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ABSTRACT

Title of Thesis Non~Linear Finite Element Analysis of

&

Reinforced Concrete Members.

by : Chellathurai Jeyamohan

Thesis Directed by : Professor C.T.Thomas Hsu

A finite element analysis of reinforced concrete members is
used to study the initiation and propagation of cracks and
the behavior at the interface of concrete and steel. The
increase of concrete strength due to the biaxial compression
and the shear capacity of the cracked elements are also

considered in the analysis.

The results of the present analysis are conmpared with some
available experimental data in beam tests. It has been found
that the present analysis is capable of calculating the
stress ( or moment ) and strain ( or deformation ) from zero

load upto the ultimate load.
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INTRODUCTION AND LITERATURE REVIEW

1.1 GENERAL

The analysis of structural members and structural systems are
commonly done by moment distribution, slope deflection and
matrix method of structural analysis. When the shape of the
members.become complex , all the above methods require either
simplification of member characteristics or the analysis

becomes very tedious though not impossible.

The finite element analysis of steel members and steel
structures are not that complicated compared to the
reinforced concrete members or systems. The following factors
make the finite element analysis of reinforced concrete

members very difficult.

(1) Concrete is a non-homogeneous material. Its behaviour is
very hard to be put in a simple mathematical formula.
Material properties are found to vary in directions, from
point to point, with different type of loadings such as
monotonic increasing and cyclic loadings and in the different

state of stress combination that might have been caused by

varying loading systen.

(2) The behavior of steel concrete interface is not well

understood and is a complex three dimensional phenomenon.



(3) The behavior of concrete and the transfer of forces
across a cracked section after the cracks are formed , are

not understood clearly.

Despite the lack of informations on material behavior and
difficulties encountered in the finite element analysis of
reinforced concrete members , many researchers and analysts
successfully formulated models to represent or simulate each

action and analysed the members or systems gquite effectively.

1.2 HISTORICAL REVIEW OF FINITE ELEMENT ANALYSIS OF RC

The following paragraphs are some of the works carried out by
researchers , and show how the analysis got reformed and

refined over the period of time.

Scordelis and Ngo (3) analysed simple beams. The triangular
elenments represented the concrete and steel. Bond stress -
slip phenomenon was successfully incorporated with the use of
linkage element concept. Material behaviors of steel and
concrete were assumed to be fully elastic. Predicted crack

patterns were considered in the analysis.

¥

Nilson(4 ) performed a non-linear analysis. The concrete
stress~-strain relationship suggested by Saenz (5) was used
to represent the concrete behavior . His formulationof

bond stress-slip expressions were differentiated to obtain



the stiffness parameters of the linkage elements to portray
the concrete steel 1interface behavior . An incremental
loading technique was employed and every time an element
cracked , the topology was redefined and the computer run

commenced again until the required lcad level was achieved.

The model developed by Franklin( 7 ) accounted automatically
for cracking and redistribution of stresses not balanced
internaliy , thereby enabling to execute the analysis in one
computer run without being redefining the topology every time
an element cracked. He analysed the effects of reinforced
concrete frames with and without reinforced concrete shear

walls. Special types of frame elements and gquadrilateral

elements represented members and joints.

Cervenka and Gerstle( 8 ) analysed shear panels. Both steel
and concrete were assumed to be elastic-perfectly plastic.
Composite material constitutive relationship was used to

develop the stress-strain stiffness matrix.

Yuzugullu and Schnobrich( 9 ) studied the inelastic behavior
of frame-shear wall system. Shear wall and frame were
represented by guadrilateral and flexural elements
respectively. The integface action between shear wall and
framewas modelled by linkage elements containing two ortho-

gonal springs. Composite material constitutive relationship

was used. After cracking , cracked element's shear modulus



was reduced to a fraction of its original wvalue to account

for the load transfecrring behavior across the crack.

Cedolin and Del Poli(10 ) made a non linear analysis on
shallow beams. Concrete and steel were represented by
triangular elements and the stirrups by one dimensional bar
elements. Concrete was assumed to have two different modulii
E1l ,E2 in orthogonal directions. Linkage elements represented

the effects at steel concrete interface.

Darwin and Pecknold(13 ) did a non-linear finite element
analysis on a planar concrete members subjected to cyclic

loadings.

Agrawal(1l4 ) performed a non linear analysis of a reinforced
concrete deep beam subjected to cyclic loading. Both steel
and concrete were assumed to behave like an elastic-perfectly
plastic material. Each node had three degrees of freedom. A

composite material constitutive relationship was used.

Al~-Mahaidi(15 ) also performed a non linear analysisof
reinforced <concrete deep beams. Quadrilateral and base
elements represented concrete and steel. Concrete was assumed
to follow an orthotropic material having two different
elastic modulii in orthogonal directions. Steel reinforcement
followed an elastic perfectly plastic material behavior. Bond

stress - slip relation provided the stiffnesses of linkage



element springs which meodelled the interface behavior. Both

discrete smeared cracking models analysed the deep beams.

Spokowski( 17 ) used non linear finite element analysis on
reinforced concrete beams and joints. The analysis predicted
the load - deflection curves , moment - rotation
relationships and crack patterns. Discrete cracking model was
used after the element had cracked , redistribution of

.

stresses were made to account for unbalanced forces.

Houde( 18 ) derived an empirical expression for the transfer
of shear across a crack and incorporated his findings in the
finite element program. The program incorporated his

expression to analyse pull-out specimens and beams.

Khouzam(19 ) used Houde's expression for the shear transfer
across a crack and carried out a non=-linear analysis of
axially lcaded tensile members and reinforced concrete beams

with unreinforced webs.

The historical development suggests that the finite element
analysis has been a valuable tool to many researchers in
analysing reinforced concrete structural members and systems.
The accuracy of the method would increase if the following
behaviors can be understood thoroughly and expressed properly

in the formulation of the finite element program.

(1) Material behavior of concrete under different stress



states

(2) Steel behavior under different stress states

(3) Steel concrete interface action

(4) Force transfer mechanism across a cracked concrete

section , specifically aggregate interlock and dowel action.

1.3 REVIEW OF LITERATURE

In the following paragraphs a historical review of material
behaviors , steel concrete interface action and post cracking

behavior is presented.

1.3.1 CONCRETE STRESS~STRAIN BEHAVIOR

The stress-strain behavior of concrete has a significant
effect on the accuracy of the predictions of any finite
element analysis of reinforced or plain concrete members.
Researchers used either elasticity based models or plasticity

based models to represent the behavior of concrete.

1.3.1.1 ELASTICITY BASED MODELS

Two different approaches are used here to model the stress-

Ll

strain behavior.

(1) Total stress strain model

(2) Incremental stress strain model



In the total stress strain model , the total stress of a
stress state is assumed to be unigquely determined as a
function of the present total strain. The assumption itself
imposes a limitation on these type of models because of the
path dependent charecteristics of concrete. Therefore , the
application of these models is restricted and used only to

monotonically increasing loads.

In the i%cr&mental elasticity model , the behavior of the
material is assumed to depend on the present state of stress
and strain as well as on the path followed to reach the
existing state. Therefore , we may conclude that incremental
elasticity model provides more realistic behavior of stress
strain relationship under cyclic loading conditions. These
models can be further refined to include the orthotropic
properties with the principal stress directions coinciding

with the directions of orthotropy.

Elasticity based models are popularly used in the non linear
finite element analysis because of their simplicity. They
provide a reasonable representation of the overall behavior
of concrete but some of them poorly represents the behavior
near the ultimate states This drawback has not caused any
major problem because only a very small portion of concrete
reaches the ultimate stress state and the rest of the

concrete can be represented quite well with this model.



1.3.2 PIASTICI®Y BASED HODEL

Two approaches ave available to charggterise the stress-

strain behavior.

(a) Elastic-strain hardening plastic

(b) Plastic fracturing models

In the elastic strain hardening plastic models , a
discontinuity surface is introduced , which is the limiting
surface for elastic behavior , and located at a distance from
the fracturing surface. When a material is stressed beyond
the initial discontinuity surface , a new discontinuity
surface called the loading surface is created. Loading and
unloading within any two subsequent loading surfaces result
in elastic behavior. Irrecoverable plastic strains will occur
only if the upper loading surface is crossed. The final
collapse of the concrete will occur only when the loading
surface reaches the fracture surface. A detail explanation
and formulation of constitutive matrix for an elastic-strain
hardening plastic and plastic fracturing models appear in
Ref:(30 ). The following paragraphs briefly gives the works
of researchers used in the modelling of concrete stress-

¥

strain behavior

Ngo and Scordelis( 3 ) used linear isotropic material models

in their analysis.



Kupfer and Gerstle(23 ) presented closed form expressions for
shear and bulk modulus of concrete and used total stress-
strain behavior models in their work. The suggested closed
form expressions were obtained to match the experimental
data made available from different sets of concrete specimen

under different state of biaxial stress system.

Romstad, Taylor and Herrmann(24 ) devaloped a biaxial
isotropié stress-strain model. Number of damaged regions were
created and the material properties were altered to match the
degradation of concrete caused by increased stresses. Modulus
of elasticity and Poisson's ratio remained constant within

each damaged region.

