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ABSTRACT

Title of Thesis
SIMULATION OF PARTICLE SIZE DISTRIBUTION IN
CONTINUOUS EMULSION POLYMERIZATION THROUGH

A MODIFIED POPULATION BALANCE APPROACH

Ying-Yuh Lu

Master of Science in Chemical Engineering, 1984

Thesis directed by
Dr.. Chen-Chong Lin

Division of Chemical Engineering Department

A detailed mathematical model for particle size distri-
bution in continuous emulsion polymerization of styrene and
vinyl acetate is proposed on the basis of the population
balance in the presence of several kinetic and mass transfer
processes. This study is limited to the Smith-Ewart case II,
which assumes instantaneous free radical termination within
polymer particles. Radical desorption mechanism from polymer
particles is included in the model and the desorption rate is
formulated from the diffusion theory which suggests that the
rate coefficient should be inversely proportional to the

surface area of polymer particles.
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CHAPTER 1

INTRODUCTION

Emulsion polymerization in both batch and continuous
reactors is a major processing step in the manufacture of
polymer products such as paints, inks, coatings, adhesives,
high-impact strength copolymers, etc. Current production
by emulsion polymerization in the United States is on the
order of ten billion pounds per year. In spite of this
great economic importance, the detailed mechanistic and quanti-
tative behavior of these reactors is not well understood.

Most early workers in the field chose to use batch reactor
equipment to investigate emulsion polymerization kinetics.
Small scale equipment and minimum reagent requirements led
quite naturally to the use of batch studies. Batch reactors,
however, tend to be time variant, i.e. transient phenomena are
introduced. Continuous emulsion polymerizers may be operated
at a truly ''steady state' condition, thereby allowing easier
analysis of the process. In addition, as more and more indus-
trial processes become continuous, a complete analysis of emul-
sion polymerization becomes more important. For this reason,
there is a great deal of interest in developing reliable, pre-
dictive mathematical models for continuous emulsion polymeri-

zation reactors.



The emulsion polymerization systems are thought to be a
dispersion of soap micelles, polymer particles and monomer
droplets in an aqueous medium. The conceptual picture of
emulsion polymerization was first set down by Harkins(l) in
1947. He suggested that the micelle, swollen with monomer,
serves as a locus for particle nucleation and subsequent
growth. The micelle also contributes soap to help stabilize
the growing polymer particles in later stages of growth.

If a micelle fails to give birth to a polymer particle, the
micelle is eventually adsorbed by other growing particles.
The monomer droplets serve as reserviors and supply monomer

(2) then

by diffusion to growing particles. Smith and Ewart
developed a mathematical description of Harkins' conceptual
picture. They developed a steady state recursion relation

which described the transfer of free radicals between the water
phase and the polymer particles. Their recursion relation
allowed for radicals to be absorbed by polymer particles to
initiate polymer growth, terminate within the particles, and
desorb from the polymer particles. Smith and Ewart solved

their recursion relation for several limiting cases. The
limiting case most widely discussed is their case II kinetics
wherein the rate of termination of free radicals in the particles
is assumed infinitely fast and the desorption mechanism is

assumed inoperative. A consequence of these assumptions is

that the average number of free radicals per polymer particle,



ES, is 0.5 for the system. That is, at any time, half of the

particles present have one radical and are in a growing state,

(3)

while the other half are inactive. Stockmayer was able to
analytically solve the steady state Smith-Ewart recursion re-
lation by employing a generating function, but erred in that
part of the solution which involves desorption. O'Toole(a)
corrected the error and presented a general solution. Ugelstad

et alfS)

realized that the rate of absorption of free radicals
should be affected by the rate of desorption of free radicals
from polymer particles. They included this effect and pre-
sented the results of a numerical solution to the steady state

(6)

recursion relation. Gardon maintained the time derivative
term in his solution to the recursion relation, realizing full
well that a batch reactor is never at ''steady state'.

That his results deviated minimally from those of Stockmayer(3)
is evidence that the ''constant rate' time period may be ade-
quately approximated by the steady state solutionm. Sundberg(7)
showed that the population balance approach may be used to
model batch emulsion polymerization processes. His model deter-
mined transient particle size distributions where the desorption

mechanism was ignored. He was also able to predict molecular

weight distributions from his model.

Continuous stirred tank reactors typically have inherent
advantages for large scale commercial productions. The first

significant discussion of continuous emulsion polymerization



(8

was presented by Gershberg and Longfield in 1961. Their

model assumed Smith~Ewart case II kinetics and ignored particle

size distributions. Sato and Taniyama(g), Omi(lo)

(11)

and
Nomura did many works on the kinetic study for continuous
process, too. The total particle concentration, conversion
and molecular weight of a CSTR product were predicted from
their model, but in all of these works the consideration of
particle size distribution was neglected. In 1971, DeGraff

and Poehlein(lz)

tried to predict the latex particle size dis-
tribution concerned with residence time distribution in CSTR
without considering the radical desorption from polymer particles.
They found that the latex particle size distribution in the
product of a CSTR is quite different from that of a batch

reactor product. In 1972, Stevens and Funderburk(13)

first
developed the prediction of particle size distribution by using
the population balance approach, but the radical desorption

process was not included. In 1974, Min and Ray(la)

proposed
the most general and extensive model, which consists of complex
multivariate population balance equations coupled to material
and energy balances for the reactor. However, they did not
show any quantitative results generated from their equatioms.

