New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 1980

A microprocessor based digital logic simulator

Kevin Dresher
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses
b Part of the Electrical and Flectronics Commons

Recommended Citation

Dresher, Kevin, "A microprocessor based digital logic simulator” (1980). Theses. 1463.
https://digitalcommons.njit.edu/theses/1463

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion

in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1463?utm_source=digitalcommons.njit.edu%2Ftheses%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

MICROPROCESSOR BASED

DIGITAL LOGIC SIMULATOR,,
BY

) KEVIN DRESHER

A THESIS
PRESENTED IN PARTIAL FUFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to
the rights of the author. Bibliographical ref-
ences may be noted, but passages must not be copied
without permission of the College and without credit
being given in subsequent written or published work.

Newark, New Jersey
1980

APPROVAL OF THESIS

A
MICROPROCESSOR BASED
DIGITAL LOGIC SIMULATOR

BY
KEVIN DRESHER
FOR
DEPARTMENT OF ELECTRICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED:

Newark, New Jersey

1980

AN ABSTRACT
A
MICORPROCESSOR BASED
DIGITAL LOGIC SIMULATOR
by
Kevin Dresher
Advisor: Dr. Robert Delucia
Submitted in Partial Fulfillment of the Requirements for
The Degree of Master of Science in,Electrical Engineering

July 1980

It is the intent of this thesis to acquaint the reader
with a tool which is available for use in the digital
circuit design field. The reader is now able to totally
simulate via DLS the digitél logic design he creates on
paper before it ever takes a hardware form. The computer
program accepts a detailed description of the schematic
and creates timing diagrams, loading statistics, cross
references, and various lists for future documentation.

The user needs no programming knowledge and will find
the requirements to run a simulation with DLS extremely
user oriented. The simulation descriptions and command
language are tailored to logic design applications. The

format is straight forward, utilizing standard Inglish

1630586

ROBERT W. VAN HOUTEN LIBRARY
KNEW IERCSEY INSTITHTE 0OF TECHNN Y

language and logic design concepts. To code a design for
simulation the designer needs only a well labeled circuit
diagram, where all the inputs and outputs of each element
has a label With the addition of a few simulation

paramefers DLS will take the network description and form
a program in memory which will recreate the operations of

the digital circuit.

Dedication

I would like to thank the people that are and were
close to me for threatening me with bodily injury if I did

not complete this work,

Chapter

CHAPTER 1

CHAPTER 3

CHAPTER 4

TABLE OF CONTENTS

Title

WHY ANOTHER SIMULATOR?
Need for Simulators

L4

L N Y
[
> W N -

Levels of Simulation

°

Gate Level Simulation

DLS a Microprocessor
Based Program

THREE VALUE SIMULATION
2.1 Use of Ternary Algebra

2.2 Propagation Hazard
Example

2.3 Oscillation Error
Example

2.4 Don't Care Example

TABLE DRIVEN SIMULATION
TECHNIQUES

3.1 Modeling Approach

3.2 Table Driven Simulation
Method

3.% Dual Table Simulation
3.4 Table Setups
THE DLS PROGRAM
4,1 DLS Program Structure

4,2 Source Program
Reguirements

4,3 The Controller/Editor
4

3
.4 The Controller/Editor
Program Listing

The DLS Compiler

The Compiler Program
Listing

4,7 The DLS Executer

o
[OANIR)]

SN

ii

10
10
14

16
18
20
20

21

22
2T
32
32
54

37
41

53
66

82

Chapter

CHAPTER

CHAPTER

5

6

Title

4.8 The Executer Program
Listing

4.9 General Purpose Routines
and Memory Allocation

USING THE DIGITAL LOGIC
SIMULATOR

5.1 Design Examples
CONCLUSION

6.1 A Few Last Words
BIBLIOGRAPHY

1ii

112

118

118
138
138
140

F;gure

I 1

(3 I B A
§
W N - s

1 ! i |

N N N S IR
ANt N RO S U SV LR

A
O 00 3 O

4-10
4-11
4-12
4-13
4-14
4-15
4-16
5-1

5-2

LIST OF FIGURES

Title

Time Delay Modeling
Two Value Truth Table
Combinational Hazard Detection

Digital Latch With Hagzard
Example

Oscillating Test Circuit
Don't Care Example

Dual Table Operation

OR Gate Simulation

DLS Table Breakdown
Simulation Tables

Memory Allocation

Command Word Format

Source Program Update Routine
Controller Routine

Command Function Selection
Routine

Compiler TFunction Routine
Sum IFunction Routine
Prnt Function Routine
Symb Function Routine
Setup Function Routine
Pack Function Routine
To Function Routine
Exec Function Routine
Updat Function Routine
Gate Simulation Routine
Outp Function Routine
Race Condition Example
Adding a Delay Block

iv

17
19
23
26
28
30
33
36
38
39
40

54
56
57
58
61
62
64
84
85
87
89
118
120

Title

Another Race Circuit
Full-Adder Circuit

Asynchronous Finite State
Machine

Circuit with Race Condition

CHAPTER 1

WHY ANOTHER LOGIC SIMULATOR?

1.1 Need for Simulators

The use of computers to assist in the engineering of
digital systems is not a new idea. Design automation
schemes have been in existence since the first generation
computers. The original computer systems were mainly
concerned with production logistics such as generating
wiring schedules and printed circuit board layouts. The
logic design phase was performed manually, using intuition
and experience based on the theories of switching circuits.
When the MSI and LSI logic components were introduced, the
design approach changed radically. The problem was one of
sheer complexity. Since digital systems attained such a
high level of sophistication, the old conventional design
practices proved inadequate to handle these complexities.
It therefore became essential to use the computer from the
initial design stages.

This is done through the use of the process of sim-
ulation, whereby it is possible to model the behavior of

a real system either mathematically or functionally.

Experience shows that simulation is one of the most power-:
ful analysis tools available to the designer., It allows
the designer to make expermental designs with systems,
real or proposed, where it would otherwise be impossible
or impractical to do so.

Computer-Aided Design (CAD) programs were written for
the purpose of simulating proposed or experimental systems.
Using CAD programs, the designer could explore new ideas
and techniques. As results are achieved more rapidly,
inoperative designs may be eliminated immediately while

positive results are open to exploration.

1.2 Tevels of Simulation

There are four basic levels at which digital systems

L The first is known as "System Level,"

can be simulated.
whereby the simulation is used to evaluate the general
overall properties of a system., Elements of the system
are usually complex devices, and may include buffers,
memory modﬁles, arithmetic units, and central processing
units. Usually each model is characterized by a set of
parameters, such as response time and capacity. System
level simulation is primarly used as a means of predicting

system performances.

This is followed by the type of simulation known as

1M. A. Breuer, "Recent Developments in Design Automation,"
Computer, May/June 1972, pp. 23-35

"Register Transfer Level." At this level data flow is
specified at the register level. The simulator operates
upon real data, hence the functional design of the system
can be evaluated.

Thé third type of simulation is "Gate Level Simula-
tion." At this level the system is described by a
collection of logic gates and their interconnections.
Bach signal line is restricted primarly to two or three
values. Time is usually quantized to the point where one
unit of time corresponds to one gate delay time unit,.

The final type of simulation is the "Circuit Level.,"
A logic gate circuit may consist of some interconnection
of diodes, transistors, and resistors. Here each signal
line is not restricted to just two or three values but
rather to a quantized interval between two voltages or
current levels. In addition time is quantized to a very
fine degree. Transitory behavior is usually of primary
interest.

Bach of the last three levels employs models which
are simplifications of those of the preceding level, both
in quantitative terms and in terms of behavior. The set
of components represented in the circuit level model of a
logic gate and the circuit's finite rate of change of
state, may be simplified using a gate level model into a
single two state element. The state of this element would

change instantaneocusly at discrete time intervals., Simil-

arly sets of gates may be merged together to form elements
of a register transfer level model, in which state changes
may occur at varing multiples of the basic gate operation
time units. Circuit, gate, and register transfer level
simulation models represent progressive levels of simpl-
ification of an actual system element behavior. This can
be viewed as being derived from a direct translation of
its electrical characteristics.

A system level simulation model represents a level of
simplification of elements of a real system derived by
abstraction, rather then by synthesis. Circuit level
simulation employs continous time models. This differs
fundamentally from those using gate level or register

transfer level which employs discrete time models.

1.3 Gate Level Simulation

Digital Logic Simulator (DLS) is a gate level simul-
ation program which can be used for analyzing digital
logic designs. When given the initial state and the input
sequence the simulator will calculate a state-time map
of the logic signals,

Most of the early simulators would model gates as

elements having zero induced propagation delay time.2 This

ZM. J. Flomenhoft and B. M. Csencsits, "A Minicomputer
Based Logic Circuit Fault Simulator," ASM Sigma Newsletter,
Vol., 4, No. 3, 1974, pp. 15-19

(o2}

Time Delav Modeling

SO0 =

r‘\ C
P
(a)

1 1
ol | A g
1 1
0 By
1 1
0 C 9
01234567 time

(b)

; one delay
_ time unit

77

v

012734567 time

(d)

FIGURE 1-1

-
—
Ll

012345¢6717
(c)

time

implies that the output logic level changes instanteously
when the inputs change. An example is shown in Figure 1-1a
which depicts a two gate circuit. In a zero delay simulator
as the input signal (A) changes from a logic '1' to a logic
'O, thé output signal (C) stays constant. This can be

seen in Figure 1-1D.

In actuality, this circuit design would have an inher-
ent race condition. One of the two signals being fed into
the OR gate will have a propagation delay time longer than
the other.

One of the goals for creating DLS was to develop a
method of simulation where such hazards could be observed
and corrected. DLS has two modes of operation which can
show the presence of a race condition. In the first mode,
each gate has a single time unit delay before the output
changes corresponding to changes of the inputs. Figure 1-1c
shows that when the input to the NOT gate changes from a
logic '"1' to a logic 'O' the output signal (B) of the NOT
gate 1is delayed for one time unit before it changes from a
logic 'O' to a legic '1.' This means that for one time
unit both inputs to the OR gate will be at a logic '0O!
producing a logic 'O' on the output. In the next time
frame the NOT gate has propagated its signal through the
gate producing a logic '1' on one of the inputs of the OR
gate which produces a logic '1' on the output.

There is a difference between the simulation of a zero

and a one gate delay circuit simulation. The first simul-
ation had a constant logic '1' on the output where the
latter one had a period of time where the output dropped to
a logic '0O.,' In digital circuit design this would be known
as a glitch. Using the simulator the designer would be
able to see the existence of this hazardous condition and
go back to modify the circuit to remove the glitch from

the design.

The second mode of DLS uses what is known as a three
value simulatér.3 Whenever a signél tries to change its
logic level, it enters a transition state. This is a third
logic state where the state is neither a logic '1' or a
logic 'O,' it is unknown. Figure 1-1d shows that when the
output of the NOT gate tries to change its logic level, it
enters the transition state for one time unit. In the next
time frame the output goes to the correct logic level. The
transition state that the NOT gate produced is passed to
the OR gate which produces an unknown output. The output
of the OR‘gate will have two transition states due to the
fact that in time frame two both inputs were at a logic 'O.
As the output attempts to reach a logic 'O' it is forced
into the transition state for one time unit. In the third
time frame one of the inputs is in the tran;ition state

which keeps the output in the transition state, the glitch.

3J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg,
"A Three-Value Computer Design Verification System," IBM
System Journal, Vol. 8, No. 3%, 1969, pp. 178-189

Finally by the fifth time frame all the signals have settled
out. VWhen the results are viewed the fact would be noted
that the final output had two time units in which the out-
put is unknown. This occurrence creats a condition that

is in all probability hazardous to the operation.

1.4 DLS a Microprocessor Based Program

One of the big differences between DLS and other
simulators is that it has been implemented on a micro-
processor based computer system. Most standard high-level
languages, such as Fortran and Basic, are oriented to
numerical computations and consequently are extremely
inefficient when used for data processing operations. A
more efficient approach is achieved through the use of a
machine dictated assembly language. Data is usually stored
in a tabular or list format. Thus a language capable of
setting up data structures in list form that is capable of
manipulating the items in the list is required.

DLS was written in assembly language for two reasons.
The first is for its ease of handling list structured
queues and secondly high-level languages, require large
amounts of memory. One of the objectives for writing DLS
was to create a system that occupied the smallest amount
of memory space, making it possible to run on a small

system. Even though assembly languages have the disadvant-

age of being specific to one type of computer, DLS was

written for the 8080 microprocessor, an industry standard.

CHAPTER 2

THREE VALUE SIMULATION

2.1 Use of Ternary Algebra

The presence of hazards and races in combinational
logic circuits may be detected by using the concept of
ternary algebra.1 In this method a third value 'X' which
assumes the value between a logic 'O' and a logic '1' is
used to represent unspecified transition periods, initial
conditions, oscillations, and don't know states. Basic
logic gates can be redefined in terms of ternary functions
using logic levels '0,' "1,!' and 'X.' Figure 2-1 shows
the truth tables for the basic gates for both two and
three logic state simulations.

The using of the three value method allows hazards
to be detected that normally go unnoticed in a two value
simulation.2 Figure 2-2a shows the two value simulation

for several gates. When the two inputs change simultan-

1M. Yoeli and S. Rinon, "Application of Ternary
Algebra to the study of Static Hazards," Journal of the
Association for Computing Machinery, Vol.11, 1964, pp.84-97

2J.S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg
"A Three-Value Computer Design Verification System," IBM
System Journal, Vol.8, lo.3, 1969, pp.178-189

10

11

Two Value Truth Table

ISRl S
—ase
VU
R Y

ISRSRS R

(a)

Truth Table

Three Value

< = A

=z A

2

WU b R B
= TUR SR SR SRR
WU b bd b
e R b b
TRREL + b QU b
ISR SR S

ISESRSR Rl sl

(p)

Figure 2-1

12

Combinational Hazard Detection

1-0 -
L/ anp
_O0=1 11
1-0 T ——
B NAND

0-1

O
EXOR

(a)

0])l
___awp

0-X~1

o N, 1-X-1

/ NAND

0-X-1

1=X=0 §~\\\ LSl
L oR

0-X-1

Figure 2-2

13

eously the output stays constant. In three value simulation
when a logic level changes state first it must enter the
logic 'X' state. Figure 2-2b shows that when both inputs

to a gate change at the same time, for one time unit both
inputs are unknown. This produces an output which is
temporarily unknown. In a larger circuit design this

glitch would be passed along to the rest of the circuit which
could lead to a possible erroneous final output.

In addition to hazard detection the third logic level
may also be used to represent "don't care" input conditions
to the circuit. This makes it possible to cut down on the
amount of test data required to check a given circuit. For
example if it were required to simulate the reset logic of
a basic register circuit. Normally this would have to be
performed by applying the reset logic to the input repet-
itively and checking that for every possible combination
of input bits the output of the register always goes to
a logic '0.' This would require 2™ simulation runs, where
n is the.number of bits in the register. By initally
setting all of the bits in the register to the logic 'X!
state and then simulating the reset logic, it is possible
to determine in one simulation run those stages which do

not get reset to a logic 'O! state.2

°Ibid., pp.179

14

2.2 Propagation Hazard Example

Figure 2-3a is a logic circuit which was simulated by
DLS. The circuit consists of two AND gates and one OR gate.
The output of the OR gate is fed back To one of the AND
gates to form a type of latch. Figure 2-3b is the print-
out of the DLS simulation operated in the normal méde‘

Time frame O shows that when the three inputs are unknown
the output is unknown., In time frames 1, 2, 3, 4, and 5
the circuit is put through several different test patterns.
A problem occurs when the inputs (INA and INB) change

their values from time frame 5 to frame 6., This simultan-
eous change is detected as a possible hazard to the circuit.
Due to the creation of the feedback path in the circuit,

the glitch is transferred through the OR gate and then

back to one of the inputs. This means that the glitch
causes the circuit to settle in the unknown state.

As a verification of the results DLS is rerun using
the trace mode this time. Figure 2-3c is the DLS trace
mode resﬁlts. The critical point is time frame 6 where
the two inputs change simultaneously. INA changes from a
logic '1' to a logic 'X' then to the final logic 'O' value.
On the other hand INB changes from a logic 'O' to a logic
'X' and settles to a logic '"1.' For one time unit both
inputs to the AND gate are unknown. This glitch is fed

into the OR gate which will produce a logic 'X' which feeds

v

Digital Latch With Hazard Example

1
oD w e R R i I R SR SR SR SR S i R EERSESESESESESESE SRR

=z AaMm “XXXX,®/,®,,®:¢:@U@,QX 111111111 RS ESESRESENE SRS S| S S
=A< “ Pl SR S S R S R S e R e SASESESESESENESESESESESE SRS ST ST
— = O "XXX‘@,@,@,,@,®,X 11111111111 IR RSN — = = O
~—
il =qpea] “XVAX,@,@@H@/,@/X 111111 EASENRSESESESROR SESE S SR SR S S
<G T A pd g B DA b hd v v o e e e e T e T T ot T T Tt T ot RO S
1
I 9% ¢ 23 93 29 06 #4 43 s ae 8 98 90 us $e S8 4% ab B3 €4 be Ss oo 25 0% a6 e 88 88 92 9% 2% se ow
I S v v v v NANNNNNANNODN N < < < <t < <t IOV U N0 WO W0 WO WO
IASTSRESESESESESESESESESESESEMESESEOESESESESEIE SR SE SRR SR S S S S R SRS
=
jove)
O
* 8]
/A
= I
< < !
a N COCOEHE I MR~ R
= @ !
<3 ~ |
<G = AR “ R SRS SR N
|
f
] ~
=SS I ISR S LR SRR
<g O !
i = I
- 1 HE < I e
1
]
jan} { " s 2e 2
= I &~ O <F N0
- (IS RS RO RSO RS R]

Figure 2-3

this value back to the AND gate which will the produce an
output of a logic 'X.' ZEven though the first AND gate has
by this time finished changing, the original glitch has
caused the output of the circuit to become latched in the

unknown state,.

2.3 0Oscillation Error Example

A simple example of an oscillating circuit is expressed
in Figure 2-4a., This simple NAND gate has a problem when
the input goes to a logic '1,! the output tries to go to
a logic 'O.' This is then fed back to the other input.

Now what happenes is that the output tries to go to the
logic '"1' state. This circuit works fine with a logic 'O
on the input but whenever it goes to any other logic value
the output can not find a stable state so it oscillates.

Another example is shown in Figure 2-4b. The two NOR
gates are configured to form a R-S Flip IFlop. Note from
the results that when no initial condition is given and
both inputs are at a logic 'O' the output stays unknown.
This 1s due to the fact that DLS assigns a logic 'X' to all
gates prior to the start of the simulation. This circuit
operates properly up to time frame 7. Here both inputs
(R and S) go to a logic '1' producing outputs (Q and QN)
at a logic '0.'" The outputs are stable except by definition

one is supposed to be the complement of the other.

