matrix defined by equation (9)

EM
m Updated value of branch mass flow

rate, lb/sec

ENO m
o

Present value of branch mass flow
rate, lb

XM mio
Nodal source and sink (input and out-
put) mass flow rate (positive for
source and negative for sink), lb/sec

P p Nodal pressure, psi

REYN Rn Branch Reynolds Number ( = Dmo /aμ)
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Analysis
Notation
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Description

TIME t Time, sec

Z Z Nodal elevations, ft

GAMMA
γ

A quantity defined in the text

DELP ΔP Pressure drop along the positive flow
direction, psi

ZB ΔZ Branch elevational difference along
the positive flow direction (elevation
of node at the tail of the arrow minus
elevation of the node at the head of
the arrow), ft

ROUGH ε Pipe roughness, ft

VISO μ Fluid viscosity, lb/sec - ft

RHO ρ Fluid density, lb/ft
3

ERROR - Steady-state convergence error
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The HYTRAN program is written in FORTRAN-IV for

RCA Spectra Model 70/45 digital computer. A listing of

the HYTRAN program appears in the following pages.



FORTRAN 	 I V030 	 SOuCE 	 PpOGIIAM

1 PRuGRAvi 	 HYTPAN
2 C 	 6A111 	 PRimAd 	 1 ATFR 	 hEfolIRK 	 rixFD 	 GEilmETRY 	 TRAmSIET 	 AmALYSIS
3 C 	 G.V.CArt,NZApn 	 1AD 	 HE
4 DImeISIO!,; 	 2000)Ax1I5o),XLP(5n),Z(40),0(50),Pk(9),HEA0(10,-5),
ti... '1 	 c4,11(10/5),EV(),XMI40),(7,Pmx(10).0EADX(10) .......
6 DIElsIor; 	 AT(20(j),z6(5()16/ymA(50),pRo0(2((10),R(160:1). , LSPf.CL(40),
7 1 	 rSrACE(40).0d(50)91,50),FRIC(50),E(5)),Sum(50),RR(2000),,  ___
8 2 	 kR(40),0(4,1),0ELP(50),E,II5n),CONPIliq),(mNr4(50),PELI50),
9 3 	 ARMAI5.0),E(50)..FF(50),FMGI50),PP(40),RI40)

10 C
11 C 	 FIX 	 Nu. 	 HUTATIHN 	 DFSCRIPTIWI 	 umIT_
12 C
13 C 	 11 	 EIPUk 	 RUN 	 HM,nESIWIATION
14 C
15 C. 	 2-1 	 VIJAY, 	 lAx.No,OF 	 NODES
16 C 	 22 	 XJmAx	 tIRANCNES .
17 C 	 2-3 	 XNmAx	 dAx.YO.OF 	 PUMPS
18 C
19 C 	 3-1 	 COUNT 	 mAx,ALLOO.NO 	 OF 	 ITFPJITIONS -

20 RRC	 3-2 	 E 	 OR 	 /WSTEY STATE CWWERGENCE ERROR
21 C 	 3-3 	 DELTAT 	 TINE 	 i,cREmErT 	 SEC.
22 C 	 3-4 	 DTPR 	 PRINTOUT 	 IkITERVAL
23 C
24 C	 4-1 	 - 	 IJImiCU-FT
25 C 	 4-2 	 VI5CT3TTY 	 • 	 pM/FT*SFC
26 C 	 4-3 	 ;o1.1GH 	 PIPE 	 (wSuLUrr 	 POUr, HM'•SS 	 INCHES

C 	 4-4 	 GRAV 	 GPAVITATIHHAL 	 ACCEO;PAII/M 	 FT/SEC**P.
28 C
29 C 	 5-1 	 1 LAG1 	 PPTNTOuT 	 INDICATrpl 	 PRINTS 	 P4AX,,WX,NNAX, 	 --
30 C

