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Abstract

The need for a reliable and accurate method for assessing the surface area of burn

wounds currently exists in the branch of medicine involved with burn care and treat-

ment. The percentage of the surface area is of critical importance in evaluating fluid

replacement amounts and nutritional support during the 24 hours of postburn therapy.

A noninvasive technique has been developed which facilitates the measurement of burn

area. The method we shall describe is an inexpensive technique to measure the burn

areas accurately.

Our imaging system is based on a technique known as structured light. Most struc-

tured light computer imaging systems, including ours, use triangulation to determine

the location of points in three dimensions as the intersection of two lines: a ray of

light originating from the structured light projector and the line of sight determined by

the location of the image point in the camera plane. The geometry used to determine

3D location by triangulation is identical to the geometry of other stereo-based vision

system, including the human vision system.

Our system projects a square grid pattern from 35mm slide onto the patient. The

grid on the slide is composed of uniformly spaced orthogonal stripes which may be

indexed by row and column. Each slide also has square markers placed in between the

lines of the grid in both the horizontal and vertical directions in the center of the slide.



Our system locates intersections of the projected grid stripes in the camera image and

determines the 3D location of the corresponding points on the body by triangulation.

Four steps are necessary in order to reconstruct 3D locations of points on the surface

of the skin: camera and projector calibration; image processing to locate the grid

intersections in the camera image; grid labeling to establish the correspondence between

projected and imaged intersections; and triangulation to determine three-dimensional

position. Three steps are required to segment burned portion in image: edge detection

to get the strongest edges of the region; edge following to form a closed boundary;

and region filling to identify the burn region. After combining the reconstructed 3D

locations and segmented image, numerical analysis and geometric modeling techniques

are used to calculate the burn area. We use cubic spline interpolation, bicubic surface

patches and Gaussian quadrature double integration to calculate the burn wound area.

The accuracy of this technique is demonstrated The benefits and advantages of this

technique are, first, that we don't have to make any assumptions about the shape of the

human body and second, there is no need for either the Rule-of-Nines, or the weight

and height of the patient. This technique can be used for human body shape, regardless

of weight proportion, size, sex or skin pigmentation.

The low cost, intuitive method, and demonstrated efficiency of this computer imag-

ing technique makes it a desirable alternative to current methods and provides the

burn care specialist with a sterile, safe, and effective diagnostic tool in assessing and

investigating burn areas.
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Chapter 1

Introduction

There are many medical researchers and physicians who have, over the past century,

studied the problem of estimating the surface area of the human body.

For the diagnosis and treatment of burn patients, knowing the surface area is impor-

tant for establishing initial fluid replacements, nutritional requirements, and an initial

prognosis for the patient [7]. Once the surface area of the burn wound can be ac-

curately determined, the wound healing progression may be monitored in response to

several topical healing ointments during the course of burn therapy which allows for the

evaluation of pharmaceutical agents and their efficiency in reducing the wound area.

In 1915, Dubois and Dubois (14] modeled anatomic sections of the body into a series

of cylinders each having an area equal to the circumference times the height. The final

formula which they derived is :

The formula takes into account the large interpersonal difference in body fluid and

stature since both weight and height are accounted for in the formula, and has since

been accepted as a standard in determining the total body surface area.

1
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In 1944 Lund and Browder [35] developed a burn chart and diagrams for both

adults and children. The most widely used method for determining the surface area

was developed in 1947, by Pulaski and Tennison called the Rule-of-Nines in which the

various body segments are represented as percentages that are multiples of nine. The

Rule-of-Nines was found to be in close agreement when compared with the Lund and

Browder chart [33].

The disadvantages of both the Lund and Browder chart and the Rule-of-Nines are

that they all require visual estimation on the part of the physician. Sizeable errors

occur in estimating the percent total body surface area. The degree of the error varies

widely among several observers estimating the area of the same burn patient when

using the Rule-of-Nines method; thus attempts have been made to directly measure

the burn areas and then determine the percentage total body surface area (%TBSA).

During the last decade, many researchers have used the planimeter to estimate surface

area. The recent research using such techniques include Nichart, Bryant, Edlich in 1985

[43], Fuller, Mansour, Engler and Sinister in 1985 [23], and Scott-Conner and Conner

in 1988 [57]. But they all required the user to draw the contour of a burn portion on a

diagram of the computer screen or a plotter.

In 1987, Miss Rath presented her master thesis, the Noncontacting Surface Area As-

sessment of Burn Wounds Using Computer Image Methods at NJIT [54]. Her technique

involved projecting an orthogonal grid onto the surface to be measured, and capturing

the image on video tape for processing by a digitizer. The drawbacks in her paper are:

first, she had to measure the distance between projector and object and the distance

between camera and object manually, in other words she had to compute the area of

a pixel in linear units squared in the 3D Cartesian coordinate system; second, she as-
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sumed the object or human body consisted of cylinders; third, she didn't mention how

to get the contour of the burn area; fourth, she reduced the 3D problem to 2D which

means she didn't consider the curvature or the normal vector of the surface.

Since we live in a three-dimensional world, one of the intuitive ways to obtain the

three-dimensional properties of an object, in our case is the human body, is using stero-

metric techniques. The observable domain of an object is delineated by the surface

encompassing the object. The technology to obtain three-dimensional spatial coordi-

nates of a sample of points on the surface of an object is called surface digitization.

The process of doing surface digitization without human interaction will be auto-surface

digitization [50].

Basically, there are two types of sterometric techniques. One is the active binocular

system, another is the passive stereo system. Applications of active sensing in the

binocular system involve triangulation. The construction of an active binocular system

is identical to that of a passive stereo system, expcet that one of the cameras is replaced

by a controlled light source. The light source selectively illuminates the scene, and the

illuminated portion can be readily detected in the image with triangulation to recover

the spatial position. The light patterns can be points or lines [29], [8], or complicated

pattern such as orthogonal grids [48],[47],[46],[52], [22],[20],[21],[39], [60], [25], [50], [51],

[58], [59], or sets of parallel stripes [11],[65],[64], [66]. The light sources are laser, X-

ray, or ordinary structured white light. The system described in this paper falls into

the category of active binocular computer-image system. The advantage of our image

system is that there is no biological risk of using lasers and/or X-rays, instead we are

using a 35mm projector as a light source.



Chapter 2

Automatic Calibration for
Camera and Projector

One generally does not know anything about the imaging geometry when looking at a

picture. For example, the focal length and location of the camera are both unknown.

However, people can produce an excellent qualitative description of scene content ap-

parently without being able to deduce these imaging parameters. How the human visual

system can accomplish this task is still a mystery. In order to recover depth, shape and

other scene properties using known computational techniques, we must first construct a

quantitative model describing the geometric relationship between the scene, the camera

and the image.

One way to state this problem is: given a set of correspondences between a known

three-dimension configuration of points and their locations in a single two-dimension

image, determine the parameters of the camera that produced the image. Fischler and

Bolles [19] show that if at least six correspondences between world points (with known

3D locations) and image points can be established , then it is possible to determine

the twelve coefficients of the 3 x 4 collineation matrix that specifies the mapping (in

homogeneous coordinates) from 3-space to 2-space.

4
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Camera calibration is the determination of the correspondence between points in

the camera image and points in physical space. Only when the camera is properly

calibrated can its 2D raster coordinates be translated into real-world locations for the

objects in its field of view. The same approach is used for projector calibration.

2.1 Assumptions

Before discussing the meaning of the camera calibration matrix and the projector cali-

bration matrix, we have to make some assumptions about the mathematical model for

camera and projector.

In the following derivation we first assume

A that the lens of the camera behaves as an ideal, thin lens;

B that the pixel matrix is aligned with the external coordinate system;

C that the reflecting surface is perfectly diffuse;

D that the pixel raster is ideal.

The ideal thin lens assumption states that the lens can be replaced by a pinhole [9],

[10], [30]. The location of this equivalent pinhole is called the optical center of the lens.

The alignment assumption states that the pixel rows must be parallel to the plane

of light, and that the columns hence are perpendicular. The diffuse-surface assumption

requires that the intensity of the reflected light be independent of reflection angle, and

the assumption of an ideal pixel raster requires that the camera be noise-free and of

infinite resolution.
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2.2 Camera Calibration

The camera calibration matrix represents the functional relationship between points in

the 3D object-centered coordinate system and the pixel location of the projected point

in the camera plane and it is a 3 x 4 matrix in homogeneous coordinates. Equation

2.1 represents the camera calibration matrix.

The values of the camera calibration coefficients ti depend on the orientation, trans-

lation, focal distance, and scaling of the camera relative to the three-dimensional scene.

An image plane is placed between the lens and the object so that the image plane is

perpendicular to the optical axis of the lens and at a distance of one focal length from

the lens center. The projection of an object point onto the image plane is determined

as the intersection of the image with the line connecting the object point and the lens

center (optical center of the lens).

Without loss of generality, we may assume that the z-axis in the object coordinate

system is perpendicular to the image plane and the calibration box.

If f is the focal length of the camera and (x, y, z) the object point coordinates, then

by using similar triangles we can express the image plane coordinates (u, v) as :

Equations 2.2 and 2.3 express u and v as nonlinear functions of x, y and z. Since
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using these equations to compute the camera and projector calibration parameters in-

volves solving simultaneous nonlinear equations which is very difficult, we shall use

homogeneous coordinates as the mathematical representation with which one can ex-

press the perspective transformation as a linear transformation.

In homogeneous coordinates, a three-dimensional Cartesian vector (x, y, z) is rep-

resented by a four component vector (wx, wy, wz, w) where w is an arbitrary constant.

The Cartesian coordinates of a point are recovered from the homogeneous coordinates

by dividing each of the first three components by the last component.

The following matrix equation in homogeneous coordinates represents the camera

image formation process which maps the point (xi, y i , zi ) in the objected centered co-

ordinates onto the point (ui, vi) in the camera image plane

These linear equations in the homogeneous coordinates of equation 2.4 are equivalent

to the following system of two equations involving the Cartesian coordinates

The purpose of the camera calibration procedure is to solve for the unknown ele-

ments to , 	 of the camera calibration matrix.

