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ABSTRACT  

One of several synthesis procedures available for 

the realization of a transfer admittance is that of Linvill. 

This synthesis procedure employs an active element, a nega-

tive impedance converter (NIC), to shift the poles of 

passive immittance functions from the negative real axis 

into the complex plane to realize the desired transfer 

immittance function. 

The Linvill synthesis procedure is extended to 

networks containing cascaded distributed RC elements and 

the conditions which must be satisfied to realize a transfer 

impedance using these distributed elements are defined.. 
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CHAPTER I. INTRODUCTION TO ACTIVE FILTERS  

1-1 Area of Investigation 

Active RC filters have become practical, reliable 

and precise due to the advancing technology of monolithic 

and thin film integrated circuit development and fabrication. 

The application of microminiatureization techniques has 

resulted in lower cost; improvement of system reliability 

and significant reduction of size. The practicality of 

active networks is a direct result of the availability of 

stable resistors and capacitors of small size with compen- 

sated temperature coefficients. 

Since active elements have become compatible with 

passive networks, several active network realization pro-

cedures for driving point and transfer immittances ,and 

 transfer voltage ratios have resulted.1-6   The active element 

employed may be either a negative impedance converter,7 a 

high gain stabilized feedback amplifier or a gyrator. The 

active elemement simply is used to shift the poles of 

passive immittance functions from the negative real axis 

into the complex plane to realize the desired immittance 

function. The ability to control the pole and zero locations 

in the S-plane using an active element permits the 

design of highly selective 



low pass, high pass as well as band pass networks 

without the use of inductors. 

This paper defines the conditions which must 

be satisfied to realize a transfer impedance via the 

Linvill network configuration, using cascaded RC 

elements. The specific configuration is shown in 

Figure 13. 

3 



1-2 	Historic Background  
8,9 

A uniform distributed RC. element 	is defined 

as a distributed transmission line having only series 

resistance and shunt capacitance uniformly distributed 

per unit length. The distributed RC structure is of 

multi--layer construction with the resistive layer and 

the capacitive laver separated by a dielectric as shown 

in Figure 1. In general the RC element is constructed 

such that the length is much greater than the width. The 

inductance of a typical element is negligible below 

100 KHz. 

In 1963, significant progress in the area of 

exact network synthesis of distributed RC networks was 
8 

made by Wyndrum . The synthesis procedure utilizes a 

positive real mapping technique which transforms the 

transcendental expressions characterized by a distribu-

ted element into the simpler, non-transcendental form 

or finite polynomials. This transformation results in 

lumped LC functions growing out of the original RC 
10-13 

functions, permitting the use of network theory 

developed specifically for lumped LC functions. Wyndrum 
14 

shows that the repeated use of Richard's theorem 	to 

extract unit RC sections from a desired impedance 

function results in the realization of the desired 

transfer or driving point function by a cascade 

of a finite number of RC sections. 

4 



A method for the realization of transmission zeros was 

presented using a stub as a zero preparation element 

followed by extraction of other RC elements to complete 

the realization of the desired transmission zeros. 

9 
In 1965, O'Shea presented a synthesis proce- 

dure for driving point and transfer functions using an 

equivalent transformation technique. The synthesis 

procedure for the driving point impedance was identical 

in capabilities to that presented by Wyndrum, but did not 

necessarily result in a common ground network. 

Work in the area of passive distributed network 

synthesis progressed with the cascade synthesis of 
15 

distributed networks presented by Scanlan and Rhodes . 

Their development used the transformation presented by 

Wyndrum and is restricted to functions which may be 

realized by a cascade of two-port. RC sections, series 

or short-circuited stubs, and shunt open-circuited stubs 

leading to rational functions after transformation. 

Another restriction imposed was that the network elements 

all  had commensurate lenth, i.e.  RC = √τ  or multiples 

thereof for each section. Necessary conditions for 

realization of any short circuit or open circuit 

immittance parameters together with the sufficiency 

condition for simultaneous realization of any two such 

5 



parameters have been formulated. 