Gerstle(25 ) developed a biaxial incrementally isotropic
stress-strain model. Bulk and shear modulii are assumed to be
a linear function of the octahedral normal and shear
stresses. Constitutive matrix was expressed in terms of bulk

and shear modulus.

Darwin and Pecknold(13 ) proposed a biaxial incrementally
isotropic stress-strain behavior. A new eqguivalent uniaxial
strain concept was introduced. The effect of a biaxial stress
system on a concrete istrepresented by equivalent stress-
strain curves for each of the principal axes direction.

A biaxial incrementally orthotropic stress-strain behavior

was forwarded by Liu , Nelson and Slate(12,26).
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Bazant and Tsubaki(27 ) suggested a triaxial total stress-
strain behavior model. The constitutive matrix comprised of
bulk and shear modulus which were expressed as the functions
of first and second invariants of the total stress and strain

tensors.

Elwi and Murray (28) developed a triaxial incrementally
isotropic stress-strain model.The equivalent uniaxial strain

concept was employed in deriving the censtitutive matrix.
1.3.3 CRACKING MODELS

The magnitude of tensile stress , at which concrete fails in
tension 1is not a unigue value thereby causing
difficulties in the modeling of cracking of concrete.
Despite the uncertainities and complex nature of cracking ,
two different cracking models were advanced by researchers to

represent the cracking phenomenon in ccncrete.
a. Discrete Cracking Model:

Adjoining elements are disconnected at the nodes along their
boundaries when an element cracks and causes displacement
discontinuities across the crack. The introduction of
additional nodal points required to redefine the topology
after a crack has formed , increases the magnitude of the

stiffness matrix and enlarges the computational efforts

required to solve the equilibrium equations for nodal
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displacements. To overcome this difficulty two nodes
occupying the same co-ordinates , connected by an infinite
modulus spring linkage elements are defined. At the formation
of the crack , the stiffness of the spring is brought to
zero. When the shear effects of concrete after cracking are
considered the springs of the linkage elements assume values
for stiffnesses to reflect the effects of aggregate interlock

and dowel action at the crack.
b. Smeared Cracking Model:

Many finely spaced c¢racks are assumed to form in a direction
normal to the principal stress , when the principal stress
exceeds the tensile strength of concrete. The concept of the
smeared cracking model assumes not a displacement
discontinuity but a stress discontinuity thereby allowing the
automatic generation of cracks without a change in topology

and a complete generality in the direction of cracks.
1.3.4 STEEL CORNCRETE INTERFACE BEHAVIOR

The problem of describing and developing a model to reflect
the steel concrete interface behavior is a very complicated
three dimensional problem. So far , not enough experimental
works were executed tofully understand the effects of
interface behavior. The following is a summary of some of the

experimental works carried out by researchers to study the
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effect of bars bonded in a concrete nmatrix.

Broms (43 ) exanined the locations , widths and extents of
internal cracks of a concrete specimen reinforced with a

single bar , with the aid of colored resins.

Gotto(44 ) used red ink and sawed the specimen to study the
behavior of internal cracks. He observed many internal cracks
of cone shapes with apex at bar lugs and base towards primary
cracks. Most of the internal cracks made an angle of sixty
degrees approximately to the bar axis. These comb-like
internal cracks were formed due to the reaction exerted on
concrete by the bar lugs as the steel stresses were
increased. He also found that the steel stresses did not fall
to zero even when the lcad was removed. This was attributed

to the plastic deformation of the surrounding concrete.

Rehm(61 ) carried out series of pull-out tests and concluded
that the slip between concrete and steel occurs by
progressive crushing of concrete in front of bar lugs. He
reported that approximately a length of six times the height

of bar lugs , in front of a lug reaches the crushing stage.

Mirza and Houde(45 ) after an extensive experimental works
showed that the crushing of ceoncrete in front of bar lugs
does not occur with the type of deformed bars used in

practice. They sawed the specimen , found no marks or traces
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of polishing on the concrete surface and the bar lugs stamped
into the concrete firmly.Their findings lead them to conclude
that noticable sliding or crushing of concrete does not

seem to take place in front of the bar lugs.
1.3.5 POST CRACKING SHEAR BEHAVIOR

Post cracking shear behavior is usually accounted for by
modifying the original shear modulus to a fraction of it's
value , when a crack is formed in a smeavred cracking model.
The fraction was usually considered a constant or a function
of the tensile strain normal to the crack , and was intended
to account for the aggreate interlock and dowel mechanism

that might be present .

Modification of the uncracked shear modulus , by a factor
was first considered by Schnorbrich , Hand and Pecknold(33 )

They used a constant value of 0.4 for ¢ for all stress and
strain states in their non linear layered analysis of plates

and shells.

Agrawal(34 ) used a constant value of 0.5 for  in the non
linear analysis of concrete shear panels and deep coupling

beams. E

Cedolin and Dei-Poli(35 ) observed that a decreasing value
for P predicted better responses for shallow beams failing

in shear. They suggested the following reduced shear modulus
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expression.

G = F(1.0- %) for o©4€,<€e
€e

G = 0.0 for €.3€c

where

F = 0.1E

€ = strain nermal to the crack

0]
n
il

limiting value of € when the effect of aggregate interlock
vanishes totally.

E = elastic modulus of concrete.

Al-Mahaidi(15 ) presented the following shear reduction

expression for cracked concrete.

P =0.4/¢ for €7 Eg,
€ro
= 0.1 for &.<¢ Eg,
where

principal tensile strain normal to the crack.

It

il

normal tensile strain at the formaticn of the crack.

Gilbert and Warner(28 ) used a value of 0.6 for B in the non
linear analysis of reinforced concrete slab. They observed
that the variation of B resulted in a negligible difference
in the responses. They could not explain the insensitivity of

in the slab responses.
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1.3.6 TENSION STIFFENING EFFECT

Tension stiffening effect is usually taken into account for
either by introducing a descending tensile stress-strain
behavior for concrete or by modifying the steelstress-strain

behavior.

Scanlon(39 ) proposed a descending tensile stress-strain
behavior - for concrete to account for the tension stiffening
effect . He assumed that the tensile stress increases
linearly up to the ultimate level and then suddenly the
modulus of elasticity drops to the next lower level as shown
in figure 4. The stress is now allowed to increase with the
load to the limiting value corresponding to this branch of
the diagram. This process is followed until the modulus of
elasticity vanishes. By this process , the load carried by
the steel gradually increases until it carries the entire

load.

Lin and Scordelis(37 ) included the tension stiffening effect
in the analysis of reinforced concrete shells of general
form. The stress - strain curve suggested contained an
elastic uncracked portion and a cracked unloading remainder.

Once the concrete cracked , the tensile stress-strain curve

assumed a following unloading curvilinear behavior.

2
U = ap + a;@g + aze+a3€3
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The concrete was assumed to release it's entire stress at a
strain of five times the cracking tensile strain. They also
observed that the tension stiffening phenomenon has a
significant effect on the response of menber in the post

cracking range but has little effects at the ultimate states.

Van Greunen(40 ) incorporated the tension stiffening effect
by ignoring the contribution of concrete in carrying the
tensile étreas and increasing the elastic modulus of steel as
shown in fig 6 . The additional stresses in the steel
corresponds to the stress carried by the concrete. This
method overestimates the steel stresses but underestimates

the concrete strasses between the cracks.

Gilbert and Warner (38 ) considered the effects of different
stress-strain behavior on the responses of their works. A
value of ten times the cracking strain of concrete was
assumed for , at which level the concrete stresses are
totally released. The effect of modifying the steel stress-
strain behavior was also considered , in their analysis of
reinforced concrete slab. They found that modifying the steel
stress~strain behavior to include the tension stiffening
effect resulted in better responses and efficient use of
computer time. They also concluded that the tension
stiffening phenomenon has a significant effect on the
deformation of the slab but showed negligible effect on the

behavior at ultimate stress levels.
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CHAPTER 2

FIR{I# ELEENT FODEL FOR PLANAR STRUCTURES

2.1 INTRODUJCTION

The stress-strain relationship of concrete, post-cracking
behaviour modelling technigques, bond stress-slip
relationships suggested by Houde(18) , which are presented in
chapter 3, are all incorporated in the formulation of a
finite element wmodel for the nonlinear analysis of planar
reinforced concrete members. Properties of finite elements
used for idealisation of concrete and steel reinforcement are
discussed. Modification of the stress-strain relationship of
concrete due to cracking which is presented in chapter 3 is
used in the present formulation of planar structures finite

element model.
2.2 CONCRETE AND STEEL REPRESENTATION
2.2.1 LINEAR DISPLACEMENT QUADRILATERAL ELEMENT

The finite element used for the representation of concrete is
shown in fig. 8 The element is a four node rectangle with
two degrees of freedom at each node. The stiffness
formulation of this element is well known and can be found in
reference (47) . However , the stiffness formulation is

repeated here for completeness and to explain the technique
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of incorporating the incrementally non=linear stress-strain
relationship discussed in section 3 into finite element

model.
2.2.1.1 DISPILACEMENT YUNCTIONS

In order to make the integration required for the calculation
of the stiffness matrix of the guadrilateral ring element
practicable, the co-ordinate system &-"] obtained by joining
the midpoints of the opposite sides of the gquadrilateral is
used. Of course, the general guadrilateral maps into a sguare

in the £-1 plane.