C 	 ppon(J1),RpkEYm(J),FPICIJ))FIJW;u1IJ)APP,L(J)
32 C 	 RRP, P, 	 o 	 SKIPS 	 PR TNT
:43 C
:44 C 	 VAR • NO, 	 NriTAT I 	 DEScRTI)TION 	 cARnS
35 C 	 1	 XLIJ) 	 0A'10-1 	 ACTUAL 	 XJMAX/6
36 C 	 2 	 )(LPL)) 	 6RA N CH 	 FUUIVALEHT 	 LEGTH,FT. 	 XJOAX/6
37 C 	 PIJ) 	 1.0ANCH 	 OTAMFTE 0 ,IOCHF'S 	 XJMAY/6
3r3 C 	 4 	 EtIrlId) 	 rR4 NI C F 	I	 IIIAL 	 MAY, 	 FLTA 	 PATF.$GM 	 XdmAX/6
af) C 	 5 	 CuP(J) 	 POSITIVE 	 ;31,AvIcu 	 ThExj1AX/6
40 C 	 6 	 CHHN(J) 	 MEGATIO: 	 f“:Cm 	 XJmi,X/6
41 C
42 C 	 7 	 7 ( I 	 T - 1 (;E	 FLFYATINN,FT 	 XIMAY/6
43 C 	 8 	 XH(I) 	 VIDE 	 FLHIJIt;IM 	 XtmAX/6
44 C
45 C 	 9 	 PP (N) 	 ,,IPAncH 	 NJ. 	 .OF 	 PwIPS 	 v•1AX/6
46 C 	 10 	 HEAD(m)r) 	 PIMP 	 HEA .;),FT 	 2*XN:MAX
47 C 	 11 	 -T/0'(, 0 ) 	 PUMP 	 VOLUMETRIC 	 FLd'i+,(7, P11 	 2*P14AX- . -.....
48 C*** ,***********;****************** * * * ** :-}4 * * 41 * :,:c 4, ,:c ,;:.; ,,Y******: ,; ,, * 7.4::* -';.:* 44 * * * * * ***:',4 * * *

— 	 — -
* * * * * * Ilt ',17)

49 NIM=5
51) NOUT=6     

^1-                                                                                    



rt 	 Lisa_ILYr RAU 	 G

51 9999
1000

FORMAT( 10X, 14)
52 Fol.:31AI 	 ( 6x, Ei4.7
53 1001

1002
Frim-ai

54 FT);•7IAT ( 2F i 0.3)
55 1001

1004
LOt 	 141 	 r 	 )

56 Frirz(,IAT (4E. 10 	 )
57 1005 FDP.mATC5E10.3)
583.00'5 FORMAT(6L1n.31
59 1001 rni-WAT(6(15/1X,E14.7,2X))
60 C **IwPAM 	 ANy 	 1, 111T 	 'IONSWISCRIPTED 	 VARIAP, LES***

'v4.;'.ITE(NOLIT / 2.054)
62 2054 FOPMAT( 1 1,14X1( 1 INPUT 	 DATA HyTRAN
63 /)
64 READ(1111,1,1001)EIPUN

'ARITE(JJOT,2001)65
200166 FOPMAT(1012X,IFIRWAI)

67 F;TRUM
68 	 C
69 1-zEAn(1003)xiHAx/xJpIPAIxN1Ax
70 if,ITTF(100T,2002)
71 2002 Frir.NAT(1),14X/IXIHAX 	 XJMAX XNMAXI)
72 4RTTLM:OT,1000)XIMAX)XJkAX,XMMAX

7_3 C
74 REAN0I4;1004) 	 COHHr,FPRIIR/OFLTATJOTiDP
75 ,.:RITECIDOT/2003)
76 2003 FilkrilT().:10,14x1 1 CoUdr 	 ERRIJR n.ELTAT
77 1 OTPrI)
78 ,c1RITE(M0HT,1000)CrIHNT,ERRDR/IAILTW,0TPR
19C

0 PEA[. ) ( - 1 	 N.p 1004 	 RHO 	 V I SC, P.111.1(211, CyRAV
91 k,ARITE(i4011T12004)
82 2004 FORt-I AT(Ii 1 0,14XAIPHO	 VISC R0061.1

