# New Jersey Institute of Technology

# Digital Commons @ NJIT

**Theses** 

**Electronic Theses and Dissertations** 

Spring 5-31-1968

# The effects of air-water two phase flow on the performance of a centrifugal pump

Karnig Ekizian New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses



Part of the Mechanical Engineering Commons

#### **Recommended Citation**

Ekizian, Karnig, "The effects of air-water two phase flow on the performance of a centrifugal pump" (1968). Theses. 1491.

https://digitalcommons.njit.edu/theses/1491

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

# **Copyright Warning & Restrictions**

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen



The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

#### ABSTRACT

This study investigates the performance of a 1-inch long 4-vane open impellar centrifugal pump under two phase flow conditions. The paddle wheel pump, as branded by its manufacturer the Worthington Corporation, had a specific speed of 3400 (based on gallons per minute, feet of water and revolutions per minute) corresponding to a 7-inch impeller diameter. A 1/8-inch perforated steel pipe carried the compressed air to within four inches of the impeller eye where the air was injected into the water stream (See figures 18 and 20).

The three variable inputs were, water flow rate, pump speed and air flow rate. The output parameters measured were discharge, suction pressure, and torque. While measuring the output parameters, various combinations of the input variables were employed in order to find the maximum airwater volumetric ratio at which water flow stopped and the discharge head dropped to zero.

At the pump speeds and air flow rates ranging from -3
1500 PPM to 3500 PPM and from 1.72x10 cubic feet/second

to 2.65x10 cubic feet/second respectively, it was found that increasing the water flow rate from zero capacity to a certain limit resulted in an increase of the discharge head (See figures 1 to 5). This limiting capacity varied from 40 to 60 per cent of the pump's design capacity (35 CPM at 3550 RPM and 220 feet of water). A further increase of the water flow rate beyond the limiting capacity resulted in a quick drop of the discharge head. This characteristic behavior of the head-capacity curve was particularly noticeable at the higher air flow rates which ranged from  $1.72 \times 10^{-3}$  cubic feet/second to  $2.65 \times 10^{-3}$  cubic feet/second. It was also observed that at a given pump speed, increasing the volumetric air flow rate caused the head-capacity curve to peak at a lower discharge pressure. Finally, increasing the air content caused a shift in the efficiency curves such that peaked at a lower efficiency value as well as a lower flow capacity.

# THE EFFECTS OF AIR-WATER TWO PHASE FLOW ON THE

#### PERFORMANCE OF A CENTRIFUGAL PUMP

BY

#### KARNIG EKIZIAN

#### A THESTS

PRESENTED IN PARTIAL FULFILIMENT OF THE REQUIREMENTS FOR THE DEGREE

OF,

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Nowark, New Jersey 1968

#### APPROVAL OF THESTS

# THE EFFECTS OF AIR-WATER TWO PHASE FLOW ON THE PERFORMANCE OF A CENTRIFUGAL FUMP

EY

KARNIG EKIZIAH

FOR

DEPARTMENT OF MECHANICAL ENGINEERING
NEWARK COLLEGE OF ENGINEERING

BY

|         | FA(        | CULTY                                        | COMMITTEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROVE | <b>Ծ</b> : | en somb de transversit <b>habili</b> debare. | an and several superioration of the second section of the section of |
|         |            | ละที่จะที่ยะของระจะ จะ                       | ng tangtum mangara. Yé wa wakarsaran sising yangkangkananga sarah atrawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

NEWARK, NEW JERSEY JUNE, 1970

#### PREFACE

This study was performed to determine the effect of injecting a variable amount of compressed air into the water stream prior to introduction into the impeller eye of a 1-inch open impeller centrifugal pump. The effects of air content and pump speed on the discharge head and pump efficiency were tested. In addition, the optimal two-phase flow parameters were determined and compared with the no-air flow parameters.

Enterature on the subject of two-phase flow is extensive in regard to such flows in regard to such flows in packed beds, ducts and pipes. However, very little experimental or theoretical research has been done on two-phase flow in pumps. Most notable of these are <u>Pumps and Blowers—Two Phase Flow</u> by A. J. Stepanoff (1), <u>Air Handling Canability of Centrifugal Pumps</u> by W. Biheller (2), <u>Hydrodynamics of Floatation Cells</u> by N. Arbiter, C. C. Harris, and R. F. Yap (3), and <u>A Practical Three-Dimensional Flow Visualization Approach to the Complex Flow Characteristics in a Centrifugal Impeller</u> by M. P. Boyce (4).

<sup>\*</sup>The numbers in parenthesis refer to the list of references given on page 77.

# ACKNOWLEDGEMENTS

The author is indebted to Dr. R.J. Raco, Dr.M.

J. Levy, Professor R.M. Jacobs and Professor J.L. Polaner
of Newark College of Engineering for their helpful advice,
guidance and suggestions. He also wishes to thank the
Worthington Corporation for donating the pump, W. Schmiedeskamp and his staff of Newark College of Engineering
for their technical work on the apparatus, and R. Rabin
and Jon Simonian who read the manuscript a number of times.

# TABLE OF CONTENTS

| ABSTRACT |                                   | i    |
|----------|-----------------------------------|------|
| PREFACE  |                                   | iv   |
| ACKNOWLE | DGEMENTS                          | Ÿ    |
| TABLE OF | CONTENTS                          | vi   |
| LIST OF  | TABLES                            | viii |
| LIST OF  | FIGURES                           | ix   |
| CHAPTER  |                                   |      |
| . X .    | INTRODUCTION                      | 1    |
|          | Statement of the Problem          | 1    |
|          | Importance & limitations of Study | 1    |
|          | A Preview                         | . 3  |
|          | List of Notation                  | 5    |
| II W.    | REVIEW OF THE LITERATURE          | 7    |
| un.      | PRELIMINARY WORK                  | 11.  |
| IV.      | EXPERIMENTAL PROCEDURE            | 14   |
| V.       | DISCUSSION OF RESULTS             | 16   |
| VI.      | SUMMARY AND RECOMMENDATIONS       | 27   |
|          | Summary                           | 27   |
|          | Recommendations                   | 28   |
| APPENDIX |                                   |      |
|          | Figures                           | 31   |

| Tabulated Data     | 55 |
|--------------------|----|
| Calculations       | 63 |
| Data               | 70 |
| LIST OF REFERENCES | 76 |

## LIST OF TABLES

| Table              |                                            | Page |
|--------------------|--------------------------------------------|------|
| Ι.                 | Calibration of Suction Pottermeter         | 55   |
| II.                | Calibration of Orifice                     | 56   |
| III.               | Conversion of Pressure Differential Across |      |
|                    | Orifice to ft <sup>3</sup> /sec of Air     | 57   |
| IV.                | Tabulated Data at 3500 RPM                 | 58   |
| $\nabla_{\bullet}$ | Tabulated Data at 3000 RPM                 | 59   |
| VI.                | Tabulated Data at 2500 RPM                 | 60   |
| VII.               | Tabulated Data at 2000 RPM                 | 61   |
| VIII.              | Tabulated Data at 1500 RPM                 | 62   |

## LIST OF FIGURES

| Figure | •                                                                         | Page |
|--------|---------------------------------------------------------------------------|------|
| 1.     | Performance Curves for Two Phase Flow Conditions at 3500 RPM              | 31   |
| 2.     | Performance Curves for Two Phase Flow<br>Conditions at 3000 RPM           | 32   |
| 3.     | Performance Curves for Two Phase Flow<br>Conditions at 2500 RPM           | 33   |
| 4.     | Performance Curves for Two Phase Flow<br>Conditions at 2000 RPM           | 34   |
| 5.     | Performance Curves for Two Phase Flow<br>Conditions at 1500 RPM           | 35   |
| 6.     | Efficiency Curves for Two Phase Flow<br>Conditions at 3500 RPM            | 36   |
| 7.     | Efficiency Curves for Two Phase Flow<br>Conditions at 3000 RPM            | 37   |
| 8.     | Efficiency Curves for Two Phase Flow<br>Conditions at 2500 RPM            | 38   |
| 9.     | Efficiency Curves for Two Phase Flow<br>Conditions at 2000 RPM            | 39   |
| 10.    | Efficiency Curves for Two Phase Flow<br>Conditions at 1500 RPM            | 40   |
| 11.    | Suction Head-Capacity Curves for Two<br>Phase Flow Conditions at 3500 RPM | 41   |
| 12.    | Suction Head-Capacity Curves for Two<br>Phase Flow Conditions at 3000 RPM | 42   |
| 13.    | Suction Head-Capacity Curves for Two<br>Phase Flow Conditions at 2500 RPM | 43   |

| Figure |                                                                                                            | Page |
|--------|------------------------------------------------------------------------------------------------------------|------|
| 14.    | Suction Head-Capacity Curves for Two<br>Phase Flow Conditions at 2000 RPM                                  | 44   |
| 15.    | Suction Head-Capacity Curves for Two<br>Phase Flow Conditions at 1500 RPM                                  | 45   |
| 16.    | Calibration Curve for Turbine Meter                                                                        | 46   |
| 17.    | Calibration Curve for Orifice                                                                              | 47   |
| 17-A.  | A Qualitative Relationship Between the<br>Radius of Ring of Air Bubbles Inside<br>Casing and Flow Capacity | 48   |
| 18.    | Symbolic Diagram of Apparatus                                                                              | 49   |
| 19.    | Pump Casing and Impeller                                                                                   | 50   |
| 20.    | The Air Injection System                                                                                   | 51   |
| 21.    | The Orifice and the Air Flow Measuring<br>Unit                                                             | 52   |
| 22.    | An Illustration of the Hellical Stream-<br>line with trapped air bubbles                                   | 53   |
| 23.    | Air Bubbles Surrounding the Impeller Hye                                                                   | 54   |

#### CHAP TER I

#### INTRODUCTION

Statement of the Problem. The purpose of this study was to investigate the factors that limited the performance of the 1-inch long, open impeller centrifugal pump which was tested under air-water two phase flow conditions. Since there is an appreciable loss of discharge head with increased air flow rate, the study was simed at determining the maximum possible air flow rate at each speed without sacrificing the developed head considerably.

This study attempts to define and explain unstable flow conditions caused by the accumulation of air at the impeller eye. In addition, discrepancies between this study and existing literature on the "breaking" of the head-capacity curve will be discussed. Finally, the effect of pump speed on the amount of air introduced will be investigated.

Importance and Limitations of the Study There has been a considerable amount of experimental and theoretical work performed on two phase flow in packed beds, ducts, and pipes, but very little research has been done on two phase flow in centrifugal pumps. The existing studies do not investigate

the pump flow parameters, namely the pump speed and water flow rate at which the air-handling capability of the pump is optimized. Moreover, these studies do not treat the pump speed as a variable parameter, whereas the effect of various pump speeds on the performance of the pump was one of the goals of this thesis.

Two phase flow in pumps has important industrial uses, in transporting mixtures of petroleum oil and natural gas. This case is one example where the separation of the gaseous and liquid phases at slower velocities complicates the estimation of the pipe frictional losses.

of pump used. Comparison of the results of this study with those by Biheller of the Worthington Corporation indicated that the design of the pump casing and the impeller vanes were the crucial factors for improving the air handling capability of the pump. This was evident in the maximum air-water volumetric ratio attained by Biheller (12%) as compared to a ratio of 6.8% achieved in this present study.

W. Biheller, "Air Handling Capability of Centrifugal Pumps", Worthington Corporation Research Paper (Harrison, N.J., 1957)

Despite these limitations, this present study proved the usefulness of furthering the investigation of two-phase flow in pumps. While this present study clarified certain questions, it opened additional areas for further study. Detailed recommendations relative to structural changes in the apparatus (See figure 18) and a different experimental procedure are made in Chapter VI under summary.

A Preview Chapters II, III, and IV discuss the literary survey, the preliminary work on the apparatus, and the experimental procedure respectively. Chapter V, entitled "Discussion of Results", is given an extensive treatment. This chapter begins with a discussion of the factors that limit the performance of the centrifugal pump under two-phase flow conditions. One of these factors, the maximum possible air flow, is discussed in detail (See pages 17-20), and compared with Biheller's study. This is followed by a description of the unstable flow condition and how it is affected by the pump geometry (See page 20). A comparison of the pump performance curves is made between this study and Stepanoff's 2. Following this, flow parameters are determined

A.J. Stepanoff, Pumps and Blowers - Two Phase Flow, (New York: John Wiley and Sons, 1966) p.262

which optimize the air handling capability of the pump.

Finally, chapter VI summarizes the findings of this present study and also recommends areas for further research and desired changes in the apparatus and the experimental procedure.

### LIST OF NOTATION

- a Pump geometric constant
- b Pump geometric constant
- Ratio of orifice throat diameter to inside pipe diameter
- bhp Brake horsepower
- C Coefficient of discharge
- d Orifice throat diameter, inch
- D Impeller diameter, inch
- F Velocity of approach factor
- Factor accounting for thermal expansion of orifice
- $\delta$  Density of cir-water mixture,  $1b_m/ft^3$
- g Gravitational constant, 32.2ft/sec2
- H Discharge pressure head, ft of water
- $h_L$  Mechanical energy converted into heat, ft-lb<sub>f</sub>/lb<sub>m</sub>
- h<sub>hg</sub> Pressure differential in manometer, in of mercury
- h<sub>w</sub> in of water
- L Load on torque bar, 1bf
- $\mathcal{N}_{\text{viscosity, 1b}_{\text{f}}\text{-sec/ft}^2}$
- N Number of impeller vaues
- n Pump efficiency
- W Pump speed, rev/min

- Wc Minimum pumping speed, rev/min
  - P Pressure,  $1b_f/in^2$
  - Q Water flow rate, ft<sup>3</sup>/sec
  - R Universal Gas Constant, 53.35 ft-1b<sub>f</sub>/1b<sub>m</sub>-c<sub>R</sub>
  - r Lenght of torque arm, inch
  - P Air density,  $1b_{m}/ft^{3}$
  - T Temperature of injected air, OR
  - V Velocity, ft/sec
  - v Specific volume, ft<sup>3</sup>/1b<sub>m</sub>
  - W Energy added to fluid during pumping ft-1b<sub>f</sub>/1b<sub>m</sub>
  - wh Weight flow rate of air 1bm/hr
  - Y Net expansion factor
  - z Height, ft

#### CHAPTER II

# Review of the Literature

Many analytical studies have been undertaken in two-phase flows. Most of these analyses are restricted to two-phase flows in pipes, duets and packed beds, whereas very little research has been done on the air handling capability of centrifugal pumps. The limited studies available, analyse the means of improving the air handling capability of centrifugal pumps using such parameters as the geometry of the pump impeller and the casing, the suction pressure, and vane geometry. None of the studies investigates the air handling capability of centrifugal pumps under a variable pump speed. Consequently the question arises whether there is an optimal pump speed at which a maximum amount of air can be discharged without affecting the performance of the pump considerably.

The following is a brief summary of the existing experimental and theoretical work on two-phase flow in centrifugal pumps. Stepanoff<sup>1</sup>, in investigating two-phase flow, concluded that "the ability of centrifugal pumps to

A.J. Stepanoff, Pumps and Blowers--Two-Phase Flow John Wiley & Sons, Inc. New York, 1966, p.262

pump entrained gases is limited." He was able to attain an air-water volumetric ratio of 14% with a head-capacity curve that dropped with increasing air flow. In addition, the efficiency curve peaked at a lower capacity as the air-water volumetric ratio increased. He concluded that "the most important element controlling the volume of entrained gas is the suction pressure."2 Stepanoff also stated that the breaking of the head-capacity curve, it is estimated, occurs when the volume of air equals to that of water. Finally, according to Stepanoff, the importance of studying two-phase flow in centrifugal pumps is based upon its industrial uses in addition to its scientific value. He cited as an example the complications in estimating pipe friction losses when a mixture of natural gas and oil is flowing through pipe lines.