16 
In 1966, Stein, Mulligan and Shamis developed 

the necessary and sufficient conditions for the realiza-

tion of open-circuit URC voltage transfer functions.The 

synthesis is in the form of commensurate length having 

a common ground connection. The cascade network is 

composed of realization cycles containing a "zero 

preparation" element followed by an RC element and 

finally followed by a series or shunt stub to realize 

the transmission zero. An extraction technique using 

Richard's theorem was used to realize the transmission 

zeros of the desired function. The authors used the 

transformation presented by Wyndrum with an additional 

step of transform-ing from the lumped LC plane to the 

lumped RC plane. 

6  
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CHAPTER II. MATHEMATICAL CHARACTERIZATION OF ACTIVE 

RC NETWORKS  

2-1 Properties of URC Elements  

2-1.1 Basic Characteristics. A uniform RC line open cir-

cuited segment, shown in Figure 2, is characterized 

by the ABCD parameters8 

(2-l) 

where R and C are in ohms per unit length and 

farads per unit length respectively. The equivalent 

Z-parameters for the single RC segment are 

(2-2) 

The expression for the transfer impedance for a 

single open-circuited RC element is given by 

(2-3) 

and is characterized by a pole at the origin 

followed by an infinite number of discrete poles 

in the S-plane positioned on the negative real axis. 

8 
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The pole locations of Z21 are located at 

(2-4) 

A transmission zero is located at infinity. 

Since a single open-circuited uniform RC 

element is both bilateral and symmetrical, the 

roots of Ƶ12  and Ƶ21, are identical. The open 

circuit driving point impedances are given by 

(2-5) 

The poles of the driving point impedances are 

located at 

(2-6) 

and the zeros are located at 

(2-7) 

in the 3-plane respectively, as shown in Figure 3. 

The poles of the driving point and transfer 

impedances are negative real in the S-plane. 

Consider the case when two RC elements of the 

same time constant are cascaded as shown in 

Figure 4. The ABCD parameters for this case are 

given by 

10 
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The driving point impedance using (2-8) is 

given by 

(2-9) 

The zeros of Ƶ11 	are the roots of 

(2-10) 

where (2-10) is equivalent to equation (8) in 

Appendix C. The solution given by (19) and (21) 

in Appendix C in terms of the constants under 

consideration here are given by 

(2-11) 

(2-12) 

A transmission zero at infinity arises from the 

term 

The poles of Z11 are the roots of the equation 

(2-13) 

The poles are located on the negative real axis in 

the 3-plane at the locations given by 

(2-14) 

12 

and 

anemeth
StrikeOut



The transfer impedance Ƶ21τ  for an open circuited 

two section RC element connected in cascade is 

given by 

(2-15) 

with subsequent pole locations in the S-plane 

given by 

(2-16) 

Associated with (2-15) is also a transmission zero 

at infinity. 

In general, RC elements, in cascade do not produce 

any complex poles. All the singularities of the 

driving point impedance and the transfer impedance 

lie on the negative real axis in the S-plane. 

13 



2-1.2 Transformation and Mapping. Distributed elements, 

being characterized by hyperbolic functions, 

provide an infinite number of distinct poles and 

zeros in the S-plane immittances. Due to the 

large number of singularities in the immittance 

functions,they become difficult to handle, in 

order to conceptually visualize the frequency 

response and shape of the functions under 

consideration. Fortunately, it is possible to 

conformally map these transcendental functions 

into other complex planes where the original 

functions themselves become simpler, being 

represented by rational polynomials of a new 

variable. 

12 
The first transformation 	carries the 

distributed RC plane expressions to the distri-

buted LC plane 

(2-17) 

proceeding conversely, from the distributed LC 

plane to the distributed RC plane 

(2-18) 

The transformation transformation given by (2-17) still contains 

infinitely many poles and/or zeros in the 

immittance functions but these singularities are 

shifted from the negative real axis in the 

14 



S-plane to the positive and negative imaginary axis in 

the √s plane; they remain equally spaced. An additional 

transformation8- 

is required to provide functions that may be realized 

in terms of finite polynomials. This transformation 

results in lumped LC functions in the W-plane which 

may be analyzed using network theory developed 

specifically for lumped elements. The S-plane to W-

plane transformation of Z1, and Ƶ21 parameters for 

two distributed RC elements in cascade is shown in 

Figure 4. 