. r13 1 f.-.,PAVt)
04 'RjTECNDUT,1000)PIAM/VISCIPOUGH/GRAV
85 	 C
86 RE.A0(IN.,1001)FLAG1
87 ''JRITC(NOUT,2005)
P8 2005 FLNMAT(P -10,14X,IFLAC,). 1 )
89 wRITE(HOOT,1000)FLAG1
90 KOUNT=1

TTAE=0.
q2 TPR=0.
93 	 C
94 C
95 C
96 IMAX=XIMAX
97 JMAX=XJM0X
05 KMAX=IMAX*JMAX
99 MMAX=XWIAX

100 rT,31.1,AT=C...ItNT

)



T V,030 _517DRC.E._ prpC,RA0_ HY_IRAN 	 PaIGRilil 	 -___Fr11:1_BAtt

101 	 C ***PEA0 	 AN0 	 PRINT 	 SfYiSCRIPTED 	 VARIABLES***'
102 REAnc,11,1,1006) 	 (XL(J))Jr-1,JMAX)_ 	 _ _
103 '11RITECItWT,200(?)
104 2006 FCIRMAT(10,10X,IXL(J) 1 ,/)
105 tillITL(JTJT,1007)
106 C
107 PEA() (NIN.,1006 ) 	 (XLP(J),J=1,JMAX)
10 ,3 WRITE ( NtTJT, 200!)
109 2007 FfIRMAT(1H0,10x, 	 XL,PCJ 	 1 .,/)
110 wRITF(007,1007) 	 (J,X1..P(J)J=1,JMAX)
ill 	 C
112 REA0(kiro106) 	 (0(J),J=1.10,W1A;)0'

■ 	 ■•-_, 	 •^

113 ORITF(HPUT,2009)
114 2008 hr_11 , A1(10,1'sx.1 1 n(J) 1 ,/1
115 WRITE(M111T,10071 	 (d.,90(JT;Tr:GJHAfl' —
116 	 C
117 REA() IN I N., 1.C , 06_1_ 	 F: 	 ) 	 4.--z1..! !,)NI 	 X )
118 8RITE()riuT,20o9)
119 2009 FORMA1(D10,)0X/IEM(J) 1 .,1)
120 R 	 hi:1;117,1007 	 PAH( J).) 	 JM A X )
121 	 C
122 READ(IIN,1006) 	 (CT .IP(J),J=1.0JMAX)
123 4R TiF. (21 1:w1.1.2010 1

_ 	 124 2010 FUVAT(1W):10x/t .e',fl1P(J) 1 .., /)
125 wRITE(NTJT,1007) 	 (J,CONP(J),J=1,,JNAX)
126 	 C
127 REANHIN,1006) 	 (COTI(J),J=1,JMAX)
128 WRITECNIT,2011)
1229 2011 F0RMAT(1 -!0,10X) 1 01W1(J) 1 ,/)
130 viRITE(,1flUT,1007) 	 (J ) CMIN(J),J=1JJOA.X . )
131 	 C
132 REP4)(HIU,100&) 	 (7(1),I=UTHAX)
133 • wRITE(rlUT,2012)
134 2012 Fr1RYATC1I -1 0,10X1 1 /(II,TT----
135 '4R.ITE()flUT,1007) 	 (T,Z(I),t=
116 	 C
137 REA0(1\11N11061 	 W.1(1).,1=1,1MAX1
138 oRITEG400T.020131
139 2013 FrIPNIAT(160,10x, 1 1) , ,/)
140 i,,J“1"E(!:HT/1007) 	 (1)0(t).11=1,P1AX)
141 PEA(1(IITH,1006) 	 (nri),P=1 , ','IMAX)
142 IF(Nr!W2028,110212028
143 2026 VRITEMT,2014T
144 2014 FORHAT(1H0,10X.AIN;(i) 1 )/)

