New Jersey Institute of Technology Digital Commons @ NJIT

Theses and Dissertations Dissertations

Summer 1969

Simulation of periodic tank reactors

Noshir Pirojshaw Mistry New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Chemical Engineering Commons

Recommended Citation

Mistry, Noshir Pirojshaw, "Simulation of periodic tank reactors" (1969). Dissertations. 1340. https://digitalcommons.njit.edu/dissertations/1340

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

71-905

MISTRY, Noshir Pirojshaw, 1940-SIMULATION OF PERIODIC TANK REACTORS.

Newark College of Engineering, D.Eng.Sc., 1970 Engineering, chemical

University Microfilms, A XEROX Company, Ann Arbor, Michigan

Please Note:

Some pages have very light type. Filmed as received.

University Microfilms.

SIMULATION OF PERIODIC TANK REACTORS

BY

NOSHIR PIROJSHAW MISTRY

A DISSERTATION

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

DOCTOR OF ENGINEERING SCIENCE

ΑT

NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey 1969

ABSTRACT

Normally it is assumed that the steady state mode of operation is most desirable for the design of the chemical reactor system. However it appears that this assumption may not be correct in many cases.

In the present work disturbances of various types were externally created and forced on a system comprising an isothermal continuous stirred tank reactor. The effects of these purposefully created disturbances were investigated by mathematically modelling the system and simulating it on a digital computer.

The change in reactor performance, as defined by the percentage change in the production rate from the steady state value, can be either an improvement or deterioration compared to the steady state operation depending on the parameters like inlet feed concentration, flow rate, combination of both, reactor temperature etc., on which the disturbance is forced. Of the various parameters considered, feed concentration disturbance resulted in the most improved performance.

The investigation of the various form of disturbances like sinusoidal, ramp, and different types of step disturbance variations, showed that the form of the disturbance can profoudly change the reactor performance. The results indicated that of all the disturbances considered, the simple full

step type of disturbance gives the maximum change in performance. The percentage improvement brought about by full step concentration disturbance was almost twice as much as that due to sinusoidal disturbance, which is the next best in terms of performance.

The study of the effect of the order of reaction showed that improving performance results for concentration disturbance with increasing order of reaction, due to the increasing non-linearity of the system.

APPROVAL OF DISSERTATION

SIMULATION OF PERIODIC TANK REACTORS

BY

NOSHIR PIROJSHAW MISTRY

FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:	CHA IRMAN

NEWARK, NEW JERSEY

SEPTEMBER 1969

ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation to Dr. Saul I. Kreps for his encouragement, guidance, cooperation and many valuable suggestions throughout this investigation.

Thanks are due to the Newark College of Engineering Computer Center Staff, especially Mr. Frank Freund, for their assistance. The author also wishes to thank Dean Alex Bedrosian for his help in various matters during the course of this work and Miss Kay Unvala for her patience and efforts for typing the manuscript.

Finally the author wishes to acknowledge a very special debt to his parents for their inspiration, confidence and encouragement.

TABLE OF CONTENTS

		LIST OF FIGURES	vii
		LIST OF TABLES	viii
CHAPTER	1	INTRODUCTION	1
CHAPTER	2	METHOD OF SOLUTION	4
		Introduction	4
		Selection of the Method	6
		Selection of the Step Size	1 .5
CHAPTER	3	DISTURBANCES IN REACTOR FEED CONCENTRATION	22
CHAPTER	4	STEP DISTURBANCES ON CONCENTRATION AND FLOW RATE	32
		Frequency Effects in Step Disturbances of Concentration	32
		Step Disturbances in Feed Flow Rate	37
CHAPTER	5	SIMULTANEOUS STEP DISTURBANCES IN FEED CONCENTRATION AND FLOW RATE	40
CHAPTER	6	THE INFLUENCE OF KINETIC PARAMETERS	47
CHAPTER	7	SERIES REACTORS AND THE INLET CONCENTRATION DISTURBANCE	52
NOMENCLAT	URE	••••••••	57
APPENDIX	A	TABULATION OF RESULTS OBTAINED THROUGH COMPUTER AND USED FOR PLOTTING OF THE VARIOUS FIGURES	58
APPENDIX	В	COMPUTER PROGRAMS USED IN THE SOLUTION OF DIFFERENTIAL EQUATIONS	80
LITERATUR	E CITE	D	119

