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ABSTRACT

Title of Thesis 	 : Non-Linear Finite Elem ent Analysis of

Reinforced Concrete Members.

by 	 : Chellathurai Jeyamohan

Thesis Directed by : 	 Professor C.T.Thomas,Hsu

A finite element analysis of 	 reinforced concrete members is

used to study the initiation 	 and propagation of cracks and

the behavior at the interface of concrete and steel. The

increa s e of concrete strength due to biaxial compression

and the shear capacity of the cracked elements are also

considered in the analysis.

The results of the present analysis are compared with some

available experimental data in beam tests. It has been found

that the present analysis is capable of calculating the

stress ( or moment ) and strain ( or deform ation ) from zero

load upto the ultimate load.
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CHAPTER 1INTRODUCTION AND LITERATURE REVIEW

1.1 GENERAL

The analysis of structural members and structural systems are

commonly done by moment distribution, slope deflection and

matrix method of structural ana1ysis. When the shape of the

members become complex , all the above methods require either

simplification of member characteristics or the analysis

becomes very tedious though not impossible.

The finite element analysis of steel members and steel

structures are not that complicated compared to the

reinforced or systems. The following factors

make the finite element analysis of reinforced concrete

members very difficult.

(1) Concrete is a non-homogeneous material. Its behaviour is

very hard to be put in a simple mathematical formula.

Material properties are found to vary in directions, from

point to point, with different type of loadings such as

monotonic increasing and cyclic loadings and in the different

state of stress combination that might have been caused by

varying loading system.

(2) The behavior of steel concrete interface is not well

understood and is a complex three dimensional phenomenon.
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(3) The behavior of concrete and the transfer of forces

across a cracked section  after the cracks are formed , are

not understood clearly.

Despite the lack of informations on material behavior and

difficulties encountered in the finite element analysis of

reinforced concrete members , many researchers and analysts

succ e ssfully formulated models to represent or simulate each

action and analysed the members os systems quite effectively.

1.2   HISTORICAL REVIEW OF FINITE ELEMENT ANALYSIS OF RC STRUCTURES

The Following  paragraphs are some of the works carried out by

researchers, and show how the analysis got reformed and

refin ed c the period of time.

Scordelis and Ngo (3) analysed simple beams. The triangular

elements represented the concrete and steel. Bond stress -

slip phenomenon was successfully incorporated with the use of

linkage element concept. Material behaviors of steel and

concrete were assumed to be fully elastic. Predicted crack

patterns were considered in the analysis.

Nilson(4 ) performed a non-linear analysis. The concrete

stress-strain relationship suggested by Saenz (5) was used

to represent the concrete behavior . His formulationof

bond stress-slip expressions were differentiated to obtain



the stiffness parameters of 	 the linkage elements to portray

the concrete steel interface behavior. An incremental

loading technique was employed and every time an eleme nt

cracked, the topology was redefined and the com,puter run

commenced again until the required load level was achieved.

The model developed by Franklin( 7 ) accounted automatically

for cracking and redistribution of stresses not balanced

internally , thereby enabling to execute the analysis in one

computer run without being redefining the topology every time

an element cracked. He analysed  the effects of reinforced

concrete frames with and without  reinforced concrete shear

walls. Special types of frame elements and

quadrilateral elements represented members and joints.

	 Cervenka and Gerstle (8) analysed shear panels. Both steel

and concrete were assumed to be elastic-perfectly plastic.

Composite material constitutive relationship was used to

develop the stress-strain matrix.

Yuzu gullu and Schnobrich( 9 ) studied the inelastic behavior

of frame-shear wall system. Shear wall and frame were

represented by quadrilateral and flexural elements

respectively. The interface action between shear wall and

framewas modelled by linkage elements containing two ortho-

gonal springs. Composite material constitutive relationship

was used. After cracking , cracked element's shear modulus
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was reduced to a fraction of its original value to  account

for the load transferring behavior across the crack.

Cedolin and Del Poli(10 ) made a non linear 	analys

is on shallow beams. Concrete and steel were represented by

triangular elements and the stirups by one dimensional bar

elements. Concrete was assumed to have two diffeInt modulii

E1 ,E2 in orthogonal directions. linkage elats represented

the effects at steel concrete interface.

Darwin 	 and Pecknold(13 ) did a non-linear 	 finite element

analysis on a planar concrete members subjected to cyclic

loadings.

Agrawal(14 ) perrformed a non linear_analysis of a reinforced

concrete deep beam subjected to cyclic loading. Both steel

aid concrete assumed to behave like an elastic-perfectly

plastic material. Each node 	 had three degrees of freedom. A

composite material constitutiveship was used.

Al-Mahaidi( 15 ) also performed a 	 non linear analysis of

reinforced concrete deep beams. Quadrilateral and base

elements represented concrete and steel. Concrete was assumed

to follow an orthotropic material having two different

elastic modulii in orthogonal directions. Steel reinforcement

followed an elastic perrfectly plastic material behavior. Bond

stress - slip relation provided the stiffnesses of linkage
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element springs which model

led the interface behavior. Both discrete smeared cracking models analysed the deep beams.

Spokowki( 17 ) used non linear finite element analysis on

reinforced concrete beams and joints. The analysis predicted

the load - deflection curves , moment - rotation

relations and crack patterns. Discrete cracking model was

used after the element had cracked, redistribution of

stresses were masde to account for unbalanced forces.

Houde( 18 ) Lrived an empirical expression fo

r the transfer of shear across a crack and incorporated his findings in the

finite element program. The program incorporated his

expression to analyse pull-out specimens and beams.

Khouzam(19 ) used Houde's expression for the shear transfer

across a crack and carried out a non-linear analysis of

axially loaded tensile and reinforced concrete beams

with unreinforced webs.

The historical developement suggests that the finite element

analysis has been a valuable tool to many researchers in

analysing reinforced concrete structural members and systems.

The accuracy of the method would increase if the following

behaviors can be understood toughly and expressed properly

in the formulation of the finite element program.

(1) Material behavior of concrete under different stress
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(2) Steel behavior under different stress

(3) Steel concr ete inter 	 face action

(4) Force transfer mechanism across a cracked concrete

 section , specifically aggrgate interlock and dowel action.

1.3 REVIEW OF LITERATURE

In the following paragraphs a historical review of material

behaviors , steel concrete interface action and post cracking

behavior is presented.

1.3.1 	 CONCRETE STRESS-STRAIN BEHAVIOR

The stress-strain behavior of concrete has a significant
effect on the accuracy of the predictions of any finite

element analysis of reinforced or plain concrete members.

Researchers used either elasticity based models or plasticity

based models to represent the beha ; vior of concrete.

1.3.1.1 ELASTICITY BASED MODELS

Two different approaches are used here to model the stress-

strain behavior.

(1) Total stress strain model

(2) Incremental strs strain model
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In the total stress modle, the total stress of a

stress state is assumed to be uniquely determined as a

function of the present total strain. The assumption itself

imposes a limitation on these type of models because of the

path dependent characteristics of concrete. Therefore , the

application of these models is restricted and used only t

o monotonically increasing loads.

In the incremental elasticity model, the behavior of the

material is assumed to depend 	 on the present state of str

ess and strain as well as on the path followed to reach the

exisitng state. Therefore we may

conclude that incremental elasticity model provides more realistic behavior of

stress strain relationship under cyclic loading conditions. These

models can be further refined to include the orthropic

properties with the principal stress direc tions coinciding

with the directions of orthotropy.

Elasiticity based models are popularly used in the non linear

finite element analysis because of their simplicity. They

provide a reasonable representation of the overall behavior

of concrete but some of them poorly represents the behavior

near the ultimate state.. This drawback has not caused any

major problem because only a very small portion of concrete

reaches the ultimate stress state and the rest of the concrete

can be reprsented quite well with this model.
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1. 	 3. 2PLASTICITY BASED MODEL

Two aporoaces are available to charecterise the stress-strain behavior.

(a)Elastic-strain hardening plastic

(b) Plastic fracturing models

In the elastic strain hardening plastic models , a

disconinuity surface is introduced , which is

the limiting surface for elastic behavior , and located at a distance from

the fracturing surface. When a material 	 is stressed beyond

the initial discontinuity surface, a new discontinuity surface called the loading surace is created.

