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ABSTRACT

Title of Thesis: Modeling and Simulation of Robot Arms with

Flexible Links

John G. Danis, Master of Science, 1988

Thesis directed by: Dr. Frederick D. Chichester F.D.C.

The design of lightweight robot arms introduces a degree of

flexiblity in the individual links which renders the arm

difficult to control. Solution of the control problem requires

accurate and detailed mathematical models of the arm dynamics. A

comprehensive survey of the current literature in this area has

shown that although many such models exist, there is a great

diversity in their structure, function, and applicability. The

different objectives and techniques of model development which

lead to this diversity are examined and summarized in this

thesis. Bases for classification of the mathematical models and

techniques of development are established, and a general

development methodology is proposed for each class of model.

Computer simulations of relevant portions of the model development

are used to support these general development methodologies. The

model development and classification processes are demonstrated

by their application to several current models.
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I. INTRODUCTION

Robotic arms constructed of lightweight links have many

advantages over their heavier counterparts such as increased

speed and manueverability, lower energy consumption, and reduced

costs. However, the lighter weight results in increased link

compliance to the point where flexibility effects can no longer

be ignored when controlling the arm if high accuracy is required.

The development of control systems of robotic arms with flexible,

lightweight links requires detailed mathematical models of the

arm dynamics so that the appropriate control laws may be

formulated. Once developed, the models may be used to verify the

control laws and test the acceptability of system response under

simulated operating conditions. The models may also serve as the

foundation for developing sophisticated real-time computer

simulations of a flexible robot arm performing various tasks.

The objective of the work reported in this thesis was to

examine the current mathematical modeling and simulation of

flexible robotic arms and classify these models according to

relevant characteristics. An extensive survey of recent

literature in this area was conducted, and existing models were

examined as to their modeling objectives, development, structure,

and applicability. These areas were investigated and used to

establish bases for classification of such models and to

formulate general model development procedures. Selected

portions of these model development procedures were demonstrated

on a personal computer.



II. OBJECTIVES OF MODEL DEVELOPMENT

Mathematical models of flexible robotic arms are developed

to investigate certain aspects of a particular arm's behavior

under specified conditions. The examination of those specific

aspects of behavior defines the objective of the modeling. The

objectives of the model must focus on certain aspects to the

neglect of others due to the inherent complexity of modeling

robotic arms with flexible links.

Examination of existing models suggests that the various

aspects of behavior may be divided into two general areas, from

which the basic modeling objectives follow. The first basic

objective is to develop the equations of motion of the entire

arm, taking into account the flexible deflections, usually by

incorporating previously calculated or assumed vibratory modes.

Those models developed to accomplish this or some variation of

this objective can be classified as kinematic models. The second

basic modeling objective is the characterization of the vibratory

modes of a single link of the arm by examining its eigenvalues

and eigenfunctions. Models which have this as their primary

objective are classified as structural models. This distinction

between kinematic models and structural models, based upon model

objectives, forms the most general classification of mathematical

models of robot arms with flexible links established in the work

reported here. Subdivisions of each of these classes are based

upon specific techniques used in the modeling process.



III. KINEMATIC MODELS

1. Foundations

Kinematic models of robot arms with flexible links basically

consist of sets of equations which describe the rigid-body motion

and flexible deflections of the arm. Emphasis is placed on the

examination of the kinematic aspects of the arm motion; that is,

being able to describe the position, velocity, and acceleration

of points on the arm as a function of initial conditions and

applied forces. It is the effects of the flexible deflections on

these parameters which are being investigated, not the structural

properties of the arm which give rise to those deflections.

Accordingly, the vibratory modes used in the model are either

assumed or previously calculated.

The generation of the equations of motion for robot arms

with flexible links is in many ways similar to that for robot

arms with rigid links. In fact, many kinematic models of robot

arms with flexible links were derived from similar rigid link

models which, for the sake of simplicity, neglected flexibility

of the links. To improve accuracy, flexibility of the links is

taken into account.

2. Model Development

Examination of existing kinematic models shows that there is

a large degree of similarity for all kinematic models because

they are all based on the same underlying concepts. In fact, it

is possible to specify a general model development procedure for

most mathematical models which investigate the kinematic aspects

of a robot arm with flexible links. Such a model development

algorithm is shown in Figure III - 1. This algorithm highlights



FIGURE III - i : KINEMATIC ARM MODEL DEVELOPMENT ALGORITHM



the main points of kinematic model development and serves as a

guide in the future development of kinematic models.

A kinematic model is a state representation of the system,

typically using generalized coordinates to define the state of

the system. The generalized coordinates may include variables

related to joint angles and variables which describe the

link flexure. Generally, kinematic models are models of multi-

link arms and it is necessary to define these coordinates for

each link, which requires defining a coordinate frame for each

link. One frequently used method of defining link coordinate

frames and homogeneous transformations between coordinate frames

is the technique developed by Denavit and Hartenberg, described

below [11].

A robotic arm with n degrees of freedom will have n links

and n joints. A right-handed orthogonal coordinate frame is

assigned to each link, with the position of the origin and

direction of the coordinate axes determined by the type of joints

associated with the link, and their respective orientations. A

coordinate frame also is assigned to the base of the arm, which

is sometimes referred to as link 0. It often is necessary to

define motions with respect to this coordinate frame, and for

this reason, homogeneous transformations between links must be

defined.

A homogeneous transformation of coordinates describes the

position and orientation of the coordinate frame of one link with

respect to the coordinate frame of another link. These

transformation matrices are often designated A matrices in

robotics analyses [11]. An describes the position and



orientation of the coordinate frame of link n with respect to

that of link n - 1. The physical significance of an A matrix is

that it represents the translations and rotations necessary to

make the n 1 coordinate frame coincident with the n frame. By

the multiplication of successive transformations, the position

and orientation of the n th link with respect to the base can be

shown.

The matrix which transforms the coordinate frame of the last link

to that of the end effector is denoted as E. Therefore, for a

robotic arm with n links, the transformation from the base

coordinate frame to that of the end effector is the product of

the transformations between all links, and is given as T e .

Establishing link coordinate frames and the transformations

discussed above are the necessary first steps in developing a

kinematic model of a robotic arm. Given the arm dimensions and

configuration, this process can be carried out readily by a

computer program. A short FORTRAN program was written to

demonstrate this. (See Appendix A.) The program calculates the

A matrices for a hypothetical serial manipulator and demonstrates

how Te , the transformation from the base to the end effector, is

obtained. This program then could be integrated into a larger

computer simulation of a kinematic model, serving as the first

steps in the model development.

The 	 method of defining link coordinate 	 systems 	 and

homogeneous 	 transformations described above originally 	 was

developed 	 for 	 rigid 	 link models. 	 However, 	 with 	 some



modifications to include the effects of the flexible deflections

of each link, it also can be applied to robot arms with flexible

links. Each A matrix can be multiplied by a matrix F which

represents the small change in position and orientation of the

link due to small flexible deflections. The transformation from

the coordinate frame of link n - 1 to that of link n then becomes

An Fn . When this is done for each link, the transformation from

the base coordinate frame to the end effector coordinate frame

includes the cumulative effect of all the links, as shown below.

The F matrix for each link represents the small displacements

Δ x, Δ y, and Δ z, and the small angle rotations, e's, of the n

coordinate frame due to link flexure. The F n matrix for link n

is as follows.

The elements of F n represent the net effect of all the vibratory

modes included in the model for the n th link. Note that as the

small angle rotations and displacements approach zero, the Fn

matrix approaches the identity matrix. This implies that if the

flexibility effects for each link were to be reduced to zero,

each F matrix would become an identity matrix, and the resulting

model would be identical to the rigid link model developed

earlier. This is an important result because it suggests that



flexibility effects may be added to existing rigid link models to

produce models of flexible robotic arms.

The elements of Fn also are time varying parameters, and a

given Fn represents the flexure of the link at some instant in

time. The calculation of the F matrices and their incorporation

into the homogeneous transformation of coordinates of the links

also can be accomplished by a short computer program. (This is

shown in Appendix A.)

With the link coordinate frames and transformations defined,

the equations of motion of the robotic arm can now be developed.

Different methods of formulation are possible, but Lagrange's

formulation of the system dynamics is utilized most often in

investigating the kinematic aspects of flexible robotic arms.

The formulation of Lagrange's equations requires expressions for

the kinetic and potential energies of the system. This is the

next basic step in the development of flexible arm kinematic

models.

Kinetic energy is defined first for a point or small element

of a single link, and integrated over the length of that link to

yield the total contribution of that link to the system kinetic

energy. The kinetic energy of a point on the n th link is given

by:

where dm n is the point mass, rn is the absolute position vector

and r

n

 is the absolute velocity vector of the point on the link in

base coordinates. It follows that the kinetic energy for the

link is:



Kinetic energy of the system is obtained by summing the

contribution from each link.

where m is the total number of links of the robotic arm.