LIST OF FIGURES

Figure No.	Page No.
1	Types of Concentration Disturbance Forced on to the System23
2	Effect of Concentration Disturbances of Various Functions28
3	Full Step Concentration Disturbances33
4	Effect of Frequency on the Concentration Disturbance35
5	Performance Improvement of Full Step Disturbance Compared to Sinusoidal. Disturbance
6	Effect of Full Step Flow Disturbances on Performance39
7	Function, G (ø) for Simultaneous Full, Step Concentration and Flow Rate Disturbances43
8	Simultaneous Full Step Disturbances on Concentration and Flow Rate44
9	Effect of Full Step Concentration Disturbance for a Third Order Reaction48
10	Effect of Residence Time49
11	Effect of Full Step Disturbance for a series of Reactors

LIST OF TABLES

Table No.		Page No.
I	Truncation Error as a Function of Step Size △t	10
II	Effect of Step Size At on Y for Step Concentration Disturbance	17
III	Comparison of Yaw in Table II	19
IV	Comparison of Yav from Double and Single Precesion Arithmetic	21
V	F(t) for Disturbance shown in Figure 1	26
vI	Effect of area under the Disturbance Curve on Reactor Performance	30
VII	Effect of Scope Changes on Reactor Performance	31
VIII	Comparison Between Simultaneous Step Disturbances and the Equivalent Steady State Operation	y •••••45
A-I,a,b	Y_{av} and $\triangle for Different Concentration Disturbance shown in Figure 1a,b,g$	••••59
A-IIa,b	Y_{a} and Δ for Different Concentration Disburtance shown in Figure 1 c,d,e,f	61
A-III	$Y_{a,y}$ and Δ for Full Step Concentration Disturbance of Figure 1f	63
A-IV	Yaw and \(\triangle \) for Sine Concentration Disturbance of Figure la	64
A-V	(QA) _{aV} and △for Full Step Flow Rate Disturbance	65
A-VI	(QA) $_{ m av}$ and $ riangle$ for Sine Flow Rate Disturbance	,66
A-VII	(QA) _{av} and amount A converted for Simultaneous Full Step Concentration and Flow Rate Disturbance	67

Table No.	<u>P:</u>	age No.
A-VIII	(QA) av and amount A converted for Simultaneous Sine Concentration and Flow Rate Disturbance	70
A- IX	Yav and △for Full Step Concentration Disturbance	71
A-X	(QA) av and △for Full Step Flow Rate Disturbance	72
A-XI	Comparison between Half Order and Second Order Reaction	73
A-XIIa,b	Yav and △for Full Step Concentration Disturbance for Different Residence Time t	••••74
A-XIIIa,b	Y _{av} and ∆for Full Step Concentration Disturbance for Series of Reactors	76
A-XIVa,b	Yav and dfor Full Step Concentration Disturbance for Series of Reactors For Different Residence Time	78

INTRODUCTION

In the development of chemical processes, operating conditions are commonly fixed prior to the design of the equipment and subsequent efforts are made to maintain the processes at the chosen steady state conditions primarily because it is normally assumed that steady state operation is always the most desirable. As disturbances occur in the input feed streams, they are taken care of either by elaborate control systems or by surge tanks so that the specified steady state conditions are regained. However recent investigations have shown that for some processes such as extraction, distillation, adsorbtion, unsteady state operation improves the performance. Horn (5,6) has shown that the over all stage efficiency of periodically operated distillation and extraction columns depends in a complicated way on the number of stages in the column as well as on equilibrium and transport parameters, and that the performance of such columns can be improved considerably by periodic operation. Wilheim, Rice and Bendelins (9) have indicated that in a column of adsorptive particles, the coupling effect of velocity and thermal fluctuations can be used to improve the separation.