Loading and unloading within any two subsequent loading surfaces result

in elastic behavior. Irrecoverable plastic strains will	 occur

only if the upper loading is crossed. The

final collapse of the concrete will occur only when

the loading surface reaches the fracture surface. A detai

l explanation and formulation of constitutive matrix for an elastic-strain

hardening plastic and plastic fracturing models appear in

Ref:(30 ). The following paragraphs briefly gives the works

of researchers used in the modelling of concrete stress-

strain behavior

	 Ngo and Scordelis( 3 ) used linear isotropic material models

in their analysis.
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Kupfer and Gerstle(23 ) p

resented closed form for shear and bulk modulus 	 ,o.te and u

sed total stress-strain behavior models in their work. The suggested closed form expressions were obtained to match the experimental data made available from different sets of concrete specimen under different state of biaxial stress system.

Romstad, Taylor and Herrman( 24 ) dev e loped a biaxial

isotropic stress-strain model of damaged regions were

created and the material properties were altered to match the

degradation of concrete caused by increased stresses. Modulus

of elasticity and Poisson's ratio remained constant within

each damaged region.

Gerstle(25 ) developed a biaxial incrementally isotropic

stress-strain model. Bulk and shear modulii are assumed to be a linear finction of the octahedral normal and shear stresses. Conctitutive matrix was expressed in terms of bulk

and shear modulus.

Darwin and Pecknold(13 ) proposed a biaxial inc

rementally isotropic stress-strain behavior. A new equivalent uniaxial

strain concept was introduced. The effect of a biaxial stress

system on a concrete is represented by equivalent str

ess-strain curves for each of the principal axes direc

tion. A biaxial incrementally orthotropic stress-strain behavior

was forwarded by Liu , Nelson and Slate(12,26).



Bazant and Tsupaki(27 ) suggested a triaxial t

otal stress-strain behavior model. The 	 constitutive matrix comprised of

bulk and shear nodulus  which were expessed as the functions of first and seconds invariants of the total stress and strain tensors.

Elwi and Murray (28) developed a triaxial incrmentally isotropic stress-strain model. the equivalent uniaxial strain

concept was employed in deriving the constitutive matrix.

1.3.3 	 CRACKING MODELS

The magnitude of tensile stress, at which concrete fails in

tension is not a unique value thereby causing

difficulties in the modeling of  cracking of concrete.

Despite the uncertainties and complex nature of cracking,

two different cracking models 	 , were advanced by researchers to represent the craking phenomenon in concrete.

a. Discrete Cracking Model:

Adjoining elements are disconnected at the nodes along their

boundaries when an ele m ent cracks and causes displacement

discontinuities across the crack. The introduction of

additional nodal points required to rede fine the topology

after a crack has formed, increases he magnitude of the

stiffness matrix and enlarges the computational efforts

required to solve the equilibrium equat - ions for nodal
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displacements. To overcome this dificulty two

nodes occupying the same co-ordinates, connected by an

infinite modulus spring linkage elements are defined. At the formation

of the crack , the stiffness of the spring is brought to

zero. When the shear effects of concrete after cracking are

considered the springs of the linkage elements assume values

for stifnesses to reflect the effects of aggregate interlock

and dowel action at the crack.

b. Smeared Cracking Model:

Many finely spaced cracks are assumed to form in a direction

normal to the principal stress , when the principal stress

exceeds the tensile strenght of concrete. The concept of the

smeared cracking 	 model assumes 	 not a displace

ment discontiny but a stress discontinuity thereby allowing

the automatic generation of cracks without a change in topology

and a complete generality in the direction of cracks.

1.3.4 STEEL CONCRETE INTERFACE BEHAVIOR

The problem of describing and developing a model to reflect

the steel concrete interface behavior is a very complicated

three dimensional problem. So far , not enough experimental

works were executed to fully understand the effects of

interface behavior. The following is a summary of some of the

experimental works carried out by researchers to study the
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effect of bars bonded in a concrete matrix.

Broms(43 ) examined the locations, widths and extents of

internal cracks of a concrete specimen reinforced with a

single bar , with the aid of colored resins.

Gotto(44 ) used red ink and sawed the specimen to study the

behavior of internal cracks. He observed many internal cracks

of cone shapes with apex at bar lugs and base towards primary

cracks. Most of the internal cracks made an angle of sixty

degrees approximately to the bar axis. These comb-like

internal cracks were formed due to the reaction exerted on

concrete by the bar lugs as the steel stresses were

increased. He also found that the stresses d id not fall

to zero evenwhen th load was removed. This was attributed

to the plastic deformation on of the surrounding concrete.

Rehm(61 ) carried out series of pull-out tests and conclud

ed that the slip between concrete and steel occurs by

progressive crushing of concrete in front of bar lugs. He

reported that approximately a length of six times the height

of bar lugs , in front of a lug reaches the crushing

Mirza and Houde(45 ) after an extensive experimental works

showed that the crushing of concrete in front of bar lugs

does not occur with the type of deformed bars used in

practice. They sawed the specimen , found no marks or traces
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of polishing on the concrete surface and the bar lugs stamped into the concrete firmly. Their finding lead to conclude that noticeable sliding or crushing of concrete does not seem to take place in front of the bar lugs.

1.3.5 POST CRACKING SHEAR BEHAVIOR

Post cracking shear behavior is usually accounted for by

modifying the original shear modulus to a fraction of it's

value , when a crack is formed in a smeared cracking model.

The fraction was usually considered a constant or a function

of the tensile strain normal to the crack , and was intended

to account for the aggreate interlock and dowel mechanism

that might be present.

Modification of the uncracked shear modulus , by a factor

was first considered , Schnorbrich , Hand and Pecknold(33 )

They used a constant value of 0.4 for β for all stress and

strain states in their non linear layered analysis of plates

and shells.

Agrawal(34 ) used a constant 	 value of 0.5 for β in the non

linear analysis of concrete shear panels and deep coupling

beams.

Cedolin and Dei-Poli(35 ) observed that a decreasing value

for β predicted better responses for shallow beams failing

in shear. They suggested the following reduced shear modulus
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Al-Mahaidi(15 ) presented the following shear reduction expression for cracked concrete.

= principal tensile strain normal to the crack.

= normal tension strain at the formation of the crack.

Gilbert and Warner(28 ) used a value of 0.6 for β in the non

linear analysis of reinforced concrete slab. They observed

that the variation of β resulted in a negligible difference

in the responses. They could not explain the insensitivity of

in the slab responses.



1.3.6 	 TENSION 	 STIFFENING EFFECT

Tension stiffening effect is usually t 	 aken into

account for either by introducing a descending tensile stress-strain

behavior for concrete or by modifying the steelstress-strain

behavior.

Scanlon(39 ) proposed a descending tensile stress-strain

behavior for concret .e to account for the tension stiffening

effect . He assumed that the tensile stress increases

linearly up to the ultimate level and then suddenly the

modulus of elasticity drops to the next lower level  as shown

in figure 4. The stress is now allowed to increase with the

load to the limiting value corresponding to this branch of

the diagram. This process is followed until the modulus of

elasticity vanishes. By this process, the load carried by the steel gradually increases until it carries the entire load.

Lin and Scordelis(37 ) included the tension stiffening effect

in the analysis of reinforced concrete shells of general

form. The stress - strain curve suggested contained an

elastic uncracked portion and a cracked unloading remainder.

Once the concrete cracked , the tensile stress-strain curve

assumed a following unloading curvilinear behavior.
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	 The concrete was assumed to release its entire stress at a strain of five times the cracking tensile strain. the also observed that the tension stiffening phenomenon has a significant effect on the response of member in the post cracking arange but has lttle effects at the ultimate states.

Van Greunen(40 ) incorporated the tension stiffening effect by ignoring the contribution of concrte in carrying the

tensile stress and increasing the elastix modulus of steel as shown in fig 6. The additional stresses

in the steel

corresponds to the stress 	 carried by Lhe concrete. This

method overestimates the steel stresses but underestimates

the concrete stresses between the cracks.

Gilbert 	 Warner(38 ) considered the effects  of different

stress-strain behavior on the responses of their works. A

value of ten times 	 the cracking strain of concrete was

assumed 	 for, at which level the concrete stres ses are

totally released. The effect of modifying the steel

strain behavior was also considered , in their analysis of

reinforced concrete slab. They found that modifying the steel

stress-strain behavior to include the tension stiffening

effect resulted in better responses and efficient use of

computer time. They also concluded that the tension

stiffening  phenomenon has a significant effect on the

deformation of the slab but showed negligible effect on the

behavior 	 ultimate stress levels.
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CHAPTER 2

FINITE ELEMENT MODEL FOR PLANAR STRUCTURES

2.1   INTRODUCTION

The stress -strain relationship of concrte, post-cracking

behaviour modelling techniques, bond stress-slip

relationships suggested by Houde(18 ), which are present in

chapter 3,are all incorporated in the formulation of a

finite element model for the nonlinear analysis of planar reinforced concrete members. Properties of finite elements

used for idealisation of concrete and steel re

inforcement are discussed. Modification of the stress-strain relationship of

concrete due to cracking which is presented in chapter 3 is

used in the present formulation of planar structures fini

te element model.

