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ABSTRACT

The cause and the nature of anisotropy in a cohesive soil
was investigated by direct shear and triaxial compression tests,
Laboratory techniques and procedures used to prepare isotropic
clay samples are given where consolidation was accomplished under
hydrostatic pressure. Direct shear tests were performed on these
specimens trimmed at different inclinations to the physical
horizontal from the block samples. The ratio of undrained shear
strengths in any direction to shear strength in the vertical
direction was found to be equal to one, proving isotropy ex-
isted. Similar tests were performed on specimens trimmed from
the same clay consolidated one-dimensionally. Results from these
tests showed the shear strength ratio to be maximum for specimens
trimmed at 90° to the horizontal plane. In this case, the anisos
tropic characteristics were directly attributed to the sample
stress history. These samples indicated preferred particle orien-
tation. Undrained triaxial compression tests were performed on
both hydrostatic and one-dimensionally consolidated samples.
Triaxial test results confirmed the results of the direct shear
tests and more accurately defined the stress/strength parameters.
The angle between the failure plane and the test specimen's axis
was essentially constant and the ratio between pore water pressure

at failure and the mean consolidation stress remained a constant.



For each maxdmum consolidation stress, pore pressure was isotro-
pic, but in all cases was higher for hydrostatically prepared
samples. The hydrostatic method of preparing isotropic test

specimens was effective and produced reliable results.
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NOTATIONS

C Shear strength of a specimen oriented parallel
<® to the horizontal plane.

i? Shear strength of a specimen oriented at angle
= /zg“to the horizontal plane.

. Shear strength of a specimen inclined at 90°
C?g to the horizontal plane.

Ratio between the lateral effective stress and
the vertical effective stress.

: Angle between the plane of isotropy and the
failure plane.

K/Average of measured angles of inclination of
' the failure planes.

4/ Maximum measured angle of inclination of the

failure plane.

Angle between the horizontal plane and the
4 specimen axis.

€' Strain at failure.

£

/L( Pore water pressure.

-/&g,c Pore pressure at failure.

V’—& Maximum effective consolidation stress.
W Major effective principal stress.

Y3 Minor effective principal stress.

_V"";;‘c Mean effective consolidation stress = Vje& (/ﬁl)()ﬁ\\

T Maximum shear stress obtained from triaxial
R tests.
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Chapter T

INTRODUCTTION

During the last decade there has been an increased interest
in the investigation and analyses related to the directional
variation of shear behavior of fine-grained soils. A study of
the published works in soil mechanics indicates that many
progressive soil engineers have begun to adapt their methods of

analysis to take into account strength anisotropy.

Of the many types of material anisotropy described by Lekh-
nitskii l, the one most likely to be found in soils is cross
anisotropy. R cross-anisotropic material contains an axis of
rotational symmetry such that all orthogonal lines emanating
from this axis are equivalent, that is, the material possesses
a plane of isotropy normal to the axis of rotational symmetry.
In a deposited soil which has not experienced any stress other
than that from the overlying material, physical verticael and
horizontal directions coincide, respectively, with the axis
of rotational symmetry and the plane of material isotropy. To
determine the directional variation of the shear strength of

1. S.G.Lekhnitskii. Theory of Elasticity of an Anisotropic
Elastic Body. California, Holden-Day, Inc., 1963. p. 584.




soils, tests are generally performed on specimens trimmed in

different directions as shown in Figure I.

Hvorslev + reported the variation in strength with dir-
ection for Vienna clay and Little Belt clay. Specimens for
unconfined compression tests were trimmed such that/Q , the
angle between the plane of material isotropy and the specimen
axis, was 0, 45, and 90 degrees. Vienna clay exhibited maximum
strength for vertical (/Q = 90 degrees) specimens and minimum
strength for horizontal specimens ( /5 = 0 degrees). Little
Belt clay had the highest strength for/§ equal to O degrees and
the lowest strength forfg equal to 90 degrees. Lo? determined
the anisotropy of shear strength in over-consolidated, undis-
turbed Welland clay. A large number of unconfined compression,
and some triaxial and direct shear, tTests indicated the max-
imum shear strength to exist in vertical specimens., Duncan
and Seed ® evaluated the strength anisotropy of San Francisco
1.M.J.Hvorslev. "Physical Components of the Shear Strength of
Saturated Clays', Proceedings of the Research Conference of Shear

Strength of Cohesive Soils. Colorado, Bmerican Society of Civil
Engineering, 1960. pp.169-274.

2. XK.Y.Lo. "Stability of Slopes in Anisotropic Soils", Journal of

the Soil Mechanics and Foundations Division, Proceedings. Pmerican
Society of Civil Engineers, Vol 91:SM4. paper 4405,July 1965,p .85.

