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ABSTRACT
Title of Thesis: Modeling and Simulation of Robot Arms with
Flexible Links
John G. Danis, Master of Science, 1988

Thesls directed by: Dr. Frederick D. Chichester ;T¢3,<?,

The design of lightweight robot arms introduces a degree of
flexiblity in the individual 1links which renders the arm
difficult to control. Solution of the control problem requires
accurate and detailed mathematical models of the arm dynamics. A
comprehensive survey of the current literature in this area has
shown that although many such models exist, there 1s a great
diversity 1in thelr structure, function, and applicablility. . The
different obJectlives and techniques of modell development which
lead to this dliversity are examined and summarized in this
thesls. Bases for classlification of the mathematical models and
techniques of development are established, and a general
development methodology is proposed for each class of model.
Computer simulations of relevant portions of the model deﬁiopment
are used to support these general development methodologies. The
model development and classification processes are demonstrated

by their application to several current models.
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I. INTRODUCTION

Robotic arms constructed of lightweight 1links have many
advantages over their heavier counterparts such as increased
speed and manueverability, lower energy consumption, and reduced
costs. However, the lighter weight results in increased 1link
compliance to the point where flexibility effects can no longer
be ignored when controlling the arm if high accuracy is required.
The development of control systems of robotlc arms with flexible,
lightweight 1links requires detailed mathematical models of the
arm dynamics so that the appropriate control 1laws may be
formulated. Once developed, the models may be used to verify the
control laws and test the acceptability of system response under
simulated operating conditions. The models may also serve as the
foundation for developing sophisticated real-time computer
simulations of a flexible robot arm performing various tasks.

The objective of the work reported in this thesis was to
examine the current mathematical modeling and simulation of
flexible robotic arms and classify these models according to
relevant characteristics. An extensive survey of recent
literature 1in this area was conducted, and existing models were
examined as to their modeling objectives, development, structure,
and applicability. These areas were investigated and wused to
establish bases for <classification of such models and to
formulate general model development procedures. Selected
portions of these model development procedures were demonstrated

orn a personal computer.



II. OBJECTIVES OF MODEL DEVELOPMENT

Mathematical models of flexlble robotlc arms are developed
to investigate certain aspects of a particular arm's behavior
under specified conditions. The examination of those specific
aspects of behavior defines the objective of the modeling. The
objectlves of the model must focus on certain aspects to the
neglect of others due to the inherent complexity of modeling
robotlc arms with flexible links.

Examination of exlstling models suggests that the wvarious
aspects of behavlior may be divided into two general areas, from
which the basic modeling objectives follow. The first basic
objective 1is to develop the equations of motion of the entire
arm, taking into account the flexible deflections, wusually by
incorporating previously calculated or assumed vibratory modes.
Those models developed to accomplish this or scme variation of
this objective can be classified as kinematic models. The second
basic modeling objective is the characterization of the vibratory
modes of a single link of the arm by examining 1its eigenvalues
and elgenfunctions. Models which have this as thelr primary
obJjectlve are classified as structural models. This distinction
between kinematic models and structural models, based upon model
objectives, forms the most general classification of mathematical
models of robot arms with flexible links established in the work
reported here. Subdivisions of each of these classes are based

upon specific techniques used in the modeling process.



ITI. KINEMATIC MODELS
1. Foundations

Kinematic models of robot arms with flexible 1links basically
consist of sets of equations which describe the rigid-body motion
and flexible deflections of the arm. Emphasis is placed on the
examination of the kinematic aspects of the arm motion; that 1is,
being able to describe the position, velocity, and acceleration
of points on the arm as a function of 1initial conditions and
applied forces. It 1s the effects of the flexible deflections on
these parameters which are being investigated, not the structural
properties of the arm whlch give rise to those deflections.
Accordingly, the vibratory modes used in the model are either
assumed or previously calculated.

The generation of the equations of motion for robot arms
with flexible 1links is in many ways similar to that for robot
arms with rigid links. 1In fact, many kinematic models of robot
arms with flexible links were derived from similar rigid 1link
models which, for the sake of simplicity, neglected flexibility
of the links. To improve accuracy, flexibility of the links is
taken into account.

2. Model Development

Examination of existing kinematic models shows that there is
a large degree of similarity for all kinematic models because
they are all based on the same underlying concepts. In fact, it
is possible to specify a general model development procedure for
most mathematical models which investigate the kinematic aspects
of a robot arm with flexlble links. Such a model development

algorithm is shown in Figure III - 1. This algorithm highlights



FIGURE III - 4 : KINEMATIC ARM MODEL DEVELOPMENT ALGORITHM
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the main points of kinematlc model development and serves as a
guide in the future development of kinematic models.

A kinematic model is a state representation of the system,
typlically using generallized coordinates to deflne the state of
the system. The generalized coordinates may 1include varlables
related to Jjoint angles and variables which describe the
link flexure. Generally, kinematic models are models of multi-
link arms and it is necessary to define these coordinates for
each 1ink, which requires defining a coordinate frame for each
link. One frequently used method of defining 1link coordinate
frames and homogeneous transformations between coordinate frames
is the technique developed by Denavit and Hartenberg, described
below [11].

A robotic arm with n degrees of freedom will have n 1links
and n Joints. A right-handed orthogonal coordinate frame 1is
assigned to each 1link, with the position of the origin and
direction of the coordinate axes determined by the type of joints
associated with the 1link, and their respective orientations. A
coordinate frame also is assigned to the base of the arm, which
1s sometimes referred to as 1llnk 0. It often 1s necessary to
define motions with respect to this coordinate frame, and for
thls reason, homogeneous transformatlons between links must be
defined.

A homogeneous transformatlion of coordinates describes the
position and orientation of the coordinate frame of one link with
respect to the coordinate frame of another 1link. These
transformation matrices are often designated A matrices in

robotics analyses [111]. A, describes the position and



orientation of the coordinate frame of 1link n with respect ¢to
that of link n - 1. The physical significance of an A matrix |is
that it represents the translatlons and rotations necessary to
make the n - 1 coordinate frame colincident with the n frame. By
the multiplication of successive transformations, the positlon
and orientation of the n th link wlth respect to the base can be
shown.

T, = A, A, ... A, A

n [aR | n

The matrix which transforms the coordinate frame of the last link
to that of the end effector is denoted as E. Therefore, for a
robotic arm with n links, the transformation from the base
coordinate frame to that of the end effector is the product of
the transformations between all links, and is glven as T, .
Te = A, A, ... A (A, E

Establishing llnk coordinate frames and the transformations
discussed above are the necessary first steps in developing a
kinematic model of a robotic arm. Given the arm dimensions and
configuratlon, thls process can be carried out readily by a
computer program. A short FORTRAN program was written to
demonstrate this. (See Appendix A.) The program calculates the
A matrices for a hypothetical serial manipulator and demonstrates
how Te, the transformation from the base to the end effector, Iis
obtalned. This program then could be integrated into a larger
computer simulation of a kinematic model,‘serving as the first
steps in the model development.

The method of defining 1ink coordinate systems and
homogeneous transformations described above originally was

developed for riqgid link models. However, with some



modificatlions to Include the effects of the flexible deflectlons
of each 1ink, 1t also can be applled to robot arms with flexible
links. Each A matrix can be multiplied by a matrix F which
represents the small change 1n position and orientation of the
link due to small flexible deflections. The transformatlon £from
the coordinate frame of link n - 1 to that of link n then becomes
A, F,. When this is done for each link, the transformation £from
the base coordinate frame to the end effector coordinate frame
includes the cumulative effect of all the links, as shown below.
Te =A, F, A, F, ... A F, A, F, EF,

The F matrix for each 1link represents the small displacements
A X, &y, and A z, and the small angle rotations, &€ 's, of the n
coordinate frame due to link flexure. The F, matrlix for link n

is as follows.

| ‘eln eyn A
B:n | - Bxn AH
F =
n -eyn Syn \ AZ
L _

The elements of F, represent the net effect of all the vibratory
modes included in the model for the n th link. Note that as the
small angle rotations and displacements approach =zero, the F,
matrix approaches the identity matrix. This implies that if the
flexibility effects for each link were to be reduced to =zero,
each F matrix would become an identity matrix, and the resulting

model would be 1identical to the 1rigid 1link model developed

earlier. This is an important result because it suggests that



flexibllity effects may be added to existing rigid 1link models to
produce models of flexlible robotic arms.

The elements of F, also are time varying parameters, and a
given F, represents the flexure of the 1llnk at some 1nstant In
time. The calculation of the F matrices and thelr incorporation
into the homogenecous transformation of coordinates of the links
alsc can be accomplished by a short computer program. (This 1is
shown in Appendix A.)

With the link coordinate frames and transformations defined,
the equations of motion of the robotic arm can now be developed.
Different methods of formulatlon are peossible, but Lagrange's
formulation of the system dynamics is utilized most often 1in
Investigating the kinematic aspects of flexible robotic arms.
The formulation of Lagrange's equations requires expressions for
the kinetic and potential energies of the system. This 1is the
next basic step in the development of flexlible arm kinematic
models.