Recently several investigators have extended this concept of unsteady state operation to the chemical reactor system. Douglas (2, 3, 4) in his study on the backmix reactor has shown that, under certain circumstances, it is sometimes preferable to permit the disturbances to enter the

reactor system rather than to damp them out with the control system, for they result in improved performance, however small, which tends to be profitable. Chang and Bankoff (1) have reported same results for tubular jacketed reactors.

Laurence and Vasudevan (7) and Ray (8) have suggested that the periodic operation of a polymerizer could result in a product not obtainable from an isothermal steady state polymerizer and hence could be an attractive means of carrying out polymerization.

The question thereupon arises whether there might be any way in which such minimally improved performance can be improved still further. Why should the system upsets occur only at the whim of random chance? Even an inexperienced operator knows it is no difficult task to induce disturbances in a system. It may be advisable, therefore, to create the disturbances externally and make them follow a predetermined pattern through the system. In this way the best disturbances, in terms of the optimally improved performances, can be forced and the magnitude of such disturbances can then be carried to the limits of feasibility. In this work an attempt has been made to investigate these propositions.

The system discussed here is an isothermal, continuous stirred tank reactor for the general, irreversible reaction na - Products. It is assumed that the system has been optimized based on some design for steady state operation prior to forcing the disturbances. Possible variations on which the disturbances can be imposed for such a reactor system are the concentration of the feed, the input

flow rate, combinations of both of these and the temperature in the reactor. The system parameters considered here were chosen to be the same as those employed by Douglas (2, 3) to facilitate the comparison of results. Douglas indicated that periodic fluctuations in input result in small improvements in performance. One obvious way to increase the performance would be to force periodic disturbances of greater amplitudes; however, there could be a limit to this from the viewpoint of feasibility of operation. Another technique is to consider the effect of the form of the disturbance itself.

CHAPTER 2

METHOD OF SOLUTION

Introduction

($dY/dt + Q/V + 2kA_s$) $Y + kY^2 = (Q/V) F(t)$... (1) where F(t) is the function representing the type of disturbance forced.

For a flow rate type of disturbance the unsteady state mass balance on the reactant A results in the differential equation

$$dy/dt = F_1 (t) (A_{os} - A_s) / V - ((Q_s + F_1 (t)) / V) + 2kA_s) Y - kY^2 ... (2)$$

The above two equations are derived and explained in detail in the subsequent chapters. The purpose of introducing them here is to indicate the type of differential equations that will be encountered in the present work. As can be seen equations 1 and 2 resulting from forcing of the diturbances are nonlinear, nonhomogeneous, first order differential equations. The differential equations resulting from forcing of the

disturbances on other operating parameters are also of the same type, and are also dicussed in the later chapters. Approximate solution can be obtained for such equations using standard analytical techniques by first converting to a second order linear equation (3). However the forcing of the step disturbance which can be represented mathematically by Fourier Series expansion makes the analytical approach highly complicated. The approach used in the present work is to solve the equation numerically on a RCA Spectra 70/35 digital computer.

The method used for the solution of the differential equation is of the predictor-corrector type, which offers the following advantages:

- The difference between the predicted and corrected values provides one measure of the error resulting at each step, and can be used to control the step size.
- 2. Only one, or at the most two evaluations of derivatives need be computed at each step (compared to four for the fourth order Runge-Kutta method) which results in a saving of computing time.

Compared to these advantages, the major disadvantage of the method lies in the instability, or propagation errors, that arises because the order of the approximating difference equation is higher than that of the original differential equation and hence the difference equation possesses extraneous solution which in some instances can dominate the solution so that the solution of the differential equation bears little resemblance to the true solution of the original differential equation. Because of the range of the integration involved in the present solution it is absolutely essential that the method be stable or relatively stable to obtain an accurate solution.

Selection of the Method

For the ordinary differential equation of the type

$$Y^{-1} = (dY/dt) = U(t, Y) ... (3)$$

the basic requirement for a stable method of solution (when $\partial U/\partial Y < 0$) or one that is relatively stable (when $\partial U/\partial Y > 0$) is that

$$\Delta t < h/$$
 ($\partial U/\partial Y$)

where h is a constant depending both on the type of the predictor-corrector method used, and on whether both $\partial U/\partial Y$ is negative or positive.