The potential energy of a flexible link is due to gravity

and elasticity of the link, sometimes referred to as strain

energy. Potential energy due to elasticity of the link is a

function of the material and construction of the link as well as

the magnitude of the deflection. Potential energy due to gravity

is formulated for a point, and then integrated over the length of

the link. Potential energies of all the links are then summed to

yield the total potential energy of the system.

Once the kinetic and potential energies of the system have

been obtained, the various derivatives and partial derivatives

are taken with respect to the generalized coordinates. With

expressions for all the necessary terms available, Lagrange's

equations of motion may then be formulated in the inverse dynamic

form as shown below.

where K is the system kinetic energy, P is the system potential

energy, qj are the generalized coordinates for i degrees of

freedom, and Qj are the generalized forces (torque applied by the

Joint actuators). Depending upon the specific formulation of the

model, the generalized coordinates may include variables related

to joint angles and variables related to the flexible

deflections. 	 In this form, the model may be used to study the



inverse kinematic problem of robot arms with flexible links.

Since it is desired to model the arm's behavior as a

response to known initial conditions and specified control

inputs, this formulation of the arm kinematics must be converted

to its dynamic form. This involves the formulation of an inertia

or mass matrix, which is multiplied by the second derivative with

respect to time of the state vector, where the elements of the

state vector are the generalized coordinates. The resulting

model is shown below.

where [M] is the inertia matrix, Q is the generalized input

vector, and f is a vector of nonlinear functions of q and q.

This is the general form of most kinematic models and their

corresponding computer simulations. The complexity of the model

is determined by such factors as the number of links, the number

of modes included, the amplitude of the vibrations, and nonlinear

effects present.

Kinematic models have a high degree of applicability in

problems involving the determination of the arm's response under

varying operating conditions. Thus they are well suited for

solution of inverse dynamics problems, trajectory planning,

workspace and task analysis, and related applications.



IV. STRUCTURAL MODELS

1. Foundations

Structural models of robot arms with flexible links are used

to determine the elastic deformation of the links as a function

of time and position along the length of the undeformed link.

These models use the material properties and physical

configuration of the arm to obtain the mode frequencies and

associated mode shapes of the arm. The model must be truncated

at some point, so only those modes of interest are retained in

the final model formulation. As with kinematic models, the model

formulation of structural models follows a general pattern,

allowing a model development algorithm to be constructed. Such

an algorithm is shown in Figure IV - 1, and can be used to aid in

the development of future structural models.

2. Model Development

The Bernoulli-Euler beam equations form the basis for the

development of structural models. In its simplest form, a

Bernoulli-Euler beam is modeled by the partial differential

equation shown below.

where w is the transverse displacement of the link, EI is the

bending stiffness, /o is the mass per unit length, and x is the

distance along the axis of the undeformed link.

The boundary conditions used in describing the system are

determined by the configuration of the arm and reflect the

constraints at each end of the link. Most structural models of

11



FIGURE IV - i : STRUCTURAL ARM MODEL DEVELOPMENT ALGORITHM



robot arms with flexible links are initially developed as a

single flexible clamped-free beam. As a result, the transverse

displacement and slope at the base of the link, along with the

bending moment and shear force at the tip of the link, are

required to be zero, producing the following boundary conditions.

Additional boundary conditions must be specified if there is a

load at the tip of the link.

The transverse displacement of normal mode vibrations can be

expressed as:

Substituting this into the Bernoulli-Euler beam equation and

assuming a uniform beam, so that E and I are constant along the

length of the beam, yields the ordinary differential equation

below.

These equations, along with the associated boundary conditions

for the links, form the eigenvalue problem whose solutions will

characterize the vibratory modes of the links. The general

solution of this eigenvalue problem is of the form:

Ø(x) = C1cosh (λx/l) + C2sinh(λx/l) + C3cos (λx/l) + C4sin (λx/l )

where: 	 λ = 	 l(ρω2/EI) 1/4

The eigenvalues are determined by the system boundary

conditions and, for the basic clamped-free beam, they are the

solutions to the following equation, sometimes referred to as the

frequency equation [5].

13



Once an eigenvalue is known, it may be used to solve directly for

its associated mode frequency. For the clamped-free beam, mode

frequencies are given by:

where ω n is the radian frequency of the n th mode, λn is its

associated eigenvalue, and l is the length of the beam. Whenλ

n

is substituted into the expression for Ø(x), the mode shape

associated with that eigenvalue is produced.

The net transverse displacement actually is the sum of

the contributions from each vibratory mode. Since a distributed

parameter model of a flexible link is an infinite-dimensional

system, with an infinite number of vibratory modes present, the

system must be approximated by truncating the vibratory modes at

some point. The transverse displacement may then be expressed as:

where m is the number of included modes, and A m and B, are

defined below [5].

where ω0 and ω0 are the initial displacement and velocity of the

tip of the link, and

Several short FORTRAN programs were written to demonstrate

the procedure for formulation of a basic structural model. 	 (See

14



Appendix B.) It is shown in these simulations how the mode

frequencies and shapes are determined from the eigenvalues and

physical properties of the links. Also shown are the methods by

which the total transverse displacement is determined, and the

motion of the tip of the link is simulated.

Most current structural models, after being used to examine

the transverse displacement of the link by characterizing its

vibratory modes, are used in the development of systems to

control the flexible deflections. All control systems developed

by using structural models have the same basic objective, which

is the stabilization of the arm by damping out deflections due to

elastic deformation as quickly as possible. Two basic methods of

control are used very frequently in current models of robotic

arms. One involves the development and implementation of a

dynamic compensator which controls joint actuator torques in such

a way that flexible deflections are quickly damped out [12]. The

other method requires having two coaxially-mounted links with a

force actuator mounted in between them to actively damp out any

deflection [3],[18]. Further development of structural models

entails the examination of the controllability of the arm, and

simulation of the influence of the control system on the dynamic

behavior of the arm.

The modeling objectives and techniques employed in the

development of structural models render them well-suited for use

in control system design. The system equations used to

characterize the vibratory modes also can be used to derive a

transfer function for the arm, which serves as the plant for the

control system. The angular acceleration (actuator torque) is

15



the control input, and the beam bending moment, measured at the

base is the output. structural models also have applications in

structural analysis, stress analysis, and performance analysis.



V. CLASSIFICATION AND ANALYSIS OF CURRENT MODELS

The distinction between kinematic models and structural

models, along with other bases of classification, resulted from

the careful examination of many existing models. Variations in

modeling objectives, techniques, and intended applications

provide much information about the basic process of modeling

robot arms with flexible links. One of the objectives of this

effort was to study existing models and determine which modeling

techniques are best suited for a given situation. These points

can be investigated further by a detailed review of some current

models.

1. Book Model (1984)

A nonlinear distributed parameter model of a robot arm

consisting of several flexible links was developed in 1984 by

Book [1]. The objective of the model is to simulate the

equations of motion of the arm, and ultimately express the state

of the system as a function of time for known initial conditions

and specified control inputs. With this as the modeling

objective, the model is therefore classified as a kinematic

model.

The model development is based on describing the flexible

deflections, as well as the joint angles, in terms of 4x4

transformation matrices. Variables representing the time-varying

amplitudes of the vibratory modes, together with variables

representing the joint angles, comprise the state vector of the

system. This time-varying state vector is expressed as a

function of inputs and initial conditions after

Lagrange'sequations have been formulated and converted into simulation

17



form. It is the determination of this state vector for which the

model is developed.

The transformations used to describe the link flexure are

composed of assumed modal shapes for each link. Small

deflections of the link are assumed, and are expressed in terms

of a link-based coordinate frame as:

where η is the distance from the joint along the axis of the

undeformed 	 link, δij is the time-varying amplitude of 	 the

displacement, and m is the number of modes being modeled. 	 The

transformation matrix of the link deflection is expressed as:

18



where x ij, yij , and zij  represent the displacement of the link

due to the vibratory mode and the θ's are small angle rotations

representing any twisting of the link.

Once the transformations for all the joints and all the

links have been defined, along with their various derivatives and

partial derivatives, Lagrange's equations are developed. In the

formulation of Lagrange's equations, the system kinetic and

potential energies must be obtained. Kinetic energy is due to

rotation of the joints and the small motions of the vibrating

links. Potential energy of the arm is due to gravity and energy

stored in the elastic deformation of the flexible links.

Once formulated, Lagrange's equations with respect to the

joint variables become:

The equations with respect to the vibratory mode variables are

expressed as:

Inertia coefficients of the state variables are obtained

from these equations, and a square inertia matrix is formed.

This inertia matrix is used in converting the equations to their

dynamic form for simulation, shown below.

where J is the inertia matrix, z is the state vector, and R is

the vector of control inputs and remaining dynamics. This model

19



is formulated in a very efficient manner and, due to its

recursive properties, it can be simulated easily. The accuracy

of the model can be improved, at some cost in computational

efficiency, by increasing the number of modes.

2. Hastings/Book Model (1987)

A linear distributed parameter model of a single flexible

link was formulated by Hastings and Book in 1987 [6]. The

modeling objective was to develop a dynamic model of a flexible

link that would simulate the rigid body motion and the flexible

deflections. Hence, this model can be considered a kinematic

model.