Kinetic energy is defined first for a point or small element
of a single link, and integrated over the length of that link to
yleld the total contribution of that link to the system kinetic
energy. The kinetic energy of a point on the n th link is given

by:

where dm, is the point mass, n, is the absolute position vector
and h is the absolute velocity vector of the point on the 1link in
base coordinates. It follows that the kinetic energy for the
link Is:



Kinetic energy of the =zystem 1s obtalned by summning the
contrlbution from each link.

m
Keyg = 2 K,

ne
where m is the total number of links of the robotic arm.

The potential energy of a flexible 1link is due to gravity
and elasticity of the 1link, sometimes referred to as strain
energy. Potential enerqgy due to elasticity of the 1link 1is a
function of the material and construction of the 1link as well as
the magnitude of the deflection. Potential energy due to gravity
is formulated for a point, and then integrated over the length of
the link. Potential energies of all the links are then summed to
yleld the total potential energy of the system.

Once the klnetlic and potential energles of the system have
been obtalined, the various derivatives and partlal derivatives
are taken with respect to the generalized coordinates. With
expressions for all the necessary terms avallable, Lagrange's
equations of motion may then be formulated in the inverse dynamic

form as shown below.

i(é,ﬁ) _<ﬂ_) +<_5_E_) - O
dt \ 24 34 3 4; 4

where K is the system kinetic energy, P is the system potential
energy, qi are the generalized coordinates for j degrees of
freedom, and Qj are the generallized forces (torque applied by the
joint actuators). Depending upon the specific formulation of the
model, the generalized coordinates may include varlables related
to joint angles and variables related to the flexible

deflections. In this form, the model may be used to study the



inverse kinematic problem of robot arms with flexible links.

Since 1t 1s desired to model the arm's behavior as a
response to known 1initial conditions and specified control
inputs, this formulation of the arm klnematlcs must be converted
to its dynamic form. This involves the formulation of an inertia
or mass matrix, which is multiplied by the second derivative with
respect to time of the state vector, where the elements of the
state vector are the generalized coordinates. The resulting
model is shown below.

IMIg - £(q,q) = Q

where ([M] is the inertia matrix, Q is the generalized input
vector, and £ is a vector of nonlinear functions of q and (.
This 1is the general form of most kinematic models and their
corresponding computer simulations. The complexity of the model
is determined by such factors as the number of links, the number
of modes included, the amplitude of the vibrations, and nonlinear
effects present.

Kinematic models have a high degree of applicability 1n
problems involving the determination of the arm's response under
varying operating conditions. Thus they are well suited for
solution of 1lnverse dynamics problems, trajectory planning,

workspace and task analysls, and related applications.

10



IV, ETRUCTURAL MODELE

1. Foundations

Structural models of robot arms with flexible links are used
to determine the elastic deformation of the links as a function
of time and position along the length of the undeformed 1ink.
These models use the material properties and physical
configuration of the arm to obtain the mode frequencies and
associated mode shapes of the arm. The model must be truncated
at some point, so only those modes of interest are retained in
the final model formulation. As with kinematic models, the model
formulation of structural models follows a general pattern,
allowing a model development algorithm to be constructed. Such
an algorithm ls shown in Figure IV - 1, and can be used to aid 1n
the development of future structural models.

2. Model Development

The Bernoulli-Buler beam equations form the basis for the
development of structural models. In its simplest form, a
Bernoulli-Euler beam 1s modeled by the partlal differential
equation shown below.

2% w E1 a%w

—
-—

St? P ox*

where w 1is the transverse displacement of the 1link, EI 1is the
bending stiffness, o is the mass per unit length, and x is the
distance along the axls of the undeformed link.

The boundary conditions used in describing the system are
determined by the configuration of the arm and reflect the

constralnts at each end of the link. Most structural models of

11



FIGURE IV -
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robot arms wlth flexlible links are initlally developed as a
single flexible clamped-free beam. As a result, the transverse
displacement and slope at the base of the 1link, along with the
bending moment and shear force at the tip of the 1link, are
required to be zero, producing the following boundary condltions.
w(0,t) = w/(0,t) = w'(/,t) = w"(),t) =0

Additional boundary conditions must be specified If there 1is a
load at the tip of the 1link.

The transverse displacement of normal mode vibratlons can be
expressed as:

wix,t) = @(x) sin(Wt +€)

Substituting this 1into the Bernoulli-Euler beam equation and
assuming a uniform beam, so that E and I are constant along the

length of the beam, yields the ordinary differential egquation

below.

4

WP = (EBl/p) &
These equations, along with the associated boundary conditions
for the links, form the eigenvalue problem whose solutions will
characterize the wvibratory modes of the links. The general
solution of this eigenvalue problem is of the form:
@(x) = C,cosh( A x/]) + C,sinh( A x/1) + Cycos( A x/0) + Cysin(ax/F)
where: A = f(,0 WYEI)™*

]

The elgenvalues are determined by the system boundary

[i]

length of the link

conditions and, for the basic clamped-free beam, they are the
solutions to the following equation, sometimes referred to as the
frequency equation (51].

coshA cosh + 1 =0

13



once an elgenvalue 13 known, 1t may be used to solve dlrectly for

1ts assoclated mode frequency. For the clamped-free beam, mode

frequencies are given by:
w, = (AN /) JET/R

where (), is the radlan frequency of the n th mode, %n is 1its
associated eigenvalue, and ! is the length of the beam. When An
is substituted into the expression for ¢(x), the mode shape
assoclated wlth that elgenvalue 1s produced.

The net transverse displacement actually 1is the sum of
the contributions from each vibratory mode. Since a distributed
parameter model of a flexlble link is an 1infinite~dlmensional
system, with an infinite number of vibratory modes present, the
system must be approximated by truncating the vibratory modes at
some point. The transverse displacement may then be expressed as:

wix,t) = éi'Qa(x) (A, cosw,t + B, sinqt)

and B are

where m 1is the number of included modes, and A, n

defined below [51.

’
o b fwnd
(<]
| ‘P'
T G, i o o 8%

where w, and ﬁb are the initial displacement and velocity of the
tip of the link, and )
m, = L P ¢3 JX = generalized mass
Several short FORTRAN programs were written to demonstrate

the procedure for formulation of a basic structural model. (See

14



Appendix B.) It 1s shown iIn these simulations how the mode
frequencies and shapes are determined from the eigenvalues and
physical properties of the links. Also shown are the methods by
which the total transverse displacement 1s determined, and the
motion of the tip of the 1link is simulated.

Most current structural models, after belng used to examlne
the transverse displacement of the link by characterizing 1its
vibratory modes, are wused iIn the development of systems ¢to
control the flexible deflections. All control systems developed
by wusing structural models have the same basic objective, which
is the stabilization of the arm by damping out deflections due to
elastic deformation as guickly as possible. Two basic methods of
control are used very frequently in current models of robotic
arms. One 1involves the development and Implementation of a
dynamic compensator which controls Joint actuator torques in such
a way that flexible deflections are quickly damped out [12]. The
other method requires having two coaxially-mounted links with a
force actuator mounted in between them to actively damp out any
deflection [31,[018]1. Further development of structural models
entails the examination of the controllability of the arm, and
simulation of the influence of the control system on the dynamic
behavior of the arm.

The modeling objectives and techniques employed in the
development of structural models render them well-suited for use
in control system design. The system equations used to
characterize the vibratory modes also can be used to derive a
transfer function for the arm, which serves as the plant for the

control system. The angular acceleration (actuator torque) is

15



the control input, and the beam bending moment, measured at the

base 1s the output. Structural models also have applicatlions in

structural analysis, stress analysis, and performance analysis.

16



V. CLASSIFICATION AND ANALYSIS OF CURRENT MODELS

The distinction between kinematic models and structural
models, along with other bases of classification, resulted fron
the careful examlnation of many exlstlng models. Vvarlatlons 1n
modeling obJjectives, techniques, and intended applications
provide much information about the basic process of modeling
robot arms with flexible 1links. One of the objectives o¢f this
effort was to study existing models and determine which modeling
techniques are best suited for a given situation. These points
can be investigated further by a detailed review of some current
models.

1. Book Model (1984)

A nonlinear distributed parameter model of a zrobot arm
consisting of several flexible links was developed in 1984 by
Book [1]. The objective of the model 1is to simulate the
equations of motion of the arm, and ultimately express the state
of the system as a function of time for known Initial condltions
and specified control inputs. with this as the modeling
objective, the model 1s therefore classified as a kinematic
model.

The model development is based on describing the flexible
deflections, as well as the joint angles, in terms of 4x4
transformation matrices. Variables representing the time-varying
amplitudes of the vibratory modes, together with variables
representing the Joint angles, comprise the state vector of the
system. This time-varylng state wvector 1is expressed as a
functlion of inputs and 1initial conditlons after Lagrange's

equations have been formulated and converted into simulation

17



form. It 1ls the determination of this state vector for which the
model ls developed.