If we know the coordinates (x i , yi, zi ) for 6 or more points and the coordinates of

their projections (obi, vi) in the camera image plane then the unknown camera calibration

matrix elements may be found by setting t11= 1 and determining the reminding 11

elements of the calibration matrix as the least square solution of the overdetermined
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2.3 Projector Calibration

The elements of the projector calibration matrix depend on the position and orientation

of the projector relative to the object-centered coordinates, the focal length of the

projector, and a scale factor which takes into account the spacing of the grid stripes

which are the projected pattern, which will be shown later.

Since we have already determined the camera calibration matrix, the object-centered

coordinates of points in space (xi, yi , zi ) and the corresponding row and column of the

projected grids (pi, qi), solving for the unknown elements of the projector calibration

matrix is identical to solving for the unknown elements of the camera matrix
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is called projector calibration matrix.

By the same token, if we know the coordinates of the object points (xi, y i , zi ) and

the coordinates of their corresponding projector points (pi, qi), the unknown projector

calibration matrix elements may be found by setting In 1 and determining the 11

elements of the projector calibration matrix as the least square solution of equation 2.7

2.4 Automatic Calibration Procedure

The automatic calibration procedure is one of the unique features in our system. When-

ever we are dealing with stereophotogramrnetry techniques, it is necessary for the cam-

era/lighting configuration ( in our case is camera and projector ) to be calibrated; that

is, for the precise relationship to be established between points on the image and their

corresponding coordinates in the external world. The calibration must, in principle, be

performed each time the camera and projector system are demounted or modified.
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Figure 2.1: The calibration system setup

The purpose of automatic camera and projector calibration is to solve for the cal-

ibration matrices without human intervention such as giving initial values for certain

parameters by guessing or choosing certain system parameters manually. Our method

relies on grid labeling using the marked grid to obtain a set of 3D positions and their

corresponding image plane coordinates for both camera and projector calibration. The

setup of the system is shown in Figure 2.1.

The camera is calibrated first. A picture of the marked grid is pasted on the side
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of a box which is called the "calibration box" and placed at two known object centered

positions in the camera's field of view. Each image is processed by the sequence of

steps described in Chapter 3 to determine the 2D locations of the intersections in the

image plane. The 3D locations are determined from the grid labels, known scale of the

pattern and known position of the box in the object centered coordinate system. The

camera parameters are computed by equation 2.6.

In order to simplify the calculation, the stripes on the calibration box have one inch

distance between adjacent stripes horizontally and vertically. See Figure 2.2.

The projector calibration is determined next. The picture of the marked grid on

the box is replaced by a blank piece of paper, and the box is repositioned at the first

position. The slide with the pattern shown in Figure 2.3 is placed in the projector and

illuminates the box.

The camera image is saved, the box is repositioned at the second calibration position,

and the second image is taken. Each image is processed by the procedure in Chapter

3 to determine the 2D location of the intersections and their grid labels. From the 2D

location and the camera calibration matrix, each intersection is back projected to its

location on the box in the object centered coordinate systemf This is repeated for each

intersection on both projector images . The 3D position for each detected intersection

point on each projector image is calculated using



Figure 2.2: The pattern of camera calibration box
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Figure 2.3: The pattern of projector slide
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From the grid labels and 3D locations, the projector calibration matrix is computed

from equation 2.7.



Chapter 3

Computing Three Dimensional
Coordinates

In order to calculate the surface area of a burn wound patient, we need to know how to

get the 3D position by using our structured light system. In this chapter, we present

algorithms and implementations due largely to Richard Keizer, a Ph.D candidate at

Rutgers University, and reported in [16],[17],[31].

Because we use the white light as the structured light in our system, we need

additional image processing to accurately locate the grid intersections in the camera

image due to the poorer contrast of the white light stripes as compared to laser beams,

and due to the fact that the projected white light stripes can not be simultaneously in

sharp focus over the entire body. The following steps are used to find the 3D positions

with structured light and can be utilized to accurately locate the structured white light

grid intersections.

1. Segmentation.

2. Line Thinning.

3. Intersection Detection.

15
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4. Grid Labeling.

5. Triangulation.

3.1 Segmentation

The first step is to extract the structured light stripes in the camera image by seg-

mentation. We have used a two step segmentation procedure consisting of reflectance

compensation followed by bimean thresholding.

3.1.1 Reflectance Compensation

This procedure removed the brightness variation due to the variations in the reflectivity

of the human skin.

Theoretically, the image intensity due to reflected light from a surface patch illumi-

nated by a single light source is given by

where l(x, y) is the image intensity at pixel location (x, y), L(x, y) is the intensity of

the incident light at the corresponding point on the objects surface, and R(x, y) is the

reflectivity of the surface [28].

The reflectance compensation algorithm begins with estimating the term R(x, y) in

equation 3.1 and then dividing the image intensity by this estimate to obtain an esti-

mate of the incident illumination L(x, y). Assuming that R(x, y) varies slowly compared

to the grid stripes spacing, we can estimate R(x, y) by the median of the intensities of

the image pixels inside a neighborhood centered at (x, y). We recover the illumination

by dividing the intensity by the estimate of the surface reflectivity. In practice dividing
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I(x, y) by the median is unstable in the background since the local median levels are

small. In our system, we add the global median to the local ( neighborhood ) median

before dividing. Thus, this can avoid overcompensating in the background.

3.1.2 Bimean Clustering

This procedure is used to extract the grid stripes from the compensated image.

Mathematically, this procedure computes the values of u and v such that

and the value of k such that

is minimized where x 1 ≤  x 2 ≤...≤  zn. Practically, the index k is the gray level

above which the gray levels belong to the object, and the cluster of gray levels below

the index k belongs to the background. In other words, Bimean clustering classifies

image pixels according to their gray level as belonging to one of two classes: object (the

stripes) and background (the body). The value of the threshold separating object from

background is determined from the constraint that the sum of the intraclass distances

to the means is minimized for both classes. This allows us to reliably extract small

objects from large image.

3.2 Classical Thinning Algorithm

After the segmentation procedures, we make the grid stripes of the segmented image

exactly one pixel wide by shrinking each stripe to its "skeleton". The algorithm we use

is called the classical thinning algorithm [4].
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3.3 Intersection Detection

After the thinning procedure, the stripes are exactly one pixel wide and are connected

in the 8-neighbors sense.

The candidates for intersection detection are the pixels lying on the thinned stripes,

examined in a raster scanned manner. Detection is based on a set of conditions on the

set of nonzero pixels lying in a square neighborhood centered about each candidate pixel.

The detection conditions are a set of heuristics designed to test the hypothesis that the

nonzero pixels in the square neighborhood are the thinned image of two intersecting

stripes.

Condition A: The set of nonzero border pixels in the square neighborhood centered

about the candidate pixel consists of exactly four connected subsets called border-

connected components. If condition A is satisfied, then the remaining conditions

are tested for each combination of four border pixels with one pixel taken from

each border-connected component.

Condition B: A set of constraints on the lengths of the shortest paths connecting the

center candidate pixel with each of the four border pixels.

Condition C: The set of nonzero pixels in the square neighborhood is exactly the

union of two paths connecting pairs of border pixels, and with the candidate

pixel required to lie on each of these paths.

Condition D: A constraint on the curvature of each of these two paths.

Condition E: A constraint on the angles of each of the two paths.
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If each of the conditions A through E is satisfied for a candidate pixel and a quadru-

ple of border pixel with one pixel taken from each of the border-connected components,

then the geometric intersection of the two stripes is taken to be the set theoretic inter-

section of the two paths. The location of the intersection will later be estimated as the

centroid of this connected component of pixels.

3.4 Grid Labeling

The main purpose of this procedure is to determine the correct correspondence between

labeled intersections on the slide and detected intersections in the camera image. We

have found, using the marked grid, that reliable grid labeling can be performed without

epipolar constraints and using only a small subset of the constraints used by Stockman

and Hu [58]. This is an advantage in automatic calibration, where it is necessary to

perform grid labeling without prior knowledge of camera or projector geometry.

There are five steps in the direct construction of labels

1. Build a list of intersection adjacencies together with the directional sense of each

adjacency.

2. Detect marker locations.

3. Construct the reduced graph.

4. Compute the longest paths.

5. Assign labels along each of the grid coordinate axis.

For more information and details of the grid labeling procedure, see [32].
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3.5 Triangulation

Triangulation is the method by which the three dimensional location of points on the

human body can be determined as the intersection of two lines: one line which passes

through the camera lens center and the image of a grid intersection in the camera

image plane, and a second line which passes through the projector lens center and the

matching grid intersection on the slide.

Because of the quantization of the digital image and the numerical inaccuracies in

determining the camera calibration and projector calibration matrices, those two lines

usually come close to intersecting but do not actually meet. The usual approach to

solve this problem is to find the least squares intersection of the two lines, which can be

defined as the point in space which minimizes the sum of the squares of the distances

to the two lines [1] and is given by

where t1 , 0 ≤  i ≤  11 are the elements of camera calibration matrix, l i , 0 ≤  i ≤  11 are

the elements of projector calibration matrix, (u, v) are the image plane coordinates of

a detected grid intersection and (p, q) is the grid label of the matching grid intersection

on the slide. The unknowns are the object centered coordinates (x, y, z) of the point.

This procedure gives a set of points (x,y, z) on the human body which are used to

reconstruct the surface.



Chapter 4

Segmenting the Burn Area

The problem at hand is how to identify which portion of the image is real burn wound

area. In this chapter we will discuss several segmentation methods to solve the problem.

This is the most difficult step to automate in the entire system since the boundary

may be irregular and the contrast will not be constant in an image and may vary from

patient to patient. In this chapter we shall present 3 methods:

1 Edge extraction followed by edge following.

2 Multi-level thresholding.

3 Manual contouring.

for segmenting the burn area. The first two of these are automatic procedures, and if

they fail then the burn area can be segmented by choice 3, manual contouring.

4.1 Edge Extraction Followed by Edge Following

4.1.1 Edge Extraction

Because of the importance of edges and contours which delineate image regions and

encode shape information, few problems in computer vision have been more intensively

21
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studied than that of edge detection. Even so, there are probably only modest differ-

ences in performance between the most sophisticated modern techniques and the edge

operator originally described fifteen to twenty year ago.