_ 145 WRTIE(O.luT,1007) 	 (m,P11(N),M=1, 0 HAX)
146 TF(Nik)1200,1107,1200

1200_ 1 -47 VI 	 1.120 
_ 	 148 REA0(HTN,1006) 	 (HEA)(TI,M,M=1)170) --

149 .4RITE(AOUT,2015)
150 2015 FOkMAT(1t10,10x.sH)EA0(H,N)-N=Isti3.0)

_

„



                                                                                                            

N__1.1/1.13_0 :iat.iY CIL PI? rl 	 t 	 n C, R. NI                      

151 	 'AITE(ialT.,1007) (N,)|EAD(M,H).0=1/10)
1_52 	 1100 C1.1MT UWE: 	

.

153 C
154 	 nU 1101 	 f"1-41,f1J1X._
	  155 	 0.U1 N .7 1 riO6 	 1.1711".1( 	 ) 	 =JO ,) 

156	 VRITE 	 2016 )
Pi7 	 2010 FriMATCX -_10.,10X,ir, Pm(fl,N)-MLII,I3.0/J, 	

td-7, 	 `kJ T	 (.7!07) 	 )
1,59 	1101 C(.11.rr ;'iNE
160 1102 CUNT HOE
161 	 IF( FL AGL-1 )1P0J, 4522
162 	457	 i-j4sITE(OLIT.,2053)
163 	 205:4 v, FWMAT( 1 1 1 /14x0( 1 0EilHGGING PRINTOU7 ) )4/)

^

164 	 101 'vI T E ( ;'11.10T, 20.17)_
165 	 20)7 FofroAfc .1 , 1o, iii.x., 1 inAx 	 j MAX — 	 WIAX1)
166 	 VRITE(NnuT,1010)IMAX)JMAX,NMAX__ 
167 _1010 Frii-JIAT(Bx_2 3(0x A Ill) )
116E3 	 100 COHT NUE
169 C	_
170 C	 ***CHANGE ',i1PIENSILINS PT INPUT DATA TO FT-LB-SEC***
171  C 
172 	CHLFF.7.(231.*HU)/(60.4(1728.)
173 	 00 l J."7.1,JAx 	
174 	 D(J)=D(J)/12.
175 	 AdLA(J)::(3.1416*(J)**2/4.)
170	 EMLI(J)=Eio(j)4,Cdr.:FF 
177 	 1 	Crl'iTINNE:
178 	 OH WIli6 I=11P1AX 	
1:79 	 VI( ) =XI( I )*COEFF 	
1PO 	FinU,
181 	 IF(FLAG1-1.)102/103)102
1R2 	 • 103 	TE (HCH-iT) 2013 )
P1 3 2018 	 FnlArt1J10,10W0(J) , ,/)
1 F4—	  v-PITE(M;juT/loo7) (d,D(J),J=1,JMAx)
1n5 	 RITC(NOuTt2(.1.9) 	 .
106 	 2010  ripmAT(iii0,1Dx2IARFA(J) , ,/)
187 	14 IT E. (kiii.,sT, 	 hP EA (J 	 J=1,,PIAX )
lno 	 I Tr: OTiltTy 20)0) 	 .
169 2050 rript.iArm.Hot i , )x, 	 x■d;(r ) 	 I n

1MAX )190 t,WT, 1(`07) 	 (1.• X11 ( 	 ), I =1,
191_ T 	 (J121
1'52 2062 	 Cripm.AT(Di0,1D;o 1 Fmn(J) 1 ,/)
193 i,;RITE(NOljT,1007) 	 (J,FtD(J).;J:: ,JMAX)

i02 or,IHT UWE
195 IF ( HOAX ) 105,10/t, 105
196 105 DO 	 3 	 i .-4=1.1t*;AX •
1 9 7 [..T1 	 H=1 , L0
198 6Pk(11.,04=0Pm(/IIN)*CgEFF_
1.99 3 C Uri T I KJ E
2.110 ir(FL461.-1,)1041140,104



^

-____[0«^ n 	 [V.O3V_50JRC E Pr() C., R.4 M 	 nYTPxn 	 P:UIC, Ps, A M. .

