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ABSTRACT

One of several synthesi

fte
U )

procedures available for

+

the realization o ransfer admittance is that of Linvill.

I'ﬂ)
o
ct

This synthesis procedure empldys an active element, a nega-
tive impedance converter (NIC), to shift the poles of
passive immittance functions from the negative real axis
into the complex plane to realize the desired transfer
immittance function.

The Linvill synthesis procedure is extended to
networks containing cascaded distributed RC elements and

the conditions which must be satisfied to realize a transfer

impedance using these distributed elements are defined.
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CHAPTER I. INTRODUCTION TO ACTIVE FILTERS

1-1 Area of Investigation

Active RC filters have become practical, reliable

and precise due to the advancing technology of monolithic

and thin film integrated circuit development and fabrication.
The application of microminiatureization techniques has
resulted in lower cost;

improvement of system reliability

and significant reduction of size. The practicality of
active networks is a direct result of the availability of

stable resistors and capacitors of small size with compen-

sated temperature coefficients.
Since active elements have become compatible with
passive networks, several active network realization pro-

cedures for driving point and transfer immittances,; and
transfer voltage ratios have resulted.1_6 The active element
employed may be elther a negative impedance converﬁer,7 a
high gain stabilized feedback amplifier or a gyrator. The
aptive ele@ement simply 1s used to shift the poles of

passive immittance functions from the negative real axis

intc the complex plane to realize the desired immittance
function. The ablility to control the pole and zero locations

in the S-plane using an active element permits the

design of highly selective



low pass, high pass as well as band pass networks

without the use of inductors.

This paper defines the conditions which must

be satisfied to realize a transfer impedance via the

al

Linvill network configuration, using cascaded

s}

elements, The specific configuration is shown i

Figure 13.



1-2 Historic Background

8,9
A uniform distributed RC element is defined

as a distributed tranSmissioh line having only series
resistance and shunt capacitance uniformly distributed
per unit lenpth. The distributed RC structure is of
multi-layer construction with the resistive laver and
the capacitive laver separated by a dielectric as shown
in Figure 1, In general the RC element is constructed
such that the length is much greater than the width. The
inductance of a typical element is negligible below

100 KHz.

In 1963, significant progress in the area of
exact network synthesis of distributed RC networks was
made by wvndrums. The svnthesis procedure utilizes a
positive real mapping technique which transforms the
transcendental expressions characterized by a distribu-
fed element into the simpler; non-transcendental form
or finite polvnomials. This transformation results in
lumped LC functions growing out of the original RC
functions, permifting the use of network theory10-13
developed specifically for lumped LC functions. Wyndrum
shows that the repeated use of Richard's theoreml4 to
extract unit RC sections from a desired impedance
function results inwthe realization of the desired

transfer or driving point function by a cascade

of a finite number of RC sections.



A method for the realization of transmission zeros was
presented using a stub as a zero preparation element
followed bv extraction of other RC elements to complete
the realization of the desired transmission zeros.

9
In 1965, O'Shea presented a svnthesis proce-

dure for drivin’ point and transfer functions using an
equivalent transformation techﬁique. The synthesis
procedure for the driving point impedance was identical
in capabilities to that presented by Wyndrum, but did not

necessarily result in a common ground network.

Work in the area of passive distributed network
svnthesis progressed with the cascade svnthesis of s
distributed networks presented bv 3canlan and Rhodes1 .
Their development used the transformation presented by
Wvndrum and is restricted to functions which may be
realized bv a cascade of two-port. RC sections, series
or short-circuited stubs, and shunt open-circuited stubs
leading to rational functions after transformation.
Another restriction imposed was that the network elements
all had commensurate lenth, i.e, RC = VT or multiples
thereof for each séction. Necessarv conditions for
realization of anv short circuit or open circuit
immittance parametecs together with the sufficiency

condition for simultaneous realization of anv two such



parameters have been formulated,

16
In 1966, 3tein, Mullizan, and Shamis developed

the necessary and sufficient conditions for the realiza-
tion of open-circuit URC voltage transfer functions.The
synthesis is in the form of commensurate length having
a common zround connection, The cascade network 1is
composed of realization cvcles containing a ''zero
preparationt element followed bv an RC element and
finallv followed bv a series or shunt stub to realize
the transmission zero. An extraction technique using
Richard's theorem was used to realize the transmission
zeros of the desired function. The authors used the
transformation presented bv Wendrum with an additional
step of transfor=min; from th¢ lumped LC plane to the

lumped RC plane.
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CHAPTER II. MATHEMATICAL CHARACTERIZATION OF ACTIVE