2.2 CONCRETE AND STEEL REPRESENTATION

2.2.1 LINEAR DISPLACEMENT QUADRILATERAL ELEMENT

The finite element used for the representation of concrete is

shown in fig. 8 The element is a four node rectangle with

two degrees of freedom at each node. The stiffness

formulation of this element is well known and can be found in

reference (47) . However , the stiffness formulation 	 is

repeated here for completeness and to explain the technique
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of incorporating the incrementally non-linear stress-strain relationship discussed in section 3 into finite element model

2.2.1.1 DISPLACEMENT FUNCTIONS

In order to 	 make the integration required for the calculation

of the stiffness 	 matrix of the quadrilateral ring element

practicable, the co-ordinate system obtained by joining

the midpoints of the opposite sides of the quadrilateral is

used. Of course, the general quadrilateral maps into a square in the plane.

Consider the single component of displacement. 	 If the

condition that all edges remain straight lines for the

purpose 	 of maintaining  compability along the edges is

enforced, then the displacement at any point due to the

displacement, is given by

where u and v are the horizontal and vertical displacements respectively.

This may be repeated for both u and v for all possible nodal

displacements as shown in figure 8 . By superimposing the

equations for all possible nodal displacements and writing in
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matrix form, one gets the following displacement formulas for points in the element when all eight displacemnets are

applied simultaneously.

The functions k, l, m and n are called interpolation

functions. They arc also used to express the co-ordinate of

point (x,Y ) in tems of the element nodal co-ordinates

2.3 	 STRAIN-DISPLACEMENTS RELATIONSHIPS

The strain vector can be written as



The differentiation of equation (2.5) cannot be performed

as B and  cannnot be written as explicit functions

of X and Y. Therefore, the chain rule of differentiation is used to carry out the differentiation,
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and

or in the matrix form

where J is the Jacobian matrix, which can be evaluated by

substitution from eqn.(2.2), giving 	

At any point ( , ) in the element,  the 2x2 [J] 	 matrix can be
evaluated and inverted, putting

Then from eqn. (2.6) , one gets

or



Substitution of eqn. (2.8) into eqn. (2.5) gives

In order to simplify the numerical integration , the matrix B

is divided into two 	 parts as follows;

where

Carrying out 	 the differentiation in eqn.(2.9) gives:
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.4 STRESS-STRAIN

The stresses and strains that contribute to strain energy of

the element are those in the X-Y

plane. The stress and strain vectors are

for steel and concrete elements, the increment of stresses

and strains are related by the relation
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where E is the young's modulus of steel or

concrete(tangential) and is the poisson's ratio of steel

or concrete.

2.5 	 FORMULATION OF ELEMENT STIFFNESS MATIRX

In the non-linear analysis, the load is applied in

increments. Assuming that the application of an increment of load, [Δp] , to the nodes of the element results in increments of displacement [Δδ] , starin [Δϵ], and stress [Δr], respectively. The appication 

of a small virtual nodal displacement [ δ], produces additional strains at any point within the element [ ϵ], which are given by:

Assuming that the value of the small virtual nodal

displacement is small enough such that the change in [ δ] i s

negligible, the additional strain energy stored in the

element during the virtual displacement can be written as :

Increase in strain energy

The additional external work d one by the nodal incremental

load vector [Δ] is given by

Additional external work
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Equating the additional external work to the increase in

strain energy gives

[K] , the element stiffness matrix, is given by

The above equation is use with four point Gauss numerical

integration to obtain the element stiffness.
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CHAPTER 3

FINITE ELEMENT ANALYSIS IN CONCREETE STRUCTURES

3 . 1 INTRODUCTION TO DISPLACEMENT FORMULATION

In many phases of engineering the solution of stress and

strain distribution in elastic continua is required. The

problems faced ,ay range from two dimensioanal plane stress 	 or

plane strain distribution, axisymmetrical solids, plate

bending and shells to fully three dimensional solids. In all

cases the number of interconnections between any finite

element isolated by some immaginary boundaries and the

neighbouring elements is infinite. The problem of

discretizing the ahove 	 infinite connections is achieved

through the followings

(a) the continuum is separated by imaginary lines or

surfaces into a number 	 of finite elements.

(b) The elements are assumed to be interconnected at a

discrete number of nodal points situated on their boundaries.

The displacements of these nodal points will be the basic

unknown parameters in the discrete structural analysis.

(c) A set of functions is chosen to define uniquely the state

of displacement within each finite element in terms of its

nodal displacements.
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(d)

The                displacement functions  now   define      uniquely the state of strain within an element in terms of the nodal displacements. These strains together with any initial strains and the constitutive properties of the material will

define the state of stress throughout the element.

(e) A system of forces concentrated at the nodes and

equilibrating the boundary stresses and any distributed loads

is determined , resulting in a stiffness  relationship.

Clearly a series 	 of approximations has been introduced.

Firstly , it is not always, easy to ensure that the chosen

dispIacement functions will satisfy the requirement of

displacement continuity 	 between adjacent elements. Thus the

compatibility conditions 	 on such interface lines may be,

violated. Secondly, by concentrating the equivalent forces

at the nodes, 	 equilibrium conditions are satisfied in

the overall sense only. Local violation of equilibrium conditions

within each element and on its boundaries will usually arise.

3.2 FINITE ELEMENT MESH

The choice of element shape for specific cases leaves much

choice to the skills of the researcher or analyst. The degree

of approximation which be achieved obviously depends

on the element shape assumed and the displacement function

presumed.
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Three different elements such as sub parametric, iso

parametric and 	 super-parametric elements are available f

or use in the 	 finite

element analysis. Out of these three available elements isoparametric elements are widely used.

Therefore in this thesis the computer program developed

uses only isoparametric elements.

The use of triangular, rectangular and quadrilateral

elements is common in the finite element analysis of

reinforced concrete members. Using quadrilateralelements, reinforced concrete members, in general, can be modelled using a smaller number of elements than with the use of triangular or rectngular elements. Thus the choice of quadrulateral shape elements are preferred in this analysis.
3.3 PROPERTIES OF CROSS-SECTION

The analysis of reinforced concrete members is essentially a three dimensional problem. But when these members are

subjected to in-plane 	 only , the analysis can be

reduced to a plane stress in nature , and the plane finite

elements can be used to 	 model the concrete and steel.

Consider a beam cross-section having the following

properties.

The width of the section 	 = b

Diameter of reinforcing bar 	 = D
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No. of reinforcing 	 bar 	 = m

The thickness of the concrete and steel elements which has

the same space co-ordinates can be obtained by transforming

the circular section of the reinforcing bar into a

rectangular section. The following properties are used to

determine the widh and depth of the reinforcing bars of

diameter D.

(a) The cross-sectional areas are equal.

(b) The 	 moments of inertia 	 remains same.

If b and h represent the equivalent rectangular sectional

width and depth 	 , then

3.4 CONSTITUTIVE RELATIONSHIP OF CONCRETE

A biaxial constitutive relationship and a suitable biaxial

failure criterion is assumed in the present analysis when the

concrete is subjected to a biaxial compressive stress state.

When the stress state changes to purely tensile or only



30

compressive, then a iniaxial behaviour is considered

3.4.1 BEHAVIOUR OF CONCRETE UNDER UNIAXIAL TENSION

	 The tensile strenght of concrete is approximately 	 ten percent of its compressive strength. But its contribution is usually neglected in practical designs.

The stress-strain curve is linear upto ninety percent of the failure load. This suggests that a linear curve can be assumed for concrete in tension without any serious errors resulting from this assumption.3.4.2 BEHAVIOUR OF CONCRETE UNDER UNIAXIAL COMPRESSION

The stress-strain curve is non linear under the action of uniaxial stress system. The parameters associated with the curve depends on many variables such as compressive strenght, type of cemen, coarse and fine aggregates, mix proportiond, gradings of coarse and fine aggregates, water and cement ratio, size and shape of the testing specimen, the rate of loading and the age at loading etc.

Many proposals exist for the compressive stress-strain

relationship , by many researchers and ana1ysts. A review of these relationships are presented by Popovics(57 ).

Most of the proposed relations predict sufficiently closer
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results in the elastic range. However, considerable differences in the descending branches after the maximum stress. It was also observed(57 ) that the stress-strain curves obtained from concentric compression and

flexural specimens were not the same. The maximum strengths

obtained from flexural stress system occured at much larger

strains than obtained from uniaxial compressive stress

system. Hence the use of most of the stress-strain curves obtained through uniaxial compressive stress state is conservative when applied to points in flexure.