The Biheller study<sup>4</sup> involved primarily the improvement of air handling pump capability by using various impeller and pump casing configurations. Among the various changes tried were the impeller size, number of vanes, open or closed

 $<sup>\</sup>frac{2}{3}$  Ibid., loc. cit. pp. 262 - 272

<sup>4</sup> Ibid., p. 263
W. Biheller, "Air Handling Capability of Centrifugal Pumps, Worthington Corporation Research Paper (Harrison, N.J. 1957)

impeller, suction and eye diameter, lenght of vanes and volute casing. An impeller with short, curved vanes enabled the pump to discharge an air-water mixture containing 12% air by volume. Moreover, there was close agreement between Stepanoff and Biheller in regard to the general shape of the pump performance curves. Biheller found that the short curved vane configuration of the impeller minimized the interference between the vanes and the air bubbles, thus facilitating their discharge. Among his other recommendations to improve the air handling characteristics of the pump were "a more circular volute", and "a circular shaped spiraled volute."

Arbiter, Harris and Yap<sup>5</sup>, in studying the effects of aeration on the power requirements and solid suspension characteristics of floatation cells, briefly discussed two-phase flow in small centrifugal pumps. They derived an equation where water flow rate is a function of the air flow rate and certain pump design constants. Expressing their equation with the nomenclature of this study yields

$$Q = a(W - \omega_c)D^3 - bW_h$$

N. Arbiter, C.C. Harris, and R.F. Yap "Hydrodynamics and Floatation Cells" Henry Krumb School of Mines, Columbia University, New York, Jan 1968, P.S.

Here a and b are pump geometric constants,  $\mathcal{W}_{\mathbf{C}}$  is the minimum rotational speed for liquid flow, and  $\mathbf{D}^3$  is introduced for dimensional balance. This equation was not the result of any direct experimental investigation. It was based on the mass conservation equation and another equation expressing the total fluid as the sum of the air and water flows. Attempts to verify this equation by direct substitution of the result of the present study were unsuccessful. Arbiter et al did not verify this equation either, "no experiments were performed with scaled pumping equipment, so that the equation is not completely established"  $^{8}$ .

<sup>8</sup> Ibid. loc. cit.

# CHAPTER III

# Preliminary Work

The construction of the entire apparatus as shown in Figure 18, can be divided into three phases: the erection of the pipe network, the design and calibration of the flow meters, and finally some modifications to improve the performance of the total system.

Galvanized 17 inch steel pipe constituted the water pipeline while the air line was of 1-inch galvanized steel pipe. The water pipeline was an uncompressed, closed loop, feeding water to the pump from a 500-gallon tank and discharging it into the same reservoir (See figure 18).

Two flow meters were employed: a turbine meter, manufactured by the Potter Aeronautical Co. and commercially known as Pottermeter was used to measure the water flow rate, and an orifice was used to measure the air flow rate (See figure 21.). The turbine meter was calibrated by means of a stop watch, a weighing tank, and an electronic counter. Three groups of data were taken and a straight line calibration curve of electronic counts versus water flow rate in

in gallons per minute was obtained (See figure 16).

The ASME Power Test Code for flow meters measuring compressible fluids was used for calibrating the orifice. Certain geometric constants, e.g. inside diameter of pipe, orifice throat diameter, and an air reservoir pressure of 25 Psig were used to obtain this calibration curve. The calibration curve was derived from the calculations (See page 62) giving a plot of pounds of air per hour versus the pressure differential across the orifice where the pressure differential was measured by a mercury manometer (See figure 17).

During the first part of the experimentation, modifications in the form of additions and eliminations of
certain components to the test apparatus (See figure 18)
were found to be necessary. Water accumulated in the mercury manometer (See figure 21). This was attributed to
water flowing back into the air line up to the vicinity of
the orifice. Since the pressure taps across the orifice
protruded from the lower part of the pipe, the water that
accumulated flowed down through these taps and into the
mercury manometer. To remedy the situation, these taps
were made to protrude from the upper section of the air

line (See figure 21), and in addition, two traps were assembled and placed one on each side of the manometer (See figure 21). Thus the problem of water accumulation was eliminated.

A second turbine meter, initially installed on the discharge side of the pump some forty diameters away was intended to measure the combined air-water flow rate. It proved to be useless as it was inconsistent in measuring the mixed air-water flow. The inconsistencies were caused by air bubbles impacting the rotating blades of the meter. Consequently, the turbine meter installed in the low-pressure side of the pump was used to measure the water flow (See figure 18).

#### CHAPTER IV

#### Experimental Procedure

The test plan consisted of operating the pump at five different speeds: 1500, 2000, 2500, 3000, and 3500 RPM, the latter being the optimal speed of the pump at no-air flow conditions. At each speed air was injected into the suction pipe four inches before entering the impeller eye at the following volumetric flow rates: 1.4, 1.72, 2.18, and 2.65x10<sup>-3</sup> ft<sup>3</sup>/sec. The injection was made through a perforated 1/8-inch steel pipe with a conic piece of brass attached to its end to minimize turbulence ( See Figure 20).

The experimental procedure consisted of a routine format. All possible combinations of the input variables pump speed, air flow rate and water flow rate were employed to determine their effect on the output parameters discharge pressure, suction pressure and torque. As the experiment progressed, the minimum possible air flow rate at a given pump speed and air flow became important. As the water flow rate was reduced further, the air-water volumetric ratio increased (air flow was constant while water flow

decreased), thus air became the predominate phase and the pump became air-bound (See Figures 1 to 5). This phenomenon is referred to as an unstable flow condition because the pump could no longer discharge the two phase mixture. The same phenomenon occurred when the maximum possible air flow rate (2.65x10<sup>-3</sup> ft<sup>3</sup>/sec.) was exceeded. At this point of the experiment the air flow was shut off, allowing the pump to self-prime and new conditions were chosen. This unstable flow condition is discussed in detail in Chapter V.

### CHAPTER V

# Discussion of Results

There has been a paucity of research done in two-phase flow in centrifugal pumps. This chapter consolidates and extends the existing research. Furthermore, it discusses some limitations of the earlier investigations and clarifies perviously unexplained points.

During the experimental stage of the present investigation, it was noticed that two factors limited the performance of the centrifugal pump when it was tested under two
phase flow conditions. The first limiting factor was the
minimum value of the water flow rate just prior to unstable
flow conditions. These flow conditions were characterized
by a gradual and a continuous drop in the discharge pressure
and the water flow rate, even though neither the air flow
nor the water flow were varied. This unstable flow behavior
can also be explained by the Bernoulli equation applied
between inlet and outled of the pump:

$$\frac{\mathbf{v}^{2} + \mathbf{P} + \mathbf{g} \mathbf{z}}{\frac{\mathbf{v}^{2}}{2} + \frac{\mathbf{P}}{2}} + \mathbf{g} \mathbf{z}^{2} + \mathbf{h}_{\mathbf{L}} \dots (i)^{*}$$
or
$$-\mathbf{W} = \Delta \left( \underbrace{\mathbf{v}^{2} + \mathbf{P} + \mathbf{g} \mathbf{z}}_{2} \right) + \mathbf{h}_{\mathbf{L}} \dots (ii)$$

<sup>\*</sup> Subscripts 1 and 2 refer to flow conditions unstream and downstream respectively relative, to be impeller eye.

The sum of the velocity and potential heads, upstream and downstream relative to the impeller eye, remained constant during the experiment. Equation (ii) was reduced to

$$-W \sim \Delta\left(\frac{\Gamma}{Y}\right) + h$$
 .....(iii)

Here the density of the air-water mixture (\( \)) was decreasing because the volume of air in the mixture was increasing during the experiment. Thus because the density of the mixture was decreasing the actual discharge pressure developed in pumping it also decreased in order to balance equation (iii) until the pump became air-bound.

At this point, it is appropriate to discuss the reasons for the increased volume of air in the air-water mixture at the impeller eye. In this study, the long, mutually perpendicular structure (See figure 19) of the impeller vanes disturbed the helical flow pattern around the impeller (See figure 22) and thus prevented some of the injected air from being discharged. The air was trapped between the individual vanes, and the mixture was churned around inside the casing of the pump. In order to observe this phenomenon, a stroboscope and a Hycam motion picture camera were used separately. The stroboscope yielded a clearer view of a larger area than was possible with the Hycam camera.

The motion picture camera was used by M. P. Boyce in his study on three-dimensional flow visualization in a centrifugal impeller (4)\*. Boyce injected a mixture of dibutyl phthalate globules and kerosene into the water stream, seeking to determine whether the globules would follow the In order to accomplish this Boyce used the streamlines. Fastax motion picture camera to photograph the globules as they passed through the impeller. In both studies, that is, Boyce's and the present investigation, the pump casing was replaced by a similarly machined plexiglass casing in order to make photographing possible. However the absence of a tripod was one reason why the results of the motion picture photography of the present study were not in clear focus, and thus it was decided to use the stroboscope for reasons already mentioned. With the use of the stroboscope, it was possible to view the mass of air trapped inside the casing forming a ring of bubbles whose radius varied from the hub to the outer tip of the impeller vanes (See Figure 23 ). It was noticed during the experiment that the radius of the ring of air bubbles varied directly with

<sup>\*</sup> The number in parentheses indicates the reference given on page 77.

the rate of water flow. A qualitative representation of the relationship between the radius of the ring of air bubbles and the water flow rate is shown in Figure 17-A. This ring of bubbles was the main hinderance to the flow of water, and it eventually resulted in the drop of the water flow rate, the discharge head, and the suction head. blockage offered by the ring of air bubbles to the flow of water was also a function of the rate of air accumulation in the impeller eye. This accumulation was the result of unstable flow conditions where the inflow of air into the impeller eye exceeded its outflow. This was attributed to the geometric factors mentioned above in addition to the suction pressure at the impeller eye which affected the volume of the air. Hence, a high negative (suction) pressure resulted in a high volume of air.

Therefore, in summary, the nature of the flow instability stimulated by the increasing volume of air at
the impeller eye was the consequence of two factors. First,
the impeller design prevented some of the air from leaving
the impeller eye. Secondly, the high suction pressure
caused air to occupy most of the volume at the impeller eye
until the pump became air-bound. Further operation of the

pump under these conditions proved harmful to the shaft and the packing. This was due to the fact that the heat generated by friction was being absorbed by the pump shaft and the casing, while previously it was being dissipated by water circulation.

The second limiting factor was the maximum value of the air flow relative to the water flow rate at a constant pump speed before the unstable conditions set in. These unstable flow conditions were the result of the geometry of the impeller, the insufficient vacuum for self-priming due to the low density of air, and the incapability of the pump to discharge all of the injected air. The impact of these factors on the unstable flow conditions was discussed previously in explaining the decreasing density of the airwater mixture.

Because one of the objects of this thesis was to investigate the air handling capability of the pump, the second limiting factor, namely the maximum possible air flow will be considered in depth. Literature on the topic of air-water two-phase flow in centrifugal pumps is very limited. Two of the most relevent studies has been made by W. Biheller of the Advance Products Division of Worthington Corporation

and by A.J. Stepanoff. The results of Biheller's work (specifically those relative to the shape of the pump performance curves), basically agree with the results of the present study with a few exceptions. Both showed that the discharge head dropped as the water flow was reduced manually. This was in contrast to the no-air flow conditions where the head increased continuously as the water flow was reduced. In the present study as the water flow was reduced, the drop of the discharge head started at about 40 to 60 per cent of the pump capacity for an air-water volumetric ratio of 4.3 to 6.8 per cent (See figure 1-5). However, the Biheller study showed this drop initiated at a very low capacity, namely, about 20 per cent of the pump capacity for an air-water volumetric ratio of 6 per cent.

Thus, there was a discrepency between Biheller's work and this present study in regard to the pump capacity at which a fixed ampunt of injected air resulted in the total loss of the discharge head. This can be explained by the fact that Biheller used an impeller with short, curved vanes. His impeller was able to pump air-water mixtures at lower

W. Biheller, "Air Handling Capacity of Centrifugal Pumps" Worthington Corporation Research Paper, (Harrison, N.J., 1957), p.p.9

flow capacities than those achieved by the pump used in the present study because its vane configuration facilitated the discharge of air bubbles from the impeller eye. This would also explain the higher proportion of air in the airwater mixture achieved by Biheller as compared to the proportion of air attained in this present study.

Using the short, curved vane configuration, Biheller achieved an air-water volumetric ratio of 12 per cent, although this resulted in a considerable drop of the discharge head. On the other hand, the pump impeller in the present study had four long and straight vanes extending out radially (See figure 19), and the maximum air-water volumetric ratio attained was 6.8 per cent at a water flow rate of 15 GPM and a pump speed of 2500 RPM. This value (6.8%) was achieved just before the aforementioned unstable flow conditions took place. Similar ratios for pump speeds of 3000 and 3500 RPM at water flow rates of about 20 GPM were found to be 4.35 per cent and 4.9 per cent respectively.

Explaining the significance attributed to geometric factors, Biheller noted that the air-water mixture in the volute casing followed a hellical flow pattern. This left

<sup>2</sup>Ibid. p.4

preventing their return to the center of the impeller (See figure 23), and thus facilitating the discharge of these bubbles from the impeller eye. However, the factor that prevented this situation was the length of the impeller vanes of the pump tested as compared with the shorter, curved vanes of the impeller used by Biheller.

Another pertinent study of two-phase flow in centrifugal pumps was made by A.J. Stepanoff. There was a close parallel between Stepanoff's findings and the results of this study except Stepanoff confined his investigation to only one pump speed (900 RPM). Both studies agreed on the shape of the head-capacity and the efficiency curves. Stepanoff's results concerning the flow capacity corresponding to the "the breaking of the head-capacity curve" were also in close agreement with Biheller's. However, Stepanoff made no mention of the effect of the impeller vane geometry on the head-capacity curve.

A.J. Stepanoff, Pumps and Blowers - Two-phase Flow. (New York: John Wiley and Sons, 1966), p.263

<sup>4</sup> Ibid. loc. cit.

Stepanoff also emphasized the importance of the net positive suction head (NPSH), in controlling the volume of the air at the impeller eye. On the other hand, he made no mention of the accumulation of air at the impeller eye, a point that this author attributed to the pump geometry.

Stepanoff's use of only one pump speed (900 RPM) ignores the effect of pump speed on the air handling capability of the pump. Consequently pump speed, flow capacity and air flow rate were varied in the present study in search of the optimizing combination. Among the five different pump speeds, 2500 RPM seemed to be unique. Two features distinguished this speed from the rest. First, the head-capacity curves showed no uniformity at this speed (See figure 3) while the corresponding curves at the other speeds were characterized by a clear symmetry around 20 GPM (See figure 1,2,4,5,) Secondly, at pump speeds of 3500 and 3000 RPM, the appreciable loss of the discharge head upon reduction of the water flow rate started at an air flow rate of 2.18x10<sup>-3</sup> ft<sup>3</sup>/sec (See figures 1 and 2) while the corresponding figure at 2000 and 1500 RPM was  $1.72 \times 10^{-3}$  ft<sup>3</sup>/sec (See figures 4 and 5).

<sup>5</sup> Ibid. loc. cit.

However, at a pump speed of 2500 RPM, it was possible to increase the air flow rate up to 2.34x10<sup>-3</sup> ft<sup>3</sup>/sec (See figure 3) without an appreciable deviation of the headcapacity curve from its no-air behavior. Therefore, at 2500 RPM the pump was able to handle more air than at other speeds without a considerable loss of its discharge head. Also at this speed and air flow, the corresponding pump efficiency was not considerably different from its value at no air flow conditions. All of these observations led the author to believe that for this specific pump, optimal air handling conditions occured at a pump speed of 2500 RPM, a water flow rate of 15 GPM, and an air flow rate of  $2.34 \times 10^{-3}$ ft3/sec. The optimal flow conditions at no-air flow, according to the experimental results as well as the manufacturer's data, were at 3550 RPM and a water flow rate of 35 GPM. the optimal values of the water flow and the pump speed were markedly reduced by the injection of air into the water stream. The mentioned optimal two-phase flow parameters, namely pump speed, capacity and air flow were obtained by trying various pump speeds as previously discussed. However, speed was not a variable in either Biheller's or Stepanoff's study as they investigated two-phase flow at only one pump speed. Thus it was impossible to make any conclusions from their

studies in regard to the effect of pump speed on the optimal air handling capability of their pumps.