3,J.M.Duncan and H.B.Seed. "The EBEffect of Anisotropy and Reorienta-
tion of Principal Stress on the Shear Strength of Saturated Clay",
Report ET-65-3, U.S.Army Engineers, Waterways Experiment Station,
Vivksburg, Miss. 1965.
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Bay mud from anisotropically consolidated, undrained, plane-
strain tests and found the maximum strength for « equal to

60 degrees and the minimum strength for< equal to O degrees,
. being the inclination of the failure plane of material iso-
tropy. The variation in undrained shear stength was primarily
attributed to two factors: anisotropy of pore-pressure para-

meter at failure and reorientation of principal stresses.

Ladd and Lambe 1 and Seed and Noorany 2 noted that insitu
anisotropic stressés are released during sampling and as the
sample is extracted from the tube, it experiences a negative
pore-water pressure, and the effective stress in the sample
becomes isotropic. Because of the lack of stress anisotropy,

Lo 3 concluded that in conventional triaxial tests, no reorien-
tation of principal stresses is possible and. therefore, the
measured direction strength variation is due to inherent
1.C.C.Ladd and T.W.Lambe. "The Strength of Undisturbed Clay
Determined from Undrained Tests", Laboratory Shear Testing of

Soils, Philadelphia, STP 361, . American Society for Testing
and Materials, 1964, pp.342-3/1.

2.H.5.8eed and L. Noorany. "In-Situ Strength Characteristics
of Soft Clays”™, Journal of the Soil Mechanics and Foundation
Division, Proceedings. BAmerican Society of Civil Engineers,
March 1965, Vol 91:8M2, Paper 4274, Pp.48-80.

3.K.Y.Lo. Closure to "Stability of Slopes in Anisotropic
Soils"™, Journal of the.Soil Mechanics and Foundation Division,
Proceedings, American Society of Civil Engineers, Vol 92:5SM4,
Paper 4405, July 1966, pp.72-82.




anisotropy. Loh and Holt 1 reported that, for Winnipeg Upper
Brown clay, both shear strength and secant modulus had max-
imun values associated with horizontal specimens. In an account
of in-situ vane shear tests, Aas 2 reported the ratio of shear
strength in the ﬁorizontal and the vertical planes to be as

high as two, which was confirmed by DiBiagio and Ras ° through

large-scale, in-situ, direct shear tests.

Many others have hypothesized that plate-like clay particles
respond to shear strain by aligning themselves parallel to the
direction of maximum shear strain. Studies of clay microstructure
by Martin®and others indicate that, in one-dimensional consolida-
tion under high pressures, clay particles acquire almost ideal
orientation normal to the direction of the major principal stress,
and the tendency toward parallel orientation is also observable
1.A.,X.Loh and R.T,Holt. "Directional Variation in Undrained Shear

Strength and Fabric of Winnipeg Upper Brown Clay", Canadian Geo-
technical Journal. Vol 11:3, 1974, pp.430-437.

2. G.Ras. '"Vane Tests for Investigation of Anisotropy of Undrain-
ed Shear Strength of Clays", Proceedings, Geotechnical Conference,
Norwegian Geotechnical Institute, Oslo, Vol 1;1967,pp.3-8.

3., E. DiBiagio and G. Aas. "The In-Situ Undrained Shear Strength
Measured on a Horizontal Failure Plane by Large Scale Direct Shear
Tests in Quick Clays", Proceedings, Geotechnical Conference,
Norwegian Geotechnical Institute, Oslo, Vol 1, 1967,pp.18-26.

4, T.R.Martin. "Research on the Physical Properties of Marine Soils
August 1961-July 1962", Research Report R62-42, Soil Engineering
Division Pub. No. 127, 1962, Massachusetts Inst. of Technology,
Cambridge, 1962.




even at very low values of major principal consolidation stress.

Interpretations of soil structure have also been made by
indirect means. Seed et al * observed different strength be-
havior for specimens formed by kneading compaction and those
formed by static cémpaction. It was suggested that the clay
particles had a high degree of parallelism in kneaded speci-

mens and & random oOrientation in specimens formed by static

compaction.