In 1977, Thompson and Stevens(15)

reused the population
balance method to formulate the particle size distribution
with radical desorption and finite termination rate, in which

a modified Smith-Ewart recursion relation was incorporated

directly as the '"'rate of formation" relation for polymer particles.



(16)

Then, in 1978, Cauley, Giglio and Thompson assumed instan-

taneous termination between two radicals over the entire re-
action to simplify the Stevens' modef}S) However, no absolute
number of polymer particles could be obtained by their model,
unless the valus of N s the number density of polymer particles
at size of micelle, is known for a given system. In this

work, we modified Thompson and his coworkers' work by using

the mass balance equation of the total polymer particles of

CSTR as the boundary condition of the differential equations

in the model. And the radical desorption process is formulated
on the basis of diffusion theory. Therefore, the absolute
particle size distribution and total concentration of polymer
particles can be found. The effects of mean residence time,
initiator level, emulsifier level and radical desorption

process on the conversion, particle size distribution and

total concentration of polymer particles in the product of

CSTR are predicted. The experimental data for styrene system

done by Nomura et alEll) and for vinylacetate system done by

Lu et a1517) are given for comparision.



CHAPTER II

THEORETICAL CONSIDERATION

A. Assumptions

The heterogeneous nature of the latex system makes it
necessary to consider a fairly large number of assumptions
even for the simplest model. Most of these result from the
utilization of Harkin's mechanism and the Smith-Ewart case II

to describe the process. The present discussion is limited

as follows:

(1) Reaction is carried out under steady state in a CSTR.

(2) Monomer concentration in polymer particles keeps constant
no matter what concentration of initiator or emulsifier
is fed into the reaction system.

(3) Termination reaction between two radicals is instantaneously
occurred.

(4) The radical desorption from polymer particles is possible.

(5) There is no coalescence or breakage among particles.

(6) The reentry of radicals coming from the desorption process
into particles is neglected.

(7) A feed stream contains no polymer particles.

(8) Monomer and polymer are mutually soluble.

(9) The polymer particles formed in water phase are ignored.



B. Definitions

1. Number density, Ni(r3,t)

To predict the particle size distribution in con-

3,t) as

tinuous emulsion polymerization, we define N, (r
the number density of polymer particles with i free
radicals. The unit of Ni(rB,t) is (moles of particles)/

(l—HZO)'(cm3).

y
- 3 3 Total number of polymer particles
Ni(r ,t)d(r™)

b

between sizes x and y which contain

i radicals.

2. Total number density, N(r3,t)

The assumption of instantaneous termination within
polymer particles stipulates that only NO and N1 type

particles exist in the system.
n

N(r3,t) =& N.(r2,t) = N_(r,6) + &1(r3,t) (1)
i=1 * ©

-~

3. The concentration of total polymer particles, NT
3

(moles of particles/l—HZO)

. 0.,
Ny =[ N(r3,t)d(r2) (2)

where ro is the radius of the micelle, (cm)



4. The total surface area of polymer particles (per liter

~

of water), Ap (cm2/1-H20)

N *© 22,3 3

AP = 47rNaVJ[‘3r N(r~,t)d(r”) (3)
T
m

where Ny is Avogadros' number.

5. The total surface area of the micelles plus the polymer

particles (per liter of water), AS (cmz/l-HzO)

~

) .
Ay = 47TrmNan + Ap (4)

where m is the concentration of micelles, (moles/l—HZO%
As long as any micelles remain in the system, the total

surface area must be constant and equal to that provided

by the initial micelle surface. Thus,

N 2

A = 4TTxrN_ m (5)
s m av o

where m is the initial concentration of micelles,

(moles/l~H20).

C. Model Development

Before going to set up the population balance equation,

we should recognize the volumetric growth rate of polymer



particles, free radical absorption rate and free radical de-

sorption rate.

1. The rate of volumetric growth of polymer particle,

d(r3) /de.

The polymer particle volumetric growth rate has been

developed by Gardon(18)as
d(r3)
= Ki (6)

dt

where
k >
€ (B Ty (7)
4TC N, A 1—¢M

and 1 = number of radicals in a growing particle .

Here kp is propagation rate constant, ﬁ% and ﬂ% are

the densities of monomer and polymer, qu is the volume
fraction of monomer in the polymer particle, and 103 is
simply the conversion factor between crn3 and liters

(required when kp is expressed in liters and r in cm).

The unit of K is (1l/hr).

