
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 1980

A microprocessor based digital logic simulator
Kevin Dresher
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Dresher, Kevin, "A microprocessor based digital logic simulator" (1980). Theses. 1463.
https://digitalcommons.njit.edu/theses/1463

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1463?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



A

MICROPROCESSOR BASED

DIGITAL LOGIC SIMULATOR

BY

KEVIN DRESHER

A THESIS

PRESENTED IN PARTIAL FUFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to
the rights of the author. Bibliographical ref-
ences may be noted, but passages must not be copied
without permission of the College and without credit
being given in subsequent written or published work.

Newark, New Jersey

1980



APPROVAL OF THESIS

A

MICROPROCESSOR BASED

DIGITAL LOGIC SIMULATOR

BY

KEVIN DRESHER

FOR

DEPARTMENT OF ELECTRICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED:

Newark, New Jersey

1980



AN ABSTRACT

A

MICORPROCESSOR BASED

DIGITAL LOGIC SIMULATOR

by

Kevin Dresher

Advisor: Dr. Robert DeLucia

Submitted in Partial Fulfillment of the Requirements for

The Degree of Master of Science in Electrical Engineering

July 1980

It is the intent of this thesis to acquaint the reader

with a tool which is available for use in the digital

circuit design field. The reader is now able to totally

simulate via DLS the digital logic design he creates on

paper before it ever takes a hardware form. The computer

program accepts a detailed description of the schematic

and creates timing diagrams, loading statistics, cross

references, and various lists for future documentation.

The user needs no programming knowledge and will find

the requirements to run a simulation with DLS extremely

user oriented. The simulation descriptions and command

language are tailored to logic design applications. The

format is straight forward, utilizing standard English



language and logic design concepts. To code a design for

simulation the designer needs only a well labeled circuit

diagram, where all the inputs and outputs of each element

has a label With the addition of a few simulation

parameters DLS will take the network description and form

a program in memory which will recreate the operations of

the digital circuit.



 
 
 
 
 
 
 
 
 
 
 
 
 
 



Dedication

I would like to thank the people that are and were

close to me for threatening me with bodily injury if I did

not complete this work.



TABLE OF CONTENTS

Chapter Title Page 

CHAPTER 1 WHY ANOTHER SIMULATOR? 1

1.1 Need for Simulators 1

1.2 Levels of Simulation 2

1.3 Gate Level Simulation 4
1.4 DLS a Microprocessor

Based Program
8

CHAPTER 2 THREE VALUE SIMULATION 10

2.1 Use of Ternary Algebra 10

2.2 Propagation Hazard
Example

14

2.3 Oscillation Error
Example

16

2.4 Don't Care Example 18

CHAPTER 3 TABLE DRIVEN SIMULATION
TECHNIQUES

20

3.1 Modeling Approach 20

3.2 Table Driven Simulation
Method

21

3.3 Dual Table Simulation 22

3.4 Table Setups 27

CHAPTER 4 THE DLS PROGRAM 32

4.1 DLS Program Structure 32

4.2 Source Program
Requirements

34

4.3 The Controller/Editor 37
4.4 The Controller/Editor

Program Listing
41

4.5 The DLS Compiler 53
4.6 The Compiler Program

Listing
66

4.7 The DLS Executer 82

ii



Chapter Title Page 

4.8 The Executer Program
Listing

90

4.9 General Purpose Routines
and Memory Allocation

112

CHAPTER 5 USING THE DIGITAL LOGIC
SIMULATOR

118

5.1 Design Examples 118

CHAPTER 6 CONCLUSION 138

6.1 A Few Last Words 138

BIBLIOGRAPHY 140

iii



LIST OF FIGURES

Figure Title Page

1-1 Time Delay Modeling 5
2 - 1 Two Value Truth Table 11

2-2 Combinational Hazard Detection 12

2-3 Digital Latch With Hazard
Example

15

2-4 Oscillating Test Circuit 17

2-5 Don't Care Example 19

3-1 Dual Table Operation 23

3-2 OR Gate Simulation 26

3- 3 DLS Table Breakdown 28

3 - 4 Simulation Tables 30

4-1 Memory Allocation 33
4-2 Command Word Format 36

4 - 3 Source Program Update Routine 38

4- 4 Controller Routine 39

4 - 5 Command Function Selection
Routine

40

4 - 6 Compiler Function Routine 54

4- 7 Sum Function Routine 56

4-8 Prnt Function Routine 57

4 - 9 Symb Function Routine 58

4-10 Setup Function Routine 61

4-11 Pack Function Routine 62

4-12 Io Function Routine 64

4- 13 Exec Function Routine 84

4-14 Updat Function Routine 85

4-15 Gate Simulation Routine 87

4-16 Outp Function Routine 89

5-1 Race Condition Example 118

5-2 Adding a Delay Block 120

iv



Figure Title Page

5-3 Another Race Circuit 122

5-4 Full-Adder Circuit 126

5-5 Asynchronous Finite State
Machine

131

5-6 Circuit with Race Condition 134



CHAPTER 1

WHY ANOTHER LOGIC SIMULATOR?

1.1 Need for Simulators 

The use of computers to assist in the engineering of

digital systems is not a new idea. Design automation

schemes have been in existence since the first generation

computers. The original computer systems were mainly

concerned with production logistics such as generating

wiring schedules and printed circuit board layouts. The

logic design phase was performed manually, using intuition

and experience based on the theories of switching circuits.

When the MSI and LSI logic components were introduced, the

design approach changed radically. The problem was one of

sheer complexity. Since digital systems attained such a

high level of sophistication, the old conventional design

practices proved inadequate to handle these complexities.

It therefore became essential to use the computer from the

initial design stages.

This is done through the use of the process of sim-

ulation, whereby it is possible to model the behavior of

a real system either mathematically or functionally.

1



2

Experience shows that simulation is one of the most power-

ful analysis tools available to the designer. It allows

the designer to make expermental designs with systems,

real or proposed, where it would otherwise be impossible

or impractical to do so.

Computer-Aided Design (CAD) programs were written for

the purpose of simulating proposed or experimental systems.

Using CAD programs, the designer could explore new ideas

and techniques. As results are achieved more rapidly,

inoperative designs maybe eliminated immediately while

positive results are open to exploration.

1.2 Levels of Simulation 

There are four basic levels at which digital systems

can be simulated. 1 The first is known as "System Level,"

whereby the simulation is used to evaluate the general

overall properties of a system. Elements of the system

are usually complex devices, and may include buffers,

memory modules, arithmetic units, and central processing

units. Usually each model is characterized by a set of

parameters, such as response time and capacity. System

level simulation is primarly used as a means of predicting

system performances.

This is followed by the type of simulation known as

1 M. A. Breuer, "Recent Developments in Design Automation,"
Computer, May/June 1972, pp. 23-35



3

"Register Transfer Level." At this level data flow is

specified at the register level. The simulator operates

upon real data, hence the functional design of the system

can be evaluated.

The third type of simulation is "Gate Level Simula-

tion." At this level the system is described by a

collection of logic gates and their interconnections.

Each signal line is restricted primarly to two or three

values. Time is usually quantized to the point where one

unit of time corresponds to one gate delay time unit.

The final type of simulation is the "Circuit Level."

A logic gate circuit may consist of some interconnection

of diodes, transistors, and resistors. Here each signal

line is not restricted to just two or three values but

rather to a quantized interval between two voltages or

current levels. In addition time is quantized to a very

fine degree. Transitory behavior is usually of primary

interest.

Each of the last three levels employs models which

are simplifications of those of the preceding level, both

in quantitative terms and in terms of behavior. The set

of components represented in the circuit level model of a

logic gate and the circuit's finite rate of change of

state, may be simplified using a gate level model into a

single two state element. The state of this element would

change instantaneously at discrete time intervals. Simil-



arly sets of gates may be merged together to form elements

of a register transfer level model, in which state changes

may occur at varing multiples of the basic gate operation

time units. Circuit, gate, and register transfer level

simulation models represent progressive levels of simpl-

ification of an actual system element behavior. This can

be viewed as being derived from a direct translation of

its electrical characteristics.

A system level simulation model represents a level of

simplification of elements of a real system derived by

abstraction, rather then by synthesis. Circuit level

simulation employs continous time models. This differs

fundamentally from those using gate level or register

transfer level which employs discrete time models.

1.3 Gate Level Simulation

Digital Logic Simulator (DLS) is a gate level simul-

ation program which can be used for analyzing digital

logic designs. When given the initial state and the input

sequence the simulator will calculate a state-time map

of the logic signals.

Most of the early simulators would model gates as

elements having zero induced propagation delay time.
2 This

2M. J. Flomenhoft and B. M. Csencsits, "A Minicomputer
Based Logic Circuit Fault Simulator," ASM Sigma Newsletter,
Vol 4, No. 3, 1974, pp. 15-19



5

Time Delay Modeling

(a)

1 A 0

10

0

0 1 2 3 4 5 6 7 	 time 	 0 1 2 3 4 5 6 7 	 time
(b) 	 (c)

one delay
time unit

A 0

0

0

0 1 2 3 4 5 6 7 	 time

(d )

FIGURE 1-1



6

implies that the output logic level changes instanteously

when the inputs change. An example is shown in Figure 1-1a

which depicts a two gate circuit. In a zero delay simulator

as the input signal (A) changes from a logic '1' to a logic

'O,' the output signal (C) stays constant. This can be

seen in Figure 1-1b.

In actuality, this circuit design would have an inher-

ent race condition. One of the two signals being fed into

the OR gate will have a propagation delay time longer than

the other.

One of the goals for creating DLS was to develop a

method of simulation where such hazards could be observed

and corrected. DLS has two modes of operation which can

show the presence of a race condition. In the first mode,

each gate has a single time unit delay before the output

changes corresponding to changes of the inputs. Figure 1-1c

shows that when the input to the NOT gate changes from a

logic '1' to a logic '0' the output signal (B) of the NOT

gate is delayed for one time unit before it changes from a

logic '0' to a logic '1.' This means that for one time

unit both inputs to the OR gate will be at a logic '0'

producing a logic '0' on the output. In the next time

frame the NOT gate has propagated its signal through the

gate producing a logic '1' on one of the inputs of the OR

gate which produces a logic '1' on the output.

There is a difference between the simulation of a zero



7

and a one gate delay circuit simulation. The first simul-

ation had a constant logic '1' on the output where the

latter one had a period of time where the output dropped to

a logic '0.' In digital circuit design this would be known

as a glitch. Using the simulator the designer would be

able to see the existence of this hazardous condition and

go back to modify the circuit to remove the glitch from

the design.

The second mode of DLS uses what is known as a three

value simulator. 3 Whenever a signal tries to change its

logic level, it enters a transition state. This is a third

logic state where the state is neither a logic '1' or a

logic '0,' it is unknown. Figure 1-1d shows that when the

output of the NOT gate tries to change its logic level, it

enters the transition state for one time unit. In the next

time frame the output goes to the correct logic level. The

transition state that the NOT gate produced is passed to

the OR gate which produces an unknown output. The output

of the OR gate will have two transition states due to the

fact that in time frame two both inputs were at a logic '0.'

As the output attempts to reach a logic '0' it is forced

into the transition state for one time unit. In the third

time frame one of the inputs is in the transition state

which keeps the output in the transition state, the glitch.

3J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg,
"A Three-Value Computer Design Verification System," IBM 
System Journal, Vol. 8, No. 3, 1969, pp. 178-189



8

Finally by the fifth time frame all the signals have settled

out. When the results are viewed the fact would be noted

that the final output had two time units in which the out-

put is unknown. This occurrence creats a condition that

is in all probability hazardous to the operation.

1.4 DLS a Microprocessor Based Program 

One of the big differences between DLS and other

simulators is that it has been implemented on a micro-

processor based computer system. Most standard high-level

languages, such as Fortran and Basic, are oriented to

numerical computations and consequently are extremely

inefficient when used for data processing operations. A

more efficient approach is achieved through the use of a

machine dictated assembly language. Data is usually stored

in a tabular or list format. Thus a language capable of

setting up data structures in list form that is capable of

manipulating the items in the list is required.

DLS was written in assembly language for two reasons.

The first is for its ease of handling list structured

queues and secondly high-level languages, require large

amounts of memory. One of the objectives for writing DLS

was to create a system that occupied the smallest amount

of memory space, making it possible to run on a small

system. Even though assembly languages have the disadvant-



9

age of being specific to one type of computer, DLS was

written for the 8080 microprocessor, an industry standard.



CHAPTER 2

THREE VALUE SIMULATION

2.1 Use of Ternary Algebra 

The presence of hazards and races in combinational

logic circuits may be detected by using the concept of

ternary algebra. 1 In this method a third value 'X' which

assumes the value between a logic '0' and a logic '1' is

used to represent unspecified transition periods, initial

conditions, oscillations, and don't know states. Basic

logic gates can be redefined in terms of ternary functions

using logic levels '0,"1,' and 'X.' Figure 2-1 shows

the truth tables for the basic gates for both two and

three logic state simulations.

The using of the three value method allows hazards

to be detected that normally go unnoticed in a two value

simulation. 2 Figure 2-2a shows the two value simulation

for several gates. When the two inputs change simultan-

1 M. Yoeli and S. Rinon, "Application of Ternary
Algebra to the study of Static Hazards," Journal of the 
Association for Computing Machinery, Vol.11, 1964, pp.84-97

2J.S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg
"A Three-Value Computer Design Verification System," IBM 
System Journal, Vol.8, No.3, 1969, pp.178-189

10



11

Two Value Truth Table 

	N 	 E
	IIAA	 N X

N N N N 0 0 0
1 2DDRRR

00 : 0 0 0 1 0 1 0
1: 0 	 1 	 0 	 1 	 1 	 0 	 1
2: 1 	 0 0 	 1 	 1 	 0 	 1
03: 	 1 	 1 	 1 	 0 	 1 	 0 0

(a)

Three Value Truth Table 

N 	 E
IIAA 	 N X
N N N N 0 0 0
1 2DDRRR

00: 0 0 0 1 0 1 0
1: 0 	 1 	 0 	 1 	 1 	 0 	 1
2: 0 X 0 1 X X X
3: 1 	 0 0 	 1 	 1 	 0 	 1
4: 1 	 1 	 1 	 0 	 1 	 0 0
5: 1 X X X 1 0 X
6: X 0 0 1 X X X
7: X 1 X X 1 0 X
8: X X X X X X X

(b )

Figure 2-1



0-1
1-X-1

1-0
AND

0 -X- 1
1-X-01-1

AND

0-1
1 -0

0-X-1
1-X-0

17X-1

RAND

1-1

NAND

1 -1

OR

1-X-1

OR

0- 1 
1-0 

0-X-1 

1-X-0

0- 1
0-0

1 -0
0-X-1
1-X-0

0 -X -0

NOR NOR

1-1
0-1
1 -0

0-X-1 
1 -X- 0

1 -X- 1

EXOR EXOR

12

Combinational Hazard Detection

(a)

Figure 2-2



13

eously the output stays constant. In three value simulation

when a logic level changes state first it must enter the

logic 'X' state. Figure 2-2b shows that when both inputs

to a gate change at the same time, for one time unit both

inputs are unknown. This produces an output which is

temporarily unknown. In a larger circuit design this

glitch would be passed along to the rest of the circuit which

could lead to a possible erroneous final output.

In addition to hazard detection the third logic level

may also be used to represent "don't care" input conditions

to the circuit. This makes it possible to cut down on the

amount of test data required to check a given circuit. For

example if it were required to simulate the reset logic of

a basic register circuit. Normally this would have to be

performed by applying the reset logic to the input repet-

itively and checking that for every possible combination

of input bits the output of the register always goes to

a logic '0.' This would require 2n simulation runs, where

n is the number of bits in the register. By initally

setting all of the bits in the register to the logic 'X'

state and then simulating the reset logic, it is possible

to determine in one simulation run those stages which do

not get reset to a logic '0' state. 2

2 lbid., pp.179



14

2.2 Propagation Hazard Example 

Figure 2-3a is a logic circuit which was simulated by

DLS. The circuit consists of two AND gates and one OR gate.

The output of the OR gate is fed back to one of the AND

gates to form a type of latch. Figure 2-3b is the print-

out of the DLS simulation operated in the normal mode.

Time frame 0 shows that when the three inputs are unknown

the output is unknown. In time frames 1, 2, 3, 4, and 5

the circuit is put through several different test patterns.

A problem occurs when the inputs (INA and INB) change

their values from time frame 5 to frame 6. This simultan-

eous change is detected as a possible hazard to the circuit.

Due to the creation of the feedback path in the circuit,

the glitch is transferred through the OR gate and then

back to one of the inputs. This means that the glitch

causes the circuit to settle in the unknown state.

As a verification of the results DLS is rerun using

the trace, mode this time. Figure 2-3c is the DLS trace

mode results. The critical point is time frame 6 where

the two inputs change simultaneously. INA changes from a

logic '1' to a logic 'X' then to the final logic '0' value.

On the other hand 'NB changes from a logic '0' to a logic

'X' and settles to a logic '1.' For one time unit both

inputs to the AND gate are unknown. This glitch is fed

into the OR gate which will produce a logic 'X' which feeds



INA
INB

ANDA

INC
ANDB

(a)

A A
IIINNO
N N N D D U
A B C A B T

:XXXXXX

1: X 0 0 0 0 0
2: 1 	 1 	 1 	 1 	 1 	 1
3: 1 	 0 	 1 	 0 	 1 	 1
4: 1 0 0 0 0 0
5: 1 0 1 0 0 0
6: 0 1 1 0 X X

(b)

OUT

15

Digital  Latch With Hazard  Example

A A
I I I N N 0
N N N D D U
ABCABT

00:XXXXXXØØ:XXXXXX

01:XXXXXX01:XØØXXX

0 1 : X 0 0 0 0 X
0 1 : X 0 0 0 0 0
1: X 0 0 0 0 0
2: X 0 0 0 0 0
0 2 : 1 X X 0 0 0
0 2 : 1 1 1 X 0 0
02: 1 1 1 1 0 X
0 2 : 1 1 1 1 X 1
02: 1 1 1 1 1 1
2: 1 1 1 1 1 1
3: 1 1 1 1 1 1
03: 1 X 1 1 1 1
03: 1 0 1 X 1 1
03: 1 0 1 0 1 1
3: 1 0 1 0 1 1
4: 1 0 1 0 1 1
04: 1 0 X 0 1 1
04: 1 0 0 0 X 1
04: 1 0 0 0 0 X
04: 1 0 0 0 0 0
4: 1 0 0 0 0 0
5: 1 0 0 0 0 0
05: 1 0 X 0 0 0
05: 1 0 1 0 0 0
05: 1 0 1 0 0 0
06: 1 0 1 0 0 0
06: X X 1 000
06: 0 1 1 X 0 0
06: 0 1 1 0 X X
06: 0 1 1 0 X X

(c)

Figure 2-3



16

this value back to the AND gate which will the produce an

output of a logic 'X.' Even though the first AND gate has

by this time finished changing, the original glitch has

caused the output of the circuit to become latched in the

unknown state.

2.3 Oscillation Error Example 

A simple example of an oscillating circuit is expressed

in Figure 2-4a. This simple NAND gate has a problem when

the input goes to a logic '1, the output tries to go to

a logic 'O.' This is then fed back to the other input.

Now what happenes is that the output tries to go to the

logic '1' state. This circuit works fine with a logic '0'

on the input but whenever it goes to any other logic value

the output can not find a stable state so it oscillates.

Another example is shown in Figure 2-4b. The two NOR

gates are configured to form a R-S Flip Flop. Note from

the results that when no initial condition is given and

both inputs are at a logic '0' the output stays unknown.