RC NETWORKS3

2-1 Properties of URC Flements

2-1.1 Basic Characteristics. A uniform RC line open cir-

cuited segment, shown in Figure 2, 1s characterized
< > o >

5
by the ABCD parameters8

A B cosh VRCS  RsnhVRcCSs
_ Vecs
< O VRCS sinhVecs coshHVECS (2-1)
~

where R and C are in ohms per unit length and
farads per unit length respectively. The equivalent

e

Z-parameters for the single RC segment are

2 cotb\ecs e asch \Vees

i N === e
o Z22| T | peschVRcs pcohVRCS (2-2)

Vecs VRCS

The expression for the transfer impedance for a

—

single open-circuited RC element is given by

L Rosch Vs
£z 5)= T o= (2-3)

and is characterized by a pole at the origin
followed by an ‘infinite number of discrete poles

in the S-plane positioned on the negative real axis.
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The pole locations of Z%; are located at

2 2
~
where U= &L and W= O/, DZAN o

A transmission zero is located at infinitv.

Since a single open-circuited uniform RC
element is both bilateral and symmetrical, the
roots of E%,Z and Z2; are identical. The open

circuit driving point impedances are given by
Z, = 222 - A co#hH VTS
. NS

The poles of the driving point impedances are

(2-5)

located at

2 2
= - ///‘Z_’n 7 = O)/J :_7J e OO (2-6)
and the zeros are located at
/ V2 2 .
5.—.——(’)’)4—;)‘ 2 7= O, /,21,,.60 (2-7)
T

in the S3S-plane respectively, as shown in Figure 3,

The poles of the driving point and transfer
impedances are negative real in the S-plane,
Consider the case when two RC elements of the
same time constant are cascaded as shown in
FRizure 4. Tﬁe ABCD parameters for this case are

given by

coshizs 5 sinhHNTS (B+#3)CoSINTS SInNTsS
L 2 VTS coshVzs simhVTs cvg#ﬁ?sﬁié§5%mbﬁzs
7/

(% +4%)

(2-8)

10
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The driving point impedance using (2-8) is

given by o .
Z (& +Fz)[(05/52\/2’—5 - )(—:i Sir vrg]
" R,& NTS cosh VTs SinAVZS (2-9)
The zeros of Z/ are the roots of
éf')AZ\/ZTS—;‘- ,Z)jgg = O (2‘10)

where (2-10) is equivalent to equation (8) in
Appendix C. The solution given by (19) and (21)
in Appendix C in terms of the constants under

consideration here are given by

/ -’ 1€
S/:-ﬁ_[Zﬁ-/:—Zl/ah /5/2]

A transmission zero at infinity arises from the
term ,—{-
{ZTS
The poles of #, are the roots of the equation

VTS coshVzs sinAVTs = & (2-13)

The poles are located on the nesative real axis in
the 3S-plane at the locations given by

S =

2
= —’f/_’/")z

0

C > M=C /, 2 ....
: /2 2 R -
- _ (/;7+ f) 17 (2-14)

—

12
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The transfer impedance'za,rfor an open circuited

two section RC element connected in cascade is

given bv

Lz = B rhala
T R VTS coshVZTS SinhHYTS (2-15)
with subsequent pole locations in the S-plane
: 2
given by S= — _(owz’-) 7‘/2
t ——
2 2 M‘O) /t 2,"‘
= — 41N (2-16)
T

Associated with (2-15) is also a transmission zero

at infinity.