Consider the single component of displacement ®,. If the
condition that all edges remain straight lines for the
purpose of maintaining compatibility along the edges is
enforced, then the displacement at any point (®,7) due to the

diplacement ©, is given by

(1/4)(1 =%) (1 - )%, and

-
i

v = 0.0

where u and v are the horizontal and vertical displacements

respectively.

This may be repeated for both u and v for all possible nodal
displacements as shown in figure 8 . By superimposing the

equations for all possible nodal displacements and writing in
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matrix form, one gets the following displacement formulas for
points in the element when all eight nodal displacements are

applied simultaneously.

ul| (0.25) |kl mlmnkn O O 0 O 5,_
v ) 0O 0 0 0 Kkl ml mn kn ng
where 55
k=1-% { 64 c e e e 2.1
1=1-n G
m=1+g 66
n=1+n1 61
msa =

The functions k, 1, m and n are called interpolation
functions. They are also used to express the co-ordinate of

any point (x , Y ) in terms of the element nodal co-ordinates

(Xl IY*)I (le Ya)l (XB' Ys) and (X4l Yq_) as

[x v] = (0.25) [kl ml mn kn] [X, ¥, ]
Xz Yz L I I I A 2:2

X3 Y

®

2.3 STRAIN -~ DISPLACEMENT RELATIONSHIPS

The strain vector can be written as
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ég& “é 0 7 u
A
{@J: Eyy|= | © 4 Vi ereoenaeononnaens 2.3
ay
Yay ) 1
| 3y dn ]
Substitution of egn.(2.1) into egn.(2.3) gives
3 01 [xXI ml ankn o 0 0 © B\
3k g
{6’]:5{-0 g)’ 0 0 0 0 k1 ml mn kn e
13 63
<Y an 84
2.4
ds
P
84
5g
s wd
or ié] = [B}[S)
where &B] is given by
g_ 0 kl ml mnkn O O 0 0
¢
[B]= (0.25) |o % 0 0 0 0 k1 ml nn kn . e..2.5
1 9
K

The differentiation of equation (2.5) cannot be performed

directly as & and 1 cannnot be written as explicit functions

of X and Y. Therefore, the chain rule of differentiation is

used to carry out the differentiation,

3 - &3 ¥
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and

Q«——gua‘g* §
a3 A oan ﬂ%gr

or in the matrix form

S ST .|

%x @ g
L 31 91

[ X178 ) m.
£
~ w
H
e |
g
LS
Zw

where J 1is the Jacobian matrix, which can be evaluated by

substitution from egn.(2.2) , giving

[5):(0.25) [-2 1 =n ~n] (%, v, ]

............ 2.7
Xy Ya
.xﬁ Yo |

At any point @,z) in the element, the 2x2 Eﬂ matrix can be

evaluated and inverted, putting
-[3] =[5 Fa
Jal Ja2

Then from egn. (2.6) , one gets

|
J
5

S Pies

or
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3 = E g + ia
an :‘% 4
=T, 3+ Jas g chreretseenenne ceeseeee..2.8
N k] 3 I
Substitution of egn.(2.8) into eqgn. (2.5) gives
" - =
[B]m (0.25) J;;} + Tz 3 0
2 an . .
0 S
ud gagq
%43 + %zg i&ﬁ + aag.
. 98 an, a8, 31,

k1l ml mn kn 0O ¢ 0 O
0 0 0 0 kl ml mn kn

In orvder to simplify the numerical integration , the matrix B

is divided into two parts as follows;

[8] = [BJ + [B;]

where
[B,]n a, 0 ] k1l ml mn Xn 0 0 0 0
é 0 Jai 0 0 0 0 k1 ml mn Xn
SR e e 2.9(a)
[ o
[Ba]= (0.25) |Ja O kX1 ml mn kn O O O O
0 T.llo 0o 0o o0 k1 ml mn kn
“'Er;‘ P et .2.9(b)

Carrying out the differentiation in eqn.(2.9) gives:
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[Bi]: (Oo25) “"‘15“ lii‘ ﬂj:‘ ”"n:fig 0 0 O 0 T
0 0 0 0 “13;. 131; nff,‘. ““'nx:f:g‘

""lij;, lJ@i nJm ““ng; "‘"lJﬂ lJ“ nJ" ””nJ“

and
[B,J = (0.25) [-xJ, -nJ, mJ, kT, 0 O O 0O
0 0 0 0 ~kJ, ~mTyy ™aa kJaa
~k, T, nk, kT, kI, -mI, mi, ki

2.4 STRESS-STRAIN RELATIONSHIP

The stresses and strains that contribute to strain energy of
the element are those in the X-Y plane. The stress and strain

vectors are

Qn €nn
ET]“ Ty [gji' Syy et ee s e .2.11
Tay 3’;«7‘

For steel and concrete elements, the increment of stresses

and strains are related by the relation

[ac]= [Kpe] ooiiiii 2002

where [KS-} is given by

[K$]= E (1-9) 1y 0

s . i AR o R

Lhaw)li-2w)

Y. 1 0
Y
0 0 1 = 2%

B

e &L!”N)m
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where E is the vyoung's modulus of steel or
concrete(tangential) and » 1is the poisson's ratio of steel

or concrete.
2.5 FORMULATION OF ELEMENT STIFFNESS MATRIX

In the non=-linear analysis, the load is applied in
increments. Assuming that the application of an increment of
load, EAPJ , to the nodes of the element results in
increments of displacement E:;:;SJ, strain [5&@], and stress Em‘}
respectively. The application of a small virtual nodal
displacement gfl,pronC@s additional strains at any point

within the element [Q*], which are given by:

[e*)= (B3] R 5 K

Assuming that the value of the small virtual nodal
. R . *] ,
displacement 1is small enough such that the change in Esnlls
negligible, the additional strain energy stored in the

element during the virtual displacement can be written as :

Increase in strain energy = J\[e ]EQU'J dy
}Lsﬂ[a]g;g[ga] dv
J [:Sﬁ ) [<](2) [+8] .av

The additional external work done by the nodal incremental

i

¥

load vector [aP]is given by

Additional external work = Egéj [aP]
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Eguating the additional external work to the increase in

strain eneryy yives

i

DT 0 (I BTy ooz 26
(<] (51

[ap)

il

where [KJ , the element stiffness matrix, is given by

x]= | (eI 09g 31 v,

Wik,
The above eguation is used with four point Gauss numerical

integration to obtain the element stiffness.
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CHAPTER 3

FINTWE ELEMENT ANALYSIS IN CONCRETE STRUCTURES

3.1 INTRODUCTION TO DISPLACEMENT FORWULATION

In many phases of engineering the solution of stress and
strain distribution in elastic continua is reguired. The
problems faced may range from two dimensional plane stress or
plane strain distribution , axisymmetrical solids , plate
bending and shells to fully three dimensional solids. In all
cases the number of interconnections between any finite
element isolated by some immaginary boundaries and the
neighbouring elements 1is infinite. The problem of
discretizing the above infinite connections 1is achieved

through the followings.

(a) the continuum is separated by immaginary lines or

surfaces into a number of finite elements.

(b) The elements are assumed to be interconnected at a
discrete number of nodal points situated on their boundaries.
The displacements of these nodal points will be the basic

unknown parameters in the discrete structural analysis.

(c) A set of functions is chosen to define unigquely the state
of displacement within each finite element in terms of its

nodal displacements.
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(d) The displacement functions now define uniquely the state
of strain within an element in terms of the nodal
displacements. These strains together with any initial
strains and the constitutive properties of the material will

define the state of stress throughout the element.

(e) A system of forces concentrated at the nodes and
equilibrating the boundary stresses and any distributed loads

is determined , resulting in a stiffness relationship.

Clearly a series of approximations has bkeen introduced.
Firstly , it is not always easy to ensure that the chosen
displacement functions will satisfy the requirement of
displacement continuity between adjacent elements. Thus the
compatibility conditions on such interface lines may be
violated. Secondly , by concentrating the eguivalent forces
at the nodes , equilibrium conditions are satisfied in the
overall sense only. Local violation of eguilibrium conditions

within each element and on its boundaries will usually arise.

3.2 FINITE ELEMENT MESH

The choice of element shape for specific cases leaves nuch
choice to the skills of the researcher or analyst. The degree
of approximation which can be achieved obviously depends on

the element shape assumed and the displacement function

presuned.
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Three different elements such as sub parametric , iso
parametric and super~-parametric elements are available for
use in the finite element analysis. Out of these three

available elements isoparametric elements are widely used.

Therefore in this thesis the conputer program developed uses
only isoparametric elements.

The use of triangular , rectangular and guadrilateral
element; is common in the finite element analysis of
reinforced concrete members. Using guadrilateral elements ,
reinforced concrete members , in general , can be modelled
using a smaller number of elements than with the use of
triangular or rectangular elements. Thus the choice of

quadrilateral shape elements are preferred in this analysis.
3.3 PROPERTIES OF CROSS~-SECTION

The analysis of reinforced concrete members is essentially a
three dimensional problem. But when these members are
subjected to in-plane loads only , the analysis can be
reduced to a plane stress in nature , and the plane finite

elements can be used to model the concrete and steel.