It is evident from the preceeding paragraphs that aniso-
tropy of shear strength is of common occurance in fine-grained
soils.Maximum shear strength, which has been determined by
various types of strength tests, may be found to occur in a
horizontal plane, a vertical plane, or in some intermediate plane.
Also, through direct observation and indirect interpretations
it has been found that most clays, natural and remolded, have
oriented structure even if they experienced very small one-
dimensional consolidation stresses. In general, the observed
anisotropy has been attributed to one or more of the follow-
ing: (1) soil fabric, (2) reorientation of principal stress-
es or stress anisotropy, (3) directional variation of pore
pressure, and (4) directional variation of éffective stress
1. H.B.Seed et al. "Strength of Compacted Cohesive Soils'™,
Proceedings of the Research Conference on Shear Strength of

Cohesive Soils. American Society of Civil Engineers, Colorado,
1960, pp.877-964.




strength parameters. Items listed under (3) and (4) have

been also referred to as inherent or intrinsic anisotropy.

It is well documented by Ladd and Lambe, and Seed and
Noorany that the anisotropic stresses existing in thecfield
are no longer operative on the specimens prior to shearing
in triaxial apparatus, and therefore, according to Lol, the
measured directional variations in strength are due to in-
trinsic anisotropy and are not a consequence of stress
anisotropy. It may then be asked whether intrinsic aniso-
tropy would still exdist if the soil did not have a history

of anisotropic stresses.

Duncan and Seed 2 stated that most clays are anisotro-
pic to some degree and the measured directional variation in
strength is the combined effect of inherent anisotropy and
reorientation of principal stresses. To understand what roles
each one of these factors plays in the overall strength anis-
tropy, one would need to uncouple their effects. If the soil

samples are prepared under truly hydrostatic stress conditions,

1. Lo, Op.Cit. p.4.

2.J.M.Duncan and H.B.Seed.."Strength Variation Along Failure
Surfaces in Clays', Journal of the Soil Mechanics and Founda-
tion Division, Proceedings, American Society of Civil Engineers,

Vol 92:9M6, Nov 1966, pp. 81-104,



irrespective of the orientation of trimmed specimens, at no
stage of testing would there be any reorientation of princi-
pal stresses, and any measurable directional variation in shear
strength would indicate the effect of inherent anisotropy

alone.

To obtain a better understanding of the causes and nature
of strength anisotropy, the following experimental investi-

gations were undertaken.



TINVESTIGATIONS
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Chapter II

LABORATORY PROCEDURES

Soil used in this study was an illite clay known by the
trade name Grundite. It was mined in Grundy County, Illinois
and purchased commercially from Illinois Clay Products Com-
pany. Initially, the soil had to be purified to a 95% pure
clay. This procedure was accomplished by hydrometer tests
on the initial soil composition. Figure II shows the grain
size distribution by particle diameter in millimeters in
accordance with U,S. Bureau of Soils Classification. Results
found in Figure II show an initial composition of 3.0% fine
sand, 40.5% silt, and 56.5% clay. Hydrometer tests on the
illite clay proved a settlement time of 85 minutes was ade-
quate to obtain pure clay suspension with the fine sand and

-

s1lt settled out of The suspension. This 85 minute settlement

[v8}

was usaed as a standard throughout sample praparation. The

gy suspensgion, with approximately SQO% water content, was

@
4]

then transferred to a five gallon container, where it was
allowed to stand. After continued settlement, excess distill-
ed water wgs siphoned off. Vacuum was appliad to a clay slurpy
to remove trapped air and establish a completely saturated
soil-water slurry. This process was repeated until an ade-.

quate quantity of saturated clay slurry was formed for con-

solidation. Consolidation was accomplished both one-dimen-
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sionally and three-dimensionally to obtain block specimens
with specific stress histories. The clay soil used in sample
preparation had a liquid limit of 65% and a plastic limit of

32%.

One-dimensional consolidation chambers were manufactured
using % inch lucite cylinders with 6 inch inside diametar,
Figure ITII. Two inch head and base plates were used with a
teflon piston and shaft. A hydrostatic pressure head was
then applied for specific stress histories of 0.5, 1.0,

2.0, and 4.0 kg/cmg preloads. Consolidation of each sample
was continued until measurized popre pressure stabilized and
no further vertical deformation was noted. At his point, the
samples were left under the specified preload for a minimum
of 24 hours to insure a uniform stress history throughout the
prepared sample, Water content proved to be uniform, varying

+ 0.5% from top to bottom of a 4 inch prototype. Upon com-

plaetion of each one-dimensional consolidated sample, the sam-
ple was wpapped in plastic, sealed and stored in a 100%

humidity lockewv,

Preparation procedures weve follawed carefully Three
block samples of each stress history were formed. This quantity
proved adequate in supplying trimmed specimens for both triaxial

and direct shear tests. Tests performed on specimens trimmed at
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specific angles from the horizontal of each sample. Standard

L iFS

“ ae ~f A0 . . ,
angle planes of 0 (horlzontal), 153, 309, 450, 600, 750s and

0 war ;‘ X . .
90% were used on the one-dimensional samples (Figure TV).