Martelli [38] considered the edge-detection essentially as a tracking problem and

used graphical theoretic techniques for its solution. Modestino and Fries [40] proposed

a bidimensional recursive filtering scheme using statistical modeling of the image for

edge detection. Basseville [6] had used a sequential algorithm for edge detection which

uses a line-by-line detector of edge elements.

The early edge operators generally embodied a specific edge model; they were de-

signed to locate step edges, or measure local intensity gradients. These operators are

generally of a fixed size and do not address the issues of edge width and resolution [24].

The "zero-crossing operator" introduced by Marr and his co-workers [37] has one

important feature: it explicitly deals with scale of resolution by smoothing, as well as

the image-intensity surface; it smooths out the intensity variation below the spatial

frequency of the edge it finds. John Canny [12] proposed a many zero-crossing scale

implementation. The Canny edge operator is in wide use including medical applications.

For example, Eichel implemented the Canny operator to identify coronary artery edges

from cineangiograms [18].

Most of the existing approaches are based on the design of a detector that identifies

likely edge pixels. Nalwa and Binford [42] seek to identify edgels — short linear edge

elements — rather than individual edge pixels. Haralick [26] models the intensity of

surface patches analytically, then deduces the presence of edges from the coefficients

of the model. A competing approach is regularization: For example, Torre and Poggio

[61] argue that the numerical differentiation of images required for edge detection is an
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ill-posed problem that must be regularized by a filtering operation before differentiation.

The algorithm that we used poses the problem of edge extraction as a statistical

classifier problem [34].

First, we assume the image is locally modeled as consisting of constant regions and

two-valued regions as defined below.

Definition 1 An n x n region is called a constant region if all the pixels inside the

region have the same value, as in Figure 4.1 for a 3 x 3 region.

Definition 2 An n x n region is called a two-valued region if every pixel inside the

region can have one of two possible values, either the higher pixel value Sh or lower

pixel value Si, as in Figure 4.2.

This is not saying that the image consists of only two levels. All we are assuming is

that over a small region of the image, the pixel values are either approximately constant

or can have one of two possible values (a low value of low dispersion or a high value

of low dispersion). The latter case belongs to an edge because most edges in the real
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Figure 4.2: A 3 x 3 two-valued region

world are sharp edges where the intensity function is composed of a few step changes

over a small number of pixels. An edge in the image is thus a collection of two-valued

regions.

The algorithm of edge extraction that we are using consists of three major steps.

Step 1.

The program starts from moving a 3 x 3 window over the image in a raster scan

fashion. At each instant, we labeled each pixel i inside the window as T2 , i = 0, ..., 8.

We define Sh and Si as follow:

Sh = one below the maximum value of Ti

= the eight order statistic of Ti

Si = one above the minimum value of Ti

= the second order statistic of Ti

and assume that the 3 x 3 region being tested is a two-valued region. Then the range

R9 of the nine pixels in a two-valued region is
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If the 3 x 3 region is close to the edge, R9 given by Sh - Slis likely to be large;

and if the 3 x 3 is over a constant region, R9 is likely to be small. So if R9 > r1 and

the center of the window < (Sh Sl)/2 ,the central pixel possibly belongs to

an edge and we go to step 2. If the condition above fails, the central pixel is assumed

to be part of a constant region. Then we move the window to the adjacent pixel in a

raster scan fashion and start from step 1 all over again.

In the above definition, Sh and S1 could be approximated by the maximum and the

minimum order statistics. However, the maximum and the minimum order statistics

are prone to wide margins of error. Furthermore if we use a sorting algorithm to order

the set of data Ti from small value to a large value, it is no more difficult to get the

eight and the second order statistic of the set of data

At an edge, the width of the edge is two pixel thick; one belongs to the edge contour

of the lower pixel value and the other belongs to the edge contour of the higher pixel

value. The condition of "the pixel value of the center of the window < (Sh Sl)/2"

enables the algorithm to trace only the contour of the lower pixel value at any edge in

the image.

In our program, we treat r1 as one of the input arguments. The choice of r 1 deter-

mines the strength of the edges to be detected. For higher value of r 1 , only the sharper

edges will be detected. To detect the relatively weaker edges, r1 has to be made smaller.

Step 2

Because the criteria of determining whether the test window belongs to a constant

region or a two-valued region are not strict, more pixels are detected as candidates for
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Figure 4.3: A 5 x 5 window.

two-valued regions than there possibly are. In step 2, what we are going to do is to

isolate those pixels which truly belong to two-valued regions among all possible pixels

detected by step 1. We first increase the window size to 5 x 5 centered around the

same pixel as the 3 x 3 window of step 1. Consider the 5 x 5 window shown in Figure

4.3.

We assume that every pixel inside a two-valued region has a Bernoulli distribution,

and the pixels are independent of one another, i.e.:

That is because the window size of its 5 x 5 region is considerably large and the

pixel value of each individual pixel has no correlation to its neighbors.

We can also assume that p is 0.5. Over an infinite collection of two-valued regions,

on an average Sh and Si will appear an equal number of times. The expectation of Ti

is:



27

The problem now is to classify the pixels inside the 5 x 5 region into two distinct

classes when the pixels have the distribution given by equation 4.2.

Denoting T25 = ∑24 Ti /25. It can be readily shown:

By the central limit theorem which states that if the random variables xi are inde-

pendent, then under general condition, the density f(x) of their sum x = x1+...+xn

properly normalized, tends to a normal curve as n->∞ . In other words, if n is

sufficiently large, then

Thus the equations 4.5 and 4.6 can be rewritten as



Consider the statistic

We shall use the statistic s i to decide whether the pixel Ti has value Si, or Si. In

order to do so, we define two hypotheses.Under the first hypothesis Ho , called the null

hypothesis, the pixel Ti has the value Sl. Under the second hypothesis H 1 , called the

alternative hypothesis, the pixel Ti has the value Sh .

So under Ho ,

has an approximate Gaussian distribution given by

28

has an approximate Gaussian distribution given by

Now we define
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This implies that the mean values under the hypotheses H0 and H1 are separated

by approximately 10 times the standard deviation. In [34], Kundu and Mitra found the

upper tail of s i under H1 at a distance 7.5a from its mean or -2.5 σ  from the mean of

s i under Ho is almost negligible. So they used this observation as decision rule instead

of using zero which will identify a constant region as a two-valued region incorrectly

because of the variance over a region even when it is a small region.

So under Ho :

where
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where we replaced 5rn(m -1) -1 by T2 which is another argument of the program. If

Si > θmax-3/T2, Ti is to have the value Si, and vice versa. So at this step, every pixel

Ti is tested using the statistic s i to determine whether it has the value Slor the value

Sh .

Step 3

In this step, the program will decide whether or not the central pixel belongs to

a two-valued region. In the program, the variable "count" gives the number of pixels

having the value Slinside the 5 x 5 window. According to the prior knowledge, we

have 25 elements ( trials ) for each 5 x 5 window and the probability for each element is

0.5. Therefore, the distribution of the variable "count" is binomial with mean 25 x 0.5

and the variance 25 x 0.5 x 0.5. We define a new variable "Stat" such that

The distribution of Stat is nearly a Gaussian distribution with zero mean and unity

standard deviation. Since ±2.3σ limit contains 99 percent of the probability in the

Gaussian distribution [44]

In the program, we replaced 2.3 by a general argument τ3 . So if the absolute value

of Stat is less than or equal to r3 , the central pixel belongs to a two-valued region.

The corresponding pixel in the edge extraction output image is assigned the value 255.

Otherwise, the central pixel does not belong to two-valued region and the corresponding

pixel in the edge extraction output image is assigned the value 0. If the value of count
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in step 2 is always less than or equal to 25, assign the pixel value count x 10 to the

central pixel of its corresponding pixel in another output image called potential edge

image. Thus, any point in the potential edge image which has the higher pixel value

has a higher probability of becoming an edge point.

After determining if the central pixel belongs to the two-valued region or not, and

assigning the proper pixel value to its corresponding pixel in output image, the program

will move the window to the adjacent pixel in a raster scan fashion and start step 1 all

over again. The flow chart of this program is shown in Figure 4.4.

The threshold τ1 controls the complexity of the algorithm by limiting the number

of pixels to be considered in step 2 and step 3, T2 controls the distribution of the sharp

edges and the weak edges, and τ3 controls the correct identification of true edge elements

and controls the thickness of the detected edges. To detect weak edges, T2 should be

increased. A larger value of T3 will make the detected edges thicker. Generally, the

value of T3 lies between 1 and 3.

4.1.2 Edge Following

For fairly clear images, conventional edge extraction algorithms are generally able to

obtain the closed contours of the objects in the image. However, when an image is con-

taminated by noise, it becomes difficult to extract perfectly closed contours, and the

contours extracted are most likely broken. When such a situation occurs, as in our ex-

ample, it becomes very difficult for the system to extract reliable features, such as burn

wound area, from those imperfect contours for successful recognition or interpretation.

In our case, we have already detected the partial region of the burn wound image,

but nothing is known about the boundary shape. Ballard and Brown [5] suggested

that the boundary is recovered by one of the simplest edge-following operations: "blob
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Figure 4.4: The flow chart of Edge Extraction Algorithm
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finding" in images. Rosenfeld and Kak [56] implemented this by first finding a four-

connected background pixel from a known boundary pixel, then the next pixel is the

first pixel encountered when the eight neighbors are examined in a counter clockwise

order from the background pixel.

Our algorithm for extracting closed contours from edge pixels is very closely related

to Chen's forward/backward contour tracing [131. The basic algorithm consists of the

following two stages:

1. Starting point determination.

2. Forward and backward tracing.

Starting Point Determination

The main purpose of this stage is to derive directly from the image all the rele-

vant parameters that will be used as the starting point criteria in the edge extraction

procedure.