Consider a beam cross=~-section having the following
properties.
The width of the section = P

Diameter of reinforcing bar =D
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No. of reinforcing bar = m

The thickness of the concrete and steel elements which has
the same space co-ordinates can be obtained by transforming
the circular section of the reinforcing bar into a
rectangular section. The following properties are used to
determine the width and depth of the reinforcing bars of

diameter D.

(a) The cross~sectional areas are egual.

(b) The moments of inertia remains same.

If b and h represent the equivalent rectangular sectional

width and depth , then

124&2 mbh ‘QCQQC!'.IQIQQ'OQ'QQOOQ3.1

TTD4 ﬁbh3 'll’..it.#t‘lt&ié.*tt.l3‘2

P

4 7

The above eguations yield to

o
i

3p/2 P I

o
i

*WD/ZH .."Q...".O‘C.i"."3.3.4
3.4 CONSTITUTIVE RELATIONSHIP OF CONCRETE

A biaxial constitutive relationship and a suitable biaxial
fajlure criterion is assumed in the present analysis when the
concrete is subjected to a biaxial compressive stress state.

When the stress state changes to purely tensile or only
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compressive , then a uniaxial behaviour is considered.
3.4.1 BEHAVIOUR OF COHCRETE UNDER UNIAXIAL TEHNSION

The tensile strength of concrete is approximately ten percent
of its compressive strength. But its contribution is usually

neglected in practical designs.

The stress-strain curve is linear upto ninety percent ofthe
failure load. This suggests that a linear curve can be
assumed for concrete in tension without any serious errors

resulting from this assumption.
3.4.2 BEHAVIOR OF CONCRETE UNDER UNIAXTIAYL COMPRESSION

The stress-strain curve is non linear under the action of
uniaxial stress system, The parameters associated with the
curve depends on many variables such as compressive strength
, type of cement , coarse and fine aggregates , mix
proportions , gradings of coarse and fine aggregates , water
and cement ratio , size and shape of the testing specimen ,

the rate of loading and the age at loading etc.

Many proposals exist for the compressive stress-strain
relationship , by many researchers and analysts. A review of

these relationships are presented by Popovics(57 ).

Most of the proposed relations predict sufficiently closer
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results in the elastic range. However ,considerable
differences result in the descending branches after the
maximum stress., It was also observed(57) that the stress-
strain curves obtained from concentric compression and
flexural specimens were not the same. The maximum strengths
obtained from flexural stress system occured at much larger
strains than obtained from uniaxial compressive stress
system. Hence the use of most of the stress-strain curves
obtained through uniaxial conpressive stress state is

conservative when applied to points in flexure.

Saenz's( 5 ) proposed formula , provided below , is
incorporated in the present analysis , for concrete subjected

to compressive stress state.

Ee
U-= (..i.Ql0-.."C.OQ‘I*G.G.O'!‘Q'..OOO.%CC‘ 060.".3.5
- £ . - € &
1+ (R + Rg 2é% (2R 1)(§g + R(QQ
where
Re(RF- 1) - 1
R = titeeooess N
(Re_"' 1) Re
R,= E/Es
Rc = €t/€0
Es xﬁ—ﬂ/ao
€ = strain
U = stress
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€o = strain corresponding to maximum stress
Je = maximum stress

€p = maximum strain at failure

Up = stress at failure

E = initial tangent modulus

i

Es secant modulus

In the absense of any experimental values of £o and E ,

Saenz suggests the following formulii for their values.

.5 - e
€o = 10 #a[fl (31.5 - 4[f]) ...ttt 306
E = 10°JE / (1 + 0.006ff ) teverrvenuennnnnn 3.7

The differentiation of eguation (3.5 ) will provide the
nacessary equation for the tangent modulus at any strain.

e %
E(1+C‘(é~°)-202(§3 )

3
ghx{‘)‘g: sae:euncaa---oeévatchmcncontmgo -.¢e-.‘.‘no-3.8
- (& £
1+ Cg.é(':.o C‘(eﬁ) + Ca. é"o)
where
Cl = 2R-1
CcC2 = R
C3 = R+Re-2
3.4.3 BTAXTAL BEHAVIOR OF CONCRETE
In many occasions concrete is subjected to a tri - axial

stress system. The displacement or deformation in any one

direction 1is a function of the applied stresses and
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deformations of all three directions. However , usually
triaxial effect 1is not too significant in all three
directions , and the use of biaxial stress system closely
predicts the behavior of the member considered. Reinforced
concrete exhibits a higher ultimate loads when subjected to
biaxial stress system , thereby necessitating the use of
biaxial behavior of concrete in case of a more accurate

analysis:

The stress-strain relation in a biaxial stress state is

expressed by the following formula

T =eEg/ (1 - P I8

where

U = stress in the direction considered

€ = strain in the direction considered

& = ratio of the principal stress in the direction

orthogonal to the principal stress direction

considered
E = initial tangent modulus in uniaxial stress system
» = Poisson's ratio in uniaxial stress system
Liu , Nilson et al(l12 ) suggested a non linear stress-strain

relationship under biaxial compressive stress state.

T s EE ..3.10

E .2 e Y
RETVR T Y S S ) &
(1-»=) (%wa) €?)€ 4(&? }
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where

'Gp = the ultimate strength of concrete under biaxial
compression

ﬁ? = the strain at maximum stress for concrete under biaxial
compression

¢ can be written in the following form also ,

G o= L &k . ..3.11
v ) L oafo VB & +fE
( >[i%(xmwa '§; 2 ‘Ep *(éP) ]

Es==§l== secant modulus at ultimate laod.

€p
It is best to use experimentally obtained values for wmodulus
of elasticity and Poisson's ratio. In the absense of such
datas , the following values may be assumed in the uniaxial

stress system.

Poisson's ratiow= 0.2

%."
E = 33wz[fg P T

where

w = unit weight of concrete in lbs. per cu.ft.

a2

i

ultimate cylinder strength of the concrete in uniaxial

conpression in psi.

Based on Liu(26 )'s experimental datas and results Liu and
Nilson (12 ) put forward the following expressions for the
calculation of ultimate strength @ and strain Epat maximum

stress of concrete under biaxial compression.



A¢0.2
0.2¢ 4£1.0 = 1,29
1.044$5.0 = 1.2% fe¢
#75.0 =1 (1+
=%
Gy =
and
A% 1:0 @p= 0.0025
&P 1.0 Sp= (=500 + 0.550p)nl0
where
3.4.4 ORTHOTROPIC

= (1 +%/ (1.2 =R ) )

l,/&bﬁasw cevonens
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cee...3.23(a)
veeess3.13(b)
........... e..3.13(c)

.3.13(d)

ultimate strength of concrete

in uniaxial compression.

b

Up = Larger principal stress in psi.

STRESS~STRAIN RELATIONS

The constitutive equations for an orthotropic elastic

material under biaxial

form.
T
Ca
T3
.
where
Ey Eq
B Vg

I

>" ?”5’9‘ -]
Ay )‘*Qa./g‘ o

o o 8.8g ;

Bi148g 428353,

1,2 respectively

1,2 respectively.

o]

L o

comnpression will assume a following

the uniaxial tangential modulus in the directions

Poisson's ratios of concrete in the directions
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- cese..3.15

In the derivation of egn. (3.14 ) it was assumed that the
stiffness in perpendicular directions are caused only by
poisson's effect. The experimental results show higher values
of stiffnesses 1in perpendicular directions if poisson's
effect alone is considered under a biaxial state of stress.
The canerete confinement is the prime cause for the

additional stiffness.

To account for the concrete confinement , effective tangent
modulii have to be calculated and used in an uncoupled form

of the constitutive relationship.

T B © ] &)
G |- e Eib e ea N T X -
s o © Gwpllen

where

Ey + Eap, = effective tangent modulii in directions 1 and 2.

Gy, = shear modulus for biaxially stressed concrete.

Differentiation of egn. (3.11) vyields

6 z
i o)
s E2 T e e \212
de (;NM@(\ [‘ +(T:“};§“§;mz’)§? ””(é*?\)]

Egn.(3.17 ) can be written to separate the poisson's effect

from concrete confinement.
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Eb = E§ L

..... P C I
ety
where

By = = [”'(%).1 mmmau...”..mls
o -9+ (4]

Now the constitutive egn.

of the biaxially stressed concrete
can be expressed , similar to egn.(3.11)

as
= aarm
I@“ > S NN o ,
' ]
Ja| = Ny 3L§%5 © 3.20
. i’ ' '
U3 © o Eip » Eab
g%%; A gg; ‘%%&g};sﬁ;
where o 4

E
N . ‘ zb 3021
B’

with E,b' and E&b' obtained replacing € by ¢, and €, in eqgn.
(3.19).

Egn.(3.20 ) can be used for biaxial tension and tension

conpression cases by simply replacing Elb' , E2b' with the

suitable tangent modulii.s
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3.4.5 PROYVERTIES OF STEEL

Reinforced steel is usually present in the form of slender
bars in most reinforced concrete members. As a result we need
to take only the uniaxial tension or uniaxial conpression in
the failure state. Biaxial state of stress can be ignored in

these circumstances.

The present analysis assumes the following simplified stress-

strain relationship expressed in fig 14 .

Beyond the yield point , the tangent modulus is zero. However
, a small value is assigned to it to eliminate any
possibility of the occurance of singularity and is assumed to
have a value equal to the initial strain hardening modulus

when the principal strain exceeds the strain havdening limit.