Since this kinematic model is developed for a single link,

only one coordinate frame (at the joint) and no homogeneous

transformations of coordinates need be defined. Consequently,

the position of each point on the link is a function of the joint

angle, θ, and displacement due to the flexible deflection,

w(x,t).

The kinetic energy of the link and the potential energy due

to the elastic deformation are calculated, and Lagrange's

equations of motion are then formulated as shown below.

where Qi are the generalized forces (inputs), and z i are the

generalized coordinates. The generalized coordinates include the

Joint angle and variables related to the vibratory modes.

for the n modes included in the model.

20



The equations of motion are converted to their dynamic form,

given by:

where [M] is the inertia matrix, [K] is a matrix representing

bending stiffness, and [Q] is the control input.

An important aspect of this model is that the vibratory

modes included are assumed or previously calculated. Their

effect on the equations of motion and the response of the arm are

the primary objectives of the simulation. The model was later

validated by an experimental setup in a laboratory environment.

3. Usoro/Nadira/Mahil Model (1986)

This model, developed by Usoro, Nadira, and Mahil in 1986

(15], uses finite element techniques in the development of

Lagrange's equations of motion for a robotic arm with two

flexible links. (These same techniques could be expanded to

model an arm of any number of links.) Since the model development

places emphasis on incorporating the flexible deflections into

the equations of motion, it can be classified as a kinematic

model.

The model is based upon treating each link as a finite

number of small flexible, distributed elements, with the flexible

deflection of each element expressed in terms of assumed shape

functions. Use of these shape functions (Hermitian polynomials)

requires some prior knowledge of the nature of the arm flexure,

that is, the magnitude of the displacement and slope of the

flexed link at various points along each link. Those points

serve as the interfaces between adjacent elements.

Kinetic and potential energies are calculated in generalized

21



coordinates for each element. The contributions from all the

elements are summed to yield the kinetic and potential energies

for each link. Lagrange's equations are used to produce the

dynamic equations for the arm, which are of the form:

where [M] is the generalized inertia matrix, Q is the generalized

input vector, and f is a vector of nonlinear functions of q and

q.

The complexity of the model can be altered by varying the

number of elements for each link. With a higher number of

elements, the order of the resulting model will be higher. This

requires specification of more points on the link and hence, more

knowledge of the nature of the link flexure. Also, if additional

links are included, their corresponding coordinate frames and

transformation matrices must be defined.

4. Sakawa/Matsuno/Fukushima Model (1986)

In 1985, Sakawa, et. al. 112] developed a mathematical model

of a flexible single-link robotic arm with the objective of

accurately describing the transverse vibration and its underlying

causes, so that a controller may be developed. The controller

would act to damp out the vibration as quickly as possible. With

these objectives, the model can be considered a structural model.

The model development is based on a single, flexible

clamped-free link, which is modeled as a Bernoulli-Euler beam,

shown below.

with the boundary conditions:

22



where α is the bending stiffness, δ is a damping constant, and

w is the transverse displacement of the link. The dynamic

equation for the joint actuator motor is given by:

where Jm is the motor inertia, μ is the viscous friction

coefficient, and τ is the torque output of the motor. With

these dynamics equations, the associated eigenvalue problem can

be formulated.

The beam dynamics equation, along with its associated

boundary conditions, is used to formulate a frequency equation:

1 + coshβ cosβ + m/l(sinhβ 	 cosβ 	 - coshβ sinβ ) = 0

The solutions of the frequency equation are designated βi and

yield the system eigenvalues which follow.

The associated eigenfunctions are expressed as:

where Yi = (coshβi + cosβi )/(sinβi + sinβi )

The eigenfunctions describe the mode shapes corresponding to

specific eigenvalues.

The general expression for the transverse displacement as a

function of position along the longitudinal axis of the

undeformed arm is given by:

where the C's are arbitrary constants.

An experimental arm was fabricated, and a controller was
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constructed based upon the dynamics exhibited in the model. This

controller was a dynamic compensator and was implemented by a

microcomputer. Motor angle of rotation and transverse vibration

were controlled by the input voltage to the armature of the

actuator motor. Fed back to the microcomputer were angular

velocity, as measured by a tachometer, and strain measured at the

base of the arm.

5. Davis/Hirschorn Model (1988)

Developed by Davis and Hirschorn in 1988 [3], this model is

a structural model of a single flexible link of a robotic arm.

The objective is to model the dynamics of the link as a

distributed parameter system and to model the joint actuator and

load as discrete systems so that a tracking controller can be

developed.

The model is based on a Bernoulli-Euler beam mounted on the

shaft of a servo motor. To insure that the model is

exponentially stable, a frequency-dependent damping term is added

to the basic beam equation to yield:

where A is the mass per unit length, EI is the bending

stiffness, and D is the damping coefficient. 	 For boundary

conditions, 	 shear and bending moments S(x,t), M(x,t) and

compressive 	 stress, T(x,t) along the beam centerline 	 are

calculated. After some manipulation of these equations, an

expression for the transverse motion of the vibrating beam is

obtained. The servo motor is modeled as a discrete component,
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and includes the motor inertia and beam reaction torque produced

by the bending.

	

Since 	 the 	 model was developed for the 	 purpose 	 of

constructing a tracking controller, the motion of the vibrating

beam is referenced to a nominal tracking path. Also, after the

basic beam equations have been derived, in order to develop a

robust controller, the authors assume the configuration of the

system actually to be two coaxially mounted beams with a force

actuator mounted at the tip of the inner beam. The dynamics of

both beams are modeled as described earlier.



VI. SUMMARY AND CONCLUSION

An extensive survey of current literature in the area of

mathematical modeling of robot arms with flexible links shows

that there is a great diversity in many aspects of these models.

Most current models can be classified as either kinematic or

structural models. Kinematic models generally are developed for

the study of arm dynamics during large changes in configuration,

and are used to examine the effects of the vibratory modes on the

equations of motion of the system. Structural models emphasize

developing partial differential equations of the flexural

dynamics which are used to solve the related eigenvalue problem

and characterize the vibratory modes of each link of the arm.

The models in each class are very similar conceptually and,

as a result, follow the same general pattern of development,

outlined in this thesis. Several short FORTRAN programs were

developed to demonstrate the basic patterns of development for

kinematic and structural models. However, individual models in

each class may differ significantly due to such factors as

effects modeled and assumptions made. These serve as additional

bases for further classification of the models.

Examination of current models indicates that many areas in

the modeling of robotic arms with flexible links can be developed

further. One important area is the development of hybrid models

which simulate both the kinematic and structural characteristics

of flexible robotic arms. With these, the development of real-

time controllers to control large changes in arm configuration

could be made easier. A hybrid model also could be used to

develop structural models of multi-link arms, and examine the
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coupling effects between several links and actuator motors.

Finally, many nonlinear effects such as Coriolis forces,

backlash, and Joint spring effects could be added to existing

models to improve accuracy.

The ultimate goal of developing effective control techniques

for robot arms with flexible links is the reason for studying the

modeling techniques of those arms. Many potential benefits are

to be gained by improving the techniques by which mathematical

models of flexible robotic arms are developed.



APPENDIX A: Kinematic Model Development Computer Simulations

The computer simulations described in this section were

developed to demonstrate certain phases of the model development

process for kinematic models of robot arms with flexible links.

The example three degree of freedom serial manipulator shown in

Figure A - 1 was used in developing the simulations. The link

parameter table [11] describes the configuration of each link.

α denotes the twist angle between the two joints of a specific

link. θ represents the length of the link normal to the two

joint axes, and d represents the distance between the two

normals for a particular joint. e depicts the measured joint

angle, which is controlled by the actuator motor.

The first program illustrates how the Denavit-Hartenberg

transformation 	 matrices 	 are 	 devloped 	 for 	 a 	 specified

configuration of the manipulator, and assumes no 	 flexible

deflections. The second program calculates the transformation

matrices for the same configuration of the manipulator, but also

uses the F matrices associated with each link to take the

flexible deflections into account. Note that the matrix T e

denotes the position and orientation of the end effector

coordinate frame with respect to the base coordinate frame.