It is necessary to become familiar with the 

W transformation and the mechanics by 

which the infinite number of poles and zeros become 

finite terms in the W-plane. The relationship of the 

W-plane coordinates W = Ʃ1 + j Ω1 , in terms of the 

√s  plane coordinates are developed in Appendix A 

via equations (5) and (7) and are given below 

(2-19) 

(2-20) 

15 

In Figure 5, various regions are identified in 



S-- PLANE 

RC PLANE) 

√S-PLANE 

PLANE 

ƵLC(√s) 

W- PLANE 
(LC PLANE) 

ƵLC(W) 

• o 

FIGURE 4 1
6 



S PLANE PLANE W PLANE 

W=TANHff-§I  

NORMALIZED FOR t= I 

IDENTIFICATION OF CORRESPONDING 
REGIONS 

FIGURE 5 

1
7

  



W planes respectively. The mapping from 

plane is not conformal since, although 

the mapping is on a one to one basis, the angular 

relationships are not preserved. The 

plane mapping, however, is conformal. Figure 6 

shows the several locus points which are mapped 

from the S -plane into the W-plane. Since the 

W-plane plot convert es rapidly around 	/ (as 

shown in Figure 6) ,an expanded area about 	= 1 

is shown in Fiure 7. 

The semi-infinite strip in the √S -plane 

bounded by the parallel lines V=O and V= r= map 

entirely into the W-plane. A strip twice the 

 
width, V = 2π/√τ, maps into the W-plane twice, 

once every interval π/√τ. Using a normalizing 
 

constant √τ  in Figure 8, together with Figure 9, 

the S -plane to W-plane transformations of the semi- 
 

infinite strips of width π/√τ 	are shown in Figure 10. 

The information presented in Figure 6 is 

expanded and presented on a more accurate scale 

and shown in Figure 10. Using this enlarged 

figure, certain boundary limitations are observed. 

U= V , which is the real frequency 

contour in the S-plane, is also the boundary of 

18 
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the negative real axis. Any response realization 

performed in the W-plane which has poles within 

the region bounded by the curve U=V and the line 

extending from Ʃ=0 	to Ʃ1=1 	is therefore 

unstable. Figure 10 shows the boundary limits 

between stable and unstable regions. 

Since the √s -plane and the W-plane are 

symmetrical about their imaginary axis, Figures 6 

through Figures 10 consider only symmetrical half-

planes. The remaining half-planes may be visualized 

to be mirror image figures presented about the jΩ 
axis. 

23 
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2-2 	Linvill Configuration Network  
1 

The Linvill configuration is composed of two 

passive networks interconnected in cascade by a negative 

impedance converter (NIC) as shown in Figure 11. The 

general expression for the transfer function using the 

Linvill configuration may be developed by multiplying 

the ABCD matrices of each passive and active section 

while preserving the order of multiplication. Using the 

ABCD parameters of a current inversion negative impedance 

converter developed in Appendix B and a general matrix 

for both network NIA and NIB , the overall ABCD network 

parameters are determined as 

 

The result of multiplying (2-21) is the overall matrix for the cascaded configuration 

Since interest is focused on the transfer function for 

the Linvill configuration, only the ABCD to Z-parameter 

transformation shall be performed to obtain the transfer 

function: 



LINVILL'S NETWORK CONFIGUATION 

FIGURE H 
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(2-23) 

The expression for the transfer function via (2-22) 

becomes, 

(2-24) 

(2-25a) 

(2-25b) 

(2-25c) 

(2-25d) 

Replacing Ƶ12(B) in (2-25c) with Ƶ21(B) since the passive 

network is reciprocal and inserting back into (2-24) 

yields 

(2-26) 

(2-27) 

t-- 



28 

where 

(2-28a) 

(2-28b) 



CHAPTER III. 	PROPERTIES OF ACTIVE 'RC-NIC CASCADED 

NETWORKS  

3-1 	Characteristics of Transfer Functions in Cascaded  

RC Networks  

The general expression for the transfer impedanc 

of a Linvill network configuration was developed in 
1,12 

section 2-2 equation (2-26) and is given again 

(3-1) 

This expression holds for any general network 

NA  and NB  . Identifying the networks NA  and NB  as distri-

buted RC elements, consider the case of networks composed 

of single RC sections being identified as NA  and NB  
 

shown in Figure 12. Holding the restriction R(A) C(A) = Q,C, = τ  

remain constant, the Linvill transfer impedance using 

single RC elements is developed below. 