201 	  140 ',.:R2TE(1 -400T12016)
202 	'iRITE(tillOT,1007) (M,GPN1(
203 	 104 CIINTIWE
	  2-04 C

_ 	 44...FiloATt.__JJF._enTASTJO_N
206 	 TAT  fic5— Kx..1,1,:nAi

 	 207 	 AT (k )=0 
208 	 110 C N! T I 	 E
209 	 L=0 	
210 	nO 111 .J =1 ,JMAX 	
.211   NP=COMP(J)
	  212 	NN=C!.1t..10

213 	 HP1=HP+L*ImAX 	
214 	 !.m.1=MM-1-0INAX

 	 215 	L=L-1-1 
216 	 IF(NP1)112/113/112 	
217 	112 AT(NP1)=1,
	  218 	 113 COMTIN LI E 	

21.9 	 IF (N!'41. )1141115,114
220 	114 AT	 )=-1.
221 	115 MITF4OE
222 	 111  CDMTIhUF
223 	 1F(FL4G1-1.)1,16/117/116
224 	 117 MUTE(00T.,2029)
	 225 	 2029 FOkPATtli-10/10X,IATI//) 
	226	 CALL OPRIMT(AT/IrAX,JMAX/
	  227 	116 COnTIMOE
	 228 	 (ALL C;OTRACAT,A)IMAX/JMAX)

229 	1F(FLAG1-1.)1)8.0119/11a
	  230 	 119 	ITC ( hlirr, 2030 /
	  231 	2030 FURmAT(1H0,10X)!Al//)

232 	 CALL OPRIMTEA J JMAX/IMAX/
	  233 	 118 C(MTINUE 	

234 	 CALL 611NZD(A/7../U/JMAX,It'AX/1)

-

235 	 TF(FLA61-1.)120/121,120
2 6,, 	 121 t ,■RITEMOUT.02031)
21 7__2 o 3 	FOrrAT(1W)/1.0X/17.PI,
238 	 .ThAITE(mnUT/100// (j/ZR(J),J=1/JMAX)
239 	 120 CAMTIPUE 	
240 	on 25 J=1/J 	 _MAX  	 . 	
241 	nANMA(J)=APE.:A(J)*C,AV*kr/XL(J)
242 	 64VMA(J)=GAN0A(j)*OELTAT
243 	 25 CWITINUE
	 _ 244   J=0
	  245 	 hn 9929 J1=1/KMA/ 

246
247 . 	IF ( J—JMAX ) 9928;9921 /
248_9927_ „I 	 _
249 	 . 992 Fl P ( 1 .0i 	 G A N't A . 	)44_A LI )	 .
250 9929_CC1Mf 	 _ 	 _



                                                         

FOR:TIRO JV00 . eq.1 11.F_C_E_PEOLIIALL 1-1Y IRAN 	 p. (i).0_GB A

251- IF (FLA(;l.-1 -1 )2222.2224,2722
252 22.21 :4R1mwiliT,202)
253 2052 FORMAT(1HOiloWPRHO(J1) 1 ,/) 	
254_ 	 CALL UPRINT(NJ1DsJ1AXATMAX)
255__22 :22._CALL2f)M-In(ALLPRMI,R,IMA,JMA_XIIHAX)            
26 	 IV(FLAC,1-1.)122,3219122        

2 -5-11 	 ) •

259 	 CALL OrRILITIMAXIJOAX) 	
260	 122 CO■sITIWE
	  CALL i'"JNViktIl'IAXpO7T2LSPACE,MSPACEL 	 _ 	 _ _ —

262   CALL CJIPD(PJAT,PR,InAXITMAX,MAX)
263 	 CALL 17,ic)k.c.)(Ry xm,pm,(; ,1Ax 5 i1,1AX / 1)
264 	 Tr:(PLAGI-.1,J4444/3.133,4444
	  265 	 3331 t .iRITECHOHT/2(\33)

