
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 1989

Reduced complexity receivers for trellis coded
modulations via punctured trellis codes
Bonchul Koo
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Koo, Bonchul, "Reduced complexity receivers for trellis coded modulations via punctured trellis codes" (1989). Theses. 1371.
https://digitalcommons.njit.edu/theses/1371

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1371?utm_source=digitalcommons.njit.edu%2Ftheses%2F1371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



REDUCED COMPLEXITY
RECEIVERS

FOR TRELLIS CODED
MODULATIONS

VIA PUNCTURED TRELLIS CODES

by
Bonchul Koo

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of
Master of Science in Electrical Engineering

1989



APPROVAL SHEET

Title of thesis : Reduced complexity receivers for trellis coded modulations
via punctured trellis codes

Name of Candidate : Bonchul Koo
Master of Science in Electrical Eng., 1989

Thesis and Abstract Approved :
Dr. Fidel Morales — Moreno 	 Date
Professor
Department of Electrical Engineering

Dip osfh Fr ank 	 Date'
Professor

Department of Electrical Engineering

Dr. Chung H. Lu 	 Date
Professor
Department of Electrical Engineering



VITA

Name : Bonchul Koo

Permanent address : 621 YongHyun 5-Dong Nam-Gu Incheon, Korea

Degree and data to be conferred : M.S.E.E., 1989

Secondary education : Jemoolpo high school, Incheon, 1977

Collegiate institutions attended Date Degree Date of degree

New Jersey Institute of Tech. 09/87 M.S.E.E. 05/89

Inha University 03/77 B.S. 02/81

Major : Electrical Engineering

Positions held :

, Manager : Korea Telecommunication Authority, Seoul, Korea



ABSTRACT

Title of thesis: REDUCED COMPLEXITY RECEIVERS FOR TRELLIS

CODED MODULATIONS VIA PUNCTURED TRELLIS CODES

Bonchul Koo, Master of Science in Electrical Engineering, 1989

Thesis directed by : Assistant Professor in Electrical Engineering,

Fidel Morales-Moreno.

We introduce a new concept, called matched punctured trellis encoding, that sim-

plifies the complexity of Maximum Likelihood Sequence Estimation (MLSE) receivers

for combined trellis encoding and modulations with memory. Matched punctured trel-

lis encoding is applied to tamed frequency modulation (TFM) which is a bandwidth

efficient correlative - FM scheme. TFM finds applications in satellite, microwave radio,

and mobile communications.

Our approach is based on puncturing a rate - 1/2 matched convolutional code to

obtain a rate - 2/3 mismatched code. A matched code is one that produces trellis coded

modulations of minimum complexity. Puncturing these codes to obtain mismatched

codes of higher rates increases the complexity of the trellis coded modulations and in

return one can achieve greater coding gains. However, the main idea here is that using

suboptimum MLSE receivers, with just the complexity of the matched codes, good

coding gains can still be achieved. Furthermore, we conclude that the new rate - 2/3

coded modulations obtained with our approach achieve greater coding gains (for same

complexity comparisons) than previously published work.

The new codes are obtained by exhaustive computer search techniques and coding

gains of up to 5.73 dB for 32 decoder states are achieved. These new codes are good

for use with TFM modulation in an AWGN channel.
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1. INTRODUCTION

It is known that by using partial response pulse shaping in FM (frequency mod-

ulation) signals one can obtain bandwidth efficient modulations schemes. Tamed

Frequency Modulation (TFM) [1] can be seen as an instance of partial response FM

with Nyquist - 3rd pulse shaping [10]. TFM is a continuous - phase modulation

(CPM) scheme that exhibits a very narrow power spectrum with low level sidelobes.

Thus, TFM is a good modulation scheme for use in the transmission of digital data

in narrow-band channels such as satellite, mobile, and line-of-sight microwave radio.

The superior spectrum of TFM, in comparison with that of the better known Mini-

mum Shift Keyed Signal, is achieved by careful control of the phase argument of the

modulated carrier with a particular premodulation filter (a specific 3 - tap transversal

filter) and a Nyquist - 3 low pass filter in cascade.

1.1 MOTIVATION

The Maximum Likelihood or Viterbi decoding algorithm was discovered and an-

alyzed by Viterbi [20] in 1967. The Viterbi decoding was first shown to be an efficient

and practical decoding technique for short constraint length codes. Forney and Omura

[21] demonstrated that the algorithm was in fact maximum likelihood. The maximum

likelihood decoder would calculate the likelihood of the received data for code sym-

bol sequences on all paths through the trellis. The path with the largest likelihood

would then be selected, and the information bits corresponding to that path would
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form the decoder output. Unfortunately, the number of paths increases exponentially

by constraint length and code rate. With Viterbi decoding, it is possible to greatly

reduce the effort required for maximum likelihood decoding by taking advantage of

the special structure of the code trellis. In combined encoding (R = k11) and mod-

ulation schemes we use the soft decision decoding replacing the Hamming metric as

likelihood distribution [8]. In the case of decoding for an AWGN (additive white

gaussian noise) channel, the appropriate optimization criterion is to maximize the

free Euclidean distance between signals of any two distinct information sequences.

However, even with the Viterbi algorithm, MLSE decoders are very complex for

most powerfull trellis coded modulations. Any reduction of the complexity of these

receivers is always welcome, as long as performance is not severely deteriorated. This

is our motivation, namely, to study the possibility of reducing the complexity of MLSE

receivers for trellis coded modulation without severely reducing the performance. In

this thesis we do not try to give a general solution, yet, we believe our method can

be applied to other modulations as well.

1.2 THESIS OBJECTIVE

The objective of this thesis is to obtain reduced complexity MLSE receivers

for trellis coded TFM modulation and at the same time to achieve good coding

gains. We do so by puncturing a special class of convolutional codes of R = 1/2,

called matched codes, to obtain so-called mismatched codes of R = 2/3. This is

our main idea and starts from the fact that implementation of the Viterbi algorithm

—4-



(Maximum. Likelihood decoder) for high - rate convolutional codes is greatly sim-

plified if the code structure is constrained to be that of a punctured low rate code

[6]. Our concept does not only stop there, but also exploits the inherent structural

properties of TFM modulation.

In the standard approach of coding with rate - 2/3 codes, the implementation is

complicated by the fact that 2 k paths enter each node in the trellis rather than just

two paths as in rate - 1/2 codes. However, by puncturing a rate - 1/2 code to obtain a

rate - 2/3 code one can decode the latter as if it were a rate - 1/2 code, with very little

additional complexity. A search for rate - 2/3 trellis coded TFM schemes, originating

from rate - 1/2 codes, has been made. Yet, there is something more; the codes that

we have used here have special attributes, which we explain in the following chapters.