Recall that, in the edge extraction procedure we have two output images, one is the

edge-point image and the other is the potential-edge-point graph. From now on we will

call the edge point image derived from edge extraction procedure the candidate-edge-

point image, because all of the edge points shown on that image are not yet desired

contour points. Our goal is to have all the contour points belong to a certain closed

path and all the points in the path are edge points detected from the edge extraction

procedure. Not all the edge points on edge-point image are the final edge points: they

are only candidate edge points.

The program begins with a scan process and scans the candidate-edge-point image

from left to right and top to bottom until it encounters a starting point which satisfies

all the following conditions which we called starting point criteria:
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1. It is a candidate edge point.

2. At least one of its eight neighbors is also a candidate edge point.

This definition limits the starting point (SP) picked in the scan process to be a

candidate boundary point. Then, after the position of SP is recorded and is assigned

to be the root or the head of a binary tree which contains all the boundary points

(contour points) and named "contour-path", the scan process is suspended and the

trace process is initiated.

The trace process has two main functions. One is to search for the next boundary

point. The other is to check and record the termination conditions for the boundary

being traced.

Forward and Backward Tracing

This process begins with SP. The first step in the tracing procedure is to look for

the next boundary point by determining which one of the SP's eight neighbors has the

highest potential edge value corresponding to the pixel value of the potential-edge-point

image. If the direction between SP and the neighbor with highest potential value is

0, 1, 2, or 3, then the tracing procedure to find the next boundary points will be in

the clockwise manner, otherwise it will be in counter clockwise manner for the forward

tracing. The definition of direction between the center point and its eight neighbors

are shown in Figure 4.5.

Whenever the direction and the next boundary point is found, the boundary point

chosen is assigned to be current point P and is also placed into the boundary tree

"contour-path".

The data structure of the binary tree "contour-path" is defined as : the head of

this tree contains the information of SP, all the following boundary points detected in
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Figure 4.5: The directions of eight neighbors

the clockwise direction are assigned to the left direction of this tree and the boundary

points detected in the counter clockwise direction are assigned to the right direction of

this tree.

Each boundary point in turn becomes the current point for the trace process. In

looking for the next boundary point of current point P, only three out of eight of its

neighbors are examined. This is based on the facts that successive boundary points are

adjacent to one another. These three neighbors of P are called the search area for next

boundary point and are determined by which one of them has the highest potential

value corresponding to the pixel value of the potential-edge-point image. The eight

possible search areas are shown in Figure. 4.6.

When ties occur, the middle point in the search area is selected. If there are two

points in the search area that satisfy the criteria, then we pick the first point that we



Figure 4.6: Search Area
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find. The trace process continues in this pattern until one of the following termination

conditions occurs:

1. The next boundary point is the starting point.

2. The next boundary point is an image border point, i.ef, the contour path has hit

the image border.

3. The next boundary point is already in the contour path.

4. The potential value of the next boundary point corresponding to its potential-

edge-image is zero and the next boundary point is not a border point.

Condition 1 implies that a closed boundary has been successfully traced out. In this

case, the boundary will be flagged as closed. Then the scan process will be resumed,

starting with a point next to the original starting point in raster scan manner. Condition

2 implies that the object is partially visible. Condition 3 implies that the boundary

intersects itself or other boundary at some point. Condition 4 implies a dead end or

gap of the boundary encountered.

If Condition 4 occurs, then we need to do more work to determine if there is a real

gap or if a dead end has been encountered in that region. To do so, we increase the

search area as shown in Figure 4.7. We determine which one of the pixels in such

enlarged search area has the highest potential edge value from the potential-edge-point

image. If there is a point in the enlarged search area that satisfies the above criteria,

then such point becomes the next boundary point. We not only assign the current point

P to the contour path but also the point on the gap by linear interpolation between the

current point P and the next boundary point, and continue tracing boundary points

by determining the potential edge value of its three out of eight neighbors.



Figure 4.7: Large search area
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If there are no points in the enlarged search area that satisfy the above criteria,

then we say that the termination condition 4 does really occur and there is a dead end.

If termination condition 2, 3 or 4 occurs, then the trace process begins to traverse

the other portion of the boundary. The tracing begins with the original starting point

SP, but traverses the boundary in the backward manner which is the opposite direction

to the forward tracing. In other words, if the forward tracing procedure is in a clockwise

manner, then the backward tracing procedure will be in a counterclockwise manner.

This boundary tracing procedure continues until one of the above four termination

conditions occurs.

In addition, if both the forward and backward tracing procedures terminate at

condition 2, then the object is considered to be partially visible and we say such contour

path is closed and efficient. If either termination condition 3 or 4 occurs in either the

forward or backward trace process, we have to determine if the contour path is efficient

or not by counting the length of the contour path. If it is larger than a given threshold,

then we keep this path as boundary, otherwise discard the whole path.

After the backward trace process, the scan process is resumed to find the starting

point of another boundary, if any. In this manner, the scan process and the trace

process alternate each other until the lower right corner of the image is reached in the

scan process.

4.2 Multi-level thresholding

In this section we consider another way to handle the segmentation problem. The idea

of this approach came from clustering: grouping similar pixels into regions. There are

basically three kinds of "objects" in a burn image: background, normal or healthy skin
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and burn wound skin. The regions in a burn area image can be more carefully classified

using five kinds of "objects": background, normal skin, first degree burn wound skin,

second degree burn wound skin, and third degree burn wound skin. So for this problem,

we can use the idea of clustering the gray levels of the image's histogram into many

clusters separating objects (normal skin and burn wound skin) from their background.

Our idea is based on observation and is very closely related to nonhierarchical

clustering methods which choose an initial partition of the data and then alter cluster

memberships so as to obtain a better partition. There are various algorithms which

have been proposed and they differ as to what constitutes a "better partition" and the

methods used for achieving improvements.

We begin by choosing an intial partition of the data into groups or using a set

of seed points around which clusters may be found [2]. The following methods are

representative examples of how such seed points can be generated and we assume that

a set of k seed points can be used as cluster nuclei around which the set of m data can

be grouped.

1. Choose the first k data units in the data set. If the initial configuration does not

influence the ultimate outcome in any important way, then this method is the

cheapest and simplest.

2. Label the data from 1 to 27/ and choose those labeled m/k, 2m/k, (k —

1)m/k, and m This method is almost as simple as method 1 but tries to compen-

sate for a natural tendency to arrange the data units in the order of collection or

some other nonrandom sequence.

3. Subjectively choose any k data units from the data set.
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4. Label the data units from 1 to in and choose the data units corresponding to k

different random numbers in the range 1 to m.

5. Generate k synthetic points as vectors of coordinates where each coordinate is a

random number from the range of the associated variable. Unless the data set

"fills" the space, some of these seed points may be quite distant from any of the

data units.

6. Take any desired partition of the data units into k mutually exclusive groups and

compute the group centroid as seed points.

7. An intuitively appealing goal is to choose seed points which span the data sets,

that is, most data units are relatively close to a seed point but the seed points

are well separated from each other.

8. Ball and Hall [4] suggested taking the overall mean vector of the data set as the

first seed point; select sequence seed points by examining the data units in their

input sequence and accept any data unit which is at least some specified distance,

say d, from all previously chosen seed points; continue choosing points until k seed

points are accumulated or the data set is exhausted. This method is sufficiently

simple that two or three values of the threshold distance d could be tried if the

first value gave too few seed points or examined too little of the data set.

Any one of these methods can be used to generate the initial partition of the data.

Next, we discuss how to cluster the data using an initial partition.

In our case, we are dealing with multithresholding, that is we want to separate the

pixels in the image data into several clusters. We can use MacQueen's idea [36] of

using the term "k-means" to denote the process of assigning each datum to a cluster
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(of k clusters) with the nearest centroid (mean). The key implication in this process is

that the cluster centroid is computed on the basis of the cluster's current membership.

MacQueen's algorithm for sorting m data units into k clusters is composed of the

following steps:

1. Take the first k data units in the data set as clusters of one member each.

2. Assign each of the remaining m — k data units to the clusters with the nearest

centroid. After each assignment, recompute the centroid of the cluster.

3. After all data units have been assigned in step 2, take the existing cluster centroids

as fixed seed points and make one more pass through the data set assigning each

data unit to the nearest seed point.

Hartigan and Wong [27] present an algorithm for k-means clustering which produces

a global minimum only for the two-means case. Pollard [49] discusses the convergence

of the k-mean clustering. However, our approach is much more closely related to ISO-

DATA which is the most elaborate of the nearest centroid clustering method and was

first developed at the Stanford Research Institute.

Ball and Hall [3] present a complete step-by-step description of the original method

and illustrate it in great detail with a two-dimensional example. Velasco [63] points out

that the ISODATA can be used to requantize images into a specified number of gray

levels.

The basic ISODATA algorithm [15] is a procedure for classifying a set of sample

Basic ISODATA

1. Choose some initial values for means
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Loop: 2. Classify the n samples by assigning them to the class of the closest mean.

3. Recompute the means as the average of the samples in their class.

4. If any mean has changed value, go to Loop; otherwise, stop.

In our case, we have an image in which each point has a "gray level" in the interval

[0,G] and where G may go up to 255. Each sample is a point of the image. Instead of

calculating the distribution of gray levels of a whole image of pixels , we only take the

gray levels of the real edge points into account. In other words, we only collect the gray

levels of those points which are the edge points in the burn image corresponding to the

output image of edge extraction procedure. We have adopted this approach to reduce

the effect of noise in the image. The result of the basic ISODATA is shown in Figure

4.8 which can be compared to Figure 7.6. In this manner all of the histogrammed

points are edge points, eliminating the effect of noise. This can be easily seen from

Figure 4.9.

In the upper left is the raw image, in the upper right is the histogram of the raw

image. The lower left is the edge extraction output and the lower right is the gray level

histogram of the edge points. It can be easily seen that we can discern more clusters

from the histogram of the edge points. So in our program, we have to input two images

which are the raw image of burn patient and the edge point image from the output of

edge extraction procedure.

In the modified ISODATA algorithm, we let [Gl ow , Ghigh] denote the smallest inter-

val containing all nonzero histogram values.