In this model, i is only O or 1. Therefore, the
volumetric growth rate of N, type particles, called
dead polymer particles, becomes zero. And the volume-

tric growth rate of N1 type particles, called growing

polymer particles, becomes K. Hence, the rate at which



10

particles grow past size r3 may be written as

; a(r3)

H(r®, ) = N (22,0) - - Kﬁ1<r3,t> (8)

dt

. The rate of polymer particle absorption of a free radi-

cal from the aqueous phase

Owing to the fact that the rate of radical capture
of the polymer particles is proportional to the fraction
of the total surface area represented by a given par-

(18), the rate at which N, type particles

ticle type
shifts population due to absorbance of a free radical

from the aqueous phase in size x to y is

LTTN . .
E, - R _--:—"31——"[ rz[No(r3,t)—N1(r3,t)]d(r3) (9)

A X
S
The rate at which No type particles shifts population
due to absorbance of a free radical from the aqueous

phase in size x to y is

4T N - "
E - R———EY—[ 2N, (22, 6)-N_(r3,6) ] d(r) (10)
o} ~ 1 o)
AS X
where

- R is the formation rate of initiator radicals,

(moles/1l-hr). For steady state CSTR,

[1,]
R = kad[I] = 2fkd 1+kd ~ (11)
0
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3. The rate of radical desorption from polymer particles

Referring to the radical desorption mechanism,

(2)

early investigators suggested the radical desorption

rate is inversely proportional to the particle radius.
According to the diffusion theory, researchers(19’20’21)
recently have found that the radical desorption rate
should be inversely proportional to the surface area of
polymer particles. We take the latter concept in this

model development. The radical desorption rate, kf,

is defined as:

ke = —H—— (12)

where DO is a Pseudo-desorption-coefficient,

(cmz/hr).

Hence, the rate at which N1 type particles shift popu-
lation due to desorption of a free radical in size x

to y is

Dy - 3 3

Gl = - ?—Nl(r ,t) d(r™) (13)
X

The rate at which NO type particles shift population

due to desorption of a free radical in size x to y

is
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G = %o & (r3,t) d(x) (14)
o = * 2 1\ r

4. The population balance equations

In this model, the population balances must be
written for the growing and dead polymer particles.

Following Behnken et al.(22),

For growing polymer particles:

iate of change inn rRate at which i .kate at which ]
the number of growing polymer growing polymer
growing polymer =| particles flow —|particles flow
particles in size into reactor in out reactor in
range X to y J bsize range:ctoyz fize range x to y
“Rate at which i 'iate at which ]
N growing polymer | |growing polymer
particles grow particles grow
into size at x out of size at y
- -

Rate at which growing polymer par-
ticles shift population dut to ab-
sorbance of a free radical from the

aqueous phase in size range X to y




13

Rate at which growing polymer parj
ticles shift population due to de-

sorption of a free radical in size

range x toy

In the nomenclature set forth here, for particles con-

taining one radical, Nl(r3,t), this balance becomes

a y . y
- 3 3 - 3 3
é—t—:— X Nl(r ,t) d(r~) = ’T"[Xle(r ,t)d(r ) -
y

L ~ 3 3

— Nl(r ,t) d(r”) + H(x,t) - H(y,t) +

6 x

E1 + G1 (15)

From eqn.(8), we know

y ~
QRN (£7,8))

a(r3)

H(x,t) - H(y,t) = -

d(r™) (16)

Substituting eqns.(9), (13), (16) into eqn.(15), the

eqn.(15) becomes

y R R R R
f or, 200w 0-n 30 Ix, (2, 0)
- . + K 3 -
pe Jdt f; o(r>)
4TTN N - D .
R av 2 (No<r3,t)—N1(r3,t))+ 2 Nl(r3,t) d(r3)=0 (17)

A r
S
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Since the integrand vanishes for an arbitrary size
interval (x,y), it must be identically zero, leading

to

3 ~ 3 .~ 3 -3
ON (r7,8) Ny p(x”,e)-N, (x7,¢) -KaNl(r ,t)

= - +
Jt 6 a3
LT N . . D .
R—2 r2(NO(r3,t)—N1(r3,t))— 9 Nl(r3,t) (18)
A Y

S

A similiar analysis for the dead polymer particles

leads to

s 3 s 3
dNO(r L) ) N g(r™,t)-N_(r”,¢) 4TTN

at 9‘ - rz(t:ll(r3,t)
A
D 3

° -
,t)) + . Nl(r ,t) (19)

3

—No(r

where there is no partial derivative with respect to
(r3) because dead polymer particles can not grow until
they become active. Implicit in the growing polymer
particles relationship is the assumption that the volume
fraction of monomer qu is not a function of particle

size in the range of interest.(ZB)
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Under the assumptions of steady state in a CSTR
and no polymer particle in feed, the population balance
equations, (18) and (19), become

) 4TT N N ~ 1 .
K 3 = R av rz(No(r3)-Nl(rB))-—r—Nl(r3)—

As 0

~
>

% & (r3) (20)
7~ Ny
Y
LT N R R 1. D .
av 2 3 3 3 o 3
0 - R—— 2 (N, (£7) - N_(r?)) - —N_(r )+—r2N1(r ) (21)

. The boundary condition

Only one boundary condition is needed to solve eqn.
(20). We make the following overall material balance

for the total polymer particles as the boundary condi-

tion.
dNy A 1. .
= MR -—F) ¢ — (N - N (22)
dt N A
S

where n is a surface affinity factor to account for

the relative ease of radicals entry into micelles versus

(24)

particles. Only radicals captured by the
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micelles are capable of creating new particles.

And the rate of nucleation of new particles is propor-

tional to the total surface area of micelles.(lg)

Eqn.(22) indicates the rate of change in the total poly-

mer particles in a CSTR. Then, under the assumptions

of steady state and no polymer particles in feed, the

eqn.(22) becomes eqn.(23).

A . A

Ne = TTRQ (1 -—F) (23)
A

S

Coupling with the definitions of N. and Ap’ eqn.(23)

T
can be rewritten as eqn.(24).