The W-plane transfer and driving point impedances of 

a unit RC element are given below 

(3-2) 

(3-3) 
 

Inserting these terms into equation (3-1) yields 

9 

(3-4) 
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The transfer function given by (3-4) has the following 

singularities: 

a) A W-plane pole at the origin which maps into 

an infinite number of interlaced poles  in the 

3-plane. 

b) Two W-plane zeros at Ʃ= ± / which correspond 

to transmission zeros  at infinity in the 

3-plane.  

Consider now the cascade of two  RC elements in 

cascade contained within WA  and similarly in Nis 

This cascaled RC - NIC - RC configuration is shown in 

Figure 13. The required expressions for the two RC 

elements in cascade are giyen below 

(3-5a) 

(3-5b) 

(3-5c) 

(3-5d) 

32 

Inserting the immittance expressions into (3-1) yields 



Using the following substitutions in (3-6) 

(3-7a) 

(3-7b) 

(3_7c) 

(3-7d) 

results in a simplification of (3-6) after slight 

manipulation 

(3-8) 

In general (3-8) may be written as 

(3-9) 

where 

(3-10) 

33 



and  

(3-11)  

are real constants, 

In equation (3-11), Q may be either positive or 

negative depending on the sign of K2  , the negative 

impedance conversion ratio, and due to the difference 

term, the magnitude of 

K2 

 will also alter the sign 

of (3-11).  It is for this reason that the numerator in 

(3-9) contains the 	term. 

The S-plane pole solutions to (3-9) are derived in 

Appendix C. For the case when the W-plane transfer 

impedance is of the form 

(3-12) 

This corresponds to the S-plane transfer impedance 

given by 

(3-13)  

the  singularities of which are located at points  

(3-14a)  

(3-14b) 

34 



(3-14c) 

(3-14d) 

where the poles given by (3-14a) are third order poles. 

From equation (3-14) we see that no complex 3-plane 

pole solutions exist, therefore this selection of circuit 

constants which provide positive Q 

is positive do not permit 

shaping of the transfer function by manipulating pole 

positions since all the poles are restricted to the 

negative real S-plane axis.  

A more interesting case exists when 	is negative,  

under this condition the W-plane transfer function  

given by (3-12) becomes 

(3-15) 

The corresponding √s -plane transfer function is given 

by  

(3-16) 

for which the 3-plane  pole solutions are 

35 

(3-17a) 



(3-17b) 

(3-17c) 

(3-17d) 

The S-plane solutions of (3-17) do provide complex pole 

pairs in the transfer function. 

36 



3-2 Realization of Pole Pairs via Linvill Configuration 

The Linvill network configuration for realization 

of transfer impedances using cascaded RC elements can 

provide the following W-plane pole roots: 

a) Zeros of higher order at the points Ʃ= 

± 1 depending upon the number of cascaded sections 

under consideration, 

b) A pole at the origin, independent of the number of 

sections under consideration. 

c) A conjugate pair of poles either on the imaginary 

W-plane axis or the real W-plane axis due to the 

difference term in the denominator of the transfer 

impedance. 

Due to the network configuration, one of two possible 

cases may evolve: 
 

a) 	β(B) is greater than β(A) ( ref. equation (3-7) 

sec. 3-1 ). Under this condition when the NYC 

conversion ratio K2  is zero, the roots lie at 

points A ε A1 , see Figure 14. As the conversion 
 

ratio K2 approaches β1(A)K(B)/B(B)K(A) the poles approach 

± infinity, along the ima ginary W-plane axis. 
	 

When β1(A)K(B)/B(B)K(A) K2 < K(B)/K(A) the poles lie on the real 
  

axis and are at the origin when K2=K(B)/K(A) =  
 

For K2 > K(B)/K(A) the poles are on the imaginary axis 

and approach B ε B1 in the limit. 

37  



POLE PAIR LOCATIONS FOR LINVILL'S SYNTHESIS 

USING CASCADED .RC SECTIONS 

FIGURE 14 
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b) β1 (A)  is reater then β1(B). Under this condition 

when the NIC conversion ratio к2  is zero, the 

poles lie at  see Figure 14. As the 
 

conversion ratio к2  approaches к(B)/к(A) the poles 
  
	

approach the origin. When к(B)/к(A) <к2< β(B) к(A)/β(B)к(A)  poles lie on the pxositive and negative real W- 
 

plane axis and approach infinity as K2--> β(A)к(B)/β1(B)к(A)  
 

For K2>β(A)к(B)/β1(B)к(A)  the poles appear on the imaginary   

axis and approach the points A ε A1  as K2 gets 

very large. 