Edge Point ISODATA

1 Choose some initial values for the means u 1 , u2,...,uc such that Glow , ≤  u1 < u2 <



Figure 4.8: The result of basic ISODATA
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Figure 4.9: Display the histogram
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Loop: 2 Calculate thresholds

where [x] is the largest integer not greater than x. Assign to class

all gray levels in the interval

3 Recompute the means : for every i make tii the nearest gray level to

4 If any means has changed value, go to Loop; otherwise go to the next step.

5 Requantize the raw image based upon the threshold values.

We can choose our initial threshold values which can split the set of data units into

desire groups and then get the initial values for the means by two different ways:

1. divided the interval [Glow Ghigh ] into the number of classes groups constantly. In

other words, the initial values for the means were chosen so that they were evenly

distributed in the interval [Glow, Ghigh].

2. divided the interval [G l ow , Ghigh] by its overall mean value. Because the overall

mean value is always in the interval [Glow, Ghigh], we can separate the different

number of classes by:

A If there are two classes image then the initial threshold value is assigned to be

the overall mean valuef
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B Three classes then the two thresholds are

C Four classes. Then the three threshold values are:

D Five classes. Then the four threshold values are:

Velasco [63] proves that the algorithm terminates in a finite number of steps, but

does not have to always arrive at the same threshold, irrespective of the initial value of

the means. This does not necessarily hold for the edge point algorithm.

For display purposes we use threshold values T 1 , T2 , ...,Tc-1 , we requantize the raw

image by assigning its corresponding new gray levels as 255 x i/(c — 1) if the gray level

of the raw image lies between



Chapter 5

Surface Representation

By using our structured light system and triangulation, we can fine the location (x i , yi , zi)

of a set of points on the surface of the human body. In this chapter, we will show how

to reconstruct the surface from the set of points (xi, yi, zi). We shall begin by choosing

a representation of space curves. Each of the points (x i , yi, zi) will be parameterized

by its grid labels assigned in the grid labeling procedure, thus treating the data as the

points [xi(u, v), yi(u, v), zi(u, v)] where the grid labels (ui, vi) are the independent vari-

ables. Furthermore, each of these points lies on several curves, i.e., a network of stripes.

We shall represent this network by cubic splines. The surface will be represented by

bicubic surface patches. In this chapter we shall outline both representations.

5.1 Cubic Spline

In general, a spline is a piecewise polynomial of degree K with continuity of deriva-

tives of order K — 1 at the common joints between segments. Thus, a cubic spline has

second-order continuity at the joints. Piecewise splines of low degree polynomials are

usually more useful for forming a curve through a series of points. The use of low degree

polynomial reduces the computational requirements and reduces numerical instabilities

that arise with higher order curves. These instabilities can cause an undesirable varia-
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tion when several points must be joined in a common curve. However, since low degree

polynomials cannot span an arbitrary series of points, adjacent polynomial segment are

needed. The cubic spline is advantageous since it is the lowest degree space curve which

allows a point of inflection and has the ability to twist through space.

The equation for a single parametric cubic spline segment, in terms of a parameter

t, is given by

where

P(t) is the position vector on the space curve. It has three components x(t), y(t) and z(t)

which are considered the cartesian coordinates of the position vector. The coefficients

B are determined by specifying four boundary conditions for the spline segment.

In expanded form 5.1 may be written as

Let a given pair of points through which a curve segment passes be the vectors

P1 and P2 . The corresponding tangent vectors at these given points are indicated by

P'1, P'2, the derivatives with respect to the parameter t. Within the cubic segment the

parameter t varies between two endpoint values t 1 and t 2 . To simplify the calculations,

we can assign t 1 = 0, fixing the one point.

The single segment between P1 and P2 consists of the two end points and the tangent

vector at each end point. These conditions are given by



From 5.2 and 5.3 we see that
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Solving for B2 and B3 yields

along with B0 = P1 and B 1 = Pi. These values of B 0 , B1 , B2 , and B3 fix the curve for

the cubic segment. The shape of the cubic spline segment depends on the end-point

position and tangent vectors.

Substituting 5.7, 5.8, 5.9, and 5.10 into 5.2 yields
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For two adjacent cubic segments, the second derivative must be continuous at the

internal joints. From the generalized equations for two adjacent segments

Here we assume that the parameter variation is 0 ≤  t ≤  t 2 for the first segment and

t 2 ≤  t ≤  t 3 for the second segment.

From 5.1 we have

At the end of the first cubic spline segment, where t = t 2

and at the beginning of the second spline segment, where t = t 2 ,

Equating these two results and using 5.11 and 5.12 yields



Multiplying by t2t3 and collecting terms gives

which can be solved for P'2 , the unknown tangent vector at the internal joint.

For n data points the results given above can be generalized to yield n — 1 cubic

spline segments with position, slope, and curvature continuity at all the internal joints.

The corresponding matrix equation for all segments of the piecewise cubic is there-

fore
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The expansion of 5.19 gives n-2 equations in n unknown tangent vectors. When the

two end tangent vectors P'1and P'nare specified, the system of equations is determined.

Thus, to generate a curve, the position vectors P i , 1 ≤  i ≤  n, along with P'1and

P'n are specified. Then 5.19 is used to calculate the intermediate tangent vectors

P'2, P'3,...,P'n-1. The tangent vectors are then used to calculate the coefficientsBi

given by the generalized form of 5.7, 5.9, 5.11, and 5.12 for each curve segment,



Now consider the boundary conditions. Many choices exist for specifying the end

boundary conditions for a piecewise cubic curve. Several different choices may be

desirable if only a few data points are known or if physical constraints require accurate

control of the curve shape at the ends. The most direct solution is obtained by specifying

the two end tangent vectors P'1and P'nof the total piecewise spline. This boundary

is called the clamped end condition and the encastered spline. For this application, we

are using the condition called either relaxed or natural condition which considered the

mathematical end condition that d2 P/dt2 = 0. Setting 5.16 equal to zero for the first

span (K = 1), with t = 0, and using 5.11 leads to

If the same end condition is used for the last span (K =N — 1), with t = tn, then

from 5.22 and 5.23 one obtains

the curve can be generated, the maximum parameter value t m az for each segment,

t2 ,t3 ,...,tn , must be chosen. This choice will affect the curve smoothness.
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Continuity of second derivatives at the interval joints does not in itself produce a

smooth spline in the sense of minimum curvature along the curve. To obtain a minimum,

and hence maximum smoothness, the coefficients B2 and B3 must be minimized for each

segment by choosing the correct values of the parameter range within each segment.

One approach is to set the maximum parameter values equal to the chord lengths

between successive data points. A second approach is to normalize the variation by

choosing tmax = 1.0 for each cubic segment. Each choice of t maz will produce different

coefficient values and, hence, different curves through the given data points. As the

magnitude of the tangent vectors is changed, the slope of the cubic segments between

data points is changed. On the other hand, the direction of the tangent vectors controls

the shape of the cubic segments at their end points.

For simplicity we normalized parameter ranges for all cubic segments of a spline

curve. This is because for this approach the additional computational effort of cal-

culating the chord lengths between each successive data points is not required and

the normalized formation is much easier in creating cubic boundary curves for three-

dimensional surface patch which we will discuss later. When this normalized parameter

approach is used, we have 0 ≤  t ≤  1 for all spans and equation 5.19 can be rearranged

in the form:

The four coefficients for each parametric cubic equation can be expressed in matrix

form as :
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We compute the cubic spline representations of each space serve as follows. First

each point in the set of range data is represented by the vector [x(u, v), y(u,v) z(u, v)]

on a surface. Thus we generate space curves from all the points with the same u values

by cubic splines. All those space curves are parallel in u direction. Similarly, generate

other groups of space curves which are parallel in v direction. We first assign all the

points with the same u value u i to a structured one-dimensional array. Each element of

such array consists of the x, y and z values of each point. Thus we rearrange the array

in decreasing order of its c value by the quick sort algorithm. We continue processing

all the points in this manner until there is no other value u i in the u domain. Since we

need at least three points to form a cubic spline space curve, we skip the array whose

element is less than three. After processing all the curves in u direction, we repeat the

whole procedure but in the v direction.

5.2 Bicubic Surface Patch

There are various analytical and numerical techniques for representing a three-dimensional

surface. Before proceeding with the details of the representation of curved three-

dimensional surfaces, it is necessary to make several decisions. First we assume a

surface representation based on a vector-valued parametric concept. There are several

reason for this. This type of representation is axis-independent: it avoids infinite slope

values with respect to some arbitrary axis system, it allows the unambiguous repre-

sentation of multivalued surfaces or space functions, it facilitates the representation
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of space curves in homogeneous coordinates, and it is compatible with the use of the

three-dimensional homogeneous coordinate transformations. We assume the surface of

human body can be representation in a piecewise fashion, i.e, a surface is composed of

a number of patches which are joined together in some fashion at the boundaries. One

of the most useful patch descriptions uses parametric cubics for the edge curves P(u, 0),

P(u, 1) and P(0, v), P(1, v) and the blending functions. A patch means a curve bounded

collection of points whose coordinates are given by continuous, two parameter, single

valued mathematical functions of the form x = x(u, v), y = y(u, v), z=z(u, v).

The parametric variables u, v are constrained to the intervals u, v ϵ [0,1].

Fixing the value of one of the parametric variables results in a curve on the patch in

terms of the other variable which remains free. By continuing this process first for one

variable and then the other for any number of arbitrary values in the allowed interval,

we form a parametric net of two one-parameter families of curves on the patch so that

just one curve of each family passes through each point Au, v). Again, the direction

of any curve is the sense in which the free parameter increases. Associated with every

patch is a set of boundary conditions, see Figure 5.1.

For an ordinary patch, there are always four and only four corner points and bound-

ary curves. This follows from the possible combinations of the two limits of the two

parametric variables. We obtain these by allowing one of the variables to remain free

fixing the other to its limiting values. This procedure results in four and only four

possible combinations yielding the functions of the four parametric boundary curves

Pu,0, Pu,1 , P0,v, and P1,v .

The algebraic form of a bicubic patch is given by



Figure 5.1: A parametric surface patch
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The restriction on the parametric variables is

u, v ϵ  [0, 1]

The aij vectors are called the algebraic coefficients of the surface. The reason for

the term bicubic is obvious, since the polynomial P(u, v) is cubic in u and v.