. N 4T N co

Nd(r3)=77R9 1———-ﬂf 2 Nd(rd) (24)
| 3 - 3
T A

r
m S m

Rearranging eqn.(24) obtains eqn.(25).

cO
R ~ 4TTN -
Nrg - (Mrh —2 r% 4 1) Nd(x) (25)
r3 A
m S

Now, eqn.(25) is our boundary condition.
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The dimensionless forms of the population balance

equations

For mathematical convenience, the eqgns.(20), (21),
(1) and (25) are now expressed in dimensionless forms

and rearranged as eqns.(26), (27), (28) and (29), res-—

pectively.
le -2 2 2
T'l- (’Y+BU +aU )Nl—aU NO=O (26)
d
-2 2
K}l) + XV
N, = >— N (27)
Y+ XU
-2 2
Y+ BV s2q0U
N o= N_+N, = 5 Ny (28)
Y+ XU
00 2 3
7?Ol=f(’)’+—7-79—y——)Nd(v) (29)
A
1 s

All the dimensionless groups presented in the eqns.
(26) = (29), such as No’ Nl,cy, L}, etc., are defined

in Table 1.
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Table 1 The Dimensionless Groups in The Population

Balance Equations

3A
T Ni
N, = = dimensionless particle number density
T
A
s
AS = = dimensionless total surface area
2
4Trrm1%n7mo
r
U = = dimensionless particle radius
Tm
Rr3 radical absorption rate
o- —o -
Kn%) particle growth rate
rﬁlDo radical desorption rate
L} K particle growth rate
3 .
r space velocity

m
K@ particle growth rate
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7. The particle size distribution functions

After substituting eqn.(27) into eqn.(26), the
solution of eqn.(26) leads to the dimensionless particle

size distribution function N1(1)3),

3 3
N (V) = N (1) exp(F(VU)) (30)

2 5/2 1/2
3 3 3Y
F(U ) = =27 (VU -1) +

(V-1) - 3( )

C¥3/2 +[3cyl/2

1 VY ) (31)

x
,},U

The detailed solution is shown in the Appendix A.

tan

1+

Now, only an integration constant ,’ Nl(l) , the
dimensionless number density of active polymer particles
at U =1, is necessary to be solved. By substituting
eqn. (28) and eqn.(30) into the boundary condition of

eqn. (29), the result gives

-2 2
1Y+—K}?J +2Q¢V

Y ol
XU

oo 2
N (1) =N f(’)’+7701'u ) (
1

-1
3 3
exp( F(V ))d(V ) (32)



20

Then, the dimensionless particle size distribution functions,
N1(1)3), No(1)3) and N(1J3), can be obtained through the

computation of eqns.(30), (27) and (28), respectively.

Transfering each dimensionless groups into dimensional

parameters by setting T and m, as

m 4T
[sc]-[cMC]
S £
° E
m
where

Em is the number of emulsifier molecules per micelle,

a 1is the area occupied by single emulsifier molecule, and
[CMC] is criticle micelle concentration,(mole/l~H20).
According to the 1iterature(29), the number of emulsifier
molecules per micelle ranging from 50 to 100 may be used to
calculate the micellar radius (rm) and the concentration of .
micelles (mo). A series of preliminary calculations were
done for several wvalues of Em in the range from 50 to 300.
The results obtained by these computations did not exhibit

large variation for the case of styrene polymerization.

Therefore, the number of emulsifier molecules per micelle,

Em , 1is chosen to
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be 100 in this study. The feed concentration of

micelles (mo) is then approximated as

[S¢] - [cMC]

£
© 100

and the radius of micelle is calculated as

100 a 1/2
o= ( ———)
4T
Hence, the dimensional particle size distribution func-

3

tions Nl(r ), NO(rB) and N(r3) are obtained.

~

Meanwhile, the total polymer particle concentration.(NT),
conversion (X), average radii of polymer particle (?n

or fw), system average number of radicals per polymer
particle (ﬁs) and polydispersity of radius for polymer

particle size distribution (P) can also be found from

the following equations, respectively,

. oo,
NT=f N(r3) d(r>) (33)
3
T
m
S N 3
X =k —.—_R-—@ N (™) d(r™) (34)
p [M] 3
w ”~
f rN(r3) d(ro)
3
T
T = m (35)

n oo .
f N(r3) d(x>)
3
r
m



cO ~
[ r4 N(r3) d(r3)
3
r
- m

Sl

Sl

o0 -~
f 3 N(rd) d(x)
3

o0 -~
3

N, (r d(rd)
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(36)

(37)

(38)

(39)



CHAPTER III

SIMULATION OF PARTICLE SIZE DISTRIBUTION IN

CONTINUOUS EMULSION POLYMERIZATION OF STYRENE

A. Experimental condition and physical constants

The polymerization condition and physical constants in
continuous emulsion polymerization of styrene used for the
calculation of this model are mostly based on Nomura's work(ll)
and given in Table 2. Among the polymerization studies of
styrene, some of works neglected the radical desorption mecha-
nism, but some of works emphasized the importance of the
radical desorption mechanism. From all of these research
works, it has been known that the radical desorption mechanism
may Or may not be significant, depending on the polymerization
conditions. In the present work, the assumption of no radical
desorption from the polymer particles is made, i.e. DO=O.0
in this model, during the polymerization of styrene.