The case when the W-plane pole locations lie on 

the imaginary axis corresponds to the negative real axis 

S-plane poles and is of no interest since shaping of the 

transfer impedance is not possible. 

When the W-plane pole locations exist on the 

real axis, complex S-plane pole solutions are obtained. 

Precaution should be taken since RH S-pole solutions 

are also possible. 

THEOREM I. A sufficient condition for the realization of 

a transfer impedance with complex poles 

using cascaded RC elements in a Linvill 

configuration is that the W-plane poles 

lie on the real axis at points not less 

than 1.0903 . 

39 



THEOREM II. A transfer function with S-plane poles 

in the LHP can be realized using cascaded 

RC elements in a Linvill configuration. 

40 
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3-3 Example of the Linvill RC Network Configuration 

Consider the example shown in Figure 15. The 

time constant for the network is τ = 3 . Using the values 

given in Figure 15 and substituting into equation (3-7) 

section 3-1 yields 

(3-18a) 

(3-18b) 

(3-18c) 

(3-18d) 

inserting these values into equation (3-8) section 3-1 

yields 

(3-19) 

Using Figure 10, it is seen that the real frequency 

contour intersects the W-plane real axis at 	J.0903 

which represents the boundary between the region of 

stability and instability. 	Poles on the real W-plane 

axis located at points less than 	I.0903 correspond 

to poles in the PH 3-plane. 

The value of к2 which provides the value for 

Q2= √ 1.0903 is found to be к2 =0.614. Choose к1 = 1 ; 

then the total expression becomes 

(3-20) 
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The roots of equation (3-20) are located at the 

following points in the 5-plane 

and 

The root locations are on the imaginary axis since the 

limiting value of  Q = 1.0903 was used. For the case when 

the value of Q is greater than 1.0903 , the S-plane 

root pairs become complex as shown in Figure 16.  

A computer plot, Figure 17, is obtained by letting 

S=jw and the response is presented in db form. The 

zero line is used as reference where the transfer 

function is unity. In actuality however, the value of 

M in section 3-1 equation (3-9) is not unity but .O56√τ  

which represents a shift of -20.2 db. The 

response of the example is plotted over two decades in 

terms of the normalized units π2/2RC. 
 

44 
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CHAPTER IV. 	CONCLUSION  

4-1 	Summary of Results  

The negative impedance converter in the Linvill 

configuration is an effective active element in producing 

complex poles in the transfer function Ƶ21τ - when the 

passive networks are RC cascades who by themselves do 

not posses complex S-plane poles.  

The pole producing term in the W-plane Ƶ21τ  
 

function is (W2 - Q12), which produce LHP poles in  the 

S-plane with the restriction Q1 > 1.0903. for Q1 <  1.0903 

the poles are in the RHP and the response becomes  un-

stable. 

The transfer impedance generated via the Linvill 

procedure using only cascaded RC elements contains  an S-pl 

pole at the origin. This prevents the synthesis  of band-

pass filters employing only RC cascades without  the 

use of shunt stubs. This limitation of the circuit  is 

not so serious since the voltage transfer ratio  for 

the configuration shown in Figure 13 does not  contain 

any poles at the origin in the S-plane. 

4-2 	Suggestions for Future Work 

Since a variety of network synthesis procedures 

have been developed, the boundary limitations for 

realizability and stability are not necessarily  included 



in the development of such procedures. A similar procedure 

used in this thesis should be extended to other configura-

tions to determine the limitations of realizability 

criteria and to identify the boundaries of stability. 

An extension of the cascaded RC elements to cascaded 

and shunt (stubs) RC elements in the Linvill configuration 

is suggested. 
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APPENDIX A 

8 
Consider Wyndrum's positive real transformation 

(1)  

where the coordinates in the VT plane are U+jv . 