For a concentration disturbance on a second-order, irreversibly reacting system, the final differential

equation is given by Equation 1. Comparing Equation 1 with Equation 3 there is obtained

$$U(t,Y) = - (Q/V) - 2kA_S)Y - kY^2 - (Q/V)F(t) ... (4)$$

Differentiating equation (4) with respect to Y results in

$$\partial U/\partial Y = - (Q/V) - 2kA_S - 2kY$$
 ... (5)

Therefore if values of the parameters are V=100; $Q_s = 10$; k = 1.2 and $A_{os} = 1.0$ then $A_s = 0.25$. Substituting these values in equation (5)

$$\partial U/\partial Y = -.1 - (2x1.2x0.25) - 2 \times 1.2Y$$

= -0.7 - 2.4Y ... (6)

Now since Y represents the change in exit reactor concentration from the steady state, value of $A_{\rm S}$ equal to 0.25, Y can never be less than minus 0.25 under any circumstances. Also since $A_{\rm S}$, the inlet reactant concentration at steady state, is 1.0, Y could never be greater than 0.75 (though in actuality it is not greater than 0.25). Substituting this limit of Y, it can be seen that for

$$Y = 0.75$$
; $\partial U/\partial Y = -0.7 - (2.4 \times 0.75) = -2.5 ...(7)$

$$Y = 0.25$$
; $\partial U/\partial Y = -0.7 - (2.4 \times 2.5) = -1.3 ..(8)$

and that for

$$Y = -0.25 \ \partial U/\partial Y = -.7 - (2.4 \times -.25) = -0.1 ..(9)$$

Thus for all the possible values of Y, $\partial U/\partial Y$ is always negative, and it is apparent that the method will be stable. Distafano (10) has tabulated limiting values of the constant h required for the various methods to be stable.

Based on the tabulated values of h as reported by Distafano (10), and also knowing that the truncation error for a fourth order predictor-corrector method is lower than that for a third order, a fourth order Milne-Hamming (11-12) method was selected from the various predictor-corrector methods available. It should be noted that some other predictor-corrector methods might have been used effectively without sacrificing the accuracy since the At finally used is much lower than that permitted by the limit imposed by stability considerations.

The basics involved in any predictor-corrector methods are that first the open end predictor equation is used to extrapolate from Point Y_i to point Y_{i+1} . By using the predicted Y_{i+1} value a closed end corrector equation is next applied to interpolate for an improved value of Y_{i+1} . A rigorous truncation error analysis then follows to modify the corrected value or in some cases both the predicted and corrected values. The predictor-corrector method used thus requires two derivative evaluations per increment.

unione de la companya de la companya

For a fourth order method, the truncation error term is given by

$$(E_5 (\Delta t)^5 y^5) / 5!$$
 ... (10)

Where E₅ for the Milne-Hamming (MH) method is equal to negative three. The truncation error for MH method is thus given by

-
$$(1/40) \cdot (\Delta t)^{5} Y$$
 ... (11)

Now as the values of Y range between 0.25 and -0.25, the per-step truncation errors for Y = 0.25 have been calculated for various step sizes and are reported in Table I. Keeping the truncation error low will increase the accuracy of the solution and from Table I it appears that any of the four values of step sizes will give low truncation error values.

The fourth order MH method uses the same predictorequation as does the Milne method, which is then corrected.

Now, instead ofiterating the corrector equation to
convergence Hamming (11) suggested an alternate way to
save iteration time. According to him, a study of
truncation error indicated that most of the error in the
predicted and corrected values can be eliminated by the
use of the modified predictor and corrector equation.

The equations for the fourth order MH method used for
calculation for the solution of equation 3 are shown
below in the order in which they are used. In the
following equations i + 1 represents the point at

Table I : Truncation Error as a Function of Step Size Δt

Step Size	Truncation Error
0.4	2.50×10^{-7}
0.2	7.31×10^{-9}
0.1	2.44×10^{-10}
0.05	7.63×10^{-12}

Y = |0.25|

which the values are to be calculated and i, i-1, i-2, i-3, the previous points at which the values are assumed to be known.