3.4.6 FATLURE CRITERION OF CONCRFETE

There exist many different failure criterions such as the
maximum principal stress or strain criteria , maximum shear
stress criteria , internal friction , volumetric stress

modification criteria etc.

When the concrete fails under uniaxial or biaxial compression
, the maximum principal strain theory for compressive failure
criteria looks reasonable and its application is straight

forward. For uniaxial tensile stress failure , the maximum
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principal stress theory seems more suitable. These two

failure criterions are ewployed in the present analysis.

The maximum stress theory implies that the failure occurs
when the maximum principal stress reaches the uniaxial
strength at failure. This theory agrees very well with the
tensile failure but the results don't tally when applied to
uniaxial or bilaxial compression failure. When the tensile
strengthncriterion was applied to flexural members , the

experimental data gave a conservative result.

It was also observed that high tensile strain gradients exist
in the tension zone. Therefore it could be concluded that the
choice of modulus of rupture of concrete f presents
realistic values than uniaxial tensile strength criterion.
The value of f,. could be evaluated using the following

expression.

]
f 20‘008fc +280 (psi') .QQ..OQG...OIQC‘I.§3.22

r

The maximum strain theory implies that the concrete fails in
compression when it reaches an ultimate strain of 0.003
in/in.This value is true only in the case of uniaxial
compression., Under the action of biaxial stress state the
limiting strain is affected by the principal stress. When the
principal stress ratio becomes larger (> 0.5) the limiting

strain value is considerably reduced. It may be concluded
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from the above reasoning that the nse of single ultimate
strain would not be the best choice as the failure criterion

of concrete.

3.5 STEEL CONCRETE INTERFACE BEHAVIOR

3.5.1 FORCES AT INTERFACE

The bond stress is defined as the shearing force acting
around éhe circunmference of the bar parallel to its
longitudinal axis. In the case of a deformed bar , nominal
diameter is considered in the calculation of the bond stress,
Adhesion and friction contributes to the bond stress in the
plain bars. Usually the slip between the concrete and steel

along the interface is very much considerable.

Adhesion and friction are of secondary importance in the
contribution of bond stresses in the deformed bars. The
compressive reactions on the lugs exerted by the concrete
contributes a major portion in providing the bond stresses.
These compressive forces create the shear stresses on the
outer surface of the concrete sheath which fills the space
between the lugs. The radial component of the reaction at the

lugs significantly increases the bond resistance.

During the early stages of loading , very little slip or no
slip occurs between the steel and the concrete. As the load

is increased the cracking and breaking of bond causes the
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slip to become large. The longitudinal bars , in the meantine
prevent any sliding movement of the cracked surfaces

¢

causing a dowel action wachanism to occur.

Ngo and Scordelis used a special type of element called "
Linkage Elemaent "™ to portray the interface effects. Linkage
elements have no physical size.It is introduced in between
steel and concrete nodes where they occupy the same positions
in the géace. The linkage element couwprises of two orthogyonal
springs with the longitudinal spring simulating the bond
stress~-slip action and the transverse spring modelling the
dowell action mechanism. The horizontal and vertical
stiffnesses of these springs are functions of the type of
concrete , the amount of concrete cover , bar type and

dimensions and the bar spacing.

The dowel action mechanism and the bond stress-slip behavior
are interconnected. Because of lack of experimental works and
datas on this area it looks at this stage to consider these
two effects uncoupled. Therefore in the present analysis
much attention is given to bond stress-slip phenomenon and
the dowel action is simplified by assigning a constant

arbitrary value to it. '
3.5.2 STIFFNESS OF LINKAGE ELEMENT

The following expression represents the relationship between
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the spring forces and the spring deformations.

where

k = spring stiffness matrix

)
|

= spring deformation vector

Pt
i

spring force vector

The deformation vector consists of two components , first
being the bond slip measurement for the longitudinal spring
and the second being the dowel displacement value for the

transverse spring.

The following expression evaluates the deformation vector.

d =dg - dg

where

dg = displacements of the steel node

d, = displacements of the concrete node

In the matrix form the bond force , deformation can be

written as

Fy Ky O dy
: 'Qt%..l.‘.‘&’ QQQQQ 0..00!!3.24
F, 0 K, d,
where
Fy = horizontal spring force
F, = vertical spring force
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horizontal spring deformation
vertical spring deformation
horizontal spring stiffness

vertical spring stiffness

assume that the co-ordinate axes of the spring makes an

angle 8 with the global co-ordinate axis system , then

le ’ - s FH
F -8 C F

1 = v

y Q'i.tt’.cl(‘t‘&'tzizs
sz C -5
.Foy L 5 C
where
c = cosé@
s = sine
Fix'Fiy are the force components at node i in the global axes
system.
Similarly
dg| [¢ -s ¢ s] dqiy
d s =-c -5 c d

v 1

y ............ . ‘...3.26
dox
2y

wvhere
dindiy = displacement components of node 1i.

The global stiffness matrix of the linkage element can be
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obtained by combining egns. (3.24),(3.25) and (3.26).

v

-C 57 kv Ofll=c =~s c s]
-8 ~C 0 kH 8 =Cc -8 C
gz .0.0‘0‘.08&3027
c -s
s c |

k

'y and kg are the tangential modulus values of the non linear

bond stress ~ slip , dowel -~ deformation relationships.
3.5.3 BOND STRESS~-SLIP RELATIONSHIPS

A typical bond stress-slip relationship is shown in fig 16
. After the occurance of maximum bond stress the curve
divides into two different parts. The bond stress remains
essentially constant for an interior bonding area. The
formation of longitudinal crack between the bar and the
concrete cover in an exterior bonding area causes the bond

stress to fall to zero.

Bressler and Berto(62 ) carried out tests on an axially
loaded specimen at a lcad level of 32 psi at the protruding
ends of the bar. Nilson , using these experimental datas and
the method of least squares,suggested the following third

degree polynomial relationships between bond stress and slip.
u = 3.606%10%3 - 5.356%10%a% + 1.936%107%a% ....3.28

The incremental tangential modulus is obtained by the
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differentiation of egn.(3.28).

du/dd = 3.606%10% - 10.712%10%d + 5.936%10%%a%2  ..3.29
where

local bond stress in psi.

o
i

= Jocal bond slip in 107% in,

o)
i

Houde and Mirza tested a large number of concentric tensile
specimens and beam ends of different sizes which were
reinforced with steel bars of varying diameter. They also
considered the effects of concrete strength , steel stress

levels and came out with the following expression.
u = 1.95%10%3 - 2.35%10%d2 + 1.39%1012a@3-0.33%101%4%.....3.30

The differentiation of egn. (3.30) provides the necessary

incremental stiffness of the longitudinal spring.
du/dd = 1.95+%10% -4.70%10%a +4.17%1012@2 -1.32%101%a3 ..3.31

The initial spring stiffness is obtained by the substitution
of d = 0 in egn.(3.31) and has a value of approximately 2.0
psi/in. This value agrees with the experimental values

obtained by Nilson. :

The bond stress—-slip relationship expressed by eqgn. (3.30) is
valid for a concrete strength of 5000 psi.. Different

concrete strengths are incorporated in the expression by
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using a multiplier ( ftc/SOQO)l/z.

The longitudinal stiffness of a spring in a particular cross-

section is evaluated by

ky = du/dd*m*L*D I TR 1
where
m ==

the number of bars in the cross-seciion
L = the length over which each spring acts

D diameter of the bhar

i

In an incremental approach , adopted in the present analysis
, a larger increwment could generate an increased spring
stiffness. The spring stiffness can be brought to theoritical
values only if the increments are kept small , leaving an
uneconomical procedure. Instead Nilson proposed an average
stiffness for use in an increment. The average stiffness is
calculated by predicting a new slip value for the next

loading step. That is

dpyr1=dpte(dp=dp-q) o0 3.31
where
dh4+1= the value of slip at the end of loading step n+1

d, = the value of slip at the end of loading step n

d = the value of slip at the end of loading step n-1

n-1

c = constant.

The assunption of 0.7 for c provides better results(48,50).
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3.5.4 BOND FATLURE CRITERTIA

From the bond stress-slip curve shown in fig 16 one can
observe that after a specific slip value, the curve starts to
descend giving a nagative gradient. Therefore a limiting
value of slip must be enforced to avoid any computational

difficulties associated with the negative slopes.

Splitting failures dominate in most of the bond failures in
concrete when reinforced with deforwmed bars. As the loads arve
increased oblique cracks making more than 45 degrees with the
longitudinal bar axis are formed in the concrete. These
cracks generate from the tip of the lugs and spread towards
the main crack forming hollow truncated cones around the bar.
Experimental observation shows that the radial forces are
much ¢greater than the bond stress values. These yreater

radial forces burst the surrounding concrete.

