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ABSTRACT

An incompressible, inviscid irrotational flow

model was used to represent the normal impingement

of a circular axisymmetric jet upon a flat plate. 	 An

analytical investigation was conducted to determine

the free surface of the jet and the solution of the

potential flow problem was obtained using finite

difference techniques for jet height-to-nozzle radius

ratio of 2.4.

The velocity and pressure distributions at the

plate surface and along the jet centerline were obtained.

The results from the finite difference solution are

in close agreement with other most recent results from

available experimental, and approximate solutions to the

potential flow problem.
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CHAPTER 1

Introduction 

A class of problems of practical importance are

those involving jets. 	 In this class of problems

viscous forces are generally confined to small regions

of flow, and consequently are of minor importance, so

that potential flow theory gives results adequate for

most applications. 	 Solutions to these problems have

been shown to agree closely with experimental measure-

ments in regions where accelerations and velocities

of the flow are relatively high, thus permitting prac-

tical applications of the mathematical research in

this area. 	 However, potential flow problems involving 3-D

free streamlines have proved to be so formidable that

researchers have been forced to obtain approximate solu-

tions by numerical techniques or other approximate

methods rather than solving the problems in closed form.

The study of jets may be classified into three

categories, namely, free jet, impinging jet and wall

jet. 	 The free jet, defined as one issuing into unbounded

fluid, finds its application in such problems as the

mixing and combustion of gaseous or atomized liquid fuel

injected into air. 	 It has received attention also in

connection with water discharge from a submerged outlet,

and discharge of conditioned air into a room. 	 The
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impinging jet, a term used when the jet strikes a plane,

solid surface in its path at any given angle, finds its

chief application in heat transfer processes as in jet

cooling of commercial products such as strip steel and

plate glass. 	 However the problems associated with jets

issuing from rockets or vertical take-off and landing

aircraft also belong to this category. 	 The wall jet,

which issues tangentially to a plane surface and may,

therefore, be regarded as a limiting case of impinging

jets with zero angle of impingement, also has its chief

application in heat transfer.

Uniform Inviscid Impinging Jet Theory 

An inviscid jet in fluid otherwise at rest is in

the class of free streamline flows. 	 The essential

difficulty in treating such flows analytically lies in

the fact that, even though there are well defined

boundary conditions on the free streamlines in such

flows, the location of the free streamline is not known

in advance and must be determined as part of the solution.

There is a considerable body of literature concerning

the theory of inviscid jet flows. 	 Exact solutions for

two-dimensional inviscid impinging jet flows using hodo-

graph techniques have been obtained, but the available

theoretical treatments of inviscid uniform three-dimen-

sional impinging jets are limited to approximate or
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numerical methods.

Background Literature On The Potential Jet

The problem of an axisymmetric jet of

incompressible, inviscid fluid has been investigated by several

authors for certain specified configurations. 	 Apart

[1]
from the initial study of White, in which the essential

features of a potential impinging jet were explored,

one of the early detailed studies on the problem was

[2]

carried out by Reich. 	 By utilizing a water jet in an

environment of air, as did White, he measured the pro-

file of a large, vertical jet impinging on a horizon-

tal plane. 	 Since the environment for the jet was air,

the friction at the free boundary of the jet could be

neglected. 	 However, the friction on the impingement

plane and the effect of gravity must be taken into

consideration.

The first analytical investigation of the potential

[3]
impinging jet was undertaken by W. Schach. 	 In his study,

Schach first assumed the shape of the jet profile and

the linear distribution of the velocity potential on

the profile. 	 He then re-evaluated the potential distribu-

tion on the profile in terms of the originally assumed

values through integration of the LaPlace's equation by

means of Green's theorem. 	 The resulting distribution

was compared with the assumed one, and the profile was
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successively modified in the light of the discrepancy

between the assumed and computed potential distributions.

The process was repeated until the discrepancy became

sufficiently small. 	 The primary difficulty with this

technique was that no rational basis was derived or

shown for correcting the boundary shape.

[4]
Shen obtained an approximate solution for the model

of Figure 1 using spherical coordinates, by expanding the

velocity potential (I) (r,O) in series involving spherical

harmonics. 	 A finite number of terms in the series are

used; boundary conditions are not satisfied identically on

the boundaries, but in an average or weighted sense. 	 For

example, along boundary BC in Figure 1, the boundary con-

where U 	 is the jet velocity and

S is tangent to curve BC. 	 Shen satisfies the condition

where W. is a weighting function. 	 If n terms in the series

for c are considered, there are n constants to be deter-

mined, and, hence n equations like the one above are required.