Predictor:

$$P(Y_{i+1})$$
 = Predicted value of Y at point i-1
= $F(Y_{i-3})$ + $(2Y'_{i} - Y'_{i-1} + 2Y'_{i-2})$ (4 $\triangle t/3$)
... (12)

Where $F(Y_{i-3})$ is the final value of the differential equation at the point i-3.

Modifier :

$$M(Y_{i+1}) = Modified value of Y at point i+1$$

$$= P(Y_{i+1}) - (P(Y_i) - C(Y_i)) (112/121)$$
... (13)

Differential Equation:

$$M(Y_{i-1}^!) = U(t_{i+1}^!, M(Y_{i+1}^!))$$
 ... (14)

Corrector :

C
$$(Y_i + 1)$$
 = Corrected value of Y at point i+1
= $(1/8)$ ($(9Y_i - Y_{i-2} + 3\Delta t) (M(Y'_{i+1}) + 2Y'_{i-1} - Y'_{i-1})$) ... (15)

Final value:

$$F(Y_{i+1}) = Final value of Y at point i+1$$

= $C(Y_{i+1}) + (9/121) (P(Y_{i+1}) - C(Y_{i+1}))$

Final form of Differential Equation :

$$(Y'_{i+1}) = U (t_{i+1}, F(Y_{i+1}))$$
 ... (16)

When the procedure involving the above equations is employed, the limiting value of A t for stability is given by

$$\Delta t < 0.65/(|\partial u/\partial y|)$$
 ... (17)

Substituting these values of OU/OY obtained in equations 7 and 8

$$\Delta t < 0.65/$$
 |1.3| = 0.5 ... (18)

$$\Delta t < 0.65/ |0.1| = 6.5$$
 ... (19)

Hence it is seen that for stability, the limiting step size should be less than 0.50.

The study of equation 16 shows that the fourth order MH method is not self starting as it requires a knowledge of the values at four previous points. If knowledge of the initial condition represents the value at the first starting point, the value of the second, third and fourth (i-2, i-1, i) points may be obtained by using the fourth order Runge Kutta method (13). This method involved the use of

$$Y_{i+1} = Y_1 + (L_0 + 2L_1 + 2L_2 + L_3)$$
 (1/6)

where the respective L values are determined by

substituting the following appropriate L values in the above question.

$$L_{0} = \Delta t \cdot U (t_{i}, Y_{i})$$

$$L_{1} = \Delta t \cdot U (t_{i} + (t/2), Y_{i} + L_{0}/2))$$

$$L_{2} = \Delta t \cdot U (t_{i} + (t/2), Y_{i} + L_{1}/2))$$

$$L_{3} = \Delta t \cdot U (t_{i} + \Delta t, Y_{i} + L_{2}) \dots (21)$$

By employing the fourth order Runge Kutta method for the first three points and then using the fourth order MH predictor-corrector method for the remaining points, a time-versus-change in concentration profile and hence a reactor concentration, profile can be obtained. The results show that the concentration of the reactor exit stream due to forcing of the periodic disturbance, is also periodic in nature. This is true for any amplitude and frequency of the forced disturbance.

Now if Y is a function of time, or as a matter of choice of any other variable which is a periodic function of t, with period 2M, then the finite Fourier series based on 2M equidistant sample points, 0, 1, 2,.....

$$(2M-2)$$
, $(2M-1)$ is given by $M-1$ $X(t) = (\overline{A}_0/2) + (\overline{A}_k \cdot \cos (\pi Kt/M) + \overline{A}_k \cdot \cos (\pi Kt/M) + \overline{A}_k$

$$(\underbrace{\stackrel{M-1}{\not E}_{K}} \cdot \operatorname{Sin}(\pi \operatorname{Kt/M})) + (\overline{A}_{M}/2) \operatorname{Cos}(\pi t) \dots (22)$$

Where
$$\overline{A}_{K} = (1/M) \underset{t=0}{\overset{2M-1}{=}} Y(t) \cos (\pi Kt/M)$$
And $\overline{B}_{K} = (1/M) \underset{t=0}{\overset{2M-1}{=}} Y(t) \sin (\pi Kt/M) \dots (23)$

The coefficient $\overline{A}_0/2$ is zero for a periodic function which is symmetrical about the t axis; for any nonsymmetrical function it represents the mean value of the function over the period. It is given by

$$\overline{A}_{0}/2 = (1/2M) \stackrel{2M-1}{\underset{t=0}{2}} Y(t) \dots (24)$$

For 2M+1 points which represents an odd number of equidistant points

$$\bar{A}_{0}/2 = (1/(2M+1)) \neq \frac{2M}{t=0} Y(t) \dots (24a)$$

In the present work since the objective is to determine the performance of the reactor over an extended period of time, all that is required is the average value of the function Y given by $\overline{A}_0/2$.