In general,'§6 elements in cascade do not produce
any complex poles. All the singularities of the’
driving point impedance and the transfer impedance

lie on the negative real axis in the S-plane,

13



Transformation and Mapping, Distributed elements,
being characterized by hypétbolic functions, |
provide an infinite number of distinct poles and
zeros in the S-plane‘immittances. Due to the
large number of singularities in the immittance
functions,they become difficult to handle, in
order to conceptually visualize the frequency
response and shape of the functions under
consideration, PFortunately, it is possible to
conformally map these transcendental functions
into other complex planes where the originai
functions themselves become simpler, being
represented bv rational polynomials of a new
variable,

12
The first transformation carries the

distributed RC plane expressions to the distri-
buted LC plane

Ze (v5)= V5 Z&(S) (2-17)
Proceeding conversely, from the distributed LC

plane to the distributed RC plane

Ze(5) :_Zé\/_g_(_@ (2-18)
)

The transformation siven by (2-17) still contains

infinitely many poles and/or zeros in. the:
immittance functions but these singularities are

shifted from the negative'réal axis in the

14
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S-plane to the positive and negative imaginary axis in

o

the VS plane; they remain equally spaced. An additional
e 8 N

transformation

W= ZanhVs

is required to provide functions that mav be realized
in terms of finite polynomials. This transformation
results in lumped LC functions in the W-plane which
may Dbe analyvzed using network theorv developed
specifically for lumped elements. The S-plane to W-
plane transformation of Zy and EZZ/parameters for
fwo distributed RC elements in cascade is shown in

Figure 4.

It is necessarv to tecome familiar with the
\534>VG§t4’ A transformation and the mechanics by
which the infinite number of poles and zeros become
finite terms in the W-plane, The relationship of the
W-plane coordinates /= Ei'ﬁ/;fz/ in terms of the
Vs’ plane coordinates are developed in Appendix A

via equations (8) and (7) and are given below

s onhVTFU COShVZT U
/ = 2 B (2-19)
COSAT V= StnleT
L2, - s VTV cos VTU (2-20)

C’o;‘?fz“ V + Sl T

In Figure 5, various regions are identified in
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S—=Vs— w planes respectively. The mapping from
S— Vs plane is not conformal since, although |
the mapping is on a one to one basis, the angular
relationships are not‘preserved. The VS —= W
plane mapping, however, is conformal. Figure 6
shows the several locus points which are mapped
from the 3 -plane into the W-plane. 3ince the
W-plane plot converves rapidly around > =/ (as
shown in Figure 6),an expanded area about >,=/
is shown in Ficure 7.

The semi-infinite strip in the\rg--plane
bounded by the parallel lines V=0 and V=¢%; map

entireiy into the W-plane. A strip twice the

. 2197 . .
W1dth,V=J%; y Mmaps into the W-plane twice,
once every interval [ . Using a normalizing
= .

constant VT in Figure 8, together with Figure 9,

the S -plane to W-plane transformations of the semi-

' T
infinite strips of width‘ﬁ; are shown in Figure 10.

The information presented in Figure 6 is
eXpanded and presented on a more accurate scale
and shown in Figure 10. Using this enlarged
figure, certain boundaryv limitations are observed.

U=V |, which is the real frequency

contour in the S-plane, is also the boundary of -

18
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the negative real axis. Any resnonse realization
performed in the'w-blane which has poles within
the region bounded bv the cufvei)rk/ and the 1line
extending fromZ=O to 2,=/ is therefore
unstable. Figure 10 shows the boundarv limits

between stable and unstable regions.

Since the VS -plane and the W-plane are
svmmetrical about their imaginary axis, Figures 6
through Figures 10 consider onlv symmetrical half-
planes. The remaining half-planes may be visualized
to be mirror image figures presented about the jJFLx

axis.
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2-2 Linvill Configuration Network
: 1
The Linvill configuration is composed of two

passive networks interconnected in cascade by a negative
impedance converter (NIC) as shown in Figure 11. The
general expression for the transfer function using the
Linvill configuration may be developed by multiplying

the ABCD matrices of each passive and active section
while preserving the order of multiplication, Using the
ABCD parameters of a current inversion negative impedance
converter developed in Appendix B and a general matrix
for both network NA and Ne » the overall ABCD network

parameters are determined as

A B A‘ Bl K( (@) A 2 BZ

. ~ (2-21)
K,

C— D Cl D‘ O - _k; Cz Dz

The result of multiplying (2-21) is the overall matrix

for the cascaded configuration

A 8| |[KAs-EBG ][raB-KBD.]|

Cc D
TOTAL

[K.G A - }E(_(?'_D, G| [K.CBr g‘ZD. D, ]

(2-22)

Since interest is focused on the transfer function for
the Linvill configuration, onlv the ABCD to Z-parameter
transformation shall be performed to obtain the transfer

function!