As many equations are obtained as needed by considering dif-

ferent weighting functions, W i . 	 On boundary BC, the solu-

tion obtained is checked by computing the weighted velocity

component normal to the boundary. 	 If this condition is sat-

isfied, within the limits of the method, the solution has

been obtained. 	 If this condition is not satisfied, a new



5

boundary must be assumed and the process repeated. 	 Shen

indicates a possible iterative technique for obtaining

the exact boundary for the flared jet which involves the

solution of simultaneous nonlinear algebraic equations,

but gives numerical results only for successive approxi-

mations type of analysis.

The problem was also investigated more thoroughly

[5]
by Andre LeClerc. 	 In his study, LeClerc determined

the shape of the jet profile by means of an electrical

analog employing an electrolyte as a conducting medium

for the electric current. 	 The electrolyte was contained

in an container shaped in such a way that the electro-

lyte formed a thin section of the jet sliced by two

planes intersecting at the jet axis.

The electrical analogy technique used by LeClerc involves

a representation of a body of revolution by such a small

segment that the boundary surface need curve in only one

plane, and replacement of the usual movable probe by a

series of small electrodes precisely located along the

boundary.

The electrolyte is thus contained between a sheet

of plate glass inclined at perhaps 5 deg. to the hori-

zontal, two vertical copper terminal plates in the

approximate form of potential surfaces and well removed



from the zone of measurement, and a strip of plastic

at right angles to the glass and formed to represent

the curved boundary. 	 The centerline, corresponding

to the intersection of the free surface of the electro-

lyte and the glass plate, is further defined by a low

wall of paraffin to eliminate capillary creep. 	 A 0.01

molar solution of copper sulphate with a small admix-

ture of sulphuric acid is used as the electrolyte. 	 The

electrodes are formed of 0.015 in. copper wire passing

through holes in the plastic strip; the holes are

drilled on a precision milling machine, the wires

cemented in place, and the contact surfaces polished

flush.

An electrical potential is applied between the

terminal plates, and the resulting potential difference

between each successive pair of boundary electrodes is

measured by means of a bridge circuit containing a sen-

sitive null indicator. 	 The potential difference, divided

by the electrode spacing, is assumed proportional to the

velocity at the mid-point between the electrodes. 	 The

curved edge of the container, which corresponded to the

free boundary of the jet, was successively adjusted by

trial and error until a linear distribution of the vol-

tage drop was obtained along the curved edge of the

container.



After the jet profile was determined, LeClerc

obtained the potential distribution within the jet

numerically by means of the relaxation method. 	 The

velocity distribution was obtained subsequently from

the potential.

Comparison of the above mentioned studies shows

that there is a considerable discrepancy between the

jet profiles as obtained by LeClerc and by Schach. 	 The

profile obtained by Reich, although it includes the

effects of the gravity and the friction on the impinge-

ment plane, agrees more closely with LeClerc's. 	 More-

over, the pressure distribution over the impingement

plane computed by LeClerc has been verified experi

mentally by Kodmoutsos.

[6]

7
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CHAPTER 2

Fundamental Theory 

In this chapter the fundamental theory on which

the present research is based will be presented.

Some Definitions and Basic Equations. 	 The follow-

ing definitions and equations, which can be found in

[7] 	 [8 1
most standard text books (e.g. 	 Abramovich, Schlichting)

are relevant to the present study and hence summarized

hereafter for convenience of reference.

Steady flow. 	 A flow whose physical properties such

as velocity V, fluid density p , and pressure P, at every

point in the flow domain do not change with time.

Ideal fluid. 	 A fluid which is both incompressible

and inviscid. 	 "Incompressible" means that the fluid

occupies a definite volume and is unaffected by change

in pressure. 	 "Inviscid" implies the fluid has zero

coefficient of viscosity p and hence offers no resis-

tance to shearing deformations.

Streamline. 	 A continous line drawn through the

flow so that it has the direction of the velocity vector

V at every point on the line. 	 Consequently, no fluid

may pass across a streamline. 	 A streamline is mathe-

matically defined by:

V x dS = 0 	 (2. 1 )



or as:

Wdr 	 Udz = 0 	 for axisymmetric flow 	 (2.2)

in which S is the tangent at each point on the stream-

line, W and U are the velocity components in the axial

(z) and radial (r) directions, respectively.

Free streamline. 	 A streamline on which the pres-

sure is a constant. For instance, the streamline on

the interface of fluid and air of flow issuing forth

from a slot or orifice is a free streamline.

Equipotential line. 	 A line on which the fluid

particles have the same potential energy. 	 Flow passes

an equipotential line at right angles to all points

on the line.

Flow net. 	 A net which is composed of two ortho-

gonal sets of lines, streamlines and equipotential

lines.

Stream function 4J. 	 A mathematical device used to

describe the form of any particular flow, which when:

(a): set equal to constants result in different

streamlines in two-dimensional flow, or annular

stream surfaces in axisymmetric flow.