1.3 THESIS OVERVIEW

The development of the thesis is covered in chapters 2 - 5 and conclusions are

given in chapter 6. In chapter 2, we establish that Tamed Frequency Modulation is a

modulation with memory and thus can be modeled as a Markov process. Especifically,

we describe TFM by means of a finite - state sequential machine.

TFM scheme is a modulator with memory and is chosen among other memory

schemes because of its relative simplicity. Yet, it is complex enough to let us introduce

most of our ideas. A main part of this thesis is involved with the understanding of

the effects of the interaction between the memory of both the convolutional code

and the modulator, on the structure, optimization, realization, and complexity of the



combinations.

In chapter 3, the concept of trellis coded TFM modulation is generalized. Also,

we show a technique which explicitly identifies the combined coding and modulation

system. The suitability of this identification is that the memory of the modulator

can be modeled as a binary encoder. We also introduce the idea that catastrophic

encoders can be optimal encoders for TFM without exhibiting catastrophic error

propagation. For the code rates of interest, the mathematical detail for the matching

or mismatching conditions are also shown in this chapter.

In chapter 5, we introduce a new concept that reduces the complexity of the de-

coder operation. The concept of puncturing technique is applied to matched encoder

for TFM. Mismatched and matched codes are also considered.

Finally, conclusions are given in chapter 6. The proof of some of the formulas

and results of this thesis are given in Appendix A.

1.4 THE CONCEPT OF PUNCTURED CODES

In this thesis puncturing techique is used to obtain our goal. Clark and Cain

[6] introduced punctured codes by using the notation established by Forney [7]. Now

consider a rate-1/2 encoder with each constraint length. The output bits (of this

encoder) by two input bits are four. If every fourth encoder output bit (by the second

input bit) is deleted (or punctured), this encoder will produce three channel bits for

every two data bit; i.e., it will be a rate-2/3 encoder. This rate-2/3 codes (obtained

by puncturing technique) are called punctured codes.

—6--



2. UNCODED TFM

2.1 THE CONCEPT OF TFM

Tamed Frequency Modulation (TFM) belongs to a class of constant envelope

modulation methods among at bandwidth economy with practical equipment. The

superior spectrum of TFM, in comparison with that of the better known Minimum

Shift Keyed signal, is achieved by careful control of the phase argument of the mod-

ulated carrier with a particular premodulation filter (a specific 3 - tap tranversal

filter) and Nyquist - 3 lowpass filter in cascade. In Fig. 1, we generate TFM. As was

mentioned before, TFM belongs to the subclass of the partial response CPM signals.

2.2 DESCRIPTION OF TFM MODULATOR

A TFM signal is represented by

(2.1)

where ωc = 27f, and fc is the carrier frequency, Φ  is the continuous phase function

bearing the transmitted information. T is the symbol time, and E is the symbol

energy. A basic scheme for the generation of s(t) is shown in Fig. 1. With TFM, the

allowable change in 0(t, a) over one bit period is restricted to either 0, +7/4, —7/4

or +7r/2, —7/2, determined by three consecutive input binary data bits.
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The information carrying phase is

p(t) is the frequency pulse function and cnЄ{ +1, —1, + , 	 0}. The allowable phase

shifts of the modulated carrier during the m th bit period can be expressed as

where a is 1/4 and B is 1/2, and the input data bits b m-1 , 	 , and b„, +] at time

instants of (m —1)T , 77-231 and (77/-1-1)T, respectively, are either +1 or -1. The Fourier

transform of the frequency pulse function for the TFM is given by

G(f) S(f)H(f).	 (2.4)

H(f) is a low-pass filter satisfying the Nyquist-3rd criterion [10]. S(f) is a 3-tap

transversal filter that extends the influence of an input data over three bits period

for the phase function OW, i.e., input sequence of binary impulses is shaped by the

premodulator. The transversal filter and Nyquist- 3 shaping were originally included

to meet conditions which allow the use of a relatively simple quadrature demodulator.

According to eq. (2.2) this normalizing p(t) can be expressed as :

p(t)dt = 1/2.
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2.3 PERFORMANCE OF TFM

The TFM signal is assumed to be transmitted over an additive , white and

gaussian channel having a one-sided noise power spectral density. A detector which

minimizes the probability of erroneous decision must observe the received signal r(t)

over the entire time axis and choose the infinitely long sequence bn . This is referred

to as maximum likelihood sequence estimation (MLSE). A sub-optimum detector has

been proposed [13] in which the signal is observed for N symbol intervals, to make a

decision on a specific data symbol. The limiting case (N oo) of this suboptimum

detector is the MLSE detector. Thus, the receiver observes the signal

(2.5)

and if we let N — no , it can be shown [13] that an MLSE detector is obtained. Using

the union bound which is known to be tight at large SNR. [13] it can be shown that

an upper bound on the probability of erroneous decision is achieved [5],

(2.6)

where Eb is the bit energy (in binary systems Eb equals E, the symbol energy). The

is the normalized minimum Euclidean distance up to time N. Thus, dm in, N

is the single most important parameter which determines the error-rate performance

of digital modulation schemes in an AWGN channel. For this reason we shall use

dmin,N as a measure of performance.
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3. TRELLIS CODED /TM

3.1 THE CONCEPT OF TRELLIS CODED TFM

Fig. 2 shows the combined encoding and TFM communication system model. G

is a rate - k-11 binary convolutional encoder represented by a rank -k, k x 1 matrix with

entries gij (i = 1, 2, • • , k; j = 1 , 2 , • • • , 1) . The code generated by G is CG, and is

the set of all codewords b=aG where a ranges through all k—tuples of equiprobable

binary sequences. At time t, a k—tuple a= (a(at(¹) , • • , a (k) ) produces an 1— tuple

b= (b (i 1) • • •	 I) ), called a branch in the trellis of CG, that is serially transmitted

to TFM modulator M. The TFM modulator M is shown in Fig. 1. The 3 - tap

transversal filter is a partial - response encoder with transfer function ; 1(14-2D+ D 2 ),

where D is the unit - delay operator corresponding to one modulator interval T. It

produces a sequence {c} of quinary symbols , c, e 1+1, —1, 12- , — , O},

( 3 . 1)

(3.2)

where bnЄ{0,1}. The VCO (voltage controlled oscillator) in the modulator M pro-

duces the CPM signal

(3.3)



where f, is the carrier frequency, Φ 0 is an arbitrary constant phase shift that we set

to zero with no loss of generality, and Φ(t), the excess — phase, is

(3.4)

where {c n ) is as in (3.1) ; A = (2E/T)¹/², where T is the duration of a symbol b,,.

and E is the energy of a symbol bn ; and h = 1/2 is the modulation index. We also

assume that the duration and energy of a symbol a, are Tb and Eb, respectively, i.e.,

the rate of G is k// = T/Tb E/Eb , which is important for later normalizations.