This is due to the fact that DLS assigns a logic 'X' to all

gates prior to the start of the simulation. This circuit

operates properly up to time frame 7. Here both inputs

(P. and S) go to a logic '1' producing outputs (Q and QN)

at a logic 'O.' The outputs are stable except by definition

one is supposed to be the complement of the other.



OUT

(a)

IN

S

1 7

Oscillating Test Circuits

0
I U
N T

ØØ: 0 1
1: Ø 	 1
2: 1 X
3: 1 X
4: Ø 1
5: Ø 1
6: X X
7: X X
8: 0 1
9: 0 1
10: 1 	 X

0

Q
R S Q N

ØØ: Ø Ø X X
1: Ø Ø X X
2: 1 	 Ø Ø 	 1
3: X Ø 0 1
4: Ø Ø Ø 1
5: 0 	 1 	 1 	 Ø
6: Ø 0 1 Ø
7: 1 	 1 0 Ø
8: Ø Ø X X
9: 1 Ø Ø 1
10:ØXXX

R

QN

Figure 2-4



18

The problem occurs in this circuit when both inputs

now drop from a logic '1' to a logic '0' at the same time.

The circuit starts to oscillate which DLS detects in time

frame 8.

2.4 Don't Care Example 

Figure 2-5 shows a circuit derived from the equation .

F=ABC+ABC+ABC, which using Boolean Algebra can be

reduced to F=A . To prove this, first DLS is made to run

through the nine different possible input combinations.

The problem is then rerun, this time setting the values'

of the eliminated variables to the logic 'X' state. The

two simulations produce the identical results. This

example was not chosen to show reduction techniques but

to show that the logic 'X' state could be used in place

of don't care situations which may arise.



ABCF

0Ø: Ø Ø 0 Ø
1: Ø Ø 1 Ø
2: Ø 1 Ø Ø
3: Ø 	 1 	 1 	 Ø
4: 1 Ø Ø 1
5: 1 	 Ø 	 1 	 1
6: 1 	 1 	 Ø 	 1
Ø7: 	 1 	 1 	 1 	 1

A B C F

Ø0: Ø X X Ø
1: Ø X X Ø
2: Ø X X Ø
3: Ø X X Ø
4: 1 X X 1
5: 1 X X 1
6: 1 X X 1
Ø7: 	 1 X X 1

1c)

Don't Care Example

Figure 2-5



CHAPTER 3

TABLE DRIVEN SIMULATION' TECHNIQUES

3.1 Modeling Approach

A fundamental question is how a digital circuit is

to represented or modeled by the computer. There are

several ways to model a circuit, each have advantages and

disadvantages. The method of digital circuit modeling is

dependent upon the type of machine being used. Three

important factors which must be considered are machine

type, word length, and the number or language of the

instruction set.

The simulation model is formed from the inputed

source language statements which describe the digital

circuit. These statements can either be interpreted

directly' and then executed or compiled into machine code

which is executed later. Most of the earlier simulators

were either interpretive or executed compiled code. 1

Current simulators however, employ some form of data

structure and are table driven.

For compiled code simulators each source statement

1 M. A. Breuer, Digital System Design Automation,
California, Computer Science Press, Inc., 1975, pp. 237-242

20



21

generates a set of subroutines which perform the logical

function required by each specific element. The simulated

network is represented in the computer as a series of

interconnected subroutines which evaluates the logical

function of each element in the order in which they appear

in the circuit. Starting at the input gates and proceding

through the circuit, outputs of one gate acting as inputs

to the succeeding gates until the final output gates are

reached. The disadvantage of this approach is that for

each element there could be about five to ten instructions

required to perform the simulation. For a fairly large

circuit the size of the compiled code would require a fair

amount of memory. Another problem is that a compiled code

is inherently a zero delay simulation and is extremely

inflexible as to the extent of the types of different

operations which can be performed during simulation.

3.2 Table Driven Simulation Method 

In the table driven method, the parameters of each

logic element in a circuit is stored in a tabular form. 2

Each entry consists of such data as logic function, prop-

agation delay, input sources, output values, and output

destination. The source language statements are translated

2
M. A. Breuer, Design Automation of Digital Systems,

New Jersey, Prentice-Hall, Inc., 1972, pp. 127-128



22

into a data structure representing the circuit. During

simulation the data structure is operated on by a control

program which analyzes the information in the lists in

accordance with the simulator command statements to deter-

mine the flow of data and logical values in the network.

The interpreter program operates by evaluating all

the elements and assessing those subroutines which are

required by the program rather than having individual

macros for each element. When a large circuit design is

simulated the running time of the simulator could become

a factor because of the sequential nature of the program

and the number of instructions to be executed. In a table

driven simulator for a given input pattern only a certain

number of the elements will be changing their logic states.

A large reduction in computation time is achieved in DLS

because only those elements which are supposed to change

states are evaluated.

3.3 Dual Table Simulation

DLS contains seven tables but the heart of the program

is contingent upon two of the tables. These two tables are

known as `Ti and T2, contain all the logic levels of the

network. Each logic level is stored in one word of memory,

in the case of the 8080 microprocessor a word of memory is

8 bits in length. At the beginning of the simulation run



C

B

ORA

Table Ti Table T2

(A) ( A )

(B) (B)

(C )
(C)

23

Dual Table Operation 

(a)

.0R/2. A,B,C 	 I0=0

(b)

c)

Figure 3-1



24

both Ti and T2 contain the same information. If no initial

condition is given for each element a logic 'X' is auto-

matically assigned to the output of that element.

The simulation is done by taking the inputs from Ti,

performing the logic function called for and storing the

results in T2. For example, Figure 3-1a shows a single

two input one output OR gate. In DLS a line of source

code to describe the gate is shown by Figure 3-1b. The

line tells the interpreter program the type of logic gate,

the number of inputs, the input symbols, the output symbol,

and any initial condition for the output symbol. The

program would translate this line code and assign three

words of memory for T1 and T2, for this one element. Each

table would have the same logic levels assigned to them

at the beginning of the simulation. During the simulation

the two input values would be taken from T1, operated upon

and stored in the output, located in T2, as can be seen in

Figure 3-1c. At this point a comparison is made between

the contents in T1 and T2. If the two tables contain the

identical information then the simulated circuit is said

to have reached a stable state. Disagreement indicates

that some of the signals are still being propagated through

the circuit.

If only one table existed there would be no way to

ascertain whether the network had reached a stable state,

since there would be no record of the previous state, Two



25

tables make it possible to check the stability of the

circuit. After all logical operations were performed T1

would contain the n-th state while T2 would contain the

n+1 state. When comparing the n-th and n+1 states of the

network it can be determined if the network had achieved

a stable state.

A clarification of this analysis may be seen in the

example shown by Figure 3-2, which is a simulation run of

Figure 3-1a. Assume that both inputs (A and B) are at a

logic 1 0' and the initial condition of the output (C) is

also at a logic 'O.' Figure 3-2a shows that at the start

of the simulation both Ti and T2 contain the same data.

Assume now that one of the inputs (A) is going to change

to a logic 'I,' but in a three value simulation it must

for one time unit be at the transition level 'X.' The 'X'

value is substituted into the (A) location in T1 and T2,

then the OR operation is performed as seen in Figure 3-2b.

A comparison is made between Ti and T2. Since they are

not the same the operation is not yet complete, so T2 is

copied over into Ti. The n+1 state now becomes the n-th

state and a new n+1 state must be generated. Now that the

input (A) has been in the transition state for the required

time it now goes to a logic 'I.' Another OR operation is

performed as can be seen in Figure 3-2c. Again after the

operation T2 is not equal to Ti so it is copied into Ti

and again another OR operation is done. This time T1 is



T1 T2

(A ) (A )

(B) (B )

(0) (c)

26

OR Gate Simulation

a)

(A)

(B)

( c)

(A)

(B)

(C)

(A)

(B)

(C)

(h)

(c)

Figure 3-2



27

the same as T2 so the simulation update cycle is complete,

all signals have been propagated through and stability in

the circuit has been achieved. Using three value simulation

it took two time units to produce the correct output, but

it took three time units for the circuit to be considered

stable in DLS.

3.4 Table Setups 

It is the formation of the other five tables which

the translator portion of DLS uses to setup the dual

simulation tables. Certain information has to be extracted

from the source program and broken down into the different

tables. Consider Figure 3 -3a which is a two element device.

The enclosed area shows the portion of the circuit which

will be under test. The lines extending from this area

are the test inputs and the test output. Other internal

signals can be monitored where applicable. To simulate

this circuit using DLS the device is described by English

language type statements, shown in Figure 3-3b. The

program must be given the test inputs, test output, gate

type, and any initial conditions.

The first thing DLS does is to scan for all symbols

used in the circuit description. Figure 3 -3c shows the

creation of the symbol table. Each symbol, which can be

up to five characters in length, is stored in the symbol



Symbol Table Input Table

28

DLS Table Breakdown

(a)

.INPUT. A,B,C

.AND/2. A,B,D 	 I0=0

.0R/2. 	 D,C,E 	 I0=1

.PRINT. A,B,C,E

(b)

symbol A 	 (A) (A)'

B 	 (B) (B)?

C 	 (0) - (C)'

D 	 (D)

(c )

( )-- memory
location in
table T1

( 	 memory location in table T2

(A) 

(B)

(C) 

(d)

Figure 3-3



29

table along with its corresponding address as seen in

tables Ti and T2. The symbol table is very important

since all the other tables will access it to determine

the locations of the symbols in table Ti and T2.

DLS then looks for certain control words for the

formation of the test input table. Once DLS finds the

control word, it then scans the rest of the line for

symbols whose addresses can be found in the symbol table.

DLS completes the operation by storing the input symbol

addresses in the input table. In addition a count of the

number of test inputs is maintained as shown in Figure 3-3d.

The same procedure is done in determining what points

of the circuit the user wants to monitor during simulation.

In this case DLS will scan for the print control word.

Addresses are extracted from the symbol table and stored

in the output table along with the count on the number of

outputs, as seen in Figure 3-4a. For both the input and

output tables, the addresses assigned are those correspond-

ing to table Ti. Since after a simulated network has

reached a stable state T1 will contain the same information

as T2, there would be no need to access information from T2.

The next two tables to be formed are created simultan-

eously. DLS scans the program looking for the logic gates.

When a gate is found that gate type count will be incremented

(Figure 3-4b) and then DLS will create an updating sequence

table (Figure 3-4c). The update sequence for any two input



Gate Type Table

Gate Type Tr

AND/2

OR/2

NAND/2 

(b)

Ti

(A)

(B)

(C)

(D)

(B)

(A)'

(B)'

(C)'

(B)'

(B)'

(d)

30

Simulation Tables

Output Table

(A)

(B)

(C)

(B)

(a)

Update Sequence

(A)

(B)

(D)

(D) 

(C) 

(E)' 

(c)

( )-- memory location
in Ti table

( )'-- memory location
in T2 table

(e)

Figure 3 - 4



31

input device would consist of the two inputs to the gate

whose addresses are located in table T1, followed by the

output, whose address is located in table T2. For logic

elements with four inputs and one output, the update

sequence table would contain four addresses from T1 and

one from T2. It should be noted that prior to simulation

all symbols which were not given any initial condition are

assigned a logic 'X' to their respective locations. Symbols

with assigned initial conditions are inserted in both tables

T1 and T2 prior to simulation.



CHAPTER 4

THE DLS PROGRAM

4.1 DLS Program Structure 

The DLS simulator was written in a format kmown as a

modular program. There are three distinct modules; con-

troller/editor, compiler, and executor. Each module acts

independent of each other but can not operate without the

others. Parameters are not passed back and forth between

modules but instead the controller will partition off

blocks of memory where all the necessary information will

reside. These blocks of data or tables have no fixed

memory addresses. Also each table does not have any fixed

size. Figure 4-1 shows how the memory would be allocated

for a given simulation. The object file of DLS occupies

the first 4K block of memory. The control program then

partitions off the rest for the tables.

The source program which is the topological description

in the DLS language is entered into the memory via the

editor. As each line of data is taken in and stored in

memory, the size of the source program increases. The

control program will then alter where the next open source

32



33

Memory Allocation

BEGIN

START

NEXT
SYMBS

SYMBE
T1S

T1E
T2S

T2E
INP

OUTP

SIMTS

SIMTE

DLS PROGRAM

(object file)

SOURCE PROGRAM

(source file)

SYMBOL TABLE

SIMULATION
TABLE 1 (T1)

SIMULATION
TABLE 2 (T2)

INPUT FILE

TABLE

OUTPUT FILE

TABLE

UPDATE
SEQUENCE TABLE

4K

Figure 4-1



34

program location will be located in memory. If there are

alterations in the source program any previously compiled

network becomes void. This is because when the source

program increases or decreases in size the other table

addresses will not be altered, meaning source code inform-

ation may overlap into the table area.

Once the network description is complete the compiler

module will be called upon. The compiler takes the

source program and breaks it down into the representing

data structure. Once the compiler sets up the tables it

is the function of the execution module to perform the

simulation. The executer contains a simulation controller

which calls upon the user to setup certain simulation

parameters. Using these parameters plus the compiled

tables the network can now be simulated.

4.2 Source Program Requirements 

It is possible to define logic circuits in terms of

Boolean equations but impractical for large complex circuits.

To reflect the implemented configuration the equations

would have to be derived directly from the actual circuit.

Such an approach would be rather cumbersome. A better way

would be based on an element description. 1 Each element

1 H. J. Kahn and J. W. R. May, "The Use of Logic
simulation in the Design of a Large Computer System,"
The Radio and Electronic Engineer, Vol. 43, No. 8 pp. 497 - 503



35

would have its inputs and output uniquely defined, making

it easer to define complex compound modules. AA element

would consist of gate type, number of inputs, and the out-

put. DLS uses this along with another parameter, the

initial condition. This helps eliminate transients which

would exist when the simulation first begins, since all

logic elements which are not given an initial condition

are put into the logic 'X' state.

DLS is slightly limited in ,the types of elements it

can presently simulate. Figure 4-2a and 4-2b show the

types of elements which DLS can handle. That which is in

capitalized letters must be typed by the user, the lower

case letters are where the user would put variable names,

which can be up to five alphabetic characters in length.

The initial condition is optional to the user and can be

completely left out.

It is the users responsibility to inform DLS, within

the source program, which logic variables are primary

inputs and which are monitored outputs. A primary input

is a variable whose logic level is not generated internally

in the circuit but rather must be supplied externally by

the user. They can be considered the test input paths.

The monitored output points are those variables which the

user wants to view during the simulation. The format for

these operations is shown in Figure 4-2c.

The final requirement for DLS to operate is that the



36

Command Word Format

.AND/2.

.NAND/2.

.OR/2.

.NOR/2.

.EXOR/2.

in1,in2, outin1,in2,out

in1,in2,out
in1,in2,out

IC=IC=___

IC=
IC=--
IC=--

(a)

.AND/4. in1, in2,in3, in4, out

.NAND/4. in1,in2, in3, in4, out

.OR/4. in1, in2, in3, in4, out

.NOR/4. in1, in2, in3, in4, out

.EXOR/4. in1, in2, in3,in4, out

(b)

.INPUT. a1,a2,a3,...,an

.PRINT.

(c)

.END.

(d)

Figure 4-2

IC=
IC=--
IC=
IC=--
IC=--



37

last line in the program must be as shown in Figure 4-2d.

This statement informs the compiler that there is no more

source code to be compiled.

4.3 The Controller/Editor

The controller/editor module performs two duties for

DLS. Its first task is to interact with the user to

determine what action DLS is to perform. The second duty

is to edit the source program which the user loads into

the computer via a terminal.

The source program is loaded one line at a time.

Each line must have a four digit identification as the

first four characters. This is simular to the program

language Basic. As each line comes in the source program

is scanned for where the new line will go. This is done by

scanning the source program for the other line indentifiers

then comparing it with that of the new line. Figure 4-3

shows the flowchart depicting how the editor goes about

placing a new line into memory. What must first be done

is to determine if a line with the same number already

exists in the source program. If it does it must first

be deleted from memory. After that has been determined 

then the routine finds where the new line goes and puts

it there.

Figure 4-4 is the controller routine flowchart. Its



=ENTER Source Program
Update Routine

YES-LINE
ALREADY
EXIT

NO DELETE
IT FROM
SOURCE

38

FIND WHERE
LINE WILL GO
IN SOURCE

OPEN SPACE
TO ACCOMDATE
NEW LINE

TRANSFER
BUFFER TO
SOURCE

RETURN

Figure 4-3



START Controller
Routine

39

READ A
LINE OF
DATA

COMMAND
YES

NO
CALL COMMAND
FUNCTION
SELECTOR

A
PROPER
LINE

NO

YES

CALL SOURCE
PROGRAM
UPDATE

PRINT
ERROR
MESSAGE

Figure 4-4



ENTER Command Function
Selection Routine

YES
NEW

YES LIST

 YES
PERFORM
RESEQUENCE
ROUTINE

RESEQ

FAN

NO

PERFORM
FAN
ROUTINE

 YES

CALL
COMPILER
ROUTINE

YES COMP

CALL
EXECUTION
ROUTINE

YES EXEC

RETURN Figure 4 - 5

40

PERFORMNEW

ROUTINE

PERFORM
LIST
ROUTINE

NO

NO

NO

NO

NO



41

task is to get a line of information from the user and

determine if it is a command or source data. If it is

source data and it fits the proper format then the source

program update routine will be implemented. If it is a

command then the controller will call the command function

selector routine. The function selection process is done

by simply matching up the contents in the input buffer to

some test patterns to determine which function is to be

implemented. This process is shown in Figure 4 - 5.

DLS has six command functions which can be performed.

Two of these commands (COMP and EXEC) will pass control

over to either the compiler or the execution modules. Three

of the remaining four commands are editor orientated. This

entails some sort of source program manipulation. The

command NEW will reset the source program memory pointers,

erasing any previous source program. The command LIST will

print all of the source program which had been entered by

the user. The command RESEQ will resequence all the line

identifiers of the source program in memory. Starting

from zero for the first line and working up in steps of ten.

The sixth command FAN can not be called upon until the

compiler module has been implemented. FAN will calculate

the fanout (the number of connections per logic line) of

the simulated network.