Finally, one observation was made relative to the head-capacity and the efficiency curves. At the higher air flow rates, the peaks of the head-capacity and the efficiency curves coincided at the same pump flow capacity and speed. The explanation for this is that at the pump flow capacity when the air flow rate just exceeded the maximum amount that the pump could handle, the discharge head and the water flow rate decreased continuously for reasons discussed earlier in this chapter (See page 18). With the aid of the pump efficiency equation,  $n = \frac{\alpha YH}{8500 \text{ hbs}}$ 

it is clearly seen that simultaneous drops in Q and H will result in a similar drop of the efficiency.

The efficiency curves were clearly affected also by the increase of air in the air-water mixture. This resulted in a shift in the efficiency curves such that they peaked at a lower efficiency value and at a lower flow capacity (a result also achieved by Stepanoff)<sup>6</sup>. This behavior can also be explained by the simultaneous drop in the discharge head and the water flow rate.

#### CHAPTER VI

### Summary and Recommendations

This study investigated the effects of two phase flow on the performance of the centrifugal pump tested. Some of the results compared favorably with existing literature while a comparison of other results was impossible due to limited published work on the topic of two phase flow in centrifugal pumps.

Two phase flow was found to affect the efficiency of the centrifugal pump tested. Increasing the flow capacity under no-air flow conditions resulted in a continuous drop of the discharge head, but upon introduction of an air flow greater than  $1.72 \times 10^{-3}$  ft<sup>3</sup>/sec., the discharge head increased up to a limit before it dropped to zero (See figures 1 to 5). It was found that increasing the air injection rate had an adverse effect on the performance of the pump in terms of total head.

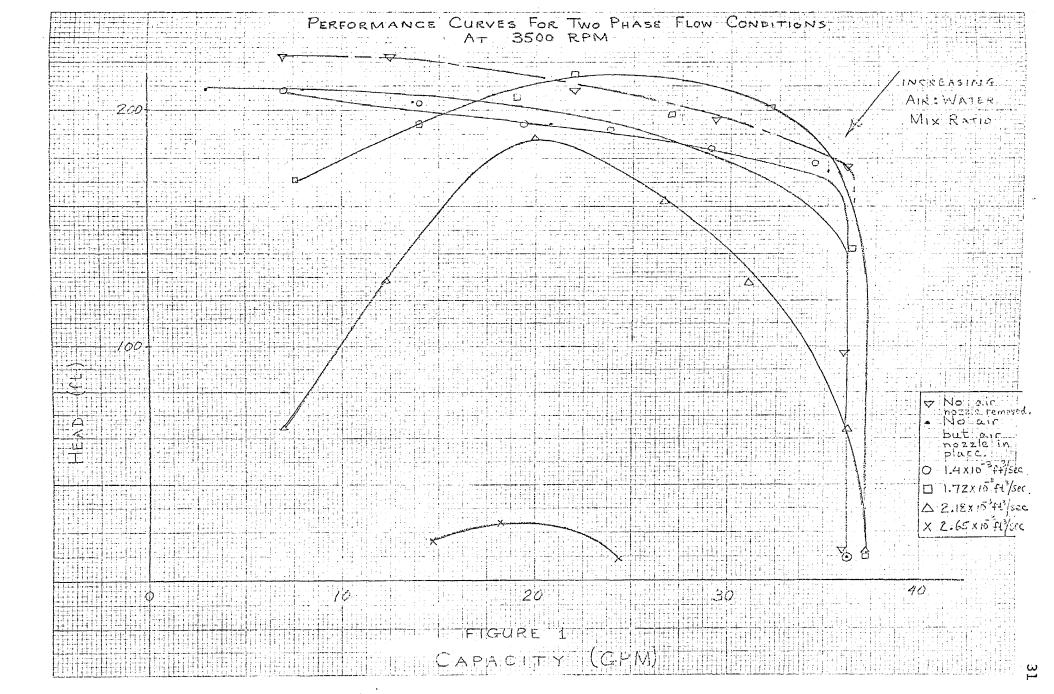
Two factors are noted in emplaining the behavior of the head-capacity curves: First, the geometry of the impeller vanes and the casing and, secondly, the suction pressure at the impeller eye. It was observed that the length of the

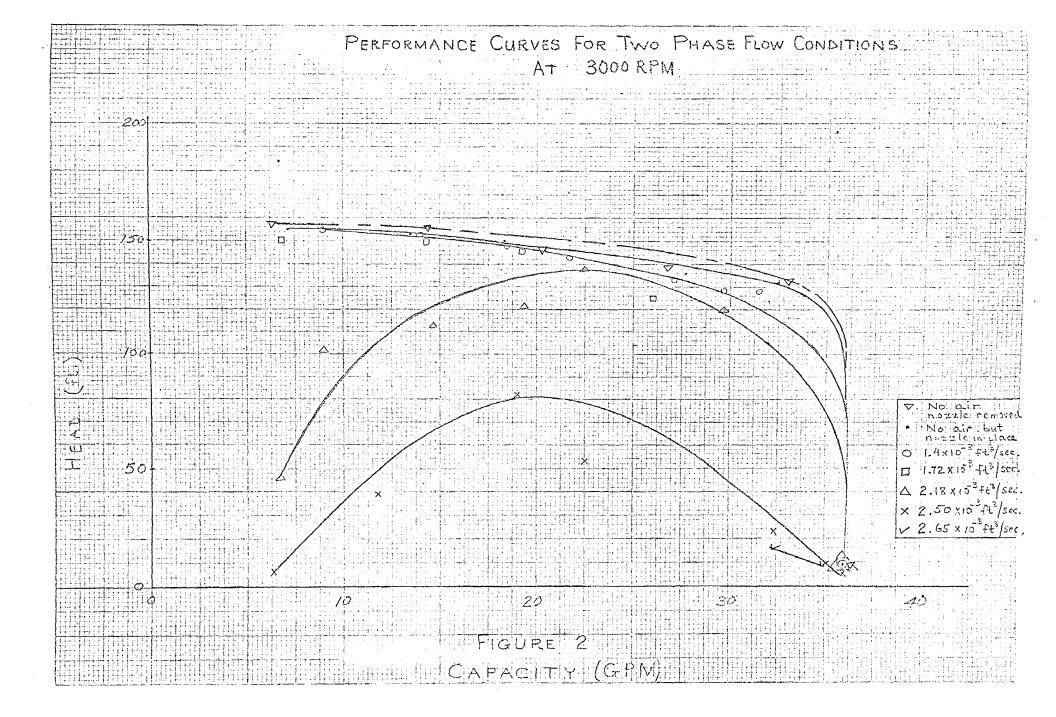
the impeller vanes (See Figure 19) interfered with the discharge of some of the air bubbles. These bubbles were trapped between the vanes. The high suction pressure at the impeller eye increased the volume of these bubbles such that they formed a partial block to the incoming flow. It was concluded that the mass of air inside the casing increased with time until it completely blocked the flow.

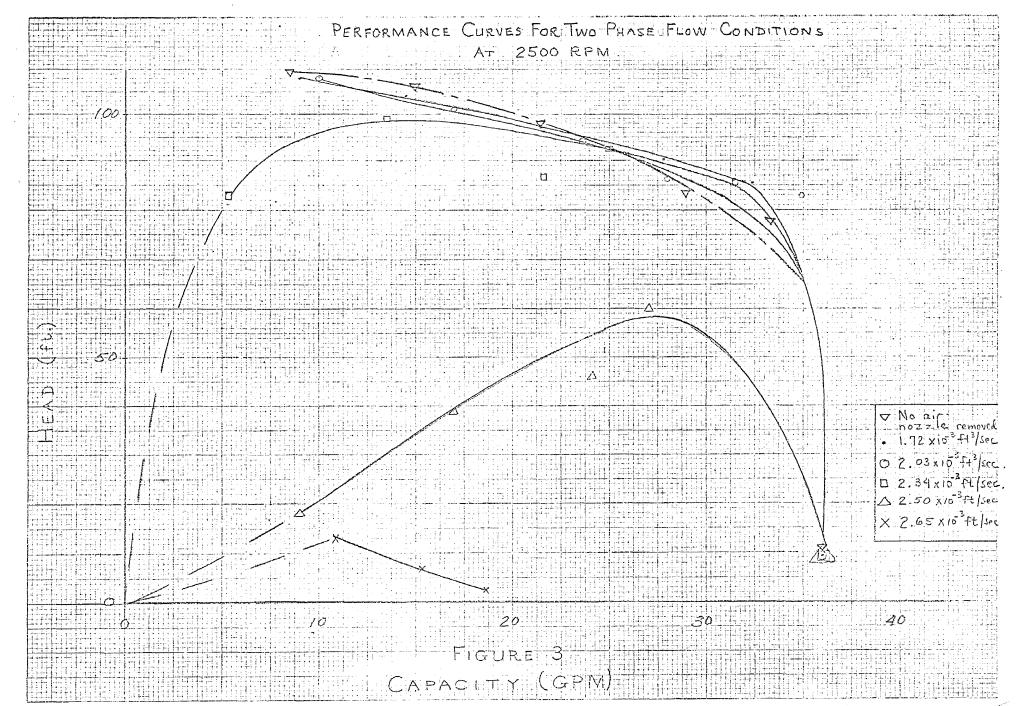
Another finding of this study was the determination of the values of the flow parameters, pump speed and flow capacity which resulted in optimal two-phase flow conditions.

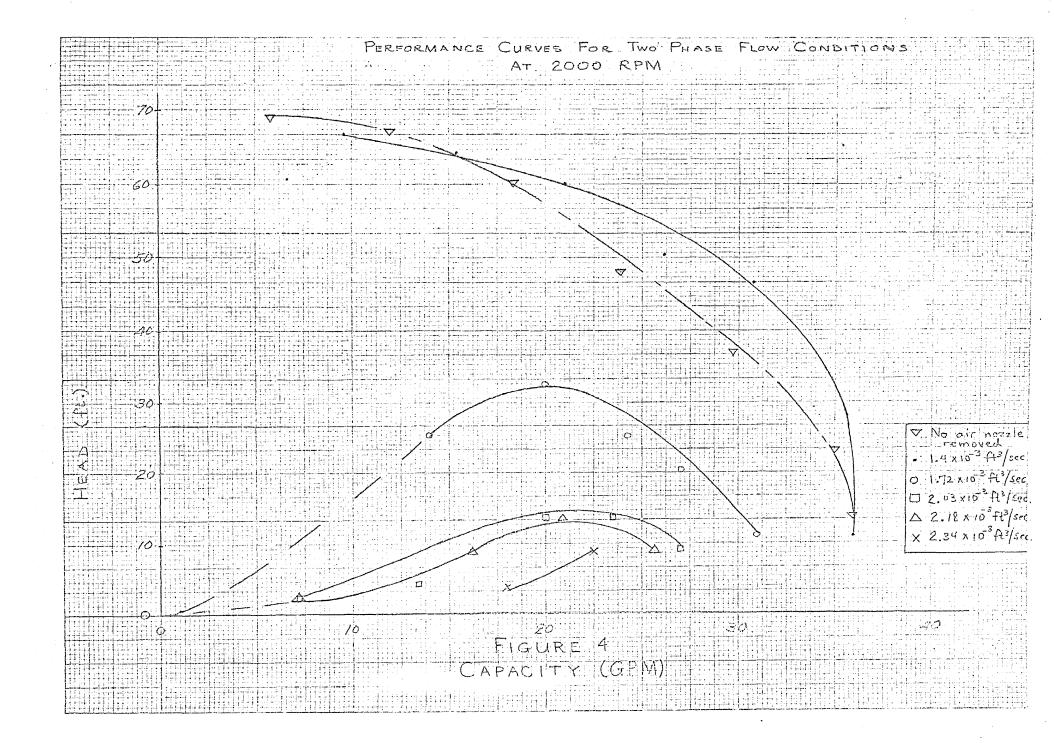
It was concluded that with the introduction of air into the water stream, the pump speed at which maximum air was discharged without a considerable head loss was below its optimal speed at no-air flow. Optimal two-phase flow conditions were observed at a pump speed of 2500 RPM and a flow capacity of 15 GPM. Optimal no-air flow conditions were observed at 3550 RPM and 35 GPM.

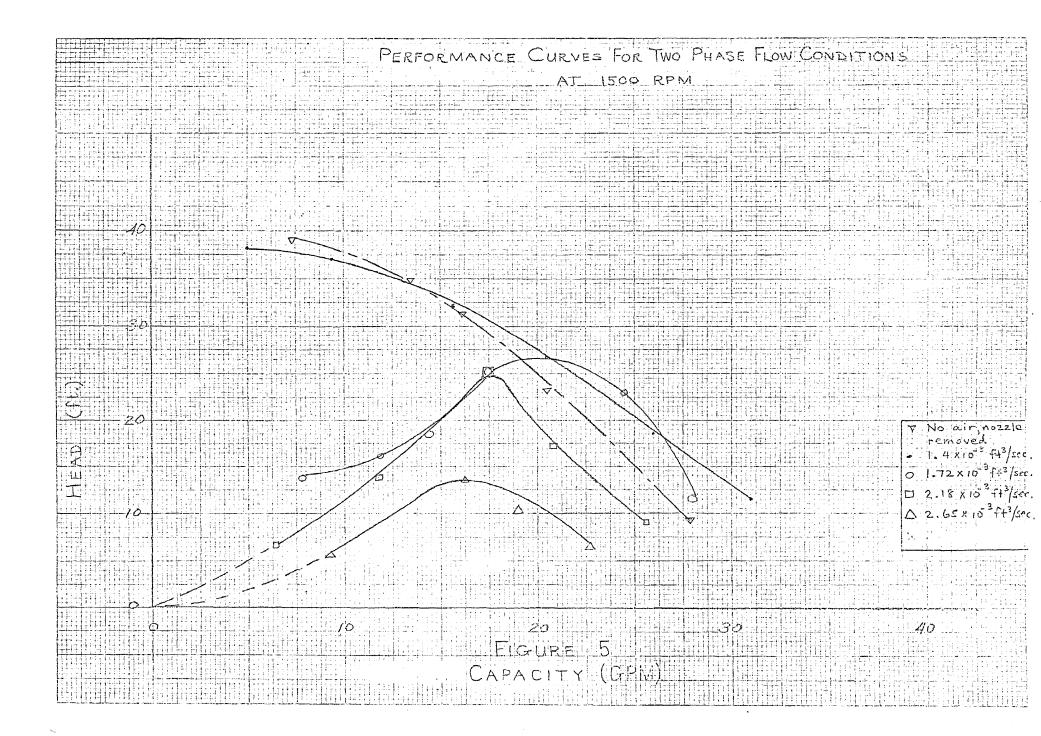
Recommendations: The remainder of this chapter is devoted to the discussion of recommended areas for further study, and and desired structural and procedural changes in the experiment. While clarifying certain aspects of two-phase flow in

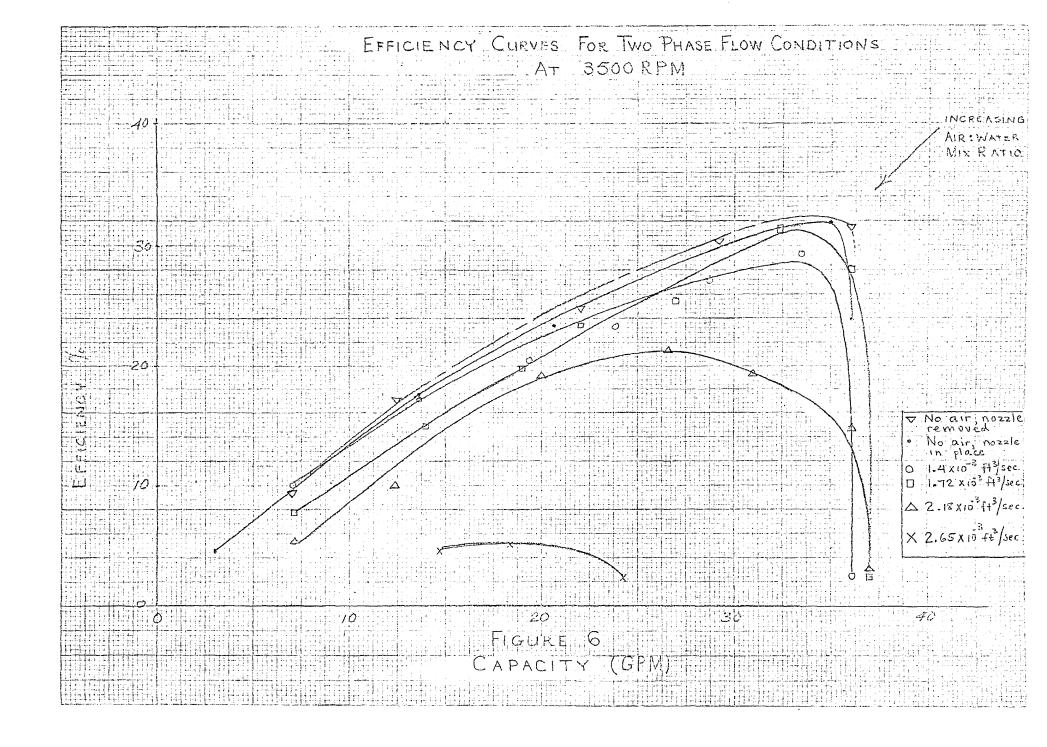

pumps, this study introduced new areas for further investigation. One of these areas involves the effects of varying the pump speed at fixed air and water flow rates on the developed discharge head. This may shed some light on the problem of phase separation at slower flow velocities as well as the air accumulation inside the pump casing.