The pulse - shape p(t) in (3.4) satisfies the Nyquist - 3rd criterion [10], i.e.,

The minimum bandwidth solution for p(t) in (3.4) corresponds to TFM as originally

introduced in [3]. For simplicity, we will refer to any signal in the class of signals (as

defined in (2.1)) as a TFM signal.

The signal at the input of the Maximum Likelihood decoder V.D. is r(t) =

s(t) n(t), where n(t) is a Gaussian random process with zero mean and variance

N0 /2. The MLSE receiver V.D. uses the Viterbi algorithm to find the k—tuple of

sequences i which leads to a signal ŝ(t) that is closest to r(t) in the sence of smallest

Euclidean distance.

For a given pulse-shape p(t) there is a phase trellis diagram describing the (in-
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stantaneous) excess-phase value ¢(t). However, at the symbol transitions, Φ(t) is not

a function of p(t) , since from (3.4) and (3.5), with h = 1/2,

(3. 6)

Phase values that differ by an integer multiple of 27r are not physically distinguish-

able. We define O m as the excess-phase modulo 27r, i.e., O m = Φ(mT) modulo-27r.

Consequently,

The pattern of phase O m that results from a sequence of symbols c„ can be described

by a finite-state sequential machine. Using Φm and the symbols (bn-1, b-2, b0 = 0),

we can find a 16-state machine representation of TFM modulation. This machine

is however nonminimal, i.e., it can be reduced to another (equivalent) machine with

less number of states. Since the complexity of the combinations of encoding and

modulations is used as the optimization constant here, it is important to find a mini-

mal machine representation of TFM. A minimal (hence irreducible) 8-state diagram

interpretation of TFM can be obtained by considering excess-phase values about the

tone frequency f 1 = f - 1/4T. Thus rewriting (3.3) as

we can define 6(t) = 	 + πt/4T as the excess-phase about the frequency f1 . At the

symbol transitions θ(mT) is given by
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(3.8)

independently of the Nyquist-3 pulse-shape p(t).

Consequently,

where, On, = θ(mT)) modulo-27r, and we have assumed that (3.1) satisfies the initial

conditions ; b-1 b_ ², = 0 . Using the phase values e m as opposed to Φm we obtain

the 8-state Mealy machine of Fig. 3.

3.2 EQUIVALENT TRELLIS CODED TFM

For binary convolutional codes CG, we can show that an encoder G contains

feedback if there is at least one finite input sequence fa n ) for which the encoder

produces an infinite output sequence {bn }, (a finite binary sequence is any sequence

{ x n ) with a finite number of nonzero symbols). To illustrate the above assume G is

initially at the zero encoder state and a finite sequence {a„} is applied at its input.

G contains feedback if for that input sequence the final encoder state is not the

zero state. In this manner we can show that a TFM modulator contains internal feed-

back. For this we use the machine representation of Fig. 3. Let {b, % } = 1,0,0, • • , be

the input (finite) sequence to this machine, and assume the initial state is the zero

state. Since the machine never returns to the initial state, it contains internal feed-

back. A consequence of the feedback inherent in TFM is that sometimes catastrophic

— 13 —



encoders G will produce noncatastrophic trellis coded TFM combinations. It is said

that a trellis coded TFM is to be catastrophic if and only if there exist k—tuples of

sequences a,- and aj with infinite Hamming distance producing signals Mt) and sj(t),

_ co < t < co, with finite Euclidean distance.

3.2.1 PRECODED TRELLIS CODED TFM

The precoded TFM modulator is described by the Mealy machine of Fig. 4 and

the corresponding transformed communications system is shown in Fig. 5. The

states in the machine of Fig. 4 are labeled as in Fig. 3, and the branches by the input

symbols to the precoder, i.e., by b n . The relation between G and W is established

by the precoder 1 D, as seen by comparing Fig. 2 and 5. Thus, given an encoder

W for use with a precoded TFM modulator, we can find the corresponding encoder

G for the original TFM modulator M by applying the precoder rule 1 D to the

output of W. In what follows we assume the equivalent TFM machine of Fig. 4 and

the communications system of Fig. 5. In this scheme by precoding the input to M

with the rate-one binary encoder with transfer function a catastrophic encoder C will

be transformed to a noncatastrophic encoder G* .

3.3 EUCLIDEAN DISTANCE

Let the sequences U i and 	 correspond to the channel symbol sequences a and

respectively, where i is 0,1, • • , 1 —1 . The corresponding signals s(t, a) and s(t, 0)

are both assumed to be in the same state number at level 0. Let the modulated signal

— 14 —



over the interval nT <t < (n + 1)T be described as

(3.9)

It is also assumed that L i and Uli are such that U 0 U-10 and such that s(t, a) and

s(t, 0) are in the same state for the first time in level 1 . The situation described above

is an example of an error event of length 1 intervals. Error events are essential in the

performance analysis of the receiver. One of the most important characteristics of

an error event is its Euclidean distance. Especially, for large signal - to - noise ratios

(Eb /N0 ), the error probability behaviour is dominated by the minimum Euclidean

distance in the set of all error events.

For the Gaussian channel, path metrics are correlations between the received

signal and the hypothesized transmitted signal. With or without convolutional coding,

the squared Euclidean distance d²,(i, j) between any two transmitted siganls s(t) and

(3.10)

(3.1 1)

is the distance contribution attributable to the interval nT < < (n + 1)T. Our

interest, however, is in determining the asymptotic performance of such a receiver,
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which for the assumed channel requires determining the minimum distance between

any two signals that are merged at some time, split, then remerged later. Or, for the

finite - memory receivers we seek the minimum distance between pair that split and

are of length N, denoted dmin,N, We also define the free distance

(3.12)

as usual. The appropriate distance metric for this problem is

(3.13)

which, for ωci >> 2π/T, reduces to

(3.14)

where, ΔΦ(t) is the time - varying phase seperation between the two signals of length

NT seconds. Also, we note that the cumulative squared distance may be recursively

computed as

(3.15)

and is completly specified by transitions in the pair - state trellis (dmin,n; 0 < n < N).