(b): differentiated properly yields velocity com-

9



ponents, i.e.

(c): 	 taking the difference between two streamlines

yields the flow rate between these two adjacent

stream surfaces.

Velocity potential function (P. 	 Another mathematical

device, a useful complementary function of ψ, used to

describe a flow pattern, which when:

(a): set equal to constants results in velocity

potential lines in two-dimensional flow, or velo-

city potential surfaces in axisymmetric flow.

(b): differentiated with respect to distance in

any particular direction yields the velocity in

that direction, i.e.

(c): 	 gradients are taken gives the velocity field

of flow, that is:

It is worth remembering that the stream function

exists for both two-dimensional and axisymmetric flow,

regardless of whether or not the flow is rotational,

while the velocity potential function exists only for

10



irrotational flow.

Stagnation point. 	Is a point in the fluid where

the velocity is zero. 	 The conditions for stagnation

point, where cylindrical coordinates are used and when

the flow has axial symmetry, are:

Equations of continuity. 	The continuity equation

simply expresses the law of conservation of mass. 	 When

derived in terms of the conventional X,Y,Z rectangular

Cartesian coordinate system, the continuity relation may

be expressed as:

for any kind of fluid, real or ideal.

For an ideal fluid the rate of change of density

following a fluid particle dP, is zero, and equation

dt

(2.8) reduces to:

In axisymmetric flow the velocity corresponding

to the z direction in the Cartesian coordinate system

11



is zero, then equation (2.9) can be specialized to

give:

The boundary conditions are:

where Vo = initial jet velocity.

For the frictionless case:

where (a) is a constant. 	 It is seen at once that such

a solution satisfies the equation of continuity.

12
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CHAPTER 3

Formulation Of The Problem 

Based on the perspective gained from the foregoing

survey, the present study was formulated.

The jet considered is a short axisymmetric circular

jet impinging normally on a infinite flat plate. 	 The

flow region to be analyzed is shown in Figure 2. 	 A

cylindrical coordinate system is chosen with Z directed

perpendicular to the ground plane, positive outward, and

r directed along the ground plane, such that the origin

is at the intersection of the ground plane and the

axisymmetric jet centerline.

The flow is assumed to be inviscid, incompressible

and irrotational. 	 Because of symmetry, the stream func-

tion, 11), and the velocity potential, (I), can be defined by:

where r is the radial coordinate, z the axial coordinate

(as stated above), and U and W are the radial and axial

components of fluid 	 velocity,. respectively.

The equation of irrotationality in axisymmetric flow
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Substituting Equations (3.1) and (3.2) into Equation

(3.3) yields the LaPlace equations.

For the stream function:

For the velocity potential:

The differential Equations (3.4) and (3.5) above are the

governing equations of the flowfield. 	 The hydrodynamic

problem can be considered solved and the flowfield is

completely specified if either φ (r,z) or ψ( r,z) is found.

In addition to Equations (3.4) and (3.5) for ψ and

c, there are flow boundary conditions that are required

to be satisfied. 	 The boundary conditions applied to the

model are as follows:

1. The fluid velocity Vo along the jet's free

surface is constant, or equivalently, the pressure

is constant along the free surface.

2. On the free surface and at all points on the

PIP



boundary, the normal velocity is zero, i.e.

where n is the inward normal (into the fluid).

3. The stream function ψ along the centerline of

the jet and on the impingement surface is a cons-

tant and is set equal to zero.

4. It is assumed that the fluid velocity Vo

across the boundaries of the incoming and out-

going flow is constant.

5. 	 The stream function ψ on the free surface

is constant.

In the present study the boundary for the incoming

flow is established at an axial distance (z) of 2.4 ro

from the stagnation point (point of intersection of the

r and z axis). 	 The boundary for the outgoing fluid

sheet is also at a radial distance (r) of 2.4 ro from

the stagnation point. 	 This radial distance of 2.4 times

the radius of the impinging jet is considered large,

hence the depth (h) of the fluid on the plane is small

and the motion is almost radial with velocity Vo, the

velocity with which the jet strikes the plane.

The volume rate Q is defined as:



For incompressible, steady flow the continuity

equation may take the form

from which the depth of the fluid can be obtained.

or

where r again is the radial distance.

In this case the impinging jet radius will be set

equal to 1 and thus h = 1/2x2.4 or h = 1/4.8. 	 With this

the formulation of the problem is completed.

16



CHAPTER 4

Method of Solution Of The Internal Flow Pattern 

1. Graphical Approximation. 	The main difficulty

involved with the jet impingement flow is that a free

surface is present and its position is not originally

known and must be found as part of the solution.

A fairly approximate solution of the potential flow

problem can be obtained employing a graphical approach.