Oscillating Test Circuits

O D H

re
[i

-t e v G St i o el

@@3

ouT

IN

ESIS R SRS R AN

WO -0 O
ISR RSESNR N

(a)

>

PSSR SE NI SR ST

b
e
ESASESRSES Rk Sk S SN
ESRSEga R SENE SRk S ek N

01)
B
B2
?3
B4
@5 =
36
o7
38
?9:
10

Figure 2-4

18

The problem occurs in this circuit when both inputs
now drop from a logic '1' to a logic 'O' at the same time.
The circuit starts to oscillate which DLS detects in time

frame 8,

2.4 Don't Care Example

Figure 2-5 shows a circuit derived from the eguation
F=ABC+ABC+ABC+ABC, which using Boolean Algebra can be
reduced to F=A . To prove this, first DLS is made to run
through the nine different possible input combinations.
The problem is then rerun, this time setting the values’
of the eliminated variables to the logic 'X' state. The
two simulations produce the identical results. This
example was not chosen to show reduction techniques but
to show that the logic 'X' state could be used in place

of don't care situations which may arise.

Don't Care Example

A B C F

A B C F

e S =

bl bl bt B S b

p X X ¢

|
|
|
1
|
I
i
i
|
]
i
] SRS
i g

i

|

1

!

— O N <t OO [~
IS ESRSESRISE SR

Mf

ISESESEE e e

SRRSE ST SR

RCSER e SN B S

o 0 0 0

VRS ™~

< IO\O >~
ESESR SRS

o)
?1:
P2
@3

Figure 2-5

CHAPTER 3

TABLE DRIVEN SIMULATION TECHNIQUES

3,1 Modeling Approach

A fundamental question is how a digital circuit 1is
to represented or modeled by the computer. There are
several ways to model a circuit, each have advantages and
disadvantages. The method of digital circuit modeling is
dependent upon the type of machine being used. Three
important factors which must be considered are machine
type, word length, and the number or language of the
instruction set.

The simulation model is formed from the inputed
source language statements which describe the digital
circuit. These statements can either be interpreted
directly and then executed or compiled into machine code
which is executed later. Most of the earlier simulators

were either interpretive or executed compiled code.1

Current simulators however, employ some form of data

structure and are table driven.

For compiled code simulators each source statement

1%. A. Breuer, Digital System Design Automation,
California, Computer Science Press, Inc., 1975, pp. 237-242

20

21

generates a set of subroutines which perform the logical
function required by each specific element. The simulated
network is represented in the computer as a series of
interconnected subroutines which evaluates the logical
functioh of each element in the order in which they appear
in the circuit. Starting at the input gates and proceding
through the circuit, outputs of one gate acting as inputs
to the succeeding gates until the final output gates are
reached. The disadvantage of this approach is that for
each element there could be about five to ten instructions
required to perform the simulation. For a fairly large
circuit the size of the compiled code would require a fair
amount of memory. Another problem is that a compiled code
is inherently a zero delay simulation and is extremely
inflexible as to the extent of the types of different

operations which can be performed during simulation.

3.2 Table Driven Simulation Method

In the table driven method, the parameters of each
logic element in a circuit is stored in a tabular form.2
Each entry consists of such data as logic function, prop-

agation delay, input sources, output wvalues, and output

destination. The source language statements are translated

2
M. A, Breuer, Design Automation of Digital Systems,

New Jersey, Prentice-Hall, Inc., 1972, pp. 127-128

22

into a data structure representing the circuit. During
simulation the data structure is operated on by a conirol
program which analyzes the information in the lists in
accordance with the simulator command statements to deter-
mine the flow of data and logical values in the network.
The interpreter program operates by evaluating all
the elementsand assessing those subroutines which are
required by the program rather than having individual
macros for each element. When a large circuit design is
simulated the running time of the simulator could become
a factor because of the sequential nature of the program
and the number of instructions to be executed. In a table
driven simulator for a given input pattern only a certain
number of the elements will be changing their logic states,
A large reduction in computation time is achieved in DLS
because only those elements which are supposed to change

states are evaluated.

5.5 Dual Table Simulation

DLS contains seven tables but the heart of the program
is contingent upon two of the tables. These two tables are
known as T1 and T2, contain all the logic levels of the
network. FEach logic level is stored in one word of memory,
in the case of the 8080 microprocessor a word of memory is

8 bits in length. At the beginning of the simulation run

23

Dual Table Operation

\ OR
A .
B L__/
(a)
.OR/2. A,B,C IC=p
(b)
Table T1 Table T2
(A) (A)
L)
(B) j\/ (B)
(¢) *1~*-—~ > (c)

(c)

Figure 3-1

24

both T1 and T2 contain the same information. If no initial
condition is given for each element a logic 'X' is auto-
matically assigned to the output of that element.

The simulation is done by taking the inputs from T1,
performing the logic function called for and storing the
results in T2, For example, Figure 3-1a shows a single
two input one output OR gate. In DLS a line of source
code to describe the gate is shown by Figure 3-1b. The
line tells the interpreter program the type of logic gate,
the number of inputs, the input symbols, the output symbol,
and any initial condition for the output symbol. The
program would translate this line code and assign three
words of memory for T1 and T2, for this one element. ZEach
table would have the same logic levels assigned to them
at the beginning of the simulation. During the simulation
the two input values would be taken from T1, operated upon
and stored in the output, located in T2, as can be seen in
Figure 3-1c. At this point a comparison is made between
the contents in T1 and T2. If the two tables contain the
identical information then the simulated circuit is said
to have reached a stable state. Disagreement indicates
that some of the signals are still being propagated through
the circuit.

If only one table existed there would be no way to
ascertain whether the network had reached a stable state,

since there would be no record of the previous state. Two

tables make it possible to check the stability of the
circuit. After all logical operations were performed T1
would contain the n-th state while T2 would contain the
n+1 state. When comparing the n-th and n+1 states of the
network it can be determined if the network had achieved
a stable state.

A clarification of this analysis may be seen in the
example shown by Figure 3-2, which is a simulation run of
Figure 3-1a. Assume that both inputs (A and B) are at a
logic '0' and the initial condition of the output (C) is
also at a logic '0O.' Figure 3-2a shows that at the start
of the simulation both T1 and T2 contain the same data.
Assume now that one of the inputs (A) is going to change
to a logic '1,' but in a three value simulation it must
for one time unit be at the transition level 'X.' The 'X'
value is substituted into the (A) location in T1 and T2,
then the OR operation is performed as seen in Figure 3-2Db.
A comparison is made between T1 and T2. Since they are
not the same the operation is not yet complete, so T2 is
copied over into T1. The n+1 state now becomes the n-th
state and a new n+1 state must be generated. Now that the
input (A) has been in the transition state for the reguired
time it now goes to a logic '1.' Another OR operation is
performed as can be seen in I'igure 3-2c. Again after the
operation T2 is not equal to 11 so it is copied into T1

and again another OR operation is done. This time T71 is

(a)
(B)

(C)

(a)
(B)
(C)

(4)
(B)
(C)

(A)
(B)

(C)

Mo
(O))

OR Gate Simulation

T1 7T2
@ (&) 9
(B)

& (C) 0)
(a)

X X

¢) $

& — X
(b)

1 | 1

@] %

X 1
(c)

1 1

7 I P

1 1
(d)

Figure 3-2

27

the same as T2 so the simulation update cycle is complete,
all signals have been propagated through and stability in
the circuit has been achieved. Using three value simulatior
it took two time units to produce the correct output, but
it took three time units for the circuit to be considered

stable in DLS,

5.4 Table Setups

It is the formation of the other five tables which
the translator portion of DLS uses to setup the dual
simulation tables. Certain information has to be extracted
from the source program and broken down into the different
tables. Consider Figure 3-3a which is a two element device.
The enclosed area shows the portion of the circuit which
will be under test. The lines extending from this area
are the test inputs and the test output. Other internal
signals can be monitored where applicable. To simulate
this circuit using DLS the device is described by English
language.type statements, shown in Figure 3-3b. The
program must be given the test inputs, test output, gate
type, and any initial conditions.

The first thing DLS does is to scan for all symbols
used in the circuit description. Figure 3-5c¢ shows the
creation of the symbol table. ILach symbol, which can be

up to five characters in length, is stored in the symbol

28

DLS Table Breakdown

(a)
JINPUT. A,B,C
JAND/2, A,B,D IC=0
.OR/2. D,C,E IC=1
.PRINT. A,B,C,E
(b)
Symbol Table Input Table
symbol | A | (A)] (AW (A)
B | (B) (B (B)
¢ | (e)f (on (C)
D | (D) (@) ()-- memory (d)
location in
(e) table T1
()-- memory location in table T2

Figure 3-3

29

table along with its corresponding address as seen in

tables T1 and T2. The symbol table is very important

since all the other tables will access it to determine
the locations of the symbols in table T1 and T2,

DLS then looks for certain control words for the
formation of the test input table., Once DLS finds the
control word, it then scans the rest of the line for
symbolswhase-addresses can be found in the symbol table.

DLS completés the operation by storing the input symbol
addresses in the input table., In addition a count of the
number of test inputs is maintained as shown in Figure 3-3d.

The same procedure is done in determining what points
of the circuit the user wants to monitor during simulation.
In this case DLS will scan for the print control word.
Addresses are extracted from the symbol table and stored
in the output table along with the count on the number of
outputs, as seen in Figure 3-4a. For both the input and
output tables, the addresses assigned are those correspond-
ing to table T1. Since after a simulated network has
reached a stable state T1 will contain the same information
as T2, there would be no need to access information from T2.

The next two tables to be formed are created simultan-
eously. DLS scans the program looking for the logic gates.
When a gate is found that gate type count will be incremented
(Figure 3-4b) and then DLS will create an updating sequence

table (Figure 3-4c). The update sequence for any two input

30

Simulation Tables

Gate Type Table

Qutput Taste Gate Type #
(&) axp/2 | 1
(B) OR/2 |
() NAND/2 o
(E) (b)

(a) 1
Update Sequence (1) .
(4) (B) X
(5) (C) X
(D) (D) s
(D) (E) 1 (a)
) T2
| B (A) X
(c) (B X

()-- memory location (cy X

C ym momony 1ocation V| *

in T2 table oy ?

(&)

Figure 3-4

31

input device would consist of the two inputs to the gate
whose addresses are located in table T1, followed by the
output, whose address is located in table T2. For logic
elements with four inputs and one output, the update
sequence table would contain four addresses from T1 and

one from T2. It should be noted that prior to simulation
all symbols which were not given any initial condition are
assigned a logic 'X' to their respective locations. Symbols
with assigned initial conditions are inserted in both tables

T1 and T2 prior to simulation.

CHAPTER 4

THE DLS PROGRAM

4.1 DLS Program Structure

The DLS simulator was written in a format kmown as a
modular program. There are three distinct modules; con-
troller/editor, compiler, and executor, ZEach module acts
independent of each other but can not operate without the
others., ©Parameters are not passed back and forth between
modules but instead the controller will partition off
blocks of memory where all the necessary information will
reside. These blocks of data or tables have no fixed
memory addresses., Also each table does not have any fixed
size, Figure 4-1 shows how the memory would be allocated
for a given simulation. The object file of DLS occupies
the first 4K block of memory. The control program then
partitions off the rest for the tables.

The source program which is the topological description
in the DLS language is entered into the memory via the
editor. As each line of data is taken in and stored in
memory, the size of the source program increases. The

control program will then alter where the next open source

32

BEGIN

:START

NEXT
SYMBS

SYMBE
T15

T1E
T2S

T2E
INP

OUTP

SIMTS

SIMTE

33

Memory Allocation

DLS PROGRAM
(object file)

SOURCE PROGRAM
(source file)

SYMBOL TABLE

SIMULATION
TABLE 1 (T1)

SIMULATION
TABLE 2 (72)

INPUT FILE
TABLE

OUTPUT FILE
TABLE

UPDATE
SEQUENCE TABLE

Figure 4-1

4K

34

program location will be located in memory. If there are
alterations in the source program any previously compiled
network becomes void. This is because when the source
program increases or decreases in size the other table
addresses will not be altered, meaning source code inform-
ation may overlap into the table area.

Once the network description is complete the compiler
module will be called upon. The compiler takes the
source program and breaks it down into the representing
data structure. Once the compiler sets up the tables it
is the function of the execution module to perform the
simulation. The executer contains a simulation controller
which calls upon the user to setup certain simulation
parameters. Using these parameters plus the compiled

tables the network can now be simulated.

4,2 Source Program Requirements

It is possible to define logic circuits in terms of
Boolean équations but impractical for large complex circuits.,
To reflect the implemented configuration the equations
would have to be derived directly from the actual circuit.
Such an approach would be rather cumbersome. A better way

would be based on an element description.1 Lach element

'H. J. Kahn and J. W. R. May, "The Use of Logic
simulation in the Design of a Large Computer System,"
The Radio and Electronic Engineer, Vol. 43, No. 8 pp. 497-503

35

would have its inputs and output uniquely defined, making
it easer to define complex compound modules. An element
would consist of gate type, number of inputs,-and the out-
put. DLS uses this along with another parameter, the
initial condition. This helps eliminate transients which
would exist when the simulation first begins, since all
logic elements which are not given an initial condition
are put into the logic 'X' state.

DLS is slightly limited in .the types of elements it
can presently-simulate. Figure 4-2a and 4-2b show the
types of elements which DLS can handle; That which is in
capitalized letters must be typed by the user, the lower
case letters are where the user would put variable names,
which can be up to five alphabetic characters in length.
The initial condition is optional to the user and can be
completely left out.

It is the users responsibility to inform DLS, within
the source program, which logic variables are primary
inputs and which are monitored outputs. A primary input
is a variable whose logic level is not generated internally
in the circuit but rather must be supplied externally by
the user. They can be considered the test input paths.
The monitored output points are those variables which the
user wants to view during the simulation. The format for
these operations is shown in Figure 4-2c.

The final requirement for DLS to operate is that the

Command Word Format

LAND/2.
NAND/2.
.OR/2.
.NOR/2.
.EXOR/2.

.AND/4 .
.NAND/4.
.OR/4.

.NOR/ 4.
.EXOR/ 4.

. INPUT,

. PRINT,

.BEND.

inl,in2,out IC=

in1,in2,out IC==—

in1l,in2,out IC=___

in1,in2,out IC=___

in1,in2,out IC=__
(a)

inl,in2,in3,in4,out
inl,in2,in3,in4,out
inl,in2,in3,in4d,out
inl1,in2,in3%,in4d,out
inl,in2,in3%,in4,out

(b)

al,az2,a3,...,a

n
B1,b2,b3,...,b
(e)
(a)

Figure 4-2

LT

37

last line in the program must be as shown in Figure 4-24.
This statement informs the compiler that there is no more

source code to be compiled.

4,3 The Coﬁtroller/Editor

The controller/editor module performs two duties for
DLS., Its first task is to interact with the user to
determine what action DLS is to perform. The second duty
is to edit the source program which the user loads into
the computer via a terminal.

The source program is loaded one line at a time.
Each line must have a four digit identification as the
first four characters. This is simular to the program
language Basic. As each line comes in the source program
is scanned for where the new line will go. This is done by
scanning the source program for the other line indentifiers
then comparing it with that of the new line. Figure 4-3
shows the flowchart depicting how the editor goes about
placing.a new line into memory. What must first be done
is to determine if a line with the same number already
exists in the source program. If it does 1t must first
be deleted from memory. After that has been determined
then the routine finds where the new line goes and puts
it there.

Figure 4-4 is the controller routine flowchart. Its

38

Source Program
Update Routine

INE

- ALREADY LR
EXIST v
- DELETE
NO
IT FROM
N SOURCE

FIND WHERE
LINE WILL GO
IN SOURCE

OPEN SPACE
TO ACCOMDATE
NEW LINE

~

TRANSFER
BUFFER TO
SOURCE

N

(:ﬁETURN :)

Figure 4-3

39

{ START) Controller
Routine

>

NG

READ A
LINE OF
DATA
COMMAND YES
NO
CALL COMMAND
FUNCTION
SELECTOR
A
PROPER YES

L{ig////f

NO Y

CALL SOURCE
PROGRAM
UPDATE

‘

PRINT
ERROR
MESSAGE

Figure 4-4

x

PERFORM

v““‘—'—“N EW

ROUTINE |

PERFORM

i —| LIST

ROUTINE

PERFORM

, RESEQUENCE| .
=] ROUTINE

PERFORM
FAN
ROUTINE

CALL
COMPILER

ROUTINE

CALL
EXECUTION
ROUTINE

B

ENTER

“

RETURN

Figure 4-5

Command Function
Selection Routine

41

task is to get a line of information from the user and
determine if it is a command or source data. If it is
source data and it fits the proper format then the source
program update routine will be implemented. If it is a
command theh the controller will call the command function
selector routine. The function selection process is done
by simply matching up the contents in the input buffer to
some test patterns to determine which function is to be
implemented. This process is shown in Figure 4-5.

DLS has éix command functions which can be performed.
Two of these commands (COMP and EXEC) will pass control
over to either the compiler or the execution modules. Three
of the remaining four commands are editor orientated. This
entails some sort of source program manipulation. The
command NEW will reset the source program memory pointers,
erasing any previous source program. The command LIST will
print all of the source program which had been entered by
the user. The command RESEQ will resequence all the line
identifiers of the source program in memory. Starting
from zero for the first line and working up in steps of ten.

The sixth command FAN can not be called upon until the
compiler module has been implemented. FAN will calculate
the fanout (the number of connections per logic line) of

the simulated network.

4-4 The Controller/Editor Program Listing

42

B T R R R e R R R R R R R Rk R R B I T et S S)

5

e LNy

ANG:

el
I
Fu

i

ol

s FUNCTI
; CALLS

s INPUTS
; QUTFUTS
P LESCRIP

~e

[

b

[WY
[S

SR 0] N

(2

-t

0l

SR
N LT

CALL
JMF
R
oR
ok
CALL
MV I
LXI
My
INX
OCR
JNZ
MVI
CALL
LXI
MVIT
CALL
CFI

ON

s MAIN PROCGRAM
: QUTCH, GETCH: CRLF

: REGIN. DATA, BUFFR

TION

M bTAr\T
:THIS

LENTH
1S THE CONTROIL

ER AnD

tEDITOR FPROGRAM

IT FRINTS

FRR K URE L CN S H LS EL RN R RN LN E Ry

+
:2UT ALL THE NECESARY TITLES
s ANLD INTERADTS WITH THE USER
s TO DETERMINE IF THE UJSER IS
INFUTING & STRING OF DAaTA OR
t REQUESTING CERTAIN QFERATIONS

: TO TAKE FLACE

SEy REGIN

HeDATA 3 BEGINNING OF SOURCE FROCRAM
ITART

Hir AAZ SRINT 2UT THE FROGRAM TITLES
Ay M

)

NEW
QUTCH
AAL
OOH: OAH

OAH, 20H, Z20H,

ot
J

‘OIGITAL LOG

Y SIMULATORY » OAH: OAH O

CRLF

By 654

He BUFF R
My, 20R

H

B

Al

Ay Ty’
QUTCH
Hs BUFFR
By O
GETCH
QLA

AN

184

AAS

7FH

AQnG

Ay Bt

P SETUR AN INFUT BU

F

ag!
._.