The task now is to find the smallest distance between any pair - state corresponding

to a merger at level n = 0 and another merged pair - state at some level n, while
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transitioning between pair states in each trellis. This is completely analogous to the

shortest route problem and may be solved by applying the dynamic programming

solution. The principle of optimality here is that if a sequence pair (a l , a2 ) is to

produce the minimum distance event, it will do so via extension of minimum distance

pairs to some intermediate pair state, and this holds for all n. Thus, it is sufficient

to preserve the information associated with the minimum distance pair for each pair

state at each level n, and proceed forward recursively, using the known pair state

transitions,

and

See Appendix A for more details.



4. MATCHED CODES FOR TFM

Our optimization criterion is maximum NSFED (normalized squared free Eu-

clidean distance) for given code rate and given total number of states in the combined

encoding and trellis TFM diagram (or state transition diagram). Let Sv denote the

total number of states in the trellis of a combination, and let Sw be the total number

of states in the trellis of a code W in Fig. 4. For a given code rate we will also call Sv

and Sw the complexity of the combination and the complexity of the convolutional

code, respectively.

4.1 EXAMPLE 1

Consider now the rate - 1/2 convolutional encoder of Fig. 6.1 with generator

matrix

(4.1)

and constraint length v = 1. The code Cw* generated by this encoder has a trellis

with Sw. = 2 states and is shown in Fig. 6.2. When this code is used with a precoded

TFM modulator, we find that Sv =4 after drawing the combined diagram as we see it

in Fig. 7. We can conclude from the this example that it is possible to obtain a decoder

complexity of Sv = 4 states, using convolutional codes of different complexities Sw

(i.e. of different constraint lengths). In other words, when the (Viterbi) decoder

complexity Sv becomes the fixed parameter, the number of encoder states Sw can

take different values.

- 18 -



4.2 MATCHING CONDITIONS

Let Cw be any rate - k// convolutional code ; let W be an encoder for CW;

let Sw be the total number of states in the trellis of Cw ; and let Si be the total

number of states required in the combined coding and TFM trellis :

Lemma 1 ( rate-1 /2 and rate-2/3 codes)

For codes of rate 1/2 and 2/3 and for every Sv > 4, there are exactly two

distinct classes of convolutional codes producing the required value for Sv ; the class

of mismatched codes C1,17 where,

and the class of matched codes Cw*, with Sw* = 2Sw states, where

Proof : See reference [1].

Thus, once the decoder complexity (Sw) is fixed, the concept of matched and

mismatched codes arises very naturally. The structual properties of convolutional

codes satisfying (4.3) are given by the following Corollaries to Lemma 1.
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Carollay 1 ( rate- 1/2 codes)

Let W have polynomial entries wj , j = 1, 2. Then , a rate - 1/2 code Cw satisfies

(4.3) if and only if ,

(4.4)

where, v is the constraint length of W.

If w², is 1+ D we have, deg(w2) deg(1+ D) = 1, i.e.. Since the code [1+ D, 1]

satisfies (4.4) the encoder in (4.1) (Example) is a matched encoder.

The structure of rate - 2/3 matched (or mismatched ) codes is established by

Corollary 2. Let

be the constraint length for input i in the "obvious realization " of T4 and define

as the overall constraint length of a convolutional encoder [71.

Corollary 2 ( rate-2/3 codes)
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for all i and for those j where deg(wij) = v/2 , and

(4.5.b)

In general, for a given complexity Sv and a given code rate - 1,-://, we say that W

(Cw), with complexity Sw states, is a matched encoder (code) for TFM if and only

if Sw is the minimum possible value, for that rate, that yields the required Sv, i.e.,

if and only if the state difference

is a minimum for that rate. Otherwise, W ( Cw ) is called a mismatched encoder

(code) for TFM. Let Cw be any rate - k/l convolutional code with (overall) constraint

length v ; then, Cw is a matched code for a modulator if the corresponding complexity

Sir in the combined trellis is the minimum possible rate for that constraint length.
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5. PUNCTURED TRELLIS CODES

5.1 MOTIVATION

TFM signals can be detected by either a coherent or a noncoherent demodulator

with an MLSE receiver. The MLSE receiver maximizes the likelihood function,

With respect to the infintely long estimated sequence a, the maximizing sequence a

is the maximum likelihood sequence estimate and P r(t)Iα is the probability density

function for the observed signal r(t) conditioned on the infinitely long sequence a. It

is equivalent to maximize the correlation

The criterion for deciding between two paths through the trellis is to select the one

having the larger metric. Thus, the number of computations in decoding performed

at each stage increases exponentially with constraint length. The exponential increase

in computational burden limits the use of the Viterbi algorithm to relatively small

values of the constraint length and code rate. In this chapter we introduce a method

to simplify the Viterbi decoders for high - rate convolutional codes.
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5.2 METHOD : PUNCTURED CONVOLUTIONAL CODES

In the standard approach to decoding these codes the implementation is compli-

cated by the code structure which has 2 k paths entering each state rather than just

two paths as rate -10. This makes the resulting comparison and selection of the path

with the best metric much more difficult. The puncturing technique can solve this

problem. Also, we can decode just as one would decode a rate - 1/2 code, with very

little additional complexity.

5.2.1 THE CODE STRUCTURE

Our discussion of punctured code structure uses the notation established by For-

ney [7]. The code constraint length is defined to be v, which has the minimum number

of memory elements. A code is represented by its generator polynomial matrix G(D).

The element in the jth row and ith column,

(5.1)

relates the ith output sequence to the jth input sequence. The punctured code

approach will be illustrated using the rate - 2/3, v = 2 code with generator matrix

(5.2)

The trellis structure for this code is shown in Fig. 8. In decoding this code we use the

Viterbi algorithm in a convolutional manner, a 4 - ary comparison per state must be
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made for every two information bits. This is in contrast to the much simpler binary

comparisons performed in decoding rate - 1/i codes.

Now consider the rate - 1/2, v = 2 code with generators (1 D + D 2 ) , and

(1 + D ²,). If every fourth encoder output bit is deleted, this code will be a rate - 2/3

code. In fact, if the bit from the second generator (1+D ²,) is deleted from every other

branch, the rate - 2/3 code in (5.2) is obtained. This code has the trellis shown in

Fig.9, where X indicates the deleted bits. Note that the transitions between states

and the resulting transmitted bits are identical in Fig. 8 and 9. The transition is

through a set of intermediate states since only one bit at a time is shifted into the

encoder rather than two. Obviously we can generate the same code in a different

manner.