LINVILL'S NETWORK CONFIGURATION
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AV
~3

}
C rovac (2-23)

ZZ:T =

The expression for the transfer function via (2-22)

becomes,
/
-ZZ/T' = (2-24)
}(,C«AZ - ﬁ D(CZ
K~
but
— _ /
/ = Zz 73 (2“253)
: /
. .
: Z@ (2-25b)
8
142 - .._é____ (2~25C)
2, ?
CA)
D, =~ = _Zz (2-25d)
ZZ/ CA)

Replacing Z,Z(B) in (2;-25c) with 22/ & since the passive
network is reciprocal and inserting back into (2-24)
yields

(A)

e (8)
-2 Z Za
ié/r = i (2-26)

7_722 (A)__ A/'l z// (3)

1f Az=4 , then (2-26) becomes

Zarr M L2/ Lo
2}2<M)__}(29/an

(2-27)

]




where

e

VA/C

(2-28a)

(2-28b)

28



CHAPTER IIT, PROPERTIZS OF ACTIVE RCoNIC CASCADED

NETWORK S

3-1 Characteristics of Transfer Functions in Cascaded

RC Networks

The general expression for the transfer impedance

of a Linvill network configuration was developed in
. 1,12
section 2-2 equation (2-26) and is given again

Kz (A)

-~ AzZ2) = (8
5 (2 2) 7. 7,
a7 = (A) &
22 —“"/ZZI/< )
This expression holds for anv general network Na and

(3-1)

hJB -« Identifying the networks_NA‘ and Ne as distri-
buted RC elements, consider the case of networks composed
of single RC sections being identified as Na ana Ne

(A) (A) (B (B)
shown in Figure 12. Holding the restriction RC =RG =C
remain constant, the Linvill transfer impedance using
single RC elements is developed below.

The W-plane transfer and driving point impedances of

a unit RC element are given below

A
Z// = ZZZ = Nl (3-2)
YA
Lz = L& NIZH ' (3-3)
[ w

Insertiny these terms intg equation (3-1) vields
K (A _(8) z
()R R (1-w?)
(A D)
e [TAR ) S & ;}VV

(3-4)
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LINVILLS CONFIGURATION FOR REALIZAT ION
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The transfer function given by (3-4) has the following
singularities: |
| a) A W-plane pole at the origin which maps into
an infinite numbef of interlaced poles in the
S-plane,
b) Two W-plane zeros atZi::t/ which correspond
to transmission zeros at infinity}in the

S-plane,

Consider now the cascade of two RC elements in
cascade contained within NA and similarly in ﬁJB e
This cascaled RC - NIC - RC configuration is shown in
Figure 13. The required expressions for the two ﬁ@'

elements in cascade are given below
&)

2 z
2! W
A
w/] T +VZ (3-5a)

@  f®

22 (1-#7) (3-5b)
vz vZ
W P(A) ” (A) ]
8 )
2..72/ ) = (/ w ) (3-—5C)

VZ: s I/E:
e e

)
A2
ZZZ "4 w V= . V—Z—: -

ain " gen

Inserting the immittance expressions into (3-1) vields -



ZzzT(W)* (f‘ﬁ> [!——sz2

B W F?zwz NT VT _K,W ?\B)W VT, NT (3-6)
s gD(B) ?(B) 2 { e ® P(g\) =10

Using the following substitutions in (3-6)

P(A)
{A) 2
@‘ = _P—‘"E'A) (3-—73)
@ ™
#31 = =X (3-7b)
KO- T, VT
R R, (3-7¢)
S VT VZ
e B® (3-7d)

results in a simplification of (3-6) after slight

(_;__ KZ)( | Wz)?
12 @)
(B> KZKCA)

w g &) (8) (A)[
[ﬁ -KZ ] B(A)KLB) M, P(B)K{A) i

In general (3-8) may be written as

manipulation

Zirr(MO =

11(3-8)

(3-9)

where

. (/: -
- R(A)Kas)awz ’3'(5)1/\ ) (3-10)

)
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and 4 (8) !
(A) _fi__. — e
Q- — i (3-11)
— -11
B K¢ E._fiT_. -,
B;(B) e CA)

are real constants,

In equation (3-11), QQ may be either positive or
nezative depending on the sign of K7z , the negative
impedance conversion ratio, and due to the difference
tefm, the magnitude of F<% will also alter the sign
of (3-11). It is for this reason that the numerator in