The transformations used to describe the 1link flexure are
composed of assumed modal shapes for each link. sSmall
deflections of the 1link are assumed, and are expressed in terms

of a link-based coordinate frame as:

1] °
X:.(m)
L n T Y
h; (7) = o * E. 6‘3 Yi; ()
L0_ i Zy (’7)_

where 7 1s the distance from the Jolnt along the axis of the
unde formed link, 69' is the time-varying amplitude of the
displacement, and m is the number of modes being modeled. The

transformation matrix of the link deflection is expressed as:

E; = [ H +,‘Z=|5"/M‘a]
where: _ -
| O (@) o)
1( ! O O
H, =
(0] 0] | @
o O 0 |
L -
and: _ —
e o) @] (@]
- . Buis
Mij = XLJ eZ(/ yts
di 2y O "6y
Z;j yis exg O
L- pa—

18



where XU ¥

due to the vibratory mode and the & 's are small angle rotations

v Yy oo and z;; represent the displacement of the 1link
representing ahy twisting of the link.

Once the transformations for all the Jolnts and all the
links have been defined, along with thelr various derivatives and
partial derivatlves, Lagrange's equatlons aré developed. 1In the
formulation of Lagrange's equations, the system kinetic and
potential energies must be obtained. Kinetic energy is due to
rotation of the joints and the small motions of the vibrating
links. Potential energy of the arm 1ls due to gravity and energy
stored in the elastic deformation of the flexible links.

Once formulated, Lagrange's eguations with respect to the

joint variables become:

(__3_‘(___) + o Ve é_vi = F.

dt <an 34 9% 0 % 7

The equations with respect to the vibratory mode variables are

expressed as:

_A_(_Q_!E_ _<aK>+ave+avﬁ

dt * 9 é;-; $4f 3 ;¢ S &

Inertia coefficients of the state variables are obtained
from these equations, and a square inertia matrix 1is formed.
This inertia matrix is used in converting the equations to their
dynamic form for simulation, shown below.

Jz = R

where J 1s the inertia matrix, z Is the state vector, and R |is

the vector of control inputs and remaining dynamics. This model

19



1s formulated in a very efficient manner and, due to 1its

recurslve propertles, 1t can be almulated easlly. The accuracy

of the model can be improved, at some cost 1In computational

efficiency, by increasing the number of modes. »
2., Hastings/Book Model (1987)

A 1linear distributed parameter model of a single flexible
link was formulated by Hastings and Book in 1987 [(61]. The
modeling objective was to develop a dynamic model of a flexible
link that would simulate the rigid body motion and the flexible
deflections. Hence, this model can be considered a kinematic
model.

Since this klnematic model 1s developed for a single 1link,
only one coordinate frame (at the joint) and no homogeneous
transformatlons of coordinates need be defined. Consequently,
the position of each point on the link is a function of the joint
angle, 69, and displacement due to the flexible deflection,
wi{x,t).

The klnetic energy of the link and the potential energy due
to the elastic deformatlion are calculated, and Lagrange's

equations of motlon are then formulated as shown below.

J |k | _ 2p

dt | 22 d2;

= Q

where Q:

; are the generalized forces (inputs), and 2z; are the

generalized coordinates. The generalized coordinates include the
joint angle and variables related to the vibratory modes.
z =106, q (t), qZ(t), -ee o g ()]

for the n modes lncluded in the model.
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The equations of motion are converted to thelr dynamic form,

given by:

[MIZ + [Klz = [Q]
where ([M] 1s the lnertla matrix, (Kl is a matrix representing
bending stiffness, and [Q] 1s the control input.

An important aspect of this model 1s that the vibratory
modes 1included are assumed or previously calculated. Their
effect on the equations of motion and the response of the arm are
the primary objectives of the simulation. The model was later
vallidated by an experimental setup in a laboratory environment.

3. Usoro/Nadira/Mahil Model (1986)

This model, developed by Usoro, Nadira, and Mahll in 1986
[15], uses finite element techniques 1in the development of
Lagrange's equations of motion for a robotlic arm with two
flexible 1links. (These same techniques could be expanded to
model an arm of any number of links.) Since the model development
places emphasis on incorporating the flexible deflections into
the equations of motion, it can be classified as a kinematic
model.

The model 1is based upon treating each link as a finite
number of small flexible, distributed elements, with the flexible
deflection of each element expressed in terms of assumed shape
functions. Use of these shape functions (Hermitian polynomials)
requires some prior knowledge of the nature of the arm flexure,
that 1is, the magnitude of the displacement and slope o0of the
flexed 1link at various points along each 1ink. Those points
serve as the interfaces between adjacent elements.

Kinetic and potentlial energies are calculated in generalized
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coordinates for each element. The contributions from all the
elements are summed to yleld the klnetlc and potentlal energles
for each 1ink. Lagrange's equations are used to produce the
dynamic equations for the arm, whlch are of the form:
(M1 - £(q,Q) = Q |

where [M] is the generallzed inertla matrix, Q is the generallzed
input vector, and £ is a vector of nonlinear functions of é and
q.

The complexity of the model can be altered by varying the
number of elements for each link. With a hlgher number of
elements, the order of the resulting model will be higher. This
requlires specificatlion of more points on the 1link and hence, more
knowledge of the nature of the link flexure. Also, 1f additional
links are Included, thelr corresponding coordlnate frames and
transformatlion matrices must be defined.

4. Sakawa/Matsuno/Fukushima Model (1986)

In 1985, Sakawa, et. al. [12] developed a mathematical model
of a flexible single-link robotic arm with the objective of
accurately describing the transverse vibration and its underlying
causes, so that a controller may be developed. The controller
would act to damp out the vibration as quickly as possible. With
these objectives, the model can be considered a structural model.

The model development is based on a single, flexible
clamped—ffee link, which is modeled as a Bernoulli-Euler beam,

shown below.

wix,t) + 268w (x,t) + X w(x,t) = -xW(t)
with the boundary conditions:
w(0,t) = w (0,t) = w'( f,t) =0
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wCp, ) + (e WDty = 0

where o« 1is the bending stiffness, § 1s a damping constant, and
w 1s the transverse displacement of the 1link. The dynamic
equation for the joint actuator motor 1is glven by:
I NOo(t) + 4 Nw(E) = T(t) + S wo,t)

where J,, Is the nmotor inertla, 4~ 1is the viscous friction
coefficient, and T 1is the torque output of the motor. With
these dynamics equations, the associated eigenvalue problem can
be formulated.

The beam dynamics equation, along with 1its associated
boundary conditions, is used to formulate a frequency equation:

1 + coshf cosg + %(sinhﬂ cosd - coshg sing ) = 0
The solutions of the frequency equation are designated 4, and

yield the system eigenvalues which follow.

>‘L:“<'€i)4 L= 1,2, es

The associated eigenfunctions are expressed as:

¢(x} = é_t[ coslfl—ﬁe}'-->i - cos—ﬁ-ji

where ¥ = (coshpB; + cosg; )/(sinhp; + sing )

B¢ X

!)]

N B('x .
- X&(Slnh—};— - sin

The eigenfunctions describe the mode shapes corresponding to
specific eigenvalues.

The general expression for the transverse displacement as a
function of position along the longitudinal axis of the
undeformed arm is given by:

w(x) = C, cosjBB-(-— + Czcoshﬁg— + (:’a,sin-%i + C4sinh-BTx-
where the C's are arbltrary constants.

An experimental arm was fabricated, and a controller was
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conagtructed based upon the dynamlics exhiblted In the model. This
controller was a dynamlc compensator and was lmplemented by a
microcomputer. Motor angle of rotation and transverse vibration
were controlled by the input voltage to the armature of the
actuator motor. Fed back to the microcomputer wexre angular
veloclty, as measured by a tachometer, and strain measured at the
base of the arm.
5. Davis/Hirschorn Model (1988)

Developed by Davis and Hirschorn in 1988 [3], this model is
a structural model of a sinéle flexible 1link of a robotic arm.
The objective 1is to model the dynamics of the 1link as a
distributed parameter system and to model the joint actuator and
load as discrete systems so that a tracking controller can be
developed.

The model is based on a Bernoulli-Euler beam mounted on the
shaft of a servo motor. To 1insure that the model is
exponentially stable, a frequency-dependent damping term is added

to the basic beam equation to yield:

2 4 > w
e 2_\’1/ = -EI il + D 2
Stt axt axt at

where p© is the mass per unit 1length, EI is the bending
stiffness, and D 1Is the damping coefficient. For boundary
conditions, shear and bending moments §8(x,t), M(x,t) and
compressive stress, T(x,t) along the beam centerline are
calculated. After some manipulation of these equations, an
expression for the transverse motion of the vibrating beam is

obtalined. The servo motor 1Is modeled as a discrete component,
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and includes the motor inertia and beam reaction torque produced
by the bending.