The third kinematic model program was based on the

Usoro/Nadira/Mahil model [15], and was developed to calculate the

time-varying position coordinates of a vibrating link. It

divides a link into a finite number of distributed elements and,

assuming a specified modal shape, uses Hermitian polynomials to

calculate position, velocity, and acceleration of an arbitrary

element of the link.
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LINK COORDINATE FRAME ASSIGNMENT FOR

A 3 DEGREE OF FREEDOM SERIAL MANIPULATOR

FIGURE:- 	 A -) 



C
C 	 JOHN G. DANIS
C 	 MASTER'S THESIS
C 	 ADVISOR: DR. F. CHICHESTER
C
C

	

KINEMATIC MODEL: GENERATION OF TRANSFORMATION MATRICES

C 	 THIS PROGRAM GENERATES THE DENAVIT-HARTENBERG MATRICES
C 	 USED TO PERFORM A HOMOGENEOUS TRANSFORMATION OF
C 	 COORDINATES BETWEEN SUCCESSIVE LINKS OF A SERIAL MANIPULATOR

CC	 DIMENSION ANI(4,4),AN2(4,4),AN3(4,4),E(4,4),T2(4,4),T3(4,4),
& 	 	 TE(4,4)

CC 	 REAL JTANG1,JTANG2,JTANG3

CC 	 LINK PARAMETERS FOR LINK 1:
	 ALPHA1 = -90.0

	

A1 = 0.0

	

D1 = 0.0

	

JTANG1 = 0.0

	

THETA1 = 90.0 + JTANG1

	

CALL ANCOMP(AN1,ALPHA1,A1,D1,THETA1)

C
C 	 LINK PARAMETERS FOR LINK 2:

	

ALPHAS = 0.0

	

A2 = 10.0

	

D2 = 0.0

	

JTANG2 = 30.0

	

THETA2 = -JTANG2

	

CALL ANCOMP(AN2,ALPHA2,A2,D2,THETA2)

CC	 LINK PARAMETERS FOP LINK 3:

	

ALPHA3 = 90.0

	

AS = 12.0

	

D3 = 0.0

	

JTANG3 = 60.0

	

THETA3 = 90.0 - JTANG3

	

CALL ANCOMP(AN3,ALPHA3,A3,D3,THETA3)

C
C 	 LINK PARAMETERS FOR THE END EFFECTOR:

	

ALPHAE = -90.0

	

AE = 0.0

	

DE = 0.0

	

THETAE = -90.0

	

CALL ANCOMP(E,ALPHAE,AE,DE,THETAE]

CC 	 [TE] = [AN1]*[AN2]*[AN3]*[E]

C

	

NUM = 2

	

CALL MATMUL(AN1,AN2,T2,NUM)

	

NUM = 3

	

CALL MATMUL(T2,AN3,T3,NUM)

	

NUM = 4

	

CALL MATMUL(T3,E,TE,NUM)

C

	

STOP

	

END

C
C 	 SUBROUTINE ANCOMP(AN,ALPHA,A,D,THETA)

	

DIMENSION AN(4,4)

	

CONVF = 1.74533E-2

	

ALPHA = ALPHA*CONVF

	

THETA = THETA*CONVF
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AN(1,1) = COS(THETA)
AN(1,2) = -SIN(THETA)*COS(ALPHA)
AN(1,3) = SIN(THETA)*SIN(ALPHA)
AN(1,4) = A*COS(THETA)
AN(2,1) = SIN(THETA)
AN(2,2) = COB(THETA)*COS(ALPHA)
AN(2,3) = -COS(THETA)*SIN(ALPHA)
AN(2,4) = A*SIN(THETA)
AN(3,1) = 0.0
AN(3,2) = SIN(ALPHA)
AN(3,3) = COS(ALPHA)
AN(3,4) = D
AN(4,1) = 0.0
AN(4,2) = 0.0
AN(4,3) = 0.0
AN(4,4) = 1.0
RETURN
END

SUBROUTINE MATMUL(A,B,PR,NUM)
DIMENSION A(4,4),B(4,4),PR(4,4)
PR(1,1)=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(1,3)*B(3,1)+A(1,4)*B(4,1)
PR(1,2)=A(1,1)*B(1,2)+A(1,2)*B(2,2)+A(1,3)*B(3,2)+A(1,4)*B(4,2)
PR(1,3)=A(1,1)*B(1,3)+A(1,2)*B(2,3)+A(1,3)*B(3,3)+A(1,4)*B(4,3)
PR(1,4)=A(1,1)*B(1,4)+A(1,2)*B(2,4)+A(1,3)*B(3,4)+A(1,4)*B(4,4)
PR(2,1)=A(2,1)*B(1,1)+A(2,2)*B(2,1)+A(2,3)*B(3,1)+A(2,4)*B(4,1)
PR(2,2)=A(2,1)*B(1,2)+A(2,2)*B(2,2)+A(2,3)*B(3,2)+A(2,4)*B(4,2)
PR(2,3)=A(2,1)*B(1,3)+A(2,2)*B(2,3)+A(2,3)*B(3,3)+A(2,4)*B(4,3)
PR(2,4)=A(2,1)*B(1,4)+A(2,2)*B(2,4)+A(2,3)*B(3,4)+A(2,4)*B(4,4)
PR(3,1)=A(3,1)*B(1,1)+A(3,2)*B(2,1)+A(3,3)*B(3,1)+A(3,4)*B(4,1)
PR(3,2)=A(3,1)*B(1,2)+A(3,2)*B(2,2)+A(3,3)*B(3,2)+A(3,4)*B(4,2)
PR(3,3)=A(3,1)*BC1,3)+AC3,2)*B(2,3)+A(3,3)*B(3,3)+A(3,4)*B(4,3)
PR(3,4)=A(3,1)*B(1,4)+A(3,2)*B(2,4)+A(3,3)*B(3,4)+A(3,4)*B(4,4)
PR(4,1)=A(4,1)*B(1,1)+A(4,2)*B(2,1)+A(4,3)*B(3,1)+A(4,4)*B(4,1)
PR(4,2)=A(4,1)*B(1,2)+A(4,2)*B(2,2)+A(4,3)*B(3,2)+A(4,4)*B(4,2)
PR(4,3)=A(4,1)*B(1,3)+A(4,2)*B(2,3)+A(4,3)*B(3,3)-*A(4,4)*B(4,3)
PR(4,4)=A(4,1)*B(1,4)+A(4,2)*B(2,4)+A(4,3)*B(3,4)+A(4,4)*B(4,4)

WRITE(*,5)
5 FORMAT('0')
DO 40 I = 1,4

DO 30 J = 1,4
IF (NUM.E0.4) GO TO 20
CONTINUE
WRITE(*,10) NUM,I,J,FR(I,J)

10 	 FORMAT(' ','T',I1,'(',I1,',',I1,') = ',F10.6)
GO TO 30

20	 WRITE(*,25) I,J,PR(I,J)
25 	 FORMAT('','TE(',I1,',',I1,') = ',F10.6)
30 	 CONTINUE
40 CONTINUE

RETURN
END



T2(1,1) =

	

-.000001
T2(1,2) =

	

.000000
T2(1,3) =

	

-1.000000
T2(1,4) = 

	

-.000009
T2(2,1) = 	 .866025
T2(2,2) = 	 .500000
T2(2,3) =

	

.000001
T2(2,4) =

	

8.660254
T2(3,1) =

	

.500000
T2(3,2) = 

	

-.866025
T2(3,3) =

	

-.000001
T2(3,4) =

	

5.000002
T2(4,1) = 	 .000000
T2(4,2) = 	 .000000
T2(4,3) = 	 .000000
T2(4,4) = 	 1.000000

T3(1,1) = 	 -.000001
T3(1,2) = 

	

-1.000000
T3(1,3) = 	 .000000
T3(1,4) = 	 -.000016
T3(2,1) = 	 1.000000
T3(2,2) = 	 -.000001
T3(2,3) = 	 .000000
T3(2,4) = 

	

20.660250
T3(3,1) = 	 .000000
T3(3,2) = 	 .000000
T3(3,3) = 	 1.000000
T3(3,4) = 	 5.000002
T3(4,1) = 	 .000000
T3(4,2) = 	 .000000
T3(4,3) = 	 .000000
T3(4,4) = 	 1.000000

TE(1,1) = 	 1.000000
TE(1,2) = 	 .000000
TE(1,3) = 	 .000000
TE(1,4) = 	 -.000016
TE(2,1) = 	 .000000
TE(2,2) = 	 -.000001
TE(2,3) = 	 1.000000
TE(2,4) = 

	

20.660250
TE(3,1) = 

	

.000000
TE(3,2) = 

	

-1.000000
TE(3,3) = 	 -.000001
TE(3,4) = 	 5.000002
TE(4,1) = 	 .000000
TE(4,2) = 	 .000000
TE(4,3) = 	 .000000
TE(4,4) = 	 1.000000
Stop - Program terminated.