Chapter IIT will cover the results of the direct shear tests.

Triaxial test specimens were trimmed at similar angles,
To conserve time and sample quantity, angle planes of 00, 300,
609, and 90° wer ot . ‘ istori ;

R were used for samples with stress histories of
0.5 and 2.0 kg/cm2w One~dimensional consclidated 4 kg/om2
triaxial specimens were trimmed at 0°, 150, 300, 459, 5005

O o . o . .
757, and 90%, in order to obtain an accurate comparison with
the direct shear tests. A complete discussion of triaxial test

results are contained in Chapter IV.

Preparation of triaxial and direct shear specimens pos-
sessing isotmopy presented a most dntricate labovatory prob-

lem. The bulk sample had to be consolidated to a specific

nistory with ¢ 1 = ¢ = V'3, thus allowing consolidation

3TIres

92}

to proceed equally along the X, Y, Z axis. To accomplish an
equal, three-dimensional consolidation, the sample would have
to be prepared in the shape of a sphere with a uniform hydo-
static pressure head applied over the entire surface of tChe
sphere. Initial characteristics required for such consolida-
tion would be: (&) a spherical porous core at the center of the
sample to allow uniform drainage; (b) a rubber spherical mem-

brane to enclose the sample which would contract evenly around
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the sample as consolidation took place; (c¢) a water-tight pres-
sure chamber capable of sustaining pressure to a maximum of

6 kg/cm25 with an inlet valve for the pressure head and an out-
let valve For pope water; (d) 4 méans of suspending the sample

inside the chamber to prevent anisotropy at the bottom of the

A zearch of local dindustries in Newark produced a satis-
Factory pressure chamber capable of holding d 6kg/cm? pressure
head with minimum modification, It consisted of a stainless
steel tank with a 16 inch diameter, 20 inches high. The tank
had 1/8 inch wall thickness with horizontal zeinforcement
bonds around the circumference. The top of the tank was held
in place with eight bolts. Shown in Figure V, the final con-

% dinch hard rub-

solidation chamber was modified by adding a
ber gasket to seal the top, an inlet valve, and an outlet valve,
A hydraulic jack and steel frame assembly were added to apply
positive pressure to the top and bottom of the tank in order

to prevent bulging. A stainless steel cradle was manufac-

tured to hold a nylon net which suspended the sample near the
center of the tank, thus preventing initial deformation of the

sample due to gravity (Figure V). This would have occurred if

the sample was allowed to lay on the tank bottom,

The actual consolidation device needed to allow pore water

drainage was designed and manufactured at the college. It con-
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sisted of a 8.5 inch long stainless steel tube, %

meter., A

a fine sand-~egpoxy mixture shaped inside a ping pong ball,

18

inch in dia-
porous ball was formed at one end of the rod by using

with

a tube Fitting located at the center of the ping pong ball. After

cut away

follows:

of drying time for the epoxy, the ping pong ball was
(Figure VI). A brass slide collar was designed to
neck of the rubber membrane and still allow the mem-

e down the drainage tube as the sample consolidated.,

[#5)

ot
ot
o

a Flairless tube Fitting was attached to the top of the

tube and then to the drainage fitting on the tank 1lid,

procedures for the actual sample preparation were as

A soil slurry was prepared in the same manner as for

the one-dimensional sample. Once the air was removed from the

slurry and all excess distilled water was removed, the rubber

balloon~-shaped membrane was attached to the end of a 3 inch dia-

meter lucite injector tube. The balloon was then de-aired under

d vacuum

and the tube filled with saturated clay slurry. A

vacuum was reapplied to remove as much trapped air as possible.

With the

filled cylindrical chamber,

balloon sitting in the nylon net within the partially

the soil slurry was forced into

the balloon with a hand-operated piston. Soil slurry was forced

into the membrane until a 12 to 14 inch diameter was obtained,

AT this point, the porous drainage ball assembly was placed in

the neck of the membrane with the ball located at the center
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of the spherical membrane. The slide collar was installed with
lubricated o-rings compressed around the drainage tube. The
membrane neck was stretched over the slide collar and sealed
with o-vings. At this point, the remainder of the tank was

Filled with distilled water and the drainage tube attached

—

to the tank lid. With the clay slurry sealed within the mem-
brane, the tank was sealed with a lubricated hard rubber

gasket and the 1lid bolted in place. A 3/4 inch by 3 inch steel

94}

cross bdr was placed on top of the tank and the entire tank
assembly was compressed between a steel channel frame by
means of a hydrsulic jack. B constant pressure head was ap-
plied to the hydrostatic system by a self-compensating mer-
cury control, The pressure head was then regulated to the con-
solidation pressure. Consolidation was allowed to proceed un-
til pore water drainage stabilized. At this point, the consol-

idation pressure was left on the sample for 48 hours to insure

complete agnd uniform consolidation.