Saenz's( 5 ) 	 proposed formula, provided below , is

incorporated in the pre sent analysis, for 	 concrete subjected

to compressive stress state.
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In the absence of any experimental values of ϵo and E Saenz suggests the following formulii for their values.

The differentiation of equation (3.5 ) will provide the

necessary equaion for the tangent modulus at any strain.

3.4.3 BIAXIAL BEHAVIOR OF CONCRETE

In many occasions concrete is subjected to a tri-axial

stress system. The displacement or deformation in any one

direction is a function of the applied stresses and
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	deformations of all three directions. However, usually triaxial effect is not too significant in all three directions, and the use of biaxial stress system closely predicts the behavior of the member considered. Reinforced concreet exhibits a higher ultimate loads when subjected to biaxiall stress system, thereby necessitating the use of biaxial behavior of concrete in case of a more accurate analysis.

The stress-strain relation in a biaxial stress state is expressed by the following formula t

Liu , Nilson et al(12 ) suggested a non linear stress-strain relationship under biaxial compressive stress state. 	



where
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it is best to use 	 experimentally obtained values for modulus of elasticity and Poisson's ratio. In the absense of such datas, the following values may be assumed in the uniaxial stress system.

Based on Liu(26 )'s experimental datas and results Liu and

Nilson (12 ) put forward the following expressions for the

calculation of ultimate strength τp and strain ϵp at 	 maximum

stress of concrete under biaxial compression.
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3 . 4 . 4    ORTHOTROPIC STRESS-STRAIN RELATIONS

The co nstitutive equations for an orthotropic elastic

material under biaxial compression will assume a followin

g form.
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In the derivation of eqn. (3.14 ) it was assumed that the

stiffness in perpendicular directions are caused only by

poisson's effect. The experimental 	 results show higher

values of stiffness in perpendicular directions if poisson's

effect alone is considered under a biaxial state of stress.

The concrete confinement is the prime cause for

the additional stiffness. 	

To account for the etc concrete confinement, effective tangent

modul ii have to be calculated and used in an uncoupled form

of the constitutive reationship.

Eqn.(3.17 ) can be written to separate the poi .-son's effect

fl 	 concrete confinement.
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Now the constitutive eqn. of thte biaxially stressed concrete

can be expressed, similar to eqn.(3.11) as

Eqn.(3.20 ) can be used for biaxial tension and tension

compression cases by simply replacing Elb' , E2b' with the

suitable tangent modulii.
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3.4.5     PROPERTIES OF STEEL

Reinforced steel  is usually present in the form of slender

bars in most reinforced concrete members. As a result we need to take only the uniaxial tension or uniaxial compression in

the failure state. Biaxial state of stress can be ignored in

these cirsumstances.

T h e   pres ent analysis assumes the following simplified st

ess-strain relationship expressed in fig 14.

Beyond the yield point, the tangent modulus is zero. However,

	

a small value is assigned to it to eliminate any

possibility of the occurance of singularity and is assumed to

have a value equal to the 	 to the initial strain hardening modulus

when the principal strain exceeds the strain hardening limit.

3.4.6 FAILURE CRITERION OF CONCRETE

There exist many different 	 failure criterions such as the

maximum principal 	 stress 	 or   strain  criteria , maxum

um shear stress sriteria internal friction , volumetric

stress modification criteria etc.

When the concrete fails under uniaxial or biaxial compression

, the maximum principal strain theory for compressive failure

criteria looks reasonable and its application is straight

forward. For uniaxial tensile stress failure , the maximum



principal stress theory seems more suitable. 

These two failure ctiterions are employedin the present analysis.

The maximum stress theory imp1ies that the failure occurs

when the maximum 	 principal stress reaches the uniaxial

strength at failure. This theory agrees very well with the

tensile failure but the results don't tally when applied to

uniaxial or biaxial compression failure. When the tensile

strength criterion was applied to flexural members , the

experimental data gave a conservative result.

It was also observed that high tensile strain gradients exist in the tension zone. Therefore it could be concluded that the choice of modulus of rupture of concrete f presents realistic values than uniaxial tensile strength ctiterion.

The value of fr could be evaluated using the following expression.

The maximum strain theor y implies that the concrete fails in

compression when it reaches an ultimate strain of 0.003

in/in. This value is true only in the case of uniaxial

compression. Under the action of biaxial stress state the

limiting strain is 	 affected by the principal stress. When the

principal stress ratio beco 	 mes  larger (> 0.5) the limiting

strain value is considerably reduced. It may be concluded
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from the above reasoning that the use of single ultimate

strain would not be the best choice as the failure criterion

of concrete.

3.5 STEEL CONCRETE INTERFACE BEHAVIOR

3.5.1 FORCES AT INTERFACE

The bond stress is defined as the shearing force acting

around the circumference of the bar parallel to its longitudinal axis.

In the case of a deformed bar ,nominal diameter is considered in the calculatoin of the bonds stress. Adhesion and friction contrivutes to the bond stress in the

plain bars. Usually ween the concrete and steel

along the interface is very much considerable.

Adhesion and friction are of secondary importance in the

contribution of bond stresses in the deformed bars. The

compressive reactions on the lugs 	 exerted by the concrete

contributes a major portion in providing the bond stresses.

These compressive forces create the shear stresses on the

outer surface of the concrete sheath which fills th

e space between the lugs. The radial component of the reaction at the

lugs significantly increases the bond resistance.

During the 	 early stages of loading , very little slip or no

slip occurs between the steel and the concrete. As the load

is increased 	 the cracking and breaking of bond causes the
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slip 

to become large. The longitudinal bars, in the meantime , prevent any sliding movement of the c racked sur

faces causing a dowel action mechanism to occur.

Ngo and Scordelis used a special type of element called "

Linkage Element " to portray the interface effects. Linkage

elements have no physical size.It is introduced in 	 between

steel and concrete nodes where they occupy 	 the same positions

in the space. The linkage element comprises of two orthogonal

springs with the longitudinal spring simul ating the bond

stress-slip action and the transverse spring modelling the

dowell action mechanism , The horizontal and vertical

stiffness of these springs are functions of the type of

concrete , the 	 amount of concrete cover , bar type and

dimensions and the bar spacing.

The dowel action mechanism and the bond stress-slip behavior

are interconnected. Because of lack of experimental works and

datas on this area it looks at this stage to consider these

two effects uncoupled. Therefore in the present analysis

much attention is given to bond stress-slip phenomenon and

the dowel action is simplified by assigning a constant

arbitrary value to it.

3.5.2 STIFFNESS OF LINKAGE ELEMENT

The following expression represe , nts the relationship between
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the spring forces and the spring deformations

The deformation vector consists of two components ,

first being the bond slip meas 	 urement for the

longitudinal spring nad the second being 	 the dowel displacement for thetransverse spring.

The following expression evaluates the deformation vector

where



Lot assume that the co-ordinate axes of the spring makes an

angle θ with the global co-ordinate axis system , then

Fix ,F iy are the force components at node i in the global axes system.Similarly

wheredix , diy = displacement 	 components of node i.

The global stiffness matrix of the linkage element can be
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3.5.4 	 ',f7)'41) FA ru n :

:rom	 ie bond st.c.. 	 shown in fig 16

,e that after a 	 fic slip value, the c 	 1(ts to

d nd giving a negative gradient. Therefore a limiting

va? .a of slip must be enforced to avoid any computational

difficulties associal negative slopes.

Splitting failures Oomina 	 in most of ne bond failures in

COP 	 when reinforcel 	 b deformed bars. As t.„! -.(?.. loads are

ir.eas(1 nblique 	 more than 45 	 the

()nitudinal bar axis 	 7ormed in f%e concrete. These

,..-ncirat from 1e 	 of the luy-; and f.-Tad towards

the main (:,; 	 ;70CML1g hollow trunced CO6S ::1-1d the bar.

Experim-ntal observation sho 	 that the ,
:ad ? 1 for :I are

kl;frater than the 	 ,tress;es. 	 grater

forces burst the 	 (punding

Two 	 L fe .. 	 failure criterias are 	 el ot ( for link

elements depe on their locatio. Near the open faces

the confinement of concrete is little but high splitting

forces act on the e rPgions. As a -._11t a wedge of the

ete is 'lied out•d the relative movement of the steel

and concrete far exceeds the limiting bond slip value with

the associated spring stiffnsses falling to zero. When a

steel element lies far - 7iy from the open face, the

confLnement prevents the 	 owth of inclined cracks and the
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early formation cracks. Even after  the bond slip

	 exceeds the limiting value, the concrete is capable of sustaining the forces exerte by the lugs. Therefore the interior springs remain active even after the limiting slip value but fails totally after the formation of wide cracks.