C

						

JOHN G. DANIS
C 	

					

MASTER'S THESIS
C 	

					

ADVISOR: DR. F. CHICHESTER
C
C 	 KINEMATIC MODEL: GENERATION OF TRANSFORMATION MATRICES
C
C 	 THIS PROGRAM GENERATES THE DENAVIT-HARTENBERG MATRICES
C 	 USED TO PERFORM A HOMOGENEOUS TRANSFORMATION OF
C 	 COORDINATES BETWEEN SUCCESSIVE LINKS OF A SERIAL MANIPULATOR

C 	 THIS VERSION OF THE MODEL ACCOUNTS FOR LINK FLEXIBILITY BY
C 	 USING F MATRICES IN THE COORDINATE TRANSFORMATIONS

C

	

DIMENSION

	

AN1(4,4),AN2(4,4),AN3(4,4),E(4,4),T2(4,4),T3(4,4),
	 & 	 	 TE(4,4),FN1(4,4),FN2(4,4),FN3(4,4),FNE(4,4),
	 & 	 	 A1F1(4,4),A2F2(4,4),A3F3(4,4),EFE(4,4)

C

	

REAL JTANG1,JTANG2,JTANG3

C

C 	 LINK PARAMETERS FOR LINK 1:

	

ALPHA1 = -90.0

	

A1 = 0.0

	

D1 = 0.0

	

JTANG1 = 0.0

	

THETA1 = 90.0 	 JTANG1

	

CALL ANCOMP(AN1,ALPHA1,A1,D1,THETAI)

C

C 	 FLEXIBILITY PARAMETERS FOR LINK 1:

	

THX1 = 1.0
THYI = -1.0

	

THZ1 = 0.5

	

DELX1 = 0.5

	

DELY1 = 0.5

		

DELZ1 = -0.25

	

CALL FNCOMP(FN1,THX1,THY1,THZ1,DELX1,DELY1,DELZ1)

C

C 	 LINK PARAMETERS FOR LINK 2:

	

ALPHA2 = 0.0

	

A2 = 10.0

	

D2 = 0.0

	

JTANG2 = 30.0

	

THETA2 = -JTANG2

	

CALL ANCOMP(AN2,ALPHA2,A2,D2,THETA2)

C

C 	 FLEXIBILITY PARAMETERS FOR LINK 2:

	

THX2 = -2.0

	

THY2 = 1.0

	

THZ2 = -0.5

	

DELX2 = 0.25

	

DELY2 = 0.25

	

DELZ2 = -0.5

	

CALL FNCOMP(FN2,THX2,THY2,THZ2,DELX2,DELY2,DELZ2)

C

C 	 LINK PARAMETERS FOR LINK 3:

	

ALPHA3 = 90.0

	

A3 = 12.0

	

D3 = 0.0

	

JTANG3 = 60.0

	

THETA3 = 90.0 - JTANG3

	

CALL ANCOMP(AN3,ALPHA3,A3,D3,THETA3)

C

C 	 FLEXIBILITY PARAMETERS FOR LINK 3:

	

THX3 = -1.0

	

THY3 = 1.0
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THZ3 = 0.5

	

DELX3 = 0.5

	

DELY3 = 0.25

	

DELZ3 = -0.25

	

CALL FNCOMP(FN3,THX3,THY3,THZ3,DELX3,DELY3,DELZ3)
C
C	 LINK PARAMETERS FOR THE END EFFECTOR:

	

ALPHAE = -90.0

	

AE = 0.0

	

DE = 0.0

	

THETAE = -90.0

	

CALL ANCOMP(E,ALPHAE,AE,DE,THETAE)
C

C	 FLEXIBILITY PARAMETERS OF THE END EFFECTOR:

	

THXE = 0.1

	

THYE = 0.05

	

THZE = -0.05

	

DELXE = 0.01

	

DELVE = -0.01

	

DELZE = 0.0

	

CALL FNCOMPCFNE,THXE,THYE,THZE,DELXE,DELYE,DELZE)

C

	

NUM = 1

	

CALL MATMUL(AN1,FN1,A1F1,NUM)

	

CALL MATMUL(AN2,FN2,A2F2,NUM)

	

CALL MATMUL(AN3,FN3,A3F3,NUM)

	

CALL MATMUL(E,FNE,EFE,NUM)

CC 	 [TE] = [A1F1]*CA2F23*[A3F3]*CEFE)

C

	

NUM = 2

	

CALL MATMUL(A1F1,A2F2,T2,NUM)

	

NUM = 3

	

CALL MATMUL(T2,A3F3,T3,NUM)

	

NUM = 4

	

CALL MATMULCT3,EFE,TE,NUM)

C

	

STOP

	

END

CC

	

SUBROUTINE ANCOMP(AN,ALPHA,A,D,THETA)

	

DIMENSION AN(4,4)

	

CONVF = 1.74533E-2

	

ALPHA = ALPHA*CONVF

	

THETA = THETA*CONVF

	

AN(1,1) = COS(THETA)

	

AN(1,2) = -SIN(THETA)*COSCALPHA)

	

AN(1,3) = SIN(THETA)*SINCALPHA)

	

AN(1,4) = A*COSCTHETA)

	

AN(2,1) = SIN(THETA)

	

AN(2,2) = COS(THETA)*COS(ALPHA)

	

AN(2,3) = -COS(THETA)*SIN(ALPHA)

	

AN(2,4) = A*SINCTHETA)

	

AN(3,1) = 0.0
AN(3,2) = SIN(ALPHA)

	

AN(3,3) = COS(ALPHA)

	

AN(3,4) = D
AN(4,1) = 0.0
AN(4,2) = 0.0
	 AN(4,3) = 0.0
AN(4,4) = 1.0

	

RETURN

	

END
C
C
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SUBROUTINE FNCOMP(FN,THX,THY,THZ,DELX,DELY,DELZ)
DIMENSION FN(4,4)
CONVF = 1.74533E-2
THX = THX*CONVF
THY = THY*CONVF
THZ = THZ*CONVF
FN(1,1) = 1.0
FN(1,2) = -THZ
FN(1,3) = THY
FN(1,4) = DELX
FN(2,1) = THZ
FN(2,2) = 1.0
FN(2,3) = -THX
FN(2,4) = DELY
FN(3,1) = -THY
FN(3,2) = THX
FN(3,3) = 1.0
FN(3,4) = DELZ
FN(4,1) = 0.0
FN(4,2) = 0.0
FN(4,3) = 0.0
FN(4,4) = 1.0
RETURN
END

C

SUBROUTINE MATMUL(A,B,RR,NUM)
DIMENSION A(4,4),B(4,4),PR(4,4)
PR(1,1)=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(I,3)*B(3,1)+A(1,4)*B(4,1)
PR(1,2)=A(1,1)*5(1,2)+A(1,2)*B(2,2)+A(1,3)*5(3,2)+A(1,4)*B(4,2)
PR(1,3)=A(1,I)*B(1,3)+A(1,2)*B(2,3)+A(1,3)*B(3,3)+A(1,4)*B(4,3)
PR(1,4)=A(1,1)*B(1,4)+A(1,2)*B(2,4)+AC1,3)*B(3,4)+A(1,4)*B(4,4)
PR(2,1)=A(2,1)*B(1,1)+A(2,2)*B(2,1)+AC2,3)*B(3,1)+A(2,4)*B(4,1)
PR(2,2)=A(2,1)*BC1,2)+A(2,2)*B(2,2)+A(2,3)*B(3,2)+A(2,4)*B(4,2)
PR(2,3)=A(2,1)*B(1,3)+A(2,2)*B(2,3)+A(2,3)*B(3,3)+A(2,4)*B(4,3)
PR(2,4)=A(2,1)*B(1,4)+A(2,2)*B(2,4)+A(2,3)*B(3,4)+A(2,4)*B(4,4)
PR(3,1)=A(3,1)*B(1,1)+A(3,2)*B(2,1)+A(3,3)*B(3,1)+A(3,4)*B(4,1)
RR(3,2)=A(3,1)*B(1,2)+A(3,2)*B(2,2)+A(3,2)*B(3,2)+A(3,4)*B(4,2)
PR(3,3)=A(3,1)*B(1,3)+A(3,2)*B(2,3)+A(3,3)*9(3,3)+A(3,4)*B(4,3)
PR(3,4)=A(3,1)*B(1,4)+A(3,2)*BC2,4)+A(3,3)*B(3,4)+A(3,4)*B(4,4)
PR(4,1)=A(4,1)*B(1,1)+A(4,2)*BC2,1)+A(4,3)*B(2,1)+A(4,4)*B(4,1)
PR(4,2)=A(4,1)*B(1,2)+A(4,2)*B(2,2)+A(4,3)*B(3,2)+A(4,4)*B(4,2)
PR(4,3)=A(4,1)*B(1,3)+A(4,2)*B(2,3)+A(4,3)*B(3,3)+A(4,4)*B(4,3)
RR(4,4)=A(4,1)*B(1,4)+A(4,2)*B(2,4)+A(4,3)*B(3,4)+A(4,4)*B(4,4)

IF (NUM.EO.1) GO TO 50
CONTINUE
WRITE(*,5)

5 FORMAT( , 0 , )
DO 40 I = 1,4

DO 30 J = 1,4
IF (NUM.EQ.4) GO TO 20
CONTINUE
WRITE(*, 1O) NUM,I,J,PR(I,J)

10 	 FORMAT(' 	 = 1 ,F106)
GO TO 30

20 	 WRITE(*,25) I,J,PR(I,J)
25 	 FORMAT(' , , , TE(',I1, , , , ,I1, , ) = ',F10.6)
30 	 CONTINUE
40 CONTINUE
50 CONTINUE

RETURN
END



T2(1,1) = 	 .011272
T2(1,2) = 	 .011009
T2(1,3) =

	