Using the substitution for tanh and letting 

√s = u+jv equation (1) becomes  

(2)  

(3)  

expanding (3) yields, 

(4)  

Substituting smhjᴓ = jsinᴓ and coshjᴓ = cosᴓ  

into (4) and multiplying through oy the conjugate of the 

denominator yields equation (5) after simplification 

and identification of terms. 
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(5)  

The coordinates of the tanh plane in terms of the 

coordinates of the  √s   plane are given by (6) and (7) 

below 

(6)  

(7)  

Equations (6) and (7) provide the required transformation 

from the distributed LC plane to the lumped LC plane. 
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APPENDIX B 

7 
The ideal negative-impedance converter is an 

active two-port device with the property that the driving 

point impedance or admittance at one terminal pair is 

the negative of the impedance or admittance connected at 

the other terminal pair. 

The description of the NIC properties are obtained by 

considering the relationship between the terminal 

voltages and the currents of the two-port device. 

Consider the two-port shown below; 

where the voltage and current. interrelationships are 

given by the hybrid g parameters 

(1)  

The input admittance I1/E1 	at terminals 1-1' is given 

by 

(2)  
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For an ideal NTC, 

(3)  

This can only be obtained if 

(4)  

(5)  

and 
(6)  

Inserting these values of the hybrid parameters into 

equation (1) yields 

(7)  

Since the Linvill configuration consists of 

elements in cascade, the ABCD parameters are more useful 

and shall be developed to express the NIC characteris-

tics. Using the transformation given below 

(8)  

the ABCD parameters are identically 

(9-a)  

(9-b)  
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(9-c)  

(9-d)  

There two types of negative impedance converters, 

current inversion negative impedance converter INIC and 

voltage inversion negative impedance converter VNIC. 

The ABCD parameters for an INIC are given 	equation 

(9), and the ABCD parameters for a VNIC are given 

below 

(10)  

In order to standardize on the notation for the NIC 

with the notation used in the Linvill configuration, 

the following substitutions shall be made, 

(11)  

(12)  

The generalized ABCD parameters for a NIC using the 

notation of (11) and (12) are 

(13)  
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where the D term may be either positive (VNIC) or 

negative (INIC). 
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APPENDIX C 

The equation for the transfer impedance using a 

cascade of two RC sections per network in the Linvill 

configuration shown in Figure 13 is of the form  

(1)  

where Q1 	is real.  

Using the transformation w = tanh √τs    to transform 

(1) from the lumped LC plane to the distributed LC plane 

yields  

(2)  

(3)  

(4)  

To evaluate the roots of To evaluate the roots of 
 

it is 

To evaluate the roots of tanh2 √τs ± Q2  , it is 
observed that two possible root pairs exist,  

(5)  

and  

(6)  
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(9) 

C9) 

Consider the first possible root pairs 

(7) 

Equation (7) is composed of the following produst terms, 

(8) 

Consider the roots of the first term of (8) 

using the identity tanh √τs = sinh√τs/cos√τs    equation 
 

becomes 

(10) 

(11) 

regrouping terms 

(12) 

dividing both sides by 

(13) 

but 
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(14-a) 



(14-b) 

since Q1  is real. 

Inserting back into (13) yields 

(15)  

but 

(16)  

therefore 

(17)  

where r1 = (n - m)  

The roots contributed by 

  

lie on the imaginary axis is the √s plane due to the absence of a real component. The roots of (9) are 

given below 

(18)  

Considering the second product term of (8) and 

solving for the root locations results in: 
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(19) 



again as before jQ1-1/jQ1+1 = 1 ,resulting in the following 

roots 

(20)  

Note that equations (17) and (20) are identical. 

Now, considering the roots of equation (6), namely 

(21)  

which can be represented by a product of two terms, 

(22)  

We consider the first term and use the same identity as 

in (10), therefore 

(23)  

or  

(24)  

 

Regrouping terms and dividing by (Q2+1)e-√τs yields,  

(25)  

but 

(26)  
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where 

(27)  

and 

Inserting (27) back into (25) yields 

(28)  

therefore (28) becomes 

(29)  

Solving for the roots of the first term of (22) yields  

(30)  

A similar counterpart for equation (27)is obtained 

by solving for the roots of the second term of (22), 

namely  

(31)  

and proceeding in a similar fashion as above, the second 

set of roots for (6) are given below by  
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