3.5.5  DOWEL ACTION

Once a crack is formed, the shear force across a crack is

transmitted by  the uncracked concrete section, aggregate

interlock of cracked portion and dowel action. The

contribution of the dowel action becomes 	 predominant when the crack width increases and the rlative movement of the cracked surfaces is measurable.

The surronding concrete exerts compressive or tensile forces

on the bar  perpendicalar to the bar axis. The distribution of

these force shown in fig 19 . The dowel springs

representing the dowel actions will exhibit different

behaviour depending on whether are located in the

tension zone or compression zone. Those springs in the

tension area represents the normal forces created mainly by

the adhesion between 	steel and concrete. Houde and Wrza(54)

approximated  the 	 normal tension behaviour by a 	 linear

tensile stress-strain behaviour of the concret cover.

The p1. 	 me of stir u ps 	 ros,i,tion of Yjnfo .:Lcd bars and
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geometry of the cross-section usually affects the behavior of compression springs denoted as Ci and Ce in fig 19. The springs situated inside the member are generally stiff, but their exact behaviour is not understood thus necessitating the use of an approximation. The assumption of a constant

spring stiffness value may be a good start for the analysis.

Ngo and Scordelis(3) employed high values for their analysis.

Nilson (48) observed that the use of high values prevents 	 the formation of longitudinal cracks in concrete in the computer model. The observation lead him to use a low value at the start and eventually reducing that to zero.

	 The concrete in the cover matrix is not bound by any reinforcement and therefore is usually weak. Early splitting failure of the concrete in the cover area reduces the stiffness of the dowel springs connected to the cover concrete.

Dowel action behaviour can be analysed by using the finite

element method. Since th p) , Lit analysis considers the

general overall analysis of the structural member, simple

assumptions of the dowel springs are considered. A low

constant stiffness value is assumed for internal and cover

dowel springs.



50

3.6

Stirrups enclose over 90 % of concrete in a struct

ural member, This enclosure creating a confining effect increases

the compressive strength and shear strength of the concrete.

Very less effort was rendered towards the effect of stirrups than the main reinforcement by many researchers. As a result of lack of data it is very difficult to model the concrete stirrup interaction.

Stirrups transfer the shear forces mainly through developingaxial forces in it. Therefore the dowel spring effect

associated with any reinforcement can be ignored. The interaction may then be represented by only longitudinal bond spring elements acting parallel to the stirrup axis.

The inclusion of longitudinal bond spring elements increases

the number of nodes. When the primary forces in a member are

of shear nature, this method of modelling the stirrup

concrete interaction could be rep recommended. The use of this

method requires a suitable mesh configuration. When a general

analysis is performed furt her simplifications seem logical.

The ,  present analysis considers only the general behavior and

ther efore the following considerably easier representation is

made.

The stirrup is represented by a four degree of freedom bar
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elements, not 	 associated with bond or dowel spr 	 ings.

Lets assume that the axis of the 	 bar element make an angle θ with

the global axis. In the local co-ordinate system the

stiffness of the bar element is given by the following

matrix.

\

	 represents the relevant transformation 	 matrix, the

stiffness matrix in the global system K b can be o ,btained by

the following equation:

where

As = cross-sectional area of the stirrup.

E s 	modulus of elasticity of stirrup.

c 	 cose

s 	 sin8

The above equation provides the following stiffness matrix

for the stirrup bar,



The location of the bar elements can be in between any two

 steel nodes, or concrete

nodes or steel and concrete node as shown in fig 21.

Under the action of a stress ssytem, the stirrups transfer

stresses concrete. When the concrete is

uncracked, however, the stresses in the stirrup are not as

high as in  a bar element undergoing the two displacements at

the ends only. Moreover a bar element having one node at the

upper steel element and the other node at the lower steel

element can create an arbitrary truss-like rigidity.

Therefore it would be advisable to idealise a stirrup through

a few bar elements connected to interior concrete nodes. This

idealisation would provide improved behaviour in the computer

model.

3.7
	

CRACKING

Many microcracks exist in the concrete even before any

external load is applied to the concrete. The failure

criterion 	 sisting of the stresses and strains associated

single microcrack is very hard to formulate. The use of
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energy conceptsof failure mechanism has been proposed by

Kaplan(65 )

When an external load is applied to the concrete energy is

absorbed through elastic deformation and in the formation and

propagation of microcracks. Irwin(66) considers the

strain energy release rate is directly connected 	 with the

propagation of microcracks and measures the

stress level surrounding the crack.

In 	 the finite element analysis once the failure of the

concrete element occured, the strain energy 	 stored in the

element is released and is assumed  to be 	 redistributed into

the remaining structure. The energy level, therefore, may

rise in the surrounding elements sharply causing some new

elements to crack under the same load.

Consider the effects at loading step n. Let the nodal forces

and nodal displacements of the element at loading step n

be represented by Pn and Den respectively. For equilibrium of

the uncracked element,

where

K= the stiffness matrix of the uncracked em nnrit at the end

of the loading step n.
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vector at the end of loading step n

If an element cracks at the end of the loading step n, the

original element stiffness is reduced to a lower stiffness

matrix denoted by Kn r. Then the nodal forces Pn that could be

allowed with the associated stiffness matrix K n r is given by

the following equation,

The difference between the two nodal forces will be

redistributed in the n+l loading step.

In a given loading step released nodal force vectors Pn

will form another self-equilibrating force system . This

additional force system. will be included in the n+l loading

step nodal forces P n+1 . During a loading step ifthese

redistributed nodal forces create additional elements to

crack, the crack pattern is called an unstable crack. By

using an iterative technique in a loading step, the structure

can be reanalysed to obtain a stable crack pattern. In

otherwords the iterative process within each loading is

terminated until a a new structure stiffness is formed which
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The iterative technique within a loading step seems costly in

the computer time and could be avoided if small load

increments are assumed in the loading process. Under sall

load increments, the number of elements cracking in that

particular loading step is small. Thus the redistributed

forces could effect only small chnages in the stress field.

When an element cracks it losses its stiffness perpendicular

to the crack, but resists the forces parallel to the crack.

The direction of the crack is given by the principal stress

directions representing the failure stress values. The

formation of the crack also changes the material property of

the 	 concrete from isotropic to isothotropic.

If the direction 1 is always assumed to be perpendicular to

the crack direction then the elastic modulus E1 =0. After the

crack is formed, and the associated elasticity matrix is

given by_the following matrrix.

Obviously this is in the element crack direction co-ordinate

system. Using the transformation, the cracked element

s is obtained as the following matrix in the global  



A similar approach is adopt ed in the treatment of the crushed

concrete elements. When the greater principal strain reaches

an ultimate value of 0.003, a failurre direction is defined

by the corresponding principal direction. The crushed

concrete element is able to transfer stresses in a direction

para llel to this principal direction, but linable to transfer

forces perpendicular to this principal direction.
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CHAPTER 4

4.1 	 INTRODUCTION

The computer program 	 used (the input can be found in the

appendix ) has the following c apabilities.

(1) Simulate the cracking of concrete without elimina

ting the cracked elements

(2) Utilise the increase of compressive strength of concrete under biaxial stress state/

This program was 	 used to analyse one singly reinforced and

one doubly reinforced simply supported beam for the entire

loading 	 history from zero until failure:

4.2 SINGLY REINFORCED SIMPLY SUPPORTED BEAM

4.2.1  DESCRIPTION

The beam has a width of 12 inches, depth of 20 in. and is

reinforced with 2#9 bottom bars. The ultimate strength of

concrete is 4000 psi and the reinforcing steel has a yield

strength of 40000psi. The total length of the beam is 130

in.The beam is loaded by two point loads each of which is

situated 21 in. from the midspan (Fig.22).

Since the beam is symmetrical about the vertical centerline,

one half of the beam is analysed.The concrete mass is divided
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into 88 rectangular elements.The reinforcing steel bar is

represented by 11 rectangular steel elements. 24 linkelements are introduced in bettween the respecive concrete and

and steel 	 nodes. The beam has 120 nodes and each node has 2

derees of freeedom. The circular cross section of the bars

are transformed to equivalent rectangular sections using the

formulae presented in section 3.2. The input data are

reduced to a beam of unit width.