Since the model was developed for the purpose of
constructing a tracking controller, the motion of the wvibrating
beam 1is referenced to a nominal tracking path. Also, after the
basic beam eguations have been derived, in order to develop a
robust controller, the authors assume the configuration of the
system actually to be two coaxlally mounted beams with a force
actuator mounted at the tip of the inner beam. The dynamics of

both beams are modeled as described earlier.
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V1. GSUMMARY AND CONCLUSION

An extenslve asurvey of current llterature in the area of
mathematical modeling of robot arms with flexible 1links shows
that there 1s a great diversity In many aspects of these models.
Most current models can be classified as elther kinematlc or
structural models. Kinematic models generally are develcped for
the study of arm dynamics during large changes in configuration,
and are used to examine the effects of the vibratory modes on the
equations of motion of the system. Structural models emphasize
developing partial differential equations of the flexural
dynamics which are used to solve the related elgenvalue problem
and characterize the vibratory modes of each link of the arm.

The models in each class are very slmilar conceptually and,
as a result, follow the same general pattern of development,
outlined in this thesis. Several short FORTRAN programs were
developed to demonstrate the baslic patterns of development for
kinematic and structural models. However, individual models in
each class may differ significantly due to such factors as
effects modeled and assumptions made. These serve as additlional
bases for further classificatlion of the models.

Examination of current models indicates that many areas 1in
the modeling of robotlic arms with flexible links can be developed
further. One Ilmportant area 1s the development of hybrid models
which simulate both the kinematic and structural characteristics
of flexible robotic arms. With these, the development of real-
time controllers to control large changes in arm configuration
could be made easier. A hybrid model also could be used ¢to

develop structural models of multi-link arms, and examine the
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coupling effects between several links and actuator motors.
Finally, many nonlinear effects such as Coriolis forces,
backlash, and Joint spring effects could be added to existing
models to improve accuracy.

The ultimate goal of developing effectlve control technlques
for robot arms with flexible links 1s the reason for studying the
modeling techniques of those arms. Many potential benefits are
to be galned by improving the techniques by which mathematical

models of flexible robotic arms are developed.
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APPENDIX A: Klnematic Model Development Computer Simulations

The computer simulations described In thls sectlon were
developed to demonstrate certain phases of the model development
process for kinematic models of robot arms with flexible 1links.
The example three degree of freedom serial manipulator shown in
Figure A - 1 was used in developing the simulations. The 1link
parameter table [11] describes the configuration of each link.
cx denotes the twist angle between the two Joints of a specific
link. Q& represents the length of the link normal to the two
joint axes, and d represents the distance between the two
normals for a particular joint. © deplicts the measured Joint
angle, which is controlled by the actuator motor.

The flrst program illustrates how the Denavlt-Hartenberg
transformation matrices are devloped for a speclfied
configuration of the manipulator, and assumes no flexible
deflections. The second program calculates the transformation
matrices for the same configuration of the manipulator, but also
uses the F matrices associated with each 1ink to take the
flexible deflections into account. Note that the matrix Tg
denotes the posltion and orientation of the end effector
coordlnate frame with respect to the base coordlnate frame.

The third kinematlic model program was based on the
Usoro/Nadira/Mahll model [15]1, and was developed to calculate the
time-varying position coordinates of a vibrating 1link. It
divides a 1link into a finite number of distributed elements andg,
assuming a specified modal shape, uses Hermitian polynomials to
calculate position, velocity, and acceleration of an arbitrary
element of the link.
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LINK COORDINATE FRAME ASSIGNMENT FOR
A 3 DEGREE OF FREEDOM SERIAL MANIPULATOR

LINK O

JO!N:T i

LINK PARAMETER TABLE

LINK o< a d e
| -90 o) 0 6, + 90
2 O Qz O 'el
3 qo 03 O ‘93 "’90
e -90 o) o) -90
FIGURE A -}
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JOHN G. DANIS
MASTER'S THESIS
ADVISDOR: DR. F. CHICHESTER

KINEMATIC MODEL: GENERATION OF TRANSFORMATION MATRICES

THIS PROGRAM SENERATES THE DENAVIT-HARTENEERG MATRICES
USED TO FERFORM A HOMOGENEQOUS TRANSFORMATION OF
COORDINATES BETWEEN SUCICESSIVE LINKS OF A SERIAL MANIPULATOR

DIMENSION AN1(4,4),ANZ(4,4),AN3(4,4),E(4,4),T2(4,4),T2(4,4),
TE(4,4)

REAL JTANG1, JTANGZ, JTANGS

LINK FARAMETERS FOR LINE 1:

ALFHAL = ~30.0

Al = 0.0

DI = 0.0

JTANG1 0.0

THETAL 0.0 + JTANGI

CALL ANCOMP CAN1, ALPHALl,Al,D1, THETALD

LINE PARAMETERS FOR LINK 2:
ALPHAZ = 0.0

AZ = 10,0

D2 = Q.0

JTANGZ = 20.0
THETAZ = —-JTANGZ

CALL ANCOMP (ANZ, ALPHAZ,AZ,DZ2, THETAZ)

LINE FARAMETERS FOR LINK 3:
ALFHAZ = 390.0

AZ = 12.0

Dz = 0.0

JTANGE = 60.0

THETAZS = 390.0 = JTANG3

CALL ANCOMFP(ANZ, ALPHAZ, A3, D3, THETAS)

LINK PARAMETERS FOR THE END EFFECTOR:

ALFHAE = -30.0
AE = 0.0
DE = 0.0
THETAE = -30.0

CALL ANCOMF CE, ALPHAE, AE, DE, THETAE)

[TE]1l = [AN12*[ANZI*[ANZI#LE]

NUM = 2

CALL MATMUL (AN1, ANZ, TZ, NUM)
NUM = 2

CALL MATMUL(TZ, ANZ, T3, NUM)
NUM = 4

CALL MATMUL(TZ,E, TE, NUMD
STOF

END

SUBROUTINE ANCOMF (AN, ALFHA, A, D, THETA)
DIMENSION ANC(4,4)

CONVF = 1,745332E~-Z

ALFPHA ALPHA®CONVF

THETA THETA*CONVF

[ ]

30



10

20
e
<
30

40

AN(1, 1) COS(THETA)

AN(C1,2) = ~SIN(THETA)#COS (ALPHA)
ANC1,3) = SIN(THETA)*SIN(ALPHA)
ANC1,4) = AXCOSCTHETA)

AN(2,1) = SINCTHETA)

AN(Z,2) = COS(THETA)*COS (ALPHA)
AN(2,3) = =-COS(THETA) *SIN(ALPHA)
ANCZ,4) = AXSIN(THETA)

AN(Z,1) = 0.0

ANCZ,2) = SINCALPHA)

AN(Z,3) = COSCALPHA)

AN(3,4) = D

AN(4,1) = 0.0

AN(C4,2) = 0.0

AN(4,3) = 0.0

AN(4,4) = 1.0

RETURN

END

SUBROUT INE MATMUL CA, B, PR, NUM)

DIMENSION A(4,4),E(4,4),PR(4,4)

PRO1, 1)=AC1, D¥BCL, 1D +A (1, 2)%B(2, 1) +ACL, BIRB(3, 1)+AC1, 4 *E (4, 1)
PR(L,2)=ACL, 1)%B(1,2)+AC1, 2 #B (2, 2)+A(1, 2) %R (3, 2)+A (1, 4) *B (4, 20
PRC1. Z3=ACL, 1)¥B(1,3)+AC1, 2)%B (2,30 +ACL, 3)XB(Z, 3)+AC1, 4) *#B (4, 3)
FRC1,41=ACL, 1D*EC(L,4)+AC1, 2)%B(2,4)+AC1,3)%B(3,4)+A (1, 4) *E (3, 3D
PRCZ, 1)=AC2, 1I%BC1, 1) +A (2, 2)KE (2, 1)+A(2, 3IXE (3, 1>+A(2, 4D *B (4, 1)
PR(Z, 2)=A (2, 1) KB (1, 20+A(2, 2IKE (2, 2)+A(2, 3IXB (2, 2)+A (2, 4D #E (4, 2)
FR(Z,3)=A(Z, 1D#B(1,2)+A (2, 2I*E(Z, ) +A(2, ) *B(3, 3)+A(2, 4) *B (4, 3)
PR(2,4)=A(2, 1) %B(1 4)+A(‘,‘)*E(Z,41+A(2,3)*B(3,4)+A(2,4)*B(4,4)
PRCZ, 13=A(3, 1)*B(1,1)+A(3, 2)*EB(2, 1)+A(3, 3)*B(2, 1)+A (3 4)*3(4,1)
PR(3,2)=A(3, 1B (1, 2)+AC3, 2) #B(2, 2)+A (3, 2)*B(3, 2)+A(3, 4) *B (4,
FR(3,3)= A(u,1)*5(1,u)+A(3,27*E(_,u)+A(a,u)*B(3,3)+A(u,4’*E(4,u3
PR(Z,4)=AC3, 1)#E(1,4)+A(3, Z)*B(2,4)+A(3, 2)#B(3,3)+A (3, 4)%B(4, 4)
PR(4 1)=AC4, 1)%B(1,13+ACS, ZI%BE(2, 1)+A(4, 2I*B(3, 1) +A(4, 4)*B (4, 13
PRC4, 23=AC4, 1IXRCL, 2)+A (4, ZIXB(2, 2)+AC4, 3IXB(S, 2) +A (4, 4 *B (4,
FR(4,3)=A(4, 1)*B(1,3)+A (4, 2)*E(2, 3)+A (4, 3)*B(3, 3)+A (4, 47*9(4,u)
FR(4, 4)=A(4, 1I¥B(1,40+A(4, 2IRE(Z, 4)+A(4, 3)#B(3, 3)+A (4, 41 *B (4, 3)