Expanding 5.28 and arranging the terms in descending order

This 16-term polynomial in u and v defines the set of all points lying on the surface.

It is the algebraic form of a bicubic patch. Since each of the vector coefficients a has

three independent components, there is a total of 48 algebraic coefficients, or 48 degrees

of freedom. Thus, each vector component is simply

There are similar expressions for y(u, v) and z(u, v).

The algebraic form in matrix notation is

where
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As we found with curves, the algebraic coefficients of a patch determine its shape

and position in space. However, patches of the same size and shape have a different

set of coefficients if they occupy different positions in space. Change any one of the 48

coefficients, and a completely different patch results.

Observe that a bicubic patch is bounded by four curves and each boundary curve

is obviously a parametric curve. Each of the curves is named as P 0v, P1v , Pu0 and Pu1

(see Figure 5.1). There are also four unique corner points p 00,p10,p01 and p11. The

16 coefficients for each of the four cubic boundary curves are four corner points, eight

tangent vectors at the corners, and four twist vectors at the corners [55] [41].

The 4 x 4 p-matrix may be considered as a boundary condition matrix. It contains

only information about corner points, corner tangent vectors, and corner twist vectors.

Examining of the P-matrix shows that the term can be classified as

And we can derive the coefficients of P-matrix from equations 5.7, 5.8, 5.9, and

5.10 for four boundary curves. In other words we begin by filling the first two rows

with the geometric coefficients of curves Pov and P1v.
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Next, fill the first two columns with the geometric coefficients of the curves P uo and

Pu1 .

Computing and understanding the significance of the parametric derivatives of the

bicubic patch function is similar to these same processes for the parametric curve. The

difference is that the bicubic function is expressed in two independent variables instead

of just the one for curves. This means that we must deal with partial derivatives.

Now let us define the twist vectors as

One interesting result is that a change to any of the scalar multiplies of the twist

vectors does not change any of the four boundary curves. We can fix the four corner

points and boundary curves and still affect the interior shape of a patch through opera-

tions on the twist vector. We can define a patch with all twist vectors equal to zero.The

matrix of geometric coefficients then becomes

This type of patch is called an F-patch. Only first-order, C 1 , continuity is possible

across the boundaries of adjacent F-patches because these patches are constrained to
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have zero cross-derivatives at their corners. In particular, F-patches have proven to be

useful for axisymmetric surfaces , such as vases, cups, bottles, aircraft bodies, etc. And

in our system, we use the F-patch concepts to deal with surface representation.

By now we know that we need four and only four points and boundary curves to

form a single surface patch. Unfortunately, if we look at the intersection graph carefully,

the intersection points that we detected are not evenly spread on the objects (human

body). This is due to the fact that the projection of the pattern is not uniform on

the surface of the body, causing us to have to do extra work to find the four boundary

curves and points. Otherwise, the patches on the surface will be irregular. Timmer [41]

suggests us to use the following strategy to avoid problems with meshes that are not

rectangular.

Let no denote the number of data points required to define the most complex

cross-section curve and m the number of cross-sections. A rectangular mesh

requires m x n mesh points; however, instead of a rectangular mesh format,

we now allow the model input to consist of the exact number of points

necessary for each cross section individually. Thus, a linear cross-section

curve could be described using only two points. Using this approach, the

total number of points required to reduce the surface is

Obviously, N < mn0 . Using this reduced input data, we interpolate each

cross-section curve, using a conventional spline or other form of representa-

tion. Next, we compute a set of n 0 points for each curves, and we continue

as outlined for a rectangular mesh.
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In his method, the patch will be a little bit larger than the original patch. Because

we are are trying to get the surface area of human body, Timmer's technique will cause

the size of a single surface patch to be larger and there will be fewer of them. This may

effect the accuracy of calculating the surface area. In order to avoid reducing the data

set, we use another approach.

First we store each space point into a structured two-dimensional array indexed

by its uv-coordinate value, say p(ui , vi ). Each element of the array consists of its 3D

location values and the u and v values are increased by 1 in the array. Due to the

irregular spacing of grid points not every element in the array will have 3D values.

We distinguish these invalid points by assigning it a vary large positive number which

cannot be generated in our system. If the three neighboring points of each point in

the array are all valid ( say p(i, j), p(i +1, j), p(i,j, j+ 1) andp(i + 1, j+1) are valid

points ), then those four point can form a smallest surface patch. Otherwise, if some of

its successive points are invalid then we examine another three successive points such

as p(i + 2, j), p(i, j 2) and p(i + 2, j + 2). If they are all valid then we choose these

four points as corner points to form a surface patch. Using this surface patch,we can

interpolate the missing points. If this interpolation still fails, we give up to do further

trial. This is because we only miss some points around the marker on projector slide

and where u or v values vary by 2. For the other part of the image, our system rarely

misses detecting two successive intersection points. After we examine all the space

points, there are some new points generated by surface interpolation. Since the cubic

spline coefficients are affected by all points, we have to recompute the parameters of

the space curves for those artificial points using the cubic spline estimation procedure.

The side effect of this procedure is it takes more computation time. But after this
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procedure, we have a surface which is composed of the smallest possible surface patches

and we lose no real points.

The following is the basic surface patch estimation procedure without surface inter-

polation. The procedure is:

1. Visit every intersection point in u and v order

2. If p(i, j) exists and is not the end point for either a u or v path then

3. Check p(i + 1,j) and p(i, j 1). If they both exist then

A Check whether p(i + 1, j + 1) exists or not. If it exists, then choose these four

points p(i, j), p(i + 1, j),p(i, j + 1) and p(i + 1, j + 1) as corner points to

compute the surface patch.

Then go to visit next point and start from step 2 again.

B If p(i + 1, j 1) does not exist then check p(i + 2, j),p(i + 2, j + 1), p(i, j +

2), p(i + 1, j 2) and p(i + 2, j + 2). If they all exist, then treat p(i, j), p(i +

2, j),p(i, j + 2) and p(i + 2, j + 2) as corner points and compute the surface

patch. If one of them does not exist, then go to the next point and start

from step 2.

4. If one of the points p(i + 1, j) and p(i, j + 1) does not exist, then go to the next

point and start from step 2.

5. If p(i, j) does not exist, then go to the next point and start from step 2.

6. Continue processing until every point in the space has been visited.



Chapter 6

Estimating Surface Area

After we reconstruct the surface of human body using bicubic surface patches, the

geometric properties of the surface of human body can be estimated. We can estimate

the intrinsic properties such as the normal vectors, the tangent plane, and curvature.

We can also estimate global properties such as area because the bicubic surface patches

are well adapted to computing geometric properties, since we do not have to compute

explicit points. To compute surface area, we use an elementary property of vectors

shown in Figure 6.1 and given by

where n(u, v) is a vector function defining the patch normal and dA is the scalar element

of area. Therefore,

and using Gaussian quadrature, we approximate the double integral by
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Figure 6.1: Surface Area
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where gi and hj are the weight values associated with a specific n-point formula.

From Equation 6.3, we can compute the surface area for a single surface patch. The

total surface area is given by the quadrature sum over all of the areas of the individual

surface patches of the human body captured by our imaging system.

Our immediate goal is to compute the surface area of the burn. Using the segmented

image of the burn patient which identifies the burn wound portion that that we are

actually interested in, we can superimpose the burn area boundary and the detected

intersection points by projecting the points to the camera image and find out which

points and which surface patches lie inside the burn area. Then we calculate the surface

area of the patches using equation 6.3. Unfortunately, the shape of burn is not always

rectangular. Thus, for the contour of the burn, we need to form a new surface patch

using its original four corner points and the shape of burn in that small patch. There

arise 12 cases according to how many corner points of that patch lie on the burn wound

portion. So in this chapter we will discuss

• Forming the normal to the patch.

• Gaussian Quadrature.

• Reforming the surface patch for irregular shapes.

6.1 Forming the normal to the patch

At any point p(u, v) on a bicubic patch, we can construct a normal vector perpendicular

to the patch. We easily find a unit normal vector n(u, v) by computing the vector

product of the tangent vectors pu and pu at the point.
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The order in which we take the vector product determines the direction of n(u, v).

Notice that we can interpret n(u, v) itself as a patch, the normals patch.

Figure 6.2 shows a convention for assigning identifying numbers to the corner points

and boundary curves. Here, we see if the fingers of the right hand curl around the patch

in the direction of ascending curve or corner-point numbering, then the thumb points

in the direction of the positive or outward surface normal as defined by equation 6.3.

This convention gives a consistent algebraic sign when summing the area of several

surface patches.

Normally, we want the normal to point outward from the surface of a solid model.

Thus, the unit normal is indispensible in almost all phases of geometric modeling, and

the normal direction is required.

Equation 6.4 for the normal vector can be expressed in a more convenient form,

which will take advantage of existing algorithms for the bicubic surface patch. We

rewrite this equation asThe

 x component of n is

(6.6)



Figure 6.2: Normal vector to a surface
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By the bicubic patch we can form the tangent vectors and the twist vectors as

69

We can rewrite each of the terms y u , zu yu  and zu in their matrix form.

vv.. )

and similarly for ny and nz
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We can then approximate the normal at any point on the surface with a bicubic

expression, so that n is

are the components of the 4 x 4 matrix Bn .

We have already derived nx ,ny , and nz . We find the three remaining components

of the Bnx by differentiating nx



71

We can determine the 16 elements of B nx . and similarly Bay and Bnz , by evaluating

each of these expressions at the four corner points (0,0), (0,1), (1,0), and (1,1) of the
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surface patch.

6,2 Gaussian Quadrature

Because of the limitations of digital computers, there is no way to calculate the integral

of equation 6.2 directly, forcing us to resort to numerical integration. The numerical

method that we chose for the integration is called Gaussian Quadrature which gives us

the freedom to choose not only the weighting coefficients, but also the location of the

abscissae at which the function is to be evaluated. The abscissae do not have to be

equally spaced. It turns out that we can derive a Gaussian quadrature formula whose

order is, essentially, twice that of the Newton-Cotes formula with the same number of

function evaluations. We are not saying that high order is the same as high accuracy.