P ERINT THE FROMPT MESSAGE

s INFUT A STRING OF CHARACTERS
:TO BE INTERFERATED, CR OENDS

s CONTROL "X’ RILLS 1HE LINE
;THIS EBACESFACES ONE CHARALDTER

fHE STRING

\\\\\\

A LINE

IN

oA A
Jz AAZ
MVI A, O8H
CALL QUTCH
oCR =
MVI My 2OH
ocX H
JMP AAS
AL MOV Ms A ; LOAD CHARACTER INTO BUFERER
INX H
INR B
MOV A =
CE T &5 BUFFER STRING CAN ONLY EBE &4
JINZ AAS s CHARACTERS IN LENDTH
AAT LXI Hs BUFFR s START TO INTERFERATE THE STRING
MOV A B
STA LENTH
MOV A M
CFI ‘07 s TEST TOQ SEZ IF THE LINE STASRTS
JM AAB
CF I =R | SWITH A DIGIT WHICH MEANS THE
T LINE JSTRING IS DATa TO BE STORED IN
= L ; THE SOURCE FROGRAM
g7 LIST P JUMF TO LIST ROUTINE
CPI N
JZ NEW s JUMF TO “NEW’ ROUTINE
CE TR
JZ RESEG s JUMF TO PRESEGUENCE’ ROQUTINE
CFI C
JZ COMF s JUMP TO THE COMPILFR ROQUTINE
CFI ‘e’
JZ EXEC ; JUMF TO THE EXECUTION ROUTINE
CeI o
JZ FAN s JUMF TO THE FANOUT ROUTINE
AAS: LXI HyAALO 3 IF NO MATCH EXISTS THEN
AT, MOV As M P FRINT QUT THE ERROR MESSAGE
CPI O
JZ AA3 s THEN TRY AGAIN
CALL QUTCH
INX H
JMF AATG
ANLC: OE OLHy OAH, F % ERFROR® %7, O
FHER XX AN ELARAGELREVRE LA AR LA SN A EH YL AL EN LN RYLLERY XXX gE
; ELUNCTION s LIST
; CALLS s CRLE, QUTCH

s INFUTS s MOTHING

44

; OUTHFUTS + NOTHING
s DESCRIFTION :LIST PRINTS QUT THE USERS
F : SOQURCE FROGRAM FROM MEMORY
R R R e i S 2 s T 222X 2 T S 2 28
LIST: CALL CRLF s CALL CARRAGE RETURN AND
cCALIL ~L ; LINE FEED
LHLD NEXT s LAST BYTE OF SQOURCE FROCGRAM
XCHG
L=LD START FIRST BYTE OF SOURCE FPROGCRaM
ARL: MOV AL
CHF E
INZ ARZ
MOV ArH ; TEST TQ SEE IF THIS IS THE LAST
CMF I sBYTE TO EBE FRINTELD
JZ AAZ
AR MOov As i
CALL OUTCH s OUTHEUT THE CHARACTER TO THE PRINTLR
INX H
JPE ABL s GET NEXT BYTE
R I T O s s,
s FUNCTION s NEW
; CALLS s NOTHING
s INFUTS : START
s QUTFUTS s MEXT
s DESCRIFTION ¢t NEW CLEARS OUT THE SOURCE
; s OLD FROGRAM MEMORY BUFFER

b4

IHEHF LR UG FF XA L LU T LA FERERF A EEXLEAALLFSEFA DX R ERE LR R

¢

~ o,

I

-

CALL
LXI
: MoV
CFI

77
oL

CALL

INX

JHE
: e

CRLF
Hy AC2
As M
©
ALCS
OUT
H

ANCL

P FRINT CARRAGE
s FRINT THE MEMG

MEMORY

Y0

RETURN AN
PROTECT

[A4
T

LINE FEED
MESSALGE

45
AZ3: CALL GETCH s GET A CHARACTER FROM TRE CONZROLE
Cri N FOR THE RESPONCE TO THE QUESTION
Jz AA3 yN-— DON’T CLEAR THE MEMORY
CFI Y i Y~-- CLEAR THE MEMORY
JNZ ACL-3 ANYTHING ELSE TRY ACAIN
LRLD START
SHLD NEXT
JMF AAZ
R RS R R R R R R R R R Rk Rk SRR R I S ok S S SELRCE S S
P FUNMCTION tRESER
s CALLS s NOTHING
; INFUTS CNEXT: START, HORK
; OUTFUTS s NOTHING
s DESCRIFTION +tEACH LINE OF SOURCE FROCRAM HAS
3 A FOUR DIGIT NUMEE- ASSIGNED Q0
; ¢ IT, RESEQR WILL RESEQUIENCE THE
; FOUR DIGITS IN STEFS OF TEN
P R RNE L LR FREL XL Y YUY SRR E XA REUERNY LU REFLERENRLERELET
RESE®R LHLD NEXT ; GET THE FIRST AND LAST
XCHG
LHLD START s BYTES OF THE SDQURCE FROGRAM
MVI Ay O s SET THE LINE COUNTER TO ZERD
~USH 4
LXI H WORK
MUI B,q
ALl MOV Ms A P BTORE THE LINE NUMBER AlAY
INX H
LCR E
JNZ Al
FoF H.
ADZ: MOV AL PTEST TO SEE IF THIS IS THE LAST
CMP E s LINE HAS BEEN RESEQUENCED
JNZ an3
MoV A H
CH= It
JZ AA3 ; IF ALL DONE RETURN TO CONTROLLER
AD3: MGV A M P SCAN FOR THE REGINNIMG OF A LINE
TNX H
e QAH
Jrz ALZ
Fidsd IR

MVI B d
LXI [WORK ;s RESEQUENCE THIS LINE
Al LIOAX o
MOV M A ; URPDATE RESEQUENCE COUNTER
INX L
INX i
nCerR B
JNZ- Al
MVI B, 3
ADS: LCx o
nex I
LOAX I
INR fal
CFI Y +1 ; COUNTER IS A DECMIAL COUNT
JF All7
STAX o
AlS FOF I
JMF A3
AL7 MVI Ay 07
STAX 18]
OCR E
JINZ ADS
JMF Alb
FHA AU A AR B XY I A B AL L RS H AL E S AR E A XL ERL BB L AL LR R AR Y BLUCH XS L RLXYE

s FUNCTIO
; CALLS

i INFUTS
+ QUTFUTS
s DESCRIP

b4

N tLINE

s EXIST FIND, OFEN, TRANS
s BUFFRS LENTH

s NOTHING

sLINE IS THE ROUTINE
t TAKES THE INFUT DATA

TION WHICH

STRING

; sWHICH IS TEMFORALLY IN A DATA
; tBUFFER AND MOVES IT TO ITS”

.
7

7

s PROFPER LOCATION
: SOURCE FPROGRAM

IN THE

R R e R T L R R R R IR R R R R R S O

LINE: LXI Hy BUFFR+1
MVI Es3 i TEST TO MAHKE SURE THAT THE
AEL: Mav A M sLINE IN THE BUFFER HAS A
Crl Q0 PFOUR DIIGIT ILENTIFIER ON IT
JiM AAB
CrFI TR+l

47

F AAS8

INX H

LCR B

JNZ AEL

CALL EXIST s SEE IF THE LINE EXISTS ALREADRY
LA LENTH s IF IT L0OES LDESTROY THAT LINE
CPI &

JM AA3

CALL FIND s FIND WIHERE THE LINE SHQULD GO
CALL OFPEN FOPEN A SPACE FOR THE LINE

CALL TRANS s MOVE BUFFER INTO SOURCE MEMORY
JMP AA3

UK T XL AR LEL RN AL RAAEH AR AL SRS AL H R UL LYY LN LR REFRELR AU NS RY

s FUNCTION sEXIST

; CALLS s NOTHING

+ INFUTS sNEXT, START BUFFR

s OUTFUTS s NEXT

s DESCRIFTION tEXIST EXAMINES THE FOUN DIGIT

; s IDENTIFIERS IN THE TEMPORY

i t BUFFER AND SEARLHES THROWGH THE

; s SOURCE FROGRAM TO SEE IF A LINE

; tWITH THE SAME NUMBER EXISTS. IF

; ¢ IT DOES THAT LINE WILL BE DESTROYED

FEREXR LT XRRXNEARL L LR U XN LR E L LU L F LR E SR L SR ES L LR RXREHT RN

XIST: LHLD NEXT ; .OAD THE PARAMETERS OF THE
XCHG s SOURCE FROGRAM
LHLD S5TART
Ci: MOV As Ll ; TEST TD SEE IF A COMFLETE
CHMF E s SEARCH HAS BEEN MADE
JNZ AGZ
MOV AsH
CMF]
JINZ AGZ
RET ; LINE NOT FOUND
G2 MoV AsM
INX H
CrI O4aH s FIND HE BECINNING OF A LINE
JINZ AGL
~USH o
FUSH H

MWV I s 4

LXI

AG3: LDAX

I
!
o

“

AG

CHP
Jz
FOF
FOP
JHMF
INX.
TNX
LOR
JINZ
POR
FOF
neX
nCX
FUSH
FOF
FUSH
FOF
INX
LDAX
CFI
Jz
TRYX
MOV
CME
JNZ
MOV
CHF
INZ
SHLII
RET

“n

& LOAX

MOV
INX
INX
MOV
EMe
JINZ
MOV
CHF
JNZ
SHLL
RET

48

B BUFFR LOALY THE FQUR DIGITS FROM BUFFER
B

M yCOMPFARE WITH THE ITDENTIFIER
AG4 s IN THE SQURCE FROGRANM

H

o

AG1

E

H

b

AGS

i

I

H

H

I

B

H

o

i8]

]

OOH

AGS

0

Ay [

= s IF THE LINE IS FOUND TO SE
AGS i THE LAST LINE IN MEMORY THEN
AsE s RESET THE NEXT BYTE TO THE
C s BECINNING OF THIS LINE

AGS

NEXT

0

M A s LINE HAS BEEN FOUND DESTROY IT
0

H

A [s TRANSFER THE REST OF THE

B s MEMORY BLOCK TO CLOSE THE
AG6 s AREA WHERE THE OLD LINE WAS
A E

C

AG&

NEXT s RECALCULATED NEXT BYTE ADDRESS

49

s CALLS s NOTHING
i INFUTS : BUFFR, WORK
; OUTFUTS sNOTHING
s DEGCRIFTION : TRANGS WILL TRANSFER THE INPUT
7 s DATA STRING WHICH RESIDRDES IN
; : THE TEMFORY BUFFER,TO THE
; : SOURCE FROGRAM MEMORY
P R R R R R R LR b R S R B R L b LR
TRANG: LXI Oy BUFFR s BEGINNING OF THE BUFFER
LHLED WORK P WHERE IN MEMORY IT WILL GO
MVI M ODH
INX H
MVI My OAH s ATTACH THE LEADER CHARACTERS
INX H
MVI B b4
AFL: LoaX]
MOV M A s TRANSFER THE BUFFER OVER
INX H 3 TO SOURCE MEMORY
INX I
DR B
JNZ AF1
RET

PEEAX LA R A BN R LI L LR R EHE XA A AR LF AN AR L EF R IR LE R AR ERRE R
s FUNCTION FIND
s CALLS s NOTHING
s INFUTS tNEXT START BUFFR
s OUTRUTS s WIRK
s DESCRIFTION tFIND ROUTINE SEARCHES THROUGCH
; sMEPIORY TO FIND THE ADDnla
; tWITHIN THE SOURCE FROGRAM
; tWHERE THE NEW LINE OF DATA GCOES

FHENRHEA LY X R RFERRLRE LAY EH A LR XH A A AL LT AL F XL R TR HETRCET RN LN
;
i
H

’

FIND: LHLD NEXT s LOADN THE SOURCE PROGRAM FARAMETERS
XCHG
LHLD START

AHL: MOV Ay L PCONDUCT A MEMSRY SEARCH

50

CHMF E
JNZ AHZ
MOV AsrH
CHpP i8]
JINZ AHZ
XCHEG
SHLLO WORK
RET.
AHZ: MOV Ay M
INX H
CPI OAH ;) TO FIND THE BEGINNING OF A LINE
JNZ AHL
FLSH o
FUSH H
MVI 0, 4
LXI By BUFFR ;; COMFARE THE FOUR DIGIT INDENTIFIERS
AH3Z: LDAX R FTO DETERMINE IF THE LINE IN THE
CHP M s RUFFER SHOULD GO BEFORE THIS
JM AHS s LINE IN MEMORY
JZ AH4
FOF H
FOR 3]
JMF AHI1
AMds INX B
INX H
nCR o
JNZ AH3 s NOT THIS LINE MOVE ON TO
AHD: ~0rP H s NEXT LINE
nex H
ocx H
FOF h
SHLDO WORK s FOUND WHERE IT SHOULD GO
RET
R R R R e s e I s SN TR T T
s FUNCTION s OFEN
; CALLS s NOTHING
;s INFUTS s NEXT: WORK
s CQUTRUTS s NEXT
s DESCRIPTION s 0FEN IS THE ROUTINE WHICH
; :OFENS A &4 BYTE STRING IN
; : THE SOURCE FPROCRAM TO MaK
H sROOM FOR THE INCERTION

(0F THE NEW LINE OF DATA
CE LR AR AR R AR B AAH LR E L AR N AL RN AR AL EREE N CRERERE RN

#e

N

ok

*

#*

%

R

H o~
e

%

. ME

LRELDO
XCHG
LHELD
FUSH
POF
OCX
LXI
pah
SHLD
MOV
CHE
JNZ
MOV
ChF
RZ
LDAX
MoV
0CX
LCcX
JMF

O'«c -
o
™
yd

All:

AlZ:

NEXT

WORK
H
B
B
Hsbb
D
NEXT
Ay D

AlZ
AsE
C
D
Ms A
I

ALl

ot

W

; GET THE LAST BYTE

BYTE OF DATA

THE LAST
LOWER

s MOVE THE EBLOCK QF 0ATA FROM
s THE POINT WHERE THE INCERTED
s LINE WILL GO TO THE LAST

s LINE, DOWN TO THE NEW NEXT LOCATION

HE R EE R EEEEEEE R EE R EE RS EE R DR TR R TR D TR SRR R R T I 3 AT T

s FUNCTIO
s CALLS

P INPUTS
s OUTFUTS
s DESCRIP

a
¥

N

TION

1 FAN

tCRLF, OUTCH, PREYT
$SYMRBS, SIMTE, SIMTS, WORK

s WORK

: FAN SEARCHES THROUGH THE
:SYMBOL TABLE TO FIND EACH
$OYMBOL AND COUNT HOWMANY
:TIMES THAT SYMEBOL IS USED

$IN THE NETWORK FOR COMPUTING

: THE FANOUT 0OF FACH LOGIC LEVEL

PREELAERL AR AKX L H RN E AL L RE L L AR AR F AR L LR AR H AR F AL LA LN LY ERE 2%

FAN: CALL
CALL
LHLD

ATO: MV I

AJL: MY

CRLF
CRLF
SYMBS
[y 5

Ay M

s START OF SYMGOL TARLE

SET A SYMEOL

N
;!

AJ3:

ATd:

H

Ay O
WORK
SIMTE

SIMTS
AsH
I
AJ3
As L
E
AJ3
i
WORK
FRBYT
CRLF
H

H
AJO
AsM
H

C
AJ4
H
AJZ
As M
H

R
AdJ2
WORK
1

WORK
AJZ

s STORE THE ADDRESS 0OF THE

s FROM T1 TAEBLE

-3
S
m
=
'f'}
fao—
=z
i
[
o
s
;»,3
]
)"6

IN THE WORK

s LOALD SIMULATION TABLE

; SYMBOL TAEBLE

s BEARCH DONE FRINT THE
MaNY TIMES THAT
IS USED

; OF HOW
; SYMBOL

SEARCH

s MOVE ON TO NEXT SYMEOL

s MAKE THE ADDRESS COMFARISON

s EACH TIME A MATCH EXISTS

s ADD

ONE TO ITSE

FANOUT COUNT

RESULT

SYMEOL
EGISTER

(5]

53

4,5 The DLS Compiler

The routines which form the compiler portion of the
simulator are the heart of DLS. The compiler module can
be broken down into six sub-modules and it is the task of
these sub-modules to create the various tables which drive
the simulator,

Once the source program has been entered into memory
via the controler/editor, the user issues the proper
command word (COMP) which initates the execution of the
compiler. The DLS compiler is unlike the standard meaning
of a compiler, where the source program is broken down into
another form of a program which is more easly understood
by the computer. The DLS compiler does not work this way.
It makes several passes over the source program extracting
different pieces of information as it goes along.

Memory is partitioned off by the compiler for the
formation of the tables where the extracted information
will reside. For example the compiler has to know how
many symbols the source program uses. This determines the
size of the tables T1 and T2. The compiler must also know
how many of each logic gate from the gate library are being
called upon. This determines the size of the simulation
update sequence tables and so on.

In the style of modular programming the compiler

routine is simply a controller. Figure 4-6 is the flow-

54

Compiler Function
Routine

.;
=

3

CALL SUM
ROUTINE

CALL PRNT

ROUTINE
CALL SYMB
ROUTINE
Y
ALL SETUP CALL IO
ROUTINE ROUTINE
CALL PACK \ RETURN)
ROUTINE
J

55

chart of the compiler routine. It performs the duty of
directing the flow of the program through several routines.
The six routines called upon are: SUM,PRNT,SYMB,PACK,IO,SETUP.
Each of these sub-modules may have several sub-sub-modules
which will be called upon.

The SUM routine is assigned the task of determining
how many of each type of logic gate are going to be used
in the simulation. Figure 4-7 is the flowchart for this:
routine. There are ten types of logic gates which can be
implemented by DLS. The SUM routine sets up the table -
which will keep track of the gate count. The routine will
terminate when the end control word is encountered.

The PRNT routine does not extract any information
from the source program but rather aids in error detection.
PRNT prints out the source program listing along with the
gate count table. The user can readily determine if all
the logic gates were accounted for in the compiling.

Figure 4-8 shows the flowchart for this routine.

The SYMB routine performs a major task. It scans
through the source program picking out all the different
symbols being used. The routine must be able to disting-
uish between a symbol and some other type of information.
Figure 4-9 has the flowchart of this routine. To determine
what is what the routine first looks for a line containing
a control word. Once this has been determined and the

proper lines found, SYMB will proceed with its function.

(;AENTER :)

FIND THE
BEGINNING
SOURCE
PROGRAM

1

FIND A
LOGIC GATE

]

]
!

|
14
ADD ONE TO

THAT GATE
COUNT

m...(g et of

. END,

NO

Figure 4-7

Sum Function
Routine

A gate would look
like .J.TYPE/#.

par

End of source
code indicator

YES
RETURN

57

ENTER Prnt Function
Routine

Y

FIND THE
BEGINNING
OF SOURCE
PROGRAM

S

PRINT A
LINE OF IT

LOAD GATE
COUNT
TABLE

58

Symb Function

Routine
(Part 1)
ENTEE
"
FIND THE
BEGINNING
OF SOQURCE
PROGRAM
-
géggRéL A1l control words
WORD loock 1like ,xxx.
I5S .END
NO
~ \
RETURN
FIND A
SYMROL

Figure 4-9

IS

SYMBOL IN
TABLE

i

LOAD
SYMBOL IN-
TO SYMBOL
TABLE

NO

Symb Function
Routine
(Part 2)

T

s

igure 4-9

60

As each symbol is encountered it is run through a test to
see 1f it already exists in the symbol table., If it is in
the table the routine will move on to the next symbol. If
not then this new symbol will be loaded into the table
along with room for the two simulation table addresses to
be assigned later. These addresses will be found once
tables T1 and T2 are formed.