5.2.2 DECODING CONSIDERATIONS

In section 5.2.1 a rate - 2/3 code was constructed by periodically deleting bits

from a rate-1/2 code. It was shown that a rate - 2/3 encoder can be produced from a

rate - 1/2 encoder by mechanical control. This so-called punctured code could also be

thought of as an rate - 1/3 code form with generators 1+D + D ², ,1-1- D ², ,1+ D D 2

that has the first two bits deleted on one branch and the the third bit deleted on

the next branch. The practical value of the punctured code approach is obvious. We

can implement a rate - 2/3 decoder as a rate - 1/2 decoder with additional technique

to stuff erasures in the locations of the deleted bits. After the erasures are stuffed,

decoding proceeds just as if the code were a rate - 1/2 code. In this fashion we
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replace the complex 2 k-ary comparisons at each state by binary comparisons. In a

high-speed decoder this simplification has a major impact on decoder complexity.

The performance will be evaluated on the assumption of an AWGN channel at a large

signal - to noise ratio. The asymptotic performance for a rate - k/l code is given by

[14

where d is the free Hamming distance of the code and wi(d) is the total input weight

of all information sequences which produce weight d paths.

5.3 SOLUTION : PUNCTURED TRELLIS CODES

A new concept, called punctured trellis encoding, is introduced in this section.

In chapter 4, the matched encoder (code) was fully described. The condition of

punctured trellis code is that a rate - 1/2 code must be matched for TFM to produce

a rate - 2/3 punctured trellis code. The mean of punctured trellis here is of a trellis

diagram of combined coding and TFM modulation. Punctured trellis of rate - 2/3

system is equal to that of rate - 1/2 except deleting function. Also, we can use a

rate - 1/2 decoder trellis for a rate - 2/3 decoder trellis in decoding the information

sequences. This is our main idea.
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5.3.1 THE STRUCTURE OF PUNCTURED TRELLIS CODES

In section 5.2 the general structure of punctured code has been described. The

punctured trellis code for TFM needs one more condition ; the rate - 1/2 encoder

(code) must be matched for TFM.

The punctured code approach will be illustrated using the R = 2/3,v = 1 code

with generator matrix

(5.3)

The trellis structure for this code is shown in Fig. 10. Now, consider R 1/2 , v = 1

code with generator [1 D, 1]. Let two input bits be ; a 1  , a ², : 0 , 0 ; 0 , 1; 1 ,

0 ; 1 , 1 . Since the rate of this code is 1/2, the number of output bits is two for

one input bit. In the same manner we can produce four output bits by every two

input bits. Let us assume the output bits are b '1b7by a1and 1/²,, /1by a2. If every

fourth encoder output bit, in other words, b is deleted, this encoder will produce

three channel output bits ; /4. , b"1 ,112 , for every two input data bits ; a 1 , a2 .

A punctured rate - 2/3 encoder produced from a rate - 1/2 encoder has a

simple structure which can be easily obatined from the rate - 1/2 structure. The

simple structure is [g1(D) , g2(D)] of a rate - 1/2 matched encoder for TFM and

[g 1 (D) , g2 (D) , g 1 (D)] of a rate - 2/3 punctured mismatched trellis encoder pro-

duced from the above rate - 1/2 encoder at the same constraint length.
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5.3.2 OPTIMIZATION APPROACH

The optimization criterion is maximum NSFED for a given code rate and given

total number of states in the combined encoding and modulation state-trellis diagram.

With a code rate of R k/l and a constraint length of v the total number of states

of a matched encoder system is Sv 2Sw. 2v+ 1 . Rate - 2/3 punctured trellis

codes generated from rate - 1/2 matched codes is always mismatched for TFM. The

decoder operation of a rate - 2/3 code is the same as that of a rate - 1/2 code. But

the Euclidean distance between two signals is that of the rate - 2/3 code. Thus, we

can use the decoder trellis of the rate - 1/2 code for decoding the rate - 2/3 system.

5.3.3 EXAMPLE 2

In equation (5.3) we showed the technique to produce punctured trellis codes.

The rate - 1/2 code, v = 1 convolutional encoder J4/* = [1 D , 1] in (4.1) is a

matched encoder for TFM, see Fig. 5. Thus, the total number of states is Sv = 4.

From this encoder the two different generators for the corresponding rate - 2/3 encoder

are obtained as [1 D , 1, 1+ Dl. The encoder polynomial matrix of this code is

This encoder is a mismatched encoder,Sw = 4 since Corollary 2 is not satisfied here.

Therefore, the total number of states of this code is Sv = 4Sw = 8. We can now

obtain the rate - 2/3 encoder obtained from matched rate - 1/2 encoder by using the
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puncturing technique. Then, we can also use the structure of the rate - 1/2 code in

Fig. 11 for decoding the trellis of the rate - 2/3 code. The optimum decoder trellis of a

rate - 1/2 code can be used for decoding a rate - 2/3 code scheme. Therefore, the total

number of states of punctured trellis of a rate - 2/3, v ------- 1 is Sv 4, Sir 2Sw.

in Fig. 11. Also, comparisons of each state are reduced to 2, yet, comparisons of

optimum decoder trellis are 4 in Fig. 12.

5.4 NUMERICAL RESULTS

At this point we note that, as long as p(t) satisfy (3.5), Lemma 1 does not

depend on the particular pulse - shape used. This is so because the excess - phase

values θ(mT) are independent of p(t), see (3.8) and Fig. 3 and 5. Consequently, any

code matched (mismatached) to, say, precoded TMSK, is also matched (mismatched)

to any other precoded TFM modulator. The codes obtained will be best for use with

any other TFM scheme. For a given complexity Sv and a given code rate, our goal

is to find the mismatched codes, produced by puncturing technique, W of that rate

that produce the best (maximum NSFED) coded TFM schemes of that complexity.

Our definition of "best" is maximum NSFED for each constraint length.

We will see that, in general, the results obtained with the unpunctured method

are the ones obtained if we used the " best " matched codes. We can obtain the best

punctured codes by the following step;

1) Use the puncturing technique to obtain the punctured trellis codes via matched

codes for TFM.
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2) Investigate all possible rate - 1/2 matched codes for TFM.

3) Collect both the best rate -1/2 matched and best rate - 2/3 punctured trellis

mismatched codes for each code rate and the same complexity.

4) Choose a code which produces the greatest NSFED. The chosen codes are the

best codes of rate'- 2/3.

An extensive search was performed to find the best punctured trellis code gen-

erators for several constraint lengths v. The search was over all gerenators where

there are only two different generators of { G*(D) ,G*2(D) , G*1(D) ). This formula

has implementation advantages particularly at high speeds in that codes may be im-

plemented as a single rate - 1/2 code with periodically sampled generators. The free

Euclidean distance found for the punctured trellis codes compare very favorably with

those published in reference [1].

In Table I we reported the results of the computer search. The reported codes

are the best rate - 2/3 punctured trellis codes. The value for NSFED and coding

gains are given in the Table.