In the present study the graphical method was the funda-

mental ingredient in approaching the final solution of

the problem. 	 Once the centerline axis and the radial

axis (along the plate) were drawn and labeled z/r o and

r/r o respectively (or simply z* and r* in dimensionless

form), the fluid depth (h) was drawn as a vertical line

of magnitude [11 = 1/4.8]. 	 In extrapolating the profile

of the free surface, use is made of the fact that the

profile approaches a hyperbola asymptotically as r*

increases since the streamlines then become essentially

parallel to the impingement plane.

First, from experience, an initial guess as to the

location of the free surface is made. 	 It should be noted

here that a relatively large graph was used in the early

stage of the drawing in attempting a graphical solution

to maximize the degree of accuracy required. 	 The next

step was to draw additional streamlines, however, the

Jet radius was taken as unity, see Equation (3.9)

17
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spacing of the streamlines along the fluid depth (h)

is uniform because of the fact that at the lower end

the velocity is approximately uniform at a given r*

parallel to the plate. 	 One can see also that the

stream function * along the centerline and on the

impingement surface is a constant and is set equal to

zero. 	 Furthermore, the stream function ψ along the

free surface is also a constant and is set equal to 1.

The spacing of streamlines along the incoming

stream was determined using the theory of flowrates.

Since 27 	 times the difference in ψ values on the flow

surfaces is the flowrate between surfaces, i.e.

rearranging terms, equation (4.1) is simplified to give

where r is the radial distance (proportional to the jet

radius r o ) computed along the incoming boundary for each

value of the stream function ψ .

A relatively large number of streamlines were drawn,

following the guessed free surface. 	 Then the zero

equipotential line projected from the stagnation point was

drawn intersecting at right angles with all streamlines.

On the free surface the boundary condition Δψ/ΔS = 1 was
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satisfied by evaluating the values of velocity poten-

tial at successive points along the boundary, where S

is the distance (proportional to the impinging jet

radius r o ) measured along the curve.

On the free streamline the dimensionless velocity

potential φ/roVo  was incremented by a constant of 0.1.

However, in the "critical area", namely, the area that

is close to the zero-equipotential line, the dimension-

less velocity potential was incremented by a constant

of 0.01.

The end points of the potential lines are now known

along the free surface, therefore, the equipotential

lines may be drawn with a high degree of precision to

satisfy the condition of perpendicularity to the stream-

lines.

In predicting the end points of equipotential lines

near the stagnation point, use was made of the applica-

tion of the continuity equation in determining the velocity

components, i.e. 	 near the stagnation point the following

condition occurs:

From this the approximate location of equipotential

lines near the stagnation point was obtained along the

centerline and along the plate by applying equation (2.4).



Another major contribution as to approaching a

graphical solution was extracted from the fact that at

axial distances of z/r o greater than 1.6 the stream-

lines and equipotential lines were represented as verti-

cal and horizontal lines respectively.*

Based upon the application of all "starting-points"

mentioned so far, an initial graphical solution of the

flow pattern was obtained using the finite difference

technique.

20

* Previous work done, references [3] & [5]
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2. 	 The Finite Difference Method. 	 The essence of the

finite difference method involves substitution, for

the differential operators in the initial differential

equations, of approximate values expressed in terms of

differences of the functions at discrete points of the

differencing grid. 	 The substitution reduces the prob-

lem to the solution of a set of algebraic equations.

Although the set of equations may involve a considerable

number of unknown quantities, its solution is mathe-

matically easier than that of the original problem. 	 The

number of equations and the number of elements in some

vector, say φ for which a set of difference equations is

formulated, correspond to the number of grid intersec-

tions or "points" times the number of dependent variables.

Generally, the equations are nonlinear, but at each

iteration one can think of them as a set of linear

algebraic equations.

As a first step in approaching a finite difference

solution to the governing LaPlace equation, a grid pattern

was formed, as shown in Figure 3, within the space sur-

rounded by the boundary conditions, and at each grid

intersection or nodal point the derivatives were replaced

by a difference approximation.

In the finite difference method, a square grid was

used as illustrated in Figure 4. 	 The origin was arbitrarily
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placed at the stagnation point. 	 A successive over

relaxation method was employed.

The governing LaPlace differential equation for

the potential flow is stated below for convenience of

reference.

The finite approximations of the partial deriva-

tives are

or

and

similarly

where i,j subscripts refer to mesh points as shown in

Figure 4.

It should be noted here that a square grid denotes

that grid spacings in the r and z directions must be
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equal. 	 Thus,

Upon replacing Δr* and Δz* by the equivalent grid

spacing (h), and substituting into Equation (3.5) one

obtains after simplification

where (r) is the magnitude of radial coordinate of

point 	 (i,j).