WRITE (*,5)

FORMAT C?0? )

DO 40 I = 1,4

DO 30 J = 1,4

IF (NUM.ER.4) GO TO 20
CONT INUE
WRITE(%,10) NUM,I,J,PRC(I,J)
FORMATC' *,?'T*,I11,7¢7,11,',7,11,7) = * F10.6)

GO TO 20
WRITE(*,25) I,J,PRCI,J)
FORMATC? ', 7TEC?,11,%,7,1I1,") = ?,F10.6)
CONTINUE
CONTINUE
RETURN

END
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T2¢1,1) =  ~_000001
T2(1,2) = . 000000
T2¢1,3) = ~1.000000
T2(1,4) =  =.000009
T2¢2,1) = .866025
T2(2,2) = . 500000
72¢2,3) = ~.000001
T2(2,4) = B.660254
T2(3,1) = . 500000
T2¢3,2) = -.B66025
T2¢3,3) = ~-.000001
T2¢3,4) = 5.000002
T2(4,1> = . 000000
T2¢4,2) = . 000000
T2¢4,3) = . 000000
T2¢4,4) =  1.000000
T3¢(1,1) = =-.000001
T3(1,2) = =1,000000
T3(1,3) = . 000000
T3(1,4) = =-,000016
T3(2,1) =  1.000000
T3(2,2) = =.000001
T3(2,3) = . 000000
T3(2,4) = 20.660250
T3(3,1) = . 000000
T3(3,2) = . 000000
T3¢3,3) =  1.00000Q
T3¢3,4) = 5.000002
T3(4,1) = . 000000
T3(4,2) = . 000000
T3(4,3) = . 000000
T3(4,4) =  1,000000
TEC(1,1) =  1.000000
TE(1,2) = . 000000
TE(1,3) = . 000000
TE(1,4) = ~—.00001€
TE(Z2,1) = . 000000
TE(2,2) = =-.000001
TEC(Z,2) =  1.000000
TE(Z,4) = 20.660250
TE(3,1) = . 000000
TE(3,2) = =1.000000
TEC3,3) = ~-.000001
TE(3Z,4) = 5.000002
TE(4,1) = . 000000
TE(4,2) = . 000000
TE(4,3) = . 00Q000
TE(4,4) = 1.000000

Stop — Program terminated.
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JOHN G. DANIS
MASTER'S THESIS
ADVISOR: DR. F. CHICHESTER

KINEMATIC MODEL: GENERATION OF TRANSFORMATION MATRICES

THIS FROGRAM GENERATES THE DENAVIT-HARTENEBERG MATRICES
USED TQ PERFORM A HOMOGENEOUS TRANSFORMATION OF
CODRDINATES BETWEEN SUCCESSIVE LINKS OF A SERIAL MANIFULATOR

THIS VERSION OF THE MODEL ACCOUNTS FOR LINE FLEXIEBILITY BY
USING F MATRICES IN THE CDORDINATE TRANSFORMATIONS

DIMENSION AN1(4,4),ANZ(4,4),ANZ (4,4 ,E(4,4),T204,4), T34, 4),
% TEC4,4) ,FN1(4,4),FNIZC4,4) ,FN3(4,4),FNE(4,4),

s,

% ALFL(4,4),AZF2(4,4), ASFZ(4,4) ,EFE(4, 4)
REAL JTANG1,JTANGZ, JTANGS

LINE PARAMETERS FOR LINK 1:
ALFPHAL = -30.0

Al = 0.
D1 = 0.
JTANG1 0.0

THETAL = 30.0Q + JTANGL

CALL ANCOMF (AN1,ALFHA1,AL1l,D1, THETAL)

)

oo

FLEXIBILITY FARAMETERS FOR LINK 1:

THX1 = 1.0
THY1 = =1.0
THZ1 = 0.5
DELX! = 0.5
DELY1 = Q.3
DELZ1 = —0.25

CALL FNCOMF(FN1, THX1, THY1,THZ!,DELX1,DELY1,DELZ1)

LINK PARAMETERS FDR LINE Z2:

ALFPHAZ = 0.0
AZ = 10.0Q
Dz = 0.0

JTANGZ = 20.0
THETAZ = -JTANEZ
CALL ANCOMPCANZ, ALPHAZ, AZ, D2, THETAZ)

FLEXIRILITY FARAMETERS FOR LINK 2:

THXZ = -2.0
THYZ = 1.0

THZZ = -0.5
DELXZ = 0.25

DELYZ = 0.ZT
DELZZ = —-0Q.5
CALL FNCOMF(FNZ, THXZ, THYZ, THZZ, DELXZ, DELYZ,DELZ2)

LINK FARAMETERS FOR LINK 3:

ALFPHAZ = '30.0

A = 12.0

D3 = 0.0

JTANGZ = 60.0

THETAZ = 90.0 — JTANGE3

CALL ANCOMP(ANZS, ALFHAZ, AZ, D3, THETAZ)

FLEXIRILITY PARAMETERS FOR LINK 3:
THX3 -1.0
THY3 1.0
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THZ3 = 0.5

DELXZ = 0.5
DELYZ = 0.258
DELZZ = -0.25

CALL FNCOMP(FN3, THX3, THY3, THZ3, DELX3, DELYZ3,DELZ3)

LINK PARAMETERS FOR THE END EFFECTOR:
ALPHAE = -50.0

AE = 0.0

DE = 0.0

THETAE = -90.0

CALL ANZOMF(E, ALFHAE, AE, DE, THETAE)

FLEXIRILITY PARAMETERS OF THE END EFFECTOR:

THXE = 0.1
THYE = 0.03
THZE = -0.05
DELXE = 0.01
DELYE = -0.01
DELZE = 0.0

CALL FNCOMF (FNE, THXE, THYE, THZE, DELXE, DELYE, DELZE)

NUM = 1
CALL MATMULCAN1,FN1,A1F1, NUMD
. CALL MATMULCANZ,FNZ, AZFZ, NUM)
CALL MATMUL CANZ, FNZ, ASF3, NUMD
CALL MATMUL (E,FNE, EFE, NUM}

[TE]l = [AIF1I%[AZFZI*[AGSFZI*[EFE]

NUM = 2
CALL MATMUL CAIF1,AZFZ, T2, NUMD
NUM = 3

CALL MATMUL (TZ, ASF3, T3, NUM)
NUM = 4

CALL MATMUL(TZ,EFE, TE, NUM)

STOP
END

SUERROUT INE ANCOMF CAN, ALFHA, A, D, THETA
DIMENSION ANC(4,4)

CONVF = 1.745323E-2
ALFHA = ALFHA*ZONVF

THETA = THETA®CONVF

ANC1,1) = COS(THETA?