Once all the symbols have been found the next two
tables can be formed. This is done by the SETUP routine,
Figure 4-10. A count of the number of symbols used was
kept by the last routine. The size of the two tables
depends upon the number of symbols., After the beginning
and end addresses of T1 and T2 are determined SETUP will
go back and assign each symbol in the symbol table addresses
to T1 and T2.

Now that each symbol has a place in both simulation
tables and both tables have been formed, what is left
is to make an update sequence. This is accomplished
by the PACK routine. What this routine does is to search
through the source program looking for logic gates. Each
gate definition contains information related to the
number of inputs. PACK then looks for the input symbols
and the output symbol and gets their addresses from tables
T1 and T2. It then assigns these addresses to the update
sequence table. A two input gate has two locations in T1

and its output located in T2. TFor a four input type gate

Setup Function
Routine
ENTER
|
Y |
’ ORpal T1 l The size of T1&T2
| ATD gz =2+ (#ofsymbols)
{ TABLES l locations
Y

[_FIND THE
BEGINNING

! OF SYMBOL
TABLE '

g
ASSIGN EACH
SYMBOL AN

ADDRESS
FROM T1&T2

|

<ijETURN_:)

Pzack Function
Routine
(Part 1)

(ENTER)

X/
CREATE THE

SIMULATION
UPDATE TABLE

l

)
LOAD BEGINNING
OF SOURCE
PROGRAM

FIND A LINE

CONTAINING A
LOGIC GATE

©

Figure 4-11

RETURN

63

CREATE THE
UPDATE
SEQUENCE
FOR LOGIC
GATE FOUND

STORE

SEQUENCE
IN UPDATE
TABLE

Figure 4-11

Pack Function
Routine
(Part 2)

To Function
Routine
(Part 1)

o]

NTER

BEGINNING OF

FIND THE }
SOURCE PROGRAM ;

)

LOAD A LINE
OF SOURCE
CODE

NO

YES

. PRINT.

=
W

Figure 4-12

LOAD
SYMBOL INTO
OUTP TABLE

GET SYMBOL
ADDRESS
FROM SYMBOL
TABLE

LOAD ADDRESS
INTO OUTP
TABLE

Io Function
Routine
(Part 2)

" LOAD

SYMRBOL IN
INP TABLE

TO

Y

GET SYMBO
ADDRESS
FROM SYMB
TABLE

L

OL

\

LOAD ADDR
INTO INP
TABLE

ESS

Figure 4-12

66

four of its locations are in T1 and its output is in T2,
Figure 4-11 shows the flowchart for this routine,

The final sub-module of the compiler is the IO routine.
It has the task of determining which variables are primary
inputs and Which are monitored outputs. Figure 4-12 shows
this routine, This task is done by scanning through the
source program looking for either INPUT or PRINT command
words. When one of these is encountered each symbol which
follows, along with its address of where in T1 it is located
is stored in either table INP(input) or OUTP(output) de-
pending on which command word was encountered. Once all
the inputs and outputs have been stored away the compiling
is complete. Control will now be passes back to the
controller/editor where errors can be corrected or execution

of the compiled program can take place.

4.6 The Compiler Program Listing

67

FERF XA XTI XL R L SE XS X G L IR I AL AL F AR ERF UE LN RS LRI ULR SR REERLLRLNE S

s FUNCTION s CaME -

>

; CALLS ¢ SUM, PRNT, SYMR, SETUF, PACH» 10
3 INPISTS tNOTHING

s CUTFUTS t NOTHING

;s DESCRIFTION ;COMP IS THE COMPILER ROUTINE
; :0F DLS.THE FUNCTION OF COMF
; IS TO DIRECT THE IMFLIMENT-

; tATION OF THE COMFILER, THERE

; tARE SIX STAGES IN THIS COMPILER
; t AND COMFE ACTS A5 THE CONTROLLER
; : IT CALLS UPON THE NECESZARY

; tROUTINES TO BREAKDOWN THE

; $ SOURCE FROGRANM,

¥
R o N 2 R s R R T X R O g

COMP CAaLL SUM ; GET THE GATE TYFE COUNT
CALL FRNT i FRINT NETWORK ~FLUS CaTE COUNT
CALL SYME ASSICN LOCATIONS TO SYMBOLS
CALL SETLR P SETUF SIMULATION TABLES
CAaLL FACK FFUT THE INFORMATION IN TARLES
CAaLL 10 P SETUR PRIMARY INPUT & OUTFUT
JMF AA3 ;GO BACH TO EOITUR

R R e e LR S R R e R L e SR LR ES TS R F B TR
s FUNCTION : SUM
s CALLS s FNDFy FNOCH, FNDS
INFUTS : 3TART WORK
s QUTFUTS : WORK
s DESCRIFTION + SUM HAS THE TASK OF DETERM-
; FINING HOW MANY OF THE FOSSIELE
; tELEVEN TYFES OF GATES ARE IN
; s THE NETWORK. CERTAIN CHARACTLARS
; :ARE USED TO KEYOFF THE ROUTINE,
; sENDF- FINDS DECIMAL FOINTS

; s FNOCH- FINDOS AN ALFHAEETIC
; : CHARACTES:, _
P HRT LN ERH A LERL LN B AL LA R E RN E A LA LERELE SRR A IR LN TR ERL R

oo
D> >

BA3:

BA-t:

m

g
[}

Ry e

o

LIOAX
CHF
JNZ
CaALL
FOF
LOAX
INR
5TAX
JMF
FOr
CALL
JMF
INX
INX
INX
INX
LIDOA
OCR
STA
CF1
JINZ
RET
0B
nR
0B

Ay ll
WORK

Hi NAZ

M» Q
H
A

AQ
B NAZ
Oy BAS
START
FNLOP
Ba4
FNDUZH

BAZ
FNDOS

BAZ
h
FNDP
EBAZ2
o

D

i

B
WORK
A
WORK
O
BA1

TNAZS

s COUNT OF GATE TYF

s
.
r

y

£S

f‘l

GATE COUNT TABLE
INILIZATION OF TARLE

GATE TYFES ARE LDETERMINED BY

A STRING COMPARISON TO THE

b4

; SOURCE FROGRAM

; LOOK FOR DECIMAL POINT

r

)

r

7

.
?

’

}

7

i THE CONTROL WORLD

GET FIRST CHARACTER

i COMPARE TO TEST STRING
s NOT FOUND CONTINUE sSCAN

NEXT CHARACTER

i COMFARE NEXT CHARACTER

IF NO MATCH TRY ACGAIN
STILL GODE FIND SLACH

i COMFARE # OF INPUTS
s NOT THE SaAME KEEP LOOKIMG
s FIND ENDY OF CONTROL WORD

+ GATE COUNT

7

INCREMENT COUNT

s SAVE THE NEW COUNT
s LOOK FOR ANMOTHER ONE

3 NQ GOCD LODK FOR NEXT ONE

FNEXT TYRE OF GATE

s CATE COUNT
; ONE LESS GATE TO LQOHK FOR

s ARE ALL GATES DONE

P STRING COMPARSON DATA
"NAGANZANGDRZ20RE
CNOZNO4EX

ZEX4JKE”

R R R T D R R R R s P R R 2 2 & R R Ry
H

H

;

;

H
PENT
BRL:

¥a)
o]
tJ

BE3:
B4

Bifths

-

START
AsL

E

ERS
AsrH

o

BE7
As M

iH
QUTCH
OAH
BRERS

69

: FRNT

s CRLEF, QUTCH: FRERYT

$ START » NE
s NOTHING

XT

¢t FRNT DOES TWO THINGS
: FIRST FOR DOCUMENTATION

¢ IT WILL

 FROGRAM, THEN IT

: THE GATE
sHELFR TO

{ FROFPER N
s COMPILED

s CLEAR SC

;s PRINT

; LOAD IN

PFARAMETE

sRUN A TE

; THE SOURCE DATA

s PRINTED

oLs

FRINT

COUNT

CONFER

ETWORK

REEN

SOURCE

o}
i

0l

ST TO

QuT

TITLE

THE NETWORK
WILL FRINT

s THIS WILL
M THAT THE
HAS BEEN

ES

CRAM

(]

&R

ODETERMINE Wi
BLOCK HAS

R R R R R R R EEE R R R R TR R R PR R LR R B BE R TR R R

EN
BEEN

5
e

H ;s 8TRIFP QFF THE FOUR
H sOIGIT LINE INDENTIFIERS
In H '
FRY H
JHP BRS
BE7 s MYl B S
BEZ: CALL CRLF
LR "
JNZ BR3
LX1I Hs NAZ ; LOAD CATE TYPE COUNT
LXI By BR1Z CGET GATE TITLE TO MATCH
BEY: LDAX B
CrI 2 s INDICATES END OF ROUTINE
RZ s IF FOUND IN PRINT CYCLE
CrFI M P INDICATES END OF THAT GaTE TYFRE
JNZ ERil
INX R
MVI ArF9H
MOV EsM
INR E
INX H
BEE1O: ADl 1 s CONVERTS HEX TO DECIMAL
: 0AaA
OCR E
JNZ BRIC
CALL FRBYT s FRINT THAT GATE COUNT
OCR o
RZ
CALL CRLF s MOVE ON TO NEXT GATE TYFE
JMF EB?
BE11: CALL guTC) sFRINT GATE TITLE
INX B
JMF BEZ
BREL122: g " NAN
R ChO/2=7NAND/4=7AND/2 =7AND/4 =20R/2 =77
e ‘OR/4 =7?NOR/2 =7NOR/4 =PEXCR/Z=VEL{QOR/4=71"
[X e RS TR R R R R P R L R A R
3 FUNCTION : SYME
s CALLS s FNDF S SYEX, SYST
3 INFUTS sNEXT START
s QUTRUTS s BYMBS, SYMBE, NUMRB
s DESCRIPTION s SYMB SICANS THROUGH THE S0OURCE
; $ FROGRAM AMD FINDS A SYMEBOL,
b +IT THEN LOOKS TO SEE IF IT
i tALREATIY IS IN THE SYMEROL

s TARLE, IF IT IS THEN MOTHIMNG

2
7

H ¢+ IS DONE, IF IT I8 NOT THEN
3 : THE SYMBOL WILL BE FUT INTO
+ THE TABLE,
PR - R R AR b o -k ok AR b R R I R R R R A R R kR kA
¥
SYMIs LHLD NEXT ; LOAD END OF SCURCE PRDCRAM
MVI My @7
INX H
SHLIT SYMRBS ; SETUF THE DEMENTIONS OF
SHLO SYMERE s THE SYMROL TAaRLE
LXI 1y 0
SHLD NUME ; COUNT OF THE = 0OF SymROLS
LHLD START s START SYMEOL SEARCH
BC1: CALL FNDF
RNC
CALL FNDP
RO2: MOV A M s FIND OUT IF THE FIRST
INX H s CHARACTER IS A SYMROL OR
Crl ODH ;A CONTROL CHARACTER
JZ BC1L
CPI ‘@’
RZ
CFI ‘A7
JM rC?2
CrI ‘27 +1
JP BCZ
oCX H
CALL SYEX s SEE IF SYMBOL ALREADY EXISTS
JC BC2 + IF FOUNLD MOVE ONTO NEXT SYMBOL
CAaLL SYST s PUT NEW SYMEBOLS INTO TAEBELE
JMP BRCZ
FUTHXL YRR A YL F LN RLXUR LI RL LA L LT UL LR RE LR RE
s FUNCTION :SYEX
s CALLS s NOTHING
3 INFUTS :SYMEEy 8YMRBRS, CARRY FLAG
; OUTRPUTS s WORK
s DESCRIFTION +SYEX SEARCHES THROUGH THE
H ¢t SYMBOL TARBLE TUO DETERMINE

s IF A GIVEN SYMIOL ALREADY
; tEXISTS IN THE TABLE.IF IT
$THWOES THEN IT WILL STORE

H THE ADDRESS 0F THE SYMpOL

72

; ¢ IN WORK AND SET THE CARRY
$ s FLAG.IF NO MATCH THEN THE
3 :CARRY FLAG WILL RE RESET
L R R et R T T & E R R S

SYEX: FLSH H

FOP B
LHLD SYMEBE ; ENDN OF SYMEOL TARLE
XCHG
LHLD SYMES s BEGINNING OF SYMBOL TABLFE
BD1: MOV AL
CHpP E
JNZ BOZ2 ; TEST TO SEE IF THE WHOLE
MOV Ay H ;s TABLE HAS BEEN SCANED
CHP D
JNZ RO2
FUSH B
FOP H
STC ,
CcMC s NO FIND RESET CARRY FLAG
RET
B2 FUSH Iy
FUSH B
FUSH H
MV 0, 5 s SYMBOLS ARE 5 CHARACTERS LONG
R[13: MOV As M s GET THE FIRST CHARACTER
CF1I 0 s TEST TO SEE IF SYMBOL IS LESS
JZ BLO7 s THEN 5 CHARACTERS
LDOAX I3
CMP M ; COMFARE TO SYMBOL IN TABLE
INX B
INX H
JNZ rO&a s NO SYMEBOL MATCH GET
LCR Iy s NEXT SYMEOL FROM TABLE
JNZ B3
Elicte FOF 0 & POSSIHLE MATCH 80 FAR
FoR D
FOF Iy
PUSH B
MOy Ay M i ALL CHARACTERS MUST MATCH
CRI 0
JNZ $+7
MY H
Jio& BO4+4
ooen WORK ; STORE ALDRESS OF SYRHIIL
=L H
Bz R AM

CPI -
JHM RDO&
IS) ‘77 +1
JF BD4&
Jpie BOS
Bli&: s7o : SYMRBOL FOUND SET CARRY
RET
R7 3 LbaX H
cPI ‘A
JM BrOg
CRI * 27+
JF BhD4
BC8: FOR H s MOVE SYMBOL POQINTER TO
LXI B, 9 ;NEX“ SYMBOL ¢ CHARACTERS AWAY
DAD B
FOF B
=OF o
JMF RO ; CONTINUE SCaAN

P AAAA AL E LT L UL R LS L AN LR AL L AL E XX XXX FERA LR LR R L HF R R RN T LR E SR
s FUNCTION :SYST
; CALLS s NOTHING
; INPUTS s SYMEE s NUMB
s QUTFUTS : SYMBE » NUME
s DESCRIFTION :SYST IS USED TO TAKE A
; + SYMBOL AND STORE IT INTO
; : THE SYMEBOL TABLE.ALSO
; : LEAVING SPACE FOR THE TWO
5 s ADDRESSES WHICH WILL RE
; +FILLEDN IN LATER WHEN T1
s s AND T2 ARE FORMED

%

P P R R R R A R R R E R R R R R AR R A ik Ak R g

5YoT: FUSH H

FOF B

LHLD SYHMEBE : LATE SYMBOL TABLE ADDRESS

MVI O, 5 ;5 CHARACTERS TO BE FUT INTO TARLE
Bzl Liax B

CPi A7

Jit RE3

Ce *Z7+1

JF BESZ

74

MOV My A iMOVE A CHARACTER INTO TABLE
INX H
INX B
DCR n :NEXT CHARACTER
INZ BEL

BEZ: INX H ; LEAVE 4 BYTES OPEN
INX H s FOR THE ADDRESSES
INX H
INX H
SHLD SYMBE $NEW END OF SYMEOL TARLE
LHLD NUMB
INX H } INCREMENT SYMBOL COUNT
SHLD NUMEB
PUSH B
FOF H
RET

BE3: MV T My O i FACK A SYMBOL WITH NULL
INX H ; CHARACTERS WHEN IT IS LESS
OCR D 3 5 CHARACTERS IN LENGTH
JINZ EE3
JMP BE2

PERAERN LA A A A F XX AL AL L RN R XL N H LA LR AR LR F IR LE R RAE F R R E RN R RRER
s FUNCTION : SETUR
;s CALLS s NOTHING
s INFUTS : SYMBE» NUME, T1S, T25, SYMES
; s T1E, T2E
s OUTFUTS : T1S, T1E, T28, TZ2E
s DECRIFTION : THE SETUFP ROUTINE WILL CREAT
; : THE TWO SIMULATION TAEBLES. Ti
; sAND T2, ONCE THESE TARLES ARE
F s MADE THEN SETUFR WILL G0 EBACHK
7 + TG THE SYMBOL TABLE AND ASSIGN

tEACH SYMBOL A LOCATION IN Ti
; sAND T2
R S e L R PR R R R S R S R R X P B SR R R Y

~e

SETUF: LHLD SYMEE
MVI My r ;s PUT AN END MARKER ON
INX H ; THE SYMEOL TaRLE
SHLD TLS ; START OF T1L TABRLE
XCHG

LHLD NUME ; THE NUMBER OF BYTES FOR 1

0]

s
ke

N

2¢]
s

Ja

Fl:

u

INX
INX
PUSH
DAD
SHLD
INX
SHLT
PP
DAD
SHLD
EHLD
FUSH
PO
LHLD
XCHG
MV I
INX
INX
OCR
JNZ
LHLD
FUSH

 XCHG

LHLD
MOV
cHe
JNZ
MOV
CMF
JNZ
FOrF
JMF
XCHG
LXI
nian
FOF
MoV
INX
MOV
INX
INX
MOV
INX
MOV
INX
INX
JMF
LHLD
FUSH
FOP
LHLD

75

TiE s THE END OF T1i TARLE
25 ; START 0OF TZ TaABLE
TZ2E ; THE END OF T2 TaABLE

T1S ; START TO ASSIGN EACH
H ; SYMEBOL AN ADDRESS IN T1 & T2

s THE FIRST TWO BYTES OF T4
FAND T2 ARE FOR CONSTANTS

Fi
YMEBS : BTART OF SYMROL TABLE

OwmXm

SYMEBE
Ay E
1

BF3
A D
H
BF3
[
BF 4
s FIND A SYMEROL AND
0,5 3 BKIP OVER THE sSYHEOL TO
0 sGET TO WHERE THE ADDRESS [IATA
i y SH0OULD GO
M, C By C(~-~- CONTAINS T1 ADDRESS
1
Ms B
B
H
My E ;0 E(~~ CONTAINS T2 ADDRESS
H
My D
o

|
i

BFZ s GET NEXT SYMBROL

TiE s INILIZE ALL CONTENTS TO X LOGIC

3
TiS

"
N

HFEH AU XRLXLNL AL R AL R L RN R LR E N LR REL R SR RRREERLAXEARNLHR

XEXEXELE

y FUNCTIO
;s CALLS

INFUTS
;s OUTFUTS
s DESCRIP

Nr o ME Ne NB W B

)gwb

LHLD
INX
SHLD
SHLI
LX1
LHLD
MVI
STA
FLISH
CALL
JNC
cCaLL
LAY
CFI
JZ
CrPI
JzZ

AL

RES
ArH

Y
M A ;MOVE IT TO T1 TABLE

BFS

3k

N s FACK
s FNOF, FNOCH: 8YEX
sSIMTE, START WORK, T1Sy T2E
s BIMTS, SIMTE
TION tFACK ROUTINE SCANS THROUGH
¢ THE SCURCE FPROCRAM LOGGCING
s FOR ALL THE GATES THEN L3aADS