Two different failure criterias are developed for 1link
elements depending on their locations. Near the open faces
the confinement of concrete is little but high splitting
forces act on those regions. As a result a wedge of the
concrete is pulled out and the relative movement of the steel
and concrete far exceed; the limiting bond slip value with
the associated spring stiffnesses falling to zero. When a

steel element lies far away from the open face, the

confinement prevents the growth of inclined cracks and the
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early formation of wide cracks. Even after the bond slip
exceeds the limiting value, the concrete is capable of
sustaining the forces exerted by the lugs. Therefore the
interior springs remain active even after the limiting slip

value but fails totally after the formation of wide cracks.
3.5.5 DOWEL ACTION

cnce a crack is formed, the shear force across a crack is
trangsmitted by the uncracked concrete section, aggregate
interlock of cracked portion and the dowel action. The
contribution of the dowel action becomes predominant when the
crack width increases and the relative movement of the

cracked surfaces is measurable.

The surrounding concrete exerts compressive or tensile forces
on the bar perpendicular to the bar axis. The distribution of
these forces are shown in fig 19 . The dowel springs
representing the dowel actions will exhibit different
behaviour depending on whether they are located in the
tension zone or conpression zone. Those springs in the
tension area represents the normal forces created mainly by
the adhesion between steel and concrete. Houde and Mirza(54)

approximated the normal tension behaviour by a linear tensile

stress-strain behaviour of the concret cover.

The presence of stirrups , position of reinforced bars and
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geonelry of the cross-section usually affects the behaviour
of compression springs denoted as €y and C, in fig 19 . The
springs situated inside the menmber arve goenserally stiff, but
their exact behaviour is not understood thus necessitating
the use of an approximation. The assumption of a constant
spring stiffness value may be a good start for the analysis.
Ngo and Scordelis(3) employed high values for their analysis.
Nilson (48) observed that the use of high values prevents the
formation of longitudinal cracks in concrete in the computer
model. The observation lead him to use a low value at the

start and eventually reducing that to zero.

The concrete in the cover matrix is not bound by any
reinforcement and therefore is usually weak. Early splitting
failure of the concrete in the cover area reduces the
stiffness of the dowel springs connected to the cover

concrete.

Dowel action behaviour can be analysed by using the finite
element method. Since the present analysis considers the
general overall analysis of the structural member, simple
assumptions of the dowel springs are considered. A low
constant stiffness value is assumed for internal and cover

dowel springs.
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3.6 STLRRUPS

Stirrups enclose over 90 % of concrete in a structural
member., This enclosure creating a confining effect increases
the compressive strength and shear strength of the concrete.
Very less effort was rendered towards the effect of stirrups
than the main reinforcement by many researchers., As a result
of lack of data it is very difficult to model the concrete

stirrup interaction.

Stirrups transfer the shear forces mainly through developing
axial forces in it. Therefore the dowel spring effect
associated with any reinforcement can be ignored. The
interaction may then be represented by only lengitudinal bond

spring alements acting parallel to the stirrup axis.

The inclusion of longitudinal bond spring elements increase
the number of nodes. When the primary forces in a member are
of shear nature, this method of modelling the stirrup
concrete interaction could be recommended. The use of this
method requires a suitable mesh configuration. When a general
analysis is performed further simplifications seem logical.
The present analysis considers only the general behaviour and

therefore the following considerably easier representation is

made.

The stirrup is represented by a four degree of freedom bar
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elements, not associated with bond or dowel springs. Letls
assume that the axis of the bar element make an angle & with
the global axis. In the local co-ordinate system the

stiffness of the bar element is given by the following

matrix.
kb = ASES/LS “ASES/LS
e s enas e cees s - 3.32
:As?s/hs AgEg/Lg
if reprasants the relevent transformation matrix, the

stiffness matrix in the gleobal system Ky can be obtained by

the following equation.

1
Kp = rkpX
c o ALES/Lg ~a B /T | [e s o o]
s 0 ~A Eo/Lg A E,/Lg o 0 ¢ s
Kp =
0 o)
-—.0 SJ QQ.CIDIO‘.".G3'33
where
Ag = cross-sectional area of the stirrup.
Eg = modulus of elasticity of stirrup.
c = CO0s8
s = sin@

The above eguation provides the following stiffness matrix

for the stirrup bar,
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- 2. 2 -
C cs -C -CS
K = EA E./L ] cs  s? cs  -s?
tetel My ’
02 cs 02 cs e e e e e e e et e 3.34
-CS -82 cs 32
. e

The location of the bar elements can be in between any two
steel nodes, or concrete neodes or steel and concrete node as

shown in fig 21.

Undar the action of a stress system, the stirrups transfer
stresses to the surrounding concrete. When the concrete is
uncracked, however , the stresses in the stirrup are not as
high as in a bar element undergoing the two displacements at
the ends only. Moreover a bar element having one node at the
upper steel element and the other node at the lower steel
element can c¢reate an arbitrary truss-like rigidity.
Therefore it would be advisable to idealise a stirrup through
a few bar elements connected to interior concrete nodes. This
idealigation would provide improved behaviour in the computer

model.
3.7 CRACKING

Many microcracks exist in the concrete even before any
1]

external load is applied to the concrete. The failure

criterion consisting of the stresses and strains associated

with single microcrack is very hard to formulate. The use of
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energy concepts of failure mechanism has been proposed by

Kaplan(65).

When an external lcad is applied to the concrete energy is
absorbed through elastic deformation and in the formation and
propagation of the microcracks. Irwin(66) considers the
strain energy release rate is directly connected with the
propagation of microcracks and measures the stress level

surrounding the crack.

In the finite element analysis once the failure of the
concrete element occured , the strain energy stored in the
element is released and is assumed to be redistributed into
the remaining structure. The energy level, therefore, may
rise in the surrounding elements sharply causing some new

elements to crack under the same load.

Consider the effects at loading step n. Let the nodal forces
and the nodal displacements of the element at loading step n
be represented by P, and D, respectively. For equilibrium of

the uncracked element,

P,=K*D N I 1
where
= the stiffness matrix of the uncracked element at the end
of the loading step n.

D = glement nodal force vector and element displacement

P en

nl
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vactor at the end of lcading step n.

If an element cracks at the end of the loading step n, the
original element stiffness is reduced to a lower stiffness
natrix denoted by gnr. Then the nodal forces fﬁ'that could be
allowed with the associated stiffness matrix Knr is given by

the following eqguation,

v

*
?n=’}sn'*l?en .tnouoo.oaicn3936

The difference between the two nodal forces will be

redistributed in the n+l loading step.

F _ - r - r
_Pn+1 —_Pn __Pn - (Kn gn )*Qerl .-000000-003-37
where
fn+1F = redistributed load vector to ke redistributed inthe

n+l loading step.

In a given lcading step released nndal force vectors Pn
will form another self-equilibrating force system . This
additional force system will be included in the n+1 loading
step nodal forces Ppiq - During a locading step ifthese
redistributed nodal forces create additional elements to
crack, the crack pattern is called an unstable crack. By
using an iterative technique in a lcading step, the structure
can be reanalysed to obtain a stable crack pattern. 1In
otherwords the iterative process within each loading is

terminated until a a new structure stiffness is formed which
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causes no new elements to crack.

The iterative technicgue within a loading step seems costly in
the computer time and could be avoided if small load
increments are assumed in the loading process. Under small
load increments, the number of elements cracking in that
particular loading step is small. Thus the redistributed

forces could effect only small changes in the stress fiel

When an element cracks it loocses its stiffness perpendicular
to the crack, but resists the forces parallel to the crack.
The direction of the crack is given by the principal stress
directions representing the failure stress values. The
formation of the crack also changes the material property of

the concrete from isotropic to orthotropic.

If the direction 1 is always assumed to be perpendicular to
the crack direction then the elastic modulus E; =0. After the
crack is formed, and the associated elasticity matrix 1is

given by the following matrix.

0 0 0
E= |0 E, L0 2 3.38
0 0 0

Obviously this is in the element crack direction co-ordinate
system. Using the transformation, the cracked element

stiffness is obtained as the following matrix in the global
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E = Ez 52~2 c4 *%c3 G I 2=
I*s3c wsc3 8262

A similar approach 1s adopted in the treatment of the crushed
concrete elenents, When the greater principal straln reaches
an nltimate value of 0.003, a failurre direction is defined
by the corresponding principal direction. The crushed
concrete @lement is able to transfer siresses in a direction

parallel to this principal direction, but nnable to transfer

forces perpendicular to this principal direction.
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CHAPTER 4
AMALYSIS OF RESULTS
4.1 INTHODUCTION

The computer program used (the input can be found in the

appendix ) has the following capabilities.

(1) Simulate the cracking of concrete without eliminating the

cracked elements from the menber.

(2) Utilise the increase of compressive strength of concrete

under biaxial stress state.

This program was used to analyse one singly reinforced and
one doubly reinforced simply supported beam for the entire

loading history from zero until failure.
4.2 SIHGLY REINFORCED SIMPLY SUPPORTED BEAM
4.2.1 DESCRIPTION

The beam has a width of 12 inches , depth of 20 in. and is
reinforced with 249 bottom bars. The ultimate strength of
concrete is 4000 psi and the reinforcing steel has a yield
strength of 40000psi. The total length of the beam is 130
in.The beam is loaded by two point loads each of which is

situated 21 in. from the midspan (Fig.22).