ANC1,2) = -SIN(THETA)*COS (ALFHAD
ANC1,3) = SIN(THETA) #SINC(ALFHA)
AN(1,4) = A*COS(THETA)D

ANCZ,1) = SINCTHETA)

ANCZ,2) = COSCTHETA)*COS (ALFHA)D
AN(Z,3) = ~COSC(THETAI*SIN(ALFHAD
ANCZ, 42 = A*SIN(THETA) :
AN(Z,1) = 0.0

ANCZ,2) = SINCALFHAD

AN(3,3) = COS(ALFHAY

ANCZ,4) = D

ANC4, 1) = 0.0

AN(4,2) = 0.0

ANC4,3) = 0.0

ANC4,4) = 1,0

RETURN

END
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SUBROQUTINE FNCOMP(FN, THX, THY, THZ,DELX,DELY,DELZ)
DIMENSION FN(4,4)

CONVF = 1.74533E-2

THX = THX#CONVF

THY = THY#CONVF

THZ THZ #*CONVF
FNC1,1) = 1.0
FNC1,2) = -THZ
FNC1,3) = THY
FN(1,4) = DELX
FNCZ,1) = THZ
FNC2,2) = 1.0
FNCZ,31 = ~THX
FN(Z,4> = DELY
FNCZ,1) = ~THY
FNC3,2) = THX
FN(Z,2) = 1.0
FN(3,4) = DELZ
FN(g4,12 = 0.0
FN(4,2) = 0,0
FN(4,2) = 0.0
FNC(4,43 = 1.0
FETURN

END

SUBFROUTINE MATMUL (A, R, FR, NUM)

DIMENSION A(4,4),B(4,4),FR(4,4)
PR(1,1)=ACI,1)*3(1,1)+A(1,2)*B(2,1>+A(1,3)*H(3,1)+A(1,4)*BC4,1)
FR(1,29=AC1,1)%B(1,20+AC1 , 20#EB (2, 204+4ACL, 32 *E(3,2)4+A (1, 4)*B (4,20
FR(1,3)=AC1, 1)#B(1, 3)+A(1,‘)*B(-,u)+A(1 )*Bnu,u)+A<1 dIBCL, 3
FRCL,4)=AC1,1)%B(1,4)+AC1, 20 #B{2,4)+AC1, 31 %B(3,4)+A (1, I #R (4,3
PR<2,1)=Ac2,1)*Ec ,1)+AC-,£>*B(° 1)+A(~,uJ*B(a,1)+A(;,4)*B(4 1
PRC~,~3~A(2,1)*5(1,2i+A12,2)*8(2,21+A(2,3)*B(a,4i+A( yHIRECS 2
FR(Z,29=ACZ, 12*B(1, )+A(Z,2)*8(2,u7+A(4,3)*B(u,u3+A62,4)*B(4,3)
PRCZ,4)=A(Z, 1) *B(1,4)+AC2, Z)¥B(2,4)+A (2, 31 #B(3, 4)+A (2, 4D #R (4, 4)
FROZ,1)=A(3, 13%B(1, 1)+AC(3, Z)#R(2 1)+Af3,3)*B£3,13+A(3,4)*B(4,1>
PFtQ,:ﬁ-A(u,i)*BCI 7+A(a,2)*5(;,27+A(3 2I#EB(S, 2)+A (3, 4) B (S, 20
FREZ,2I=A(3, 1)%B(1,2)+AC3, 2Y#B(2,2)+A (3, 3)*%B(3,2)+A (3, ) %R (4, )
FRE3,40=A(3, 1) %R (1,4)+A(3, 20 *B (2,41 +A(3 3)*3(,,4)+A(3,4)*B(4,4)
PRC4,10=AC4, 1)*E(T, 11+AL4,2)*B!-,11+A(4,”3*B(u,13+Af4 4O%B(4, 1)
PP(4,;1—A(4 1)*Bfl,2)+A(4,A)*B(2,27+A(4,33*B(H,J)+AL4 4)*3(4,2)
FR(4,3)=A(4, 1)%B(1,3)0+A(4, 2)#B (2,20 +A(4,2)%B(3,2)+A(4,4) %R (4, 2)
PR, 4)=AC4, 11 %B(1,4)+AC4, 2B (2 4I+A (4, 23 #B (32, 3)+A (4,41 %E (3, 40

IF (NUM.EQ.1) GO TD S0

CONT INUE

WRITE(*,5

FOEMAT('O’)

DO 40 I = 1,4

DO 30 J = 1,4

IF (NUM.ER.4) GO TO 2
CONTINUE
WRITE(#*,10) NUM,I,J,PRCI,J)

FORMAT (! 7, T, 11,7 ", 11,7,7,11,') = ¥, F10.6)
&0 TO 20
WRITE(%,25) I,J,FR(I,J)
FORMATCY ' PTEC? , 11,7, ,11,7) = " ,F10.6)
CONT INUE
CONTINUE
CONTINUE
RETURN
END
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T2(1,1) = .011272
T2(1,2) = .011009
T2¢1,3) = =-1.000944
T2(1,4) = . 678550
T2(2,1) = . 866396
T2¢(2,2) = . 500648
T2¢2,3) = .014927
T2¢(2,4> = 9,553322
T2¢2,1) = . 499734
T2¢3,2) = -.BEE701
T2¢2,3) = =-,004335
T2¢3,4> = 4.321214
T2¢4,1) = . 000000
T2(4,2) = . 000000
T2¢4,3) = . 000000
T2¢4,4) =  1.000000
T3¢1,1) = . 006600 -
T3¢1,2) = =1,001009
T3¢1,3) = =-.021101
T2(1,4) = .620122
T2¢2,1) =  1.000782
T3(2,2) = . 006201
T3(Z, D) = .017350
T3(2,4) = 22.065210
T2(2,1) = ~-.018067
T2(3,2) = ~-.021790
T3(3,2) = 1.0003€6
T3(2,4) =  4,.062912
T3(4,1) = . 000000
T3(4,2) = . 000000
T3(4,3) = . 000000
T3(4,4) = 1.000000
TEC1,1) =  1.000985
TE(L,2) = . 021986
TE(1,3) = . 007437
TEC1,4) = .629921
TECZ,1) = =—.0070E0
TE(Z,2) = -.01560%
TE(Z,2) = 1.000806
TE(2,4) = 22.065320
TE(2,1) = . 022679
TE(Z,2) = =1.000378
TE(3,3) = ~-.016303
TE(Z,4) = 4.073133
TE(4,1) = . 000000
TE(4,2) = . 000000
TE(4,3) = . 000000
TE(4,4) =  1.000000

Stop — Program terminated.
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JOHN G. DANIS
MASTER'S THESIS
ADVISOR: DR. FREDERICK CHICHESTER

THIS PROGRAM CALCULATES THE TIME-VARYINS POSITION
COORDINATES OF AN ELEMENT OF A VIBRATING LINK

OO00000000

DIMENSION YELM(100), VEL(100)
WRITE(%,010)
010 FORMAT(1X,?ROBOTIC ARM POSITION COORDINATES PROGRAM’)

c RLNK IS THE OVERALL LENGTH OF THE LINK
RLNK=48.0
c N IS THE NUMBER OF ELEMENTS IN THE LINK
N=10
C SF IS THE SCALE FACTDR DESCRIRBING THE SHAFPE OF THE BEND
SF=0.02
C W IS THE MODE FREQUENCY
W=11.6
c DELTT IS THE DELTA TIME INTERVAL
DELTT=0.1
NOESY=50
NDE=10
R=0.5
WRITE(*,68)
06B FORMAT('O’,’ TIME X Y VEL ACC')
Cc RELM IS THE LENGTH OF EACH ELEMENT
RELM=FPLNK/FLOAT (N)
c X IS THE POSITION ALONG THE ELEMENT
X=R#*RELM
L=NOESV+1

DO 100 I=1,L
THETA=W*FLOAT (I-1)*DELTT
UI=SINCTHETA) #SF% (FLOAT (NDE-1) #RELM) %%2
U2=2.0#SIN(THETA) #SF#FLOAT (NDE—1) #RELM
UZ=SIN (THETA) #SF % (FLOAT (NDE) #RELM) % %2
Ud=2.0%SINCTHETA) *SF #FLOAT (NDE) #*RELM
PHI 1=1—3%X#%2/RELM*#2+2% X # #3/RELM**3
PHIZ=X-2% X ##2/RELM+X#%3/RELM®#2
PHIZ=2#X*#2/RELM*%#2~2%X % %3 /RELM*%3
PHIA=-X##2/RELM+X#%3/RELM#*2
TIME=FLOAT(I-1)%DELTT
XELM=FLOAT (NDE~1) #RELM+X
YELM(I)=PHI1*%U1+PHIZ2*U2+PHIZ#U3+PHI4*U4
VEL €I)=CYELM(I)=YELM(I~1)) /DELTT
ACC=(VEL (I)~VEL(I-1))/DELTT
WRITE(%*,070) TIME, XELM, YELM(I),VEL(I), ACC
070 FORMATC(? ’,F10.5,' ?,F10.3,F10.3,' ’,F10.3,' ’,F10.3)
100 CONTINUE
STOP
END
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ROBOTIC ARM POSITION COORDINATES PROGRAM

TIME
« 00000
« 10000
« 20000
« 30000
« 40000
50000
« 60000
« 70000
- BOO0OO
- 90000
1.00000
1.10000
1.20000
1.30000
1.40000
1.350000
1.60000
1.70000
1.80000
1.90000
2.00000
2.10000
2.20000
2.30000
2.40000
2.50000
2.60000
2.70000
2.80000
2.90000
2.00000
2.10000
2.20000
3. 30000
3.40000
3.50000
3.60000
2. 70000
3.80000
3.90000
4, 00000
4. 10000
4.20000
4.,30000
4,40000
4.350000
4.60000
4.7Q000
4.80000
4.90000
S.00000