-1.000944
T2(1,4) = 	 .678550
T2(2,1) = 	 .866396
T2(2,2) = 	 .500648
T2(2,3) = 	 .014927
T2(2,4) = 	 9.553322
T2(3,1) 	 .499734
T2(3,2) = 	 -.866701
T2(3,3) = 	 -.004335
T2(3,4) = 	 4.321214
T2(4,1) = 	 .000000
T2(4,2) = 	 .000000
T2(4,3) = 	 .000000
T2(4,4) = 	 1.000000

T3(1,1) = 	 .006600
T3(1,2) = 

	

-1.001009
T3(1,3) = 	 -.021101
T3(1,4) = 	 .620122
T3(2,1) = 	 1.000782
T3(2,2) = 	 .006201
T3(2,3) = 	 .017350
T3(2,4) = 

	

22.065210
T3(3,1) = 	 -.018067
T3(3,2) = 	 -.021790
T3(3,3) = 	 1.000366
T3(3,4) = 	 4.062912
T3(4,1) = 	 .000000
T3(4,2) = 	 .000000
T3(4,3) = 	 .000000
T3(4,4) = 	 1.000000

TE(1,1) = 	 1.000985
TE(1,2) = 	 .021986
TE(1,3) = 	 .007437
TE(1,4) = 	 .629921
TE(2,1) = 	 -.007060
TE(2,2) = 	 -.015609
TE(2,3) = 	 1.000806
TE(2,4) = 

	

22.065320
TE(3,1) = 

	

.022679
TE(3,2) =

	

-1.000378
TE(3,3) = 	 -.016303
TE(3,4) = 	 4.073133
TE(4,1) = 	 .000000
TE(4,2) = 	 .000000
TE4,3) = 	 .000000
TE(4,4) = 	 1.000000
Stop - Program terminated.
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C
C 	 JOHN G. DANIS
C 	 MASTER'S THESIS
C 	 ADVISOR: DR. FREDERICK CHICHESTER
C
C
C

	

THIS PROGRAM CALCULATES THE TIME-VARYING POSITION
C

	

COORDINATES OF AN ELEMENT OF A VIBRATING LINK
C

	

DIMENSION YELM(100), VEL(100)

	

WRITE(*,010)
010 

	

FORMAT(1X,'ROBOTIC ARM POSITION COORDINATES PROGRAM')
C

	

RLNK IS THE OVERALL LENGTH OF THE LINK

	

RLNK=48.0
C 	 N IS THE NUMBER OF ELEMENTS IN THE LINK

	

N=10
C 	 SF IS THE SCALE FACTOR DESCRIBING THE SHAPE OF THE BEND

	

SF=0.02
C 	 W IS THE MODE FREQUENCY

	

W=11.6
C 	 DELTT IS THE DELTA TIME INTERVAL

	

DELTT=0. 1

	

NOBSV=50

	

NDE=10

	

R=0.5

	

WRITE(*,68)
068 

	

FORMAT('0',' 	 TIME 	 X 	 Y 	 VEL 	 ACC')
C 	 RELM IS THE LENGTH OF EACH ELEMENT

	

RELM=FLNK/FLOAT(N)
C 	 X IS THE POSITION ALONG THE ELEMENT
X=R*RELM

	

L=NOBSV+1

	

DO 100 I=1,L

	

THETA=W*FLOAT(I-1)*DELTT

	

U1=SIN(THETA)*SF*(FLOAT(NDE-1)*RELM)**2

	

U2=2.0*SIN(THETA)*SF*FLOAT(NDE-1)*RELM

	

U3=SIN(THETA)*SF*(FLOAT(NDE)*RELM)**2

	

U4=2.0*SIN(THETA)*SF*FLOAT(NDE)*RELM

	

PHI 1=1-3*X**2/RELM**2+2*X**3/RELM**3

	

PHI2=X-2*X**2/RELM+X**3/RELM**2

	

PHI3=3*X**2/RELM**2-2*X**3/RELM**3

	

PHI4=-X**2/RELM+X**3/RELM**2

	

TIME=FLOAT(I-1)*DELTT

	

XELM=FLOAT(NDE-1)*RELM+X

	

YELM(I)=PHI1*U1+PHI2*U2+PHI3*U3+PHI4*U4

	

VEL(I)=(YELM(I)-YELM(I-1))/DELTT

	

ACC=(VEL(I)-VEL(I-1))/DELTT

	

WRITE(*,070) TIME,XELM,YELM(I),VEL(I),ACC
070 

	

FORMAT(' ',F10.5,",F10.3,F10.3,' ',F10.3,' ',F10.3)
100 

	

CONTINUE

	

STOP

	

END
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ROBOTIC ARM POSITION COORDINATES PROGRAM

TIME 	 X 	 Y 	 VEL 	 ACC
.00000 	 45.600 	 .000 	 .000 	.000

	 .10000 	 45.600 	 38.127 	 381.273 	 3812.728
	 .20000 	 45.600 	 30.451 	 -76.758 	 -4580.310
	 .30000 	 45.600 	 -13.806 	 -442.578 	 -3658.197

	

.40000

	

45.600

	

-41.478

	

-276.719 	 1658.585

	

.50000 	 45.600 	 -19.321 	 221.568 	 4982.873
	 .60000 	 45.600 	 26.047 	 453.681 	 2321.133
	 .70000

	

45.600 	 40.124 	 140.777

	

-3129.037
	 .80000 	 45.600

	

6.000

	

-341.245

	

-4820.225
	 .90000 	 45.600

	

-35.332

	

-413.323

	

-720.777

	

1.00000 	 45.600 	 -34.219 	 11.133 	 4244.555

	

1.10000 	 45.600 	 8.002 	 422.214 	 4110.814

	

1.20000 	 45.600 	 40.610 	 326.081 	 -961.331

	

1.30000 	 45.600 	 24.432

	

-161.780

	

-4878.615

	

1.40000 	 45.600 	 -21.097

	

-455.292

	

 -2935.113

	

1.50000 	 45.600 	 -41.282 	 -201.851 	 2534.407

	

1.60000 	 45.600

	

-11.874

	

294.077

	

4959.282

	

1.70000 	 45.600 	 31.798 	 436.724 	 1426.472

	

1.80000 	 45.600 	 37.271

	

54.726

	

-3819.988

	

1.90000 	 45.600 	 -2.031 	 -393.016

	

-4477.417

	

2.00000 	 45.600 	 -38.893 	 -368.619 	 243.967

	

2.10000 	 45.600 	 -29.032 	 98.607 	 4672.269

	

2.20000 	 45.600 	 15.705 	 447.375

	

3487.677

	

2.30000 	 45.600 	 41.576 	 258.702

	

-1886.732

	

2.40000 	 45.600 	 17.500

	

-240.756

	

-4994.580

	

2.50000 	 45.600 	 -27.599

	

-450.988

	

-2102.320

	

2.60000 	 45.600 	 -39.543 	 -119.439 	 3315.493

	

2.70000 	 45.600 	 -3.983 	 355.595

	

4750.336

	

2.80000 	 45.600 	 36.361 	 403.445 	 478.506

	

2.90000 	 45.600 	 33.024 	 -33.372

	

-4368.178

	

3.00000 	 45.600 	 -9.986 	 -430.099

	

-3967.260

	

3.10000 	 45.600 	 -41.000 	 -310.138 	 1199.602

	

3.20000

	

45.600

	

-22.760 	 182.397

	

4925.357

	

3.30000 	 45.600 	 22.822 	 455.815 	 2734.180

	

3.40000 	 45.600 	 40.987 	 181.653

	

-2741.625

	

3.50000 	 45.600 	 9.914 	 -310.733

	

-4923.858

	

3.60000 	 45.600

	

-33.069 	 -429.829

	

-1190.960

	

3.70000 	 45.600 	 -36.325	 -32.563 	 3972.664

	

3.80000 	 45.600 	 4.057 	 403.822 	 4363.845

	

3.90000 	 45.600 	 39.565 	 355.087 	 -487.352

	

4.00000 	 45.600 	 27.543 	 -120.222

	

-4753.083

	

4.10000 	 45.600 	 -17.567 	 -451.105

	

-3308.836

	

4.20000 	 45.600 	 -41.574 	 -240.067 	 2110.283

	

4.30000 	 45.600 	 -15.637 	 259.369 	 4994.355

	

4.40000 	 45.600 	 29.085 	 447.219 	 1878.505

	

4.50000 	 45.600 	 38.867 	 97.816

	

-3494.032

	

4.60000 	 45.600 	 1.957 	 -369.097

	

-4669.132

	

4.70000 	 45.600 	 -37.304 	 -392.604 	 -235.070

	

4.80000 	 45.600 	 -31.750 	 55.532 	 4481.359

	

4.90000 	 45.600 	 11.945 	 436.956 	 3814.246

	

5.00000 	 45.600 	 41.291 	 293.456

	

-1435.000
Stop - Program terminated.
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FIG. A-2: KINEMATIC MODEL
Transverse Displacement



APPENDIX B: Structural Model Development Computer Simulation

Computer simulations of certain phases of structural model

development are described in this section. The simulations treat

a single aluminum link 2 inches in diameter and 48 inches long.