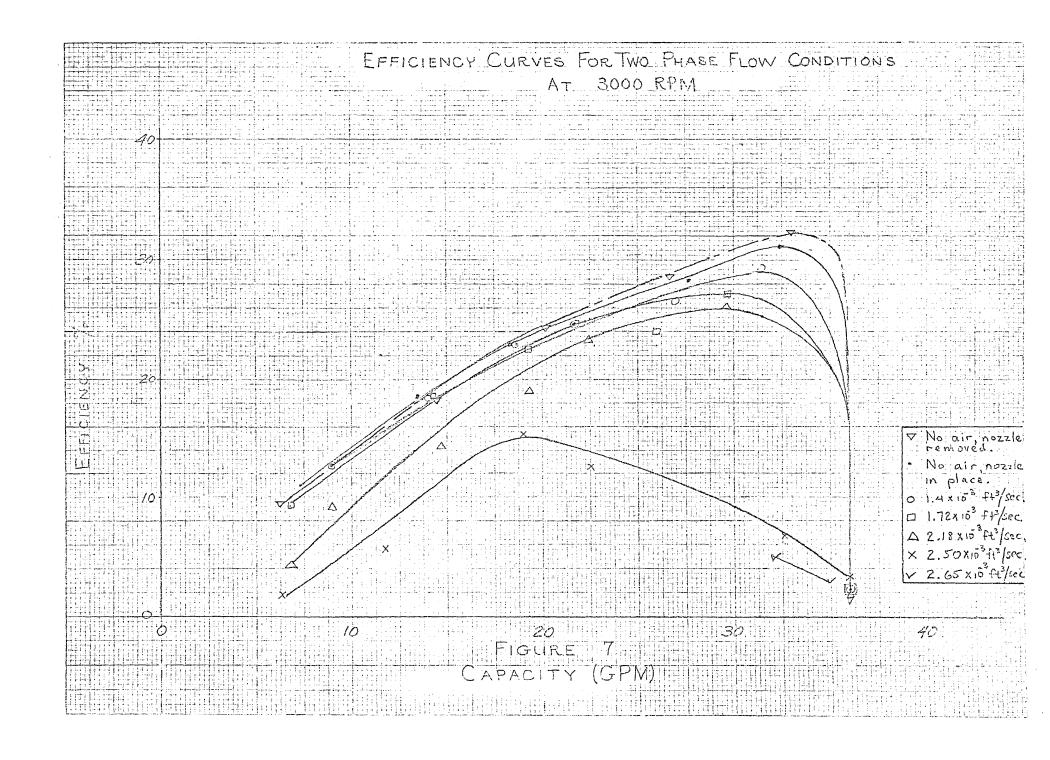

It is recommended that the experimental procedure of this study be repeated using the following pump configurations:

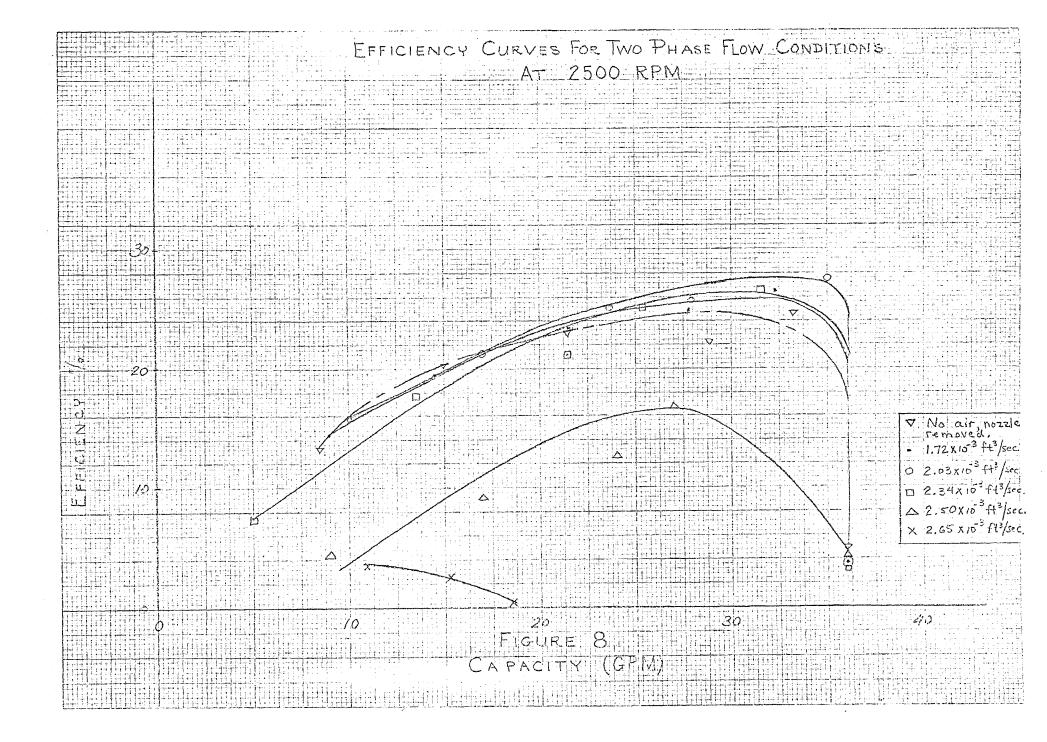

- 1.- A 7-inch impeller with curved vanes in conjunction with the existing plexiglass casing.
- 2.- A 5-inch impeller with curved vanes also with the present casing.
- 3.- A 7-inch impeller with curved vanes with a wider volute casing.
- 4.- A 5-inch impeller with curved vanes with a wider volute casing.

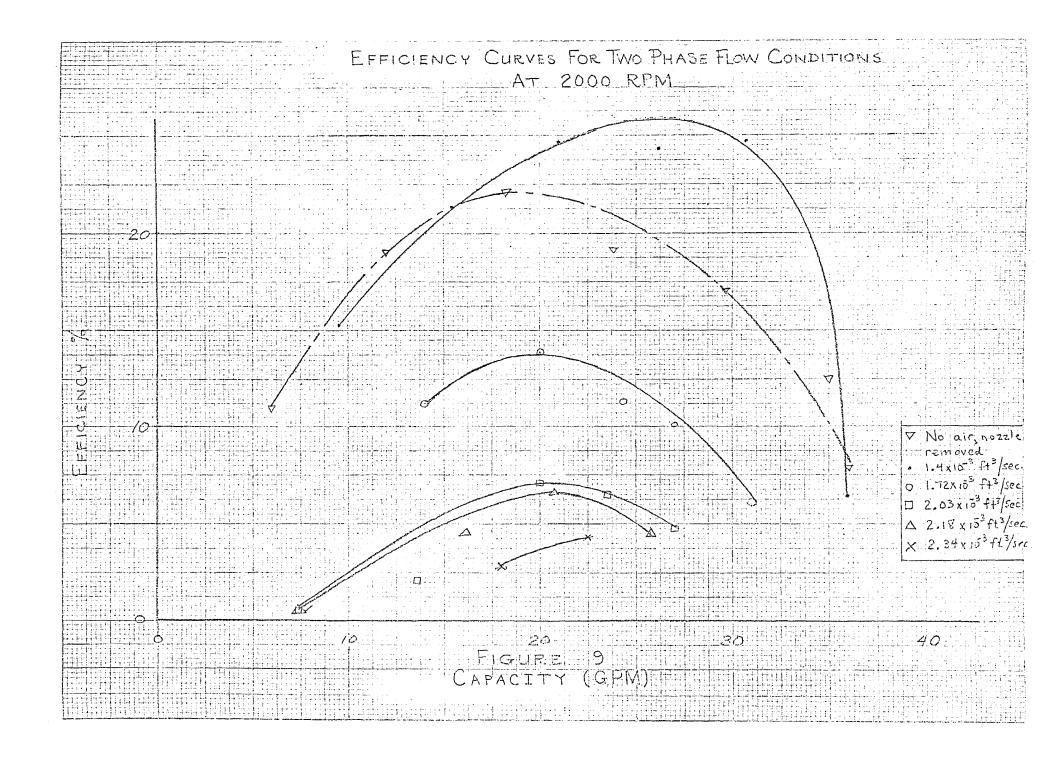

It is also recommended that with each of these four pump configurations an experimental procedure be followed whereby the pump speed is varied at fixed air and water flow rates, while the discharge and suction heads are measured.

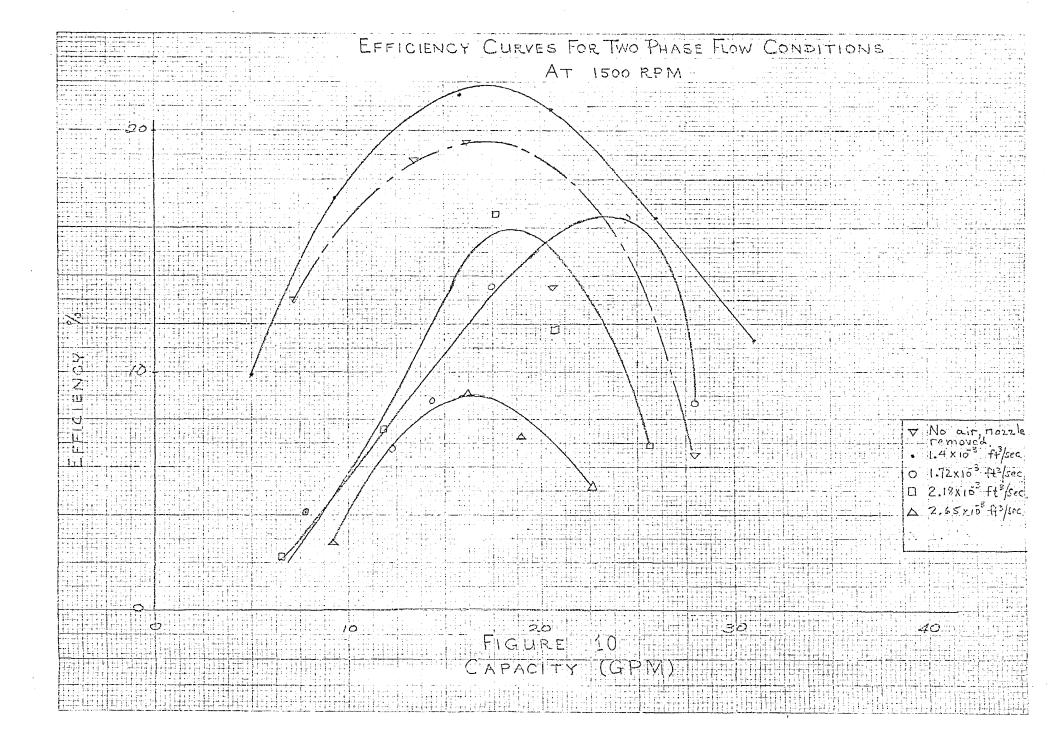

From a structural viewpoint, the apparatus can be considerably improved. First, a valve should be installed on the suction side of the pump to stop the water from flowing from the elevated reservoir to the pump during repairs. Secondly, it is advisable to resort to an alternative source of compressed air as oil (traceable to the compressor) was detected in the reservoir. Of course this contamination can be prevented by the use of filters and separators, however the alternate source of compressed air already mentioned is conveniently located. Thirdly, the reservoir should be permanently covered to keep solid particles out of the system. Fourthly, in order to increase the suction pressure it is recommended that the water reservoir be placed a few floors above the laboratory. The final recommendation is to improve the means of measurement and control of the air The existing orifice-manometer combination does not flow. constitute an accurate air flow measuring system, because of the excessive joints and fittings in its construction (See figure 21). A method of improving this situation would be to install a compact air flow meter and a needle valve in the air line in order to obtain a finer control of the air flow rate.