X
45.600
45.600
45.600
45. 600
45.600
45.600
45.600
45.600
45.600
45.600
45.600
45.600
45. 600
45. 600
45. 600
45. 600
45. 600
45. 600
45. 600
45.600
45.6800
45. 600
45. 600
45. 600
45. 600
45. 600
45. 600
45.600
45. 600
45.600
45.600
45.600
45. 600
45. 600
45.600
45. 600
45. 600
45. 600
45. 600
45. 600
45. 600
45.600
45. 600
45. 600
45. 600
45.600
45. 600
45.600
45.600
45. 600
45. 600

Y
. 000
38.127
30.451
-13.806
~41.478
-19.321
26.047
40, 124
6.000
-35.332
~-34.219
8.002
40.610
24.432
-21.097
-41.282

" =-11.874

31.7398
27.271
-2.021
-38.8393
-2395.032
15.7035
41.576
17.500
~27.593
-29.543
=3.983
26.361
33.024
-9.986
~41.000
-22.760
22.822
40,987
9.914
-33.069
-36.32
4.057
39.5€S
27.5432
-17.567
~41.574
-15.6837
29.085
38.867
1.957
~37.304
-31.750
11.945
41.291

Stop - Program terminated.
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VEL

. 000
381.273
-76.758
-442.578
-276.719
221.568
453.681
140.777
~341.245
-413.323
11.133
422.214
326.081
~161.780
—4355.292
-201.851
294.077
436.724
54.726
-3332.016
—-3€B.619
98. 607
447.375
258.702
-240.756
-450.988
-119.439
355.595
403. 445
-33.372
-430.099
-310.138
182.397
455.815
181.653
-310.733
-429.829
~32.863
403.822
355.087
-120.222
-451.105
~240.067
259.369
447.219
97.816
-369.037
-392.604
55.532
436. 956
293. 456

ACC

. 000
3812.728
-4580.310
-3658. 197
16€58.585
43982.873
2321.133
~3129.037
-4820.225
-720.777
4244.555
4110.814
-961.331
-4878.615
~-2935.113
2534.407
4959. 282
1426.472
-3819.988
~4477.417
243.967
4672.269
3487.677
-1886.732
-4994.580
-2102.320
3315.493
47S50.2336
478.350€
~43€8.178
~-2967.260
1199.602
4925. 357
2734.180
-2741.623
-4523.858
~1190.960
3972. 664
43€3.845
-487.352
~-47353.082
-~3308. 836
2110.382
43'34. 355
1878.3505
-3494. 032
-4669.132
~235.070
4481. 2359
3814. 246
-1435. 000



FIG. A-2: KINEMATIC MODEL

Transverse Displacement
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APPENDIX B: Structural Model Development Computer Simulation

Computer simulations of certain phases of structural model
development are described In this section. The simulations treat
a 8ingle aluminum 1ink 2 lnches ln dlameter and 48 inches 1long.
The eigenvalues associated with the first three modes of this
clamped-free 1link are used to determine the corresponding
elgenfunctions. Mode shapes are determined for the first three
modes and are deplicted in the accompanylng graphs.

The last program simulates the flexible deflections of the
link as the sum of the contributions from the first three modes.
Since the eigenfunctions of all three modes are present in this
model, the overall shape of the arm can be shown at any instant
in time. The model can also be used to plot the motion of any
point on the arm with respect to time. An accompanying graph

plots the motion of the tip of the link with respect to time.
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JOHN G. DANIS

MASTER'S THESIS

ADVISOR: DR. F. D. CHICHESTER
STRUCTURAL MODEL: EIGENFUNCTION CALCULATION

THIS FROGRAM CALCULATES THE VALUES OF THE EIGENFUNCTION
ASSOCIATED WITH A PARTICULAR MDDE ALONG THE LENGTH OF THE ARM

DIMENSION PHI(E£0)
REAL *B LEN, INER, ARG,PHI,SF

WRITE(*,3)
FORMAT(? ','STRUCTURAL MODEL - EISENFUNCTION CALCULATION?)

O]

DEFINE ARM CHARACTERISTICS:

ASSUME AN ALUMINUM LINK, Z IN. DIA., 48 IN. LONG
PIE=3. 1415927

LEN=48.0

MASS PER UNIT LENGTH:

U=1.1403E~3

E=1.0E7

INER=4.12E-4

EIGNVAL = 1.87351
WN = (EIGNVAL**2/LEN*#Z)*SQRT (E*INER/U)
ALPHA = (COSH(EIGNVAL) + COSCEIGNVAL))/ (SINH(EIGNVAL) +
& SINCEIGNVAL))
WRITE(#*,6) WN,ALFPHA
& FORMAT(?TO? ,'WN = ', ,F8.4,' RAD/SEC’,7X,'ALPHA = 7 ,FB.4)

NUMINT IS5 THE NUMBER OF FOINTS ALONG THE ARM
NUMINT=51
DX=LEN/ (FLOAT (NUMINT) = 1.0)
DC 10 I = 1,NUMINT
X = (FLDATC(I) — 1.0)*DX
ARG = EIGNVAL*X/LEN
PHICI)> = COSH(ARG) - COS(ARG) — ALPHA#*(SINH(ARG) - SINCARG)»)
10 CONTINUE

CALCULATION OF SCALE FACTOR TO NORMALIZE EIGENFUNCTION
SF = ABS(1.0/PHI (NUMINT))

DO 20 I = 1,NUMINT

X = (FLOATCI) = 1.0)#%DX
PHICI) = PHI(CI)*SF
WRITE(%*,15) X,PHI(I)

15 FORMAT(? ?,FB.4,7X,F8.4)

CONTINUE

STOP

END

41



STRUCTURAL MODEL - EIGENFUNCTION CALCULATION

WN = 2.9000 RAD/SEC ALPHA = . 7341

. 0000 . 0000

» 9600 . 0007
1.9200 0028
-2.8800 . 0062
3.8400 .0108
4.8000 .01€8
S.7600 .0239
€.7200 . 0322
7.6800 . 0417
8.6400 . 0523
9.6000 « 0639
10.5600 0765
11.5200 . 0901
12.4800 1047
13.4400 «1201
14.4000 -1365
15.3600 - 1536
16.3200 1716
17.28B00 . 1903
18.2400 2098
19.2000 . 2299
20.1600 . 2507
21.1200 . 2720
22.0800 «2940
23.0400 . 3165
24,0000 . 3395
24,9600 « 3630
25.9200 » 3B70
26.8800 .4113
27.8400 .4360
28.8000 4611
29.7600 . 485
20.7200 9123
31.6800 .5382
32.6400 . 5€44
33.6000 . 5309
34. 5600 .E172
35.5200 « 6443
36.4800 .6712
37.4400 - .6983
28. 4000 7255
33.3600 « 7527
40, 3200 . 7801
41.2800 . 8075
4z.2400 . 8349
43.2000 . 8624
44,1600 . 8893
45,1200 » 9174
46.0800 . 9449
47.0400 . 9728
48. 0000 1. 000G

Stop — Program terminated.
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FIG. B-1: STRUCTURAL MODEL

Eigenfunction Calculation
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STRUCTURAL MODEL — EIGENFUNCTION CALCULATION

WN = 18.1731 RAD/SEC ALPHA = 1.0185
« 0000 0000
« 9600 .0043
1.9200 0165
2.8800 . 0259
3.8400 .0615
4.8000 . 0926
S.7600 . 1284
€.7200 .1679
7.6800 .2104
8.6400 . 2550
9.6000 .3011
10.5600 . 3477
11.5200 . 3343
12.4800 » 4400
13.4400 . 4842
14,4000 .5262
15.3600 5654
1&€. 3200 .6012
17.2800 .6332
18. 2400 . 6608
19.2000 6835
20. 1600 .7011
21,1200 .7132
22.0B00 «7194
23. 0400 . 7197
24,0000 7137
24.9600 .7015
25.9200 . 6820
2€.8800 €381
27.8300 « 6269
28. 8000 . 589¢6
29.7600 . S462
30.7200 43970
21.6800 .4422
32.6400 . 3822
23. 6000 -3171
34,5600 2474
35.9200 1735
36. 4800 . 0957
37.4400 .0144
38. 4000 -.0700
39. 3600 -.1570
40. 3200 ~. 2463
41.2800 -.3374
42,2400 -.4300
43. 2000 -. 5237
44,1600 -.6183
45. 1200 ~.7134
46. 0800 -.8088
47.0400 —. 9044
48.0000 =1.0000

Stop - Program terminated.
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FIG. B-2: STRUCTURAL MODEL

Eigenfunction Calculation
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STRUCTURAL MODEL — EIGENFUNCTION CALCUL@TIDN