4-4 The Controller/Editor Program Listing



42

;FUNCTION 	 :MAIN PROGRAM
;CALLS 	 :OUTCH, GETCH, CRLF
;INPUTS 	 :BEGIN, DATA, BUFFR
;OUTPUTS 	 :START, LENTH

DESCRIPTION 	 THIS IS THE CONTROLLER AND
:EDITOR PROGRAM IT PRINTS

OUT ALL THE NECESARY TITLES
AND INTERACTS WITH THE USER
TO DETERMINE IF THE USER IS

INPUTING A STRING OF DATA OR
REQUESTING CERTAIN OPERATIONS
TO TAKE PLACE

LXI 	 SP, BEGIN
LXI 	 H, DATA ;BEGINNING OF SOURCE PROGRAM

SHLD 	 START
LEI 	 H,AA2 	 RINT OUT THE PROGRAM TITLE';
MOV A,M

INX
CPI 	 0
JZ 	 NEW
CALL 	 OUTCH

JMP 	 AA1
AA2: OS 	 ODH, OAH

ES 	 OAH, 20H, 20H, 'DIGITAL LOGIC'
OS 	 ' SIMULATOR' ,OAH,OAH, O

AA3: CALL 	 CRLF
MVI 	 B,64 	 ;SETUP AN INPUT BUFFER
LXI 	 H, BUFFR

AA4: 	 MVI 	 M, 20H
INX
DCR
JNZ 	 AA4
NV' 	 A,
CALL 	 DUTCH 	 ;PRINT THE PROMPT MESSAGE
LXI 	 H, BUFFR
MVI 	 B, 0

AA5; 	 CALL 	 CETCH 	 ; INPUT A STRING OF CHARACTERS
CPI 	 ODH 	 ;TO DE INTERPERATED, CR ENDS A LINE

AA7
18H 	 ;CONTROL 'X' KILLS IHE LINE

JZ 	 AA3
CPI I 	 7FH 	 THIS BACKSPACES ONE CHARACTER IN

JNZ 	 ;THE STRING
MO , / 	 :E.<



43

ORA 	 A
JZ 	 AA3
MVI 	 A,O8H
CALL 	 OUTCH
DCR 5
MVI 	 M, 20H
DCX
JMP 	 AA5

AA6: 	 MOV 	 M,A 	 ;LOAD CHARACTER INTO BUFFER
INX
INR 	 B
MOV 	 A, B
CPT 	 6$ 	 ;DUFFER STRING CAN ONLY BE 64

JNZ 	 AA5 	 ;CHARACTERS IN LENGTH
AA7 ; 	 LXI 	 H, BUFFR ;START TO INTEMPERATE THE STRING

MOV 	 A,B
STA 	 LENTH
MOV 	 AIM
CPI 	 '0' 	 ;TEST TO SEE IF THE LINE STARTS
JM 	 AA8
CPI 	 ;WITH A DIGIT WHICH MEANS THE
JM 	 LINE 	 ;STRING IS DATA TO PE STORED IN

T 	 'L' 	 ;THE SOURCE PROGRAM
JZ 	 LIST 	 ;JUMP TO LIST ROUTINE
CPI 	 'N'
JZ 	 NEW 	 ;JUMP TO 'NEW' ROUTINE
CPI 	 ;R,

JZ 	 RESEQ 	 ;JUMP TO 'RESEQUENCE' ROUTINE
CPI 	 'C'
57 	 COMP 	 ;JUMP TO THE COMPILER ROUTINE
CPI 	 'E'
JZ 	 EXEC 	 ;JUMP TO THE EXECUTION ROUTINE
CPI 	 'F'
JZ 	 FAN 	 ;JUMP TO THE FANOUT ROUTINE

AA8: 	 LXI 	 H,AA10 	 IF NO MATCH EXISTS THEN
AA9: 	 MOV 	 A,M 	 ;PRINT OUT THE ERROR MESSAGE

CPI 	 0
JZ 	 AA3 	 ;THEN TRY AGAIN
CALL 	 DUTCH
INX
JMP 	 AA9

AA10 	 DB 	 ODH,OAH,'**ERROR**',0

;FUNCTION 	 LIST
;CALLS 	 :CRLF,OUTCH
;INPUTS 	 :NOTHING



44

;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :LIST PRINTS OUT THE USERS

:SOURCE PROGRAM FROM MEMORY

;

	T Si	 CALL 	 CRLF 	 ;CALL CARRAGE RETURN AND
CALL 	 CRLF 	 ;LINE FEED
LHLD 	 NEXT 	 ;LAST BYTE OF SOURCE PROGRAM

XCHG
LHLD 	 START 	 ;FIRST BYTE OF SOURCE PROGRAM

	

API: 	 MOV 	 A,L
CMP
JNZ 	 AB2
MOV 	 A,H 	 ;TEST TO SEE IF THIS IS THE LAST
CMP 	 D 	 ;BYTE TO BE PRINTED
JZ 	 AA3

	 AB2: 	 MOV 	 A,M
CALL 	 DUTCH 	 ;OUTPUT THE CHARACTER TO THE PRINTER
INX
JMP 	 AB! 	 ;CET NEXT BYTE

;FUNCTION 	 :NEW
;CALLS 	 :NOTHING
;INPUTS 	 :START
;OUTPUTS 	 :NEXT
;DESCRIPTION 	 :NEW CLEARS OUT THE SOURCE

:OLD PROGRAM MEMORY BUFFER

NEW: 	 CALL 	 CRLF 	 ;PRINT CARRAGE RETURN AND LINE FEED
LXI 	 H, AC2 	 ;PRINT THE MEMORY PROTECT MESSAGE

AC1 : 	 MOV 	 A, M
CPI 	 0
JZ 	 AC3
CALL 	 DUTCH
INX 	 H

JMP 	 ACi
DR 	 'CLEAR MEMORY 7',0



45

AC3: 	 CALL 	 GETCH 	 ;GET A CHARACTER FROM THE CONSOLE
CPI 	 ,N, 	 ;FOR THE RESPONCE TO THE QUESTION

-r7 AA3 	 ;N-- DON'T CLEAR THE MEMORY
CPI 	 ;Y-- CLEAR THE MEMORY

JNZ 	 AC1-3 	 ;ANYTHING ELSE TRY AGAIN
. 	 START

SHLD 	 NEXT
JMP 	 AA3

;FUNCTION
;CALLS 	 :NOTHING
;INPUTS 	 :NEXT,START,WORK
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 EACH LINE OF SOURCE PROGRAM HAS

:A FOUR DIGIT NUMBER ASSIGNED TO
:IT, RESEQ WILL RESEQUENCE THE
:FOUR DIGITS IN STEPS OF TEN

RESED: LHLD 	 NEXT 	 ;GET THE FIRST AND LAST
XCHC
LHLD 	 START 	 ;BYTES OF THE SOURCE PROGRAM
MVI 	 /WO' 	 ;SET THE LINE COUNTER TO ZERO
PUSH
LXI 	 H, WORM,
MVI 	 B,4

AD!: 	 MOV 	 M,A 	 ;STORE THE LINE NUMBER AWAY
INX
OCR
JNZ 	 AD!
POP 	 H.

ADC': 	 MOV 	 A,L 	 ;TEST TO SEE IF THIS IS THE LAST
CMP 	 F 	 ;LINE HAS DEEM PE SEQUENCED
JNZ 	 ADS
MOV 	 A,H
LMT'
JZ 	 AA3 	 ;IF ALL DONE RETURN TO CONTROLLER

A03: 	 MOV 	 A,M 	 ;SCAN FOR THE BEGINNING OF A LINE
INX
CPI 	 OAH
,R17_ 	 AD2



46

MVI 	 R,4
LXI 	 O, WORK ;RESEQUENCE THIS LINE

AD4: 	 COAX
MOV 	 M, A 	 ;UPDATE RESEQUENCE COUNTER

INX
INX
OCR

JNZ 	 AD4
MVI 	 0,3

ADC: 	 DCX 	
DCX 	 Li
LDAX
INR
CPI 	 '9'4-1 	 ;COUNTER IS A DECMIAL COUNT
JP 	 AD7
STAX

Aries: 	 POP
JMP 	 AD3 

A07: 	 MVI 	 A,'0'
STAX
OCR
JNZ 	 AD5
JMP 	 AD6

;FUNCTION 	 :LINE
;CALLS 	 :EXIST,FIND,OPEN,TRANS
;INPUTS 	 :BUFFR, LENTH
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :LINE IS THE ROUTINE WHICH

:TAKES THE INPUT DATA STRING
:WHICH IS TEMPORALLY EN A DATA
:BUFFER AND MOVES IT TO ITS'
:PROPER LOCATION IN THE
:SOURCE PROGRAM

LINE 	 LXI 	 H, BUFFR+1
MVI 	 B,3	 ; TEST TO MAKE SURE THAT THE

AEI: 	 MOV 	 A, M 	 ;LINE IN THE BUFFER HAS A
CPI 	 '0' 	 ;FOUR DIGIT IDENTIFIER ON IT
JM 	 AA8

CPI 	



47

JP 	 AA8
INX

DCR
JNZ 	 AEI
CALL 	 EXIST 	 ;SEE IF THE LINE EXISTS ALREADY
LDA 	 LENTH 	 ; IF IT LOSS DESTROY THAT LINE
CPI
JM 	 AA3
CALL 	 FIND 	 ;FIND WHERE THE LINE SHOULD CO
CALL 	 OPEN 	 ;OPEN A SPACE FOR THE LINE
CALL 	 TRANS 	 ;MOVE BUFFER INTO SOURCE MEMORY
JMP 	 AAB

;FUNCTION 	 :EXIST
;CALLS 	 :NOTHING
;INPUTS 	 NEXT,START,BUFFR
;OUTPUTS 	 :NEXT
;DESCRIPTION 	 :EXIST EXAMINES THE FOUR DIGIT

:IDENTIFIERS IN THE TEMPORY
:BUFFER AND SEARCHES THROUGH THE
:SOURCE PROGRAM TO SEE IF A LINE
:WITH THE SAME NUMBER EXISTS. IF
:IT DOES THAT LINE WILL BE DESTROYED

EXIST: LHLD 	 NEXT 	 ;LOAD THE PARAMETERS OF THE
XCHG 	 ;SOURCE PROGRAM

LHLD 	 START
ACI: 	 MOV 	 A,L 	 ;TEST TO SEE IF A COMPLETE

CMP 	 E 	 ;SEARCH HAS BEEN MADE
JNZ 	 AC2
MOV 	 A,H
CMP
JNZ 	 AG2
RET 	 ;LINE NOT FOUND

AC2: 	 MOV
INX
CPI 	 OAH 	 ;FIND THE BEGINNING OF A LINE
JNZ 	 AG1
PUSH 	 0
PUSH

MVI 	



48

LXI 	 B, BUFF ;LOAD THE FOUR DIGITS FROM BUFFER
AG3: 	 LDAX

CMP 	 M 	 ;COMPARE WITH THE IDENTIFIER
JZ 	 AG4 	 ; IN THE SOURCE PROGRAM
POP
POP 	 0
JMP 	 AG1

AG4 : 	 INX 	 B
INX
OCR 	 0
JNZ 	 AGE
POP
POP
DCX
DCX
PUSH
POP
PUSH
POP
INX 	 0

ACS: 	 LDAX
CPI 	 ODH
J2 	 AGE
INX 	 0
MOV 	 A/0
CMP 	 B 	 ;IF THE LINE IS FOUND TO BE
JNZ 	 AC5 	 ;THE LAST LINE IN MEMORY THEN

MOV 	 A, E 	 ;RESET THE NEXT BYTE TO THE
CMP 	 C 	 ;BEGINNING OF THIS LINE
JNZ 	 AG5
SHLD 	 NEXT
RET

AG6: 	 LDAX
MOV	 M, A 	 ;LINE HAS BEEN FOUND DESTROY IT
INX
INX
MOV 	 A,D 	 ;TRANSFER THE REST OF THE
CMP 	 B 	 ;MEMORY BLOCK TO CLOSE THE
JNZ 	 AG6 	 ;AREA WHERE THE OLD LINE WAS

MOV 	 A,E
CMP
JNZ 	 AG6
SHLD 	 NEXT 	 ;RECALCULATED NEXT BYTE ADDRESS
RET

;FUNCTION 	 :TRANS



49

;CALLS 	 :NOTHING
INPUTS 	 :BUFFR, WORK

;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :TRANS WILL TRANSFER THE INPUT

DATA STRING WHICH RESIDES IN
:THE TEMPORY BUFFED, TO THE
:SOURCE PROGRAM MEMO R Y

TRANS: LXI 	 D, BUFFR ;BEGINNING OF THE BUFFER
LHLD 	 WORK 	 ;WHERE IN MEMORY IT WILL GO
MVI 	 M, OOH
INX
MVI 	 M, OAH 	 ;ATTACH THE LEADER CHARACTERS
INX
MVI 	 .8,64

AF1; 	 LDAX
MOV 	 M, A 	 ;TRANSFER THE BUFFER OVER
INX 	 H 	 ;TO SOURCE MEMORY

INX
DCR
JNZ AF1
RET

;FUNCTION 	 :FIND
;CALLS 	 :NOTHING
;INPUTS 	 :NEXT,START,BUFFR
;OUTPUTS 	 :WORK
;DESCRIPTION 	 :FIND ROUTINE SEARCHES THROUGH

:MEMORY TO FIND THE ADDRESS
:WITHIN THE SOURCE PROGRAM
:WHERE THE NEW LINE OF DATA GOES

FIND: 	 LHLD 	 NEXT 	 ;LOAD THE SOURCE PROGRAM PARAMETERS
XCHC

LHLD 	 START
AHl 	 MOV 	 A,L 	 ; CONDUCT A MEMORY SPEECH



50

CMP
JNZ 	 AH2

MOV 	
CMP
JNZ 	 AH2
XCHG

SHLD 	 WORK
RET .

AH2 	 MOV 	 A,M
INX
CPI 	 OAH 	 ;TO FIND THE BEGINNING OF A LINE
JNZ 	 AH1
PUSH
PUSH
MVI 	 D,4
LXI 	 B,BUFFR ;COMPARE THE FOUR BEGET INDENTIFIERS

AH3: LDAX 	 B 	 ;TO DETERMINE IF THE LINE IN THE
CMP 	 M 	 ;BUFFER SHOULD CO BEFORE THIS
JM 	 AH5 	 ;LINE IN MEMORY
JZ 	 AH4
FOP
POP

JMP  AH1
AH4: INX

INX DCR

JNZ AH3 ;NOT THIS LINE MOVE ON TO
AH5: 	 POP 	 H 	 ;NEXT LINE

DCX
DCX
POP D
SHLD 	 WORK 	 ; FOUND WHERE IT SHOULD GO
RET

;FUNCTION 	 :OPEN
CALLS 	 :NOTHING
INPUTS 	 :NEXT, WORK

;OUTPUTS 	  :NEXT
;DESCRIPTION 	 :OPEN IS THE ROUTINE WHICH

:OPENS A 66 BYTE STRING IN
: THE SOURCE PROGRAM TO MAKE
: ROOM FOR THE INCERTION

:OF THE NEW LINE OF DATA



OPEN: 	 LHLD 	 NEXT 	 ,GET THE LAST BYTE OF DATA
XCHG
LHLD 	 WORK 	 ;THIS IS WHERE THE DATA INCEPTION
PUSH 	 H 	 ;WILL TAKE PLACE
POP
DCX
LXI H, 66
DAD
SHLD 	 NEXT 	 ;MOVE THE LAST BYTE OF DATA

Alb 	 MOV 	 A, D 	 ;66 BYTES LOWER
CMP
JNZ 	 AI2
MOV 	 A,E
CMP
RZ

AI2:	 LDAX 	 D 	 ;MOVE THE BLOCK OF DATA FROM
MOV 	 M,A 	 ;THE POINT WHERE THE INCERTED
DCX 	 B 	 ;LINE WILL GO TO THE LAST
DCX 	 H 	 ; LINE, DOWN TO THE NEW NEXT LOCATION
JMP 	 All

;FUNCTION 	 :FAN
;CALLS 	 :CRLF, OUTCH, PRBYT
;INPUTS 	 :SYMBS, SIMTE,SIMTS, WORK
;OUTPUTS 	 :WORK
;DESCRIPTION 	 :FAN SEARCHES THROUGH THE

:SYMBOL TABLE TO FIND EACH
: SYMBOL AND COUNT HOWMANY
TIMES THAT SYMBOL ISUSED

IN THE NETWORK FOR COMPUTING
:THE FANOUT OF EACH LOGIC LEVEL

FAN: 	 CALL 	 CRLF
CALL 	 CRLF
LHLD 	 SYMBS 	 ; START OF SYMBOL TABLE

AJO: 	 MVI 	 flit;
AJ1: 	 MOV 	 AIM 	 ;GET A SYNDOL



52

CPI 	 ' 0, 	 ;END OF SYMBOL. TABLE INDICATOR
JZ 	 AA3
CPI 	 0
JNZ 	 $-4-5
MVI 	 A, 2OH
CALL 	 DUTCH 	 ;PRINT THE SYMBOL
INX
DCR	 0
JNZ 	 AJ1
MVI 	 A,':'
CALL 	 DUTCH
MOV 	 C,M
INX
MOV 	 B,M
INX
PUSH
MVI 	 A,O 	 ; STORE THE ADDRESS OF THE SYMBOL
STA 	 WORK 	 ;FROM T1 TABLE IN THE WORK REGISTER
LHLD 	 SIMTE
XCHG
LHLD 	 SIMTS 	 ;LOAD SIMULATION TABLE

AJ2 	 MOV 	 A,H
CMP 	 D 	 ;SYMBOL TABLE SEARCH
JNZ 	 AJ3
MOV 	 A,L
CMP
JNZ 	 AJ3
PCP
LDA 	 WORK 	 ;SEARCH DONE PRINT THE RESULTS
CALL 	 PRBYT 	 ;OF HOW MANY TIMES THAT
CALL 	 CRLF 	 ;SYMBOL IS USED
INX
INX
JMP AJO ;MOVE ON TO NEXT SYMBOL

AJ3 	 MOV 	 A,M
INX
CMP
JZ AJ4 ;MAKE THE ADDRESS COMPARISON
INX
JMP 	 AJ2

AJ4: 	 MOV 	 A,M
INX
CMP
JNZ 	 AJ2
LDA 	 WORK
ADI 	 1 	 ;EACH TIME A MATCH EXISTS
DAA 	 ;ADD ONE TO ITS FANOUT COUNT
STA 	 WORK
JMP 	 AJ2



53

4.5 The DLS Compiler

The routines which form the compiler portion of the

simulator are the heart of DLS. The compiler module can

be broken down into six sub-modules and it is the task of

these sub-modules to create the various tables which drive

the simulator.

Once the source program has been entered into memory

via the controler/editor, the user issues the proper

command word (COMP) which initates the execution of the

compiler. The DLS compiler is unlike the standard meaning

of a compiler, where the source program is broken down into

another form of a program which is more easly understood

by the computer. The DLS compiler does not work this way.

It makes several passes over the source program extracting

different pieces of information as it goes along.

Memory is partitioned off by the compiler for the

formation of the tables where the extracted information

will reside. For example the compiler has to know how

many symbols the source program uses. This determines the

size of the tables T1 and T2. The compiler must also know

how many of each logic gate from the gate library are being

called upon. This determines the size of the simulation

update sequence tables and so on.

In the style of modular programming the compiler

routine is simply a controller. Figure 4-6 is the flow-



CALL PACK
ROUTINE

RETURN

Compiler Function
Routine

5'4

ENTER

CALL SUM
ROUTINE

CALL PRNT
ROUTINE

CALL SYMB
ROUTINE

CALL SETUP
ROUTINE

CALL IO
ROUTINE



55

chart of the compiler routine. It performs the duty of

directing the flow of the program through several routines.

The six routines called upon are: SUM,PRNT,SYMB,PACK,IO,SETUP.

Each of these sub-modules may have several sub-sub-modules

which will be called upon.

The SUM routine is assigned the task of determining

how many of each type of logic gate are going to be used

in the simulation. Figure 4 -7 is the flowchart for this

routine. There are ten types of logic gates which can be

implemented by DLS. The SUM routine sets up the table

which will keep track of the gate count. The routine will

terminate when the end control word is encountered.

The PRNT routine does not extract any information

from the source program but rather aids in error detection.

PRNT prints out the source program listing along with the

gate count table. The user can readily determine if all

the logic gates were accounted for in the compiling.

Figure 4-8 shows the flowchart for this routine.

The. SYMB routine performs a major task. It scans

through the source program picking out all the different

symbols being used. The routine must be able to disting-

uish between a symbol and some other type of information.

Figure 4 -9 has the flowchart of this routine. To determine

what is what the routine first looks for a line containing

a control word. Once this has been determined and the

proper lines found, SYMB will proceed with its function.



Sum Function
Routine

56

ENTER

FIND THE
BEGINNING
SOURCE
PROGRAM

FIND A
LOGIC GATE

A gate would look
like .TYPE/#.