The eigenvalues associated with the first three modes of this

clamped-free link are used to determine the 	 corresponding

eigenfunctions. 	 Mode shapes are determined for the first three

modes and are depicted in the accompanying graphs.

The last program simulates the flexible deflections of the

link as the sum of the contributions from the first three modes.

Since the eigenfunctions of all three modes are present in this

model, the overall shape of the arm can be shown at any instant

in time. The model can also be used to plot the motion of any

point on the arm with respect to time. An accompanying graph

plots the motion of the tip of the link with respect to time.



C 	

			

JOHN G. DANIS
C	

			

MASTER'S THESIS
C 	

			

ADVISOR: DR. F. D. CHICHESTER
C
C 	 STRUCTURAL MODEL: EIGENFUNCTION CALCULATION
C
C 	 THIS PROGRAM CALCULATES THE VALUES OF THE EIGENFUNCTION
C 	 ASSOCIATED WITH A PARTICULAR MODE ALONG THE LENGTH OF THE ARM
C

	

DIMENSION PHI(60)
C

	

REAL *8 LEN,INER,ARG,PHI,SF
C

	

WRITE(*, 3)
3 

	

FORMAT(' ','STRUCTURAL MODEL - EIGENFUNCTION CALCULATION')

C 	 DEFINE ARM CHARACTERISTICS:
C 	 ASSUME AN ALUMINUM LINK, 2 IN. DIA., 48 IN. LONG

	

PIE=3.1415927

	

LEN=48.0
C 	 MASS PER UNIT LENGTH:

	

U=1.1409E-3

	

E=1.0E7

	

INER=4.12E-4

	

EIGNVAL = 1.8751

	

UN = (EIGNVAL**2/LEN**2)*SORT(E*INER/U)

	

ALPHA = (COSH(EIGNVAL) + COS(EIGNVAL))/(SINH(EIGNVAL) +
& 	 	 	 SIN(EIGNVAL))

		

WRITE(*, 6) UN, ALPHA
& 	 	 FORMAT(' 0' 	 = ',F8.4,' RAD/SEC',7X,'ALPHA = ',F8.4)

C
C 	 NUMINT IS THE NUMBER OF POINTS ALONG THE ARM

	

NUMINT=51

	

DX=LEN/(FLOAT(NUMINT) - 1.0)

	

DO 10 I = 1,NUMINT

	

X = (FLOAT(I) - 1.0)*DX

	

ARG = EIGNVAL*X/LEN

	

PHI(I) = COSH(APG) - COS(ARG) - ALPHA*(SINWARG) - SIN(ARG))
10

	

CONTINUE

CC 	 CALCULATION OF SCALE FACTOR TO NORMALIZE EIGENFUNCTION

	

SF = ABS(1.0/PHI(NUMINT))

	

DO 20 I = 1,NUMINT

	

X = (FLOAT(I) 	 1.0)*DX

	

PHI(I) = PHI(I)*SF

	

WRITE(*,15) X,PHI(I)
15 	 FORMAT(",F8.4,7X,F8.4)
20    CONTINUE

	

STOP

	

END



STRUCTURAL MODEL - EIGENFUNCTION CALCULATION

WN = 2.9000 RAD/SEC 	 ALPHA = 	 .7341

	

.0000 	 .0000

	

.9600 	 .0007

	

1.9200 	 .0028

	

2.8800 	 .0062

	

3.8400 	 .0108

	

4.8000 	 .0168

	

5.7600 	 .0239

	

6.7200 	 .0322

	

7.6800 	 .0417

	

8.6400 	 .0523

	

9.6000 	 .0639

	

10.5600 	 .0765

	

11.5200 	 .0901

	

12.4800 	 .1047

	

13.4400 	 .1201

	

14.4000 	 .1365

	

15.3600 	 .1536

	

16.3200 	 .1716

	

17.2800 	 .1903

	

18.2400 	 .2098

	

19.2000 	 .2299

	

20.1600 	 .2507

	

21.1200 	 .2720

	

22.0800 	 .2940

	

23.0400 	 .3165

	

24.0000 	 .3395

	

24.9600 	 .3630

	

25.9200 	 .3870

	

26.8800 	 .4113

	

27.8400 	 .4360

	

28.8000 	 .4611

	

29.7600 	 .4865

	

30.7200 	 .5123

	

31.6800 	 .5382

	

32.6400 	 .5644

	

33.6000 	 .5909

	

34.5600 	 .6175

	

35.5200 	 .6443

	

36.4800 	 .6712

	

37.4400 	 .6983

	

38.4000 	 .7255

	

39.3600 	 .7527

	

40.3200 	 .7801

	

41.2800 	 .8075

	

42.2400 	 .8349

	

43.2000 	 .8624

	

44.1600 	 .8899

	

45.1200 	 .9174

	

46.0800 	 .9449

	

47.0400 	 .9725

	

48.0000 	 1.0000
Stop - Program terminated.
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FIG. B-1: STRUCTURAL MODEL
Eigenfunction Calculation



STRUCTURAL MODEL - EIGENFUNCTION CALCULATION

WN = 18.1731 RAD/SEC 	 ALPHA m 	 1.0185

	

.0000 	 .0000

	

.9600 	 .0043

	

1.9200 	 .0165

	

2.8800 	 .0359

	

3.8400 	 .0615

	

4.8000 	 .0926

	

5.7600 	 .1284

	

6.7200 	 .1679

	

7.6800 	 .2104

	

8.6400 	 .2550

	

9.6000 	 .3011

	

10.5600 	 .3477

	

11.5200 	 .3943

	

12.4800 	 .4400

	

13.4400 	 .4842

	

14.4000 	 .5262

	

15.3600 	 .5654

	

16.3200 	 .6012

	

17.2800 	 .6332

	

18.2400 	 .6608

	

19.2000 	 .6835

	

20.1600 	 .7011

	

21.1200 	 .7132

	

22.0900 	 .7194

	

23.0400 	 .7197

	

24.0000 	 .7137

	

24.9600 	 .7015

	

25.9200 	 .6830

	

26.8800 	 .6581

	

27.8400 	 .6269

	

28.8000 	 .5896

	

29.7600 	 .5462

	

30.7200 	 .4970

	

31.6800 	 .4422

	

32.6400 	 .3822

	

33.6000 	 .3171

	

34.5600 	 .2474

	

35.5200 	 .1735

	

36.4800 	 .0957

	

37.4400 	 .0144

	

38.4000 	 -.0700

	

39.3600 	 -.1570

	

40.3200 	 -.2463

	

41.2800 	 -.3374

	

42.2400 	 -.4300

	

43.2000 	 -.5237

	

44.1600 	 -.6183

	

45.1200 	 -.7134

	

46.0800 	 -.8088

	

47.0400 	 -.9044

	

48.0000 	 -1.0000
Stop - Program terminated.
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FIG. B-2: STRUCTURAL MODEL
Eigenfunction Calculation



STRUCTURAL MODEL - EIGENFUNCTION CALCULATION

WN 	 50.8903 RAD/SEC 	 ALPHA = 	 .9992

	

.0000 	 .0000

	

.9600 	 .0117

	

1.9200 	 .0442

	

2.8800 	 .0936

	

3.8400 	 .1562

	

4.8000 	 .2280

	

5.7600 	 .3055

	

6.7200 	 .3852

	

7.6800 	 .4635

	

8.6400 	 .5376

	

9.6000 	 .6044

	

10.5600 	 .6615

	

11.5200 	 .7067

	

12.4800 	 .7384

	

13.4400 	 .7551

	

14.4000 	 .7560

	

15.3600 	 .7408

	

16.3200 	 .7095

	

17.2800 	 .6625

	

18.2400 	 .6008

	

19.2000 	 .5257

	

20.1600 	 .4390

	

21.1200 	 .3427

	

22.0800 	 .2390

	

23:0400 	 .1304

	

24.0000 	 .0196

	

24.9600 	 -.0907

	

25.9200 	 -.1978

	

26.8800 	 -.2990

	

27.8400 	 -.3918

	

28.8000 	 -.4737

	

29.7600 	 -.5427

	

30.7200 	 -.5969

	

31.6800 	 -.6347

	

32.6400 	 -.6551

	

33.6000 	 -.6573

	

34.5600 	 -.6408
35.5200	 -.6057

	

36.4800 	 -.5524

	

37.4400 	 -.4817

	

38.4000 	 -.3947

	

39.3600 	 -.2928

	

40.3200 	 -.1776

	

41.2800 	 -.0510

	

42.2400 	 .0850

	

43.2000 	 .2287

	

44.1600 	 .3779

	

45.1200 	 .5310

	

46.0800 	 .6865

	

47.0400 	 .8431

	

48.0000 	 1.0000
Stop - Program terminated.
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FIG. B-3: STRUCTURAL MODEL
Eigenfunction Calculation



C 	

			

JOHN G. DANIS
C 	

			

MASTER'S THESIS
C 	

			