From Equations (4.7) and (3.5) the residual at any

point (i,j) is given by

where Ri,j for LaPlace equation is zero and, by consideringi,j



this and also the residuals at the four surrounding

points, the unit dimensionless operator of the velo-

city potential (t. at point (i,j) follows

24

Referring to the mesh shown in Figure 5b note

that a displacement of +1 (or grid spacing h) at point

h
0 gives a residual at point 1 of amount 1 	 2r and at

point 3 of amount 1 - h/2r. Thus, although it is inde-

pendent of the z coordinate of point 0, the operator is

a function of the r coordinate.

irregular Stars 

The effect of a curved boundary on the regular five

point finite difference expression is considered here.

Due to the non-coincidence of the boundary with the nodal

mesh points not all of the mesh arms are of standard

length (h). 	 Therefore, special finite difference equa-

tions are required where one or more grid lines is inter-

cepted by a boundary of the jet as shown in Figures 6

and 7.



When all four mesh lines are intercepted, the

partial derivatives are approximated by
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Equations (4.10) through (4.12) could be specialized

after substitution into Equation (3.5) and arrangement

of terms to give the eigenvalue of the dimensionless

velocity potential φ at point (i,j) for the case where

equipotential line(s) intercept(s), one, two, three, or

all four mesh lines.

Sequence Of Steps In The Relaxation Solution 

The solution begins with the approximate eigenvalues

of φ and known values at the prescribed free streamline

obtained from the graphical solution. 	 These values were

stored in the computer memory storage to be used as

initial values. 	 Then the iterative equation (4.9) was

modified to yield



where (n) and (n + 1) denote two successive iterations,

and (w) is the relaxation parameter.

A computer program was written such that Equation

(4.13) was used to sweep all the nodal points and to

calculate a new set of eigenvalues 4. 	 . 	 The sequence

used is called a cyclic, single-step process* which is

repeated over and over to calculate successively 	
(1)

(2)
...etc. 	 One uses in each sweep the known set of

dimensionless velocity potentials φ(n)i,j to calculate a

new set of φ(n+1)i,j
	

Finally, there results
1 ,J

at all nodal points, where (e) is a prescribed value

of the error in the velocity potential. 	 When this

condition has been met, the iteration has converged

to the solution of the finite difference approximation

of the LaPlace equation for the specific grid spacing

value of (h) used to form the mesh.

Computer Program Process 

One of the primary steps taken in writing the com-

puter program was deciding on the number of nodes to be

* This method is known as the Gauss-Seidel method, and

when the relaxation parameter (w) is greater than 1 as is
the case in the present program, this method is commonly

referred to as successive over relaxation or simply SOR.

26



27

used. 	 At first, a simple* square 13 x 13 matrix was

constructed so that it includes the flow field, with

its origin placed at the stagnation point. 	 Nodal points

located outside the flowfield were set equal to zero.

From the initially assumed values, the computer was

operated and its results were obtained after 10 itera-

tions. 	 These new dimensionless velocity potential

values were then used to adjust the initially prescribed

free streamline and a new graph was drawn. 	 Then new

assumed values were extracted graphically and fed to the

computer. 	 This process was repeated over 15 times at

which the solution was stable.

Experience gained from several tentative solutions

obtained during the process of debugging the computer

program indicates that convergence does occur fast enough

to be practical if a not too coarse a mesh is used.

In order to approach the final analytical solution,

the square matrix was augmented to 25 x 25 so that the

grid spacing was decreased and finer mesh was obtained.

The square mesh was small enough to produce 285 internal

nodes with grid spacing of h = 0.1r 0 . 	 Additional node

points are located at all intersections of the grid lines

with the plate and with the free streamline.

Referred to as the Jordan Canonical form matrix.
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Again, the values obtained during the last previous

iteration were used as initial values. 	 After 10 itera-

tions new values were available. 	 These values, once

more were employed for further adjustments of the free

surface. 	 The mechanics of re-adjusting the free sur-

face consists of satisfying a necessary boundary con-

dition and that is that a streamline must be everywhere

normal to lines of constant velocity potential. 	 Also

the tangential derivative δφ/δs = constant, is applied

at the free stream surface.

The criterion for sufficient relaxation was deter-

mined by carrying out an extremely large number of itera-

tions for a fixed boundary shape and finally, on the last

run, the velocity potential values at the boundaries were

recalculated and 10 last iterations were performed. 	 The

change in velocity potential values at that point was less

than 0.001% for every node point in the grid, which revealed

optimality. 	 The relaxation was ended then and the solution

was essentially complete.

Much work has been done on potential axisymmetric flow that im-

pressed the author of this thesis, and which may be helpful to the

reader. Although References 9-24 have not been used in the thesis

directly, they are still mentioned in the bibliography for convenience.