ADD ONE TO
THAT GATE
COUNT

NO

End of source
code indicator

YES

RETURN

Figure 4-7



ENTER Prnt Function
Routine

57

FIND THE
BEGINNING
OF SOURCE
PROGRAM

PRINT A
LINE OF IT

NO
.END.

YES

LOAD GATE
COUNT
TABLE

PRINT GATE
COUNT

RETURN

Figure 4-8



FIND A
CONTROL
WORD

All control words
look like .xxx.

YES .END.

Symb Function
Routine
(Part 1)

58

ENTER

FIND THE
BEGINNING
OF SOURCE
PROGRAM

-10

NO

RETURN
FIND A
SYMBOL

Figure 4 - 9



Symb Function
Routine
(Part 2)

59

YES SYMBOL IN

NO

LOAD
SYMBOL IN-
TO SYMBOL
TABLE

END
OF

' T)

YES

Figure 4 - 9



6O

As each symbol is encountered it is run through a test to

see if it already exists in the symbol table. If it is in

the table the routine will move on to the next symbol. If

not then this new symbol will be loaded into the table

along with room for the two simulation table addresses to

be assigned later. These addresses will be found once

tables T1 and T2 are formed.

Once all the symbols have been found the next two

tables can be formed. This is done by the SETUP routine,

Figure 4-10. A count of the number of symbols used was

kept by the last routine. The size of the two tables

depends upon the number of symbols. After the beginning

and end addresses of T1 and T2 are determined SETUP will

go back and assign each symbol in the symbol table addresses

to T1 and T2.

Now that each symbol has a place in both simulation

tables and both tables have been formed, what is left

is to make an update sequence. 	 This is accomplished

by the PACK routine. What this routine does is to search

through the source program looking for logic gates. Each

gate definition contains information related to the

number of inputs. PACK then looks for the input symbols

and the output symbol and gets their addresses from tables

T1 and T2. It then assigns these addresses to the update

sequence table. A two input gate has two locations in T1

and its output located in T2. For a four input type gate



Setup Function
Routine

6 1

ENTER

CREAT T1
AND T2
TABLES

FIND THE
BEGINNING
OF SYMBOL
TABLE

ASSIGN EACH
SYMBOL AN
ADDRESS
FROM T1&T2

(I RETURN

The size of T1&T2
=2+ (#ofsymbols)
locations

Figure 4-10



Pack Function
Routine
(Part 1)

62

ENTER

CREATE THE
SIMULATION
UPDATE TABLE

LOAD BEGINNING
OF SOURCE
PROGRAM

FIND A LINE
CONTAINING A
LOGIC GATE

Figure 4-11



YES . END .

Pack Function
Routine
(Part 2)

63

NO

RETURN

CREATE THE
UPDATE
SEQUENCE
FOR LOGIC
GATE FOUND

STORE
SEQUENCE
IN UPDATE
TABLE

Figure 4 - 11



NO .PRINT.
YES

Io Function
Routine
(Part 1)

64

ENTER

FIND THE
BEGINNING OF
SOURCE PROGRAM

LOAD A LINE
OF SOURCE
CODE

NO

a

YES

NO.END.

YES

RETURN

Figure 4-12



Io Function
Routine
(Part 2)

6 5

NONO A
SYMBOL

YES

A

SYMBOL

YES

LOAD
SYMBOL INTO
OUTP TABLE

LOAD
SYMBOL INTO
INP TABLE

GET SYMBOL
ADDRESS
FROM SYMBOL
TABLE

GET SYMBOL
ADDRESS
FROM SYMBOL
TABLE

LOAD ADDRESS
INTO OUTP
TABLE

LOAD ADDRESS
INTO INF
TABLE

Figure 4-12



66

four of its locations are in Ti and its output is in T2.

Figure 4-11 shows the flowchart for this routine.

The final sub-module of the compiler is the IO routine.

It has the task of determining which variables are primary

inputs and which are monitored outputs. Figure 4-12 shows

this routine. This task is done by scanning through the

source program looking for either INPUT or PRINT command

words. When one of these is encountered each symbol which

follows, along with its address of where in Ti it is located

is stored in either table INP(input) or OUTP(output) de-,

pending on which command word was encountered. Once all

the inputs and outputs have been stored away the compiling

is complete. Control will now be passes back to the

controller/editor where errors can be corrected or execution

of the compiled program can take place.

4.6_ , The Compiler Program Listing



67

;FUNCTION 	 :COMP
;CALLS 	 :SUM,PRNT,SYMB,SETUP,PACK,I0
;INPUTS 	 :NOTHING
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :COMP IS THE COMPILER ROUTINE

OF DLS.THE FUNCTION OF COMP
:IS TO DIRECT THE

IMPLIMENTATION OF THE COMPILER, THERE
ARE SIX STAGES IN THIS COMPILER
:AND COMP ACTS AS THE CONTROLLER
:IT CALLS UPON THE NECESSARY
:ROUTINES TO BREAKDOWN THE
:SOURCE PROGRAM,

COMP CALL 	 SUM 	 ; GET THE GATE TYPE COUNT
CALL 	 PRNT 	 ;PRINT NETWORK PLUS GATE COUNT
CALL 	 SYMB 	 ;ASSIGN LOCATIONS TO SYMBOLS
CALL 	 SETUP 	 ;SETUP SIMULATION TABLES
CALL 	 PACK 	 ;PUT THE INFORMATION IN TABLES
CALL 	 IO 	 ; SETUP PRIMARY INPUT & OUTPUT
JMP 	 AA3 	 ; GO BACK TO EDITOR

FUNCTION 	 :SUM
CALLS 	 FNDP,FNDCH,FNDS
INPUTS 	 :START, WORK
OUTPUTS 	 :WORK
DESCRIPTION 	 :SUM HAS THE TASK OF DETERM-

:INING HOW MANY OF THE POSSIBLE
;ELEVEN TYPES OF GATES ARE IN
:THE NETWORK. CERTAIN CHARACTERS
ARE USED TO KEYOFF THE ROUTINE.
:FNDP— FINDS DECIMAL POINTS;
:FNDCH— FINDS AN ALPHABETIC
:CHARACTER.



68

Sum: 	 MVI	 A, 11 	 ;COUNT OF GATE TYPES
STA 	 WORK
TAT 	 H, NA2 	 ;CATE COUNT TABLE

M,0 	 ;INILIZATION OF TABLE
INX
DCR 	 A

JNZ 	 BAO
LXI 	 B t NA2 	 ;GATE TYPES ARE DETERMINED BY
LXI 	 D,BA5 	 ;A STRING COMPARISON TO THE

BA1 : 	 LHLD 	 START 	 ;SOURCE PROGRAM
BA2: CALL 	 FNDP 	 ;LOOK FOR DECIMAL POINT

JNC 	 BA4 	 ; THE CONTROL WORD
CALL 	 FNDCH 	 ;GET FIRST CHARACTER
PUSH
LDAX
CMP	 M 	 ;COMPARE TO TEST STRING
JNZ 	 BA3 	 ;NOT FOUND CONTINUE SCAN
INX
INX 	 D 	 ;NEXT CHARACTER
LDAX
CMP 	 M 	 ;COMPARE NEXT CHARACTER
JNZ 	 5A3 	 IF NO MATCH TRY AGAIN
CALL 	 ENDS 	 ;STILL GOOD FIND SLACH
INX
LDAX
CMP 	 M 	 ; COMPARE # OF INPUTS
JNZ 	 BA3 	 ;NOT THE SAME KEEP LOOKING
CALL 	 FNDP 	 ;FIND END OF CONTROL WORD
POP
LDAX 	 B 	 ;CATE COUNT
INR 	 A 	 ; INCREMENT COUNT
STAX 	 B 	 ; SAVE THE NEW COUNT
JMF' 	 BA2 	 ; LOOK FOR ANOTHER ONE

BA3: POP
CALL 	 FNDP 	 ;NO GOOD LOOK FOR NEXT ONE
JMP 	 5A2

BA4: 	 INX 	 D 	 ;NEXT TYPE OF GATE
INX
INX 	 D
INX
LOA 	 WORK 	 ;CATE COUNT
DCR 	 A 	 ; ONE LESS GATE TO LOOK FOR
STA 	 WORK
CPI 	 0
JNZ 	 BA! 	 ARE ALL GATES DONE
RET

9A5: 	 OS 	 'NA2' 	 ;STRING COMPARSON DATA
rip 	 'NA4AN2AN4OR2OR4'
DO 	 'NO2NO4EX2EX4JKF'



69

;FUNCTION 	 PRNT
;CALLS 	 :CRLF, OUTCH, PRBYT

INPUTS 	 :START, NEXT
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 PRNT DOES TWO THINGS

:FIRST FOR DOCUMENTATION
:IT WILL PRINT THE NETWORK
:PROGRAM, THEN IT WILL PRINT
THE GATE COUNT ,THIS WILL
:HELP TO CONFERM THAT THE
:PROPER NETWORK HAS BEEN
:COMPILED

PENT: 	 MVI 	 R,5
B21: 	 CALL 	 CRLF 	 ;CLEAR SCREEN

OCR
JNZ 	 801
LXI 	 H, AA2 	 ;PRINT DLS TITLES

BB2: 	 MOV 	 A,M
INX
CPI 	 0
JZ 	 BB3
CALL 	 DUTCH
JMP 	 BB?

EBBS: 	 MVI 	 2,5
B84: 	 CALL 	 CRLF

OCR 	 B
JNZ 	 B94
LHLD 	 NEXT 	 ;LOAD IN SOURCE PROGRAM
XCHG
LHLD 	 START 	 ;PARAMETERS

BB5: 	 MOV 	 A,L
CMP 	 E 	 ;RUN A TEST TO DETERMINE WHEN
JNZ 	 BB6 	 ; THE SOURCE DATA BLOCK HAS DEEM
NOV 	 A,H 	 ;PRINTED OUT
CMP
JZ 	 BB7

BB6:	MOV	A,M
INX
CALL 	 DUTCH

OAH
005



70

INX 	 H 	 ;STRIP OFF THE FOUR
INX 	 H 	 ;DIGIT LINE INDENTIFIERS

INXH

JMP BB5
BB7: 	 MVI 	 R,5

19E 	 CALL 	 CRLF
DCR

JNZ 	 BB8
LXI 	 H, NA2 	 ;LOAD GATE TYPE COUNT
LXI 	 B, BB12 ;CET GATE TITLE TO MATCH

BB?: 	 LDAX
CPI 	 ; INDICATES END OF ROUTINE
RZ 	 ;IF FOUND IN PRINT CYCLE
CPI 	 '?' 	 ;INDICATES ENO OF THAT GAPE TYPE
JNZ 	 BBi1
INX
MVI 	 A,99H
MOV 	 E,M
INR
INX

BB10: 	 ADI 	 1 	 ;CONVERTS HEX TO DECIMAL
DAA
DCR 	 E
JNZ 	 BB10
CALL. 	 PRBYT 	 ;PRINT THAT GATE COUNT
OCR 	 D
RZ
CALL 	 CRLF 	 ;MOVE ON TO NEXT GATE TYPE
JMP 	 BB9

B811: 	 CALL 	 DUTCH 	 ;PRINT GATE TITLE
INX
JMP 	 BB9

BB12: 	 DB 	 'NAN'
DB 	 'D/2=?NAND/4=?AND/2 =?AND/4 =?OR/2 =?'
DB 	 'OR/4 =?NOR/2 =?NOR/4 =?EXOR/2=?EXOR/4=?!'

FUNCTION 	 :SYMB
CALLS 	 :FNDP,SYEX,SYST
INPUTS 	 :NEXT,START
:OUTPUTS 	 :SYMBS, SYMBE, NUMB
DESCRIPTION 	 :SYMB SCANS THROUGH THE SOURCE

:PROGRAM AND FINDS A SYMBOL.
IT THEN LOOMS TO SEE IF IT

:ALREADY IS IN THE 'SYM BOL
:TABLE, IF IT IS THEN NOTHING



71

IS 'DONE) IF IT IS NOT THEN
:THE SYMBOL WILL BE PUT INTO
THE TABLE.

SYMB 	 LHLD 	 NEXT 	 ;LOAD END OF SOURCE PROGRAM
MVI
INX
SHLD	 SYMBS 	 ;SETUP THE DEMENSIONS OF
SHLD 	 SYMBE 	 ;THE SYMBOL TABLE
LXI 	 H, 0
SHLD 	 NUMB 	 ;COUNT OF THE # OF SYMBOLS

LHLD	 START 	 ;START SYMBOL SEARCH
BC1: 	 CALL 	 FNDP

RNC
CALL 	 FNDP

F. t 	 MOV 	 A,M 	 ;FIND OUT IF THE FIRST
INX 	 H 	 ;CHARACTER IS A SYMBOL OR
CPI 	 ODH 	 ;A CONTROL CHARACTER
JZ 	 001
CPI
RZ
CPI 	 ' A '
JM 	 BC2
CPI
JP 	 002
DCX
CALL 	 SYEX 	 ;SEE IF SYMBOL ALREADY EXISTS
JC 	 BC2 	 ; IF FOUND MOVE ONTO NEXT SYMBOL
CALL 	 SYST	 ;PUT NEW SYMBOLS INTO TABLE
JMP 	 BC2

;FUNCTION
;CALLS
;INPUTS
;OUTPUTS
;DESCRIPTION

:SYEX
:NOTHING
tSYMBE,SYMBS,CARRY FLAG
:WORK
:SYEX SEARCHES THROUGH THE
:SYMBOL TABLE TO nETERMINE
:IF A GIVEN SYMBOL ALREADY
:EXISTS IN THE TABLE. IF IT
:DOES THEN IT WILL STORE
:THE ADDRESS OF THE SYMBOL



72

IN WORK AND SET THE CARRY
; FLAG, IF NO MATCH THEN THE
:CARRY FLAG WILL BE RESET

SYEX 	 PUSH
POP
LHLD 	 SYMBE 	 ; END OF SYMBOL TABLE
XCHG
LHLD 	 SYMBS 	 ;BEGINNING OF SYMBOL TABLE

BD1 	 MOV 	 A,L
ONE
JNZ 	 B02 	 ; TEST TO SEE IF THE WHOLE
NOV 	 A,H 	 ;TABLE HAS BEEN SCANED

CMP

JNZ 	 802
PUSH
POP
STC
ONO 	 ;NO FIND RESET CARRY FLAG
PET
PUSH
PUSH
PUSH
MVI D,5 ;SYMBOLS ARE 5 CHARACTERS LONG

BD3 	 MOV 	 A M 	 ;GET THE FIRST CHARACTER
CPI 	 0 	 ;?EST TO SEE IF SYMBOL IS LESS
JZ 	 807 	 ;THEN 5 CHARACTERS

LDAX

ONE 	 M 	 ;COMPARE TO SYMBOL IN TABLE
INX
INX 	 H
JNZ 	 BOB 	 ;NO SYMBOL MATCH GET
OCR 	 0 	 ;NEXT SYMBOL FROM TABLE
JNZ 	 B03

BD4: 	 POP 	 D 	 ;A POSSIBLE MATCH SO FAR
FOP 	 0
POP
PUSH
M0V 	 M 	 /ALL CHARACTERS MUST MATCH
CPI 	 0
JNZ 	 $4-7
INX
J;‘,,, 	B04+4

WORK 	 ;STORE ADDRESS OF SYMBOL
H
A) M



73

CPI 	 'A'
JM	 BD6
CPT
JP	 BD6

H
BD5

BD6 	 SYMBOL FOUND SET CARRY
REY

BD7: LDAX 0

CPI 	 'A'
BD4

CPI
JP 	 BD4

BD8: POP 	 H 	 ;MOVE SYMBOL POINTER TO
LXI 	 B,9 	 ;NEXT SYMBOL 9 CHARACTERS AWAY
DAD
POP
POP
JMP BD1 ;CONTINUE SCAN

;FUNCTION 	 :SYST
:CALLS 	 :NOTHING
INPUTS 	 :SYMBE, NUMB
OUTPUTS 	 :SYMBE, NUMB
DESCRIPTION 	 :SYST IS USED TO TAKE A

:SYMBOL AND STORE IT INTO
:THE SYMBOL TABLE. ALSO
:LEAVING SPACE FOR THE TWO
:ADDRESSES WHICH WILL BE
:FILLED IN LATER WHEN Ti
:AND T2 ARE FORMED

SYST: 	 PUSH
POP
LHLEI 	 SYMBE 	 ;LATE SYMBOL TABLE ADDRESS
MVI 	 D, 5 	 ;5 CHARACTERS TO BE PUT INTO TABLE

LDAX

CPI 	 'A'
J: I 	 BE3

'Z' +i

BE3



74

MOV 	 M,A 	 ; MOVE A CHARACTER INTO TABLE
INX
INX
DCR D :NEXT CHARACTER
JNZ 	 BEI

BE2: INX 	 H 	 ;LEAVE 4 BYTES OPEN
INX 	 H 	 ; FUR THE ADDRESSES
INX
INX
SHLD SYMBE ;NEW END OF SYMBOL TABLE
LHLD 	 NUMB
INX 	 H 	 ;INCREMENT SYMBOL COUNT
SHLD 	 NUMB
PUSH
POP
RET

BE3: MVI 	 11,0 	 ;PACK A SYMBOL WITH NULL
INX 	 H 	 ; CHARACTERS WHEN IT IS LESS
OCR 	 D 	 ;5 CHARACTERS IN LENGTH
JNZ 	 BE3
JMP 	 BE2

FUNCTION 	 :SETUP
CALLS 	 :NOTHING
INPUTS 	 :SYMBE, NUMB, T1S,T2S , SYMBS

:T1E,T2E
OUTPUTS 	 :T1S,T1E,T2S,T2E
DECRIPTION 	 THE SETUP ROUTINE WILL GREAT

:THE TWO SIMULATION TABLES. T1
:AND T2. ONCE THESE TABLES ARE
:MADE THEN SETUP WILL GO BACK
:TO THE SYMBOL TABLE AND ASSIGN
:EACH SYMBOL A LOCATION IN Ti
SAND T2

SETUP: LHLD 	 SYMBE
MVI 	 ;PUT AN END MARKER ON
INX 	 H 	 ;THE SYMBOL TABLE
SHLD 	 TIS 	 ; START OF Ti TABLE
XCHG
LHLD 	 NUMB 	 ;THE NUMBER OF BYTES FOR fl



75

INX
INX
PUSH
DAD
SHLD 	 TiE 	 ;THE END OF Ti. TABLE
INX
SHLD 	 T2S 	 ;START OF T2 TABLE
POP
DAD
SHLD 	 T2E 	 ; THE END OF T2 TABLE

LHLD 	 TIS 	 ;START TO ASSIGN EACH
PUSH 	 H 	 ;SYMBOL AN ADDRESS IN Ti & T2
PCP
LHLD 	 T2S
XCHG
MVI 	 H,2

BFI: 	 INX 	 S	 ;THE FIRST TWO BYTES OF TI
INX 	 D 	 ; AND T2 ARE FOR CONSTANTS
DCR
JNZ 	 BF1
LHLD 	 SYMBS	 ;START OF SYMBOL TABLE

BF2: 	 PUSH
XCHG
LHLD 	 SYMBE
MOV 	 A,E
CMP
JNZ 	 BF3
MOV 	 A,D
CMP
JNZ 	 BF3
FOP 	 Li
JMP 	 BF4

Sr 3: 	 XCHG 	 ;FIND A SYMBOL AND
LXI 	 Dy5 	 ;SKIP OVER THE SYMBOL TO
DAD 	 D 	 ; GET TO WHERE THE ADDRESS DATA
POP 	 D 	 ;SHOULD GO
MOV 	 M,C 	 ;B,C<-- CONTAINS Ti. ADDRESS
INX
MEW 	 M,B
INX
INX
MOV M,E ;D,E (-- CONTAINS 12 ADDRESS
INX