(11)

Table 2 Experimental Condition and Physical Constants in

Continuous Emulsion Polymerization of Styrene

T - 50°%
[Mp] = 5.48 (mole/1l)
(1] = 4.6296 X 1073 (mole/1-H,0)

23
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[Mf] = 4.8077 (mole/l—HZO)
[Sf] = 0.0434 (mole/l~H20)
~ 7.632X10°(1/mole-hr)
- 3.64%X1073 (hr 1)
- 2.394X1073 (hr )

-15

_ 3.5%X10 (em? /molecule)

= 1.0 (g/cmB)

K
K

k£

a

A,

P = 0.903 (g/cm’)
b,

77 0'4(24)

B. Results and discussion

1. Particle size distribution

Fig.1l shows the relationship between the dimensional

particle size distribution and mean residence time.

It is found that particle size distribution curves

will become wider and shift into larger particle size
region at longer mean residence time. This indicates
that polymer particles will grow into larger sizes at
longer mean residence time. The effects of the level

of emulsifier and initiator, [Sf] and [If], on particle

size distribution are given in figure 2 and 3, respec-
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tively. The height of particle size distribution
curves becomes higher with increasing the value of [Sf],
but the shapes of these curves remain almost the same

as shown in Fig. 2. This means that the concentration
of emulsifier in feed does not affect the polydispersity
of radius (?w/?n), which 4s often used to indicate the
breadth of the distribution. Little effect on the
particle size distribution can be found by altering

the level of initiator, [If], as shown in Fig. 3.
The concentration of total polymer particles

Fig.4 shows the plot of total concentration of polymer

~

particles, NT’ versus mean residence time, 0 , in which

the effect of U on N.. is also given for comparison.

T
The dotted line is the case for‘n =1, while the solid

= 0.4(24), and the circles in

line is the case for U
the figure are the experimental data obtained from
Nomura et al. It is found that the factor77 contri-

butes a more significant effect on N,, at small mean

T
residence times, and the solid line £fits the experi-
mental data better. The surfaces of micelles and
polymer particles have a different efficiency for cap-
turing the initiator radicals, and 7] is the correction
constant which is experimentally determined by curve

(24)
fitting the experimental data to be T]= 0.4 . It is
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seen that the effect of 77 is more significant at the
shorter mean residence time. Figs. 5 and 6 show the
effects of the level of emulsifier and initiator, [Sf]

and [If], on the total concentration of polymer particle,

N., versus mean residence time, respectively. As shown

T)
in these figures, NT will increase with increasing the

~

value of [Sf] because larger total micelle surface area
can generate more polymer particles. The effect of
[If] becomes more significant at shorter mean residence
time but becomes less significant at longer mean residence
time. The reason is that if the mean residence time
is small, particle nucleation will be limited by radi-
cal initiation. Thus, a higher level of [If] can
generate more polymer particles at small mean residence
times. If the mean residence time is large, the con-
trolling factor of polymer particle nucleation will be
the concentration of micellss left in the system so

~

that the levels of [If] become insensitive on the N

at larger mean residence times.

The system average number of radicals per polymer

particle

A plot of system average number of radicals per
polymer particle, ﬁs, versus mean residence time is

shown in Fig.7. No effect can be found by altering
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7] in this case. The value of ES approaches 0.5

when é becomes longer. This situation coincides
with Smith-Ewart case II. The reason is that just
after the start of the reaction there are very few
particles but they all contain one radical because

the free radicals generated in solution quickly take

up residence in the polymer particles. The absorp-
tion of radicals is rapid relative to their generation.
Much later there are many particles but on the average
half of them contain a single radical and half contain
none because the termination of two radicals is instan-
taneous. As the result, the system average number

of radicals per polymer particle is 0.5. The levels
of emulsifier and initiator give no significant effect
on the system average number of radicals per polymer

particle as shown in Fig.8 and Fig.9, respectively.

The conversion

Fig.10 shows the conversion, X, versus mean resi-
dence time. The solid line with 'n = 0.4 gives better
agreement with experimental data than the dotted line
with 7] = 1, and the influence of 7] becomes less sig-
nificance at long mean residence times. The effect
of the level of emulsifier on the conversion can be

seen in Fig.11. The value of conversion will become
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greater with increasing the value of [Sf] because the
increase of {Sf] will lead to increase in the total con-
centration of polymer particles, and the conversion is
in proportion to the total concentration of polymer
particles. Furthermore, the computation shows that
the influence of the level of initiator, [If], on con-

version is very small as seen in Fig.12.

The number average radius and weight average radius

Fig.13 shows the number average radius and weight
average radius of polymer particles as a function of
mean residence time. As shown in this figure, large:
particles will be formed in longer mean residence time.
Fig.14 shows the polydispersity of radius, Ew/En’ vSs.
mean residence time, indicating the effect of mean resi-
dence time on the breadth of distribution as seen in
Fig.1l. The value of polydispersity of radius will
increase with increasing the mean residence time.

It is further found through simulation that the levels
of emulsifier and initiator do not affect the poly-

dispersity of radius.
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C. Conclusion

The simulation based on the present model demonstrated

the following features of continuous emulsion polymerization

of styrene monomer which can provide insight into some of the

engineering ramifications of such processes.