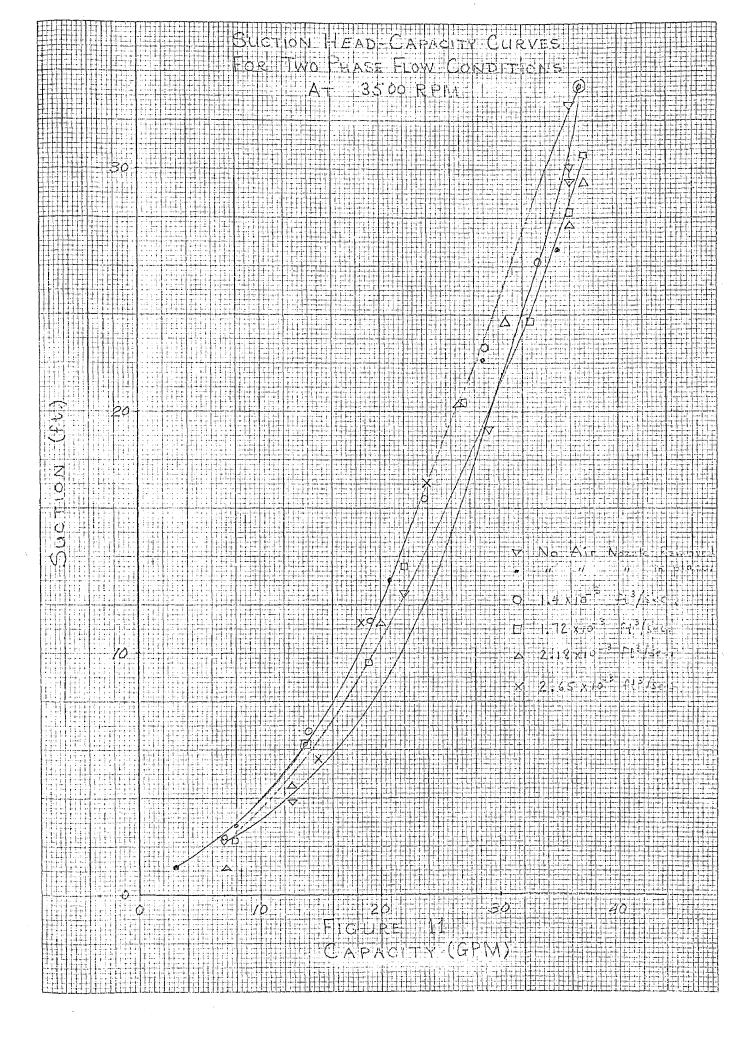


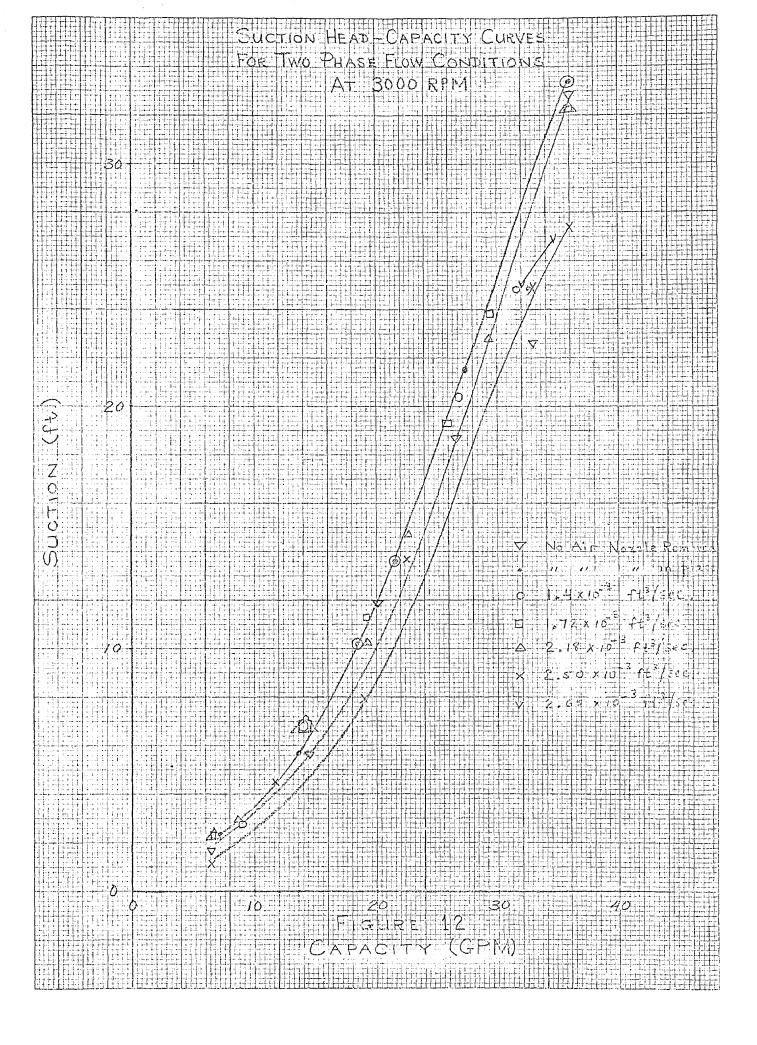



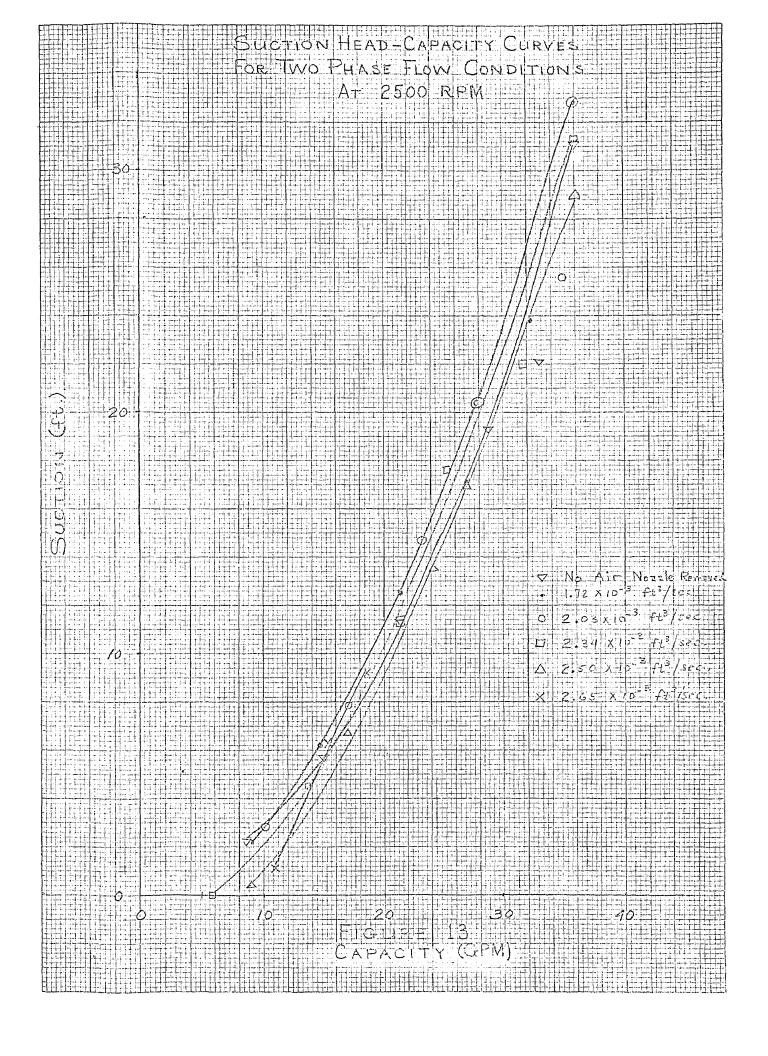



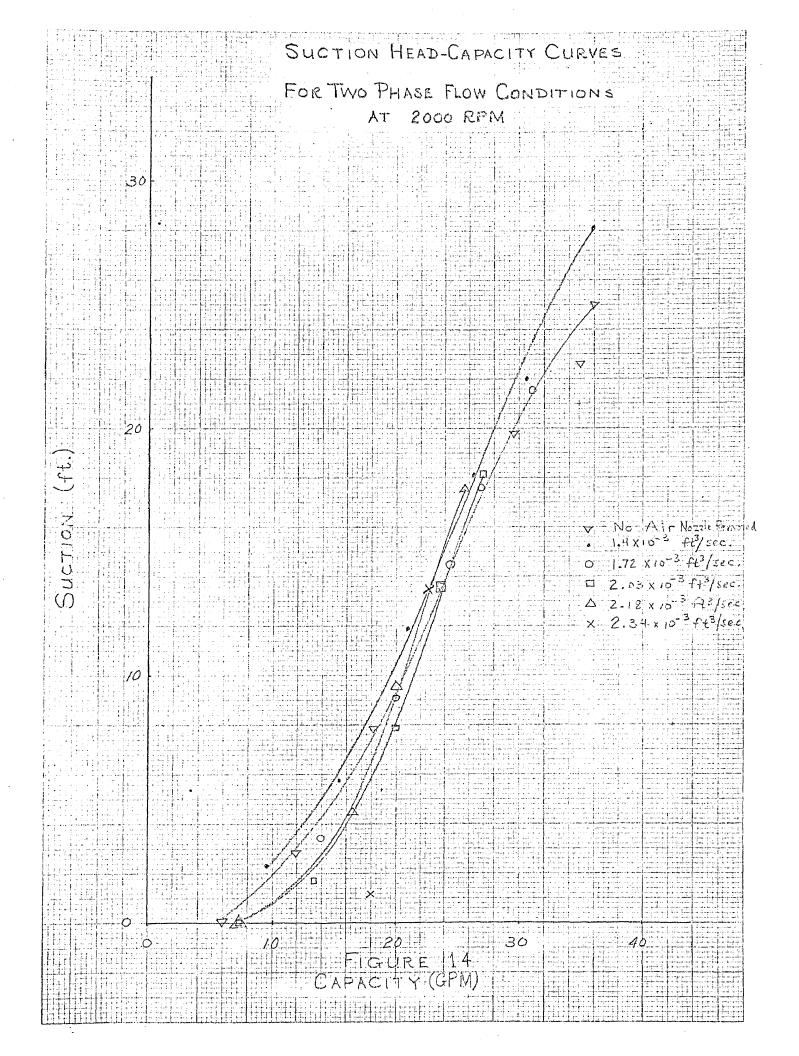



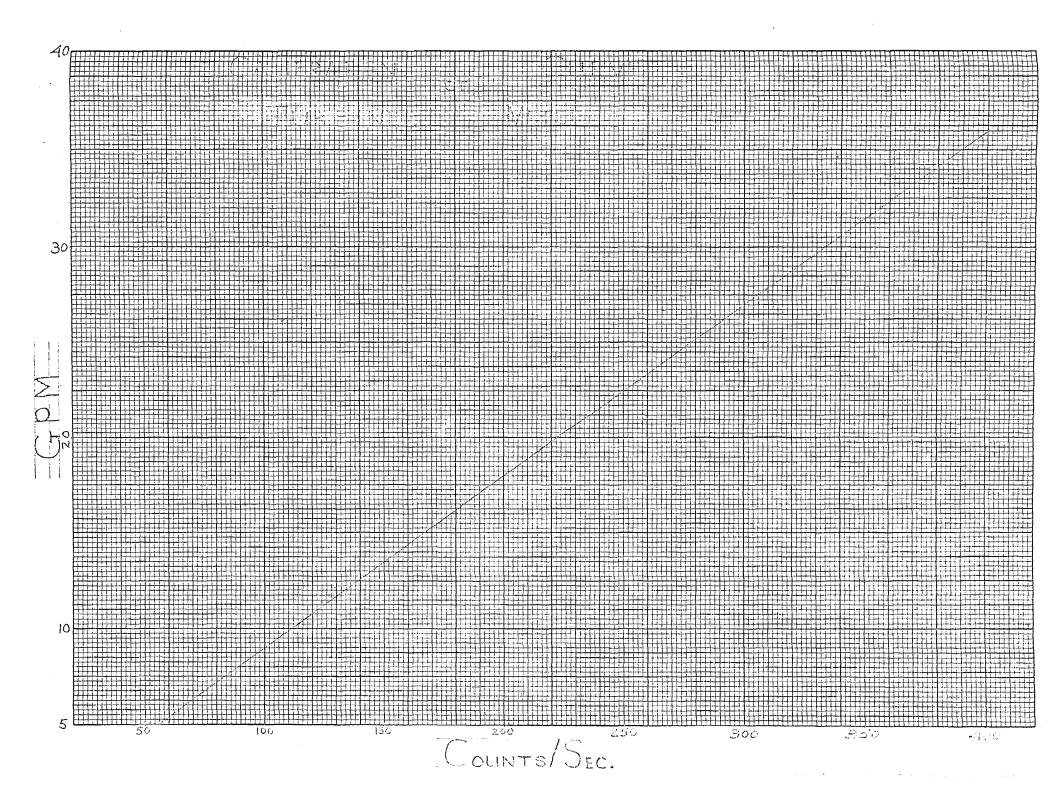



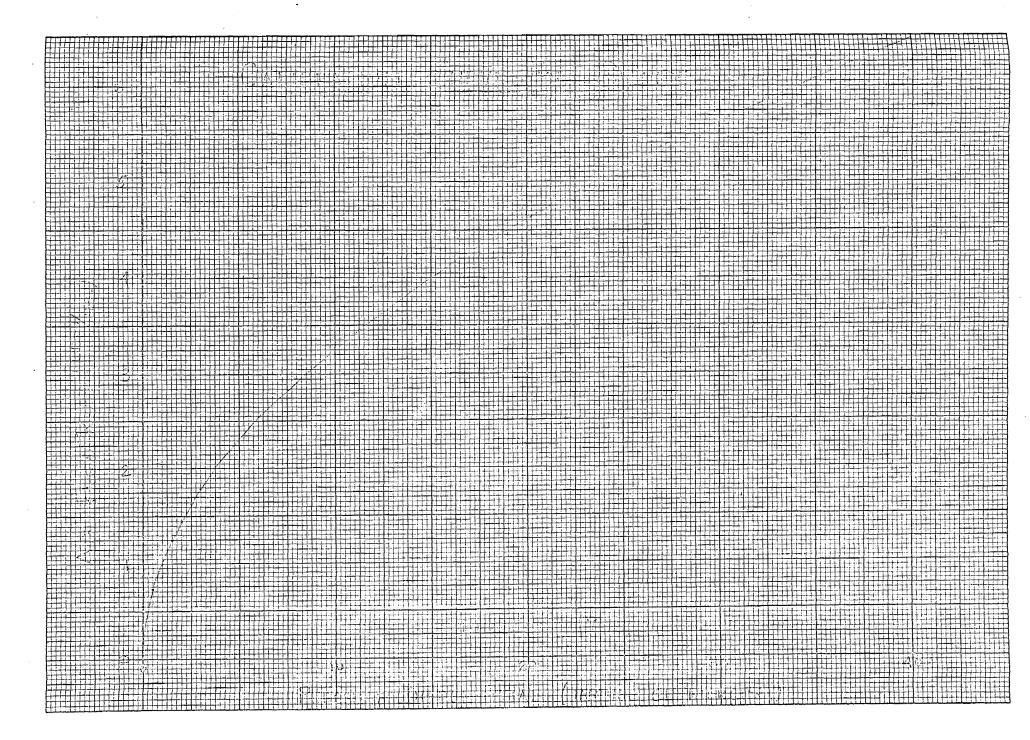



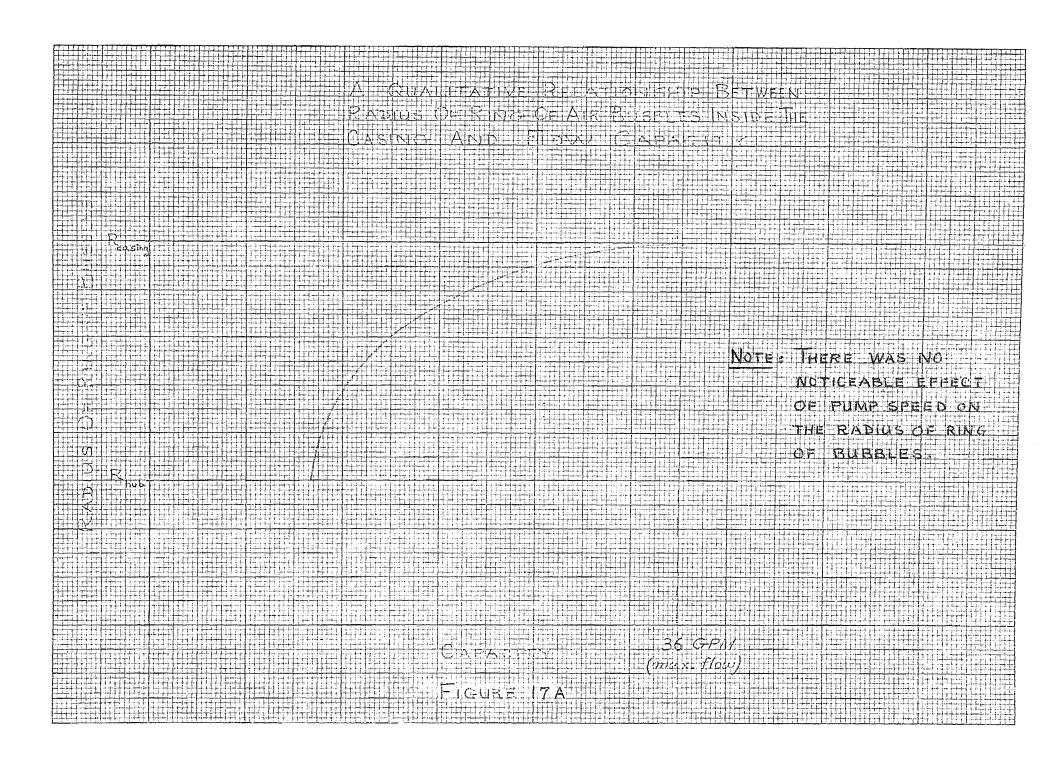



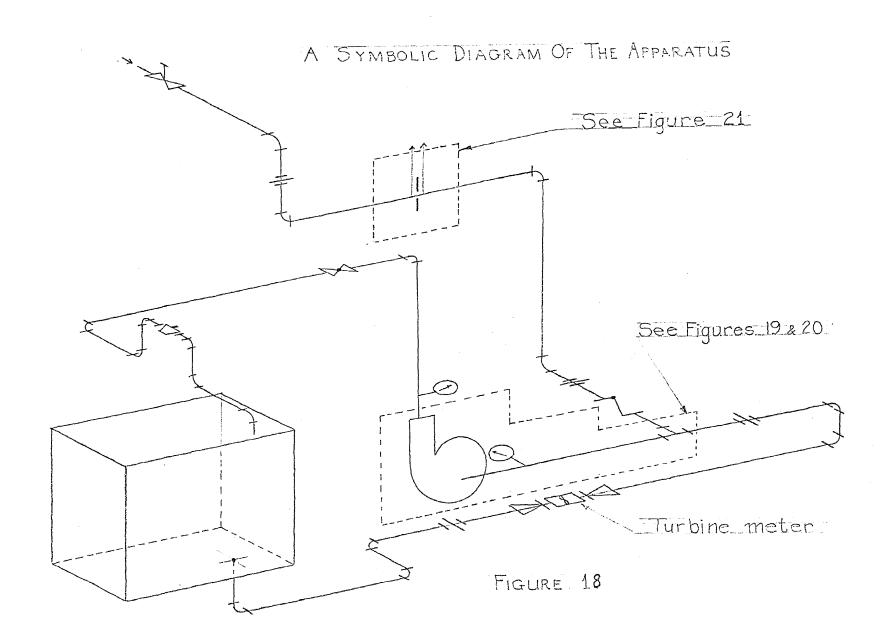






|    |              | HITTON                          | HEAD-CAE  | Jacity Cu         |                    |                                                                                                               |
|----|--------------|---------------------------------|-----------|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------|
|    |              | THE TAKE T                      |           | CONDIT            |                    |                                                                                                               |
|    |              | <u> Hari Malaka karan Ingan</u> | 1500 R.P  | Jackson Halling   |                    |                                                                                                               |
|    |              |                                 | 1300 K.T  |                   |                    | The Norze Kensy                                                                                               |
|    |              |                                 |           |                   | .4 x 10            |                                                                                                               |
| 30 |              |                                 |           |                   |                    | 10 計 代 力 6 位                                                                                                  |
|    |              |                                 |           |                   | 田 2.18 X<br>人 2.65 | والمنافرة والمرافية والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة |
|    |              |                                 |           |                   | X 2.81             |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
| 20 |              |                                 |           | 1111119/          |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 | 1/9       |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    | <b>∂</b> • 6 | <i>(</i> <b>6</b> )             |           |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |
|    |              |                                 |           | 30<br>15<br>(GPM) |                    |                                                                                                               |
|    |              |                                 | 其字。中国     | 門等長期              |                    |                                                                                                               |
|    |              |                                 | A PACILLY |                   |                    |                                                                                                               |
|    |              |                                 |           |                   |                    |                                                                                                               |