High order translates to high accuracy only when the integrand is very smooth, in

the sense of being "well-approximated by a polynomial." But, indeed, there is one

additional feature of Gaussian quadrature formulae allowing us to arrange the choice

of weights and abscissae to make the integral exact for a class of integrands.

The source code that we used is derived from the book "Numerical Recipes in C"

[53]. This source code has three departures from the general methods for arbitrary

weight functions.

1. Instead of bracketing the roots by their interleaving property, it uses a clever

approximation to jump directly to the neighborhood of the desired root, where it

converges by Newton's method.

2. It uses a special formula that holds for the Gauss-Legendre case
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where PN(x) is a set of polynomials that are mutually orthogonal over the specified

weight function w(x).

3. The routine scales the range of integration from (x 1 , x 2 ) to (-1,1) and provides

abscissae xi and weights wi for the Gaussian formula. It is called the Gauss-

Legendre n-point quadrature formula

The program returns the abscissae and weights of the Gauss-Legendre n-point

quadrature formula in two arrays and we set the lower and upper limits (x 1 , x 2 ) of

integration to be 0 and 1 to fix the interval of bicubic surface patch.

Because the double summation in equation 6.3 is separable, we can treat g i , vi and

hj,uj as two independent groups and use the procedure twice to obtain the values of gi

and vi and the values of hj and uj, separately.

6.3 Reforming the Surface Patch for Irregular Shapes

Due to the irregular shape of the burn area, we need to do extra work to correct those

surface patch whose four corner points do not all lie inside the burn area. First, we

determine how many corner points lie inside the burn area. If there are four, then we

can use equation 6.3 to directly calculate the surface area. If there are no corners in the

burn area then we discard the patch. For the remaining cases, there are four instances

to consider.

The three remaining situations are shown in Figure 6.3, 6.4, and 6.5 which are

either one, two, or three corner points inside the burn area. If one of these cases occurs,

we need to reform four boundary curves for such a patch. For each individual patch



Figure 6.3: Case 1. One out of four points lie on the burn area

there will be one, and only one, of the cases shown in Figures 6.3, 6.4 or 6.5 if it has

one to three corner points inside the burn area. Here we assume that the boundary of

the burn area is smooth, unlike that in Figure 6.6 which we will discuss later.

In order to reform four boundary curves for those unperfect cases, we need. to know

the exact positions of all those points which really lie on the edge of the burn in that

surface patch. Then, we reorder those points and reform the boundary curves. The

simplest way to find those points is by first using a bicubic surface patch. Because

we already know the geometric coefficients for a bicubic patch, we can determine the



Figure 6.4: Case 2. Two out of four points lie on the burn area



Figure 6.5: Case 3. Three out of four points lie on the burn area



Figure 6.6: Special case

coordinates of a point p(u, v) on a bicubic surface by using the formula

which is derived from solving the intersection of the curves p iu and puj in Figure 6.7.

We neglect the derivation of equation 6.17 here, because we are only interested

in how to use this equation. We first fix one variable and allow the other variable

to remain free varying from 0 to 1. In this way we can trace a curve on the patch.

We record only those points on the bounday of the burn area by checking its state in

the segmented image and comparing its state to the state of its previous point and

its successor. Then we increase the value of the fixed variable by a certain amount to

trace another point on the curve. We record these edge points until the fixed variable

reaches its limit. Due to the fact that the burn area will hit the patch at least twice, we

continue this process until the fixed variable reaches its upper limit 1 and there are at
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Figure 6.7: Determining a parametric point on bicubic surface
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least two intersection points between the burn and the boundary curves of such patch.

Otherwise, we decrease the sampling interval and redo the whole procedure all over

again. After obtaining the points on the edge of burn on a bicubic surface, we have to

rearrange those points to form a space curve. Because there are many ways to rearrange

those points and the results will affect the simplicity of generating four new boundary

curves and four new corner points, we need to consider how many original corner points

lie in the burn area, and their relative position with respect to the burn area will dictate

how to proceed. We first determine which point has the maximum or minimum values

of u or v values among those points and assign this point as a seed point. Then, the

points on the boundary of the burn area are sorted by finding the nearest neighbor of

each point. We need to use the concepts of truncating and subdividing of a space curve

to regenerate the four boundary curves.

Figure 6.8 illustrates a curve truncated at ui and uj , that is, the segments from

u0 to u i and from uj to u 1 are eliminated. We can represent the remaining segment

as a full parametric space curve, parametrized from v = 0 to v = 1, by proceeding as

follows: compute pi and pj using p = UMB and pi and pj using pu = UMuB. The

ratio of parametric interval lengths (u j — ui)/(vj-vi ) becomes uj — ui , since vj — vi = 1.

If q represents elements of a truncated curve and p the elements of the original, then



Figure 6.8: Reparametrization of a truncated curve
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Figure 6.9: The definition of boundary curves and corner points



81

We define the four boundary curves as shown in Figure 6.9. The procedure of

reforming the four new boundary curves based on the observed curve is as follows:

1. One out of four corner points is on the burn area. The four sub cases are shown

in Figure 6.3.

• If the upper-left happens:

A. Find the minimum u value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Truncate the original boundary curve 1 to become the new boundary

curve 1.

C. By using cubic splines to form the new boundary 2 with the points start-

ing from the first point to the middle point of the ordered edge point

set.

D. By using cubic splines to form the new boundary 3 with the points

starting from the last point to the middle point of the ordered edge

point set.

E. Truncate the original boundary curve 4 to become the new boundary

curve 4.

F. The first new corner point remain the same, the second corner point is

the first point in the ordered set. the third corner point is the middle

point in the ordered set. the forth corner point is the last point in the

ordered set.

If the upper-right happens:
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A. Find the minimum v value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Truncate the original boundary curve 1 to become the new boundary

curve 1.

C. Truncate the original boundary curve 2 to become the new boundary

curve 2.

D. By using cubic splines to form the new boundary 3 with the points

starting from the middle point to the last point of the ordered edge

point set.

E. By using cubic splines to form the new boundary 4 with the points start-

ing from the first point to the middle point of the ordered edge point

set.

F. The first corner point is the first point in the ordered set, the second

corner point remain the same, the third corner point is the last point in

the ordered set, the forth corner point is the middle point in the ordered

set.

• If the lower-right happens:

A. Find the minimum u value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. By using cubic splines to form the new boundary 1. with the points start-

ing from the first point to the middle point of the ordered edge point

set.

C. By using cubic splines to form the new boundary 2 with the points start-

ing from the middle point to the last point of the ordered edge point
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set.

D. Truncate the original boundary curve 3 to become the new boundary

curve 3.

E. Truncate the original boundary curve 4 to become the new boundary

curve 4.

F. The first corner point is the first point in the ordered set, the second

corner point is the middle point in the ordered set, the third corner

point is the last point in the ordered set, the forth corner point remain

the same.

• If the lower-left happens:

A. Find the maximum v value among those edge points by the nearest

neighborhood finding algorithm to reorder the edge point set.

B. By using cubic splines to form the new boundary I with the points start-

ing from the middle point to the last point of the ordered edge point

set.

C. Truncate the original boundary curve 2 to become the new boundary

curve 2.

D. Truncate the original boundary curve 3 to become the new boundary

curve 3.

E. By using cubic splines to form the new boundary 4 with the points start-

ing from the first point to the middle point of the ordered edge point

set.

F. The first corner point is the middle point in the ordered set, the second

corner point is the last point in the ordered set, the third corner point



84

remain the same, the forth corner point is the first point in the ordered

set.

2. Two out of four corner points are on the burn area. The four subcases are shown

in Figure 6.4.

• If the upper-left happens:

A. Find the minimum v value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Truncate the original boundary curve 1 to become the new boundary

curve 1.

C. Use the whole edge points to form a new boundary curve 2 by using the

cubic spline method.

D. Truncate the original boundary curve 3 to become the new boundary

curve 3.

E. Keep the boundary curve 4 unchanged.

F. The first corner point and the second corner point uncharge, the third

corner point become the last point in the set, the forth corner point

become the first point in the set.

• If the upper-right happens:

A. Find the minimum v value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Truncate the original boundary curve 1 to become the new boundary

curve 1.

C. Keep the boundary curve 2 unchanged.



85

D. Truncate the original boundary curve 3 to become the new boundary

curve 3.

E. Use the whole edge points to form a new boundary curve 4 by using the

cubic spline method.

F. The second corner point and the third corner point uncharge, the forth

corner point become the last point in the set, the first corner point

become the first point in the set.

• If the lower-right happens:

A. Find the minimum u value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Use the whole edge points to form a new boundary curve 1 by using the

cubic spline method.

C. Truncate the original boundary curve 2 to become the new boundary

curve 2.

D. Keep the boundary curve 3 unchanged.

E. Truncate the original boundary curve 4 to become the new boundary

curve 4.

F. The third corner point and the forth corner point uncharge, the second

corner point become the last point in the set, the first corner point

become the first point in the set.

• If the lower-left happens:

A. Find the minimum u value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Keep the boundary curve 1 unchanged.
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C. Truncate the original boundary curve 2 to become the new boundary

curve 2.

D. Use the whole edge points to form a new boundary curve 3 by using the

cubic spline method.

E. Truncate the original boundary curve 4 to become the new boundary

curve 4.

F. The first corner point and the second corner point uncharge, the third

corner point become the last point in the set, the forth corner point

become the first point in the set.

3. Three out of four corner points are on the burn area. The four subcases are shown

in Figure 6.5.

• If the upper-left happens:

A. Find the minimum u value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Keep the boundary curve 1 unchanged.

C. Keep the boundary curve 2 unchanged.

D. Use cubic spline method to generate a space curve with the point be-

ginning with the middle point to the last point of the set and plus the

points on the truncated space curve from the original boundary curve 3

to form new boundary curve 3.

E. Use cubic spline method to generate a space curve with the points on the

truncated space curve from the original boundary 4 and the first point

to the middle point of the edge point set to become new boundary curve
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4.