Of help was Lee's work [10] that shows a great deal of similarity with

the present solution in the pressure distribution over the plate,

illustrating the fact that the potential core flow of viscous fluid has

a close physical Ryhmig relation to the flow of ideal fluid. Ryhmig
[9]

shows an interesting new approach, convenient for axisymmetric systems

where the impingement plate has a curvature.
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CHAPTER 5

Analysis Of The Analytical Results 

1. 	 Velocity Distributions. 	Once the flowfield

generated by the impingement of a circular axisym-

metric jet upon a flat plate was specified in terms of

the velocity potential as a function of the radial and

axial coordinates, i.e. φ(r,z) respectively, the radial

and axial velocities with respect to the initial jet

velocity (Vo) may be obtained using the following

equations.

Equations (3.1) and (3.2) are modified to yield

velocity distributions in dimensionless form.

where φ measured along the plate surface, and similarly

where c measured along jet centerline.

Note that if the velocity at point r* = 0.3 was

required, one should take (Δ4) = at r* = 0.4 -.64 at r* = 0.2)
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and the 	 r* or 	 z* would always be equal to 0.2 ro.

Tabulated results obtained from computer output

for the velocity distributions are stated below.

TABLE 5.1

Analytical Velocity and Pressure Distributions

Along 	 the 	 Flat

r

r
o

Plate 	 Surface

v

Vo

for 	 zo/ro 	 = 	 2.4

P -P
s 	 o
V2

P o/2

0 0.0000 1.0000
.1 0.0510 0.9973
.2 0.0994 0.9901

.3 0.1538 0.9763

.4 0.1998 0.9600

.5 0.2533 0.9358

.6 0.3111 0.9031

.7 0.3570 0.8725

.8 0.4218 0.8220

.9 0.4727 0.7765
1.0 0.5314 0.7175
1.1 0.5948 0.6461
1.2 0.6492 0.5785

1.3 0.7123 0.4925

1.4 0.7711 0.4053

1.5 0.8225 0.3233

1.6 0.8713 0.2406
1.7 0.9075 0.1763
1.8 0.9335 0.1284
1.9 0.9450 0.1069

2.0 0.9611 0.0762

2.1 0.9701 0.0588

2.2 0.9730 0.5322

2.3 0.9789 0.0415



TABLE 5.2

Analytical Velocity and Pressure Distributions

Along the Jet Centerline for zo/ro = 2.4

(W/Vo

z ___
r

o

is 	 positive 	 upward)

w
V

o

P -P
s 	 o

p V0 /2

0 0.0000 1.0000
.1 0.0762 0.9941
.2 0.1469 0.9784
.3 0.2539 0.9355
.4 0.3305 0.8907
.5 0.3947 0.8442
.6 0.4741 0.7751
.7 0.5230 0.7264
.8 0.5974 0.6430
.9 0.6604 0.5638

1.0 0.7179 0.4845
1.1 0.7567 0.4273
1.2 0.7947 0.3684
1.3 0.8269 0.3162
1.4 o.8568 0.2657
1.5 0.9280 0.1386
1.6 0.9427 0.1112
1.7 0.9478 0.1015
1.8 0.9692 0.0605
1.9 0.9848 0.0301
2.0 0.9933 0.0132
2.1 0.9973 5.3899x10-3
2.2 0.9991 1.7966x10-3
2.3 0.9998 2.6388x10-4
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TABLE 5.3 

Velocity Distribution on the Impingement Plane

Due to a Potential Impinging Jet.

r
r

o
Present Study LeClerc

0.0 0.00.0
0.1 0.0510 0.050
0.2 0.0994 0.100
0.3 0.1538 1.151
0.4 0.1998 0.202
0.5 .2533 0.254
0.6 .3111 0.307
0.7 .3570 0.362
0.8 .4218 0.417
0.9 .4727 0.474
1.0 .5314 0.532
1.1 .5948 0.591
1.2 .6492 0.651
1.3 .7123 0.711
1.4 .7711 0.770
1.5 .8225 0.824
1.6 .8713 0.871

1.7 .9075 0.908
1.8 .9335 0.933
1.9 .9450 0.945
2.0 .9611 0.961
2.1 0.9701 0.968
2.2 .9730 0.973
2.3 .9789 0.976
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2. 	 Pressure Distribution. 	 In potential flow

problems the pressure distribution is given by Bernoulli's

equation. 	 If Ps denotes the hydrostatic or simply the

stagnation pressure and Po is the dynamic pressure at an

arbitrary point, hence for potential flow

or

similarly

where P is the fluid density and Vo is the jet velocity.