For a given complexity Sv and a given code rate our goal is to find those codes

W of that rate that produce the best maximum NSFED coded TFM schemes of that

complexity. We now search for the best code W of that rate, matched or mismatched,

that maximizes the distance NSFED and produces a coded TFM with required com-

plexity Sv. In this search, we have used the algorithm given in [11]. The best codes

are reported in Table I and II, with corresponding values for the distance NSFED and
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coding gains (relative to the uncoded modulation). Note that the generator polyno-

mials of the reported codes are in binary notation. In Table II we can see that the

best rate - 2/3 punctured trellis mismatched codes W outperform the published best

codes of that rate for all complexity. The punctured trellis encoder G* can be easily

obtained from the rate - 1/2 encoder (which is a matched encoder). Finally, let us

assume that we use this new optimized method. Especially, assume the code rate is

1/2 and 2/3 and complexity Sw is fixed to 2 states, i.e., S w =2. Where, the number

of states of rate - 1/2 and 2/3 code trellis is equal, Sv = 4 with polynomial matrix

of [1 D , 1] and [1 D , 1, 1 + D), see Fig. 11. The rate - 1/2 encoder is matched

for TFM but the rate - 2/3 encoder is maismatched. The complexity of the rate -

2/3 decoder is Sv = 4 states, and NSFED is 2.733, achieving a coding gain of 2.74.

We showed how to obatin rate - 2/3 punctured codes from rate - 1/2 non-punctured

matched codes in Table III, and the results of regular encoder generator matrix in

Table IV.



6. CONCLUSION AND DISCUSSION

The purpose of this thesis is to discuss a situation in which difficult Viterbi

decoder design problem can be simplified by suitably changing the code structure,

and to develope a theory that allows the optimization of the punctured trellis codes.

The trellis coded modulations obtained with this theory are optimum in that the

distance, NSFED is maximized for a given code rate and given total number of states

in the combined trellis. We have applied this theory to codes of rate - 2/3 with

receiver complexities Sv of from 4 to 32 states.

We found that the best codes can be obtained in the set of the so-called punctured

trellis codes for TFM. Also, we showed a way, called puncturing technique, to produce

best punctured trellis codes. We can conclude that by using puncturing technique we

can obtain rate - 2/3 punctured trellis codes that have a characteristic of simplifying

MLSE receiver structure.

We can also conclude that, because TFM modulation contains internal feedback,

sometimes a catastrophic encoder can produce a noncatastrophic combination, as

predicted in the chapter 3. We found that a rate - 2/3 punctured trellis codes W do

not satisfy the mactching conditions stated in (4.5.a) and (4.5.b). In Table III and

IV we compare the best rate - 2/3 codes W obtained in this thesis.

We showed that we can use the rate -1/2 decoder trellis for a rate - 2/3 decoder

trellis in decoding received information sequences. Since the rate - 1/2 decoder trellis
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is equal to rate - 2/3 except of the deleted information, the number of the rate -

2/3 decoder trellis states is also equal to that of non-punctured matched rate - 1/2

scheme.

From a more practical point of view, greater coding gains have been obtained, for

same complexity comparisons, than in previously reported work. Indeed, for rate -2/3

codes, a coding gain (relative to the uncoded modulation) of 2.74 has been obtained

with a decoder complexity of just Sv = 4 states. With full complexity we obtained

slightly greater coding gains than in optimum decoder in Table II. Also, there are 4

comparisons at each state over the optimum decoder trellis in Fig. 12, yet, we reduced

4 comparisons of optimum decoder trellis to 2. We can, also, conclude that, we can

reduce the receiver complexity and complexity comparisons to the half by using the

method introduced in this thesis.

In conclusion, by using the punctured trellis coded modulations we have obtained

half of the receiver complexity relative to the non-punctured optimum encoding with-

out sacrificing performance. Also, with other suitable choices of Nyquist's 3rd pulse

shapes p(t), we can reduce the bandwidth occupancy of trellis codes. Also, it will be

concluded that the performance of the system is approximately determined by the

minimum Euclidean distance for small symbol error probabilities.

In this thesis we did not try to generalize a theory to apply to other modulation

schemes, yet, we believe this new concept can be applied to other modulations.



APPENDIX A

SIMPLIFIED FORMULAR FOR NSFED

We use the following simplified method to calculate the Euclidean distance. Let

the modulated signal over the interval nT <t < (n + 1)T be described as

(1)

where, , a) is the phase modulation in response to the data sequence

b = (b 1 , b²,, • • • , b n ), E is the energy per symbol, and T is the symbol interval,

Φ0is an arbitrary constant phase shift that we set to zero with no loss of generality,

where, a is the data sequence

Thus,

(2)

(3)
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and

and

The pulse-shape p(t) in (2) satisfies the Nyquist' s 3rd criterion,i.e.,

We define E/Eb R bit rate, and d²min, N as the normalized squared free Euclidean

distance

where,

Then,
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(8)

(9)

(10)
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(1 1)

(1 2)

( 13)

but where, q(LT)	 for positive pulse p(t) > 0. Hence, for positive p(t),



(14)

(15)

but,

(16)

where,

(17)



and

So,

Then,

(18)

(19)

- 38 -



Hence,

(20)

In practical we can simplify the formulation as the following:

Let the difference of two phases at (n + 1)T be Ωα C2,6 ,and that of the two

phases at nT be θ, —19. where,

Hence, the normalized squared free Euclidean distance is



APPENDIX B

This program is to calculate the Euclidean

distance between CPM signals.

This program is of an example of encoder [1+D,l,1+D] with

rate 2/3 and constraint length 1.



o 0 0
o o 1
1 1 1
1 1 0
1 0 0
1 0 1
o 1 1
0 1 0



This program is to calculate the Euclidean

distance between CPM signals with rate 2/3 and

constraint length 1, encoder [1+D,1,1+D].