¢ THE SIMULATION UFDATE SEQUENCE

: TABLE WITH THE FPROPER TL1 AND
: T2 ARDRESSES, THE UFDATE

: SEQUENCE TABLE PERFORMS THE
t ACTUAL NETWORK SIMULATION,

TZ2E s END OF TARLE TZ2

H

SIMTS s PARAMETERS OF UFLATE SEQUENCE
SIMTE s SIMULATION TABLE

ByRBG1i4 s COMPARISON STRING

START # SOURCE FROGRAM

A2 s FIRST SCAN FOR ALL TWO

WORK+2 3 INFUT TYFE GATES

B

FNIDF ; GET KEY CHARACTER

BGS

FNICH s GET A CHARACTER AND COMFARE

B 3 IT TO THE TEST PATTERN STRING
rY sKEY TO SWITCH TO « INFUT TYFES
BG4

S’ ;s ENDD OF TEST FATTERNS

BGS

U HA LR LR LA SR F R R EN T RS XL LR LR XA LHE X HRELRRRF AL RS

#* % ¥

jos}
0
Gl

[y
[y
[

BLE:

BGLO:

INX
SMP
ParF
INX
PUSH
MVI
STA
JMP
LHLD
FOF
L.DAX
INX
CFI
RZ
CFI
JNZ
FPUSH
JMF
INX
INX
JH
LDA
MOV
CalL
MOV
CFRI
JZ
CrPI
JZ
CPI
JM
CPI
J
INX
JmMp
FLUSH
CALL
XCHEG
LHLD
XCHG

A4
WORK+2
BG2
START
B

B

B

I%l

BG2
WORK+Z
B A
FNOF
Ay M
/l}
RGi14
JOI
BRG13
/A/
BRG1O-4
YL +1

iSO

ETIC STRING

133

;) TEST ENID OF aLFHA
s COMPARE & OF INPUTS NOW
;s COMPARE STRING TO MEMORY

s S0 LETS GO
t TESTS FAILED TRY NEXT DATE TYF

Ty
i

; GET SOURCE GATE # OF INFUTS

; GO BACK FOR COMFPARISON

s SWITCH TO 4 INFUT GATE TYSES

m

s RESTART SCAN

s ALL LONE RETURN

FNEXT GATE TYPE INDICATOR

s ONCE THE GATE IS FOUND TO

s MATCH THEN THE INFUT AN
;OUTFUT ADDRESSES FROM T1 AND T2
r ARE LOADED INTO THE UFLDATE

; SEQUENCE TABLE

A LOGIC ONE CONSTANT

;A LOGIC ZERO CONSTANT

s SYMBOLS ARE FOUND AND THERE
s ADDRESSES ARE FUT INTO THE TARLE

s GET THE SYMOOL ADORESS

nJ
0
ot
ot

BC12:

BG1i4:

Sty
FOV
CrPRI
JZ
PUSH
ner
LHLD
LA
MOV
INX
INX
L.pAax
MOV
INX
SHLD
FOF
MOV
CrI
JNZ
FOF
FUSH
MoV
INX
Crl
JZ
cCrPI
JZ
Crl
JNZ
FUSH
PUSH
LHLI
MoV
INX
MOV
STAX
FOP
FOFP
JMP
INX
INX
JHMP
LX1I
INX
JMP
FPUSH
LHLD
INX
SHLD
L.X

FOF

Ms A
I

H

I
Ms A
H
SImMT
H
AR
GFFH
BGY9

BG11
0, T1
H
BG11
H
T1S
H
HORK
O WO
H

78

FTEST TO
s FOR THAT

E ; LOAD END
; MOVE THE
; INTO THE

E s NEW END

; BCAN FOR

s SCAN FOR

; ALIDRESSE
;CONDITIO

S s AUDRESS

s ADDIRESS

RK

OF LoGIC

IF ALL

SEE
GaTE WERE DONE

OF TABLE
NEW SEQUENCE
TABLE

OF TAEBLE

END OF LINE

INITIAL CONDITIONS

S 0OF WHERE
NS GO

OF LOGIC ZERD

ONE

SYMBOLS

INITIAL

79

INX H
JHP BG11
BCié6: DE CNAITZFANIZ,ORIZNOI 2, 7
0B TEX!IZy?NATY, ANT4,0Ri 4,7
0B ‘NOI4,EXT4, JHIF, 7
3
PHL LS L LR F XL AR L HER LS AR L RS RU S LA AL R LR E R L H X T ERL A SRR R H RN ELN
FFUNCTIO : 10
; CALLS ¢ FNDF FNDCH: SYEX
s INPUTS ;SIMTE: START, WOQRK
;s OUTFUTS s INFP, OUTF, INST
s DESCRIPTION :I0 ROUTINE SEARCHES THROUGCH THE
; : SQURCE FROGRAM LOOKING FOR THE
; s PRIMARY INFUTS AND THE QUTRUT
3 s VARIAGBLES, CONTRDL WORDO . INPUT,
3 sAND L FRINT. ARE SEAR ﬁ:u FQR
; : AN THE SYMEROLS WHICH FOLLOW
; tARE COMRARED TO THE ‘ 0L
; : TARLE FOR THERE ADUn,wb£o¢
i s THESE AQDRESSES ARE FUT INTO
; s THE TWO NEW TABRLES INP AND OUTF,
PRH T AL AR AEX S LY N LA T LL L LR LA AR FH RN S L BN LR LN TR RN RFHE L ET S
I0: LHLD SIMTE
INX H
HLD INF s BEGINNING OF INP TAEBLE
XCHG
LHLD START
Bl CALL FNLF ; FIND KEY SYMEOL
JNC BHé&
CALL FNOCH s GET THE FIRST CHARACTER
MOV A M
CPI i ;IS IT INPUT CONTROL WORD
JZ BHZ
CALL FNIOP
JHP BH1
EHZ CALL FNLIF
BH3: MOV Ay M FEIND A CHARACTER WHICH
INX H s INDNICATES WHP EEGINNING OF A
CrRI oD s VAR IABLE St
JZ BHL
Cel A7
JM BHS

80

VA
BH3
H
o
SYEX ;GET THE ADDRESS OF SYMEROL
o
H
WORK
By S
B H
B
BH4
B,7
BHS: A M : MOVE ADDRESS INTQO INP TARLE
9]
$+3
A 20H
o
H
IR
B
BHS
H
RH3 s MOVE ON TO NEXT SYMEOL
BH&
Ms 2%’ s INDICATES ENDI OF INF TARLE
=
SHLO CuTF s BEGINNING OF QUTHFT TARLE
XCHG
LHLD START
BH7 CaLL FNIDP ;START QUTRUT SCZAN
JNC BH12
CAaLL FNIDCH
MOV A M
CFI TR s LODK FOR L RPRINT,
JZ BHS8
CALL FNDP
JMF BH7
BHB: caLL FNDFP
1 MOV A M s FOUND NOW TGO THE SYHROLS
INX H
CFrI OUH
JZ BH7
CrI ‘A
JM BHY
CrI “Z7+1
JF BHY
noex H
FUSH]
CaLl. SYEX ; GET THE ADDRESS FOR THE SYMEOL

=0 [

PUSH
LHLD
eV
nex
Do
JR2Z
MV I
MOV
Cel
JINZ
MVI .
STAX
INX
INX
DCR
JNZ
FOf
JMF
XCHG
MV I
INX
SHLID
RET

81

Ay M ;s MOVE ADDRESS INTO OUTF TABLE

itl

My 7%’ FEND OF QUTP TAEBLE INDICATOR
H
INST

82

4,7 The DLS Executer

The executer module has the function of performing
the actual simulation of the digital logic circuit, It
takes the data which the compiler creates and interprets
it to form a simulation of the users network. Aside from
the source program other information is required by DLS to
carry out the simulation.

When the user issues the execute command (EXEC) the
first piece of information which is required is the number
of update cycles per clock cycle., This is for race
condition testing. For example if the user informs DLS
that there will be seven update time units per clock cycle
and during the simulation it takes the network eight time
units for it .to reach a stable state, a race condition
would exist. The second piece of information is the number
of test input patterns. The simulated network has a
certain number of primary inputs. The user must tell DLS
how many test patterns should be put through the simulated
circuit.‘ The third piece of information concerns the mode
settings during simulation., The first choice is Dbetween
the normal and trace modes. The normal mode will print
the logic values of the monitored outputs after each clock
cycle. In the trace mode a printing will be made after
every update cycle. This aids in viewing certain hazard

conditions. The second mode choice is between two value

83

simulation and three value simulation. In the two value
simulation only the logic 'O' and logic '1' are used. In
the three value simulation the logic 'X' is used in the
update cycle where each gate when changing uses it as the
transition logic value. This helps in detecting certain
possible hazard conditions.

The last thing which the executer requests is the
test input patterns, Each primary symbol is printed and
then the user types in the test pattern for that symbol.
This is done for each primary input until the whole test
pattern string has been loaded.

The actual executer module is comprised of twenty one
separate routines. TFor simplicity these routines are
described by four flowcharts. Figure 4-13 is the EXEC
routine flowchart. This encompasses the controlling part
of the executer. It has the job of calling the proper
routines to first get the needed information from the user
and then controlling the simulation process.

The EXEC routine calls upon the UPDAT (Figure 4-14)
routine to perform the operation of logic simulation. This
is done by manipulation of the data in the two simulation
tables, T1 and T2, UPDAT passes the proper data from T1
to each gate simulation routine, which performs its opera-
tion then puts the returning data into T2. This makes up
the update cycle, which is done until a stable state is

reached. The other thing UPDAT does is whén a hagzard

TR, 5 4
Eyec FUunciicn
far SR S o~
Aguvineg

INPUTS,CYCLE
LENGTH,MODE |
STATUS %

GET # OF TEST g
!

GET INPUT
TEST DATA
PATTERNS

CALL
UPDAT

RETURN

Figure 4-13

85

Updat Function
Routine
(Part 1)

GET FIRST
TEST DATA

STRING
MOVE DATA
INTO PROPER
T1 & T2
LOCATIONS
¥ this subroutine
\ really is 10
different
LOAD CYCLI routines,
DELAY TIME one per gate

—0

.X_
CALL GATE ;
STMULATOR J %<::>

Figure 4-14

NO

4

|

COPY T2
INTO T1 J

86

Updat Function

Routine
(Part 2)

* %
cempare the

values in T1
and T2 tables

NO

RINT ZRROR
MESSAGE

RETURN

Figure 4-14

87

Gate Simulation
Routine
(Part 1)

GET PROPER
DATA FROM
T1

N/

CONVERT ASCII
DATA TO
SIMULATION
CODE

PERFORM THE
LOGIC OPERATICN
CALL FOR

Y

CONVERT DATA

BACK TO
PROPER FORMAT

Figure 4-15

88

Gate Simulation

Routine
(Part 2)
COMPARE
THE n-th
AND n+1
STATE
YES
EQUAL
’ NO
NO =ty YES
T2 GETS T2 GETS
LOGIC Xt P NEW LOGIC
’ ' VALUE
RETURN

Figure 4-15

89

Cutp Function
Routine

LOAD
OUTPUT
TABLE

PRINT CLK

COUNTER

|
|

INCREMEMT
COUNTER

it

PRINT
RESULTS

(RETURN)

Figure 4-16

90

condition has been detected it informs the user what type
of hazard had arisen during the simulation.

There are ten types of logic gates which DLS has in
its gate library, each of these gates has its own routine.
Figure 4-15 is the general flowchart for a logic gate
module. The data which comes from T1 into the gate routine
is first converted into a different format for operation
in the routine. After the logic operation is performed
X-pass analysis is done, only if x-pass mode of operation
was chosen. X-pass only operates when three value simul-
ation is in operation,

The last flowchart (Figure 4-16) is the OUTPT routine.
After all updating is done for each time cycle the monitored
output variables will be printed. If the trace mode was
used then OUTPT would be called upon after every update

cycle,

4.8 The Executer Program Listing

91

FER UL EL LR XU AL L LR R RE RS AR LSRR AL LR SRR RS A SRR N R H R R LR RO R ERERR

s FUNCTION

;s CALLS

;

INPUTS
;s DUTRUTS
s DESCRIP
H

H

H

;

;

;

;

.
7

s EXEC
s CRLF, QUTCH, GETDM, TRACE,» GETCH
s TITL URPLDAT, OUTFT

:T1S, T25, INP, INST, TEST: FLACE
: DELAY TEST, PLACE: WORK

: THE EXEC ROUTINE IS THE

: CONTROLLING sUB-MODULE OF
: EXECUTER, EXEC GETS THE

: INFORMATION ON THE MODES UOF
:OFERATION ANDD THE TEST INPUT
tAND FPRODUCES SIMULATED
: THE
¢t WHICH
S N S
{FASS THROUCH
s LATTER RINTS QUT THE

TION
THE

EXEC CALLS UFON “URPDATY
THE FIRST MAKES
THE NETWORE aND
RESULTS.

0ATA
NETWORKS,
TW3 IMFORTANT SUB-SUEB-MODULES
AND
ONE UFDATE
THE

FPRETHE X R XX RN L L LR XL LR N AR LA SR ARG AN LR R SRS S AL AR R LRI AL NRER

Cal:

s PRINT THE MESSAGE TO FIND THE

H: CAZ

CRLF P NUMBER OF CLOCK UFDATE CYLES

CRLF s FER UNIT OF TIME

H

TiS ; LOAL THE ADDRESSES OF TLS AND
P TS2

T25

Ay 1 Q7 ; STORE TWO CONSTANTS ;LOGIC 7O

]

Ms A

A s AND LOCGIC 717 IN THE FIRST

o s TRHO LOCATIONS I[N TI AND T2

H

i8]

My A

H

ArM s INIATE FRINTING

ol

Ca3

QUTCH

CAl

“# 0OF TIME UNITS FPER FULSE=?

B0

GETOM sGET A DECIMAL NUMEER FROM

A B sUSER INDICATING THE = OF UNITS

DELAY s FULSE FOR DELAY ANALYSIG

B0

FEX

g2

LX1I H.Cab ; LOAD NEXT MESSALCE
CALL CRLF
CAS: MOV A M
INX H
CF 77
JZ Ca7z
CALL OUTCH s GET THE NUMERER OQF TEST INFUTS
JHMFE CAS i FROM THE USER
CAL: 1) =] ‘# OF TEST INPUTS=7C
CA7Z: CALL GETOM ; GET THE DECIMAL NUMBER
MOV As B
STA TEST s SAVE FOR LATER USE
CALL CRLF
CALL TRACE FIND OUT IF TAACE MODOE IS WANTED
CALL CRLF
CALL CRLF
CALL CRLF
LHLID INP s ADDRESS OF INFPUT TEST STRING
XCHG
LHLLD INST ;A TEMRORY TABLE CONSISTS OF ALL
CA8: MV I S ; THE TEST INFUT PATTERNS
LDA TEST ; SIZE OF THE TAERLE
MOV Bs A
CAD: LDOAX o
CrRI ‘R FIND IF ALL THE TEST INFUT
JZ Catl s DATA HAS BEEDN INFUTELD
CrF1 O
JNZ F+5
MV A 20H
CAaLL OUTCH s FRINT THE TEST INPUT SYmEOL
INX I
LCR C
JNZ Ca9 F SYMBOLS ARE ALL 5 CHARACTERS LONG
INX O
INX I}
MVI ATy’ s FOLLOWED BY A FROMFET
CALL OUTCH
CALO: CALL GETCH s USER ENTERS TEST INFUT VALUES
MOV Ms A $ SAVE IN INFPUT STRING TABRLF
INX H
DR B s KEEF TRACK ON COUNT
JNZ cAalo
CALL CRLF s ALL DONE FOR THAT INFUT
JMP cAas s MOVE CON TO NEXT INFUT
CAali: CALL TITL sFRINT THE TITLE OF MONOTORED SYMEOL,
MV I Ay O
S5TA FLACE s HEEF TRACH OF # (OF UFPLDATE!
STA WORK+2
CALZ: CaLt, urnaT » MAHKE ONE UFPDATE SEGRUENCE FASS
CAaLL ouTET P ERINT RESULTS

Lo TEST ;COMPUTE & OF TEST INFUT

93

MOV BsA

LDA FLACE i POINT TO FLACE IN TABLE

CHP R

JC Cailz s NOT DONE 10 ANGTHER UFDATE

CALL CRLF

CaLL CRLF

CALL CRLF

JHMF AA3 s RETURN ALL DONE FOR NOW
IR R R R LR L ES R A S R R B B R R SN E X R ¥ R R)

s FUNCTION :TITL

: CALLS : CRLF, OUTCH

; INFUTS P INGT, QUTP

FPHEKE XA LR R LA AR I AL LR AR LR B LA R AR R UNE ARG R L AR LRGSR AR LS R HRLEERRE R

7
y
N
y

-
¥

TITL:

CBL:

F QUTPUTS
s DESCRIPTION
¥

5

r

CALL CRLF
CALL CRLF
MYI Bs5
MVI A 20H
CALL QuUTCH
DCR B
JNZ CE1
MVI B, S
LHLD INST
XCHG

LHLD guUTF
nex 1]
FUSH H
MOV ArL
CHF E

JC CE4
MOV AsH
CHME o

JC Ch4
FOr H
INX H
FUSH H
OER B

+t NOTHING

+ THE TITL ROUTINE FRINTS ALL

: THE VARIABLE SYMROLS WHICH

: THE USER REQUESTED IN A EASLY
t REALDABLE FORMAT

s CARRAGE RETURN AND LINE FEED

s SPACE OVER AWAY FROM
s THE EQGE OF THE PAFPER

s THIS ADDRESS MARKS THE END OF THE
; OUTF TABRLE

+ THIS TABLE HAS THE LIST OF ALL THE
; SYMEOLS WHICH ARE TO BE PRINTED

s DETERMINE IF ALL THE
P OYMBOLS HAVE BEEN PRINTED

;A TRICK IS [DONE HERE WHERE

s ALL SYMEOLS ARE FRINTED VERTICALY
s THIS IS DOME BY FRINTING ALL THE
s FIRST CHARACTERS OF EACH SYMREROL,

s THEN A CRLF AMD FRINTING THE

s NEXT CHARACTER OF EACH SYHROL
»AND B0 ON FOR THE RIST

#

M
X

94

JZ CRBS
CALL CRLF
MVI £:5
MVI y 20H
Ce3: CALL OuUTCH
OCR C
JNZ CE3
CB: MOV A M
CRrS: CALL OUTCH : GET A CHARACTER FROM ONE OF ThE
MVI Ay 20H ; SYMEBOLS, FRINT IT THEN INCERT
CALL DUTCH 3 TWO SFPACES BEFUORE NEXT CHARACTER
CALL ouTCH i IS PRINTED
PUSH 0
LXI D7 ; EACH SYMEOL IS 7 LOCATIONS
nan o ;s AWAY FROM EACH OTHER
~ar o '
JMF CRZ s KEEF THIS FROCEUS GOING
Cr&: POF H
CALL CRLF $ WHEN ALL SYMEBOLS HAVE BEEN FRINTED
MVI B, &0 PRRINT OUT A SOLID LINE WHICH
MVI As - i SEFERATES SYMBOLS FROM UFCOMING DATA
CE7: CALL auTeH
DR B
JNZ Ck7
CALL CRLF
RET