266 	 2033 rOPti, AT(1H0,10X/ 11 .0)
_CALL DPRINT(k_AJNAXLMAX)

	  268 	 129 	 IrM60T,2034) 	
269 	 2034 FORMAT(110/10X/IPRI//)
270 	 CALL riPRINT(kR/CIAX,JM4X)
	  271 	 151 	 'VRITE(NUUT.,20743 	

272 	2074 IFIRMAT(1h0/10X1fRMI)
273 	 'i.RITF(N1OT1p)71   (IJ,.1...F-12
274 4444 COkTINUE
275 	 DO 27  J=1,JMAX
276 	 H(J).=0,.
277 	 27 CONTINUF
278 1110 CMITINUE

_279  	1E-MIA,K)142,141/141,
2110 	 142 DO 2 S N=141NOAX 	
281 	 ,17-PP()
282 	 GPFX(I)=GPm(T071) 	
2 	 HEA0x(i)=HrA'Cici,N)
2E34 	 H(J)=51(GPmX,JEADXAEMn(J),10)
285 	28 COHTINUE
206 	 143 CONTINUE

	 2E17 	DO 29 J=10JmAx 	 .
288 	 REYM(J)=(J)*SCEM1(J))/(AREA(J)*V1fjC)
289 	  1-RIC(J)=*0055*(1.+(2.*10.*00:1/D(J)4-10.**6WY'0(J))**9:131) 	 i

	 290 	 FF(j)=C(F14-1C(J)*XLP(i)4AS(P1O(J))01(J))/(J)2.*GPAV*MO*RHO
291 	 i* ( r ), I' A (j )44 *2 ) ) )
292 	 F(J),:FF(J).7V,(d)
293 	 SIIM(J)=(:4MMA(J)*(F(J)4P(J))—Pin(J)
294 	 20 oNTImuE
295 	CALL GnPRD(FF,,soti i,Dt!P., imi.X.xJ■iAx/1)
2 96   CALL GMSO0 (kRR,W,°,PIAX.P1)

	 2:97 	 CALL 6. -FI .Pi0(4\ j P,af.:12,P,VIAX/PIAX21) 
	  2 08fl 	 IF(FLA61 —1)451 .'459,451
	 299 459 	 IF (TIM, -TPR )451) 7 5q- 1 c r4- 	 .. 	 _.:.. 	 _ . ...— 	 t 	 ' , I,- ,,

300 	 458 wRITE(HUOT,2075)TImE 	 .



00fiGP AM

301 	 2075 FORI4 A1( 1 1 1 ,14X,InEP,U0(, IN6 PRINTOUT AT TIN:= 1 ,F14.7,/)

— 	 303 	 2021 VmPlArcu!otinx,IPEYi .A(J) , )/)
304  	 (J,RF:V.L(J),J.7.1/JMAX)
305 	 10.U,TIW.4TIT 2027)
	  306 	 2022 FORrAT(1H0/10:0 1 FRTC(J)I,J) .

307   oRITF(huT,1007)(J,FPIC(J),J=1,JMAX)
 	 308 — 	 WRITF(IInUT,2024)

309 	 2024 FOk1AT(110,10, 1 SU'l(J) 1 //)
	  310 	 WRITE(NOOT,17) (J)SU1(J);J=1,1JMAX)

311 	 444 	 1 IE MUT., 2037 )
312 _2037 FEPHAT(

1RITE.( 1 0T)]607) (J,OFLP(J),J=1,JMAX)
314 	 8 8 g '0TI T WOu T,2039) --

313 	 F. Li )=H( 0 ).-lE LP (0 )
_

	  319 	 301 	EM (0 ) =Flo ( J )-c,AM"A { J )*( E-< 0 )+F (,1 ) ) 	 . 	 _
	  320 	 1F(TIor-TPk)136,451,451

321 	 453 	 ORITC(HI10T/2071)TINF
322 	 2071 Fakhr‘T(Ill,14Y)!PUTPUT Vi,.RTAhLES AT TIME= 1 ,E14.7,/)
123 	 445 ',, RITF( . flUT.,2026) 	
	  324 	 2026 FORPAT(10,10)0 1 P-1(J),,GP)I.0) 