Since the keam is symmetrical about the vertical centerline,

one half of the beam is analysed.The concrete mass is divided
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into 88 rectangular elements,.The reinforcing steel bar is
reprecsanted by 11 rectangular stesl eleuwents. 24 link
elements are introduced in between the vaspective concrete
and steel nodes. The beam has 120 nodes and each node has 2
degrees of freedom. The circular cross-section of the bars
are transformed to equivalent rectangular sections using the
formulae presented in section 3.2. The input data are

reduced to a beam of unit width.
4.2.2 IHTERPRETATION OF RESULYS

Choice of lcading increments affectsthe finite element
analysis of reinforced concrete structures. Larger load
increments tend to create divergence, whereas smaller
increments increase the computer time and of course the cost
of the analysis. Numerous trial runs were made to obtain the

end of elastic range and the associated applied load(11201b).

The loading increments of 100 lb. was set after the
application of the initial load which terminates the elastic
range. Before any load increment is applied to the structure,
a stability check is made to ensure that new cracks do not
form as the nodal forces are redistributed. This procedure
was repeated until the gailure state of the beam is reached.
The following obhservations were made from the computer output

and the load deflection curve and bend force distributions

are plotted.
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4.2.2.1 FLASTIC RANGE OF TOADING

1. Concrete, steel strosses, bond stresses and deflection
obtained for the initial load of 1120 1lb. assume elastic
propecties of the beam and therefore correspond to the
elastic range of the beam behaviour. The redistribution of
nodal forces of the cracked elements and the nonlinear
behaviour of concrete are taken into consideration in the

subsequent application of leoad incremnents.

2. ‘The longitudinal c¢oncrete stress and the associated

longitudinal strain vary linearly across the cross—-section.

3. The shear stress distribution across the cross-—-section

varies parabolically and agrees well with the elastic theory.
4. Maximum shear stress values are oboerved at the supports.

5. A gradual increase in longitudinal steel stresses are
observed as we move from the support to the center of the
beam. The longitudinal stress values are almost same in the

constant moment zone area.

6. The bond force between steel and concrete is very small in
all the steel elements. The assumption of perfect bond
between steel and concrete in the elastic range seenms

reasonable.

7. The deflection of the beam at midspan is 0.0349 in. which
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is close to the computed value given in reference 17(0.0355).

4.2.2.2 CRACK TNITIATION AND PROPAGATION

1. One primary crack is formed in the element 73 inside the
constant moment zone at a load of 1120 lb. The principal
tensile stress in the concrete elements next to the steel
elements are close to the modulous of rupture which has a

value of ‘650 psi.

2. As the applied load increases the crack propagates upward
and at a load level of 1220 1lb. Three additional cracks

appear in the adjacent elements.

3. As additional elements crack the tensile stresses
previously carried by these elements are now transferred to
steel and the steel stresses increase significantly. The
increase is almost 100% at the load level of 1420 1b. as

compared to the values at a load level of 1120 1b.

4. As the crack propagates towards the compression zone, the
principal tensile stresses of the concrete elements at the

tip of the cracked elements decrease.

i

At 1120 1b. fe 416 psi.

At 1320 1b. fy = 345 psi.

5.The strain in the uncracked concrete elements which lies in

between the cracked elements decrease conpared to the values
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they achievad at the elastic range.

6. The shear stresses in the concrete increase as the load
increases and with the c¢rack propagating upwards. At 1420 1lb.
the concrete shear stresses increase by 30% in the uncracked
zone with respect to the values corresponding to the initial
load. The remaining shear stresses carried by the cracked

elements are very small.

7. In the elastic range , approximately 2% of the shear is
carried by the steel element. As the crack forms, this value

increases to nearly 10%.

8. A significant increase in bond forces are observed around
the cracks. The bond forces have an average value of 50 psi at
1120 1b. applied load. At the first crack under the load level
of 1220 1lb. the band force is increased to 300 1b., whereas
the corresponding value in the uncracked vicinity is only 35

1b.

9. A better co-relation between the longitudinal steel
stresses and the crack pattern is visible at a lcad level of
1620 1b. High steel stresses occur at the crack and lower
stresses result in between the cracks. The steel stresses are
evenly distributed with high values at the cracks and
slightly lower values in between the cracks as the failure

load is approached.
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10. Bond link elements fail at the high steel stress

locations.
4.3 DOUBLY REINFORCED SIMPLY SUPPORTED REAM
4.3.1 DESCRIPVION

The beam has a width of 6 in., depth of 12 in. and is
reinforced with 246 bottom bars and 2#4 top bars. The
uitimaté strength of the concrete is 4000 psi and the
reinforcing steel has a yield strength of 40000 psi. The
total length of the beam is 120 in. The beam is locaded by two
point loads each of which is situated 18 in. from the

midspan (Fig.27).

Since the besam is symmetrical about the vertical centerline,
one half of the beam is analysed. The concrete is divided
into 100 rectangular elements. The reinforcing steel bar is
represented by 20 rectangular steel elements. 40 link
elements are introduced in between the respective concrete
and steel nodes. The beam has 143 nodes and each node
accomodates 2 degrees of freedom. The circular reinforcing
bars are transformed to equivalent rectangular sections using
the formulii presented in section 3.2. The input datas are

reduced to a beam of unit width.
4.3.2 INTERPRETATION OF RESULTS

4.3.2.1 ELASTIC RANGE OF IOADING
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1. Concrete streswes, steel stresses and deflections obtained
for the initial load of 580 lb. assume elastic properties of
the beam and thervefore corresponds to the elastic range of
the beam behavior. The redistribution of nodal forces of the
cracked elements and the nonlinear behavior of concrete are
taken into considevation in the subgseqguent application of

load increments.

¥

2. The longitudinal concrete stress and the strain vary

linearly across a saction.

3. The shear stress distribution across the cross-section
varies parabolically thus agrees well with the elastic

theory.
4. Maxinmum shear stresses appear near the supports.

5. A gradual increase in the longitudinal steel stresses are
noted from the support to the center of the beam. The
longitudinal stresses approach a constant value in the

constant moment zZone.

6. Bond forces between concrete and steel appear small in all

the steel elements. The existence of perfect bond between

¥

steel and concrete in the elastic range seems justifiable.

4.3.2,2 CRACK INITIATION AND PROPAGATION

1. One primary c¢rack is formed in the element 81 inside
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the constant moment zone at a load of 580 1bh., The principal
fensile stresses in the concrete elements next to the steel
2lewents in the constant moment zone appioach the modulus of

rupture.

2. The crack propagates upward with the increase of applied
load and at a lead level of 780 lb. additional cracks appear

in the adjacent elements.

.

3. As additiénal concrete elements crack, the tensile
stresses previously carried by these elements are now
transferred to steel and a significant increase of steel
stresses are noted. The increase is almost 90 % at a load
level of 780 1b. as compared to the values at the initial

load level.

4. As the crack propagates towards the compression zone, the
principal tensile stresses of the concrete elements at the

tip of the cracks decrease,

5. The strains in the uncracked concrete elements trapped in
between cracked elements decrease compared to the values

they achieved at the elastic stage.

6. The shear stresses in the concrete increase as the load
increases and with the crack propagating upwards. At
7801b. theconcrete shear stresses increase by 24 % in the

uncracked zone with respect to the values corresponding to
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the initial load. he remaining shear stresses carried by the

cracked elements ave very small.

7. Approximately 3% of the shear is carried by steel in the
elastic range. The figure rises upto 12 % when cracks begin

forming.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 SUMMARY AND CONCLUSIONS

The present study deals with the nonlinear finite element
analysis of two dimensional reinforced concrete members under
monotonically increasing loads. The analysis of the
reinforced concrete members considered the sources of
nonlinearity such as stress-strain relationship, cracking of
concrete, post cracking behavior, reactions at the interface

of concrete and steel and the yielding of reinforcement.

A simply supported singly reinforced concrete beam and a
simply supported doubly reinforced concrete beam were
analysed. The deflections of the entire nodes at all the load
levels and the corresponding bond stress - bond slip values

were part of the computer output obtained .

Speokowski's model eliminates the cracked concrete elenents.
The presented program incorporates the residual strength of
the cracked concrete parallel to the crack. The results
suggest a tendency for increased yield and failure loads of

the cracked model.

The cracking pattern obtained agrees well with the
logical reasoning . Especially all the concrete cover
elements in the constant moment zone cracked at the same load

level.
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The load deflections show good agreement initially with the
experimental values. But towards the ultimate stages it shows

differences.

From the above analysis it seems that 1f a phenomenon
affecting the behaviour of the reinforced concrete member is
known it can be modelled guite esasily.With an adequately
refined finite element technigue, all the specific properties
and behaviours can be modelled and any reinforced concrete

member can be analysed effectively.
5.2 SUCGESTIONS FOR FUTURE RESEARCH

The refinement and improvement of a finite element model has
to be approached in two different levels simultaneously. One
level is to improve the efficiency of the program through the
employment of modern efficient equation solvers, powerful
iterative methods suited to the type of analysis desired. The
other one is the inproved understanding of the material

behaviors.

More experimental work is required on the crack formation and
propagation. A crack is usually defined by the tensile
strength of the concrete.element and it would be desirable to
determine an exact direction of propagation irrespective of

the finite element mesh utilysed.

Incorporation of a complete and general stress=-strain
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behaviour model with cyclic loadings which covers all biaxial

and triaxial stress-strain fields is highly desirable.