scanf("%d %d %d",&dst[i],&dnd[i] i &drd[i]);

dmin=1000.;

for(i=0;i<P n;i++){
for(j=0;j3;j++){

for(k=j+1;k<4;k++){

A=j+i*4;
B=k+i*4;

if(A>=P_n)
A=A%P n;
if(B>=1n)
B=B%Pn;

phase_of_j=state(dst[i],dnd[i],drd[i]);
phase of_k=state(dst[i],dnd[1],drd[i]);
pjl=sTate(dnd[i],drd[i],dst[A]);
pk 1=state(dnd[i],drd[i],dst[B]);

if(phase_of_j>pjl) phase of_j=phase_of_j-2.*Pi;
if(phase_of_k>pk1) phase_of_k=phase_of_k-2.*PI;

yl=pjl-phase_of_j;
y2=pkl-phase of k;_ _
y3=0.;
y4=pjl-pk1;
x=y1-y2;
if(fabs(x) < 0.5)
d1=0.;

else
d1=1.-(sin(y4))/(x);

pj2=state(drd[i],dst[A],dnd[A]);
pk2=state(drd[i] r dst[B],dnd[B]);

if(pjl>pj2) pjl=pj1-2.*PI;
if(pkl>pk2) pk1=pk1-2.*PI;
yl=pj2-pjl;
y2=pk2-pkl;
y3=y4;
y4=pj2-pk2;
x=yl-y2;
if(fabs(x) < 0.5)

d2=1.- cos(y3);
else

d2=1.-(sin(y4)- sin(y3))/(x);

pj3=state(dst[A],dnd[A],drd[A]);
pk3=state(dst[B],dnd[B],drd[B]);

if(pj2>pj3) pj2=pj2-2.*PI;
if(pk2>pk3) pk2=pk2-2.*PI;
yl=pj3-pj2;
y2=pk3-pk2;
y3=y4;
y4=pj3-pk3;
x=y1-y2;
if(fabs(x) < 0.5)

d3=1.- cos(y3);
else



d3=1.-(sin(y4)- sin(y3))/(x);

VO=d11-d2-1-d3;

for(j1=0;j1<4;j1++){
for(k1=0;k1<4;k1++){

Al=j1+A*4;
Bl=k1+B*4;

if (Al>=P n)
A1=Ti1%P_n;

if(Bl>=P n)
B1=1-h%Pn;

pjl=state(dnd[A],drd[A],dst[A1]);
pk 1=state(dnd[B],drd[B],dst[B1]);

phase_of_j=state(dst[A],dnd[A],drd[A1);
phase of k=state(dst[B],dnd[B],drd[B]);_ _

if(phase_of_j>pjl) phase_ofj=phase_of_j-2.*PI;
if (phase of k>pk1) phase of k=phase of k-2.*PI;_ _ 	 _ 	 _ 
yl=pjl-phase of_j;
y2=pkl-phaselof_k;
y4=pjl-pkl;
y3=phase_of_j-phase_of_k;
x=yl-y2;
if(fabs(x) < 0.5)

d1=1.- cos(y3);
else

d1=1.-(sin(y4)- sin(y3))/(x);

pj2=state(drd[A],dst[A1],dnd[Al]);
pk2=state(drd[B],dst[B1],dnd[B1]);

if(pjl>pj2) pjl=pj1-2.*PI;
if(pkl>pk2) pk1=pk1-2.*PI;
yl=pj2-pjl;
y2=pk2-pkl;
y3=y4;
y4=pj2-pk2;
x=yl-y2;

if(fabs(x) < 0.5)
d2=1.- cos(y3);

else
d2=1.-(sin(y4)- sin(y3))/(x);

pj3=state(dst[A1],dnd[Al],drd[A1]);
pk3=state(dst[B1],dnd[B1],drd[B1]);

if(pj2>pj3) pj2=pj2-2.*PI;
if(pk2>pk3) pk2=pk2-2.*PI;

yl=pj3-pj2;
y2=pk3-pk2;
Y 3=Y 4 ;
y4=pj3-pk3;
x=yl-y2;

if(fabs(x) < 0.5)
d3=1.- cos(y3);



else
d3=1. - (sin(y4) 7 sin(y3))/(x);

V1=d1+d2+d3;
if(i==A1&&i==131){

ED1=VO+V1;
printf("ED1=%f a=%d al=%d \n",ED1,A,A1 );
printf("\t 	 b=%d bl=%d \n", B,B1);
if(dmin > ED1)

dmin=ED1;
ED1=1000.;

else if(i!=A1&&i!=B1&&A1==B1)
ED1-1000.;

else
ED1=VO+V1;

ED1=ED1;
for(j2=0; j2<4; j2++){

for(k2=0 	 k2<4; k2++){

A2=j2+Al*4;
B2=k2+B1*4;

if(A2>=P n)
A2=A2%P n;

if(B2>=P n)
B2=B2%P n;

pjl=state(dnd[A1],drd[A1],dst[A2]);
pk1=state(dnd[B1],drd[B1],dst[B2]);

phase_of_j=state(dst[A1],dnd[A1] ( drd[A1]);
phase_of_k=state(dst[B1],dnd[B1],drd[B1]);

if(phase_of_j>pjl) phase_ofj=phase_of_j-2.*PI;
if (phase of_k>pk1) phase_of_k=phase_of_k-2.*PI;
yl=pjl-Tphase_of_j;
y2=pkl-phaseof k;
y3=phase of_j-pase of k;_ _
y4=pjl-pkl;
x=yl-y2;

if(fabs(x) < 0.5)
d1=1.- cos(y3);

else
d1=1.-(sin(y4)- sin(y3))/(x);

pj2=state(drd[A1],dst[A2],dnd[A2]);
pk2=state(drd[B1],dst[B2],dnd[B2]);

if(pjl>pj2) pjl=pj1-2.*PI;
if(pkl>pk2) pkl=pk1-2.*PI;

yl=pj2-pjl;
y2=pk2-pkl;
y3=y4;
y4=pj2-pk2;
x=y1-y2;

if(fabs(x) < 0.5)
d2=1. - cos(y3);

else
d2=1.-(sin(y4)- sin(y3))/(x);

pj3=state(dst[A2],dnd[A2],drd[A 2 ]);
pk3=state(dst[B2],dnd[B2],drd[B2]);



if(pj2>pj3) pj2=pj2-2.*PI:
if(pk2>pk3) pk2=pk2-2.*PI:

yl=pj3-pj2;
y2=pk3-pk2;
y3=y4;
y4=pj3-pk3;
x=y1-y2;

if(fabs(x) < 0.5)
d3=1.- cos(y3);

else
d3=1.-(sin(y4)- sin(y3))/(x):

V2=dl+d2+d3;

if(i==A2&&i==B2){
ED2=ED1+V2;
printf("ED2=%.3f \n",ED2);
if(ED2 < 3.5)1

puts (" Forget this code");
exit();

1
if(dmin > ED2)

dmin=ED2;
ED2=1000,;

1
else if(i!=A2&&A2==B2&&i !=B2)

ED2=1000.;
else

ED2=ED1+V2;
ED2=ED2;

for(j3=0; j3<4; j3++){
for(k3=0; k3<4; k3++){

A3=j3+A2*4;
B3=k3+B2*4;
if(A3>=Pn) A3=A3%P n;
if(B3>=P_n) B3=B3%Pln;