	325	 011 2076 J=1,,JMAX 	
326 	 FMC,(0 ) -4F7.'1( MU:JEFF
32'7 2076 CrMIL'ILJE
	  328 	 V,'RITI.::(W0Ts1007) (J)P1 (;(J),,, J'.1,PIAX)

329 	 VRITCANOUT,2n.19) 	
	  330 2079 FWM4TI1H0,10X,INM(J),05/:SECI,i)

331
312 	 00 452  17-11.7U1AX 
	  313 	 PO(T)=P(I)/144'. 	
	  114 	 452 ClIPTINUF. 	
	  3 1 5 	 VRITITAIIOJT,2072).
	  336 	2072 FO2MAT(1110,10X/IP(1).IPST I P/)

337 	 wPTIL(i00T.,1007) (I>PP(I), 1=1,11AX)
	  338 	 wRITE(r-Our,2055)
	  139 20 -5 Fr3kMAT(1H0,10WFF(J),FTI)

340 	 WRITECOJOT,1007i (J,FF(j),
	 341 	 TOR=TIT-4-riTPR_

	342	 136  C,6 T
	  343 	  DI] 61 J=2,X1-4x 	
	  REL(0)=ASI(PM(0).- , UU(0))/DELTAT)

345 	 61 Clii“ [NUE 	 _ 
	  346 	 DU 32 J=2,JmAx 	• 

34 IF(F!u.	 _(4).-__FRRIR/3.2.4 , 1'4„, 2Q1
148 	 32 ChNTP:UE
149 	 475 	 1,,IRITE(rItMJT,2071)TIN 
150 	 NRITF(WIUT,2026) 	

302 	 127 RJTEVMUT,2n2i)

3152035 FORMAT(IROolCX,IWI. , /)
116 	 WRITC(NrIOT,1007) (J,krIK(I),1=1,IMAX)
317 	 451_ 90 301 J7.71_12JnAX



	 _tNR TEC ,11.il_cr., 1007 ) (J,EMCCJ 	 JMAX_ 	 _________
352 	 wrt I 	 2079 )
353 	 `...101.) 1007 ) U., Er I _________
354 	 1.qR 	 ( LfilLiT, 2072 )

UP- (1')LIT.., 1007 ) 11. 2J'P III_ = 	 tIA$) 	 _ 	 _
	 _3.56 _ 	 viR I 'IF (; 	 205,5 ) 	 _______

357 	  WRITC(i4IUT.,1007) (J.,FF(J), J=11JMAX)
158 	 wRIr 	 tit Pf_11.7 2077/ 	

- --	 359	 2,077 r0PrAT( 1 1 1 ,14X,'FV ,IAL STFADY STAT 	 PA\RAMFTERS 1 )
360 	 • 	ORITW:41UT.,2„027) 	

PMUR1/)
z 	  1..,-RtTEP:itiT,,) lder.usi),J=2,JnA»)
	  363 	  v,'RITE WILT:2051 )
	  364 	 2051 FIIRPAT(1W),1c.):0 1 KUUNTI,/)

365 	 v,'R UTE  (LIMOT., 9999 )kint.PIT
366 	 ____5T(.1P
367 	 20.1__LF (Kilt It I'LL- LK W.1 .11.2 	 203 	
	 368 	 203 	 'olP. I TE 	 2057 )

.369 2057  PnPOAT(1H0/5>C1 ITHE MAXIMUM ALLOWARtA MU.OF ITO -A-TIONS HAS RUN 	 '
	 370	 IREACOFD,,/) 

171 	 STriP
3'72 	 202 KOUrtr-. KIJONT+1
371 	 TikE=Timi:+PELIAT
	  374 	 or) 10 ,I=2.,JMAX
	  375 	 EM•11(J
	  376	 10 CONTINUE-

	 :177 	 GO TO  1110 
378 	 END

`P.
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