After complete consolidation, the apparatus was disassem-
bled and the sample removed, sealed and stored in a humidity
locker for testing. Test specimens were trimmed from the spheri-
cal, three-dimensionally consolidated samples in the same man-
ner as the one-dimensional tests. Q° represented the horizontal
plane of the spherical sample. From the horizontal plane, samp-
les were trimmed at standard angle planes of 0°, 309, 60°, and

90°. Figure VII indicates the random orientation of each spec-
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imen trimmed with its axis along one of the angular planes.
The comparative test results of the spherical samples with
respect to one-dimensional samples at the same angle planes
are discugged dn Chapter IIT for direct shear tests and

Chapter IV Ffor the triaxdial tests,
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Chapter III

DIRECT SHEAR TESTS AND RESULTS

The direct shear test was used to evaluate the variation
of shear strength in prepared soil samples., This method of
testing proved effective, since the testing procedures dare
relatively simple and can be performed in minimun time,

There were 59 direct shear tests performed on both one-dime
sional samples and three-dimensional samples. Tests were per-
formed on the standard manual direct shear apparatus using a

2.0 inch by 2.0 inch shear box, dead-weight load comprising

the normal force, and a manual crank drive. Midway through
the testing, an electric motor-operated gear drive was in-
stalled to produce a constant strain rate of 0,01 inches/
second, This modification eliminated the possibility of manual
error, but did present a problem of recording shear force and
strain readings. In an effort to obtain accurate readings

at a constant strain rate, a super-8 movie camera and flood
lights were installed above the apparatus. A film history

of tests 23 through 59 was recorded in this manner, Unfortun-
ately, the photographic process was not successful, It was
determined after the film was processed that the super-8

film was not adequate to record strain and proving ring read-
ings with sufficient clarity. Readings could not be read from

the film when shown on a screen, a film editor, or a microfilm
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reader. As a result, shear force computations and graphic com-
parisons are based on peak proving ring readings obtained

during each test,

Through the use of rapid strain rates, the pore pressure
which built up within the sample during shearing did not have
sufficient time to dissipate. Thus, the tests were considered
undrained shear tests and their results could be compared

with the undrained triaxial tests discussed in Chapter IV.

Procedures stated in Chapter II were followed in trimming
‘direct shear samples from the  parent block. In each case, the
test sample was trimmed at an angle/E from the horizontal. The
sample was placed under a normal load equal to the lateral
consolidation stress experienced by the parent block sample,

A rapid shear force was then induced on the sample, forcing

the sample to fail along a plane parallel to the angle /9 .

One-dimensional consolidated samples were tested with A
ranging from 09 to 180°, Samples were taken at 15° intervals.
Table I contains strength data for representative samples
along with the strength ratio C4 / Cy. This ratio tends to be
the simplest means of comparison. Here Qﬁ represents the shear
strength of a sample oriented at 4 degrees from the horizontal

and C, is the shear strength of a sample taken along the hori-
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zontal plane from the same parent block sample. Figure VIII
presents a graphic illustration of the stress ratio plotted
against the anglefg . In each case for one-dimensional consol-
idated samples of illite clay, the degree of anisotropy in-
creases as the normal consolidation stress increases. For
example, a 4 kg/ cm? sample showed the greatest degree of
anisotropy. The stress ratio Qﬁ / CO was equal to one whenfg
equaled 0°, The shear strength decreased to the minimum value
atﬁ; = 90°, An interpretation of this finding would indicate

a distinct variation of strength within the soil relative to
the horizontal plane of symmetry., Samples oriented along the
horizontal, being subjected to the greatest normal consolida-
Tion stress, exhibited the highest shear strength. As sample
orientation reached 90° from the horizontal, the normal stress
approached the lateral consclidation stress, resulting in a
lower shear strength. From these observations, we may conclude
that the shear strength of a cohesive soil is directly related

to the soil stress history.