(3-9) contains the * térm,

The S-plane pole solutions to (3-9) are derived in
Appendix C., PFor the case when the W-plane transfe;
impedance is of the form
M(1-w?)®
w (wh q2)

Zaur (W) = (3-12)

This corresponds to the S-plane transfer impedance

given by

EZH'(VSﬂ) - -

SmhVTS CosKVTS (tank Vs +Gr) 313

the singularities of which are located at points

2

A (nrfé)zfﬂ
S'— - ____%__——- 7= = ’,2'... (3‘1‘1&)
S= - m , M=, 4,2, ... (3~14b)




[ =0, I e,
S=- 2+ z ton @11 (32140)
7M=01,2, ...
;“-!2
5___ [/“F+zia ] ? ' (3-144d)
M=9,1,2,..

where the poles given bv (3-14a) are third order poles.

From equation (3-14) we see that no complex 3-plane

pole solutions exist, therefore this selection of circuit

constants which provide positive

k(8 s
. W—-Wz 2 _
1.€. B, (B) is positive do not permit
88 1 () M

shaping of the transfer function bv manipulating pole
positions since all the poles are restricted to the
negative real S-plane axis,

A more interesting case exists when Q;{ is negative,
under this condition the W-plane transfer function

given bv (3-12) becomes

w{iwse Q')

. | . . .
The corresponding V.S -plane transfer function is given

bv -

2%7'(V§7) = ad

SInh VTS cosh3VTs (tanh - §,2 ) (3-16)

for which the 3-plane pole solutions are

2 .., (3—17&)

1 ’

2
S=-(m+32) T .0
z
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oo - XM Lo 2, ... (3-17b)
=
g = — /o }4— C/[f+1] @]2 FS‘J)“’
[1- 3 L+Qz 4 3 (3-17c)
;(-C>J2“,.
sea[ R HE-8)] T o
K <DJ,2

The S-plane solutions of (3-17) do provide complex pole

pairs in the transfer function.
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3-2 Realization of Pole Pairs via Linvill Configuration

The Linvill network configuration for realization
of transfer impedances using cascaded RC elements can
provide the following W-plane pole roots:

a) Zeros of higher order at the points > = * |
depending upon the number of cascaded sections
under consideration,

b) A pole at the origin, independent of the number of
sections under consideration.

€) A conjuvate pair of poles either on the imaginary
W-plane axis or the real W-plane axis due to the
difference term in the denominator of the transfer

impedance,

Due to the network configuration, one of two possible

cases mav €evolve:

) . (A
a) QICB 1s greater than @, ( ref., equation (3-7)

sec., 3-1 ). Under this condition when the NIC
conversion ratio k} is zero, the roots lie at

. . , - -
points /ﬁé,A » see Figure 14, As the conversion
A )]

i

B cs)K(Ai

\ .

+ infinity, along the imaginarv W-plane axis.
(A) (8) (B

' K . -
When ;<“”6<‘E2A) the poles lie on the real

Hi?)
axis and are at the origin when K5 = I
P((B) = K

Fork35>‘;zi) the poles are on the imaginary axis
\

ratio k; approaches the poles approach

¥
and approach B& R in the limit.



POLE PAIR LOCATIONS FOR LINVILLS SYNTHESIS
USING CASCADED RC SECTIONS

e B
N
"'7——'1 4
\g AXKa=0 \/;’73, AY Ko
v ’
~ By K>>I L BVR
\/B,(a) X \_{}AJ BXKZ:O
/A /8/ /
> > < < QQ <& .
N y
B B X
AX Ay
Y A
FIGURE 14
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) (8)
b) @; is reater then ?; . Under this conditdaon
. when the NIC conversion ratio Kz is zerec, the

poles lie at B£B' , see Figure 14. As the

(8)
conversion ratio L{ﬁ approaches —— the poles
()
A), - (8]
approach the oririn, When-ti-<K}<’5' aY the
K 8,(8) ¢ (A)
poles lie on the nositive and negative real W-plane
] ?p%K(e)
axis and approach infinity as¥, > _—_ |
ﬁ,(A)K cs) §‘<B)}(f1\)

For'Ki7 ﬁéa)K*?n , the poles appear on the imazIinary
. ! (
axis and approach the poipts ASA as K, gets

very large,

The case when the W-plane pole locations lie. on
the imaginary axis corresponds to the negative real axis
S-plane poles and is of no interest since shaping of the

transfer impedance is not possible,

When the W-plane pole locations exist on the
real axis, complex S-plane pole solutions are obtained.
Precaution should be taken since RH 3-pole solutions

are also possible,

THEOREM I, A sufficient condition for thé realization of
a transfer impedance with complex poles
using cascaded RC elements in a Linvill
configuraﬁéon is that the W-plane poles
lie on the real axis at points not less

than 1.0903 .