More experimental data on the crack width and the relative
displacement parallel to the cracks at different load levels
is required. This will enable development of a more accurate
model to represent both the aggregate interlock mechanism and
dowel action phenomenon to be used in the nonlinear finite

.

element analysis of two dimensional concrete structures.

A simple analytical model which accounts for gradual release
of tensile stresses after cracking is desirable than the
sudden release of concrete tensile stresses upon cracking.
More experimental work is reguired in determining a value for
the ultimate strain at which complete release of the tensile
stresses in cracked concrete takes place. This would then
allow for simple expressions to be developed for the gradual

release of tensile stresses of concrete.

The contribution of post cracking shear resistance must be

included rather than neglecting its effects in the analysis.

Also the simulation of time dependent charecteristics of
concrete such as creep and shrinkage is important. However,
the choice of the most general and best failure criterion for
the concrete, suited to the specific kind of problem will

always be essential.
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Average concrete stress-strain curve

due to progressive cracking.

“IG. 4 SCANLON'S STIPPED MODEL (39)

FIG. 5. IIN'S GRADUALLY UNLOADING MODEL (37)
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APPENDIX : COMEL

JUER PROGRAM

A.l DESCRIPTION

The computer program used is coded in Fortran IV, G.Level,
and iscompatible with the 0/S system of the I.B.M. 360/75
computer. In the given form it is capable of analysing plane

structures with the following paraneters:

350 nodeé

250 gquadrilateral elements

150 spring elements

30 nodal point boundaries

20 partitions

40 stirrups

350 nodes at which loads may be applied

45 nodes in a partition

The idealised structure should be partitioned to have a
consecutive nodal numbering system. Only one partition line,
not necessarilly a straight line, should pass through an

element.
The datas should be reduced to a unit width of the member.

The numbering of the element is in the anti-clockwise

direction.

The element nodal coordinates are input with respect to the
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global X-Y axes.

The datas are submitted in the following seguence:

NOTATION DESCRIPTION

STRUCTURE PROPERTIES

NPART ~ Total number of partitions

NPOIN . Total number of nodal points

NEILEM Total number of elements

NROUN Total number of nodes with prescribed
displacements

NCOLN Total number of different locadings

NFREE Number of degrees of freedom per node

NCONC Total number of concentrated loads

NYM Total number of different elastic
properties

NS Total number of stirrups

NODAL POINT ARRAY

I Node number
X(I,1) X - coordinate
X(I,2) Y =~ ceordinate

ELEMENT ARRAY

I Element number



NOD(I,J)

THICK( I )

NEP( I )

NF(I )

NB(I,1)

NB(I,2)

BV(I,1)

BV(I,2)

NSTART(I)

NEND (I)

NFIRST(I)

105

Nodal point number( J=1,2,3,4 )
Thickness of an elenment

Element elastic property number

BOUNDARY ARRAY

Nodal point number with prescribed
displacement

Boundary node index relative to X -~
direction

(= 0 for no translation; = 1 for
translation allowed

Boundary node index relative toY -
direction

( = 0 for no translation; = 1 for
translation allowed
Magnitude of prescribed translation in X -
direction
Magnitude of prescribed translation in Y -

direction

PARTITION ARRAY

Number of the first element in the
partition
Number of the last element in a partition

Number of the first nodal point in a
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partition
NLAST(I) Number of the last nodal point in a

partition

ELASTIC PROPERTIES

E1(I) Modulus of elasticity in X - direction
E2 (D) Modulus of elasticity in Y - direction
P1(I) Poisson's ratio in X - direction
P2(1) Poisson's ratio in Y - direction

INITIAL T.OAD ARRAY

K Loaded nodal point number
U(2k=-1,1) Initial lcad in X - direction
U({2k,1) Initial load in Y - direction

LOADING SEQUENCE

NELEMS Number of spring elements
NSTEPS Number of lcocading steps

DELTAX Load increment in X - direction
DELTAY Load increment in Y -~ direction
BTH Width of the analysed member

¥

SPRING ELEMENT ARRAY

I Spring number

NODS (I, 1) Concrete node connected to spring



NODS (I, 2)

NSSS (1)

WDT (I)

BN (I)

DIA(I)

ENUM(T)

NCHK (I)

NSPGST(I)

NSPGED(I)

NSTR(I)
NENDST (I, 1)

NENDST(I,2)

I

NODSTR(TI,J)
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Steel node connected to spring

Spring position indicator

1= internal, 0= external

Effective spring length

Angle of inclination of stirrup to global

X - axis

Average diameter of bars connected to the

spring

Number of bars connected to the spring

SPRING ELEMENT COUNTER ARRAY

Nunber of spring elements in partition I
Number of first spring element in

partition I

Nunber of last spring element in partition

I

STIRRUP COUNTER ARRAY

Number of stirrups in partition I
Number of first stirrup in partition I

Number of last stirrup in partition I

¥

STIRRUP ARRAY

Stirrup number

First and second node number( J=1,2)



STR{I,1)
FO

FF

SEF
RUPTR
EY
ESTRH
ESH

PSH

3 120 88
1 0.0
2 0.0
3 0.0
4 0.0
5 0.0

108

Area of stirrup

CONCRETE PARAMETERS

Maximum concrete stress
Concrete stress at maximum strain
Maximum concrete strain

Modulus of rupture uf concrete

STEEL PARAMETERS

Yield strain of steel
Strain at onset of strain hardening
Initial strain hardening modulus

Poisson's ratio in strain hardening zone

DATAS FOR TEST BEAM 1

STRUCTURE FPROPERTIES

NODAL POINT ARRAY

0.0

1.07536
1,0753%
2.04965
2.04965

4.0



10
11
i2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

8.0

12.0

16.0

20.0

0.0

1.07536

1.07536

2.04965

2.04965

12.0
16.0
20.0
0.0
1.07536
1.07536
2.04965
2.04965
4.0

8.0
12.0

16.0

109



32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

14.0

14.0

14.0

14.0

14.0

14.0

14.0

14.0.

14.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

26.0

26.0

26.0

26.0

26.0

26.0

1.07536

1.07536

2.04965

2.04965

1.07536

1.07536

2.04965

2.04965

4‘0

8.0

12.0

16.0

20.0

0.0

1.07536

1.07536

2.04965

2.04965
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57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

26!&

26.0

26.0

26.0

32.0

32.0

32.0

32.0

32.0
32.0
32.0
32.0
32.0
32.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0

44.0

8.0

12.0

16.0

20.0

0.0

1.07536

1.07536

2.04965

2.04965

400

8.0

12.0

16.0

20.0

0.0

1.07536

1.07536

2.04965

2.04965

4.0

8.0

12.0

16.0

20.0

0.0
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82
83
84
85
86
87
838
89
90
91
92
93
94
95
96
87
98
99
100
101
102
103
104
105

106

44.0

44.0

44.0

44.0

44.0

44.0

44.0

44.0-

44,0

51.0

51.0

51.0

51.0

51.0

51.0

51.0

51.0

51.0

51.0

58.0

58.0

58.0

58.0

58.0

58.0

1.07536
1.07536
2.04965

2.04965

0.0
1.07536
1.07536
2.04965
2.04965
4.0

8.0
12.0
16.0
20.0
0.0
1.07536
1.07536
2.04965
2.04965

4.0

112



107

108

109

110

111

112

113

114

115

116

117

118

119

120

11

58.0

58.0

58.0

58.0

65.0

65.0

65.0

65,0

11

12

13

14

16

17

18

19

21

12

15

16

17

18

19

20

22

10

12

8.0

12.0

16.0

20.0

OOO

1.07536

1.07536

2.04965

2.04965

4.0
8.0
12.0
16.0

20.0

1'0

0.82996

0.17004

ELEMENT

ARRAY

113



12
13
14
16
17
18
19
21
22
23
24
26

27

28

29

31

32

33

34

36

37

38

39

41

42

22

23

24

26

27

28

29

31

32

33

34

36

37

38

-39

41

42

43

44

46

47

48

49

51

52

24

25

26

27

28

29

30

32

35

36

37

38

39

40

42

44

45

46

47

48

49

50

52

54

14

15

16
17
18
19
20
22
24
25
26

27

28

29
30
32
34
35
36
37
38
39
40
42

44

0.829%9¢6

0.17004

0.82996

0.17004

0.829%6

0.17004

0.82996
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106 116 117
107 117 118
168 118 119
109 119 120
11 1 0
111 0O 1
112 0 1
113 0 1
114 0O 1
115 0O 1
116 O 1
117 © 1
118 © 1
119 0 1
120 © 1

1 32 1
25 64 41
57 88 81
3834253.0

29000000.0

107 1.0 1
108 1.0 1
109 1.0 1
110 1.0 1
BOUNDARY ARRAY
c.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
PARTITION ARRAY
40
30
120 .
ELASTIC PROPERTIES
3834253.0 0.2
29000000.0 0.3
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24

12

14

22

24

32

34

42

44

52

54

62

64

72

74

82

84

0.0

20

13

15

23

25

33

35

43

45

53

55

63

65

73

75

83

85

0.

INITIAL LOAD ARRAY

~1120.0

LOADING SEQUENCE

=100.0

SPRING ELEMENT ARRAY

12.

0

1.125

1.125

1.125

1.125

1.125

1.125

1.125

1.125

1.125

1.125%

1.125

1.125

1.125
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