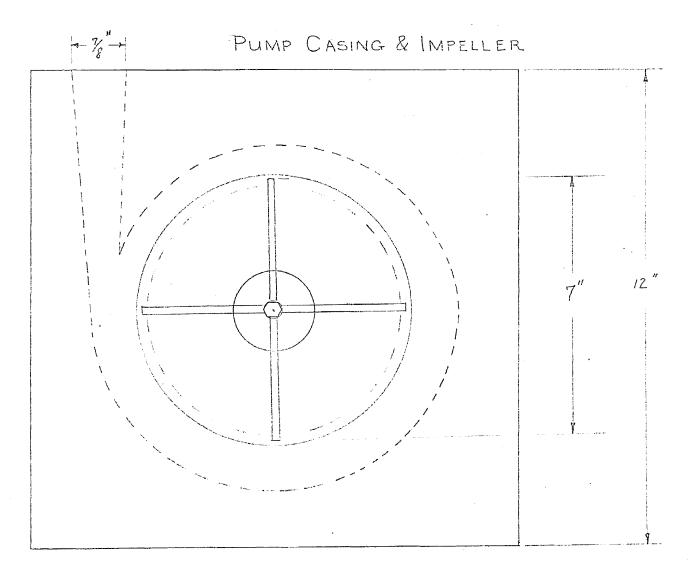
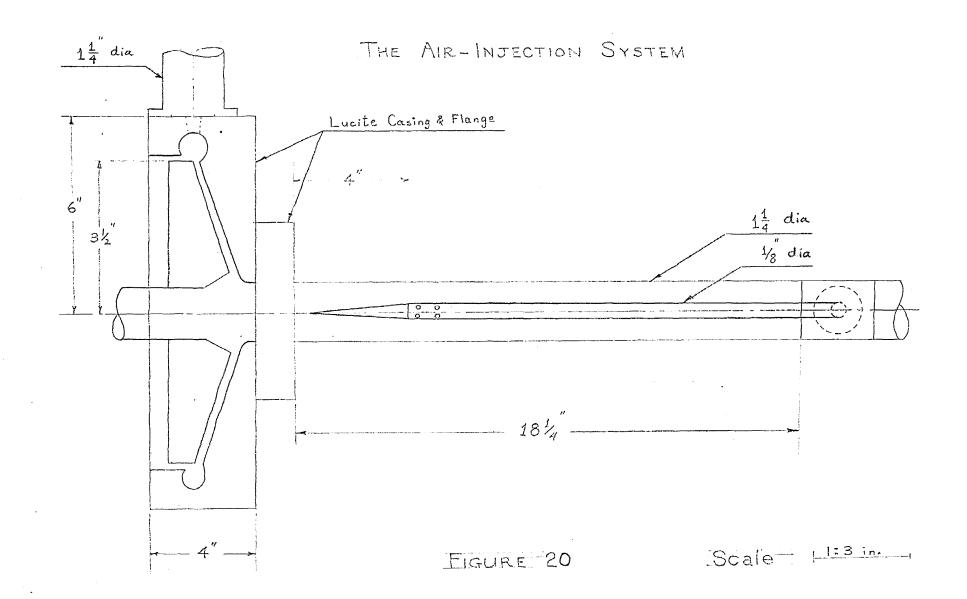
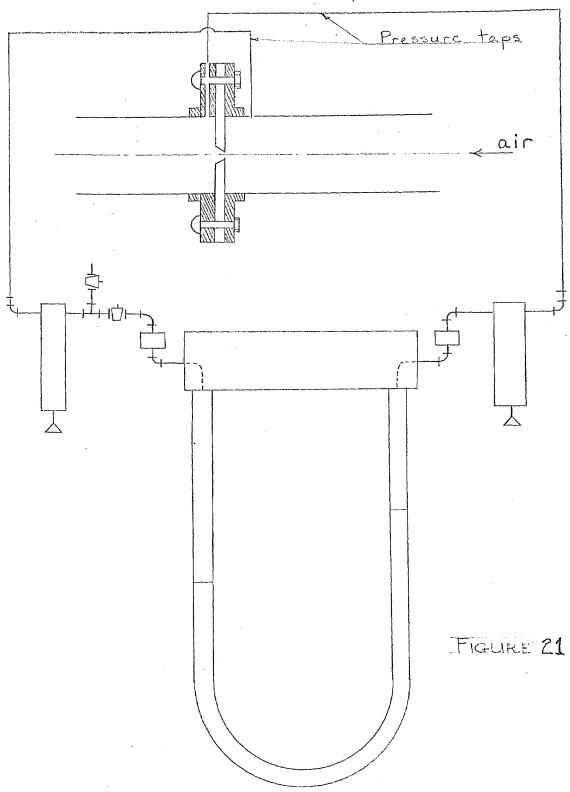





FIGURE 19

Scale 1:2.4 in.





THE ORIFICE & THE AIR FLOW MEASURING UNIT

An Illustration of the Helical Streamline with traped air bubbles

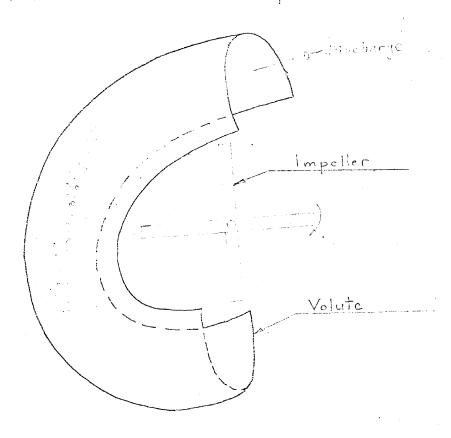



FIGURE 22

# CALIBRATION OF SUCTION POTTERMETER

| Counts/Sec. | <u>GPM</u> |
|-------------|------------|
| 56          | 5.03       |
| 69          | 5.59       |
| 87          | 7.30       |
| 91          | 8.40       |
| 123         | 10.83      |
| 146         | 12.97      |
| 160         | 13.72      |
| 179         | 15.37      |
| 191         | 17.20      |
| 192         | 17.90      |
| 196         | 18.45      |
| 224         | 20.25      |
| <b>22</b> 7 | 20.75      |
| 244         | 22.25      |
| <b>24</b> 7 | 22.7       |
| <b>2</b> 65 | 24.0       |
| <b>2</b> 67 | 24.9       |

## CALIBRATION OF ORIFICE

$$w_h = 1.03\sqrt{h_{Hg}}$$

| Inches of Hg | $w_h$ ( $lb_m$ of air/ $hr.$ ) |
|--------------|--------------------------------|
| 0.0          | 0.00                           |
| 0.5          | 0.73                           |
| 1.0          | 1.00                           |
| 1.5          | 1.25                           |
| 2.0          | 1.45                           |
| 2.5          | 1.63                           |
| 3.0          | 1.78                           |
| 3.5          | 1.91                           |
| 4.0          | 2.06                           |
| 4.5          | 2.18                           |
| 5.0          | 2.30                           |
| 6.0          | 2,52                           |
| 7.0          | 2.72                           |
| 8.0          | 2.91                           |
| 9.0          | 3.09                           |
| 10.0         | 3.26                           |
| 12.0         | 3.56                           |
| 15.0         | <b>3.</b> 99                   |
| 20.0         | 4.61                           |
| 25.0         | 5.15                           |
| 30.0         | 5.63                           |
| 35.0         | 6.09                           |
| 40.0         | 6.47                           |

# THE CONVERSION OF THE PRESSURE DIFFEREINTIAL ACROSS THE ORIFICE TO FT3/SEC. OF AIR.

| P'Hg. | Air Flow(1bm/hr)* | Air Flow(ft <sup>3</sup> /sec.) |
|-------|-------------------|---------------------------------|
| 0.2   | 0.45              | $1.4 \times 10^{-3}$            |
| 0.3   | 0.55              | $1.72 \times 10^{-3}$           |
| 0.4   | 0.65              | $2.03 \times 10^{-3}$           |
| 0.5   | 0.70              | $2.18 \times 10^{-3}$           |
| 0.6   | 0.75              | $2.34 \times 10^{-3}$           |
| 0.65  | 0.80              | $2.50 \times 10^{-3}$           |
| 0.70  | 0.85              | $2.65 \times 10^{-3}$           |
| 0.80  | 0.90              | $2.81 \times 10^{-3}$           |
|       |                   |                                 |

<sup>\*</sup> Obtained from Orifice calibration curwe.

# TABULATED DATA

## 3500 RPM

| Flow<br>Capacity<br>(GPM) | Discharge<br>Pressure<br>(ft.) | Suction<br>Pressure<br>(ft.) | Brake<br>Horse<br><u>Power</u> | Efficiency | Air Flow $(10^3 \frac{\text{ft}^3}{\text{sec}})$ |
|---------------------------|--------------------------------|------------------------------|--------------------------------|------------|--------------------------------------------------|
| 36                        | 9.25                           | 33.4                         | 3.53                           | 2.38       | 0                                                |
| 35                        | 175                            | 26.6                         | 4.87                           | 31.9       |                                                  |
| 28.7                      | 182                            | 22.1                         | 4.8                            | 27.6       |                                                  |
| 20.7                      | 196                            | 13                           | 4.4                            | 23.3       |                                                  |
| 13.7                      | 203                            | 6.24                         | 4.07                           | 17.3       |                                                  |
| 8.0                       | 208                            | 2.83                         | 3.8                            | 11.1       |                                                  |
| 3.0                       | 208                            | 1.13                         | 3.53                           | 4.48       |                                                  |
| 36                        | 9.25                           | 33.4                         | 3.47                           | 2.43       | 1.4                                              |
| 33.5                      | 178                            | 26.1                         | 5.14                           | 29.3       |                                                  |
| 29                        | 184                            | 22.7                         | 5.0                            | 27.1       |                                                  |
| 23.8                      | 192                            | 16.4                         | 4.8                            | 24.1       |                                                  |
| 19.4                      | 196                            | 11.3                         | 4.67                           | 20.6       |                                                  |
| 14                        | 203                            | 6.8                          | 4.2                            | 17.1       |                                                  |
| 7                         | 208                            | 2.27                         | 3.67                           | 10.0       |                                                  |
| 37                        | 9.25                           | 30.6                         | 3.33                           | 2.6        | 1.72                                             |
| 36                        | 162                            | 28.3                         | 5.20                           | 28.3       |                                                  |
| 32.4                      | 201                            | 23.8                         | 5.27                           | 31.1       |                                                  |
| 27                        | 198                            | 20.4                         | 5.27                           | 25.5       |                                                  |
| 22                        | 215                            | 13.6                         | 5.07                           | 23.6       |                                                  |
| 19                        | 205                            | 9.64                         | 4.94                           | 19.9       |                                                  |
| 14                        | 194                            | 6.24                         | 4.6                            | 14.9       |                                                  |
| 7.7                       | 171                            | 2.27                         | 4.26                           | 7.7        |                                                  |
| 37                        | 11.5                           | 29.5                         | 3.53                           | 3.04       | 2.18                                             |
| 36                        | 74                             | 27.8                         | 4.6                            | 14.7       |                                                  |
| 31                        | 129                            | 23.8                         | 5.2                            | 19.5       |                                                  |
| 26.6                      | 162                            | 20.4                         | 5.07                           | 21.5       |                                                  |
| 20                        | 189                            | 11.3                         | 4.94                           | 18.4       |                                                  |
| 12.3                      | 129                            | 4.53                         | 3.87                           | 10.3       |                                                  |
| 7                         | 65                             | 1.13                         | 2.13                           | 5.4        |                                                  |
| 24.4                      | 9.25                           | 17.0                         | 2.33                           | 2.45       | 2.65                                             |
| 18.2                      | 23.1                           | 11.3                         | 2.13                           | 5.0        |                                                  |
| 14.7                      | 16.2                           | 5.64                         | 1.33                           | 4.52       |                                                  |

# 3000 RPM

|                                                   | Birtha apropagation pounts pounts              |                                                      |                                                      |                                                      |                                                     |
|---------------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| <u> GРМ</u>                                       | Disch.head (pt)                                | P <sub>S</sub> (ft)                                  | <u>b</u> hp                                          | EFF.                                                 | Air-Flow $(10^{-3} \frac{\text{ft}^3}{\text{sec}})$ |
| 36<br>32.5<br>27.7<br>21.7<br>18.3<br>13.5<br>7.2 | 9.25<br>132<br>136<br>146<br>150<br>153<br>155 | 33.4<br>24.9<br>21.5<br>13.6<br>10.2<br>5.67<br>2.27 | 2.86<br>3.48<br>3.37<br>3.26<br>3.03<br>2.86<br>2.57 | 2.94<br>31.2<br>28.3<br>24.6<br>22.9<br>18.3<br>11.0 | 0                                                   |
| 36<br>31.5<br>27.0<br>21.7<br>18.5<br>14          | 9.25<br>129<br>134<br>143<br>148<br>153<br>155 | 33.4<br>24.9<br>20.4<br>13.6<br>10.2<br>6.8<br>2.84  | 2.86<br>3.48<br>3.43<br>3.20<br>3.03<br>2.97<br>2.8  | 2.94<br>29.6<br>26.6<br>24.5<br>22.8<br>18.2<br>12.6 | 1.4                                                 |
| 36<br>29.7<br>26<br>19.2<br>14.3<br>6.8           | 9.25<br>129<br>125<br>146<br>150<br>150        | 32.3<br>23.8<br>19.3<br>11.3<br>6.8<br>2.27          | 2.86<br>3.54<br>3.37<br>3.14<br>2.97<br>2.68         | 2.94<br>27.3<br>24.4<br>22.5<br>18.2<br>9.61         | 1,72                                                |
| 36<br>29.7<br>22.5<br>19.3<br>14.7<br>9.0<br>6.7  | 9.25<br>120<br>139<br>122<br>113<br>102<br>46  | 32.3<br>22.7<br>14.7<br>10.2<br>6.8<br>2.83<br>2.27  | 2.86<br>3.43<br>3.32<br>3.14<br>2.91<br>2.46<br>1.83 | 2.84<br>26.3<br>23.8<br>19.0<br>14.4<br>9.46<br>4.25 | 2,18                                                |
| 36<br>32.4<br>22.5<br>19<br>11.7<br>6.3           | 9.25<br>23.1<br>53.5<br>81.<br>39.3<br>6.9     | 27.4<br>24.9<br>13.6<br>7.36<br>4.53<br>1.13         | 2.68<br>2.74<br>2.46<br>2.63<br>2.00                 | 3.14<br>6.91<br>12.4<br>15.5<br>5.82<br>1.9          | 2.50                                                |
| 35<br>32.2                                        | 9.25<br>16.2                                   | 26.6<br>25.04                                        | 2.57                                                 | 3.19<br>5.0                                          | 2,65                                                |