THEOREM ITX.

A transfer function with S-plane poles
in the LHP can be realized using cascaded

RC elements in a Linvill confi:iuration,
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3.3 Example of the Linvill RC Network Configuration

Consider the example shown in Figure 15. The
time constant for the network is =3 . Using the values
given in Figure 15 and substitutiny into equation (3-7)

section 3-1 vields

ﬁ,(A)= o.4cs (3-18a)
ﬁCB)z 792 (3-18b)
K® < 0,935 | (3-18¢)
KBz 2.5 (3-184d)

inserting these values into equation (3-8) section 3-1

yvields

Z'”(W) ( )(582 ’273K2) w[wﬂ(jl;.:z.;ewﬂ)z (3-19)

§82-27.3¥2

Using Figure 10, it is seen that the real frequency
contour intersects the W-plane real axis at S= % ).0903
which represents the boundary between the resion of
stabilityv and ins:tabilitv, . Poles on the real W-plane
axis located at points less than 5 = [[0F03 correspond

to poles in the RH S-plane,

The value of K’z which provides the value for

Q-.=\1.0903 is found to be/ H2-0.614. Choose Kj={ ;

then the total expression becomes

Zair (W) = §057'(’~ 2)2 (3-20)

W[w ~:—< ~10803 ) j




EXAMPLE OF LINVILUS CONFIGURATION FOR
REALIZATION OF TRANSFER IMMITTANCE USING
TwO RC CASCADES

584 274 4.16 0143
T~ T~ AT~ TN
0.510 LI 0.721 20.96
K| =+
\ o- — © O
O Ko=+. 614
T=3

ALL VALUES IN OHMS OR FARADS

FIGURE 15
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S—PLANE POLE LOCATIONS FOR [ Q™' Q=112

| =110
~ 0.056
Lo/ = g 35 COSHN3S (TANHE - )
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T=3
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KX op-=

FIGURE 16 -
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The roots of equation (3-20) are located at the

foliowing points in the S-plane

_ _ 12 AT% 2
s=o0, -2L 4~ -9
and AT C 47T
s= > jA° )i‘j.?ﬂz)j\jsﬂz,

2T T
The root locations are on the imaginary axis since the
limiting value of §=/0903 was used., For the case when
the value of § is greater thanl.0303 , the 3-plane

root pairs become complex as shown in Fisure 16,

A computer plot, Firure 17, is obtained bv letting
s5=jco and the response is presented in db form, The
zero line is usei as reference where the trénsfer
function is unitv. In actualitv however, the value of
h4 in section 3-1 equation (3-9) is not unity but -
,OSEszé which represents a shift of ~Z20-2 db. The
response of the example is plotted over two decades 1in

2
terms of the normalized units iﬁl
ZEC
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CHAPTER 1V, CONCLUSION

4.1 Summary of Results

The necative impedance converter in the Linvill
configuration is an effective active element in producing
complex poles in the transfer function EZz@f when the
paSsive networks are RC cascades who by themselves do

not posses complex S-plane poles.

The pole producing term in the W-plane 2?2/7
function is (/y{ éﬂz), which produce LHP poles in the
S-plane with the restriction @}[0705. For &, < /0203
the poles are in the RHP and the response becomes un-
stable,

The transfer impedance venerated via the Linvill
prqqedure using only cascaded RC elements contains an S-pl
pocle at the origin. This prevents the svnthesis of band-
pass filters emploving only EE cascades without the
use of shunt stubs, This limitation of the circuit is
not so serious since the voltage transfer ratio for
the COnfigurationvshdwn‘in Figure 13 does not contain

anv poles at the origin in the 3-plane,

4.2 Suggestions for Future Work
Since a variety of network svnthesis procedures

have been developed, the boundarv limitations for

realizability and stabilitv are not necessarily included



in the development of such procedures, A similar procedure
used in this thesis should be extended to other configura=
tions to determine the limitations of realizability

criteria and to identify the boundaries of stability.