The isotropic or anisotropic soil prcperties are also
directly related to the soil stress history. As in the case of
the 0.5 kg/cm2 sample shown in Figure VIII a, the strength ratio
%g / Cy 1s equal to one and is represented by a straight line,
En this case, a one-dimensional sample consolidated to 0.5 kg/cm2

possesses isotropic characteristics; that is, identical shear
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strength in all directions. Rationale for the existence of
isotropy in this case would be due to the relatively low
consolidation stress. With a low consolidation stress, the
soil sample holds pore water as shown by the high water
content. The normal consolidation pressure is not great enough
to force a rearrangement of the clay particles into a uni-
form pattern as it did in the case of the 4 kg/cm? sample.

As a result, the clay particles maintained a random orien-

tation and, thus, isotropic properties.

In comparison, three-dimensional, consclidated samples
prepared by the hydrostatic method had isotropic properties
through all stages of consolidation from 0.5 kg/cm2 to 4.0
kg/cm2u The hydrostatic results shown in Figure VIII b are
represented by a straight line with a strength ratios equal
to one. The rationale for this phenomema is drawn from the

sample's stress history. Under a hydrostatic consolidation

stress, the sample experienced a stress history ofef::?; =
ég, With the three principal stresses equal, the sample was
consolidated with the absence of shearing forces. Bs a result,
particle orientation remained random throughout the consolida~
tion process and the final shear strength was uniform in all
directions. This principle held true in all cases and proved
the effectiveness of the hydrostatic consolidation techniques

described in Chapter II.
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The results of the direct shear tests proved that this
testing technique was an efficient means of evaluating the
variation in shear strength as the angle £ ranged from 0@
to 909, Two factors should be mentioned that limit the ac-
curacy of the direct shear tests., The first disadvantage
was the lack of control over pore water pressure during the
test. The only technique available to control pore water pres-
sure was the control of the strain rate., By using a slow strain
rate, the pore pressure was allowed to dissipate, resulting
in a drained shear test. As discussed in this section,
the use of a rapid strain rate resulted in an undrained test,
since the pore water pressure did not have sufficilent time to
dissipate, The overall effect of this type of test was a build-

up of pore pressure as the shearing force increased, Exact

control over the pore pressure was not possible, however,

at best, we are approximating the undrained condition, The
b x

second disadvantage to direct shear tests was the control

o

over the insitu forces which were present during the sample'’s
initial consolidation, In effect, the only force or stress
which could be simulated during the test was the normal force

on the sample. The stress history would have vertical and

5 with lateral and normal
horizontal shear forces present along with I

consolidation forces. In the direct shear apparatus, vertical
A1 L -

i uld not be reconstructed.
shear forces and lateral loading co

Therefore. the results of this type of rtesting provided an
~ T i 3 Ly N



approximation of the true shear strength for that sample

along an induced fHailure plane.



Chapter IV

TRIAXTAL COMPRESSION TESTS

Undrained triaxial tests were determined to be the most

accurate and effective means of obtaining the effective stress

strength parameters for the illite clay samples. This method
of testing would furnish a complete picture of both the iso-
tropic and anisotropic properties experienced by the parent
block samples resulting from their stress history. An eval-
uation of existing laboratory equipment revealed the need
for a more modern, machine drive apparatus which would limit
human error To a minimum and attain consistant results. To
satisfy this requirement, a variable speed, constant drive
triaxial test assembly was procured from Wykeham Farrance of
England. The constant speed drive along with rotary bushing
triaxial test cell heads proved effective in reducing chamber
piston fw»iction and interference on the samples. At the time,
this apparatus was fThe mosit economical means of performing

tpiaxial tests with " frioftionless " piston charvacteristias,

Two triaxial chambers, both with rotary bushings, al-
lowed continuous testing with minimum delay. Aé one sample
was being tested, the second sample was being consolidated
in preparation for testing. A self-compensating mercury con-

trol system furnished a constant hydrostatic pressure head

(W5
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for chamber pressure and back pressure., Sample volume change
was measured by a double-walled, burette apparatus using a
water paraffin surface. To obtain accurate readings in change
of pore water pressure without disturbing the test sample, a
pressure transducer -~ PA, 208TC - was mounted in a locally-
designed and manufactured brass housing with watertight con-
nections to the chamber base assembly. Pore water pressure
readings were obtained through electrical digital readout

in milli-volts and converted to pounds per square inch.

As in the direct shear testing, soill samples were trimmed
from the parent block using angleg@ from the horizontal of
DO3 SOOg 60°, and 9002 for each consolidation stress. Sample
dimensions were 1.4 inches in diameter and 3.0 inches high.
Procedures used in mounting the samples in the test chambers
were idantical to those of Bishop and Henklet . Bpecial attens
tion was given to the end effects induced on the sample by the
end caps. As described by Khera and Krizek25 gtainlass asteal
end caps measuring 1.4 inches in diameter and 0.25 inches
thick were coated with silicone grease and positioned at the
1. AW, Bishop and D.J.Henkel. The Measurement of S5So0il Pro-

perties in the Triaxial Test. London, Edward Arnold,Ltd.
1964, 2nd. ed. p.45.