R =R R R b AR R R R R R EEEEEEER PR E R L T PR R R I BRI I R IR IR S O I

F FUNCTION sOUTET

; CALLS ;s PREYT, OUTCH: C55L

i INFPUTS : BUTF ERROR s WORK

s QUTFUTS s WORK

s DESCRIFTION s QUTPT ROUTINE FRINTS THE

s SIMULATION TABLE T1(MONOTORED
tPOINTS ONLY) AFTER EACH UFLDATE
sALONG WITH THE CLOCK CYZLE COUNT
R R R R R P L Ry S R R T R E L R

N M

»
7
“
7
s
¥

-
y

QUTFT: LHLD OuTH ; LOAD TABLE
LIOA ERROR ; TEST FOR FOSIBLE ERRORS
LRI T
JZ TIME

LXI B S

95

)

LDA WORK+2 ; UFDATE COUNTER
PUSH FSW 4
CALL PREBYT s FRINT CLOCK UFDATE COUNTER
POP FSW
ADI 1 ; INCREMENT COUNTER
DAA
STA WORK+2
MV As i’
CALL OUTCH
MV I A 20H
CALL QUTCH
CALL UTCH
cCi MOV A M : SEARCH THROUGH OUTP TARLE FOR
CPI ’ % P END MARKER
JINZ CC?
LA ERROR ; ERROR TEST
CPI ‘g’
JINZ $+6
CALL OSSL
CALL CRLF
RET
Cozs DAD B i FASS OVER SYMBOL
MOV EsM ; TO THE ADDRESS PORTION
INX H
MOV Oy M s FOINTER TO LOACTION IN TL
INX H
LOAX o
CALL OUTCH s FRINT LOGIC VALUE
MVI As 20H
CALL OUTCH
CALL QUTCH
JMF cci

FERAXK L LA XL AR AU ERN N LA LA XX I LU SRS LS R LA LR AR IR LR F L R ENX LSRR

; FUNCTION s UFRDAT

;s CALLS s N2y N3, A2, A4, 02,04, R2, R4

H s EZy Eds TRAC

» INFUTS s INF INST PLACE, TEST» T26, TLE

7 :TISy SYMTSy TRON, COUNMT, DELAY

; DUTFUTS s ERROR PLACEy COUNT

y DESCRIFPTION PUFDAT ROUTINE HAS THE TASK OF

E s TAKING ALL THE DATA IN T1,RUNNING
; s THROUGH THE UFDATE SEQUENCE AND

; + STORING THE RESULTS IN T2, THERE

; s ARE TEN LOCIC CATE ROUTINES WHICH
; s ARE CALLED WHICH ARE USED TO [OD

; s THE URPDATING, [F THE TRACE MODE

; :WAS SELECTED THREN THE RESULTS ARE
; :FRINTED AFTER EACH UFDATE.
R S S Rt s AR R T R X R

UFDAT MVI A0
STA ERROR s CLEAR ERROR FLAG
LHLD INP yLGAD INFUT SYMEBOL STRING
FUSH H
LHLDO INGT s LOAD INPUT DATA STRING
LTA FLACE s FIND WHAT FLACE WE ARE UP TO
MOV CrA
MVI B, O
Dpan B s GET THE FPROFER INFUTS
INR A
5TA FLACE ;ADD ONE 170 FLACE
XCHG s FOR NEXT UFRDATE PASS
FOF 2]
CDis LIOAX B ;VEST TO SEE IF THE
CFI T s ENDN OF THE INFUT STRING
JZ ChLZ2 ;WAS ENCOUNTERED
LXI Hy» S
nal B
FUSH H
~0r B
LIAX =t
MOV L+A s MOVE THE DATA FROM THE INPUT
INX B s STRING TARLE INTO THE T1
LIRAX B SIMULATION TABLE, ONCE THIS
Mayv Hs A ; 168 DIONE THEN AN UFDATE 1S READY
INX B 7 TO BEE FERFORMED ON THIS TEST
LoAax 1] FPATTERN
MOV M A
*CHG
MV 0.0
LDA TEST
MoV E; A
oAl o
XCHG
JMF cn1
coz: LHLD TZS s UFDATE IS COMPLETE
FPUSH H A TEST IS MADE BETWEEN T1 AND
0P B ;T2 TO SEE IF THEY CONTAIN THE
LHLD TiE s SAME DATA, IF IT DOES NO MORE
XChG FUFDATES ARE NFFEDED FOR THIS TIME
LHLD TiS sFRAME. IF THERE IS A DIFFERENCE
CD3: MY A H P THEN A STALBLE STATE HAS NOT BELN

CHF 5] s REACHED, ANOTHER UPDATE IS NEEDEL,

chd:

CliS:

Chée

ChL7:

cog:

Cn9:

JNZ
MOV
CiMpP
JZ
MoV
8TAX
INX
INX
JMP
MVI
STA
LHLD
CALL
CALL
caLL
CALL
CALL
CALL
CALL
CALL
CALL
cAaLL
LDA
CFI
7
LIDA
INR
JZ
STA
MOV
L.DA
INR
CHE
JNZ
MV I
STA
LHLD
PUSH
FOP
LHLI
XCHG
LHLI
MOV
CHMF
JNZ
MOV
CMP
RZ
LDOAX
CHr
JNZ

co4
AsL

cos
Ay M

B

H

B

cD3
A Q
COUNT
SIMTS
N2

N4

AZ

A4

0z

04

RZ

R4

EZ2

E4
TRON
IYI
TRAC
COUNT
A
cnis
COUNT
B A
DELAY
A

B

corz
As ' T
ERROR

97

;T T2 COMPARISON TEST

; UPDATE COUNTER

s START

UFDATE SERUENCE

s TEST TO SEE IF TRACE MODE IS ON

s UPDATE COUNTER

i TE

S

T

ACAINST USERS SET LRELAY

s STORE TIMING ERROR

; LOAD SIMULATION TARLES

s TEST TO SEE IF A COMFLETE SEARCH
s THROUGH THE TWO TABLES HAS
; BEEN MADE

E

A

r
A

1.
INE

) g

T1 T2 COMFPARISON T:3T

Ch12:

CO13:

Chitds

CLLS:

Clil 6

RS

=

K

INX
INX
JMF
LHLD
FUSH
FOF
LHLD
XCHG
LHLD
MOV
CHMP
JNZ
MOV
ChMP
JZ
MOV
STAX
INX
INX
JMP
MVI
5TA
LHLD
FlUSH
FOF
LHLD
XCHEG
LHLD
MOV
CHpe
JINZ
MOV
CMF
RZ
LIDAX
CMP
JZ
MV
INX
INX
JMF

Chit
A:; 07
ERROR
T25
TLE
TLS
AsL
Chis
A H
B
coieé
Ms 2 X7

Chidg

98

s MOVE T1
i TO START

INTO T2

; OSCILLATION ERRO

; SEARCH THROUGH
i T

pFUT LOGIC 7 X!
sDIFFER

XAERAX L XL LAY SR LR RN L AR LLHHENY S

; FUNCTION

s CALLS
P INFUTS
s GUTHUTS

N

s N2
s CONV RCONY s CHANG
. ;\U\’)

LK i =

t NOTHING

i
[&Y

2
RN

SIMULATION

X e ¥

%%

RAR

Rr2
%

R4

IN LOCATIUONS

v
A

#*

PHHICH

W

E THE TWO TARLES
U FIND WHERE THEY DIFFER

%.

Y
A

¥

#
*#

ME G W e ME

wn

NZ:

e

T TS

SR ME Ne e N s

el
-

%
*#

E

4
e

*
*

e
B
"
*

#

'3
3

po

*

A

e

[

m
)

LTSN

0
i

i

B
#
e
i

*

W

e
-

XK AR
UNCTIO
CaALLS

: INFUTS
; QUTRUTS
;s DESCRIF

b

*
I
i

* %
;
7

b4
X R AFEXR

¥
=

%

LA
ORA
RZ
MoV
CALL
MaY

*3

99

TION N2 IS THE THO INFUT NAND
s CATE SIMULATION ROUTINE,
FHEV R UL LR LR U SRR N AR L AN R PR NN R LR A NIRRT ERLEER

NAZ 2 OF 2 INPUT NaND GATES
A i IF ZERO FIOVE T0 NEXT GATE TYFRE
CrA
CONV s GET THE FIRST INFUT VALUE
B A
COnNY s GET THE NEXT INFUT VALUE
B s LOGICAL ANID
F COMFLEMENT RESULTS
O3H ; STRIF OFF UNIMPFORTANT INFORMATION

$+5

~
A2

RCONVY

CHANG ORE RESULTS allay

ST

C
CEL SFE IF ALL THESE GATES ARE DONE

hYa

X3 % %X %
N

HHUAREHAEL LR P EAFAEL X R AL XA E A FRLRRELH
s NE

: CONY, RCONYy CHANG

s MNA4

t NOTHING

N4 IS THE ROUTINE WHICH

tSIMULATES A FOUR INFUT

%

TION

s MAND GATE
HAL XXX A BRI TH S X AT CH LR LR AR B HNR L LSRR L EH A ER A S L H

NAZ NAND GATES

A

;e OF 4 INFUT

CrA

CONY
B A

SEAVE COUNT
P FIRST INFUT

100

CalL ConNy i SECOND INFUT
ANA B s LOGICAL AND
MOV B, A
CALL CONV s TRIRD INPUT
ANA b5 : LOGICAL AND
MOV By A
Call CONV s FOURTH INFUT
ANA B s LOGICAL AND
CHaA s COMFLEMENT THE ANSKHER
ANI Q3H
CrI 1
JNZ $+5
MV1I A2
CALL RCONV s CONVERT TO PROFER FORMAT
CaLl CHaNG s STORE ANSWER AWAY
[CR C
JNZ CFi s DECREMENT GATE COUNT
RET
FRRAA L X ERE RSN AR LR LA LA RA L L LR A RN SR UL R LR LR HREREREERX SR
s FUNCTION 1 A2
; CALLS + CONV, RCONV, CHANG
s INFUTS + ANZ
; QUTFUTS s NOTHING
s DESCRIPTION :AZ 15 THE RDUTINE WHICH
; sSIMULATES A TWO INFUT
i s AND CGATE
FEHALAEE RS LR LR LS L L SR B SR L LR AL SRR LA B LR UYL LR B EF UYL XL RE TS RESLEES
AZ Loa ARNZ2 ;% OF 2 INPUT aMND GATES
ORA A
RZ
MOV Cr & s SAVE COUNT
CG1i: CALL CONVY sFIRST INPUT
MOV By A
CALL cCOonyY S CONDY INFPUT
ANA R OGICAL AND
ANT Q3ZH
CPI 1
JNZ 545
MVI Ay 2
CAL RCONY ; CONVERT TO FROFER FORMAT
CALL CHANG s STORE AWAY THE ANSWER

“r o

~e

FAULEX LKL PR E XX AL E R RN E B AN LR L L AL H LN R AR HHFE LN HERE R LR EFRH LR RIS

CH1:

DER
JNZ

R
INEL £

0

s FUNCTION

: CALLS
;s INPUTS

; OUTRUTS
i DESCRIFTION

r o~

F]
XXEXEE

LDA
ORA
Rz
MOV
CALL
MOV
CAaLL
ANA
MOV
CALL
ANA
MOV
CALL
ANA
ANI
CFI
JNZ
MVI
CaLL
CALL
DCR
JNZ
RET

m

AN4
A

CrA
CONY
By A
CONY
B
B: A
CONV
B
BsA
CONY
R
Q3H
i

$+5
A2
RCONY
CHANG
C

CH1

%

101

3
v

t Ad

CREMENT GATE

COUNT

+ CONV RCONV, CHANG

: AN

s NOTHIN
:Ad IS
s SIMULA
s AND GA

G
THE
TES
TE

RXEEFHALFEL R ER XL RN YRR

i

%

CRHHER

%

i3

&

k3

ROUTINE WHICH
A FOUR INFUT

HHRENRERREN LR

s OF 4 INFPUT AND GATES

;s SAVE COUNT

; FIRGST

s SECOND
s LOGICA

i THIRD
;LOGICA

; FOURTH

INFUT

IpNFUT
L AN

INFUT
L AND

INFUT

s LOGICAL AND

s CONVERT TO PROFER FORMAT
s STORE AWAY THE ANSWER

s DECREM

ENT

R DB EEE B EEEEE

GATE COUNT

AN ERERH K E LR

b an N

e

e ME N MNP

P HFHH LU XX A LHL XX LS LEX LR R A LR R RELEREXSR

-
*
X

~b

3 o~
=

23

w5

#

s

s FUNCTION

; CALLS
s INFUTS

: QUTFUTS

s DESCRIFTION

LDA
ORA
RZ
MOV
CALL
MOy
CALL
OrRA
ANI
CFI
JINZ
MVI
CALL
CALL
LCR
JNZ
RET

L3

ORZ2
A

Cra
CONV
B: A
CONY
B

O3H

hi

£+5
Ay 2
RCONV
CHANG

C

CI1i

s FUNCTION

;s CALLS

s INFUTS
FOUTRFUTS
s DESCRIF

+
H

L&

A

TION

OR44
A

%

102

: 02

: CONV, RCONV,; CHANG
: OR2

s NOTHING

+ 02 IS5 THE ROUTINE WHICH
sSIMULATES A TWO INFUT
: OR GATE
FXEFRRLES LN SRR ELERLBREER

<

A
X

o

y# OF 2 INPUT OR GATHS

; SAVE GATE COUNT

F FIRST INFUT

SECOND INFUT
L')C ICAL R

s CONVERT TO FROFER FORMAT

;s SAVE THE ANSWER

s DECREMENT GATE COUNT

: 04

s CONV RCONV s CHANG
: OR

NOTHING

104 IS THE ROUTINE WHICH

: SIMULATES A FOUR INFUT

+ R GATE
CHE XA AR EXERE L LA AL L LR R AL LR LR LA B AR RLRE R R K €%

y# OF 4 INPUT OR GATES

HRAEHLEX XL X EER RS R ERRREER

HFAEEAFRER

RZ
MOV CiA s BAVE CGATE (COUNT
CJi: CALL COnNY sFIRST INFUT
MGV B: A
CaLl CONV s SECOND INPUT
ORaA B s LOGICAL CR
MOV By A
CAaLL CONV s THIRD INPUT
ORA B ; LOGICAL OR
MOV By A
CALL CONV s FOURTH INFUT
ORA R ; LOGICAL CR
ANI Q3H
Crl i
JNZ $+5
MVI ;2
CALL RCONY ; CONVERT TO FPROFER FORMAT
CALL CHANG s STORE AWAY THE ANSWER
DCR C
JNZ CJdi s DECHREMENT GATE COUNT
RET
PR F AR AR AL R L AT LS RS LN Y LR SRR S L L LYY S LA FR RN EHE XU RN ¥ ¥ %L E
s FUNCTION s R2
; CALLS : CONV RCONV CHANG
i INFUTS s NOZ
; QUTRUTS sNOTHING
s DESCRIFTION +R2Z IS8 THE ROUTINE WHICH
; :SIMULATES A TWAO INFPUT
. s NOR GATE
} RURAE UL SR E R LR LSRR LR L XY XS UL AR LEURAYEE L LHHYEREE LA AN ELAN
;
R2: LDA NOZ2 s OF 2 INFUT NOR GATES
ORA A
IS4
: MoV CrA s GAVE GATE COUNT
CK1i: CALL CONV SEIRST INFUT
MOV Bs A
CALL CONY s QECOND INFPUT
ORA B ; LOGICAL OR
Coia COMPLEMENT ANGUHIR

[
63

™

)
]
et

104

JNZ $+9
MVI A2
CALL RCONV ; CONVERT TO FROFPER FORMAT
CALL CHANG s STORE AWAY THE ANSWER
OCr c
JNZ CK1 s DECREMENT GATE COUNT
RET
AR R R T R S R R E R S SR Rk b ok SRS Rk S
P FUNCTION s R4
; CALLS : CONV, RCONV CHANG
INFUTS NG
s OUTFUTS s NOTHING
s DESCRIFPTION sRd IS THE ROUTINE WHICH
7 : SIMULATE A FOUR INPUT
; s MOR GATE
S A2 S R L RS E LR R SRR R PSSR E RS 2 E R R L S S
e¥ LA NO4 ;& 0OF 4 INFUT NOR GATES
ORA A
RZ
MOV CsA s BAVE GATE COUNT
CLi: CALL CONV s FIRST INFUT
MOV B A
CaLL CONY s SECOND INFUT
ORA B ; LOGICAL OR
MOV By A
CALL CONY s THIRD INMNFPUT
ORrRA B s LOGICAL OR
MOV By A
CaLl CONV s FOURTH INFUT
ORA ot ;s LOGICAL OR
CHA s COMPFLEMENT ANSWER
ANI O3H
Crl 1
JNZ $+5
MVI A2
CAaLL RCUONY ; CONVERT TO PROFER FORMAT
CalL CHANG ;s STORE AWAY THE ANSWER
LR (o

i CL1 s DECREMENT GATE COUNT

105

i
5
3
¥
R R R R R R R R A R e R R R R R R R T R R R R RO R R R
" S FUNCTION fE2
s CALLS : CONVy RCONV CTHANG
p

{

FUTS P EX2

UrruTs : NOTHING

IESCRIFTION tE2 IS THE ROUTINE WHICH
:SIMULATES A& TWO INFUT
tEXOR GATE

b
;
HE R R R R R R R R R R R R D LR R AR R

R R R R X R R
.
b4
¥
.
’
.
r
7

EZ. LOA
ORA
RZ
MOV CsA
CHMis CALL CONV
MOV Hs A
CALL CONV s SECOND INFUT
XA B ; LOGICAL EXDOR
ANTI QO5H
CrI i
JNZ $+5
MVI Ay 2
CALL RCONV s COMNVERT TO FROFER FORMAT
CALL CHANG i STORE AWAY THE ANGWER
LCR Cc
JNZ Ml s DECREMENT THE GATE COUNT
RET

X2 ;# OF 2 INPUT EXOR GATES

R A

GCATE COUNT
T INFUT

T U'J

p
SR

U’J"ﬂ

b4
¥
PHBERCEL A X F LT XA LB A L AR LR DA E R AR A AR EF T N E R EE S N R K E LR 8% H %8
s FUNCTION :E4
s CALLS P CONV RCONV, CHANG
3 INFUTS s EX4
FOUTFUYS s NOTHING
s DESCRIFTION tEX4 IS5 THE ROUTINE WHICH
; s SIMULATES A FOUR INFUT
; : EXOR GATE
PAHRED AL ERLEUNPAE R X R L E LR AN R E R A FRERERF R RRRR N OB L EH LSRR