(1)

(2)

(4)

(6)

Polymer particle size distribution curves will become
wider and shift into larger particle size region at
longer mean residence time.

The effect of the levels of initiator and emulsifier
on the particle size distribution are insignificant.
The concentration of total polymer particles increases
with increasing the level of emulsifier.

The effect of the level of initiator on the concen-.
tration of total polymer particles is not significant
especially at the long mean residence times in the
case of CSTR.

The value of conversion is an increasing function of
the level of emulsifier. However, this quantity is
practically invariant with respect to the level of
initiator.

The system average number of radicals per polymer
particle, ﬁs, approaches 0.5 at long mean residence
time, which coincides with Smith-Ewart case II.

The levels of emulsifier and initiator give less



important effect on the system average number of

radicals per polymer particle.
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CHAPTER IV

SIMULATION OF PARTICLE SIZE DISTRIBUTION IN

CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE

In the literature it is generally concluded that the

emulsion polymerization of vinyl acetate does not fall within

(2)

the classic theories proposed by Smith-Ewart. It is believed

that this is due partly to the high transfer constant of mono-
mer in vinyl acetate polymerization and partly to the rela-
tively high solubility of vinyl acetate in water. In this
model, we include a mechanism allowing radicals to escape from

{25.‘.2.6327,,28)%15 mechanism is necessary to

polymer particles:
explain the low concentration of radicals per polymer particle
usually observed in vinyl acetate emulsion polymerization.

The effect of radical desorption from polymer particles on
particle size distribution, conversion, total concentration

of polymer particles and concentration of radicals per polymer

particle etc. will be discussed through the model proposed.

A. Experimental condition and physical constants

The polymerization condition and physical constants in
continuous emulsion polymerization of vinyl acetate monomer
used for the calculation of our model are mostly based on Lu's

(17)

work and given in Table 3.

31



Table 3 Experimental Condition

32

(17) and Physical Constants in

Continuous Emulsion Polymerization of Vinyl Acetate

= -S‘B‘Q;D

- 8.95 (mole/1-H
- 2.037x107°>

50°¢

20)

(mole/1-H,0)

2

= 2.667 (mole/l—HzO)
= 0.01736 (mole/l—HZO)

7

1.188%X10° (1/mole-hr)

L
-1

3

3.64X10 ° (hxr~

2.394X107° (hr
15

)
3.5X10" (cmz/molecule)
1.19 (g/cm3)

0.9335 (g/cm>)

0.8248

1.0
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B.Results and discussion

1. Particle size distribution

The effect of free radical desorption on particle
size distribution at é =0.5(hr) is shown in Fig.15,
It is found that there is a large difference in particle
size distribution curves between the cases with free
radical desorption and without free radical desorption.
The role of the radical desorption is to‘allow the free
radicals, which are once trapped inside the polymer
particles, to escape back into the water phase.
Owing to the fact that the free radical desorption rate
is inversely proportional to the surface area of polymer

(20325), the free radicals inside polymer par-

particles
ticles are easier to escape from the group of smaller
polymer particles. As a result, the effect of the
desorption is always very pronounced for the smaller

size polymer particles. Thus, an occurrence of radical
desorption from polymer particles will depress the growth
of polymer particles and, in turn, broaden the particle
size distribution, in which the system will contain

more small size particles as seen in Fig.15.

Fig.16 is the plot of the particle size distribution

against the different mean residence times at Do =

O.19X10—7(Cm2/hr). As one might expect, shorter mean
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residence time yields products having more smaller
polymer particles and fewer larger polymer particles.

It is also seen that polymer particles will grow into
larger sizes and broaden the particle size distribution
at longer mean residence time. Fig.17 shows the effect
of the level of emulsifier on the particle size distri-
bution at @ = 0.5(hr) and D_ = 0.19X107 (cm”/hr).

As the level of emulsifier increase, more micelles
become available for radical capture, which in turn
produces more polymer particles in the system. But

in this case , the ratio of the concentrations of free
radicals to micelles becomes smaller, so that the growth
of polymer particles will be depressed and the system
will produce more small polymer particles. Fig.18
shows the effect of the level of initiator on the par-
ticle size distribution at é = 0.5(hr) and Do==0'19X10—7
(cmz/hr). It is found that an increase in the level

of initiator will yield more large: polymer particles
because more free radicals will be generated in the
system to contribute to the radical absorption of polymer
particles, which in turn increases the growth rate of

polymer particles.



35

2. The concentration of total polymer particles

Fig.19 shows the effect of radical desorption on
the concentration of total polymer particles vs. mean
residence time. It is seen that an occurrence of free
radical desorption process will increase the total con-
centration of polymer particles because the decrease in
the total surface area of polymer particles due to the
free radical desorption from polymer particles will
cause more micelle formed in the system to generate

more polymer particles. Fig.20 shows the effect of

the level of emulsifier on total concentration of polymer

particles vs. mean residence time. The concentration
of total polymer particles will increase with increasing
the level of emulsifier because more micelles become
available for capturing the free radicals to generate
new polymer particles. Fig.21 shows the effect of the
level of initiator on the concentration of total polymer
particles vs. mean residence time. As shown in this
figure, the concentration of total polymer particles
increases with increasing the level of initiator at
small mean residence times, but at higher mean residence
times, é > 0.3(hr), the trends reverse. This is due
to the fact that if the mean residence time is short,
particle nucleation will be limited by free radical

initiation. Thus, a higher level of initiator can
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generate more polymer particles at small mean residence
times. If the mean residence time is large, the con-
trolling step of polymer particle nucleation will be

the concentration of micelles left in the system so

that the increase of the level of initiator will decrease

the concentration of total polymer particles.