4.2.2 	 INTERPRETATION OF RESULTS

Choice of loading increments affectsthe finite element

analysis of reinforced concrete structures. 	 Larger load

increments tend to create divergence, 	 whereas smaller

increments increase the computer time and of course the cost of the analysis. Numerous trial runs were made to obtain the end of elastic range and the associated applied load(1120lb).

The loading incremnts of 100 lb. was set after the

application of the initial load which terminates the elastic

range. Before any load increment is applied to the structure,

a stability check is made to ensure that new cracks do not

form as the nodal forces are redistributed. This procedure

w as repeated until the failure state of the beam is reached.

The following observations were made from the computer output

and the load deflection curve and bond force distributions

are plotted.
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4.2.2.1 ELASTIC RANGE OF LOADING

1. Concrete, steel stresses, bond stresses and deflection

obtained for the initial load of 1120 lb. Assume elastic

properties of the beam and therefore correspond to the

elastic range of the beam behaviour. The redistribution of

nodal forces of the cracked element and the nonlinear

behaviour of concrete into consideration in the

subsequent application of load increments.

2. The longitudinal concrete stress and the associated

longitudinal strain vary linearly across the cross-section.

3. The shear stress distribution across the cross-section

varies parabolically and agrees well with the elastic theory.

4. Maximum shear stress values observed at the supports.

5. A gradual increase in longitudinal steel stresses are

observed as we move from the support to the center of the

beam. The longitudinal stress values are almost same in the

constant moment zone area.

6. The bond force between steel and concrete is very small in

all the steel elements. The assumption of perfect bond

between steel and concrete in the elastic range seems

reasonable.

7. The deflection of the beam at midspan is 0.0349 in. which
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is close to the computed value given in reference 17 (0.035)4.2.2.2 CRACK INITIATION AND PROPAGATION

1. One primary crack is formed in the element 73 inside the

constant moment zone at a load of 1120 lb. The principal

tensile sttress in the concrete elements next to the

steel elements are close to the modulous of rupture which has a

value of 650 psi.

2. As the applied load increases the 	 crack propagates upward

and at a load level of 1220 lb. Three additional cracks

appear inthe adjacent elements.

3.As addiitonal elements crack the tensile stresses 	

previously carried by these elements are now transferred to

steel and the steel stresses increase significantly. The

	 increase is almost 100% at the 	 load level of 1420 lb. as

	 compared to the values at a load level of 1120 lb.

4. As the crack propagates towards the compression zone, the

principal tensile stresses of the concrete elements at the

tip of the cracked elements decrease.

At 1120 lb. 	 ft = 416

At 1320 lb. 	 ft - 345

5.The strain in the uncracked concrete elements which 	 lies in

between the cracked elements decrease compared to the values
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they achieved at the elastic range.

6. The shear stresses in the concrete increase as the load

increases and with the crack propagating upwards. At 1420 lb.

the concrete shear stresses increase by 30% in the uncracked

zone with respect to the values corresponding to the initial

load. The remaining shear stresses carried by the cracked are very small.

7. In the elastic range, approximately 2% of the shear is

carried by the st eel element. As the crack forms, this value

increase to nearly 30%.

8. A significant increase in bond forces are around

the cracks. The bond 	 forces have an average value of 50 psi at

1120 lb. applied load. At the first crack under the load level

of 1220 lb. the bond force is increased to 300 lb., whereas

the corresponding value in the uncracked vicinity is only 35

lb.

9. A better co-relation between the longitudinal steel

stresses and the crack pattern is visible at a load level of

1620 lb. High steel stresses occur at the crack and lower

stresses 	 result in between the cracks. The steel stresses are

evenly distributed with high values at the cracks and

slightly lower values in between the cracks as the failure

load is approached.
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10. Bond link elements fail at the high steelstress locations.

4.3 DOUBLY REINFORCED SIMPLY SUPPORTED BEAM

4.3.1 	 DESCRIPTION

The beam has a width of 6 in., depth of 12 in. and is

reinforced with 2#6 bottom bars 	 2#4 	 top bars . The

ultimate strength of the concrete is 4000 psi and the

reinforcing steel has a yield strength of 40000 psi. The

total length of the beam is 120 in. The beam is loaded by

point loads each of which is situated 18 in. from themidspan (Fig.27).

Since the beam is symmetrical about the vertical centerline,

one half of the beam is analysed. The concrete is divided

into 100 rectangular e]ements. 	 The reinforcing steel bar is

represented by 20 rectangular steel elements. 40 link

elements are introduced in between the respective concrete

and steel nodes. The beam has 143 nodes and each node

accomodates 2 degrees of freedom. The circular reinforcing

bars are transformed to equivalent rectangular sections using

the formulii presented in section 3.2. The input datas are reduced to a beam of unit width.
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1. Concrete stresses, steel stresses and deflections obtained for the initial load of 	 580 lb. assume elastic properties of

the beam and therefore corresponds to the elastic range of

the beam behavior. The redistribution of nodal forces of the

cracked elements and the nonlinear behavior of concrete are

taken into consideration in the subsequent application of

load increments.

2. The longitudinal concrete stress and the strain vary

linearly across a section.

3. The shear stress distribution across the cross-section

varies parabolically th us agrees well  with the elastic theory.

4. Maximum shear stresses appear near the supports.

5. A gradual increase in the longitudinal steel stresses are

noted from the support to the center of the beam. The

longitudinal stresses approach a constant value in the

constant moment zone.

6. Bond forces between concrete and steel appear small in all

the steel elements. 	 The existence of perfect bond between

steel and concrete in the elastic range seems  justifiable.

4.3.2.2 CRACK INITIATION AND PROPAGATION

1. One primary crack is foound in the element 81 inside
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the constant moment zone at a load of 580 lb. The principal

tensile stresses in the concrete elements next to the steel

elements in the constant moment zone approach  the modulus of

rupture.

2. The crack propagates upward with the increase of applied

load and at a load level of 780 lb. additional cracks appear

in the adjacent elements.

	 3.  As additional concrete elements crack, the tensile

stresses previousl y carr ied by these elements are now

transferred to steel and a significant increase of steel stresses are noted. The increase is almost 90% at a load level of 780 lb. as compared to the values at the initial load level.

4. As the crack propagates towards the compression zone, the

principal tensile stresses of the concrete elements at the

tip of the cracks decrease.

5. The strains in the uncracked concrete elements trapped in

between cracked elements decrease compared to the values

they achieved at the elastic stage.

6. The shear stresses in the concrete increase as the load

increases and with the crack propagating upwards. At

7801b.theconcrete shear stresses increase by 24 % in the

uncracked zone with respect to the values corresponding to
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the initial load. he remaining shear stresses carried by the

cracked elementse are very small.

7. Approximately 3% of the shear is carried by steel in the

elastic range figure rises upto 12 % when cracks beginforming.



66

CHAPTER 5

5. 1 SUMMARY AND CONLUSIONS

The present study deals with the nonlinear finite element

analyis of two dimensional reinforced concrete members under

monotonically increasing loads. The analysis of the reinforced concrete members considered the sources of nonlinearity such as stress-strain relationship, cracking of concretem post cracking behavior, reactions at the interface of concrete and steel and the yielding of reinforcement.

A simply supported singly reinforced concrete beam and a simply supported doubly reinforced concrete beam were analysed. The defelctions of the entire nodes at all the load

levels and the corresponding bond stress - bond slip values

were 	 part of the computer output obtained.

Spokowski's model, eliminates the cracked concrete elements.

The presented program incorporates the residual strength of

the cracked concrete parallel to the crack. The results

suggest a tendency for increased yield and failure loads of

the cracked model.

The cracking pattern obtained agrees well with the

logical reasoning. Especially all 	 the concrete cover

eleme ,nts in the constant moment zone cracked at the same load

level.
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The load deflections show good agreement initially with the

But towards the ultimate stages it shows diffrences

From the above analysis it seems that if a phenomenon

affecting the behavior of the reinforced concrete member is

known it can be modelled quite easily. With an adequately

refined finite element technique,

and behaviours can be modelled

member can be analysed

all the specific properties

and any reinforced concrete

5.2  SUGGGESTIONS FOR FUTURE RESEARCH

The refinement and improvement of a finite element model has

to be approached in two different levels simultaneously. One

level is to improve the efficiency of the program through the employment of modern efficient equation solvers, powerful iterative methods suited to the type of analysis desired. The other one is the improved understanding of the material behaviors.

More experimental work is required on the crack formation and

propagation. A crack is usually defined by the tensile

strength of the concrete element it would be desirable to

determine an exact direction of propagation irrespective of

the finite element mesh utilysed.

Incorporation of a complete and general stress-strain
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behaviour model with cyclic loadings which covers all biaxial and triaxial stress-strain fields is highly desirable.