WN = 50.8903 RAD/SEC ALPHA = « 9992
« 0000 . 0000
« 9600 0117
1.9200Q . 0442
2.8800 . 0936
3.8400 .1562
4.8000 . 2280
S5.7600 « 3055
6.7200 . 3852
7.6800 «4635
8.6400 . 5376
9.6000 «6044
10.5600 .6615
11.5200 - 7067
12.4800 . 7384
13.4400 «7351
14.4000 « 7560
15.3600 . 7408
16.3200 « 7095
17.2800 6625
18. 2400 . 6008
19. 2000 . S9257
20. 1600 « 43230
21.1200 « 3427
22.0800 » 2390
2370400 . 1304
24.0000 .0196
24.9600 -. Q907
25.9200 -.1978
2&6.8800 -, 2930
27.8400 -.3918
28.8000 -.4737
29.7600 -.5427
30.7200 -. 5963
31.68B00 -.6347
32.6400 -.6551
33. 8000 -.6573
34 . 5600 -.6408
3S5. 5200 - =. 86057
36.4800 -.5524
37.4400 -.4817
38. 4000 -.3347
39. 3600 -. 2928
40. 3200 -.177¢6
41,2800 -. 0510
42,2400 . 0830
43. 2000 .2287
44, 1600 . 3779
45. 1200 .5310
46. 0800 . 6865
47.0400 . 8431
48. 0000 1.0000

Stop - Program terminated.
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FIG. B-3: STRUCTURAL MODEL
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JOHN G. DANIS
MASTER'S THESIS
ADVISOR: DR. F. D. CHICHESTER

STRUCTURAL MODEL: SIMPLE SIMULATION

THIS FROGRAM IS A SIMFLE SIMULATION OF A BASIC STRUCTURAL

MODEL OF A FLEXIBLE ROEROT ARM

DIMENSION ARG(S,40),PHIC(S,40),W(40,40),EIGNVALCS
ALFHACS), AN(S) , BN(S) ,MN(5) , SF (5)

REAL *8 LEN, INER, INTGD1, INTGDZ,MN, ARG, PHI,DELT,W

WRITE(%,3)
FORMAT(? *,?STRUCTURAL MODEL - SIMPLE SIMULATION

DEFINE ARM CHARACTERISTICS:

ASSUME AN ALUMINUM LINK, 2 IN. DIA., 48 IN. LONS
FIE=3.1415927

LEN=48.0

MASS FER UNIT LENGTH:

U=1.1409E-3

E=1.0E7

INER=4.,12E-%

DEFINE EIGENVALUES, MODE FREGUENCIES, AND CONSTA

INITIAL TRANSVERSE DISPLACEMENT AT TIP OF LINK:

Wo=1.0

INITIAL VELOCITY AT TIP OF LINK:

WOD=0, ¢

N 1S THE NUMBER OF INCLUDED MODES

EIGNVAL(1)=1.875

EIGNVAL (2)=4. 654

EIGNVAL (2)=7.355

DO B I=1,N
WNCI)=CEIGNVAL (1) ##2/LEN**2) *SORT (E#INER/U)
ALFHA (1= (C0SH(EIGNVAL (1) 9+C0S (EIGNVAL (I2) /¢

+SINCEIGNVALCI) )
WRITEC*,6) I,WNCI),I,ALPHACI)
FORMATC?O?, PWNC? , T1,') = * FB.4,' RAD/SEC’,7X
vy = 7 FB.4)
CONT INUE

NUMINT IS8 THE NUMEER OF POINTS FOR THE INTEGRATI
NUMINT=Z1
DX=LEN/(FLOAT(NUMINT)> - 1.0)
Do 15 I=1,N
SUM1=0.0
SUME=0.0
SUME=0.0
DO 10 J=1,NUMINT
X1=(FLDAT(J) - 1.0)%#DX
ARGS(I,J) = EIGNVALC(I)*X1/LEN
PHICI,J) = COSH(ARG(I,J») — CDSCARG(I,J))
(SINH(ARG(I,J>) — SINCARG(I,JI)D
INTGD1=C(U*FPHI (I, J)%*%2)*DX
SUM1=SUM1+INTGD1
INTGEDZ2=WO*U*PHI (I, J)#DX
SUMZ=8SUMz+INTED2
INTEDI=WOD#U*PHI(I, J)#DX
SUMES=5UM3+INTED3
CONTINUE
SF(I) = ABSC1.0/PHICI,NUMINT?)

48
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DO 12 J=1,NUMINT
ARG(I, J) = SF(I)*ARG(I, I
PHIC(I,J) = SFCI)*PHICI,J)
iz CONTINUE

C GENERALIZED MASS:
MNCI) = SF(I)*SUML
ANCI) = SF(I)#SUM2/MNCID
EBNC(IY = SF(I)*#SUM3/MNCI)*WNCIY)D

WRITEC#*,14) I,MNCI),I,ANCI),I,ENCI)
14 FORMATC(? 7,7MNC?,11,%) = ' ,FB.4,5X,'ANC? , I1,") = *,FB.4,
§.2

% SX,?’BNC’,I1,') = ',FB.4)
1S CONTINUE
C
T=0.0
DELT=0. 10
NTIME=21
DO BO I=i,NTIME
DO 70 J=1,NUMINT
W(I,J)=0.0
DO €0 K=1,N
WCT, I3=W(I, ID)+PHI (K, J)>* (AN (K *COS CWN (K #T) +BN CK) *
& SINCWNCEI*T))
60 CONTINUE
70 CONTINUE
T=T+DELT
80 CONTINUE
c
C GENERATE DATA TO FLOT MOTION OF ARM TIP
WRITE (%,30)
S0 FORMAT(’Q’,’MOTION OF ARM TIF WITH RESPECT TO TIME')
DO 100 I=1,NTIME
T = (FLDAT(I) — 1.0)%DELT
WRITE(%,95) T,W(I,NUMINT)
95 FORMAT(? ' ,FB.4,7X,F8.4)
100 CONTINUE
C
o GENERATE DATA TO FLOT ARM SHAFES

WRITE (%, 1100
110 FORMATC(’ Q' ,?SHAFE OF ARM AT T = 0.0 SEC")
DO 120 J=1,NUMINT
X = (FLDAT(J) - 1.0)%DX
WRITE(%,115) X,W(1,J)
115 FORMATC? *,FB.4,7X,FB8.4)
120 CONTINUE
WRITE (%, 120)
130 FORMAT(7Q’,?SHAFE DOF ARM AT T
DD 140 J=1,NUMINT
X = (FLOAT(J) - 1.0)%DX
WRITE(*,135) X,W(NTIME,J)
135 FORMAT(' *,FB.4,7X,FB.4)
140 CONTINUE
STOP
END

Z.0 BEC")
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STRUCTURAL MODEL - SIMPLE SIMULATION

WNC1) = 2.8396 RAD/SEC ALPHACL)
WNC2) = 18.1731 RAD/SEC ALFHA (2)
WN(3) = S50.8303 RAD/SEC ALPHA (3)
MNC1) = . Q202 ANC1) = . 7563
MN(2) = . 0303 ANC2) = . 3448
MNC3) = . 0305 AN(Z) = . 2765
MOTION OF ARM TIP WITH RESPECT TO TIME
. Q000 .EB79
. 1000 .9105
. 2000 . 7247
. 3000 L0052
. 4000 1295
«S000 .6796
- E000 . 0802
. 7000 -.B035
. BOOO -.6544
. S000 —-. 4447
1.0000 -.7789%9
1.1000 -. 6663
1.2000 -, 4274
1.3000 -. 903535
1.4000 -.9348
1.5000 0772
1.6000 .4518
1.7000 -.1031
1.8000 . 0304
1.9000 “&737
2. 0000 .EB2Z
SHAPE OF ARM AT T = 0.0 SEC
. 0000 . 0000
2.4000 Q305
4.B000 L1077
. 2000 2104
F.E000 L3132
12,0000 L4177
14,4000 .49326
16.8000 .5399
19,2000 - 5549
21,6000 . 5418
24. 0000 . 5083
26.4000 .4643
Z8. 8000 -4211
21. 2000 .3885
23. 6000 . 3745
326. 0000 .3832
38. 4000 4154
40. 8000 .4678
43. 2000 .95348
45,6000 «6100
48. 0000 .E8739
SHAFE OF AaRM AT T = 2.0 SEC
. 0000 - 0000
2.4000 L0106
4.8000 . 0380
7.2000 . 0758
9.6000 1179
12,0000 .1534
14.4000 1966

£0

]

. 7341
1.0185

. 2392

BN(1)
BN(2)
EBN(3)

=

=

. 0000
« 0000
- 0000



16.8000 2272

19. 2000 « 2507
21.6000 . 2683
24,0000 . 2822
26.4000 « 2954
28.8000 - 3113
31.2000 . 3327
33. 6000 . 3618
36. 0000 «3997
38.4000 « 4460
40.8000 . 4996
43.2000 . 9583
45. 6000 .6198
48. 0000 . 6822

Stop - Program terminated.
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FIG. B-4: STRUCTURAL MODEL

Motion at arm tip
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FIG. B-5: STRUCTURAL MODEL

Arm shape (t = O sec)
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FIG. B-6: STRUCTURAL MODEL

Arm shape (t = 2 sec)
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