/* 	 if(i==A3&&i==B3)( 	 */
pjl=state(dnd[A2],drd[A2],dst[A3]);
pk1=state(dnd[B2],drd[B2],dst[B3]);

phase_of_j=state(dst(A2],dnd[A2],drd(A2]);
phase_of_k=state(dst[B2],dnd[B2],drd[B2));

if(phase_of_j>pjl) phase_of_j=phase_of_j-2.*PI;
if (phase of_k>pk1) phase_of_k=phase_of_k-2.*Pi;
yl=pjl-T)hase_of_j;
y2=pkl-phaseof k;
y3=phase of_j-pKase_of_k;
y4=pjl-pkl;
x=yl-y2;

if(fabs(x) <0.5)
d1=1.- cos(y3);

else
d1=1.-(sin(y4)- sin(y3))/(x);

pj2=state(drd[A2],dst[A3],dnd[A3]);
pk2=state(drd[B2],dst[B3],dnd[B3]);

if(pjl>pj2) pjl=pj1-2.*PI;
if(pkl>pk2) pk1=pk1-2.*PI;



171=pj 2-pj 1 ;
y2=pk2-pk1;
y3=y4;
y4=pj2-pk2;
x=y1-y2;

if(fabs(x) <0.5)
d2=1.- cos(y3);

else
d2=1.-(sin(y4)- sin(y3))/(x);

pj 3=state(dstiA3],dnd[A3],drd(A3]);
pk 3=state(dst[B3],dnd[B3],drd[B3));

if(pj2>pj3) pj2=pj2-2.*PI;
if(pk2>pk3) pk2=pk2-2.*PI;

yl=pj3-pj2;
y2=pk3-pk2;
y3=y4;
y4=pj3-pk3;

x=yl-y2;

if(fabs(x) <0.5)
d3=1.- cos(y3);

else
d3=1.-(sin(y4)- sin(y3))/(x);

V3=d1+d2+d3;

if(i==A3&&i==B3){

ED3=ED2+V3;
printf("ED3=%.3f \n",ED3);

if(ED3 < 3.5){

exit();
1

{
dmin=ED3;

printf("dmin= 96.3f\n", 2*dmin/3);
ED3=1000.0;

else if(i!=A3&&A3==B3&&i!=B3)
ED3=1000.;

else
ED3=ED2+V3;

ED3=ED3;

for(j4=0; j4<4; j4++)(
for(k4=0; k4<4; k4++){

A4=j4+A3*4;
B4=k4+133*4;

if(A4>=P_n) A4=A4%P_n;
if(B4>=Pn) B4=B4%Pn;

if(i==A4&&i==B4)(

pjl=state(dnd[A3],drd[A3),dst[A4]);
pk1=state(dnd[B3],drd[B3),dst[B4]);

phase of j=state(dst[A3],dnd[A3],drd[A3]);
phase ofk=state(dst[B3],dnd[B3],drd[B3]);



if(phase_of_j>pjl) phase_of_j=phase ofj-2.*PI;
if(phase_of_k>,pk1) phase_of_k-phase:Of_k-2.*PI;

yl=pjl -phase_of_j;
y2=pkl-phase of k;
y3=phase of 3-0-1-ase of k;
y4=pjl-pkl;
x=yl-y2;

if(fabs(x) < 0.5)
d1=1. - cos(y3);

else
d1=1. -(sin(y4) - sin(y3))/(x);

pj 2=state(drd[A3],dst[A4],dnd[A4]);
pk 2 =state(drd[B3),dst[34],dnd[34]);

if(pjl>pj2) pjl=pj1-2.*PI;
if(pkl>pk2) pk1=pk1-2.*PI;

yl=pj2-pjl;
y2=pk2-pkl;
173-Y 4 ;
y4=pj2-pk2;
x=yl-y2;

if(fabs(x) < 0.5)
d2=1. - cos(y3);

else
d2=1. - (sin(y4) - sin(y3))/(x);

pj3=state(dst[A4],dnd[A4],drd[A4]);
pk3=state(dst[B4],dnd[134],drdt134]);

if(pj2>pj3) pj2=pj2-2.*PI;
if(pk2>pk3) pk2=pk2-2.*PI;

Y 1=Pi 3-Pi 2 ;
y2=pk3-pk2;
y3=y4;
y4=pj3-pk3;
x=yl-y2;

if(fabs(x) < 0.5)
d3=1. - cos(y3);

else
d3=1. - (sin(y4) - sin(y3))/(x);

V4=dl+d2+d3;

ED4=ED3+V4;

puts (?t*******************************")
printf("ED4=%.3f\n",ED4);

if(ED4 < 3.5){ /* =2.3*3/2 */
puts("Forget this code");
exit();

}
if(dmin > ED4)

dmin=ED4;
puts (u********************************u);

1
else

ED3=ED3;



}

}

puts(" We got the result");
printf("dmin- 96.3f \n",2*dmin/3.);
puts("This code is greater than the previous");

}
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Fig. 7. Trellis of combined coding and TFM
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Fig. 8. Trellis diagram for the encoder in Eq.
(5.2) with R = 2/3,v = 1.
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Fig. 12. Trellis diagram (original) of combined
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Table I. Best rate - 2/3 punctured trellis codes

Generators-2/3

in binary form

NSFED Coding

Gain

4 11 10 11 2.733 2.74

8 101 110 101 3.938 4.33

16 1111 1010 1111 4.864 5.25

32 10111 10110 10111 5.441 5.73



Table II. Coding gains (dB) of best rate - 2/3

punctured trellis codes and

best rate - 2/3 non-punctured codes

S i/

New Results

Best rate-2/3

Punctured Codes

Previously reported work

Best rate-2/3

non-punctured Codes*

Best decoder

4 2.74 2.00 2.74 (8 states)

8 4.33 2.74 4.33 (16 states)

16 5.25 4.33 5.65 (32 states)

32 5.73 5.65 6.15 (64 states)

* Codes obtained in[1]



Table III* Generator matrix and encoder matrix

of rate - 2/3 punctured trellis codes

Sv Generators

in binary form

Encoder

in binary form

4 11 10 11 10 10 10

01 00 10

8 101 110 101 11 10 00

00 01 11

16 1111 1010 1111 110 110 110

011 000 110

32 10111 10110 10111 111 100 100

001 011 111
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Table IV. Best rate - 2/3 punctured trellis codes

and rate - 1/2 matched codes

Sv Generators-1/2

in binary form

Generators-2/3

in binary form

4 11 10 11 10 11

8 101 110 101 110 101

16 1111 1010 1111 1010 1111

32 10111 10110 10111 10110 10111

7/
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