106

ITE e we
s

LoAa EX4 i® OF 4 INPUT EXCOR CATES
ORA A
RZ
MoV CrA s SAVE GATE COUNT
CN1s CALL CONV fFIRST INFRUT
Mav By A
CALL CONY s SECOND INPUT
XRA B s LOGICAL EXOR
MOV B+ A
CALL CONV s THIRD INFUT
XERA = s LOGICAL EXOR
MoV Bs A
CALL CONY s FCURTH INFUT
XRA B s LOGICAL EXOR
ANI Q3H
CF1I 1
JdNZ £+5
MVI A2
CALL RCONV s CONVERT TU FPROFER CuhﬁAT
CALL CHANG i STORE AWAY THE ANS
OCR C
JNZ CN1 s DECREMENT GATE COUNT
RET
7
FRHEAFK KL X RAG ARG LR RLU RS S LY R B E LSS E L RL AL R AU R LR RS RER SRR
s FUNCTION : CONY
: CALLS s NOTHING
; INFPUTS s NOTHING
s QUTFUTS o s NOTHING
s DESCRIFPTION s CONV TAKES A DIGITAL LOGIC
b s CONSTANT AnND COMVERTS IT TO ONE
; tWHICH LS CAN OFERATE ONCFIRST
; P THE ALDDRESS FROM THE UFDATE
5 s SEQUENCE TaARLE I8 OOTTEN., THIS
; +FOINTS TO TAELE T1 WHICH HAS
; THE LOGIC VALUE FOR THE GIVEN
7 ADDRESS.
; ,LDCIC 17 --) O1iH
; sLDGIC 07 ~--) QOH

B P LOGIC 7 X7 ~-)> 10H

R R R TR DR RS T R R e A I e R I T R

*®

(_jwb i

107

Es M i THE UFDATE SEQUENCE TaARLE
INX H s ADDRESS, POINTING TO T1
MOV O, M
INX H
LOAYX 0 ; DATA FROM Tt
ANIT OFH i STRIF OFF THE 4 PMSRSS
Rz
CrI i
JNZ DAl s CONVERT TO NEW FORMAT
ORI 2
RET s RETURN WITH NEW FORMATED
INF=1 MV1I As 2 DATA IN ACC
RET
!
FHHA KR AR AL A LXEXLE R L AR RH Y EH LU XYL RLR S L RELEIRRERER L ER R
s FUNCTION s RCONV
; CALLS s NOTHING
3 INPUTS t NOTHING
;OUTRUTS MOTHING
DESCRIPTION s RCONY ROUTINE TAKES DATA BHICH
; : THE FROGRAM HATS OFESATED URPON
H s ANDD CONVERTS IT BACK TO THE
; sPROFER FORMAT TU BE STORE AlLIAY
FHRIEHELFEX XL XTE RS LR L HR AR LYY YL LW N RTEYEF LA LY LA LR FECH Y EEERRY
RCONV s CF1 O s IF IT MATCHES THEN CONVERT
JNZ $+6
MVI As 107 3 IT TO LOGIC 707
RET
CF1 3
JNZ t+b yHEFALT CONVERT IT TO LOCIC L7
MVI Ar” L7
RET
MVI Ay’ X7 s CONVERT IT TO LOGIC 7 X°
RET
FREFEHLANR LN R L L A H LY HEL Y EE R TN Y Y R LY HLLREEX Y L RHRELLEEER

P REERRER
H

“

CHANG:

DBZ2:

T T T L 1Y

PREARLRR

sFUNCTION

: CALLS
$INPUTS
s QUTPUTS

§£ SCRIPTI

)'

[PY

¥
FAREEREFE

MOV
CaLL
CALL
CHMF
RZ
CrI
Oocx
nex
JINZ
MOV
MOV
INX
MQV
INX
STAX
RET
LoA
CPI
JNZ
MV I
JhMP

W HE A EER
s FUNCTIO
s CALLS

3 INFUTS

FOUTFUTS

s DESCRIPT

108

+ CHANG
: CONV, ROONV
s XFPAS
s NOTHING

ON ¢+ THE CHANGC ROUTINE INTRODUCES
: THE FROPAGATION DIELAY INTOQ
: THE SIMULATED NETWORE.THIS IS
s DONE RBY TESTINMG AN QUTFUT TG
s MAKE SURE [T HAS BEEN IN THE
s TRANSITION STAavE FOR ONE
s URFDATE CYCLE

X R S L T T T

¥ KX NEREERY
B A

CONV y THE DELAY FROCESS IS [IONE RY
RCAONY s TESTING TO SEE IF ANY CHAMGE

B s QCCURED RHETWEEN THE N & N+31 STATE
/x/

H

H

DRz s GET OUTPUT READY TO CHAMNGE

A B

E/M GET LOCATION IN T2 TABLE

H

Dy M

H

i8] # >TORE NEW QUTFUT IN T2

XPAS s TEST TO SEE IF USER

‘Y’ i HAD ISSUED THE X-FASS COMMANT
ODB1-1

Ayt X! P X-FABS

OBl

HAXX AU A XA L L L R L RS AL A SR LA RS R XL R LRy S KX KXW

N : TRACE
: OUTCH, GETCH, CRLF
t NOTHING
:THUON, XFAS

TION : TRACE FINDS QUT FROM THE USER IF
s THEY UANT TO GrERATE [N THE TRACE
s MODE AND 1F THEY HANT TO OFE

RATE

109

PWITH THE X-PASS MODE.
HE R iR R R R U A A Uy HAUEREX T H B E XN E LR SRR RS X8y
TRACZ: LXI H,DCZ2
OCis MOV A M s PRINT OQUT THE FIRST MESSAGE
Pl 1
JZ nes
INX H
CALL OUTCH P OOES USER WANT TRACE MONE
JMF nci
De2: OB OAH QOH; * TSACE="?"
0e3: CALL GETCH s GET RESFONCE TO THE QUESTION
STA TRON s STORE THE RESFONCE
CALL CRLF
LXI H, 0CS
D4 MOV A M
CPI TR
JZ nce
INX H :
CAL OUTCH s PRINT SECOND MESSACE
JMF nc4 fODES USER WANT X-PASS
DS Dk 7 X PAQS*?’
0Cés: CALL CETCH ;GET ANSWER TO QUESTION
STa XFAS P SAVE ANSUWER
CALL CRLF
CalLL CRLF
CALL CRLF
CALL CRLF
CALL CRLF
RET
FHEXE N LA AR XL R L ALY AR AN AR RN LSS L XALR LR L Y FLEEY AR AL L EEHRX
s FUINCTION TSAC
s CALLS ,DUIFI
; INPUTS s WORK
7DUTFUTD + WORK
s DESCRIPTION s TRAC IS8 THE ROUTINE WHICH
; t WHEN THE USER RERGUESTS A
3 s TRACE, A FRINTOUT OF EACH
3 $UPDATE CYCLE IS HMADE.
HE S E R BREER - R Pk R T 3 A IR S R R R R N AL O SR

~p

110

] e M
pi]
e
]

CALL OuTET P ERINT MONITORED LOGIC FOINTS
LIA WORK+2
ADI FFH
DAA

STA WORK+2 S WHICH IS IN THIS LOCATIUON
RET

s

REMENT BCD COUNTER

n
7]
!
)

i
=

FRIALRARRE AR L AL XA AN R A AL RR R RN LR LSRR L LY R F LR HXE A SRR X RE RN 8%
; FUNCTION s TIME
s CALLS : QUTCH
s INPUTS s BEGIN
;OUTHUTS s NOTHING
s LDESCRIFTION U IME IS THE ERRQOR ROUTINE
; tWHICH IS CALLED WHEN THE
; PSIMULATEDR NETWORK HAS NOT
; st REACHEDI A STARLF STATE IN
s THHE ALIOTED TIME.

\
b4
R R R R T R R R T Bk B R R R R I A A

TIME: LX1I HyEEBL s PRINT ERROR MESSAGE
MGV A M P 3TOF THE SIMULATION DEADR
CPI e sAND INFORM USER OF TIME FPRORBLEM
JZ EHBZ
CaLL OUTCH
INX H
JMF TIME+3

EEL: 0OE "THE CIRCUIT HAS NOT REACHED A STABLE STATE?
EBZ: LXI SFs BEGIN s RESTART SIMULATOR

JMP AATS

R R S R R R R R R R E A P R S R R T I
FFLVICTION : O5SL
s CALLS s OUTCH
FINPUTS s NOTHING
; GUT-UTS FPUITHING
FOESCHRIPTION ;0850 IS THE ROUTINE WHICH

111

; P INFORMS THE USER THAT THE
¥ s SIMULATED NETWORH IS IN A
; :OSCILATION STATE.AFTER THE
i tMESSAGE IS PRINTED THE ROUTINE
; SWTLL INCERT LOGIC “X7 IN ALL
; :T1 AND T2 POESITIONS WHICH
; : ARE CAUSING THE FROBLEM,
R R LR R R E b R R L o Rl
;
;
H
H
H
gssh: LXI Ci P FRINT ERROR MESSAGE

Hy E
MOV A
CFI 7
RZ s RETURN TO NORMAL OFERATION
CALL OUTCH

S OSSILATING?S

bt
o
P
[
3
4

EC1: OE S THE

4.9 General Purpose Routines and Memory Allocation

R R R R R R L e 2R T E S S T R T R S - R I R SR SR S I RS

JFUNCTION s DETCH & QUTCH
i CALLS :CI1,CO
i INPUTS s NOTHING
;OUTRUTS :NOTHING
; DESCRIFTION s CETCH IS THE GET CHARACTER
; FROM THE TERMINAL RDUTINEZ.
: ;DUTCH I3 THE ROUTINE WHICH
;o s PRINTS THE CHARACTER THAT IS
; :IN THE ACC, THIS ROUTINE IS5 THE
i : ONLY ONE WHICH MUST RE CHANGED
; sFOR CUSTOMIZIMNG THE I/0.
PEAAX A RL AL U AR FER L XX SR LN E LR S L LR A EX LR AR RS X F XXX R EXEE XA N ER AR
;
H
H
y
;
GETCH CaLL CI ;i CPM GET CHARACTER ROUTINE
;

DUTCH: FUSH E
MOV CrA
CALL COo s CPM PRINT CHARACTER ROUTINE
FOF B
RET ; ALL COONE

y
’
i
7
H
AR R R R R E kP R R R R R B TUE R L R P RO S S S

FFUNCTION : CRLF

i CALLS : QUITCH

INFUTS s NOTHING

;s OUTFUTS s NOTHING

; GESCRIFTION s CRLF ROUTINE FRINTS A

; : CARRAGE RETURN FOLLOWED
i s 3Y A LINE FEED

P R e R R R R R R R R R R

W
A
F'S
Fisd
&
b3

CRLF: MV I A OLH ; CARRAGE RETURN
CALL guTCH SPRINT LT
MV I As OAH LINE FEED
CALL OUTCH pENINT IT
RET

~

112

BN N e

ZAZ:

BYS

T T,

EAA LR

HOE A %

% As L

JINZ ZAZ
MOy AsH
M o
JNZ ZAT
STC

DDP 0

A M

¥ % H XXX A
M ja] lkz,***‘rr*”\j

<

- il -
sCALLS

; OUTFUTS
; OQUTFUTS

s OGES L~ TRT IO
H

..’

7

XX W X EHH KK

X X KK

s FINDG A

113

s HEXT
: CARRY FLAG

s FNDOP Q]HTYNF SCANS
F \FIL F »nj

; THE SOUR
s THIE 77 CHA(\

s GET ALLDRE
; SNURCE FROG
s TEST T SEE

;AT THE LAST

J_)

s IF NO 7,7
; CLLEAR

GET A

~4

r
THE CAJ

OFr
CRaM
IF

FE R

LAGST
BYTE
WE AREL

B o

BY 1'E

SOURCE EYTE

s CamFARE IT TO THIS
PNOT FOUND KEER LOOKING
s FOUNLDE SET CARRY

s END
: NO
s NI

FHING
JTING

s NOTHING

THE
oy

CENDS TS

s PR AL

R KA E LA KK
3

RO
IN

T INE

WHIITH

THE SOURCE

U R R EX U E N R AR RYEREEHEXLEERA

HE I R R -

¥

;

y

H

NS MOV
INX
ChI
RZ
CrI
RZ
JMF

’

H

;

HIE IR0 - A Y
s FUNCTI
s CALLS
s INFUTS
s QUTFUT
s DESCRI
y
;

EEE XA RN AL AR
;

ZB1: CHI
M
INX
JMP

EXHEE LA L UL H YN E L RN LR XS EHX N R AN HHER LR XX R RERERL
APl s GET A CHARACTER
!
T 3 EEF IF WE rlAVE UVER 5K0T THE mARE
VA ;IS IT A MATCH
FNLIIS s NO TRY AGAIN
EE R R RS RS R R R L R R R R R R R R R S RS
N s FRHCH
s NOTHING
s NOTHING
s NOTHING
TION s FNDOCH IS THHE ROUTINE WHTCH
;FINDS A CHARACTER WHICH LIEZ
sBETWEEN “A7 AND 727,
FFR XA FELF XA LN LN E R AEE L RE R ER L L RE N E
A M sGET A CHARACTER
- ;SEE IF IT I3 BETWEEN A7
ZE1
H
FNOCH
WA} sAND 727
H
FNIICH
A LT X E AT S E YL A LT HE AL I E NP REER ALY E

sFOBRYT
s OUTOH
sMNUTIHING

Lt e

115

s DESCRIFTION : THE PREBYT KROUTINE TAKE
; + THE CONTENTS OF ACC AN
sPRINTS IT AS TWO HEX
:DICGITS
EEEXE CAXXRA X KA XA AR T LUFH AR NA L LR YR LN LA F RN R F E RN L HFHRRRRREXH

BT

e

B R TR

‘RBYT: FUSH Rt
RAR s MOVE THE FOUR MSR'E TO
» THE LSk FOSITIONS

ANI CGFH s STRIF OFF THE TOP
ORI 30H s CONVERT TO FRUFER FORMAT

CrI 3AH
JC %45
AT 7

CALL QUTCH FEORINT FIRST DIGIT
FOF FSi P BRING BYTE BaCH
ANTI OFH s TAKE THE TOPRP OFF
ORI 30OH s CONVERT IT

Pl 3AaH

JC S+ 5

AT 7

CALL ouTCH FERINT IT

?
7
y
¥
7
MRk A R PR E R R R R I R R R R R R R R

s FUNCTION s GETLM

: CALLS s GETOCH

; INFUTS s NOTHING

;s OUTFUTS s NOTHING

s DESCRIFTION s GETOM ROUTINE GETS A

; sDECHMIAL NUMEER (0-2535)

; P FROM THE USER,ALL NUMBERS
; sCOME IN ASCIIT MUST of

; : CONVERTED TO HEX,

FRREH I AR L ERR LA AL L AR KA AR EX R L RAARE ALK AE R L LA AL A EY L CH AL AR ETEER

;
;
;
;
;
GETOM; CALL GETioH yLET A CHARACTER

CFrI e ; IT MUST RE RETWEEN
R ;O AND 9

CriI A

RF

FUSH PG ;3 SAVE IT

MOV Ay B ; B -~ CURSRENT COUNT
ORA fa s CLEAR CARERY

RAL SONURLE IT, LO=(2#2#2#N+2xN)+ (N+1)
MOV B A

OoRA A

RAL

QRA A

KA

A-”H" B s FINAL RESULTS

ML}V B)A

FOF FSW s G2 T NUMERE

ANI QFH

ADD K s ADD THE NEXT DIGIT
MOV By A

JMF CETIM

EHERREXHE XXX HRALXTHEEETENEE Y

7
B
Y

a

START: IS
NEXT: 0s
WOR 0s
LENT 0s
DELAY: s
TEST: bs
COuUNT: DS
FLACE: IS
ERROR: 8
NUME s 0s
TRON: s

IF SOURCE FPROGRAM
RCE FROGRAM
<K REGISTERS
y LENGTH U“ A SOLFLE LINE
s CYCLE DELAY COUN

;NUHHER OF UFDATE CFUNTS
P TOTAL NUMEBER OF SYMIMOLS
s TEMFORY UPDATE COUNT
;TYFE OF ERROR

P NUMBER OF LQOGIC GATES

s TRACE CONTROL CHARACTER

TSI SO B W B el o Bl el e L andil oY SR S B O

XFAS 05 ;X F@S: CONTROL CHARACTER
SYMES:y 0S5 ;o TART OF SYROL TaRLE
SYMEE: 05 ;ENU Or SYmMEBOL TABRLE

TiG:) PRTART OF TL TARLE

TLE: Ls FEND OF T1i TABLY

ng Z P OSTART JF T2 TARLE

0s =z FEND OF T2 TaARLE

oS z ; START OF UFRDATE SERUENCE
[RES: 2 s END OF UFLDATE SEQUENCE T
ns 2 ; START OF INP TABLE

ng 2 s START OF OUTFHE TARLE

oS 2 s START OF TEST DATA STRIN
0s 1 ;& OF Z INFUT NAND CATES
ns i ;8 0OF 4 INPUT NAND GATES
0s i ;u OF 2 INFUT AND GATES
os 1 ;8 OF 4 INFUT AND GATES
ns 1 ;e OF 2 INPUT OR GATES

0s 1 i OF 4 INFUT OR CATES

0s 1 iw 0OF 2 INFUT NOR GATES
'S 1 ;= OF 4 INFUT NOR CGATES
0s 1 ;e 0OF 2 INFUT EXOR GaTES
os 1 ;s OF 4 INFUT EXOR GATES
ng &4 INFUT DATA BUFFER

s 1 ; START OF SOURCE PROLRAM

CHAPTER 5

USING THE DIGITAL LOGIC SIMULATOR

5.1 Design Examples

In order for the user to get a better grasp of how
DLS operates a few design examples are given. On the
computer printouts that which is underlined is what the
user has typed. The comments along the right side were
added later to emphasize certain points.

The first design example has its printout previously
shown in Figure 2-2., Now what will be done is to show
how all that came about. Figure 5-1 is the circuit to

be simulated.

DATA

GATE)

o

T"\\\ OUTPT

RESET

-

Figure 5-1

118

119

Cnce the simulator starts to run the title will be
printed followed by a question. The simulator wants to
f it should clear the tables in the memory. This

is for protecting against destroying old files in memory.

DIGITAL LOGIC SIMULATOR

CLEAR MEMORY ? YES

:1p@@ .INPUT, DATA,GATE,RESET The user types in
£2¢¢¢ <AND/2. DATA,GATE,A topigraphical dis-
:30@@ .AND/2. RESET,QUTPT,O cription of the
:40P¢ OR/2. A,0,0UTPT network.

:5¢@@ .PRINT. DATA,GATE,RESET,A,QUTPT
16009 .END,

:COMP Once the discription
is done the compile

.INPUT. DATA,GATE,RESET command is issued.

ANDZ2., DATA,GATE,A

LAND/2. RESET,OUTPT,O The compiler will

.OR/2. 4,0,0UTPT print the discri-

.PRINT. DATA,GATE,RESET,A,OUTPT ption along with

. END, the logic gate
count,

AND/2 =@2

OR/2 =@1

:FANOUT The user reguests
fanout analysis.

DATA :01

GATE :¢1

RESET :§1

A 0}

OUTPT: ¢
0 1P

:EXEC

——e

OF TIME UNITS PER PULSE = 1§
OF TEST INPUTS = 7

TRACE = NO
X-PASS = YES

DATA :XX1111

GATE :XP10Pp1
RESET :X011¢11

120

The execution

command 1is given.
The executer will
request some sim-

ulation parameters.,

The input test
patterns,

DLS simulation
printout,

There exists a
possible hagzard
when DATA and GATE

THE CIRCUIT IS OSCILLATING

change at the

same time,

R 0
D G E U
A A S T
T T E P
A B T A T
gg: X X X X _i ————————————
p1: X p ¢ ¢ ¢
g2: 1 1 1 1 1
p3: 1 ¢ 1 g 1
p4: 1 ¢ @ B
gs: 1/ 1 ¢ @
g6: ¢ 1 1 ¢ X
DATA
GATE —
1 x
unit delay

) A By putting a delay
in the GATE line

the two logic levels
no longer change

simultaniously.