ADVISOR: DR. F. D. CHICHESTER
C
C 	 STRUCTURAL MODEL: SIMPLE SIMULATION
C
C 	 THIS PROGRAM IS A SIMPLE SIMULATION OF A BASIC STRUCTURAL
C 	 MODEL OF A FLEXIBLE ROBOT ARM
C

	

DIMENSION ARG(5,40),PHI(5,40),W(40,40),EIGNVAL(5),WN(5),
& 	 	 ALPHA(5),AN(5),BN(5),MN(5),SF(5)

C

	

REAL *8 LEN, INER,INTGD1,INTGD2,MN,ARG,PHI,DELT,W,INTGD3,SF
C

	

WRITE(*, 3)
3 

	

FORMAT(' ','STRUCTURAL MODEL - SIMPLE SIMULATION')
C
C 	 DEFINE ARM CHARACTERISTICS:
C 	 ASSUME AN ALUMINUM LINK, 2 IN. DIA., 48 IN. LONG

	

PIE=3.1415927
LEN=48.0
C 	 MASS PER UNIT LENGTH:

	

U=1. 1409E-

	

3
E=1.0E7

	

INER=4.12E-4C

C 	 DEFINE EIGENVALUES, MODE FREQUENCIES, AND CONSTANTS
C 	 INITIAL TRANSVERSE DISPLACEMENT AT TIP OF LINK:

	

W0=1.0
C	INITIAL VELOCITY AT TIP OF LINK:

	

WOD=0.0
C 	 N IS THE NUMBER OF INCLUDED MODES

	

N=3

	

EIGNVAL(1)=1.875

	

EIGNVAL(2)=4.694

	

EIGNVAL(3)=7.355

	

DO 8 I=1,N

		

WN(I)=(EIGNVAL(I)**2/LEN**2)*SOPT(E*INER/U)

		

ALPHA(I)=(COSH(EIGNVAL(I))+COS(EIGNVAL(I)))/(SINH(EIGNVAL(I))
& 	 	 	 +SIN(EIGNVAL(I)))

		

WRITE(*,6) I,WN(I),I,ALPHA(I)
6 	

	

FORMAT('0','WN(',I1,') = ',F8.4,' RAD/SEC',7X,'ALPHA(',I1,
& 	 	 	 ') = ',F8.4)

8 CONTINUE

CC 	 NUMINT IS THE NUMBER OF POINTS FOR THE INTEGRATION

	

NUMINT=21

	

DX=LEN/(FLOAT(NUMINT) - 1.0)

	

DO 15 I=1,N

		

SUM1=0.0

		

SUM2=0.0

		

SUM3=0.0

		

DO 10 J=1,NUMINT

			

X1=(FLOAT(J) - 1.0)*DX

			

ARG(I,J) = EIGNVAL(I)*X1/LEN

			

PHI(I,J) = COSH(APG(I,J)) - COS(ARG(I,J)) - ALPHA(I)*
&	 	 	 (SINH(ARG(I,J)) - SIN(ARG(I,J)))

			

INTGD1=(U*PHI(I,J)**2)*DX

			

SUM1=SUM1+INTGD1

			

INTGD2=W0*U*PHI(I,J)*DX

			

SUM2=SUM2+INTGD2

			

INTGD3=WOD*U*PHI(I,J)*DX

			

SUM3=SUM3+INTGD3
10

		

CONTINUE

		

SF(I) = ABS(1.0/PHI(I.NUMINT))

48



		

DO 12 J=1,NUMINT

			

ARG(I,J) = SF(I)*ARG(I,J)

			

PHI(I,J) = SF(I)*PHI(I,J)
12

	

	 CONTINUE
C

		

GENERALIZED MASS:

		

MN(I) = SF(I)*SUMI

		

AN(I) = SF(I)*SUM2/MN(I)

		

BN(I) = SF(I)*SUM3/(MN(I)*WN(I))
	 	 WRITE(*, 14) I,MN(I), I,AN(I), I,BN(I)

14 	

	

FORMAT(' ','MN(',I1,') = ',F8.4,5X,'AN(',I1,') = ',F8.4,
& 	 	 5X,'BN(',I1,') = ',F13.4)

15 

	

CONTINUE
C

	

T=0. 0

	

DELT=0. 10
NTIME=21

	

DO 80 I=1,NTIME

		

DO 70 J=1,NUMINT

			

W(I,J)=0.0

			

DO 60 K=1,N

				

W(I,J)=W(I,J)+PHI(K,J)*(AN(K)*COS(WN(K)*T)+BN(K)*
& 	 	 	 	 SIN(WN(K)*T))

60 	

		

CONTINUE
70 	

	

CONTINUE

		

T=T+DELT
80 

	

CONTINUE
C
C

	

GENERATE DATA TO PLOT MOTION OF ARM TIP

	

WRITE(*,90)
90 

	

FORMAT('0','MOTION OF ARM TIP WITH RESPECT TO TIME')

	

DO 100 I=1,NTIME

		

T = (FLOAT(I) - 1.0)*DELT

		

WRITE(*,95) T,W(I,NUMINT)
95

	

	 FORMAT(' ',F8.4,7X,F8.4)
100 

	

CONTINUE
C
C

	

GENERATE DATA TO PLOT ARM SHAPES

	

WRITE(*, 110)
110 

	

FORMAT('0','SHAPE OF ARM AT T = 0.0 SEC')

		

DO 120 J=1,NUMINT

			

X = (FLOAT(J) 	 1.0)*DX

			

WRITE(*,115) X,W(1,J)
115

		

	 FORMAT(' ',F8.4,7X,F8.4)
120 

	

CONTINUE

	

WRITE(*, 130)
130 

	

FORMAT('O','SHAPE OF ARM AT T = 2.0 SEC')

	

DO 140 J=1,NUMINT

		

X = (FLOAT(J) 	 1.0)*DX

		

WRITE(*,135) X,W(NTIME,J)
135

		

FORMAT(' ',F8.4,7X,F8.4)
140 

	

CONTINUE

	

STOP

	

END
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STRUCTURAL MODEL - SIMPLE SIMULATION

WW1) = 	 2.8996 RAD/SEC 	 ALPHA(1) = 	 .7341

WN(2) = 18.1731 RAD/SEC 	 ALPHA(2) = 	 1.0185

WN(3) = 50.8903 RAD/SEC 	 ALPHA(3) = 	 .9992
MN(1) = 	 .0302 	 AN(1) = 	 .7563 	 8N(1) = 	 .0000
MN(2) = 	 .0303 	 AN(2) = 	 .3448 	 BN(2) = 	 .0000
MN(3) = 	 .0305 	 AN(3) = 	 .2765 	 BN(3) = 	 .0000

MOTION OF ARM TIP WITH RESPECT TO TIME

	

.0000 	 .6879

	

.1000 	 .9105

	

.2000 	 .7347

	

.3000 	 .0053

	

.4000 	 .1295

	

5000 	 .6796

	

.6000 	 .0802

	

7000 	 -.8095

	

.B000 	 -.6544

	

.9000 	 -.4447

	

1.0000 	 -.7789

	

1.1000 	 -.6663

	

1.2000 	 -.4274

	

1.3000 	 -.9055

	

1.4000 	 -.9348

	

1.5000 	 .0772

	

1.6000 	 .4518

	

1.7000 	 -.1031

	

1.8000 	 .0304

	

1.9000 	 .6737

	

2.0000 	 .6822

SHAPE OF ARM AT T = 0.0 SEC

	

.0000 	 .0000

	

2.4000 	 .0305

	

4.8000 	 .1077

	

7.2000 	 .2104

	

9.6000 	 .3192

	

12.0000 	 .4177

	

14.4000 	 .4936

	

16.8000 	 .5399

	

19.2000 	 .5549

	

21.6000 	 .5418

	

24.0000 	 .5083

	

26.4000 	 .4643

	

28.8000 	 .4211

	

31.2000 	 .3885

	

33.6000 	 .3745

	

36.0000 	 .3833

	

38.4000 	 .4154

	

40.8000 	 .4678

	

43.2000 	 .5348

	

45.6000 	 .6100

	

48.0000 	 .6879

SHAPE OF ARM AT T = 2.0 SEC

		

0000 	 .0000

	

2.4000 	 .0106

	

4.8000 	 .0380

	

7.2000 	 .0758

	

9.6000 	 .1179

	

12.0000 	 .1594

	

14.4000 	 .1966



	

16.8000 	 .2272

	

19.2000 	 .2507

	

21.6000 	 .2683

	

24.0000 	 .2822

	

26.4000 	 .2954

	

28.8000 	 .3113

	

31.2000 	 .3327

	

33.6000 	 .3618

	

36.0000 	 .3997

	

38.4000 	 .4460

	

40.8000 	 .4996

	

43.2000 	 .5583

	

45.6000 	 .6198

	

48.0000 	 .6822
Stop - Program terminated.
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FIG. B-4: STRUCTURAL MODEL
Motion at arm tip



FIG. B-5: STRUCTURAL MODEL
Arm shape (t = 0 sec)



FIG. B-6: STRUCTURAL MODEL
Arm shape (t = 2 sec)
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