More experimental data on the crack width and the relative

displacement parallel to the cracks at different load levels

is required. This will enable development of a more accurate

model to represent both the aggregate interlock mechanism and

dowel action phenomenon to be used in hte nonlinear finite

element analysis of two dimensional concrete structures.

A simple analytical model which accounts for gradual release

of tensile stresses after cracking is desirable than the

sudden release of concrete tensile upon cracking.

More experimental work is required in determining a value for

the ultimate strain at which compelte release of the tensile

stresses in cracked concrete takes place. This would then

allow for simple expressions to be developed for the gradual

release of tensile stresses of concrete.

The contribution of post cracking shear resistance must be

included rather than neglecting its effects in the analysis.

Also the simulation of time dependent charecteristics of

concrete such as 	 creep and shrinkage is important. However,

the choice of the most general and best 	 failure criterion for

the concrete, suited to the kind of problem will

always be essential.



FIG.1 LINKAGE ELEMENTS USED IN DISCRETE CRAG DG MODEL



FIG. 2. SMEARED CRACKING REPRESENTATION



a. Stress-strain Curve for Concrete in Tension

7].

b. Modified stress-Strain Curve for Reinforcing Steel(40)

FIG.3. MODELS TO ACCOUNT FOR STIFFENING IN CONCRETE

AFTER CRACKING



FIG. 4 SCANLON'S STEPPED MODEL (39)
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FIG. 5. LIN's 	 VALLI UNLOADING MODEL (37)
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a. STEPPED RESPONSE AFTER CRACKING

b. GRADUAL UNLOADING RESPONSE AFTER CRACKING

C. DISCONTINUOUS RESPONSE AFTER CRACKING

FIG 6. STRES-STRAIN CURVES FOR CONCERTE IN TENSION (38)



FIG.7. MODIFIED STRESS-STRAIN DIAGRAMS FOR

TENSION STEEL AFTER CRACKING (38)
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FIG. 8 . RECTANGULAR 4 NODE ELEMENT AND END DISPLACEMENTS.



a. ACTUAL CROSS SECTION

b. UNIT TRANSFORMED CROSS SECTION

FIG. 9. REPRESENTATION OF REINFORCEDCONCRETE CROSS SETION
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FIG. 10. CONCRETE STRESS-STRAIN CURVE BY

SAENZ FOR 4000 PSI CONCRETE

FIG. 11. FAILURE ENVELOPE FOR CONCRETE

UNDER BIAXIAL COMPRESSION



FIG. 12. ULTIMATE STRAIN VS ULTIMATE STRESS FOR

CONCRETE UNDER BIAXIAL COMPRESSION

FIG.13. STEEL STRESS-STRAIN CURVE



FIG.14. MODIFIED STEEL STRESS-STRAIN CURVE

FIG.15. CONCEPT OF LINKAGE ELEMENT



FIG.16. BOND STRESS-SLIP CURVES

FIG.17. BOND STRESS-SLIP CURVES
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FIG.18. PREDICTED BOND SLIP FOR LOADING STEP N+1

FIG.19. COMPRESSIVE AND TENSILE SPRINGS.



FIG.20. STIRRUP BAR ELEMENT

FIG. 21. DIFFERENT MODELLING OF STIRRUP



FIG. 22 CONCRETE AND STEEL ELEMENT OF TEST BEAM 1.



FIG.23. STRESS AND BOND FORCE DISTRIBUTIONS OF TEST BEAM 1



FIG.24. STRESS AND BOND FORCE DISTRIBUTIONS

OF TEST BEAM



FIG.25. STRESS AND BOND FORCE DISTRUBUIONS

OF TEST BEAM



FIG.26. STRESS AND BOND FORCE DISTRIBUTIONS OF TEST BEAM 1.



FIG. 27 . CONCRETE AND STEEL ELEMENTS OF TEST BEAM 2.



FIG. 28. STRESS AND BOND FORCE DISTRIBUTIONS OF TEST BEAM 2.



FIG.29. STRESS AND BOND FORCE DISTRIBUTIONS

OF TEST BEAM 2.



FIG.30. STRESS AND BOND FORCE DISTRIBUTION OF TEST BEAM 2.
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APPENDIX : COMPUTER PRGRAM

A.1 	DESCRIPTION

The computer program used is coded in Fortran IV, G.Level,

and iscompatible with the O/S system of the I.b.M. 360/75

computer. In the given form it is capable of analysing plane

structures with the following parameters:

350 nodes

250 	 quadrilateral elements

150

	

spring elements

30 	 nodal point boundaries

20 	 partitions

40 	 stirrups

350 	 nodes at which loads may be applied

45 

	

nodes in a partition

The idealised structure 	 should be partitioned to have a

consecutive nodal numbering system. Only one partition line,

not necessarilly a straight line, should pass through an

element.

The datas should be reduced to a unit width of the member.

The numbering of the the element is in the anti-clockwise

direction.

The element nodal coordinates are input with respect to the



1 0 4

global X-Y axes.

The datas are submitted in the following sequence:

NOTATION DESCRIPTION

STRUCTURE PROPERTIES

NPART Total number of partitions

NPOIN Total number 	 of 	 nodal points

NELEM Total number of	 elements

NBOUN Total number  of nodes with prescribeddisplacements

NCOLN Total number of different 	 loadings

NFREE Number of degrees of freedom per node

NCONC Total number of different elastic properties

N Y M Total number of different elastic properties

NS Total number of stirrups

NODAL 	 POINT ARRAY

I
Node number

X( I , 1 ) x - coordinate

X( I , 2) Y - coordinate

ELEMENT ARRAY

I
Element number
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NOD(I,J) Nodal point number ( J=1,2,3,4 	 )

THICK (I) Thickness of an element

NEP ( 	 I 	 ) Element  elastic property number

BOUNDARY ARRAY

NF (I ) Nodal point number with prescribed dispalcement

NB (I,1)
Boundary node index relative to X -direction

(= 0 for no translation; 	 = 	 1 	 for translation allowed

NB (I , 2) Boundary node index relative to Y-direction( = 0 for no translation; = 1 fortranslation allowed

BV(I,1) Magniude of prescribed translation in X - direction

BV (1,2) Magnitude of prescribed translation in Y

- direction

PARTITION ARRAY

NSTART (I) Number of the first element in the

partition

NEND(I) Number of the last element in a partition

NFIRST(I) Number of the first nodal point in a
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partition

Number of the last nodal point in 	 a

partition

ELASTIC    PROPERTIES

E1(I) Modulus of elasticity 	 in X 	 - direction

E2(I) Modulus of elasticity      in 	 Y 	 - 	 direction

P1(I) Poisson's ratio 	 in X 	 - direction

P2(I) Poisson's ratio in Y - direction

INITIAL LOAD ARRAY

K Loaded nodal point number

U (2K01 , 1) Initial load in X - direction

U (2K , 1) 	 Initial load in 	 Y 	 direction

IOADING SEQUENCE

NELEMS Number f spring elements

NSTEPS Number of loading steps

DELTAX Load increment in X - direction

DELTAY Load increment in Y - direction

BTH .Width of the analysed mem-ber

SPRING ELEMENT ARRAY

I Spring number

NODS(I,1) Concrete node connected to spring
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NODS(I,2) Steel node connected to spring

NSSS (I) Spring position indicator 1=internal, 0=external

WDT (I) Effective spring lengt

BN(I) Angle of inclination of stirrup to global X-axis

DIA (I) Aver age diameter of bars connected to the spring

ENUM(I) Number of bars connected to the spring

NCHK(I)

SPRING ELEMENT COUNTER ARRAYNumber of spring elements in partition I

NSPGST(I) Number of first spring element in partition I

NSPGED(I)
Number of last spring element inpartition I

STIRRUP COUNTER ARRAY

NSTR (I) Number of stirrups in partition I

NENDST (I,1) Number of first stirrup in partition I

NENDST (I, 2) Number of last stirrup in partition I

STIRRUP ARRAY

I Stirrup number

NODSTR (I,J) First and second node number (J=1,2)
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STR 	 (I,1) Area of stirrup