The pressure distribution along the flat plate sur-

face was obtained using Equation (5.4), while the dis-

tribution along the jet centerline was obtained employing

Equation (5.5), analytical results are included in

Tables 5.1 and 5.2.

The velocity and pressure distributions obtained

from the present study are represented graphically in

Figures 8 through 13 and the flow pattern of the impinging jet

is presented in Figure 16.



Analysis Of Radial Velocity And Pressure Distributions 

The velocity variation along the flat plate is pre-

sented in Figure 8. 	 It is readily seen that the radial

velocity increases manotonically and linearly at first

from zero at the stagnation point to a region where r/ro

is smaller than 1.6. 	 Beyond this region the rate of

increase decreases drastically where in the case of flow

of real fluid the velocity begins to decay due to energy

dissipation.

Numerical results obtained from present study for

the velocity distribution on the impingement plane, and

those obtained by LeClerce included in Table 5.3.

This Table is presented graphically in Figure 14. 	 Com-

parison between the two mentioned results, reveals simi-

larity within the range covering 0 ≤ r/ro ≤ 0.6. 	 Also,

close agreement prevailed when r/ro ≥ 1.2. 	 However, for

0.6 < r/ro 	 < 1.2 some minor discrepancy occured. 	 This

said discrepancy is primarily due to the difference in

the shape of the free stream surface obtained in the

present case.

Further comparison, concerning the radial velocity

obtained from the finite difference method, was made with

the available published work of Schach. 	 Aside from the

fact that difficulty was exercised in extracting Schach's

velocity distribution from a very small graph in his
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article, it was found that there was some qualitative

agreement between the two results for short radial

distances from the stagnation point, but for the range

0.5 < r/ r0 	 < 1.7 the rate of increase of the radial

velocity corresponding to the present analysis was

noticeably less than that obtained by Schach, however

the opposite of the latter case occurs for 1.6 ≤ r/ro ≤ 2.4.

This result is shown in Figure 14.

Since the pressure along the flat plate was calcu-

lated in dimensionless form using Bernoulli's equation,

it is then clearly seen from Equation (5.3) that the

pressure distribution is totally dependent on the corres-

ponding velocity distribution. 	 Hence, it is fairly

obvious that the pressure distribution obtained by

LeClerc will be or in fact is similar to the present

results as shown in Figure 14, within the range where

velocity distributions were proven to be similar. 	 By

the same 'token', within the range where 0.6 ≤ r/ro ≤ 1.2

the pressure distribution curve obtained here tends to

show a decrease at a slightly higher rate than that pre-

dicted 	 by LeClerc.

As shown in Figure 14, the pressure distribution

obtained by Schach reveals that the hydrostatic pressure

tends to reach the dynamic (ambient) pressure at a

faster rate for radial distances of r < 1.7; beyond this
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point the slope begins to taper off, and the stagna-

tion pressure peaks up at a farther radial distance

than that predicted by the present study.

Further comparison was also made with the experi-

mental results obtained by Lee[10]Although the nozzle

height-to-radius ratio (ro/zo) of that employed by Lee

was different from the one assumed in the present case,

some pronounced agreement was sought even though theory

asserts that real jets, encounter a free-mixing zone

prior to entry into the impingement region. 	 The presence

of mixing zone, compressibility and viscosity in real

jets employed in experiments, tend to maximize the rate

at which the velocity is decreasing, and therefore higher

normalized pressures are expected near the stagnation

point.

Analysis Of Centerline Velocity And Pressure Distributions 

For normal axisymmetric jet impingement, Schlichting
[8]

and many others, express the criterion that the impinge-

ment region commences when the centerline velocity is 98%

of that in the undisturbed free jet at the identical dis-

tance from the nozzle exit. 	 According to the present

computations, the location of this point is at z/ro ≈ 1.9,

which is in close agreement with the value z/ro 	 2.0

observed by Schlichting. 	 Schach found that this point at

which impingement region begins where the ground effect is
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first felt is at an axial distance of z/ro ≈ 	2.3

which is in conflict with the above mentioned theory.

It is worth mentioning here that LeClerc's results

are comparable to those obtained by the present study.

Based on the previous discussion, one can already

see the similarity that exists in centerline velocity

distribution between the results obtained by the finite

difference method and those obtained by LeClerc for the

region where z/ro> 2.2. 	 However, for axial distances

of 1.4 ≤ z/ro ≤ 1.8 the velocity distributions obtained

here tend to follow Schach's prediction more closely than

LeClerc's.

Near the stagnation point, the velocity distribution

was found to be comparable in both cases as shown in

Figure 15. 	 The distribution of pressure along the jet

centerline compared with LeClerc's and Schach's is shown

in Figure 15. The agreement between the current compu-

tations and those of LeClerc's is obvious for the region

z/ro ≤ 1.4. 	 However, beyond this point it was found

based on thorough analysis that the current curve is

steeper and the static pressure at an axial distance of

z/ro > 1.4 tends to approach the dynamic pressure. 	 This

is a considerable improvement upon the distribution of

LeClerc which breaks down at large distances from the

stagnation point.