2. R.,P.Xhera and R,J.Krizek., "Measurement of Control of
Radial Deformation in the Triaxial Test of Soils", Material
Research and Standards. Vol 7:9 Sept. 1967, P. 394.




top and bottom of the test specimen. Each cap contained a small
porous stone at its center which intersected 1/16 inch radial
drainage holes eminating from the center to the circumference.
Slotted filter paper was then carefully wrapped around the

test specimen, joining the drainage holes in the upper and
lower end caps. The use of slotted filter paper, which does not
soften in water ( i.e. Whatman's # 54), was determined to pro-
vide the most even and quickest drainage technique, This tech-
nique proved effective in minimizing end restraints on the

test samples. In each case, failed samples showed uniform de=-
formation with no noticeable distortion at its ends.

Test samples ware then consolidated in the triaxial cell,
taking the specimen back to its original stress condition
experianced by the parent block, An effective consolidation
stress equal to the mean consolidation pressure was used for
consolidation. A constant back pressure of 2kg/em2 was used to
insure complete saturation during consolidation. Over a peariod
of six houps, the change in volume of the samples stabilized
and vremained constant thereafter., The volume paramefen was used
to show the complstion of consolidation. ALL samplas remained
under consolidation for a full twelve hours to insure uniform-

ity, saturation, and stabilization.

Once consolidation was completed, the sample was ready

for testing. With the sample/ chamber assembly mounted in the
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triaxial machine with constant normal stress, lateral stress,
pore pressure, and change in volume readings, a constant 3
millimeter per hour deformation rate was applied to the sample.
Axial deformation was obtained from dial readings and a proving
ring provided axial load readings. Dial readings and pore

water pressure were recorded approximately every 0.01 inches

of deformation until clear shear failure had occurred.

Table II contains test results obtained from twenty-four
triaxial tests. Bight tests were performed on samples trimmed
from the 4 kg/cmzS one-dimensionally consolidated block. In
this case, specimens were treated with the orientation of
anglefg , varying in 159 increments. The intent was to abtain
a true picture of strength variation as anglefg increasas from
09, These pesultswere then to be compared to direct shear ve-
sults. After completion of the first set of eight tests, 1t was
decided that in order to consepve time and reduce the amount
of parvent samples vequired, the remaining tests would be limit-
aed fo angleﬁg equal to 09, SOQ:i 60°, and 90°, This variation
providad identical infopmation and did not sacvifiace accuracy

in lieu of quantity of test specimens.

For each failed triaxial specimen, the value of angle(j@w*@i)
is shown in Table II. This angle is defined as the inclination

between the failure plane of the test sample and the axis of
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major principal stress during shear. The results of all tests
gave &g«&f) values ranging from 26° to a maximum of 35° or an
average value of 30,49, Lol found a much greater variation in
values of Sglwf) for an undisturbed soil, yet assumed 9g_g')
to be equal to a constant. Hvorslev*s2 evaluation of ggagj)
showed the variation to be not more than 3° for remolded sails.
A conclusion drawn by Hvorslev3 was that failure of a sample
N
may occur in a plane with its inclination@%i%4§§%4o when the
corresponding shear strength in this plane was slightly less
than the shear strength atels by 1.0 to 1.5 per cent. He de-
duced that this variation was due to anisotropy, or irregulap-
ities within the test specimen. Hvorslev? did not consider
changes in pore water pressure during his study. This is one
important factor which must be evaluated to prove isotropy

or anisotropy,

Pore water pressure values obtained from triaxial tests
are ghown graphically in Figure IX and Figure X. It is interest-
ing to note that the comparison of the pore water pressure valuas
Qﬁi3 are nearly identical for normally consolidated samples de-
1.X.Y.Lo. "Stability of Slopes in Anisotropic Soils', Journal of

the Soils Mechanics and Foundation Division,Proceedings. American
Society of Civil Engineers, Vol 91:SM4,Paper 4405, July 1965.P.90.