An extension of the cascaded RC elements to cascaded
and shunt (stubs) RC elements in the Linvill configuration

is suggested,
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APPENDIX A

8
Consiaer Wyndrum's positive real transformation

S, (Vs ) = é&nféé?\(§ﬁ = 57-+g7;£2,

Pyl

(1)

where the coordinates in the V3 plane are Cﬁ{j V.
Using the substitution for ZZVWé and letting Vfifljﬁfb/
equation (1) becomes |
a 24
a Snh (2?¢/*~7 E'L/)
wné:?—»/s’ = : 2)

cosh(Gu+72 v)

57né?(VE:Z/+u/V7?L/)
[USA?(V?FZ/+L/VZﬁL/) (3)

Zanh é%VGS7:=

expanding (3) vields,

5%0V??/(v55JVfﬁv’fu50wﬁjVZ’V coshvz U

ibﬂé' © = CaﬁbV?QJC&S&fﬁ?v“#SWWQ//?~VSW#%ﬁfCJ (4)
Substitutaing Slnbj'ﬁrjlsfﬁ & and C'osbj&: COS ©

into (4) and multiplving through by ‘the conjugate ot the
denominator vields equation (5) after simplification

" and identification of terms.



SIHAVTY COSHVZ U+ 5 stV Y cosVT V
COSE/ TV o+ SimhH VT U (5)

szwéz4§§7:

The coordinates ot the Zo»A plane in terms of the

coordinates of the V'S plane are given bv (6) and (7)

below

SrmhVZ U COSAHYT &
— 6
COSZF LV w syhANVZT U (©)

2, =

SsnVE Vv cos VTV

2 =
o8 YT 1w St SSE (7)

Equations (6) and (7) provide the required transformation

from the distributed LC plane to the luwped LC plane.
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APPENDIX B

7
The ideal negative-impedance converter is an

active two-port device with the property that the driving
point impedance or admittance at one terminal pair is
the negative of the impedance or admittance connected at

the other terwinal pair,

The description of the NIC properties are obtained by
considering the relationship between the terminal
voltages and the currents of the two-port device,

. Consider the fwo-port shown below;

2

+ %“911 |z<_'.+
. INIC |

-_ 00— —
11 Z'

where the voltate and current. interrelationships are

given by the hybrid g parameters

'2: ?// 5/2 £,
E (1)

52/ 522 Iz

The input admittance jéf at terminals 1l-1' is given

/

by

a 5/2 ?2/
<= Y = -~ T2IT
E/ /)V(/_//) 5// jzz+ Z[_ (2)

50



For an ideal NIC,

/
Yy = = 2, 3

This can only be obtained if
Fn =0 (4)

522 = O (5)
and o
g/z ?2/:/ (6)

Inserting these values of the hvbrid parameters into
equation (1) vieélds

Z,

Vd

£z

(7)
;. o | |%=2

Since the Linvill configuration consists of
elements in cascade, the ABCD parameters are more useful

and shall be developed to exﬁress the NIC characteris-

tics. Using the transformation given below

A 8 L 22
o, (8)
= éﬁ A
C D ?2/ ?z/
the ABCD parameters are identically
/
A - jZ/‘;" (9-. a)

5= o (9‘b)
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C=Q (9-¢)

D=2 Gz ' (9-4d)

There two tvpes of negative impedance converters,
current inversion negative impedance converter INIC and
voltage inversion negative impedance converter VNIC.
The ABCD parameters for an INIC .are given bv equation
(9), and the ABCD parameters for a VNIC are given

below

A
Tz,
= (10)

O G

g

In order to standardize on the notation for the NIC
with the notation used in the Linvill configuration,

the following substitutions shall be made,
;-
= 11
gz F20 T & an
L. =
Fzs

The generalized ABCD parameters for a NIC using the

&7 (12)

notation of (11) and (12) are

A B ;o

Il

(13)

T



where the D term mav be either positive (VNIC) or

negative (INTC).
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APPENDIX C

The equation for the transfer impedance using a
cascade of two RC sections per network in the Linvill
configuration shown in Figure 13 is of the form

A7 Cr-n?) ?
W (e QZ) ' (1)