MOV 	 M, r)
INX
INX 	 H
JMP 	 BF2 	 ;GET NEXT SYMBOL

BF4: 	 LHLD 	 T1E 	 ;INILIZE ALL CONTENTS TO X LOGIC
FUSE 	 H
POP 	 13
LHLD 	 TiS



76

BF5:MOV 	 A,L
CMP

JNZ 	 BF6
MOV 	 A,H

CMP
RZ

BF6:MVI 	 A, 'X'
MOV 	 M,A 	 ;MOVE IT TO Ti TABLE
INX
JMP 	 BF5

FUNCTION 	 :PACK
CALLS 	 :FNDP, FNDCH, SYEX
INPUTS 	 :SIMTE,START, WORK,TiS,T2E
OUTPUTS 	 :SIMTS, SIMTE
DESCRIPTION 	 :PACK ROUTINE SCANS THROUGH

:THE SOURCE PROGRAM LOGGING
:FOR ALL THE GATES THEN LOADS
:THE SIMULATION UPDATE SEQUENCE
:TABLE WITH THE PROPER T1 AND

:T2 ADDRESES, THE UPDATE
:SEQUENCE TABLE PERFORMS THE
:ACTUAL NETWORK SIMULATION,

PACK: 	 LHLD 	 TAE 	 ;END OF TABLE T2
INX
SHLD 	 SIMTS 	 ;PARAMETERS OF UPDATE SEQUENCE
SHLD 	 SIMTE 	 ;SIMULATION TABLE
LXI 	 B, BG16 ;COMPARISON STRING
LHLD 	 START 	 ;SOURCE PROGRAM
MV I 	 A,2 	 ;FIRST SCAN FOR ALL TWO
STA 	 WORK+2 ;INPUT TYPE GATES
PUSH

ESC 1: 	 CALL 	 FNDP 	 ;GET KEY CHARACTER
JNC 	 BG5
CALL 	 FNDCH 	 ;GET A CHARACTER AND COMPARE

BG2: 	 LDAX 	 B 	 ;IT TO THE TEST PATTERN STRING
CPI 	 '?' 	 ;KEY TO SWITCH TO 4 INPUT TYPE:
JZ 	 BG4
CPI 	 '*' 	 ; END OF TEST PATTERNS
JZ 	 BG5



77

CPI 	 ',' 	 ;TEST END OF ALPHABETIC STRING
JZ 	 BGB
CPI 	 '!' 	 ;COMPARE # OF INPUTS NOW
JZ 	 BOB
CMP 	 M 	 ;COMPARE STRING TO MEMORY
JZ 	 8G7 	 ;SO LETS CO
POP 	 R 	 ;TESTS FAILED TRY NEXT GATE TYPE

PUSH
CALL. 	 FNDP

BG1
BG3: 	 CALL 	 ENDS 	 ;GET SOURCE GATE # OF INPUTS

INX
BG2	 ; GO BACK FOR COMPARISON

BG4; 	 POP
INX
PUSH
MVI 	 A,4 	 ;SWITCH TO 4 INPUT GATE TYPES
STA 	 WORK+2
JMP 	 BG2 	 ;RESTART SCAN

BC5: LHLD 	 START
POP

BC6: LDAX
INX
CPI 	 ;ALL DONE RETURN
RZ
CPI 	 ' ;NEXT GATE TYPE INDICATOR
JNZ 	 BG6
PUSH
JMP 	 BG1

BG7: INX 	 B 	 ;ONCE THE GATE IS FOUND TO
INX 	 H 	 ;MATCH THEN THE INPUT AND
JMP 	 5G2 	 ; OUTPUT ADDRESSES FROM T1 AND T2

BG8: LDA 	 WORK+2 ;ARE LOADED INTO THE UPDATE
MOV 	 B,A 	 ;SEQUENCE TABLE
CALL 	 FNDP

BC9: MOV 	 A,M
CPI 	 '1' 	 ;A LOGIC ONE CONSTANT
JZ 	 BG14
CPI 	 '0' 	 ;A LOGIC ZERO CONSTANT
JZ 	 BG13
CPI 	 'A'
JM 	 BG10-4
CPI 	 'Z'+1
JM 	 BG1O 	 ;SYMBOLS ARE FOUND AND THERE
INX 	 H 	 ;ADDRESSES ARE PUT INTO THE TABLE
JMP 	 509

BC10: PUSH
CALL 	 SYEX 	 ; GET THE SYMBOL ADDRESS
XCHG
LHLD 	 WORK

XCHG



78

POP
MOV 	 A,B
CPI 	 0 	 ;TEST TO SEE IF ALL SYMBOLS
JZ 	 BG12 	 ;FOR THAT GATE WERE DONE

BG 1 1 	 PUSH
OCR
LHLD 	 SIMTE 	 ;LOAD END OF TABLE

LDAX 	 D 	 ;MOVE THE NEW SEQUENCE
MOV 	 M,A 	 ;INTO THE TABLE
INX 	 D
INX
LDAX 	 D

MOV 	 11,A
INX
SHLD 	 SIMTE 	 ;NEW END OF TABLE
POP

MOV 	 A,B
CPI . 	 OFFH
JNZ 	 BG9
POP
PUSH

MOV 	 A,M
INX
CPI 	 ODH 	 ;SCAN FOR END OF LINE
JZ 	 BG1
CPI 	 '0' 	 ;SCAN FOR INITIAL CONDITIONS
JZ
CPI 	 '1'
JNZ 	 $-14
PUSH
PUSH
LHLD 	 WORK 	 ;ADDRESSES OF WHERE INITIAL
MOV 	 E,M 	 ;CONDITIONS CO
INX
MOV 	 D,M
STAX
POP
POP
JMP BG1

BG12: 	 INX
INX
JMP 	 BG11

B013: 	 LXI 	 D,T1S 	 ;ADDRESS OF LOGIC ZERO
INX
JMP 	 0011

0014: 	 PUSH
LHLD 	 TiS
INX 	 H	 ;ADDRESS OF LOGIC ONE
SHLD 	 WORK
LXl 	 D, WORK
POP



79

INX
JMP 	 Rdil

BCi6 	 DB 	 'NA!2/AN!2/0P02tN0!2,'
DB 	 'EX!2/?NA!4/AN!470R!4/1
III 	 /NO!4,EX!4/JK!F/*/

;*********************************************************
;FUNCTION 	 :IQ
;CALLS 	 :FNDP/ENDCH,SYEX
;INPUTS 	 :SIMTEtSTART/WORK
;OUTPUTS 	 :INP/OUTP,INST
;DESCRIPTION 	 :I0 ROUTINE SEARCHES THROUGH THE

:SOURCE PROGRAM LooKíNc FOR THE
:PRIMARY INPUTS AND THE OUTPUT
tVARIABLE .R, CONTROL WORD .INPUT.
:AND +PRINT, ARE SEARCHED _Cr.
:AND THE SYMBOLO WHICH FGLLOW
:ARE COMPARED TO THE ' -;YBDC.,
CFABLE FOR THERE ADDRESSES.
:THESE ADDRESSES ARE PUT INTO
THE TWO NEW TABLES INP AND DUTP.

;**rn?.-AL*%.****** ,kk*k*x-k*K4=.*wk

ID: 	 LHLD 	 SIMTE
INX
SHLD 	 INP 	 ;BEGINNING OF INP TABLE
XCHC
LHLD 	 START

BH1: CALL 	 FNDP 	 ;FIND KEY SYMBOL
JNC 	 BH6
CALL 	 FNDCH 	 ;CET THE FIRST CHARACTER
MOV 	 A/M
CPI 	 ;IS IT INPUT CONTROL WORD
JZ 	 BH2
CALL 	 FNDP
JMP 	 BH1

BH2: CALL 	 FNDP
E63: 	 MOV 	 A/M 	 ;rIND A CHARACTER WHICH

INX 	 H 	 ;INDICATES THE BEGINNING OF A
CPI 	 OGH 	 ; VARIABLE S- f .NDOL
J7 	 BHI.
CPI 	 'A'
JIM 	 5H3



80

CPI
JP 	 BH3
DCX
PUSH
CALL 	 SYEX 	 ;CET THE ADDRESS OF SYMBOL
POP

LHLD 	 WORK
MVI 	 B,5

BH4 : 	 DCX
DCR
JNZ 	 BHA
MVI 	 8,7

BH5: MOV 	 A,M 	 ;MOVE ADDRESS INTO INP TABLE
CPI 	 0
JNZ 	 $4-5
MVI 	 A,20H
STAX 	 D
INX
INX 	 D
DOR
JNZ 	 BH5
POP
JMP 	 BH3 	 ;MOVE ON TO NEXT SYMBOL

BH6:XCHG

MVI 	 M,'*' 	 ;INDICATES END OF INF TABLE
INX 	 H
SHLD 	 OUTP 	 ;BEGINNING OF OUTPT TABLE

XCHG

LHLD 	 START
BH7: CALL 	 FNDP 	 ;START OUTPUT SCAN

JNC 	 BH12
CALL 	 FNDCH

MOV 	 A,M
CPI 	 'P' 	 ;LOOK FOR 'PRINT.
JZ 	 BH8
CALL 	 FNDP
JMP 	 BH7

BH8: CALL 	 FNDP
BH9: 	 MOV 	 A,M 	 ;FOUND/NOW TO THE SYMBOLS

INX
CPI 	 ODH
JZ 	 BH7
CPI 	 'A'
JM	 BH9
CPI 	 'Z'+1
JP	 BH9
DCX
PUSH 	 D
CALL 	 SYEX 	 ;GET THE ADDRESS FOR THE SYMBOL
POP 	 0



81

PUSH
LHLD 	 WORK
NY! 	 B,5

BH10 : 	 DCX
DCR

JNZ 	 BH10
MVI 	 B,7

BH1 1 	 MO V 	 A , M 	 ; MOVE ADDRESS I NTO OUTP TABLE
CPI 	 0
JNZ 	 $+5
MV I . 	 A r 20H
STAX
INX
INX
OCR
JNZ BH11 1
POP

JMP 	 BH9
BH12; 	 XCHG

NV! 	 M ,  '*' 	 ; END OF OUTP TABLE I ND I CA TOR
INX
SHL D 	 I NST
RET



82

4.7 The DLS Executer 

The executer module has the function of performing

the actual simulation of the digital logic circuit. It

takes the data which the compiler creates and interprets

it to form a simulation of the users network. Aside from

the source program other information is required by DLS to

carry out the simulation.

When the user issues the execute command (EXEC) the

first piece of information which is required is the number

of update cycles per clock cycle. This is for race

condition testing. For example if the user informs DLS

that there will be seven update time units per clock cycle

and during the simulation it takes the network eight time

units for it to reach a stable state, a race condition

would exist. The second piece of information is the number

of test input patterns. The simulated network has a

certain number of primary inputs. The user must tell DLS

how many test patterns should be put through the simulated

circuit. The third piece of information concerns the mode

settings during simulation. The first choice is between

the normal and trace modes. The normal mode will print

the logic values of the monitored outputs after each clock

cycle. In the trace mode a printing will be made after

every update cycle. This aids in viewing certain hazard

conditions. The second mode choice is between two value



83

simulation and three value simulation. In the two value

simulation only the logic '0 and logic '1' are used. In

the three value simulation the logic 'X' is used in the

update cycle where each gate when changing uses it as the

transition logic value. This helps in detecting certain

possible hazard conditions.

The last thing which the executer requests is the

test input patterns. Each primary symbol is printed and

then the user types in the test pattern for that symbol.

This is done for each primary input until the whole test

pattern string has been loaded.

The actual executer module is comprised of twenty one

separate routines. For simplicity these routines are

described by four flowcharts. Figure 4-13 is the EXEC

routine flowchart. This encompasses the controlling part

of the executer. It has the job of calling the proper

routines to first get the needed information from the user

and then controlling the simulation process.

The EXEC routine calls upon the UPDAT (Figure 4-14)

routine to perform the operation of logic simulation. This

is done by manipulation of the data in the two simulation

tables, T1 and T2, UPDAT passes the proper data from T1

to each gate simulation routine, which performs its opera-

tion then puts the returning data into T2. This makes up

the update cycle, which is done until a stable state is

reached. The other thing UPDAT does is when a hazard



ionu
a01,Lu',-LLC

84

START

GET # OP TEST
INPUTS,CYCT,E
LENGTH ,MODE
STATUS

GET INPUT
TEST DATA
PATTERNS

CALL

UPDAT

CALLOUTP

YES

RETURN
Figure 4-13



Updat Function
Routine
(Part 1)

85

C ENTER

GET FIRST
TEST DATA
STRING

MOVE DATA
INTO PROPER

T1 & T2
LOCATIONS 1

LOAD CYCLE
DELAY TIME

* this subroutine
really is 10
different
routines,
one per gate

a)

CALL GATE
SIMULATOR

Figure 4-14



-)(- *NO compare the
values in T1
and T2 tables

T2=T1

Updat Function
Routine
(Part 2)

86

YES

COPY T2
INTO T1

a
ANY ERROR YES

NO
PRINT ERRORMESSAGE

RETURN

Figure 4-14



Gate Simulation
Routine
(Part 1)

87

ENTER 	 )

GET PROPER
DATA FROM
T1

CONVERT ASCII
DATA TO
SIMULATION
CODE

PERFORM THE
LOGIC OPERATION
CALL FOR

CONVERT DATA
BACK TO
PROPER FORMAT

Figure 4-15



YRR='X'

T2 GETS
LOGIC 'X'

T2 GETS
NEW LOGIC
VALUE

Gate Simulation
Routine
(Part 2)

88

a

COMPARE
THE n-th
AND n+1
STATE

EQUAL
YES

RETURN

Ivn

NO

RETURN

Figure 4-15



Outp Function
Routine

8 9

ENTER

LOAD
OUTPUT
TALL?,

PRINT CLK
COUNTER

INCREMENT
COUNTER

PRINT
RESULTS

RETURN

Figure 4-16



90

condition has been detected it informs the user what type

of hazard had arisen during the simulation.

There are ten types of logic gates which DLS has in

its gate library, each of these gates has its own routine.

Figure 4-15 is the general flowchart for a logic gate

module. The data which comes from T1 into the gate routine

is first converted into a different format for operation

in the routine. After the logic operation is performed

x-pass analysis is done, only if x-pass mode of operation

was chosen. X-pass only operates when three value simul-

ation is in operation.

The last flowchart (Figure 4-16) is the OUTPT routine.

After all updating is done for each time cycle the monitored

output variables will be printed. If the trace mode was

used then OUTPT would be called upon after every update

cycle.

4.8 The Executer Program Listing



91

FUNCTION 	 :EXEC
CALLS 	 tCRLF,OUTCH,CETDMITRACE,GETCH

:TITL,UPDAT,OUTPT
INPUTS 	 : T1S,T2S,INP, INST,TEST, PLACE
OUTPUTS 	 :DELAY,TEST,PLACE,WORK
DESCRIPTION 	 THE EXEC ROUTINE IS THE

:CONTROLLING SUB-MODULE OF THE
;EXECUTER, EXEC GETS THE
:INFORMATION ON THE MODES OF .
:OPERATION AND THE TEST INPUT DATA
:AND PRorucFs SIMULATED NETWORKS,

THE TWO IMPORTANT SUB-SUS-MODULES
:WHICH EXEC CALLS UPON 'UPDAT AND

uTP', THE LEIST MAKES ONE UPDATE
:PASS THROUGH THE NETWORK AND THE
:LATTER PRINTS OUT THE RESULTS.

EXEC:	 LXI	 H,CA2	 ;PRINT THE MESSAGE TO FIND THE
CALL 	 CRLF 	 ;NUMPER OF CLOCK UPDAPE CYLES
CALL 	 CRLF 	 ;PER UNIT OF TIME
PUSH
LHLD 	 TiS 	 ;LOAD THE ADDRESSES OF T1S AND
XCHG 	 ;TS?
LHLD 	 T2S
MVI 	 A,'0' 	 ;STORE TWO CONSTANTS :LOGIC '0'
STAX
NOV 	 M,A
INR 	 A 	 AND LOGIC '1' IN THE FIRST
INX 	 D 	 ;TWO LOCATIONS EN Ti AND TT
INX
STAX
MOV 	 M,A
POP

CAl: 	 MOV 	 AM 	 ;INIATE PRINTING
INX
CPI
JZ 	 GAS
CALL 	 DUTCH
JMP 	 CA1

CA2: 	 DB 	 1 # OF TIME UNITS PER PULSE--?'
CA'M 	 MVI 	 8,0
CA4: 	 CALL 	 GETDM 	 ;GET A DECIMAL NUMBER FROM

NOY 	 A,8 	 ;USER INDICATING THE 4 OF UNITS PER
STA 	 DELAY	 ;PULSE FOR DELAY ANALYSIS
MYI 	 8,0



92

LXI 	 HpCA6 	 ;LOAD NEXT MESSAGE
CALL 	 CRLF

CA5: 	 MOV 	 ApM
INX
CPI 	 ?,

J7 	 CA7
CALL 	 DUTCH 	 ;GET THE NUMBER OF TEST INPUTS
LIMP 	 CA5 	 ;FROM THE USER

CA6: 	 DB 	 itt OF TEST INPUTS=?'
CA7: 	 CALL 	 GETDM	 ;GET THE DECIMAL NUMBER

MOV 	 A,B
STA 	 TEST 	 ;SAVE FOR LATER USE
CALL 	 CRLF
CALL 	 TRACE 	 ;FIND OUT IF TAACF MODE IS WANTED
CALL 	 CRLF
CALL 	 CRLF
CALL 	 CRLF
LHLD 	 INP 	 ;ADDRESS OF INPUT TEST STRING
XCHC
LHLD 	 INST 	 ;A TEMPORY TABLE CONSISTS OF ALL

CAB: 	 MVI 	 Cp5 	 ;THE TEST INPUT PATTERNS
LOA 	 TEST 	 ;SIZE OF THE TABLE
MOV 	 B,A

CA9: LOAX
CPI 	 *' 	 ;FIND IF ALL THE TEST INPUT
JZ 	 CA11 	 ;DATA HAS BEEN INPUTED
CPI 	 0
JNZ 	 $4-5
MVI 	 A,2OH
CALL 	 DUTCH 	 ;PRINT THE TEST INPUT SYMBOL
INX
OCR
JNZ 	 CA9 	 ;SYMBOLS ARE ALL 5 CHARACTERS LONG
INX
INX
MVI 	 Apit' 	 ;FOLLOWED BY A PROMPT
CALL 	 DUTCH

CA10: CALL 	 GETCH 	 ;USER ENTERS TEST INPUT VALUES
NOV 	 M,A 	 ;SAVE IN INPUT STRING TABLE
INX
OCR	 B 	 ;KEEP TRACE ON COUNT
JNZ 	 CA10
CALL 	 CRLF 	 ;ALL DONE FOR THAT INPUT
JMP 	 CA8 	 ;MOVE ON TO NEXT INPUT

CAll: 	 CALL 	 TITL 	 ;PRINT THE TITLE OF MONOTORED SYMBOL
NV' 	 A,o
STA 	 PLACE 	 ;KEEP TRACK OF # OF UPDATES
STA 	 WORK-

CAl21 	 CALL 	 UPDAT 	 ;MAKE ONE UPDATE SEQUENCE PASS
CALL 	 OUTPT 	 ;PRINT ':-EsuLF:3
LOA 	 TEST 	 ;COMPUTE 	 OF TEST INPUT