Figure 5-2

R
D
Y

:20PP .AND/2. DELAY,DATA,A The delay is simply

:15@¢ AND/2. GATE,GATE,DELAY an AND gate with
both inputs tied

: COMP together.

.INPUT. DATA,GATE,RESET The user simply

JAND/2. GATE,GATE,DELAY modifies one line

.AND/2. DELAY,DATA,A and adds another

.AND/2, RESET,QUTPT,O then recompiles

.OR/2, A,0,0UTPT the network.

.PRINT. DATA,GATE,RESET,A,OUTPT

.ENDQ

AND/2 =3

OR/2 =@

:FANOQUT

DATA @1

GATE :42

RESET :¢1

DELAY : : 1

A P

OUTPT :¢1

0 2P

: EXEC

OF PIME UNITS PER PULSE = 19
OF TEST INPUTS = 7 o
TRACE = NO

X-PASS = YES

DATA :XX1111¢ Run it through the
GATE :X@1p0@1 same test pattern.
RESET : X¢ 11611
R 0

D G. E U

A A S T

T T E P

A E T A T
pp: X X ¥ X X
g1 X 6 6 ¢ ¢
2: 1 1 1 1 1
¢3: 1 ¢ 1 ¢ 1
ga: 1 ¢ ¢ ¢ ¢
g5: 1 @0 1 ¢ @
p6: ¢ 1 1 @ @ No hazard exists.

The second example will show how DLS detects race

conditions. Figure 5-3 is simply a string of OR gates.

INPUT

AAA I:::> BBB I:::> ccc § N\ DDD
EEE } :; OUTPT

Figure 5-3

[—

VARV,

By

EY
A
W

using the DLS trace mode signal propagation can

be viewed,

:NEW

Clear out the

CLEAR VMEMORY ?YES memory and describe
: 1403 INPUT. INPUT the new network.
:2¢@¢ .OR/2. INPUT,INPUT,AAA

:20¢1 .OR/2. AAA,AAA,BBB

:2¢¢2 .OR/2. BBB,BBB,CCC

:2¢p3 .OR/2. CCC,CCC,DDD

:2¢¢4 .OR/2. DDD,DDD,EEE

:2¢¢5 .OR/2. EEE,EEE,OUTPT

:3¢@@ .PRINT. INPUT,AAA,BBB,CCC,DDD,EEE,0UTPT
:4PP0 . END.

:COMP

.INPUT. INPUT

.OR/2. INPUT,INPUT,AAA

.OR/2. AAA, AAA,BBB

.OR/2. BBB,BBB,CCC

.OR/2, (CCC,CCC,DDD

.OR/2. DDD,DDD,EEE

.OR/2. EEE,EEE,OUTPT

.PRINT, INPUT,AAA,BBB,CCC,DDD,EEE,QUTPT

.END,

OR/2 = @6

:PANOUT

INPUT:(2

AAA (32

BBB :(2

124

Ccc :¢2
DDD :g2
EEE :¢2
QUTPT : ¢@

:EXEC : - Execute the sim-

OF TIME UNITS PER PULSE = 1§ ulator with the
OF TEST INPUTS = 2 trace mode on.
TRACE = YES

X-PASS = YES

INPUT:@1

= el gy AR
=
seRvsBvs!
wlwlw)
e R e lcs!

s — . At —— — - — - ——— W ——— . S0

¢-stable state

.« 9

.

g AR
e I e S SRR SR SR SR O R S
T R A RS SR SRR SR SR SR SR
i R A SR SR SRS R SRS R SR ST
i S A SR SR SR SR SR SRR SRt
B RS R S R SRS RS RS R SR SRR Y
i I SRS R S R SRS SR SR S RS-

¢<-stable state

Re-execute the network but this time set the clock
up so that there will only be five update cycles per time

unit.,

125

: BXEC Re-~executer the

network this time

OF TIME UNITS PER PULSE = 5
OF TEST INPUTS = 2

TRACE = YES

X-PASS = YES

with only five
update cycles per

time unit.

INPUT:§1

I 0

N U

P A B C D E T

U A B C D E P

T A B C D E T
gg: ¢ 1 1 1 1 1 1 Since the network
gg; g g ; q 1 1 1 was not recompiled
gg: g g g é 1 1 1 all outputs start

: X 1 1 . .

$6: @ ¢ ¢ @ ¢ X 1 with their last value.
THE CIRCUIT HAS NOT REACHED A STABLE STATE

After five update
cycles no stable
state was reached,

The next example is the design of a two bit full-
adder., First a one bit full-adder will be simulated then
the modification to a two bit adder. Figure 5-4a is the
basic fuil—adder and Pigure 5-4b is how two such full-

adder ‘blocks are put together to form the circuit.

:NEW New network to be
CLEAR MEMORY 7?7 YES feed to DLS.

1286

Full-Adder Circuit

INA INB

|
YE::]____E§9~
|

_.@E‘Q__G A
74 { U
SUMA

(a)
INAA | } INBB INA INEB
Ly
FA FA LNC
%
OUTCC SUMAA oUTC SUMA
G;_.__.———-_
(b)

Figure 5-4

127

:199$.INPUT, INA,INB,INC Describe the basic

:20¢p .EXOR/2, INA,INB,YA full adder.

:20%1 .EXOR/2. INC,YA,SUMA

T2¢@2 .AND/2. INC,YA,ZA

:20@3 (AND/2. INA,INB,XA

:2¢@4 LOR/2. XA,ZA,QUTC

:3¢@¢@ PRINT. INC,INB,INA,SUMA,OQUTC

:40P@ END.

: COMP Test the first
design stage.

.INPUT. INA,INB,INC

.EXOR/2. INA,INB,YA

.EXOR/2. INC,YA,SUMA

.AND/2, INC,YA,ZA

.AND/2, INA,INB,XA

.OR/2. XA,ZA,0UTC

.PRINT. INC,INB,INA,SUMA,OQUTC

.END,

AND/2 =g2

OR/2 =@1

EXOR/2=(2

:FANOUT

INA (2

INB :¢2

INC :¢2

YA 12

SUMA :0@

74 <@

XA 201

OUTC 0@

: EXEC

]

e

0
0

1

H=

TRACE =NO

X~PASS

=YES

INA 01010101
INB :@@114¢11
INC :¢@@g@1111

F TIME UNITS PER PULSE =1¢
F TEST INPUTS =8

There are 20 posible
test patterns where
n equals the number

of inputs.

Modify the description

S 0

I I I U U

N N N M T

C B A A C
pg: ¢ @ g ¢
gi1: ¢ ¢ g 1 ¢ Bverything checks
p2: ¢ 1 9 1 0 out.
g3: ¢ 1 1 @ 1
g4: 1 ¢ ¢ 1 @
gs: 1 ¢ 1 @ 1
g6: 1 1 ¢ @ 1
g7: 1 1 1 1
:1¢¢@ .INPUT, INA,INAA,INB,INBB,INC
:3¢@@ .EXOR/2. INAA,INBB,YAA for the second stage.
:30¢1 .EXOR/2. OUTC,YAA,SUMAA
13p¢2 AND/2. OUTC,YAA,ZAA
:30p3 JAND/2, INAA,INBB,XAA
:30p4 JOR/2. XAA,ZAA,0UTCC
:A¢@¢$.PRINT. INC,INBB,INB,INAA,INA,OUTCC,SUMAA,SUMA
:500% END.

:COMP

JINPUT. INA,INAA,INB,INBB,INC
.EXOR/2. INA,INB,YA
.EXOR/2. INC,YA,SUMA
.AND/2. INC,YA,ZA
JAND/2. INA,INB,XA
.OR/2. XA,ZA,0UTC
.EXOR/2. INAA,INBB,YAA
.EXOR/2., OUTC,YAA,SUMAA
.AND/2, OUTC,YAA,ZAA
JAND/2, TINAA,INBB,XAA
.OR/2. XAA,ZAA,0UTCC

.PRINT., INC,INBB,INB,INAA,INA,0UTCC,SUMAA,SUMA

.END.
AND/2 =4
OR/2 =p2
EXOR/2=@4
: EXEC

OF TIME UNITS PER PULSE =2¢
OF TEST INPUTS =32

TRACE =NO

X-PASS =YES

INA :¢1¢1¢1¢1¢1¢1¢1¢1p1¢1¢1¢1¢1¢1¢1¢1
INAA 0311081138 11¢60119@8 11831133 11¢F 11

INB :@@@@111100@¢111180001111¢0¢01111
INEB :¢@@gpa@s1111111100p0000911111111

INC :0P@pP00PPpoPPPdei111111111111111

52 possible test
patterns.

130

0o E <«

N D E < <

ODEHOLO

iz <

2 <t =g

oz

e =gyas e8|

oz O

circuit works fine.

The modified

e =Rt SRS SRS SR SRR SRR SRS S SR SRS S

R S Saltal SRS SRR SR SR R S S

g ¢ ¢
¢

ASRSESESESE SRR SRS I STl S S ST SV SR ST R i s el i il

@

R SR S o e e e S R S e

7

TrEE T R T mTEE T TEE T mTEE T TRE T TRE

AR~ ~ rSEEER T T T rEERE T T T CRRRE e

g 0 ¢ ¢

S R R R o R R e R e R R e R e e e R el R e R e

B 90 S $3 SE B8 S5 S0 48 S0 e% 4% 22 ¢ a3
N~ NN <FINO -0 OV
TWLFT 7 o 7T T T e o

2
21:
22

po
#1
$2
@3
P4
B5:
%6
p7
#8

The next example shows how the use of the initial

Figure 5-5 is

condition aids in the circuit analysis.

anasynchronous finite state machine to be simulated.

Asynchronous Finite State Machine

AAA
™~ CCC
) §~“\\\ ,_OUT
BBB
DDD
Figure 5-5
CLEAR MEMORY ?YES New circuit for
:10¢@ .INPUT. AAA,BBB DLS to simulate.
: 20@@ .AND/2. AAA,BBB,CCC

:3p¢@ .AND/2. BBB,0UT,DDD

A4009 .OR/2. CCC,DDD,0UT

:5p0¢ PRINT. AAA,BBB,CCC,DDD,OUT
16000 .END,

: COMP

.INPUT. AAA,BBB

. AND/
.AND/
.OR/2
.PRIN
.END,

2. AAA,BBB,CCC
2. BBB,0UT,DDD
. CCC,DDD,OUT
7. AAA,BBB,CCC,DDD,0UT

152

AND/2 =@2
OR/2 =@1

: BEXEC

OF TIME UNITS PER PULSE =1¢
OF TEST INPUTS =4

TRACE =NO

X-PASS =YES

AAA :@1@@
BEB :TT?@
A B C D O
A B C D U
A B C D 7
gg- ? } ? % X OUT starts in the
: 1
2. ¢ 1 ¢ 1 1 unknown state.
g3: ¢ ¢ ¢ 0 ¢
14099 .OR/2. CCC,DDD,OUT IC=p See what happens
:COMP with OUT having a

initial value.
.INPUT. AAA,BBB

JAND/2., AAA,BBB,CCC

.AWD/2. BBB,0UT,DDD

.OR/2, CCC,DDD,OUT IC=0
.PRINT. AAA,BBB,CCC,DDD,OUT
LEND,

AND/2 =2
OR/2 =@1

: EXEC

OF TIME UNITS PER PULSE =1§
OF TEST INPUTS =4

TRACE =NO
X~-PASS =YES
AAA 100 ‘ Run through the
BBB :111¢ same test pattern.
A B C D O
A B C D U
A B C D T
g¢: g 1 ¢ ¢ ¢ This time all
111 1T 1 .
d2: 6 1 ¢ 1 1 is well.
p3: ¢ ¢ 0 P ¢

The final example is another asynchronous finite
state machine, this time with two possible hazards. The
first problem is the need for a initial condition on
the output and the second problem is that there exists a
race condition in the feedback path of the circuit. Figure
5-6a is the basic circuit which has the two possible
hazard conditions in it. Figure 5-6b is the modified
circuit which has introduced into the feedback path a

delay which should eliminate one of the hagzards.

134

Circuit with Race Condition

AAA] : cce
| BBN
N\ DDD ——\ N\ OUT
ﬁ“__u// ““_7L,///
BBB .
(a)
\ ___DDD L ouT
-
EER
1
DELAY
delay unit

(b)
Figure 5-6

‘NEW

Yt

CLEAR MEMORY

:10@@ . INPUT.

?YES

AAA,BBB

:200¢ JNAND/2.

BBB, BBB,BBN

:300p .AND/2,

AAA,BBN,CCC

14009 AND/2,

AAA,OUT,DDD

15000 JAND/2.

BBB,0UT,DDD

16000 .OR/4.

$,CCC,DDD,EEE,QUT

:790% .PRINT,

AAA,BBB,0OUT

:80@@P .END.

:RESEQ
:LIST

dPPP .INPUT,

pP1¢ .NAND/2.

ppog .AND/2,
pP3p .AND/2.
PP4Lp AND/2,
5@ .OR/2.

gpep PRINT.

¢P7¢ END,

:COMP

AAA ,BBB

BBB,BBB,BBN
AAA ,BBY,CCC
AAA,OUT,DDD
BBB,OUT,EEE

¢ ,CCC,DDD,EEE,OUT

AAA,BBB,0UT

LINPUT,
NAND/2 .
JAND/ 2,
JAND/2,
LAND/2.
.OR/2.
.PRINT,
.END.

AAA ,BBB
BBB,BBB, BBN
AAA ,BBN, CCC
AAA,OUT,DDD
BBB,OUT,EEE

¢,CCC,DDD,EEE,0UT

AAA,BBB,OUT

New circuit to be

simulated.

Issue the resequence
command. Then print
the program.

Compile the network.

NAND/2 =@1
AND/2 =(3
OR/4 =@
: BXEC

Execute the program

and find the hazards.
OF TIME UNITS PER PULSE =1@

OF TEST INPUTS =4
TRACE =NO
X-PASS =YES

1 X
g 1
11 THE CIRCUIT IS OSCILLATING
p @ There are two problems

to be corrected.

:P@3p AND/2. AAA,DELAY,DDD
i@g4g .AND/2. BEB,DELAY,EEE
145 AND/2. OUT,OUT,DELAY
Q@54 .OR/2. ¢,CCC,DDD,EEE 1C=0

:COMP Recompile the

corrected network.
. INPUT. AAA,BBRB

.NAND/2. BBB,BBB,BBN

JAND/2. AAA,BBN,CCC

JAND/2. AAA,DELAY,DDD

.AND/2. BBB,BELAY,EEE

.AND/2, OUT,0UT,DELAY

.OR/2. ¢,CCC,DDD,EEE,0UT TC=(
.PRINT. AAA,BBB,OUT

.END.

NAND/2 =@1
AND/2 =p4
OR/?2 =31
tEXEC

137

OF TIME UNITS PER PULSE =1§

OF TEST INPUTS =8

TRACE =NO

X-PASS =YES

AAA 00111100
BBB 01911919

e
[wolvsllvs

ASESESESR SRS RSROS
~3 OO O =R
VR - = = 2R
R R S L)

Hao

A= RGN S Y

The two possible
hazards have been

eliminated.

CHAPTER 6

CONCLUSION

6.1 A Few Last Words.

With the use of DLS it is now possible for a digital
circuit designer to debug most, if not all of his digital
designs in a matter of minutes. The designer alsc has the
satisfaction that the logic is correct and that he now can
concentrate on hardware connection and failure errors.

The DLS program has proven beneficial to the logic
designer in several cases, including the following.

1) The simulator saves money by correcting design
errors before the hardware is fabricated.

2) The simulator saves time by permiting redesign
prior to fabrication.

%) The computer listing serves as documentation of
the actual design.

4) The simulator aids in debugging of the hardware by
supplying accurate timing diagrams to which the waveforms
monitored in the system can be compared.

5) By requiring the designer to describe his work in
detail, the designer is made more aware of the design

techniques and any redundancies he may be prone to use.

—
A
O

6) By providing accounting statistics of each type of
element and loading of each element, the program aids the
designer in making selections of assignments and card types

building of the hardware.

ot

for

&%

h

7) The éomputer listings expedite the checking of the
circuit after the hardware is built by limiting the number
of causes of errors to be checked.

8) The computer outputs allow the designer to see
many signals at one time, as opposed to a few at a time,
as would be the case when limited by available traces on
oscilloscopes.,

9) Often the design will lend itself to the case where
the number of inputs is small and all combinations and
permutations of the inputs can be created by the computer
and the design totally checked. Usually in a hardware
setup only a limited number of inputs can be checked;

10) The timing diagrams when sampled at "gate' times
will often shcw logic spikes in hard copy as opposed to

the small time duration of a spike on a scope.

BIBLIOGRAPHY

Breuer, Melvin A., Design Automation of Digital Systems.
New Jersey: Prentice-Hall, Inc., 1972

Breuer, Melvin A,, Digital System Design Automation.
California: Computer Science Press, Inc., 1975

Breuer, Melvin A,, "Recent Developments in Design Automation,"
Computer, May/June 1972, pp. 23-35

Chu, Yaohan, Computer Organigation and Microprogramming.
New Jersey: Prentice-Hall, Inc., 1972

Chu, Yaohan, Introduction to Computer Organization.
New Jersey: Prentice-Hall, Inc., 1870

Flomenhoft, Mark J., and Csencsits, Brenda m., "A
Minicomputer-Based Logic Circuit Fault Simulator,"
ACM Sigda Newsletter, Vol. 4, No. 3, 1974, pp. 15-19

Hartenstein, Reiner W,, Fundamentals of Structured Hardware
Design, New York: North Holland Publishing Company, 1977

Jephson, J. S., McQuarrie, R, P., and Vogelsberg, R. E.,
"A Three-Value Computer Design Verification System,"
IBM System Journal, Vol. 8, No. 3, 1969, pp. 178-189

Kahn, Hilary J., and May, J. W. R., "The Using of Logic
Simulation in the Design of a Large Computer System,"”
The Radio and Electronic Engineer, Vol. 43, No. 8, 1978

Osborne, Adam, 8080 Programming For Logic Design,
California: Adam Osborne and Associates, Inc., 1976

Ulrich, E.G., and Baker, T., "Concurrent Simulation of
Nearly Identical Digital Networks," Computer,

Yoeli, Michael, and Rinon, Shlomo, "Application of Ternary
Algebra to the Study of Static Hazards," Journal of
the Association for Computing Machinery, Vol. 11,
No. 1, 1964, pp. 84-97

140

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1980

	A microprocessor based digital logic simulator
	Kevin Dresher
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Info Statement
	Title Page
	Approval Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Dedication Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Why Another Logic Simulator?
	Chapter 2: Three Value Simulation
	Chapter 3: Table Driven Simulation Techniques
	Chapter 4: The DLS Program
	Chapter 5: Using The Digital Logic Simulator
	Chapter 6: Conclusion
	Bibliography

	List of Figures (1 of 2)
	List of Figures (2 of 2)