F. The first, second, and third corner point remain the same, the forth

corner point become the middle point in the set.

• If the upper-right happens:

A. Find the maximum u value among those edge points by the nearest

neighborhood finding algorithm to reorder the edge point set.

B. Keep the boundary curve 1 unchanged.

C. Use cubic spline method to generate a space curve with the points on the

truncated space curve from the original boundary 2 and the first point

to the middle point of the edge point set to become new boundary curve

2.

D. Use cubic spline method to generate a space curve with the point be-

ginning with the middle point to the last point of the set and plus the

points on the truncated space curve from the original boundary curve 3

to form new boundary curve 3.

E. Keep the boundary curve 4 unchanged.

F. The first, second, and forth corner point remain the same, the third

corner point become the middle point in the set.

• If the lower-right happens:

A. Find the minimum a value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Use cubic spline method to generate a space curve with the points on the

truncated space curve from the original boundary 1 and the first point



88

to the middle point of the edge point set to become new boundary curve

1.

C. Use cubic spline method to generate a space curve with the point be-

ginning with the middle point to the last point of the set and plus the

points on the truncated space curve from the original boundary curve 2

to form new boundary curve 2.

D. Keep the boundary curve 3 unchanged.

E. Keep the boundary curve 4 unchanged.

F. The first, third, and forth corner point remain the same, the second

corner point become the middle point in the set.

• If the lower-left happens:

A. Find the minimum v value among those edge points by the nearest neigh-

borhood finding algorithm to reorder the edge point set.

B. Use cubic spline method to generate a space curve with the point be-

ginning with the middle point to the last point of the set and plus the

points on the truncated space curve from the original boundary curve 1

to form new boundary curve 1.

C. Keep the boundary curve 2 unchanged.

D. Keep the boundary curve 3 unchanged.

E. Use cubic spline method to generate a space curve with the point begin-

ning with the middle point to the first point of The set and plus the

points on the truncated space curve from the original boundary curve 4

to form new boundary curve 4.

F. The second, third, and forth corner point remain the same, the first



89

corner point become the middle point in the set.

During the procedure above, we sometimes need to combine two space curves to

become one. Theoretically, there are three different types of composite curves, such as

C° , C1 , and C 2 continuity. The simplest kind of continuity a curve can has ensures

that there are no gaps or breaks between its beginning and ending point. This is called

C° continuity. Two parametric space curves jointed at a common end point have at

least C° continuity at their joint. C 1 continuity between two curve segments requires

a common tangent line at their joining point. Obviously, C l continuity also implies C °

continuity. That is C ° and C' continuity imply sharing a common point and tangent

line at the junction of two curves. C 2 continuity also requires that the two curves

possess equal curvature at their joint. Therefore, second derivatives are used in the

calculation. So in order to get a composite curve which has at least C' continuity, we

use the cubic spline again to generate a new spline curve with all the points on those

two segments. This way, we can save the computation time of calculating the second

derivative of two space curves and the cubic spline method will give us a space curve

with at least C' continuity.

As long as we can successfully reform the four new boundary curves and four new

corner points, we can use the bicubic surface patch again to obtain the geometric

coefficients of the bicubic surface, and calculate the burn wound surface area by equation

6.3. For the special case shown in the Figure 6.6, we can still handle the lower grid

because it will fall into one of the cases mentioned before. The area in the upper grid

will be difficult because no corner points fall into the burn area even though it contains

some parts of the burn. In our system we neglect this case for two reasons. First,

the grid size of our projector slide is quite small, and the surface area of the burn in
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the upper grid of the special case is negligible. Second, if we really want to calculate

such a small area we will have to examine' if there is any burn in every single grid. It

is a computationally expensive task to determine the coordinates of every points on

the bicubic surface and back projecting them onto the segmented image. Rather, we

•sacrifice this negligible error in the interest of efficient computation.



Chapter 7

Results and Conclusions

7.1 Automatic Calibration

In Chapter 2, we assume our imaging system is well behaved. That means the lenses

of the camera and projector behaves as an ideal thin lens. The purpose of this section

is to test our automatic calibration procedure and to determine whether the imaging

system of ours has ideal thin lenses or not.

Table 7.1 shows the mean and rms errors in computing the objected centered co-

ordinates of intersections on the camera and projector calibration images, respectively.

These errors were computed by back projecting points in the image plane onto the cal-

ibration box face and back onto the image plane. Those errors are quit small compared

to the size of the image (6 by 6 inch) that we captured. Figure 7.1 contains four pic-

tures of the detected grid pattern, back projected intersections, difference of the two,

and the sum, clockwise from upper left, showing that the error due to radial distortion

is uniformly bounded by one pixel over the image plane. So the lens distortion and cam-

era/light source misalignment do not affect our imaging system seriously. We conclude

that the thin lens model is sufficient for our imaging system, although many investi-

gators have found that ignoring lens distortion is unacceptable for 3D measurement

91
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mean error ( inches ) rms error ( inches )
camera x -0.000002 0.012390

y -0.000001 0.008330

projector
x 0.000059 0.019432
y 0.000032 0.013132
z 0.000028 0.014351

Table 7.1: The mean and rms error of calibration procedure

[62].

If we have a better designed and structured calibration box which can be positioned

accurately and has a face that is exactly perpendicular to the base line, then the error

will be reduced to its limit.

7.2 Segmentation

Figure 7.2 is an image of a burned patient. Figure 7.3 is the result of edge extraction

from Figure 7.2. We can see that most of the burn edge points are detected, but the

contour of the burn is ambiguous. Figure 7.4 represents the original burn patient's

image, edge extraction output, the superimposed image of edge points and the original

patient's image, and the image of potential edge points, clockwise from the upper left

image.

Figure 7.5 shows the outcome of the edge following procedure. From this image we

can see most of the contour of the burn.

Figure 7.6 and Figure 7.7 are the results of the multiple isodata procedure corre-



Figure 7.1: The accuracy of the calibration procedure

93



94

n surface area ( in 2 ) error ( % )
1 25.683752  9.162405
2 25.867943 8.510964
3 26.735865 5.441321
4 26.994215 4.527596
5 26.547513 6.107480
6 25.978456 8.120104
7 25.846354 8.587319

Table 7.2: The surface area of disk.

sponding to the original burn patient's image without and with running the reflectance

compensation procedure, respectively. In these two images we can distinguish the differ-

ent degrees of the burn wound from the varieties of the pixel values which are clustered

in 5 groups.

7.3 Cubic Spline Interpolation

Numerically, no interpolation procedure perform with one hundred percent accuracy

whether or not they have C0 , C 1 or C2 continuity. Those errors will affect the accuracy

of forming space surfaces and calculating the normal vector.

7.4 Surface Area

Table 7.2 is the results of running the whole procedure on a test object which is a

disk with known surface area on a flat plane. The surface area of the disk is exactly

28.274364 inches square, because the radius is 3 inches. The n in table is the number of

points in Gaussian-Legendre formula. Table 7.3 illustrates the surface area calculated

for a square which was pasted on a cylinder. The real surface area of the square is 16

in2 .
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n surface area ( in 2 ) error ( % )
1 13.756767 14.020206
2 14.145632 11.589800
3 14.678452 8.259675
4 14.867459 7.078381
5 14.876576 7.021400
6 14.734145 7.911593
7 14.465784 9.588850

Table 7.3: The surface area of square.

Accoring to these two tables, we can see that the error is normally distributed. We

have found that the accuracy is highest when the test areas are smooth, i.e, when the

curvature is minimum.

Figures 7.8 to Figure 7.19 show the sequence of steps of one experiment running

the entire procedure on a burn patient. This patient is now under the treatment at

the Burn. Care Unit of St. Barnabas Hospital. Figure 7.8 is the image of part of the

burn patient's body illuminated by indoor electric lights. Figure 7.9 is the image with

the structured light. Figure 7.10 is the result of running the reflectance compensation

procedure on previous image. Figure 7.11 is the output of the bimean thresholding

procedure. Figure 7.12 is the result of the classical thinning procedure. Figure 7.13

is the outcome of intersection detection. Figure 7.14 is the result of interpolating the

missing points by using bicubic surface patches. Figure 7.15 is the difference between

Figure 7.13 and Figure 7.14. All the points in this image are interpolated points.

Figure 7.16 is the edge extraction output of Figure 7.8. Figure 7.17 is the output of

edge following. Figure 7.18 is the output of multi-level thresholding. As we can see,

the results of the segmentation procedures are not very good. We have to use manual

contouring with a mouse to segment the burn area. Figure 7.19 is the result of manual
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contouring. The surface area of burn in this case is 37.6457 in 2 .

We repeated this experiment twice more and got answers of 26.201380 in 2 and

31f913052 in 2 . From the Lund and Browder chart for this patient, we estimate the

area as 48.5 in2 . Considering the poor calibration of the imaging system and rough

estimate using the Lund and Browder chart, we find that these preliminary results are

encouraging.

7.5 Conclusions

The overall accuracy of calculating the surface area is within 85% to 95% accuracy.

Although the results that we have so far is promising, we need more sophisticated

approaches for solving the segmentation problems. Furthermore, if the patient is hairy,

the grid stripes will be broken and the range data will be discontinuous. A more

sophisticated grid labeling procedure can partially overcome this problem. Foremost

in our agenda is to continue to conduct experiments with real patients to compute the

accuracy, reproducibility and resolution of burn area measurements.



Figure 7.2: The image of a burned wound patient
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Figure 7.3: The result of edge extraction
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Figure 7.4: The edge image and the potential edge image
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Figure 7.5: The result of edge following
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Figure 7.6: The result of multiple isodata of burned patient's image
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Figure 7.7: The result of multiple isodata from compensated burned patient image





Figure 7.9: The image of Burn Patient with Sturctured light
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Figure 7•11: The result of bimean



Figure 7.12: The result of classical thinning
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Figure 7.13: The result of intersection detection
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Figure 7.14: The result of surface interpolation
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Figure 7.15: The interploated points
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Figure 7.16: The result of edge extraction
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Figure 7.17: The result of edge following
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Figure 7.18: The result of multi-level thresholding
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Figure 7.19: The result of manual contouring
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