CONCRETE PAAMETERS

FO Maximum concrete stress

FF Concrete stress at maximum strain

SEF Maximum concrete strain

RUPTR Modulus of rupture of concrete

EY Yield strain of steel

ESTRH Strain at onset of strain hardening

ESH Initial strain hardening modulus

PSH Poisson's ratio 	 in 	 strain hardening zone

DATAS FOR TEST BEAM 1

STRUCTURE PROPERTIES

3 	 120 	 83 11 	 1 	 2 	 0

NODAL POINT ARRAY

1    0.0 0.0

2 	 0.0 1.07536

3 	 0.0 1.07536

4 	 0.0 2.04965

5 	 0 0 2.04965

6 	 0.0 4.0



7 0.0 8.0

8 0.0 12.0

9 0.0 16.0

10 0.0 20.0

11 2.0 0.0

12 2.0 1.07536

13 2 0 1.07536

14 2.0 2.04965

15 2.0 2.04965

16 2.0 4.0

17 2.0 8.0

18 2.0 12.0

19 2.0 16.0

20 2.0 20.0

21 8.0 0

.0

22 8.0

1.07536

23 8.0 1.07536

24 8.0 2.04965

25 8.0 2

.04965

26 8.0 4.0

27 8.0 8

.0

28 8.0 12.0

29 8.0

16.0

30 8.0 20.0

31 14.0 0.0

109



32 14.0 1.07536

33 14.0 1.07536

34 14.0 2.24965

35 14.0 2.04965

36 14.0 4.0

37 14.0 8.0

14.0 12.0

39 14.0. 16.0

40 14.0 20.0

41 20.0 0.0

42 20.0 1.07536

43 20.0 1.07536

44 20.0 2.04965

45 20.0 2.04965

46 I.0 4.0

47 20.0 8.0

48 20.0 12.0

49 20.0 16.0

50 20.0 20.0

51 26.0 0.0

2 26.0 1.07536

53 26.0 1.07536

54 26.0 2.04965

55 26.0 2.04965

56 26.0 4.0
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26.0 8.0

58 26.0

12.0

59 26.0 16.0

60

26.0

20.0

61

32.0

0.0

62 32.0 1.07536

63

32.0

1.07536

64 32.0 2.04965

65 32.0 2.04965

66 32.0 4.0

67 32.0 8.0

68 32.0 12.0

69 32.0 16.0

70 32.0 20.0

71

38.0 0.0

72 38.0 1.07536

73 38.0

1.07536

74 38.0

2.04965

75 38.0 2

.04965

76 38.0 4.0

77 38.0 8.0

78 38.0 12.0

79 38.0 16.0

80 38.0 20.0

81 44.0 0.0



82

44.0

1.07516

83 44.0

1.07516

84 44.0 2.04965

85 44.0 2.04965

86 44.0 4.0

87 44.0 8

.0

88 44.0 12.0

89 44.0

16.0

90 44.0 20.0

91 51.0 0.0

92 51.0 1.07536

93

51.0

1.07536

94 51.0

2.0496595 51.0 2.04965

96 51.0

4.0

97 51.0 2.0

98 51.0 12.0

99 51.0 16.0

100 51.0 20.0

101 58.0 0.0

102 58.0 1.07536

103 58.0 1.07536

104 58.0 2.04965

105 58.0 2.04965

106 58.0 4.0

112
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58.0 8.0

108 58.0

12.0

109 58.0 16.0

110 58.0 20.0

111 65.0 20.0

112 65.0 1.07536

113 65.0

1.07536

114 65

.0

2.04965

115 65.0

2.04965

116 65.0 4.0

117 65.0 8.0

118 65.0 12.0

119

65.0 16.0120 65.0 20.0

ELEMENT ARRAY

1 11 12 2 1.0 1

2 12 14 4

0.82996

1

3 13 15 5 0.17004 2

4 14 16 6 1.0 1

6 16 17 7 1.0 1

7 17 18 8 1.0 1

8 18 19 9 1.0 1

9 19 20 10 1.0 1

11
21

22
12 1.0

1
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12 22 24 14 0.82996 1

13 23 25 15 0.17004 2

14 24 26 16 1.0 1

16 26 27 17 1.0 1

17 27 28 18 1

.0

1

18 28 29 19 1

.0

1

19 29 30 20 1

.0

1

21 31 32 22 1

.0

1

22 32 34 24 0.82996 2

23 33 35 25 0.17004 1

24 34 36 27 1.0 1

26 36 37 27 1

.0

1

27 37 38 28 1.0 1

28 38 39 29 1.0 1

29 39 40 30 1.0 1

31 41 42 32

1.0

1

32 42 44 34 0.82996 1

33 43 46 35 0.17004 2

34 44 46 36 1

.0

1

36 46 47 37 1.0 1

37 47 48 38 1.0 1

38 48 49 39 1

.0

1

39 49 50 40 1

.0

1

41 51 52 42 1

.0

1

42 52 54 44 0.82996 1
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43 53 55 45 0.17004 2

44 54 56 46

1.0

1

46 54 57 47

1.0

1

47 57 58 48 1.0 1

48 58 59 49

1.0

1

49 59 60 50

1.0

1

51 61 62 52 1.0 1

52 62 64 54 0.82996 1

53 63 65 55 0.17004 2

54 64 66 56 1.0 1

56 66 67 57

1.0

1

57 67 68 58

1.0

1

58 68 69 59

1.0

1

59 69 70 60 1.0
1

61 71 72 62 1.0 1

62 72 74 64 0.82996 1

63 73 75 65 0.17004 2

64 74 75 66

1.0

1

66 76 77 67

1.0

1

67 77 78 68

1.0

1

68 78 79 69

1.0

1

69 79 80 70

1.0

1

71 81 82 72 1.0 1

72 82 84 74

1.0

1

73 83 85 75 0.17004
2
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116

74 84 86 76

1.0

1

76 86 87 77

1.0

1

77 87 88 78 1.0 1

78 88 89 79 1.0 1

79 89 90 80 1.0 1

81 91 92 82 1.0 1

82 92 94 84 0.82996 1

83 93 95 85 0.17004 2

84 94 96 86 1.0 1

86 96 97 87 1.0 1

87 97 98 88 1.0 1

88 98 99 89 1.0 1

89 99 100 90 1.0 1

91 101 102 92 2.0 1

92 102 104 94 0.82996 1

93 103 105 95 0.17004 2

94 104 106 96 1.0 1

96 106 107 97 1.0 1

97 107 108 98 1.0 1

98 108 109 99 1.0 1

99 109 110 100 1.0 1

101 111 112 102 1.0 1

102 112 114 104 0.82996 1

103 113 115 105 0.17004 2

104 114 116 106 1.0 1



106 116 117 107 1.0

107 117 118 108 1.0

108 118 119 109 1.0

109 319 120 110 1.0 1

BOUNDARY ARRAY

11 1 0 0.0

111 0 1 0.0

132 0 1 0.0

113 0 1 0.0

114 0 1 0.0

115 0 1 0.0

116 0 1 0.0

117 0 1 0.0

118 0 1 0.0

119 0 1 0.0

120 0 1 0.0

PARTITION ARRAY

1
32 1 40

25 64 41 80

57 88 81 120

MASTIC PROPERTIES

3834253.0 3834253.0 0.2 0.2

29000000.0 29000000.0 0.3 0.3
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INITITIAL LOAD ARRAY

90 0.0 -1120.0

LOADING SEQUENCE

24 20 0.0 -100.0 12.0

SPRING ELEMENT ARRAY

2 3 0 1.0 0.0 1.125 2.0

4 5 2 1.0 0.0 1.125 2.0

12 13 0 4.0 0.0 1.125 2.0

14 15 1 4.0 0.0 1.125 2.0

22 23 0 6.0 0.0 1.125 2.0

24 25 1 6.0 0.0 1.125 2.0

32 33 0 6.0 0.0 1.125 2.0

34 35 1 6.0 0.0 1.125 2.0

42 43 0 6.0 0.0 1.125 2.0

44 45 1 6.0 0.0 1.125 2.0

52 53 0 6.0 0.0 1.125 2.0

54 55 1 6.0 0.0 1.125 2.0

62 63 0 6.0 0.0 1.125 2.0

64 65 1 6.0 0.0 1.125 2.0

72 73 0 6.0 0.0 1.125 2.0

74 75 1 6.0 0.0 1.125 2.0

82 83 0 6.5 0.0 1.125 2.0

84 85 1 6.5 0.0 1.125 2.0
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92 93 0 7.0 0.0 1.125 2.0

94 95 1 7.0 0.0 1.125 2.0

102 103 0 7.0 0.0 1.125 2.0

104 105 1 7.0 0.0 1.125 2.0

112 113 0 3.5 0.0 1.125 2.0

114 115 1 3.5 0.0 1.125 2.0

SPRING ELEMENT COUNTER ARRAY

8

1 8

8

9 16

8

17 24

STIRRUP COUNTER ARRAY

CONCRETE PAPAMETERS

4000.0 3700.0 0.003 650.0

STEEL PARAMETERS

0.00132 0.038 500000.0 0.5
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0
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