System average number of radicals per polymer particle

Fig.22 shows the effect of radical desorption on
system average number of radicals per polymer particle
vs. mean residence time. If no radical desorption
occurs during the polymerization of VAc system, the
value of ﬁs approaches 0.5 because the termination of
two radicals within polymer particles is instantaneous.
But with the occurrence of radical desorption in the
system, the value of ES will be largely reduced to the

order of 10_—4

, because the radicals in residence, in
this case., will be introduced back into the water phase,
especially for the small size particles, thus shifting
the equilibrium( i.e. lowering n ). The effects of

the levels of emulsifier and initiator on system average
number of radicals per polymer particle are plotted in
Fig.23 and Fig.24, respectively. At lower level of

emulsifier or higher level of initiator, the system is

simply flooded with free radicals, generated from initi-
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ator molecules, to the extent that the mechanism of
radical desorption from polymer particles is insigni-
ficant. The only meaningful mechanistic steps in
this situation, therefore, are absorption and termina-
tion of radicals, where ﬁs increases. Fig. 25 shows
the effect of radical desorption on average number of
radicals per polymer particle vs. polymer particle size.
It is found that the value of n is significantly de-
creased in the range of smaller particle sizes, but
finally approaches 0.5 at the range of large sizes for
the case of radical desorption system. This fact
indicats the effect of radical desorption from polymer
particles is more important at the smaller particle

sizes.

Conversion

Fig.26 is the plot of the effect of radical de-
sorption on conversion vs. mean residence time.
Two circles in the figure is taken from the experimental
data of Ref.(10). An increase in the magnitude of the
radical desorption coefficient will significantly reduce
the conversion. The evidence is more meaningful at
shorter mean residence time because the conversion is
entirely related to the system average number of radi-

cals per polymer particle, ﬁs, and the concentration
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~

of total polymer particles, N When the process of

T
radical desorption from polymer particles occurs during
the polymerization reaction, the decrease of system
average number of radicals per polymer particle, as
seen in Fig.22, is somewhat more significant than the
increase of total concentration of polymer particles,
as seen in Fig.19. By fitting method, it is found

7(cmz/hr) is the most suitable wvalue

that D_= 0.19X10"
for the vinyl acetate system. This value is accepted
for all calculation of VAc system in this paper.

It is well known that the VAc monomer dissolves with
relatively high concentration in its polymer and water
phase. Therefore, the separate monomer phase should

be vanished at even very early stage of polymerization,
say . about 10% conversion. This is the reason why the
experimental data is better fitted before 10% conversion
, as seen in Fig.26. The effects of the levels of
emulsifier and initiator on conversion vs. mean resi-

7(cmZ/hr) are shown in Fig.27

dence time at D _= 0.19%X10"
and Fig.28, respectively. It is found that the in-
crease of the level of emulsifier concentration does
not necessary to increase the value of conversion, but
an increase in the level of initiator concentration

will cause a higher value of conversion in vinyl acetate

system. These results are totally different from the
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styrene system which shows the conversion is propor-
tional to the level of emulsifier concentration and is
insensitive to the level of initiator concentration.
All of these effects are attributable to the changes

in the value of ﬁs and NT.

Number average radius and weight average radius

Fig.29 shows the effect of radical desorption on
number average radius, fn, and weight average radius,
?w. As seen in this figure, an occurrence of radical
desorption will decrease both number and weight average
radii. The ratio of fw/fn, which is often used to
indicate the breadth of the distribution, is greatly
increased in the case of radical desorption system,i.e.
vinyl acetate system, as seen in figure 30. This fact
indicates that the particle size distribution will be-
come wider when the process of radical desorption from
polymer particles occurs. Fig.31 and Fig.32 show the
effects of the levels of initiator and emulsifier on
number and weight average radii at é =0.5(hr) and

DO=O.19X1O”7(cm2/hr). It is found that the increase

of the level of initiator will increase the magnitude

of r_ and r, , while the increase of the level of

emulsifier leads to the decrease of the magnitude of
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En and Ew’ All of these effects are attributable to

the change of ES.

C. Conclusion

The effect of radical desorption on continuous emulsion
polymerization of vinyl acetate was studied through the model
proposed. The simulation demonstrated the following features
of VAc emulsion polymerization.

(1) The Pseudo-desorption-coefficient, D, for vinyl

acetate system is best chosen as O.19X1O*7(cm2/hr).

(2) The radical desorption from polymer particle depresses
the growth rate of polymer particles and, in turn,
broaden the particle size distribution in which the
system produces more small polymer particles.

(3) The concentration of total polymer particles will
increase with the occurrence of radical desorption.

(4) An increase in the magnitude of radical desorption
mechanism can significantly reduce conversion.

(5) The higher the level of initiator, the greater will
be the conversion., while the increase of the level
of emulsifier does not necessarily increase conver-
sion.