93

mov 	 s'A
LDA 	 PLACE 	 ;POINT TO PLACE IN TABLE
CMP 	 3
JC 	 CAl2 	 ;NOT DONE DO ANOTHER UPDATE
CALL 	 CRLF
CALL 	 CRLF
CALL 	 CRLF
JMP 	 AAS 	 ;RETURN ALL DONE FOR NOW

;FUNCTION
;CALLS
;INPUTS
;OUTPUTS
;DESCRIPTION

:TITL
tCRLFtOUTCH
:INSTtOUTP
:NOTHING
THE TITL ROUTINE PRINTS ALL
:THE VARIABLE SYMBOLS WHICH
THE USER REQUESTED IN A PASLY
:READABLE FORMAT

TITL: 	 CALL 	 CRLF 	 ;CARRACE RETURN AND LINE FEED
CALL 	 CRLF
MVI 	 Bt5
MVI 	 At2OH 	 ;SPACE OVER AWAY FROM

CB': 	 CALL 	 DUTCH 	 ;THE EDCE OF THE PAPER
DOR
JNZ 	 C31
NVI 	 Dt5
LHLD 	 INST 	 ;THIS ADDRESS MARKS THE END OF THE
XCHG 	 ;OUTP TABLE
LHLD 	 OUTP 	 ;THIS TABLE HAS THE LIST OF ALL THE
DCX 	 D 	 ;SYMBOLS WHICH ARE TO DE PRINTED
PUSH

COD: 	 NOV 	 A,L 	 ;DETERMINE IF ALL THE
CMP 	 E 	 ;SYMBOLS HAVE BEEN PRINTED
JC 	 CB4
MOV 	 AtH 	 ;A TRICK IS DONE HERE WHE RE
CMP 	 D 	 ;ALL SYMBOLS ARE PRINTED VERTICALY
JC 	 CD4 	 THIS IS DONE BY PRINTING ALL THE
POP 	 H 	 FIRST CHARACTERS OF EACH SYMBOL
INX 	 H 	 ;THEN A CRLF AND PRINTING THE
PUSH 	 H 	 NEXT CHARACTER OF EACH SYMBOL

DCR 	 B 	 ;AND SO ON FOR THE REST



94

JZ 	 CB6
CALL 	 CRLF
MVI 	 C,5
MVI 	 At2OH

CBS': 	 CALL 	 DUTCH
OCR
JNZ 	 CBS

CB4: MOV 	 AIM
CB5: CALL 	 DUTCH 	 ;GET A CHARACTER FROM ONE OF THE

MVI 	 Al2OH 	 ;SYMBOLSIPRINT IT THEN INCERT
CALL 	 DUTCH 	 ;TWO SPACES BEFORE NEXT CHARACTER
CALL 	 DUTCH 	 ;IS PRINTED
PUSH
LXI 	 Dp7 	 ;EACH SYMBOL IS 7 LOCATIONS
DAD 	 B 	 ;AWAY FROM EACH OTHER
POP
JMP 	 CB2 	 ;KEEP THIS PROCES GOING

CB6: 	 POP
CALL 	 CRLF 	 ;WHEN ALL SYMBOLS HAVE BEEN PRINTED
MVI 	 9,60 	 ;PRINT OUT A SOLID LINE WHICH
MVI 	 A''-' 	 ;SEPERATES SYMBOLS FROM UPCOMING DATA

CB7: 	 CALL 	 DUTCH
DCR

JNZ 	 CB7
CALL 	 CRLF
RET

;FUNCTION
;CALLS
;INPUTS
;OUTPUTS
;DESCRIPTION

:OUTPT
:PRBYTOUTCH$OSSL
:OUTPiERROR,WORK
:WORK
tOUTPT ROUTINE PRINTS THE
:SIMULATION TABLE TIAMONOTORED
:POINTS ONLY) AFTER EACH UPDATE
:ALONG WITH THE CLOCK CYCLE COUNT

OUTPT: LHLD 	 (JUTE 	 ;LOAD TABLE
LDA 	 ERROR 	 ;TEST FOR FUSIBLE ERRORS
CPI
JZ 	 TIME
LXI 	 Bt5



95

LDA 	 WORK*2 ;UPDATE COUNTER
PUSH 	 FSW
CALL 	 PRBYT 	 ;PRINT CLOCK UPDATE COUNTER
POP 	 FSW
ADI 	 1 	 ;INCREMENT COUNTER
DAA
STA 	 WORK+2
MVI
CALL 	 DUTCH
MVI 	 At2OH
CALL 	 DUTCH
CALL 	 DUTCH

CCI: 	 MOV 	 A,M 	 ;SEARCH THROUGH OUTP TABLE FOR
CPI	 '*' 	 ;FND MARKFR
JNZ 	 CC2

LDA 	 ERROR 	 ;ERROR TEST
CPI	 '0'
JNZ 	 $A-6
CALL 	 OSSL
CALL 	 CRLF
RET

CC2: 	 DAD 	 B 	 ;PASS OVER SYMBOL
MOV 	 E,M 	 ;TO THE ADDRESS PORTION
INX
NOV 	 n,m 	 ;POINTER TO LOACTION IN T1
INX
LDAX
CALL	 DUTCH 	 ;PRINT LOGIC VALUE
MVI 	 A,20H
CALL 	 DUTCH
CALL 	 DUTCH
JMP 	 CC1

FUNCTION 	 :UPDAT
CALLS 	 :N2,N4,A2,A4,02,04,R2,R4

:E2,E4,TRAC
INPUTS 	 :INPtINST,PLACEtTEST,T2StT1E

:T1SfSYMTSTRON,COUNT,DELAY
OUTPUTS 	 :ERRORtPLACE,COUNT
DESCRIPTION 	 :UPDAT ROUTINE HAS THE TASK OF

:TAKING ALL THE DATA IN T1,RUNNING
:THROUGH THE UPDATE SEQUENCE AND
:STORING THE RESULTS IN T2,THERF
ARE TEN LOGIC GATE ROUTINES WHICH
ARE CALLED WHICH ARE USED TO DO
THE UPOATINC, IF THE TRACE MODE



96

WAS SELECTED THEN THE RESULTS ARE
PRINTED AFTER EACH UPDATE,

UPDAT 	 MV1 	 A,O
STA 	 ERROR 	 ;CLEAR ERROR FLAG
LHLD 	 INP 	 ;LOAD INPUT SYMBOL STRING
PUSH
LHLD 	 INST 	 ;LOAD INPUT DATA STRING
LDA 	 PLACE 	 ;FIND WHAT PLACE WE ARE UP TO
MOV 	 CtA
MVI 	 8t0
DAD 	 B 	 ;GET THE PROPER INPUTS
INR 	 A
STA 	 PLACE 	 ;ADD ONE TO PLACE
XCHG 	 ;FOR NEXT UPDATE PASS
POP

CDI: 	 LDAX 	 B 	 ;TEST TO SEE IF THE
CPI 	 '*' 	 ;END OF THE INPUT STRING
JZ 	 CD2 	 ;WAS ENCOUNTERED
LXI 	 Ht5
DAD
PUSH 	 H
POP 	 8
LDAX
NOV 	 L,A 	 ;MOVE THE DATA FROM THE INPUT
INX	 B 	 STRING TABLE INTO THE TI
LDAX 	 8 	 ;SIMULATION TABLE.ONCE THIS
NOV 	 HtA 	 ;IS DONE THEN AN UPDATE IS READY
INX 	 B 	 ;TO DE PERFORMED ON THIS TEST
LDAX 	 D 	 ;PATTERN
MOV 	 M,A
XCHG
MVI 	 ntu
LDA 	 TEST
NOV 	 E,A
DAD
XCHG
JMP 	 CD1

CD2: 	 LHLD 	 T2S 	 ;UPDATE IS COMPLETE
PUSH 	 H 	 A TEST IS MADE BETWEEN TI AND
POP 	 B 	 ;T2 TO SEE IF THEY CONTAIN THE
LHLD 	 TIE 	 ;SAME DATA. IF IT DOES NO MORE
XCHO 	 ;UPDATES ARE Nf-FDED FOR THIS TINE
LI-M5 	 TIS 	 ; FRAME . IF THERE IS A DIFFERENCE

CD3 	 MOV 	 AtH 	 ;THEN A STABLE STATE HAS NOT BEEN
CMP 	 D 	 ;REACHED, ANOTHER UPDATE IS NEEDED.



97

JN7 	 CD4
MOV 	 AIL

CMP
J7 	 CDS

CD4:MOV 	 AiM 	 ;T1 T2 COMPARISON TEST
STAX
INX
INX
LIMP 	 CD3

CD5: MVI 	 AfrO
STA 	 COUNT 	 ;UPDATE COUNTER

C.06 	 LHLD 	 SIMTS 	 ;START UPDATE SEPUENCE
CALL 	 N2
CALL 	 N4
CALL 	 A2
CALL 	 A4
(-ALL 	 02
CALL 	 04
CALL 	 R2
CALL 	 R4
CALL 	 E2
CALL 	 E4
LOA 	 TRON 	 ;TEST TO SEE IF TRACE MODE IS ON
CPI
CZ 	 TRAC
LDA 	 COUNT 	 ;UPDATE COUNTER
INR 	 A

CD13

STA 	 COUNT
MOV 	 BiA

LOA 	 DELAY 	 ;TEST AGAINST USERS SET DELAY
INR 	 A
CMP
JNZ 	 507
MVI 	 A''T' 	 ;STORE TIMING ERRCR
STA 	 ERROR

CD7: 	 LHLD 	 T1S 	 ;LOAD SIMULATION TABLES
PUSH
POP
LHLD 	 T2E
XCHG
LHLD 	 T2S

CD8t 	 MOV 	 AIH 	 ;TEST TO SEE IF A COMPLETE SEARCH
CMP 	 D 	 ;THROUGH THE TWO TABLES HAS
JNZ 	 CD9 	 ;5E-EN MADE
MOV 	 A,L
CMP
RZ

009; 	 LDAX 	 B 	 ;MAKE T1 T2 COMPARISON TEST
CMP
JNZ 	 CD10



98

INX
INX
JMP CDB

COLO: 	 LHLD 	 T1S
PUSH
POP
LHLD T2E
XCHG
LHLD 	 T2S

CD11 	 MOV 	 A,H
CMP
JNZ 	 CD112
MOV 	 A,L
CMP
JZ 	 CD6

CD12 	 MOV 	 A,M 	 ;MOVE T1 INTO T2
STAX 	 B 	 ;TO START SIMULATION
INX
INX
JMP 	 CD111

CO13 : 	 MVI 	 A,'O' 	 ;OSCILLATION ERROR
STA 	 ERROR
LHLD 	 T2S 	 ;SEARCH THROUGH THE TWO TABLES

PUSH	 H 	 TO FIND WHERE THEY DIFFER
POP
LHLD 	 TIE

XCHG

LHLD 	 TIC
CD14; 	 MOV 	 A,L

CMP
JNZ 	 CD15
MOV 	 A,H
CMP
RZ

CD15: LDAX
CMP
JZ 	 CD16
MVI 	 M,'X' 	 ;PUT LOGIC 'X' IN LOCATIONS WHICH

CD16: INX 	 B 	 ;DIFFER
INX
JMP 	 CD14

; FUNCTION 	 : N2
;CALLS 	 :CONV, RCONV, CHANG

;INPUTS 	 ; NA2
;OUTPUTS 	 :NOTHING



99

DESCRIPTION 	 :N2 IS THE TWO INPUT NAND
GATE SIMULATION ROUTINE.

N2: 	 LDA 	 NA2 	 ;# OF 2 INPUT NAND GATES
ORA 	 A 	 IF ZERO MOVE TO NEXT GATE TYPE
R7
MOV 	 C,A

CElt 	 CALL 	 CONV 	 ;CET THE FIRST INPUT VALUE
MOV 	 B.A
CALL 	 CONY 	 ;GET THE NEXT INPUT VALUE
ANA 	 B 	 ; LOGICAL AND
CMA 	 ;COMPLEMENT RESULTS
ANI 	 03H 	 ;STRIP OFF UNIMPORTANT INFORMATION

1
JNZ
MVI
CALL RCONV
CALL 	 CHANG 	 ;STORE RESULTS AWAY

DCR
JNZ 	 CE1 	 ;SEE IF ALL THESE GATES ARE DONE
RFT

FUNCTION 	 tN4
CALLS 	 CHANG
INPUTS 	 tNA4
OUTPUTS 	 tNOTHING
DESCRIPTION 	 tN4 IS THE ROUTINE WHICH

;SIMULATES A FOUR INPUT
;NAND GATE

W: 	 LDA 	 NA4 	 ;# OF 4 INPUT NAND GATES
CPA 	 A
RZ
NOV 	 C.A 	 SAVE COUNT

CFI:	 CALL	 CONY 	 ;FIRST INPUT
MOV 	 9,A



100

CALL 	 CONV 	 ;SEFOND INPUT
ANA 	 B 	 ;LOGICAL AND
MOV 	 BtA
CALL 	 CONV 	 ;THIRD INPUT
ANA 	 B 	 ;LOGICAL AND
MOV 	 B, A
CALL 	 CONV 	 ;FOURTH INPUT
ANA 	 B 	 ;LOGICAL AND
CMA 	 ;COMPLEMENT THE ANSWER
ANI 	 03H
CPI 	 1
LINZ
MVI 	 At?
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE ANSWER AWAY
OCR
JNZ 	 CF1 	 ;DECREMENT GATE COUNT
RET

FUNCTION 	 :A2
CALLS 	 :CONVtRCONV,CHANG
INPUTS 	 :AN2
OUTPUTS 	 :NOTHING
DESCRIPTION 	 :A2 IS THE ROUTINE WHICH

:SIMULATES A TWO INPUT
AND GATE

A2: 	 LDA 	 AN2 	 ;tt OF 2 INPUT AND GATES
ORA 	 A
RZ
MOV 	 CtA 	 ;SAVE COUNT

CG1: 	 CALL 	 CONY 	 ;FIRST INPUT
MOV 	 BtA

CALL 	 CONY 	 ;SECOND INPUT
ANA 	 B 	 ;LOGICAL AND
ANI 	 03H
CPI 	 1
JNZ
MVI 	 A,2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWER



101

DCR

JN2 	 CC1 	 ;DECREMENT GATE COUNT
RET

;FUNCTION 	 :A4
;CALLS 	 :CONV,RCONV,CHANG
;INPUTS 	 :AN4
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :A4 IS THE ROUTINE WHICH

:SIMULATES A FOUR INPUT
AND SATE

A4: 	 LDA 	 AN4 	 ;# OF 4 INPUT AND GATES
ORA 	 A
RZ
MOV 	 CA 	 ;SAVE COUNT

CHI: 	 CALL 	 CONV 	 ;FIRST INPUT
MOV 	 B,A
CALL 	 CONV 	 ;SECOND INPUT
ANA 	 B 	 ;LOGICAL AND
MOV 	 B, A
CALL 	 CONY 	 ;THIRD INPUT
ANA 	 B 	 ;LOGICAL AND
MOV 	 BtA
CALL 	 CONV 	 ;FOURTH INPUT
ANA 	 B 	 LOGICAL AND
ANI 	 03H
CPI 	 1

JNZ 	 $1-5
MVI
CALL 	 RCONY 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWER

DCR

JNZ 	 CHI 	 ;DECREMENT GATE COUNT
RFT 	 •



102

FUNCTION 	 :02
CALLS 	 :CONVtRCONV,CHANG
INPUTS 	 :OR2
OUTPUTS 	 :NOTHING
DESCRIPTION 	 :02 IS THE ROUTINE WHICH

:SIMULATES A TWO INPUT
:OR GATE

02: 	 LDA 	 OR2 	 ;# OF 2 INPUT OR CATS
ORA 	 A
R7
MOV 	 CtA 	 ;SAVE GATE COUNT

Gil: 	 CALL 	 CONV 	 ;FIRST INPUT
MOV 	 BtA
CALL 	 CONV 	 ;SECOND INPUT
ORA 	 B 	 ;LOGICAL OR
ANI 	 03H
CPI
JNIZ 	 $A-5
MVI 	 At2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;SAVE THE ANSWER

DCR
LINZ 	 CI1 	 ;DECREMENT GATE COUNT
RT-T

;FUNCTION 	 :04
;CALLS 	 tCnNV,RCONVICHANG
;INPUTS 	 ; OR4
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :04 IS THE ROUTINE WHICH

:SIMULATES A FOUR INPUT
:OR GATE

04: 	 LnA 	 OR4 	 ;It OF 4 INPUT OR GATE5
ORA 	 A



103

RZ
MEW 	 CkA 	 ;SAVE GATE COUNT

2J1: 	 CALL 	 CONY 	 ;FIRST INPUT
MOV 	 B, A
CALL 	 CONV 	 ;SECOND INPUT
ORA 	 B 	 ;LOGICAL OR
NOV 	 B, A
CALL 	 CONV 	 ;THIRD INPUT
ORA 	 B 	 ;LOGICAL OR
MOV 	 BkA
CALL 	 CONY 	 ;FOURTH INPUT
ORA 	 B 	 ;LOGICAL OR
ANI 	 03H
CPI 	 1
JNZ 	 $+5
MVI 	 Ak2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWER
OCR
JNZ 	 CJ1 	 ;DECEMENT GATE COUNT
RET

FUNCTION 	 :R2
CALLS 	 :CONV,RCONVkCHANG
INPUTS 	 NO2t
OUTPUTS 	 :NOTHING
DESCRIPTION 	 :R2 IS THE ROUTINE WHIC

:SIMULATES A TWO INPUT
: NOR GATE

R2: 	 LOA 	 NO2 	 ;# OF 2 INPUT NOR GATES
ORA 	 A
RZ

. 	 MOV 	 CkA 	 ;SAVE GATE COUNI
CK1 : 	 CALL 	 CONV 	 ;1:IRST INPUT

MOV 	 B, A
CALL 	 CONV 	 ;SECOND INPUT
ORA 	 B 	 ;LOGICAL OR

CNA : ' A 	 ;COMPLEMENT ANSWR



104

JN2 	 $4-5
MVI 	 At2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWER
DCR
LIN7 	 CK1 	 ;DECREMENT GATE COUNT
RET

;FUNCTION 	 :R4
;CALLS 	 :CONV,RCONVtCHANS
;INPUTS 	 :NO4
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :R4 IS THE ROUTINE WHICH

:SIMULATE A FOUR INPUT
:NOR GATE

R4: 	 LDA 	 NO4 	 ;# OF 4 INPUT NOR GATES
ORA 	 A
RZ
MOV 	 CtA 	 ;SAVE GATE COUNT

CLi: 	 CALL 	 CONV 	 ;FIRST INPUT
MOV 	 BtA
CALL 	 CONV 	 ;SECOND INPUT
ORA 	 B 	 ;LOGICAL OR
MOV 	 B, A
CALL 	 CONY 	 ;THIRD INPUT
ORA 	 B 	 ;LOGICAL OR
MOV 	 BtA
CALL 	 CONV 	 ;FOURTH INPUT
ORA 	 3 	 ;LOGICAL OR
CMA 	 ;COMPLEMENT ANSWER
ANI 	 03H
CPI
JNZ 	 $A-5
MVI 	 At2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWER

DCR

CL1 	 ;DECREMENT GATE COUNT



105

;FUNCTION
; CALLS 	 CONV, RCONV, CHANG
;INPUTS 	 :EX?
;OUTPUTS 	 :NOTHING
;DESCRIPTION 	 :E2 IS THE ROUTINE WHICH

:SIMULATES A TWO INPUT
:EXOR GATE

E2: 	 LDA 	 EX2 	 OF 2 INPUT EXOR GATES
ORA 	 A
RZ
MOV 	 C,A 	 ;SAVE GATE COUNT

CM1 :	 CALL 	 CONV 	 ;FIRST INPUT
MOV 	 B,A
CALL 	 CONV 	 ;SECOND INPUT
XRA 	 B 	 ;LOGICAL EXOR
ANI 	 03H
CPI
JINZ 	 $+5
MVI 	 A,2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWER
OCR
JNZ 	 CM1 	 ;DECREMENT THE GATE COUNT
RET

FUNCTION 	 :E4
CALLS 	 :CONViRCONV,CHANG
INPUTS 	 :EX4
OUTPUTS 	 :NOTHING
DESCRIPTION 	 :EX4 IS THE ROUTINE WHICH

:SIMULATES A FOUR INPUT
:EXOR GATE



106

r4t 	 LDA 	 EX4 	 ;a- OF 4 INPUT EXOR GATES
ORA 	 A
R7
NOV 	 C,A 	 ;SAVE GATE COUNT

CN1t 	 CALL 	 CONY 	 ;FIRST INPUT
NOV 	 B, A
CALL 	 CONY 	 ;SECOND INPUT
XRA 	 B 	 ;LOGICAL EXOR
NOV 	 B, A
CALL 	 CONY 	 ;THIRD INPUT
XRA 	 B 	 ;LOGICAL EXOR
MOV 	 B,A
CALL 	 CONV 	 ;FOURTH INPUT
XRA 	 B 	 ;LOGICAL EXOR
ANI 	 03H
CPI
jNZ 	 $4.5
NVI 	 A,2
CALL 	 RCONV 	 ;CONVERT TO PROPER FORMAT
CALL 	 CHANG 	 ;STORE AWAY THE ANSWRE
OCR
JNZ 	 CN1 	 ;DECREMENT GATE COUNT
RET

FUNCTION 	 :CONV
CALLS 	 :NOTHING
INPUTS 	 ;NOTHING
OUTPUTS 	 :NOTHING
DESCRIPTION 	 ;CONY TALES A DIGITAL LOGIC

;CONSTANT AND CONVERT'S IT TO ONE
:WHICH DLS CAN OPERATE ON.FIRST
THE ADDRESS FROM THE UPDATE
;SEQUENCE TABLE IS GOTTEN. THIS
:POINTS TO TABLE T1 WHICH HAS
THE LOGIC VALUE FOR THE GIVEN
;ADDRESS,
;LOGIC '1' --> 01H
:LOGIC '0' --> 00H
;LOGIC 'X' --> 10H



107

CONV: 	 MOV 	 E,M 	 ;THE UPDATE SEOUENCF TABLE
INX 	 H 	 ;ADDRESS, POINTING TO T1

MOV 	 D, M
INX

. LDAX 	 D 	 ;DATA FROM T1.
ANI 	 OFH 	 ;STRIP OFF THE 4 MSS'S'
RZ
CPI
JNZ 	 DA1 	 ;CONVERT TO NEW FORMAT
ORT
RET 	 ;RETURN WITH NEW FORMATED

nAit 	 MVI 	 A:2 	 ;DATA IN ACC
RT-T

FUNCTION 	 :RCONV
CALLS 	 :NOTHING
INPUTS 	 ;NOTHING
OUTPUTS 	 ;NOTHING
DESCRIPTION 	 ;RCONV ROUTINE TAKES DATA PHICH

THE PROGRAM HAS OPEPATED UPON
:AND CONVERTS IT BACK TO THE
:PROPER FORMAT TO BE STORE AWAY

	

RCONV: CPI 	 0 	 ;IF IT MATCHES THEN CONVERT

	

JNZ 	 3+6

	

MVI 	 A:10' 	 ;IT TO LOGIC '0'
RET

	

CPI 	 3

	

JN7 	 3+6 	 ;DEFALT CONVERT IT TO LOGEC '11.

	

MVI 	 At'11
RET

	

MVI 	 Ai'Xi	 ;CONVERT IT TO LOGIC 'X'
RET



108

FUNCTIONCALLS

INPUTS
OUTPUTS
DESCRIPTION

:CHANG
:CONV,RGONV
:XPAS
:NOTHINC
:THE CHANG' ROUTINE INTRODUCES
THE PROPAGATION DELAY INTO
THE SIMULATED NETWORTHIS IS
:DONE BY TESTING AN OUTPUT TO
:MAKE SURE fT HAS BEEN IN THE
:TRANSITION STACE FOR ONE
:UPDATE CYCLE

CHANG: MOV 	 B, A
CALL 	 CONV 	 ;THE DELAY PROCESS IS DONE BY
CALL 	 RCONV 	 ;TESTING TO SEE IF ANY CHANGE
CMP 	 B 	 ;OCCURED EiFTWEEN THE N 	 N+1 STATE
RZ
CPI 	 'v'A

DCX
DCX
JNZ DB2 ;GET OUTPUT READY TO CHANGE
MOV 	 AiR

DRI: 	 NOV 	 E, M 	 ;GET LOCATION IN T2 TABLE
INX
MOV 	 D'M
INX
STAX 	 D 	 ; STORE NEW OUTPUT IN T2
RET

OB2: 	 LOA 	 XPAS 	 ;TEST TO SEE IF USER
CPI 	 iyi 	 ;HAD ISSUED THE X-PASS COMMAND
JNZ 	 DB1-1
MVI 	 A, 'X' 	 ;X-PASS
„IMP 	 DB1

;FUNCTION
;CALLS
;INPUTS
;OUTPUTS
;DFSCRIPTInN

:TRACE
:OUTCH,CETCH,CRLF
:NOTHING
:TON,XPAS
:TRACE FINDS OUT FROM THE USER IF
THEY WANT TO OERATE IN THE TRACE
:MODE AND IF THEY WANT TO OPERATE



109

WITH 7!--4, 	 X-PASS MODP-

TRACE: LXI 	 H,DC2
DCit 	 MOV 	 A,M 	 ;PRINT OUT THE FIRST MESSAGE

CPI
JZ 	 DC3
INX 	 H
CALL 	 DUTCH 	 ;DOES USER WANT TRACE monE
JMP 	 DC1

DC2 : 	 FIB 	 OAH,011H,'TRACF=?'
3: CALL 	 GETCH 	 ;GET RESPCNCE TO THE QUESTION 

STA 	 TRON 	 ;STOR7 THE RESPONCE
CALL 	 CRLF
LXI

4: MOV 	 A, M
CPI
JZ DC6
INX
CALL 	 DUTCH 	 ;PRINT SECOND MESSAGE
JMP 	 DC4 	 ;DOES USER WANT X--PASS

DC5: 	 DO 	 'X-PASS=7'
DCO: 	 CALL 	 CETCH 	 ;CET ANSWER TO QUESTION

STA 	 XPAS 	 ;SAVE ANSWER
CALL 	 CRLF
CALL 	 CRLF
CALL 	 CRLF
CALL 	 CRLF
CALL 	 CRLF
RET

FUNCTION 	 :TRAC
CALLS 	 :OUTPT
INPUTS 	 :WORK
OUTPUTS 	 :WORR:
DESCRIPTION 	 :TRAC IS THE ROUTINE WHICH

WHEN THE USER REQUESTS A
:TACE, A PRINTOUT OF EACH
:UPDATE CYCLE IS MADE,



110

TRAC: 	 CALL 	 OUTPT 	 ;PRINT MONITORED LOGIC POINTS
LDA 	 WORK+2
AnI 	 99H 	 ;DECREMENT BCD COUNTER
DAA

" STA 	 WORK+2 ;WHICH IS IN THIS LOCATION
R7T

;FUNCTION
;CALLS
;INPUTS
;OUTPUTS
;DESCRIPTION

:TIME
:DUTCH
:BEGIN
:NOTHING
:-CINE IS THE ERROR ROUTINE
:WHILH IS CALLED WHEN THE
:SIMULATED NETWORK HAS NOT
:REACHED A STABLE STATE IN
:T;4E ALLOTEn TIME

TIME: 	 LXI 	 WEB1 	 ;PRINT ERROR MESSAGE
MOV 	 AiM 	 ;STOP THE SIMULATION DEAD
CPI 	 ;AND INFORM USER OF TIME PROBLEM
JZ 	 EB2
CALL 	 DUTCH
INX
JMP 	 TIME+3

FBI: 	 nR 	 'THE CIRCUIT HAS NOT REACHED A STABLE STATE?'
EB2: 	 LXI 	 SPBECIN 	 ;RESTART SIMULATOR

LIMP 	 AA3

;FUNCTION 	 :OSSL
;CALLS 	 :DUTCH
;INPUTS 	 :NOTHING
;OUT,IUTS 	 :NOTHING
;DESCIPTION 	 :OSSL IS THE ROUTINE WHICH



111

:INFORMS THE USER THAT THE
:SIMULATED NETWORF( IS IN A
:11:1-,CILATION STATE,AFTER THE
tMES::',ASE IS PRINTED THE ROUTINE

INCEST LOC:IC 'X' IN ALL
:T1 AND T2 POSITIONS WHTCH
:ARE CAUSING THE PROBLEM,

05SL: 	 LXT 	 H,ECi 	 ;PRINT ERROR MESSACE
MOV 	 A,M
CPI
RZ 	 ;RETURN TO NORMAL OPERATION
CALL 	 DUTCH
INX
JMP 	 OSSL+3

ECI: 	 DB 	 'THE CIRCUIT IS OSSILATINC?"



4.9 General Purpose Routines and Memory Allocation

;*3:-***k******;(-*******************************	FUNCTION

;CALLS	 :CICO
;INPUTS
;OUTPUTS
DESCRIPTION

:NOTHING
:NOTHING
:GETCH IS THE CET CHARACTER
:FROM THE TERMINAL ROUTINE.
:DUTCH IS THE RI)UTINE WHICH
:PRINTS THE CHARACTER THAT IS
IN THE ACC THIS ROUTINE IS THE

:ONLY ONE WHICH MUST BE CHANGED
FOR CUSTOMIZING THE I/O.

:*************K-***********************;:***************

GETCH: CALL 	 CI 	 ;CPM GET CHARACTER ROUTINE

DUTCH: PUSH
MOV 	 C,A
CALL 	 CO 	 ;CPM PRINT CHARACTER ROUTINE
POP
RET	 ;ALL DONE

'FUNCTION 	 :CRLF
:CALLS 	 :OUTCH
INPUTS 	 :NOTHING
'OUTPUTS 	 :NOTHING
DESCRIPTION 	 :CRLF ROUTINE PRINTS A

:CARRAGE RETURN FOLLOWED
:DY A LINE FEED

CRLF: 	 MVI 	 AiODH 	 ;CARACE RETURN
CALL 	 DUTCH 	 ;PRINT IT
MVI 	 A,OAH 	 ;LINE FEED
CALL 	 DUTCH 	 ;F...‹[NT IT
PET

112



113

Fl!NL,TTnN
CALLS 	 :NOTHING
INPUTS; 	 tEXT
OUTPUTS 	 :CARRY FLAG
DF5:',ORTPTIF)N 	 :FNnP ROUT INE srAms THROUGH

;THE SOURCE FOCPAM TO FIND
tTE 	 CHARACER

FNDP: 	 PUSH
XCHC
LHLD 	 NEXT 	 ;GET ADDRESS OF LAST
XCHG 	 ;SOURCE PROflRAN BYTE

ZAt: 	 MOV 	 AL, 	 ;TEST TO SEE IF WE
GNP 	 E	 ;AT THE LAST BYTE
JN7 	 ZA2
NOV 	 A1H
CMP 	 D 	 ;IF NO '.' FOUND THEN
JNZ 	 ZA2 	 ;CLEAR THE 	 FLAr.;

STC
CMG
POP
RET

ZA2: 	 MOV 	 A,M 	 ;GET A SOURCE DYTE
INX
CPI 	 1,' 	 ;COMPARE IT TO THIS
jN.7_ 	 ZA1 	 ;NOT FOUND KEEP LOOKING
STC 	 ;FOUND SET CARRY

POP
RFT

FUNCTION 	 :ENDS
CALL?, 	 :NOTHING
OUTPUTS 	 :NOUTING
OUTPUTS 	 :NOTHING

DESCRIPTION IPTION 	 FNDS IS THE ROUT IP,JE WHICH I CH
FINDSA / IN THF. SOURCE

:PHLW7,Avl



114

;:,.:*'-;.4,:******-******;.=*******************3:*********,-;

ENDS; 	 MOV 	 A, M 	 ;GET A CHARACTER
INX

CPI 	 ;SEE IF WE HAVE OVER SHOT THE MARK
RZ
CPI 	 /' 	 ;IS IT A MATCH

tiMP 	 ENDS 	 ;NO TRY AGAIN

;FUNnTION
;CALLS
;INPUTS
;OUTPNT!--3
;DESCRIPTION

:ENDCH
:NOTHING
:NOTHING
:NOTHING
:FNDCH IS THE ROUTINE WHICH
:FINDS A CHARACTER WHICH LIES
:BETWEEN 'A' AND 'Z'.

ENDCH: MOV 	 A,M 	 ;GET A CHARACTER
CPI 	 'A' 	 ;SEE IF IT IS BETWEEN 'A'
JP 	 ZB1
INX
JMP 	 FNDCH

7k1 	 CPI 	 'Z'
RM

INX
JMP 	 FNDCH

;FUNCTION 	 :FDYT
; CALLS 	 DUTCH
;INPUT'S 	 :NUTHING



115

DESCRIPTION 	 tTHER-PRBYT ROUTINE TAKES
THE CONTENTS OF ACC AND
:PRINTS IT AS TWO HEX
:DIGIT

PRBYT: PUSH 	 PSW
RAP 	 ;MOVE THE FOUR MSB/S TO
RAP 	 THE LSB POSITIONS
RAP
RAP
ANI 	 OFH 	 ;STRIP OFF THE TOP
ORI 	 30H 	 ;CONVERT TO PROPER FORMAT
CPI 	 3AH
LTC 	 $4-5
Ani 	 7
CALL 	 DUTCH 	 ;PINT FIRST DIGIT
POP 	 PSW 	 ;BRING BYTE BACK
ANI 	 OFH 	 ;TAKE THE TOP OPE
DPI 	 3OH 	 ;CONVERT IT
CPI 	 3AH
JC
ADI 	 7
CALL 	 OUTCH 	 ;PRINT IT
RET

;******************A-***********************k****
;FUNCTION 	 :GETDM
;CALLS 	 :GETCH
;INPUTS 	 :NOTHING
;OUTPUTS 	 ;NOTHING
;DESCRIPTION 	 :GETDM ROUTINE GETS A

:DECMIAL NUMBER (0-25)
FROM THE USER, ALL., NUMBERS
;COME IN ASCII MUST SE
:CONVERTED TO HEX.

;****:,:******k**kk********i‹.k**************:****x-**kk*****k

GETOM: CALL 	 CFTCH 	 ;GHT A CHARACTER



116

CPI 	 , 	 ;IT MUST BE BETWEEN
RN 	 ;0 AND 9
CPI 	 '914-1
RP
PUSH 	 PSW 	 ;SAVE IT
NOV 	 A,B 	 ;<-- CURRENT COUNT
ORA 	 A 	 ;CLEAR CARRY
RAL 	 ;DOUBLE IT. 10.(2*2*2*N+2*N)+(N+1)
NOV 	 B,A
ORA 	 A

ORA 	 A
PAL
ADD 	 B 	 ;FINAL RESULTS
MOV 	 B,A
POP 	 PSW 	 ;GET NUMBER
ANI 	 OFH
ADD 	 B 	 ;ADD THE NEXT DIGIT
MOV 	 B,A
JMP

;

;MEMORY ALLOCATION

START; DS 	 2 ;BEGINNING OF SOURCE PROGRAM
NEXT: 	 DS 	 2 ;END OF SOURCE PROGRAM
WORK.; 	 DS 	 4 ;TEMPORY WORK REGISTERS
LENTH: DS 	 1 ;LENGTH OF A SOURCE LINE
DELAY; OS 	 1 ;CYCLE DELAY COUNT
TEST: 	 DS 	 1 ;NUMBER OF UPDATE COUNTS
COUNT; DS 	 1 ;TOTAL NUMBER OF SYMBOLS
PLACE: DS 	 1 ;TEMPORY UPDATE COUNT
ERROR: Ds 	 1 ;TYPE OF ERROR
NUMB; 	 DS 	 2 ;NUMBER OF LOGIC GATES
TRON : 	 DS 	 1 ;TRACE CONTROL CHARACTER
XPAS 	 DS 	 1 ;X—PASS CONTROL CHARACTER
SYMBS; DS 	 2 ;START OF SYMBOL TABLE
SYMBE: DS 	 2 ;END OF SYMBOL TABLE
T1S: 	 DS 	 2 ;START GE T1 TABLE

TiE: 	 DS 	 2 ;END OF T1 TABLE.



117

T2S: 	 Ds 	 2 ;START OF TT) TABLE
T2Et 	 DS 	 2 ;END OF T2 TAqi_r

	

SINTS: DS 	 2 ;START OF UPDATE SEQUENCE TABLE

	

sTNTFt DS 	 2 ;END OF uPDATT: SE'JUENCE TADLE
INF.: 	 ns 	 2 ;START OF INP TABLE
Oi IF: 	 nS 	 2 ;START OF OUTF TABLE
INST: 	 DS 	 2 ;START OF TEST DATA STRING
1.12: 	 DS 	 1 ;:c OF 2 INPUT NAND GATES
NA4: 	 DS 	 1 ;# OF 4 INPUT NAND GATES
AN2: 	 DS 	 1 :: OF 2 INPUT AND GATES
AN4 	 DS 	 1 ;t1 OF 4 INPUT AND GATES
OR2: 	 DC 	 1 ;# OF 2 INPUT OR GATES
OR4: 	 Dc 	 1 ;4 OF 4 INPUT OR GATES

	

DS 	 1 ;# OF 2 INPUT NOR DATES
NO4: 	 DS 	 1 i' OF 4 INPUT NOR CArIES
r... .. ,_ . 	 DS 	 1 	 ;# OF 2 INPUT EXOP. GATES
EX4: 	 DC 	 1 ;# OF 4 INPUT EXOR GATES

	

11-FR: DS 	 64 ;INPUT DATA DUFFER
DATA: 	 DS 	 1 ;START OF SOURCE FRO*_,RAN

END



A
OUTPTGATE

CHAPTER 5

USING THE DIGITAL LOGIC SIMULATOR

5.1 Design Examples 

In order for the user to get a better grasp of how

DLS operates a few design examples are given. On the

computer printouts that which is underlined is what the

user has typed. The comments along the right side were

added later to emphasize certain points.

The first design example has its printout previously

shown in Figure 2-2. Now what will be done is to show

how all that came about. Figure 5-1 is the circuit to

be simulated.

DATA

RESET
0

Figure 5-1

118



119

Once the simulator starts to run the title will be

printed followed by a question. The simulator wants to

know if it should clear the tables in the memory. This

is for protecting against destroying old files in memory.

DIGITAL LOGIC SIMULATOR

CLEAR MEMORY ? YES

:1000 .INPUT. DATAIGATEIRESET 
2000 :AND/2. DATA,GATE,A 
:3000 .AND/2. RESET,OUTPT,0 

:4000 .0R/2. 	 A,O,OUTPT 
:5000 .PRINT. DATA GATE RESET A OUTPT

:6000 .END,

:COMP

.INPUT. DATA,GATE,RESET

.AND/2.. DATA,GATE,A

• AND/2. RESET,OUTPT,0

.0R/2. 	 A,O,OUTPT

.PRINT. DATA,GATE,RESET,A,OUTPT

.END.