2. Hvorslev, Op. Cit. p. 265,

3, Thid. p.270,

4, Ibid. p.271.
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picted in Figure X. Pore pressure values for all F-series tésts
(normally consolidated) may be represented by one curve, Similar-
ly, the H-series tests, hydrostatically consolidated samples,
were also well represented by a single curve. One observation
which can be readily made from Figures IX and X is the marked
difference in pore pressure values between the H-series and the
F-series tests. In the F-series tests, values fall on one
curve despite sample orientation. This phenomenon would indi-
cate isotropy of pore pressure which may seen to be a contra-
diction to the anisotropic characteristics presented in Figure
VIII, discussed previously in Chapter III. In the 4 kg/cm2
normally consolidated sample, the strength ratio %51/ C, dis-
cussed in Chapter IIT showed a distinct enisotropic character-
istic, However, the pore pressure shown in Figure X tends to

be isotropic. This phenomena would lead to the conclusion that
for a specific soil sample, the specimen orientation would

have negligible effect on pore water pressure while the shear
strength varied as the specimen orientation varied by angle/é?
from the horizontal. The second observation is that the pore
pressure for three-dimensionally consolidated, hydrostatic
samples is consistently higher than the pore pressure for
F-series tests. This characteristic is trué, despite the fact
that the maximuwn consolidation stress was the same for both
series. The final observation 1s the differénce in slope of

the pore pressure graphs shown in Figure X. The pore pressure

builds slower for the 4 kg/ch H-series test specimens., The
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F-series tests show the pore pressure reaching its maximum
faster that the H-series, where it then levels off well be-
low the maximum pore pressure attained by the H-series spec-

imens,

The ratio of pore pressure at failure and the effective
mean consolidation stress is plotted against the consolidation
stress in Figure XI. In each case, the data points form a single
straight line. This was true regardless of the magnitude of
consolidation stress., This phenomemnon was reported by Kheral,
where additional data from triaxial tests on screw-extruded
Grundite specimens were plotted on the same graph. Despite the

great difference in stress history and sample formation, all

points fell on the same straight line.

Based on the comparisons and data presented here, it may
be concluded that the difference in shear strength is due to
sample stress history. The H and F-Series tests were consol-
idated under identical consolidation stresses and tested in
in the same apparatus using fthe identical technjque. The only
difference between the two series Qas that the H-series were
consolidated three-dimensionally and, therefore, exhibited
isotropic characteristics regardless of sample orientation.
1. R,P.Xhera., "Remolding Stresses and Directional Strength

Behavior of the Illitic Clay", Journal of Testing and Evalu-
ation. January 1976, Vol 4:6.P. 106,
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Similarly, the F-series tests exhibited anisotropic pro-
perties. The shear strength decreased as the specimen orienta-
tion reached an anglefg equal to 90° from horizontal. The
strength, therefore, was greatest fo§/§ equal to 09, indicat-
ing a preferred orientation of soil particles, parallel to the

horizontal plane,

Slack test results on samples prepared for testing were re-
ported by Kheral. These tests showed expansion and development
of fissures in planes parallel to the horizontal plane. Identi-
cal tests on H-series specimens did not indicate any bias in
particle arrangement. As a result, it may be assumed that par-

ticle orientation in the H-series is completely random.

1..Ibid.P,107.
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Chapter V

SUMMARY AND CONCLUSIONS

Laboratory samples of Grundite were prepared by two methods,
one-dimensional consolidation and three-dimensional hydrostatic
consolidation, The test specimens were trimmed from the parent
samples varying the specimen orientation from the horizontal
plane between 0° and 90°. Stress/ strength parameters were deter-
mined by undrained triaxial eompression tests and direct shear
tests. For triaxial specimens, consolidation stress was equal to
the mean effective normal stress experienced by the parent block
sample, Based on the results obtained, the following conclusions
are drawn:

1. Test specimens prepared using the three-~dimensional, hydro-
static consolidation method had isotropic undrained shear strength.
These samples showed no bias in soil structure, which is a unique
phenomena and not normally found in natural deposits.

2. The same soil prepared using the one-dimensional consoli-
dation method exhibited anisotropic characteristics, which were
directly attributed to its stress history. These samples did in-
dicate preferred particle orientation and anisotropic, undrained
shear strength. Previous research studies reporting anisotropy,
were made on soils with similar anisotropic sStress history.

3., The maximum shear strengths were exhibited by specimens

orientated parallel to the horizontal plane. Vertically orienta-
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ted specimens had the minimum strength. Strength ratios between Uit
these planes varied from 0.390 for 1 kg/cmz, 0.87 for 2 kg/cmg,
and 0,76 for 4 kg/cm2 samples.

4, The angle between the failure plane and the specimen
axis was essentially constant.

5. For a given maximum consolidation stress, hydrostatically
prepared specimens exhibited a higher pore water pressure than
samples with anisotropic stress history. In both cases, the pore
pressure was 1isotropic.

6., The ratio between pore pressure at failure and the mean

consolidation stress tends to be constant.
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