Lzir (W)=
L&

where Q, is real,

Using the transformation W= Zanh VZ< to transform

(1) from the lumped LC plane to the distributed LC plane
vields
A7

SIHIVEE CoshNTT ok Ts e g2) (2D

22/74‘.2 (\FS—') =

where the roots of C‘OS/) VZs are

VE = (2+2)7  7=0/2 ... (3
VS
and the roots of S/»AH VZ< are

Vs = 7 27

4
n=0,42 ... (4)
e’

4 -
To evaluate the roots of Zanh VZs = a° , 1t is
observed that two possible root pairs exist,
' z 2
lanh’ Vs -~ &2 = Q (5)

and

Z(OM/,'Z?ZS '“, 622 ‘:‘:‘0 (6)



55

Consider the first possible root pairs

Zanh® VZs » Q,Z =0 | (7)

Equation (7) is composed of the following produst terms,

<L‘Gn/>\/z‘s +\/‘ 4, )( tanh VTs ~J'@,> =Q (&)

Consider the roots of the first term of (8)

Zanh Vs = 73262, _ (9)
using the identity ﬁbnéﬂ@FﬂerfoQE§§ equation (9)
COSAHVTS .
becomes ‘
Snh VZS = - 18, coshVTs (10)
or |
Vs ~Nzs . Js - Vs
e - e :j Q/[e + & :I (11)
regrouping terms
. Vs ‘ -Jzs
-Vzs
dividing both sides by (I—j &) & yields
'8, zVZs 4
/ = (_/._iv’_“_) = (13)
/=t (5)]
but * -1 | —
. 4 ,+2Zm
1+ & 1+) & I€tor' G, -2 ) |
' =l —€ (14-a)
/= &, /“Jé;?/



X / ) fZMﬁ}
-(;/+1/f?, (J 2Zihié;, J

— 1= & (14-b)
\/““J &
since é%, is real.

Inserting back into (I3) vields

[ u'zz‘au"a,-f\/?mﬁ"J 2Vzs
. <

/) =& (15)
but JQ_,*)*)/I
j= € (16)
therefore
- . /_, _ . - '
2Vrs J 2117, g 2tau & 17y

where = (m-m}:
The roots contributed by (17)
lie on the imaginary axis in theV S plane due to the

absence of a real component, The roots of (9) are

given below

VS = d EZTF——ZLKQMQ]

C:O,I,Z,

(18)

Considering the seccond product term of (8) and

solving for the root locations results in:

By (L9 ) - &

N8+

Z &
[+JZ"7H+JZOM 6_{1 (19)

J@—H
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. ) Q. —1 ,
again as before el [: | ,resulting in the following
j'&‘—f"f
roots
, . .y fi:Z(M—m)+l
NG =J [”ﬁTz- 2 tan Qf] = 1,2, ... (20)

AT '

Note that equations (17) and (20) are identical.

Now, considering the roots of equation (6), namely

2

danhi Vs - 8, =o (21)

which can be represented by a product of two terms,.

(ZantV/es - &, ) tanhVTs 8, )= O (22

We consider the first term and use the same identitv as

in (10), therefore

Sh VTS = Qn COSIVTS (23)
or —_—
vzs _J/rs Vs - Vzs
- = &) & + &£ .j
< 2 (243
_Vzs
Regrouping terms and dividing by(ﬁ%-+A)é" vields,
&y~ 2/zs
/= —— e ‘
&z + / (25)
6 -/
but Q?‘/) €>£O7€(©:+,)
Q)_‘*’/ (26)
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where

672"/
Zg (2

:%f/@+z{+JZMI’+J§ 7

1
and 5:0)4 for (22 > =0
Sz +) < O
Inserting (27) back into (25) yields

[ -Qo%}gz;t{+\_('2mr/t+\j§7 2 Vrs
& * J@

- = (28)
J1T+J?nﬁr’ :
but =|=¢g therefore (28) becomes
gt [ b ) 82 +J(zmn+§)] 2Vcs
e = | & e
(29)

Solving for the roots of the first term of (22) yields

&, -1 l"J"‘“ [/(m) @ 309

-t.

Fe =t |2

..?(&1?%}
’12;

A similar counterpart for equation (27) is obtained

by solving for the roots of the second term of (22),

namely
1+ 2 ml +szf- (31)

78 {+432 —
e ) ég? [ 55 WA W= 1,2 .

and proceeding in a similar fashion as above, the second

set of roots for (6) are given below by

o —_
55 [ g | (32)
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