AND/2 =N
OR/2 =01

:FANOUT 

DATA :01

GATE :01

RESET :01

A :01

The user types in

topigraphical dis-

cription of the

network.

Once the discription

is done the compile

command is issued.

The compiler will

print the discri-

ption along with

the logic gate

count.

The user requests

fanout analysis.



DATA :XX1111p 

GATE :410001 

RESET :X011#11 

The input test

patterns.

unit delay

GATE
A

OUTPT:01

0 	 :01

120

:EXEC

# OF TIME UNITS PER PULSE = 10

# OF TEST INPUTS = 7

TRACE = NO

X-PASS = YES

The execution

command is given.

The executer will

request some sim-

ulation parameters.

0
DGE
AA S
TTE
AETAT DLS simulation

ØØ:
	

printout.
XXXXX

01: X 0 0 0 0 	 There exists a
02:11111 	 possible hazard
03:10101
4: 1 0 0 0 0 	 when DATA and GATE
5: 1 /0 1 0 0
06: 0 1 1 0 X 	 THE CIRCUIT IS OSCILLATING

change at the

same time.

DATA
By putting a delay

in the GATE line

the two logic levels

no longer change

simultaniously.

Figure 5-2



121

:200Ø .AND/2. DELAY,DATA,A
:150Ø .AND/2. GATEIGATE,DELAY

:COMP

.INPUT. DATA,GATE,RESET

.AND/2. GATE,GATE,DELAY

•AND/2. DELAY,DATA,A

•AND/2. RESET,OUTPT,0

.0R/2. A,O,OUTPT

.PRINT. DATA,GATE,RESET,A,OUTPT

.END.

AND/2 =Ø3

OR/2 	 =Ø1

:FANOUT 

DATA :Ø1

GATE :02

RESET :Ø1

DELAY : :Ø1

A 	 :Ø1
OUTPT :Ø1

:01

:EXEC

# OF TIME UNITS PER PULSE = 1Ø

# OF TEST INPUTS 7
TRACE = NO

X-PASS = YES

The delay is simply

an AND gate with

both inputs tied

together.

The user simply

modifies one line

and adds another

then recompiles

the network.



INPUT AAA BBB CCC DDD

BEE OUTPT

122

DATA :XX11110 	Run it through the
GATE :X01ØØØ1 	same test pattern.
RESET:411Ø11

No hazard exists.

The second example will show how DLS detects race

conditions. Figure 5 - 3 is simply a string of OR gates.

Figure 5-3



123

By using the DLS trace mode signal propagation can

be viewed.

:NEW 	 Clear out the
CLEAR MEMORY ?YES 	 memory and describe
:1ØØØ .INPUT. INPUT 	 the new network.
:2ØØØ .0R/2. INPUT,INPUT,AAA 

:2ØØ1 .0R/2. AAA,AAA,BBB 

:2Ø02 .0R/2. BBB,BBB,CCO 

:2Ø03 .0R/2. CCC,CCCIDDD
:2ØØ4 .0R/2. DDD,DDD,EEE

:20Ø5 .0R/2. EEE,EEE,OUTPT 

:3ØØØ .PRINT. INPUT,AAAIBBB4OCC,DDDIEEE,OUTPT 
:4ØØØ •END. 

:COMP

.INPUT. INPUT

.0R/2. INPUT,INPUT,AAA

.0R/2. AAA,AAA,BBB

.0R/2. BBB,BBB,CCC

.0R/2. CCC,CCC,DDD

.0R/2. DDD,DDD,EEE

.0R/2. EEE,EEE,OUTPT

.PRINT. INPUT,AAA,BBB,CCC,DDD,EEE,OUTPT

.END.

OR/2 = 06

:FANOUT 

INPUT :Ø2

AAA :Ø2

BBB :02



CCC :Ø2
DDD :Ø2

EEE :02

OUTPT:ØØ

124

:EXEC

# OF TIME UNITS PER PULSE =
# OF TEST INPUTS = 2
TRACE = YES
X-PASS = YES

Execute the sim-

iaator with the

trace mode on.

INPUT:Ø1

0

PABCDET
UABCDEP
TABCDET

00: Ø XXXXXX
Ø0: Ø ØXXXXX
ØØ: Ø Ø Ø XXXX
ØØ: Ø Ø Ø OXXX
0Ø: Ø Ø Ø Ø Ø X X
0Ø: Ø Ø Ø Ø Ø Ø X
Ø0: 0 Ø Ø Ø Ø Ø Ø
ØØ: Ø Ø Ø Ø Ø Ø Ø 4-stable state
01: 1 Ø Ø Ø Ø Ø 0
Ø1: 1 X Ø Ø Ø Ø Ø
01: 1 1' X Ø Ø 0 Ø
Ø1: 1 1 1 X Ø Ø Ø

	

01: 	 1 	 1 	 1 	 1 	 X Ø Ø

	

01: 	 1 	 1 	 1 	 1 	 1 	 X 	 Ø

	

01: 	 1 	 1 	 1 	 1 	 1 	 1 	 X

	

Ø1: 	 1 	 1 	 1 	 1 	 1 	 1 	 1

	

Ø1: 	 1 	 1 	 1 	 1 	 1 	 1 	 1 4-stable state

Re-execute the network but this time set the clock

up so that there will only be five update cycles per time

unit.



:NEW

CLEAR MEMORY ? YES
New network to be

feed to DLS.

125

:EXEC

# OF TIME UNITS PER PULSE = 5
# OF TEST INPUTS = 2

TRACE = YES

X-PASS = YES

Re-executer the

network this time

with only five

update cycles per

time unit.

INPUT :Ø1

Since the network

was not recompiled

all outputs start

with their last value,

THE CIRCUIT HAS NOT REACHED A STABLE STATE

After five update

cycles no stable

state was reached.

The next example is the design of a two bit full-

adder. First a one bit full-adder will be simulated then

the modification to a two bit adder. Figure 5-4a is the

basic full-adder and Figure 5-4h is how two such full-

adder,blocks are put together to form the circuit.



INA INB

Ya I INC

OUTC XA

INAA INBB INA INB

FA FA INC

OUTCC SUMAA OUTC SUMA

126

Full-Adder Circuit

ZA

SUMA

(a)

(b)

Figure 5 - 4



127

:10ØØ .INPUT, INA,INBIINC 	Describe the basic
=2Ø0Ø .EXOR/2. INA,INB,YA 	full adder.
:20Ø1 ,EXOR/2. INCIYAISUMA

.AND/2. INC,YAIZA 
:2ØØ3 .AND/2. INA,INBIXA
:20Ø4 .0R/2. IA,ZAIOUTC 

=3ØØØ .PRINT. INC,INB,INA,SUMA,OUTC 
:4Ø0Ø .END.

:COMP 	Test the first
design stage.

.INPUT. :INA1INB,INC

,EXOR/2. INA,INB,YA

.EXOR/2. INC,YA,SUMA

.AND/2. INC,YA,ZA

.AND/2. INA,INB,XA

.0R/2. 	 XA,ZA,OUTC

.PRINT. INC,INB,INA,SUMA,OUTC

.END.

AND/2 =Ø2

OR/2 =Ø1

EXOR/2=Ø2

:FANOUT 

INA :Ø2

INB :Ø2

INC :Ø2

YA :Ø2

SUMA :ØØ
ZA 	 :Ø1

XA 	 :Ø1

OUTC :ØØ



128

=1 0

INA

INB

INC

:EXEC

# OF TIME UNITS PER PULSE

# OF TEST INPUTS =8

TRACE =NO

X-PASS =YES

:0 1Ø4 1Ø1 
:0Ø11Ø011 

:Ø00Ø 1111 

There are 2n posible

test patterns where

n equals the number

of inputs.

ØØ
ØØ
Ø 1
Ø
1 Ø
1 Ø
1 1
1 1

Ø ØØ
1 1 Ø
Ø1 Ø
1 Ø 1
Ø1 Ø
1 Ø 1
Ø Ø 1
1 11

ØØ:
1:
2:
3:
4:
5:
6:
Ø7:

Everything checks

out.

III
N NN
CBA

SO
U U

T
AC

:1ØØØ .INPUT. INA,INAA,INB,INBBIINC 	Modify the description
:3000 .EXOR/2. INAAIINBB,YAA 	for the second stage.
:3001 .EXOR/2. OUTC,YAA,SUMAA

:30Ø2 .AND/2. OUTC,YAA,ZAA

:30Ø3 .AND/2. INAA,INBB,XAA 

:30Ø4 ',1914/2. 	 XAA,ZAA,OUTCC 
:400Ø .PRINT. INC,INBB,INB,INAA,INAIOUTCCISUMAA,SUMA

:5ØØ0 .END.



INA

INAA

INB

INBB

INC

32 possible test
patterns.

1 29

:COMP

•INPUT. INA,INAA,INB,INBB,INC

.EXOR/2. INA,INB,YA

•EXOR/2. INC,YA,SUMA
•AND/2. INC,YA,ZA
•AND/2. INA,INB,XA

•OR/2. 	 XA,ZA,OUTC
•EXOR/2. INAA,INBB,YAA

.EXOR/2. OUTC,YAA,SUMAA
•AND/2. OUTC,YAA,ZAA

•AND/2. INAA,INBB,XAA
•OR/2. 	 XAA,ZAA,OUTCC
•PRINT. INC,INBB,INB,INAA,INA,OUTCC,SUMAA,SUMA
•END.

AND/2 =Ø4
OR/2 =Ø2

EXOR/2=Ø4

:EXEC

# OF TIME UNITS PER PULSE =2Ø
# OF TEST INPUTS =32

TRACE =NO

X-PASS =YES



Os
U US

TNINTTMU
NBNANCAM
CBBAACAA

130

The modified

circuit works fine.

The next example shows how the use of the initial

condition aids in the circuit analysis. Figure 5 -5 is

aaasynchronous finite state machine to be simulated.



AAA C CC
OUT

1 31

Asynchronous Finite State Machine

BBB
DDD

Figure 5-5

CLEAR MEMORY ?YES New circuit for

:10ØØ .INPUT. AAA,BBB 	DLS to simulate.

:200Ø .AND/2, AAA,BBB,CCC 

:3ØØ0 .AND/2. BBB4OUT,DDD

:4000 • OR/2. 	 CCCIDDD,OUT 
:5000 .PRINT. AAA,BBB,CCC,DDD,OUT 

:60Ø0 .END. 

:COMP 

.INPUT. AAA,BBB

.AND/2. AAA,BBB,CCC

.AND/2. BBB4OUT,DDD

.OR/2. CCC,DDD,OUT

.PRINT. AAA,BBB,CCC,DDD,OUT

,END.



AND/2 =02

OR/2 =01

:EXEC

# OF TIME 'UNITS PER PULSE =1Ø

# OF TEST INPUTS =4

TRACE =NO

X-PASS =YES

AAA :Ø1ØØ
BBB :111Ø

ABC DO
ABC DU
ABCDT

132

00: Ø
Of:
2: Ø
3: Ø

1 Ø X X
1111
1 Ø 1 1
ØØØØ

OUT starts in the

unknown state.

:4Ø0Ø .0R/2. 	 CCC,DDD,OUT 	 IC=0 

:COMP

.INPUT. AAA,BBB

.AND/2. AAA,BBB,CCC

.AND/2. BBB4OUT,DDD

.0R/2. 	 CCC,DDD,OUT 	 IC=Ø

.PRINT. AAA,BBB,CCC,BDD,OUT

.END.

See what happens

with OUT having a

initial value.

AND/2 =Ø2

OR/2 	 =Ø1



AAA :Ø1ØØ
BBB :111Ø

Run through the

same test pattern.

A B C D O
ABCDU
ABC DT

ØØ: Ø 1 Ø Ø Ø
1: 1 	 1 	 1 	 1 	 1
2: Ø 	 1 	 Ø 	 1 	 1
Ø3: Ø Ø Ø Ø Ø

This time all

is well.

:EXEC

# OF TIME UNITS PER PULSE =1Ø

# OF TEST INPUTS =4

TRACE =NO

X-PASS =YES

133

The final example is another asynchronous finite

state machine, this time with two possible hazards. The

first problem is the need for a initial condition on

the output and the second problem is that there exists a

race condition in the feedback path of the circuit. Figure

5-6a is the basic circuit which has the two possible

hazard conditions in it 	 Figure 5-6b is the modified

circuit which has introduced into the feedback path a

delay which should eliminate one of the hazards.



AAA COC

BBB EEE

134

Circuit with Race Condition

BEN

DDD 	 OUT

(a)

DDD

EEE

DELAY

delay unit

(b)

Figure 5-6

OUT



135

:NEW 	 New circuit to be

CLEAR MEMORY ?YES 	 simulated.

:1ØØØ .INPUT. AAA,BBB

:2ØØ0 .NAND/2. BBB,BBB,BBN

:300Ø .AND/2. AAA,BBN,CCC 
:40ØØ .AND/2. AAA,OUT,DDD

:5ØØØ .AND/2. BBB4OUT,DDD
:60Ø0 .OR/4. 	 0,CCC,DDD,EEEIOUT 

:70Ø0 .PRINT. AAA,BBB4OUT 

:8ØØØ ,END. 

:RESEQ 	 Issue the resequence

command. Then print
:LIST 	 the program.

ØØØØ .INPUT.

0Ø1Ø .NAND/2.

0Ø2Ø .AND/2.

ØØ3Ø .AND/2.

ØØ4Ø .AND/2.

0Ø5Ø .OR/2.
ØØ6Ø .PRINT.

ØØ7Ø .END.

:COMP

AAA,BBB

BBB,BBB,BBN

AAA,BBN,CCC

AAA,OUT,DDD

BBB4OUT,EEE

Ø,0CC,DDD,EEE,OUT

AAA,BBB4OUT

Compile the network.

.INPUT. AAA,BBB

.NAND/2. BBB,BBB,BBN

.AND/2. AAA,BBN,CCC

.AND/2. AAA,OUT,DDD

.AND/2. BBB4OUT,EEE

.OR/2. Ø,CCC,DDD,EEE,OUT

.PRINT. AAA,BBB4OUT
,END.



NAND/2 =Ø1

AND/2 =03

OR/4 =Ø1

136

:EXEC

# OF TIME UNITS PER PULSE =10

# OF TEST INPUTS =4
TRACE =NO

X-PASS =YES

Execute the program

and find the hazards.

A BO
ABU
A B T

Ø0 : 	 1 	 1 X
1: 1 	 Ø 	 1
2: Ø 1 1 THE CIRCUIT IS OSCILLATING
Ø3: Ø Ø Ø 	 There are two problems

to be corrected.

:Ø03Ø .AND/2. AAA,DELAY,DDD 
=0040 .AND/2. BBB,DELAY,EEE

:0045 .AND/2. OUT,OUT,DELAY

:0050 .OR/2.  Ø,CCC,DDDIEEE  IC=0

:COMP

•INPUT. AAA,BBB

.NAND/2. BBB,BBB,BBN

.AND/2. AAA,BBN,CCC

.AND/2. AAA,DELAY,DDD

.AND/2. BBB,BELAY,EEE

.AND/2. OUT,OUT,DELAY

•OR/2. 	 Ø,CCC,DDD,EEE,OUT 	 IC=Ø
.PRINT. AAA,BBB4OUT

.END.

Recompile the

corrected network.



NAND/2 =Ø1

AND/2 =Ø4

OR/2 =Ø1

:EXEC 

# OF TIME UNITS PER PULSE =-Ig
# OF TEST INPUTS =8

TRACE =NO

X-PASS =YES

AAA :ØØ1111ØØ
BBB :Ø1Ø11Ø1Ø

A B O
A B U
ABT

137

The two possible

hazards have been

eliminated.



138

CHAPTER 6

CONCLUSION

6.1 A Few Last Words,

With the use of DLS it is now possible for a digital

circuit designer to debug most, if not all of his digital

designs in a matter of minutes. The designer also has the

satisfaction that the logic is correct and that he now can

concentrate on hardware connection and failure errors.

The DLS program has proven beneficial to the logic

designer in several cases, including the following.

1) The simulator saves money by correcting design

errors before the hardware is fabricated.

2) The simulator saves time by permiting redesign

prior to fabrication.

3) The computer listing serves as documentation of

the actual design.

4) The simulator aids in debugging of the hardware by

supplying accurate timing diagrams to which the waveforms

monitored in the system can be compared.

5) By requiring the designer to describe his work in

detail, the designer is made more aware of the design

techniques and any redundancies he may be prone to use.



139

6) By providing accounting statistics of each type of

element and loading of each element, the program aids the

designer in making selections of assignments and card types

for the building of the hardware.

7) The computer listings expedite the checking of the

circuit after the hardware is built by limiting the number

of causes of errors to be checked.

8) The computer outputs allow the designer to see

many signals at one time, as opposed to a few at a time,

as would be the case when limited by available traces on

oscilloscopes.

9) Often the design will lend itself to the case where

the number of inputs is small and all combinations and

permutations of the inputs can be created by the computer

and the design totally checked. Usually in a hardware

setup only a limited number of inputs can be checked;

1O) The timing diagrams when sampled at "gate" times

will often show logic spikes in hard copy as opposed to

the small time duration of a spike on a scope.



BIBLIOGRAPHY

Breuer, Melvin A., Design Automation of Digital Systems.
New Jersey: Prentice-Hall, Inc., 1972

Breuer, Melvin A., Digital System Design Automation.
California: Computer Science Press, Inc., 1975

Breuer, Melvin A., "Recent Developments in Design Automation,"
Computer, May/June 1972, pp. 23 - 35

Chu, Yaohan, Computer Organization and Microprogramming.
New Jersey: Prentice-Hall, Inc., 1972

Chu, Yaohan, Introduction to Computer Organization.
New Jersey: Prentice-Hall, Inc., 197O

Flomenhoft, Mark j., and Csencsits, Brenda m., "A
Minicomputer-Based Logic Circuit Fault Simulator,"
ACM Sigda Newsletter, Vol. 4, No. 3, 1974, pp. 15-19

Hartenstein, Reiner W„ Fundamentals of Structured Hardware 
Design, New York: North Holland Publishing Company, 1977

Jephson, J. S., McQuarrie, R. P., and Vogelsberg, R. E.,
"A Three-Value Computer Design Verification System,"
IBM System Journal, Vol. 8, No. 3, 1969, pp. 178-189

Kahn, Hilary j., and May, J. W. R., "The Using of Logic
Simulation in the Design of a Large Computer System,"
The Radio and Electronic Engineer, Vol. 43, No. 8, 1978

Osborne, Adam, 8080 Programming For Logic Design.
California: Adam Osborne and Associates, Inc., 1976

Ulrich, E.G., and Baker, T., "Concurrent Simulation of
Nearly Identical Digital Networks," Computer,
April 1974, TY0.39 -44

Yoeli, Michael, and Rinon, Shlomo, "Application of Ternary
Algebra to the Study of Static Hazards," Journal of 
the Association for Computing Machinery, Vol. 11,
No. 1, 1964, pp. 84 -97

140


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1980

	A microprocessor based digital logic simulator
	Kevin Dresher
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Info Statement
	Title Page
	Approval Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Dedication Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Why Another Logic Simulator?
	Chapter 2: Three Value Simulation
	Chapter 3: Table Driven Simulation Techniques
	Chapter 4: The DLS Program
	Chapter 5: Using The Digital Logic Simulator
	Chapter 6: Conclusion
	Bibliography

	List of Figures (1 of 2)
	List of Figures (2 of 2)