(6) The effect of radical desorption is more improtant

at the smaller particle sizes.
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(7) The value of ﬁs approaches 0.5 in the case of non-
radical-desorption system, whearas the value of n
is of the order of 10'—4 and gradually increases with
increasing mean residence times in the case of radical-

desorption system, i.e. vinyl acetate system.
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APPENDIX A

THE DETAILED SOLUTION OF POPULATION BALANCE EQUATIONS

le -2 2
—~T+(7+BU +C)('U)N1-—O['UN=O ................... (i)
av

) l}i)—2-+C¥1)2

o) 2
Y v

N

Substituting eqn.(ii) into eqgn.(i) obtains eqgn.(iii).

2 2 -2
le ’Y +ZFYC¥1) —+’Yl31)
3+ 7 N
dV Y + XU

Integrating eqn.(iii) yields:

Where
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7+2’)’O(U 'YBU~2 ~

acv )
+O(‘U
VU 2 2 -2
27YXXV U 2
=-f7+7 +Zﬁ 3V av
7+O(U
2
) 2
Y o B
-3 2YV - + ) dVU
o 2
1+ v
Y
) ,),2 2 7 [ &
- [2YV - +(’)/ +B)1/ . Y 1dVU
& & 1 (O(U)2
1 YA
Y
2 75/2 71/2
3 Y
_ V- -1)-[3 3
2Y ( 1) + 3 X (U [ Y + [3 "
X
o v
tan [ ] ittt it ettt
1+ o vV
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APPENDIX B

THE FIGURES OF CONTINUOUS EMULSION POLYMERIZATION OF STYRENE
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r3-N

2.0

1‘0

Fig. 2 The effect of the level of emulsifier on dimensional
particle size distribution at 6 =1.0(hr), S is

the concentration of Sf listed in Table 2
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Fig.3 The effect of the level of initiator on the dimensional
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Fig.4 The effect of 1] on the total concentration of polymer

particles vs. mean residence time; Solic¢ line: 7)=0.4;

Dotted line: 77 =1.0; o: Experimental data by Nomura(ll)
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in Table 2
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vs. mean residence time
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Fig.8 The effect of the level of emulsifier on
the system average number of radicals per
polymer particle at 9 = 1.0(hr); S is the

concentration of Sf listed in Table 2
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Fig. 9 The effect of the level of initiator on
the system average number of radicals per
polymer particle at 6 = 1.0(hr); I is the

concentration of I, listed in Table 2
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Fig.10 Conversion vs. mean residence time; Solid line: 7] =0.4;

Dotted line: 7]: 1.0; o: Experimental data by Nomura(ll)
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Fig.12 The effect of the level of initiator on
the conversion under different mean residence

times; I is the concentration of If listed in

Table 2
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APPENDIX C

THE FIGURES OF CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE
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Fig.21 The effect of the level of initiator on

total concentration of polymer particles

vs. mean residence time at Do= 0.19}(10—7
(cm?/hr); 1.0 1= 2.037X107>(mole/1-H,0)
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Fig.23 The effect of the level of emulsifier on

system average number of radicals per polymer
particle under different mean residence times
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Fig.24 The effect of the level of initiator on

system average number of radicals per polymer
particle under different mean residence times
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Fig.27 The effect of the level of emulsifier on conversion

vs. mean residence time at D _= 0.19X1O—7(cm2/hr);

0.25} 1S==O.01736(mole/l—H20)
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Fig.32 The effect of the level of emulsifier on
number and weight average radii at
g = 0.5(hr) and D_-0.19X107/ (cm? /hr) ;
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APPENDIX D

THE COMPUTER PROGRAM OF PARTICLE SIZE DISTRIBUTION FUNCTIONS
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NOTATION

: Area occupied by single emulsifier molecule(cmz/molecule)

Dimensionless total surface area of polymer particles

: Dimensional total surface area of polymer particles

(em?/1-H.0)

2

Dimensionless total surface area of micelles plus particles

: Dimensional total surface area of micelles plus particles

(cm2/1~H20)

Critical micelle concentration (mole/l—HZO)
Pseudo-desorption-coefficient

Efficiency of initiator

Initiator concentration in feed (mole/l—HZO)
Rate constant of initiator decomposition (hr-l)

L

Rate of radical desorption from polymer particle (hr

Rate constant of propagation (1/mole-hr)

: Monomer concentration in feed (mole/l—HzO)

: Monomer concentration in polymer particle (mole/l—HZO)

Initiator concentration of micelles (mole/l—HZO)

! Avogadro's number

Dimensionless number density of polymer particles with
i free radicals
Dimensional number density of polymer particles with

i free radicals (mole/l-HZO'cm3)
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Total number density of polymer particles(mole/1-H O-cm3)

2
Concentration of total polymer particles (mole/l—HZO)
Concentration of total polymer particles in feed

(mole/1-H,0)

2
The fraction of active polymer particle at a given:size
System average number of radicals per polymer paticles
The formation rate of initiator radical(mole/hr-l—HZO)
Radius of polymer particle (cm)

Radius of micelle (cm)

Emulsifier concentration in feed (mole/l—HZO)

Conversion

: Mean residence time (hr)

: Density of monomer (g/cm3)

Density of polymer (g/cmB)

: Volume fraction of monomer in polymer particle

: A surface affinity factor to account for the relative

ease of radical entry into micelles versus polymer

particles
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