# 2500 RPM

|   | <u>GPM</u>                                | Po(ft)                                         | Ps (ft)                                       | <u>bhp</u>                                   | EFF.                                         | $\frac{\text{Air Flow}}{(10^{-3} \text{ ft}^3)}$ |
|---|-------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------|
|   | 36<br>33.25<br>28.8<br>21.4<br>15<br>8.5  | 11.5<br>78.5<br>83.2<br>97.0<br>106.0<br>109.0 | 31.2<br>22.1<br>19.3<br>11.33<br>5.66<br>2.26 | 2.24<br>2.67<br>2.72<br>2.29<br>2.00<br>1.81 | 4.7<br>24.8<br>22.3<br>23.0<br>20.1<br>13.2  | o j                                              |
|   | 36<br>32.2<br>27.8<br>21.5<br>14.5<br>9.0 | 9.25<br>85.5<br>90.1<br>97.1<br>104.0<br>108.5 | 32.9<br>23.8<br>20.4<br>12.5<br>6.24<br>2.27  | 2.24<br>2.62<br>2.48<br>2.24<br>1.95<br>1.72 | 3.77<br>26.6<br>25.6<br>23.6<br>19.6<br>14.4 | 1.72                                             |
|   | 36<br>35<br>28<br>23.7<br>17              | 9.25<br>83.2<br>86.8<br>94.7<br>101.5<br>108.5 | 32.9<br>25.5<br>20.4<br>14.75<br>7.95<br>2.84 | 2.24<br>2.57<br>2.38<br>2.24<br>2.00<br>1.72 | 3.74<br>27.6<br>25.8<br>25.3<br>21.8<br>15.9 | 2.03                                             |
|   | 36<br>31.5<br>25.2<br>21.6<br>13.5<br>5.4 | 9.25<br>85.5<br>92.50<br>86.8<br>99.4<br>83.1  | 31.2<br>22.1<br>17.6<br>11.3<br>4.54          | 2.33<br>2.57<br>2.33<br>2.24<br>1.90<br>1.53 | 3.62<br>26.6<br>25.3<br>21.2<br>17.9<br>7.41 | 2.34                                             |
|   | 36<br>27<br>24.1<br>17<br>9.0             | 9.25<br>60.0<br>46.2<br>39.3<br>18.5           | 29.0<br>17.0<br>13.6<br>6.8<br>0.57           | 2.24<br>2.43<br>2.24<br>1.81<br>1.00         | 3.77<br>16.9<br>12.6<br>9.34<br>4.22         | 2.50                                             |
| • | 18.6<br>15.3<br>10.8                      | 2.81<br>6.93<br>1 <u>3.8</u> 5                 | 9.1<br>6.25<br>1 <u>.13</u>                   | 1.29<br>1.14<br>1.05                         | 0.84<br>2.35<br>3 <u>.59</u>                 | 2.65                                             |

| <u>2</u>   | 000 RPM             |              |                |                |                                              |
|------------|---------------------|--------------|----------------|----------------|----------------------------------------------|
| <u>GPM</u> | P <sub>D</sub> (ft) | Ps(ft)       | <u>bhp</u>     | EFF.           | Air Flow (10 <sup>-3</sup> ft <sup>3</sup> ) |
| 36         | 13.9                | 25           | 1.60           | 7.92           | sec                                          |
| 35         | 23.1                | 22.6         | 1.64           | 12.5           |                                              |
| 29.7       | 37.0                | 19.8         | 1.64           | 17.0           |                                              |
| 23.8       | 48.5                | 13.6         | 1.525          | 19.2           |                                              |
| 18.3       | 60.0                | 7.95         | 1.258          | 22.1           |                                              |
| 12         | 67.0                | 2.84         | 1.068          | 19.0           |                                              |
| 6          | 69.3                | 0.           | 0.954          | 11.0           |                                              |
| 36         | 11.5                | 28.1         | 1.64           | 6.4            | 1.4                                          |
| 30.7       | 46.2                | 22.0         | 1.45           | 24.7           |                                              |
| 26.2       | 50.1                | 18.1         | 1.37           | 24.3           |                                              |
| 21         | 60.0                | 11.9         | 1.29           | 24.7           |                                              |
| 15.4       | 64.7                | 5.7          | 1.18           | 21.4           |                                              |
| 9.6        | 67.0                | 2.3          | 1.07           | 15.2           |                                              |
| 31         | 11.5                | 21.6         | 1.485          | 6.1            | 1.72                                         |
| 27         | 20.8                | 17.6         | 1.41           | 10.1           |                                              |
| 24.3       | 25.4                | 14.5         | 1.37           | 11.4           |                                              |
| 20         | 32.4                | 9.1          | 1.18           | 13.9           |                                              |
| <u>14</u>  | 25.4                | <u>3.</u> 4  | 0.80           | 1 <u>1.2</u> 5 |                                              |
| 27         | 9.25                | 18.1         | 1.295          | 4.9            | 2.03                                         |
| 23.3       | 13.9                | 13.6         | 1.22           | 6.7            |                                              |
| 20         | 13.9                | 7.95         | .99            | 7.1            |                                              |
| 13.5       | 4.62                | 1.7          | .76            | 2.1            |                                              |
| 7.2        | 2.31                | <u>0</u>     | .68            | 0.6            |                                              |
| 25.6       | 9.25                | 17.6         | 1.26           | 4.75           | 2.18                                         |
| 20.7       | 13.9                | 9.65         | 1.07           | 6.8            |                                              |
| 16.2       | 9.25                | 4.55         | 0.80           | 4.75           |                                              |
| 7.2        | 2.31                | <u>0</u>     | 0 <u>.5</u> 7  | 0 <u>.7</u>    |                                              |
| 22.5       | 9.25                | 13.6         | 1.18           | 4.45           | 2.34                                         |
| 18         | 4 <u>.6</u> 2       | 1 <u>.</u> 1 | 0. <u>7</u> 25 | 2 <u>.</u> 9   |                                              |

# 1500 RPM

| <u>GPM</u>                             | P <sub>D</sub> (ft)                          | P <sub>S</sub> (ft)              | Ppb                                          | EFF.                                        | Air Flow $(10^{-3} \frac{\text{ft}^3}{\text{sec}})$ |
|----------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------------------|
| 28                                     | 9.25                                         | 17                               | 0.944                                        | 6.93                                        | 0                                                   |
| 20.5                                   | 23.10                                        | 10.2                             | 0.886                                        | 13.5                                        |                                                     |
| 16.2                                   | 31.20                                        | 6.24                             | 0.657                                        | 19.5                                        |                                                     |
| 13.5                                   | 34.70                                        | 3. 97                            | 0.629                                        | 18.8                                        |                                                     |
| 7.2                                    | 39.30                                        | .57                              | 0.549                                        | 13                                          |                                                     |
| 31<br>26<br>20.5<br>15.7<br>9.4<br>5.0 | 11.5<br>18.5<br>26.6<br>32.4<br>37.0<br>38.2 | 22<br>18.1<br>11.3<br>6.2<br>1.7 | 0.80<br>0.74<br>0.66<br>0.60<br>0.51<br>0.49 | 11.3<br>16.4<br>20.9<br>21.5<br>17.2<br>9.9 | 1.4                                                 |
| 28                                     | 11.5                                         | 20.5                             | 0.94                                         | 8.7                                         | 1.72                                                |
| 24.5                                   | 23.1                                         | 15.3                             | 0.885                                        | 16.2                                        |                                                     |
| 17.5                                   | 25.4                                         | 7.9                              | 0.83                                         | 13.6                                        |                                                     |
| 14.4                                   | 18.5                                         | 5.1                              | 0.77                                         | 6.8                                         |                                                     |
| 12.2                                   | 16.2                                         | 3.4                              | 0.74                                         | 6.8                                         |                                                     |
| 7.7                                    | 13.9                                         | 1.1                              | 0.66                                         | 4.1                                         |                                                     |
| 25.6                                   | 9.25                                         | 17.6                             | 0.86                                         | 6.95                                        | 2.18                                                |
| 20.7                                   | 17.3                                         | 10.8                             | 1.77                                         | 11.8                                        |                                                     |
| 17.7                                   | 25.4                                         | 7.4                              | 0.685                                        | 16.6                                        |                                                     |
| 11.7                                   | 13.9                                         | 2.8                              | 0.54                                         | 7.60                                        |                                                     |
| 6.4                                    | 6 <u>.</u> 9                                 | 1 <u>.</u> 1                     | 0 <u>.4</u> 9                                | 2 <u>-</u> 3                                |                                                     |
| 22.7                                   | 6.9                                          | 13.0                             | 0.77                                         | 5.2                                         | 2.65                                                |
| 19                                     | 10.4                                         | 9.1                              | 0.685                                        | 7.3                                         |                                                     |
| 16.2                                   | 13.9                                         | 6.2                              | 0.63                                         | 9.1                                         |                                                     |
| <u>9.</u> 2                            | 5 <u>.7</u> 8                                | 1.7                              | 0 <u>.4</u> 6                                | 2 <u>.</u> 9                                |                                                     |
| 17 <u>.</u> 2                          | 4.62                                         | 7 <u>.</u> 9                     | 0 <u>.</u> 66                                | 3.04                                        | 2.81                                                |

#### CALCULATIONS

#### 1. DETERMINATION OF VOLUMETRIC AIR FLOW RATE:

Density of air where P= 14.7 psia R= 53.35 ft.1b<sub>f</sub>/ 1b<sub>m</sub>-R 
$$= \frac{14.716_{\rm f}}{12} = \frac{144 \text{ in}^2}{1} = \frac{1}{158.35} = \frac{14.716_{\rm f}}{1} = \frac{144 \text{ in}^2}{1} = \frac{1}{158.35} = \frac{1}{153.35} = \frac{1}{1$$

#### A Sample Calculation

Gage Pressure at Orifice = 3 psig (Constant).

Air Density at Orifice = 
$$(7.38 \times 10^{-2}) \frac{(14.7 + 3)}{14.7}$$
  
=  $8.9 \times 10^{-2} \frac{1b_m}{ft^3}$ 

Air Flow Rate = 
$$0.45^{\frac{1}{2}} \frac{1b_m}{100} \times \frac{1 \text{ hr}}{3600 \text{ sec}} \times \frac{\text{ft}^3}{8.9 \times 10^{-2} 1b_m}$$

$$= 1.4 \times 10^{-3}$$
 ft<sup>3</sup>sec

<sup>\*</sup> This is the mass flow rate corresponding to a pressure - differential of 0.2 "Hg obtained from the orifice calibration curve.

#### CALCULATIONS

2. DETERMINATION OF MAX. DISCHARGE & SUCTION PRESSURES:

( Based on Manufacturer's data )

$$250 = \frac{PSI \times 2 \cdot 31}{1}$$

MAX. DISCH. PRESSURE = 110 psi

$$15 = \frac{PSI \times 2.31}{1}$$

MAX. SUCTION = 6.5 psi

3. DETERMINATION OF AIR FLOW RATE THRU 1"-PIPE BY MEANS OR AN ORIFICE:\*

$$W_h = 359 \text{ CFd}^2 F_a / \sqrt{h_W/U_1} = 359 \text{ Kd}^2 / \sqrt{h_W/U_1} \dots (i) \text{ where}$$

wh = Weight flow rate, lbs/hr

C = Coefficient of discharge

F = Velocity of approach factor =  $\frac{1}{\sqrt{1-\beta}}$ 

 $\beta$  = Ratio of orifice throat to pipe J.D.

d = Orifice throat diameter, inches

 $F_a$  = Factor accounting for thermal expansion of orifice

Y = Net expansion factor

<sup>\*</sup> POWER TEST CODE - FLOW MEASUREMENT p.57

$$h_W$$
 = Differential pressure, inches of water at  $68^{\circ}F$ 
 $\mathcal{O}_{i}$  = Specific volume of air at inlet of orifice  $\frac{\text{cu.ft}}{\text{lb}}$ 
 $\mathcal{O}_{i}$  = 0.357/1.049 = 0.34

 $F = \frac{1}{\sqrt{1-\beta^{2}f}} = \frac{1}{\sqrt{1-0.0}} = \frac{1.00965}{\sqrt{1-0.0}}$ 
 $\frac{d^{2}}{d^{2}} = \frac{1.0}{(0.357 \text{ in})^{2}} = \frac{1.0}{0.1275 \text{ in}^{2}}$ 
 $F_{a} \approx 1.0$ 
 $g\mathcal{N}_{i} = 0.000012 \frac{1bf}{\text{ft.sec.}} = 3.8 \times 10^{-7} \frac{1bf - \sec \times 32}{\text{ft}^{2}} = \frac{1.0}{\sec^{2}}$ 
 $R_{e} = \frac{\text{VD}}{\text{g}} = \frac{1.0}{\text{g}} = \frac{1.$ 

The term K in equation (i) above is determined by the Reynold's No which doesn't have a considerable bearing upon it.

Therefore, the following assumption is made:-

(1) 
$$V = 10 \text{ ft/sec}$$
 (approx.)

Also  $D = 1.049 \times 1/12 = 0.0874 \text{ ft}$ 
 $V = 0.075$ 
 $V = 0.0000121$ 
 $V = 0.0000121$ 
 $V = 0.0000121$ 
 $V = 0.0000121$ 
 $V = 0.0000121$ 

Assume 
$$P = 6$$
 in Hg  $P = 0.34$ 

P1 = 25 psig
T = 70°F
= 460 + 70 d = 0.357 in
= 530°R

PV = RT  

$$G = \frac{RT}{P_1} = \frac{(53.35)(530)}{(39.7)144} = \frac{(53.35)(530)}{(144)(39.7)} = \frac{49.4 \text{ ft}^3}{1b_{\text{BK}}}$$
  
 $h_W = 6 \text{ inHg x } 13.6 \frac{\text{in Water}}{\text{in Hg}} = \frac{816 \text{ in.Hzo}}{\text{in Hg}}$   
 $d^2 = \frac{0.1275}{\beta} \text{ in}^2$   
 $h_W/P = 2.06$   
 $M_{F/G \neq 0} = \frac{0.97}{\beta} = 0.34$ 

Assume  $K = \underline{0.601}$ 

Assuming

that  $R_e \approx 10^6$ , and since  $R_e$ .

does not have a critical effect on K , this is a safe assumption. But the variation of  $\bigvee$  with  $h_W$  is negligible

In the equation

$$W_{h} = 359 \text{ Kd}^{2} \text{ YV} \frac{h_{w}}{v}, \quad \underline{\text{assuming 1. P}_{1}} = 25 \text{psig}$$

$$2. \text{ T} = 70 \text{ F}$$

$$3. \text{ V} \approx 10 \text{ ft/sec}$$

Throughout the exp.

$$W_h$$
 = Constant  $\sqrt{h_W}$ .  
= (359)(0.601)(0.1278)(0.970)( $\frac{1}{\sqrt{49.4}}$ ) $\sqrt{h_W}$   
(A)..... $W_h$  = 3.8 $\sqrt{h_W}$ 

= 3.8 
$$\sqrt{(h_w''' + 2^p)} \frac{1 \text{ in Hg}}{13.6 \text{ in H20}} = \frac{3.8}{\sqrt{13.6}} \sqrt{h_w inch} H_Q$$

(B) ... 
$$w_h = 1.03 \sqrt{h_{Hg}}$$

See Pages 54 and 46 for tabulation and plot.