CONCLUSIONS 

Though the equations for axisymmetric jet impinge-

ment on flat surfaces are not integrable in a closed

form, the use of a finite difference potential flow

analysis combined with initial graphical approximations

appears to be a fairly flexible computational technique

for handling problems of jet impingement. 	 This tech-

nique produced good agreement with results of other

investigators using different techniques, which were

available from the literature on axisymmetric jets.

A free surface consisting of a streamline or any

arbitrarily-shaped solid surface can be handled with no

major difficulty by the finite difference method. 	 The

limitations of this approach are, however, that the flow

be laminar and that no regions of separated flow exist.

The accuracy of the prediction of velocity potential

in the flow region, from which velocity components and

pressure distributions were extracted by using this tech-

nique, proved to be reasonably good and in some respects

resulted in a substantial improvement of the predictions

obtained by the more time consuming methods.
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RECOMMENDATIONS

Although the solution of the potential flow problem

investigated in the present study is complete, there are

still some areas in heat transfer and fluid mechanics

that future studies should include in the applicability

of the finite difference technique. 	 Some of the recom-

mended areas are stated as follows:

1. Heat transfer distribution on a flat plate

produced by the impingement of an axisymmetric

jet.

2. With appropriate modifications the technique

has the potential of analyzing a large class

of problems involving phase change where the

shape of the heat transfer surface and the

distribution of heat transfer on it are co-

determined.

3. 	 It would be most interesting to include the

solution of the integral boundary layer which

requires as an input the free stream velocity

and its first derivative along the impingement

surface. 	 Since these parameters are calculated

by a numerical differentiation of the finite

difference solution for the potential flow, a

high degree of accuracy and smoothness of these
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results are required. 	 This factor, there-

fore, will be expected to control the finite

difference nodal spacing required in regions

of rapidly varying velocity.

One of the main expected numerical difficulties with

this technique when applied to the latter case would

involve the matching of the solutions between the poten-

tial flow and the boundary layer regions.



APPENDIX 

Computer Program 

The computer program was written in BASIC language, which makes

it easier for engineers who are not acquainted with computer pro-

gramming to relate to the subject. The computer program is included

in the next few pages. Also included, is the computer input, that

is the initial velocity potential values used on the last run. Then

the new values of the velocity potential computed follow. From the

predicted flow pattern, the velocity and pressure distribution along

the flat plate, and along the jet centerline were computed and tabu-

lated results are located in the back of the Appendix.
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Graphical Representation of the Nomenclature
for the Impinging Jet.

Figure 2
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Grid Pattern for the Finite-Difference .

Solution of the Potential Flow Equation.

Figure 4
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Node Notation with One Equipotential Line
Intercepting 	 Two . MEitf3h Lines.

Figure 6



Node Notation with Two Equipotential ,Lines
Intercepting All Four 'Mesh Lines.

• 	 Figure 7



Velocity Distribution Along Flat Plate Surface.

Figure 8



Velocity Distribution Along Jet-Centerline.

Figure 9



Static Pressure Distribution Along Flat Plate Surface.

Figure 10



Static Pressure Distribution. Along Jet-Centerline

Figure



Radial Velocity and Pressure Distribution of an Axisymmetric Jet Impinging
Upon a Flat Plate With a Height-to-Nozzle Radius Ratio of 2.4.

Figure 32-



Axial Velocity and Pressure Distribution of an Axisymmetric Jet Impinging
Upon a Fiat Plate With a Height-To-Nozzle Radius Ratio of 2.4.

Figure 13



Comparison of Predicted Radial Velocity and Ground Plane Static Pressure
Distribution of an Impinging Jet With a Height-To-Nozzle

Radius Ratio of 2.4.

Figure 14



Comparison of Predicted Centerline Velocity and Static Pressure
Distributions of an Impinging 	 with a Height-To-Nozzle

Radius Ratio of 2.4W

Fig 	 13



Flow Pattern of an Axisymmetric jet Impinging Upon a Flat Plate

Figure 16


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1980

	Impingement of an axi-symmetric jet on a flat surface
	Amir J. Daibes
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Information StatemeNT
	Title Page
	Abstract
	Approval Page
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Fundamental Theory
	Chapter 3: Formulation of the Problem
	Chapter 4: Method of Solution of the Internal Flow Pattern
	Chapter 5: Analysis of the Analytical Results
	Conclusions
	Recommendations
	Appendix: Computer Program
	References
	Figures

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Symbols