- 4. EQUATIONS USED TO CALCULATE PERFORMANCE PARAMETERS:
  - 1.- GPM: (Use Calibration Curve to Convert Electronic Counts/sec to GPM).
  - 2.- Discharge Head, PD:

$$P_D(ft.) = P_D(PSI) \times 2.31$$

3.- Suction Head, Ps;

$$P_s(ft_*) = P_s("Hg!") \times 1.133$$

4.- Brake Horse Power, bhp:

bhp = 
$$\frac{\text{Lr} \, \omega}{63025}$$

5.- Efficiency, n %:

$$n = 0$$
 H  $\frac{550}{50}$  bhp

### 5.DETERMINATION OF MINIMUM NO OF PICTURES

### PER SECOND OF ROTATING IMPELLER: -

Pictures per second (pps) = 
$$\left(\frac{1}{20}\right)\left(N\right)\left(\omega\right)$$
  
Where N = No. of impeller blades  
 $\omega$  = Impeller rpm

For this configuration N = 4 blades

and  $\omega = 1500$ , 2000, 2500, 3000, 3550 rpm

| Impeller RPM | Minimum PPS |
|--------------|-------------|
| <b>1</b> 500 | 300         |
| 2000         | 400         |
| <b>2</b> 500 | 500         |
| 3000         | 600         |
| 3500         | 700         |

#### CHARACTERISTICS OF APPARATUS:

### A.- DYNAMOMETER

7.5 HP 250 Volts 800-- 4000 RPM (variable) 25 - 28 Amps

## B.- RESERVOIR

Capacity 67.5 cu.ft = 500 gal.

## C .- PIPING

| Air Line | Nominal<br>1" | 1.049" | 0.D.<br>1.315" |
|----------|---------------|--------|----------------|
| Water "  | 14"           | 1.380" | 1.660"         |

DATA

| RPM  |       | Water<br>Flow                                       | Air                                                | flow<br>"Hg"                                                 | Disch.<br>Pressure                               | Suction<br>Pressure                             | Force on<br>Torque bar                                             |
|------|-------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|
| Tach | Strob | Counts/sec                                          | L                                                  | R                                                            | Psig                                             | "Hg"                                            | 1b.                                                                |
| 3500 | 3740  | 404<br>390<br>320<br>239<br>153<br>90<br>28         | 0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>0                                   | 4<br>76<br>79<br>85<br>88<br>90                  | 29.5<br>23.5<br>19.5<br>11.5<br>5.5<br>2.5      | 5.3<br>7.3<br>7.2<br>6.6<br>5.7<br>5.7                             |
|      |       | 375 -<br>323 -<br>265 -<br>215 -<br>157 -           | .1<br>.1<br>.1<br>.1<br>.1                         | +.1<br>+.1<br>+.1<br>+.1<br>+.1<br>+.1                       | 4<br>77<br>80<br>83<br>85<br>88<br>90            | 29.5<br>23<br>20<br>14.5<br>10<br>6<br>2        | 5.2<br>7.7<br>7.5<br>7.2<br>7.0<br>6.2<br>5.5                      |
|      |       | 408<br>406<br>360<br>300<br>244<br>209<br>155<br>86 | 15<br>15<br>15<br>15<br>15                         | +.15<br>+.15<br>+.15<br>+.15<br>+.15<br>+.15<br>+.15         | 4<br>70<br>87<br>86<br>93<br>89<br>84<br>74      | 27<br>25<br>21<br>18<br>12<br>8.5<br>5.5<br>2.0 | 5.0<br>7.8<br>7.9<br>7.9<br>7.6<br>7.4<br>6.9<br>6.4               |
|      |       | 407 406 345 296 223 137 76 271 202 163 Unavaib      | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>35<br>35 | +.25<br>+.25<br>+.25<br>+.25<br>+.25<br>+.25<br>+.35<br>+.35 | 5<br>32<br>56<br>70<br>82<br>56<br>28<br>4<br>10 | 26<br>24.5<br>21<br>18<br>10<br>4<br>1          | 5.3<br>6.9<br>7.8<br>7.6<br>7.4<br>5.8<br>3.2<br>3.5<br>3.2<br>2.0 |

Torque arm= 11.994; Air Reservoir Pressure= 25 psig Air Temp.=  $78 \text{ F}^{\odot}$ 

DATA

| RPM        | Water<br>Flow                                | Air Flow                                                                                   | Disch.<br>Pressure                       | Suction                                           | Force on<br>Torque bar                        |
|------------|----------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| Tach Strob | Counts/sec                                   |                                                                                            | Psig                                     | "Hg"                                              | 1b.                                           |
| 3000 3170  | 404<br>362<br>308<br>241<br>204<br>150<br>80 | 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                     | 57<br>59<br>63<br>65<br>66<br>67         | 29.5<br>22<br>19<br>12<br>9<br>5                  | 5.0<br>6.1<br>5.9<br>5.7<br>5.3<br>5.0<br>4.5 |
|            | 403<br>351<br>300<br>242<br>205<br>157<br>99 | 1 +.1<br>1 +.1<br>1 +.1<br>1 +.1<br>1 +.1                                                  | 4<br>56<br>58<br>62<br>64<br>66<br>67    | 29.5<br>22<br>18<br>12<br>9<br>6<br>2.5           | 5.0<br>6.1<br>6.0<br>5.6<br>5.3<br>5.2<br>4.9 |
|            | 330<br>290<br>213<br>159                     | 15 +.15<br>15 +.15<br>15 +.15<br>15 +.15<br>15 +.15<br>15 +.15                             | 56<br>54<br>63<br>65                     | 28.5<br>21<br>17<br>10<br>6<br>2                  | 5.0<br>6.2<br>5.9<br>5.5<br>5.2<br>4.7        |
|            | 330<br>250<br>214<br>163<br>100              | 25 +. 25<br>25 +. 25<br>25 +. 25<br>25 +. 25<br>25 +. 25<br>25 +. 25<br>25 +. 25           | 52<br>60<br>53<br>49<br>44               | 28.5<br>20<br>13<br>9<br>6<br>2.5                 | 5.0<br>6.0<br>5.8<br>5.5<br>5.1<br>4.3<br>3.2 |
|            | 360<br>250<br>210<br>130<br>70               | 325 +.32<br>325 +.32<br>325 +.32<br>325 +.32<br>325 +.32<br>325 +.32<br>35 +.35<br>35 +.35 | 15 10<br>25 23<br>25 35<br>25 17<br>25 3 | 24.2<br>22<br>12<br>6.5<br>4<br>1<br>23.5<br>22.0 | 4.7<br>4.8<br>4.3<br>4.6<br>3.5<br>1.0        |

Twrque Arms 11.994 in; Air Reservoir Press= 25 psig Air Temp= 78 F<sup>O</sup>

# DATA

| R                                                                                                              | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water<br>Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Flow<br>Ig" | Disch.<br>Pressur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Tach                                                                                                           | Strob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Counts/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | rs<br>R     | Psig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e riessu.<br>"Hg" | le forque ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 1. |
| Will and the second | The State of the S | The state of the s | de destruction of supplied in |             | Section of the last of the las |                   | Street Street, and Street, 17 july 100 and 100 and 1, 17 july 100 and 100 and 1, 17 july 100 and 100 and 1, 17 july 100 and 10 | +    |
| <b>2</b> 500                                                                                                   | <b>2</b> 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                             | 0           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.5              | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                             | 0           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.5              | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>32</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                             | 0           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0              | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                             | 0           | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0              | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b> 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                             | 0           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                 | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                             | 0           | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                 | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | +.15        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | +.15        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b> 5                    | +.15        | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b> \$5                   | +.15        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b> 5                    | +.15        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                            | +.15        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0               | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                            | +.20        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                            | +.20        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.5              | <b>5.</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                            | +.20        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                            | +.20        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                            | +.20        | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                 | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                            | +.20        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5               | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b> 0                    | +.30        | • 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.5              | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                            | +.30        | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.5              | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2</b> 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>30</b>                     | +.30        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.5              | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>~.3</b> 0                  | +.30        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0              | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>~.</b> 30                  | +.30        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                            | +.30        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                 | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325                           | 1 205       | <i>).</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | מר ב              | , ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~.325                         |             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>25.</b> 5      | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~.325<br>~.325                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0              | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 325                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                 | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>325</b>                    | +.325       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                            | +.35        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b> 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>~.3</b> 5                  | +.35        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5               | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>P20</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                            | +.35        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unavai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lable.                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arm=                          | 11,994      | in; Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reservoir=        | 25psig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |

Torque Arm= 11.994 in; Air Reservoir= 25psig Air Temp= 78 F<sup>3</sup>

DATA

| R<br>Tach | PM<br>Strob | Water<br>Flow                          | ''F              | Flow<br>Ig"                          | Disch. Pressure                       |                                            | Force on<br>Torque bar                 |
|-----------|-------------|----------------------------------------|------------------|--------------------------------------|---------------------------------------|--------------------------------------------|----------------------------------------|
| lacii     | Strob       | Counts/sec                             | L                | R                                    | Psig                                  | "Hg"                                       | 1b                                     |
| 2000      | 2050        | 404<br>388<br>325<br>265<br>204<br>133 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                | 6<br>10<br>16<br>21<br>26<br>29       | 22<br>20<br>17.5<br>12<br>7<br>2.5         | 4.2<br>4.3<br>4.3<br>4.0<br>3.3<br>2.8 |
|           |             | 67                                     | 0                | 0                                    | 30                                    | 0                                          | 2.5                                    |
|           |             | 342 -<br>292 -<br>234 -<br>171 -       | .1               | +.1<br>+.1<br>+.1<br>+.1<br>+.1      | 5.0<br>20.0<br>22.0<br>26<br>28<br>29 | 24.8<br>19.4<br>16.0<br>10.5<br>5.0<br>2.0 | 4.3<br>3.8<br>3.6<br>3.4<br>3.1<br>2.8 |
|           |             | 300 -<br>270 -<br>220 -<br>156 -       | .15<br>15<br>15  | +.15<br>+.15<br>+.15<br>+.15<br>+.15 | 5<br>9<br>11<br>14<br>11              | 19<br>15.5<br>12.8<br>8.0<br>3.0           | 3.9<br>3.8<br>3.7<br>3.1<br>2.1        |
|           |             | Unavail                                | lable<br>2       |                                      | 0<br>4                                | 16                                         | 3.4                                    |
|           |             | 260 -<br>220 -<br>150 -<br>80 -        | 2<br>2<br>2      | +.2<br>+.2<br>+.2<br>+.2<br>+.2      | 6<br>6<br>2<br>1                      | 12<br>7<br>1.5                             | 3.2<br>2.6<br>2.0<br>1.8               |
|           |             | Unavail                                | Lable<br>25      |                                      | 4                                     | 15.5                                       | 3.3                                    |
|           |             | 230 -<br>180 -<br>80 -                 | 25<br>25<br>25   | +.25<br>+.25                         | 6<br>4                                | 8.5<br>4<br>0                              |                                        |
|           |             | Unavai:<br>250<br>200<br>Unavai:       | 30<br>30         | +.30<br>+.30                         |                                       | 12<br>1                                    | 3.1<br>1.9                             |

Torque Arm= 11.994 in ; Air Reservoir Press.= 25psig Air Temp.= 78 F<sup>0</sup>

ATAG

| R    | PM    | Water<br>Flow        | Air I |          | Disch.<br>Pressure | Suction | Force on<br>Torque bar |
|------|-------|----------------------|-------|----------|--------------------|---------|------------------------|
| Tach | Strob | Counts/sec           | L L   | <u>R</u> | Psig               | "Hg"    | 1b.                    |
| 1500 | 1500  | 310                  | 0     | 0        | 4                  | 15      | 3.3                    |
|      |       | <b>22</b> 6          | 0     | 0        | 10                 | 9       | 3.1                    |
|      |       | 180                  | 0     | 0        | 13.5               | 5.5     | 2.3                    |
|      |       | <b>1</b> 50          | 0     | 0        | 15                 | 3.5     | 2.2                    |
|      |       | 80                   | 0     | 0        | 17                 | 0.5     | 1.9                    |
|      |       | 342 -                | ·.1   | +.1      | 5                  | 19.4    | 2.8                    |
|      |       | <b>290</b> -         | 1     | +.1      | 8                  | 16.0    | 2.6                    |
|      |       | 228 -                | 1     | +.1      | 11.5               | 10.0    | 2.3                    |
|      |       | <b>1</b> 74 -        | ·.1   | +.1      | 14.0               | 5.5     | 2.1                    |
| *    |       | <b>1</b> 06 -        | 1     | +.1      | 16.0               | 1.5     | 1:8                    |
|      |       | 54 <b>-</b>          | .1    | +.1      | 16.5               | 0       | 1.7                    |
|      |       | 314 -                | 15    | +.15     | 5                  | 18.1    | 3.3                    |
|      |       |                      | .15   | +.15     | 10                 | 13.5    | 3.1                    |
|      |       |                      | .15   | +.15     | 11                 | 7.0     | 2.9                    |
|      |       |                      | 15    | +.15     | 8                  | 4.5     | 2.7                    |
|      |       |                      | 15    | +15      | 7                  | 3.0     | 2.6                    |
|      |       |                      | .15   | +.15     | 6                  | 1.0     | 2.3                    |
|      |       |                      |       |          |                    | *       | •                      |
|      | •     | <b>2</b> 85 <b>-</b> | . 25  | +.25     | 4                  | 15.5    | 3.0                    |
|      |       | <b>23</b> 0 -        | . 25  | +.25     | 7.5                | 9.5     | 2.7                    |
|      |       |                      | . 25  | +.25     | 11                 | 6.5     | 2.4                    |
|      |       | 130 -                | . 25  | +.25     | 6                  | 2.5     | 1.9                    |
|      |       | 71 -                 | .25   | +.25     | 3                  | 1.0     | 1.7                    |
|      |       | Unavai1              | ab1e  |          |                    | •       | •                      |
|      |       | <b>2</b> 52 -        | 35    | +.35     | 3 -                | 11.5    | 2.7                    |
|      |       | 210 -                | 35    | +.35     | 4.5                | 8 ·     | 2.4                    |
|      |       |                      | 35    | +.35     | 6                  | 5.5     | 2.2                    |
|      |       |                      | ×.35  | +.35     | 2.5                |         | 1.6                    |
|      |       | Unavail              | lable | •        |                    | •       | • •                    |
|      |       | 192 -                | 4     | +.4      | 2.0                | 7.0     | 2.3                    |

Torque Arm= 11.994 in! Air Reservoir Press= 25 psig Air Temp= 78 F°

## CALIBRATION DATA OF SUCTION POTTERMETER

| RPM<br>(tach)        | RPM<br>(Strob) | Counts/     | Wt. of Water (Lb.) | Time int(Sec) |
|----------------------|----------------|-------------|--------------------|---------------|
| 800                  | 823            | 69          | 50                 | 64.2          |
| 1000                 | 1012           | 87          | 50                 | 49.2          |
| 1410                 | 1400           | 123         | 50                 | 33.15         |
| 1800                 | 1770           | 160         | 50                 | 26.17         |
| <b>2</b> 000         | 1980           | 179         | 50                 | 23.32         |
| 2200                 | 2170           | 196         | 50                 | 19.46         |
| <b>2</b> 490         | 2448           | <b>22</b> 7 | 50                 | 17.28         |
| 2700                 | 2643           | 244         | 70                 | 22.6          |
| <b>2</b> 90 <b>0</b> | 2830           | <b>2</b> 65 | 70                 | 20.86         |

#### LIST OF REFERENCES

- (1) Stepanoff, A.J. <u>Pumps and Blowers-Two Phase Flow</u>.

  New York: John Wiley and Sons, 1966
- (2) Arbiter, N., Harris, C.C., and Yap, R.F. "Hydrodynamics of Floatation Cells." Henry Krumb School of Mines, Columbia University, New York, 1968
- (3) Biheller, W. "Air Handling Capability of Centrifugal Pumps." Worthington Corporation Research Paper. Harrison, N.J. 1957
- (4) Boyce, M.P. "A Practical Three-Dimensional Flow Visualization Approach to the Complex Flow Characteristics in a Centrifugal Impeller," Curtiss-Wright Corporation, Wood-Ridge, N.J. 1966