Series of average values of Y given by $\overline{A}_0/2$ are found for a number of consecutive periods and the mean of this average value is used to evaluate the reactor performance. It should be noted here that before starting to calculate $\overline{A}_0/2$, the system is allowed to reach a state where the negative exponential effect of time on the reactor exit concentration has died out.

The average value of Y, then, for a particular system is given by

$$Y = \sum_{\text{Period}} \frac{Z}{Z} = \frac{1}{(\overline{A}_0/2)} / P \qquad \dots (25)$$

Where P is the number of periods over which $(\overline{A}_{O}/2)$ is averaged out and

$$A_{av} = A_{s} + Y \qquad ... (25a)$$

This value of A_{av} is then substituted in Equation 32 for calculation of reactor performance when a periodic disturbance is forced on the inlet reactant concentration. For periodic disturbances of feed flow rate and simultaneous feed flow rate and concentration type, an additional profile of time versus $QA = Q (A_S + Y)$ is obtained. Since it is found that QA is also periodic in nature, a procedure for averaging QA similar to that for averaging Y is employed. This QA is then substituted in Equation 7 for the evaluation of the reactor performance.

Selection of the Step Size

The choice of the step size involves consideration of numerical stability, truncation error and the roundoff error. Truncation error and numerical stability have already been discussed under "Selection of the Method" and needs no further elaboration here.

The roundoff error was kept at a minimum level by running the solution on the computer in double precision arithmetic. Also it was found that running the problem in single precision arithmetic gave identical results to that in double precision arithmetic up to five significant digits of Y for all the step sizes considered.

On the basis of this study involving these three errors in the solution of the differential equation for the calculation of various Y values one can conclude that keeping the step size under 0.5 will ensure the accuracy of the solution.

However because of the nature of the periodic disturbances and the manner in which the average value of Y per cycle ($\overline{A}_0/2$) is calculated, it is imperative that the value of Δt shall be as low as possible. This can be easily seen by referring to Table II where are tabulated the values of time and the reactor concentration at the beginning of each period, the total time per period, and the average concentration change per period as a function of step size. It will be seen that with increasing Δt , the total time per period for a given Δt varies widely, which results in wide variation of average values of Y. Table III shows the percentage error in average Y, (Y_{av}) , for the reactor system for the

TABLE II : Effect of Step Size $\Delta\,t$ on Y_{av} For Step Concentration Disturbance.

age Ao 2			49				192	
$\frac{Y}{av}$, Average bracketed $\frac{\overline{A}_0}{2}$			02770449				02514892	
$\frac{\overline{A}_0}{2}$, Average Y per cycle	- 02070522)	02670413	02670413	t	02659093	02379241	02506342	02659093
Y, Reactor concentration change corresponding to time t.	024523 - 024523	.024523	024523	0057532	0057533	0057515	0057532	0057533
Total Time Per Period	- 10	20.8	20.8	ı	21.0	21.0	20.8	21.0
t, Times at the Start of each Period	53.2	95.2	116.0	53.2	74.2	95.2	116.0	137.0
Step Size	0.4			0.2				

(continued)

[i,i].

TABLE II : Effect of Step Size Δt on Y av

For Step Concentration Disturbance.

Step Size	t, Times at the start of each period	Total Time Per Period	Y, Reactor concentention change corresponding to time t.	Ao Average Y 2 per cycle	Y Average bracketed Ao 2
0.1	53.2	ſ	00011276	1	
	74.2	21.0	00011277	02499819	
	95.1	20.9	00011276	02423102	
	116.0	20.9	00011373	02563652	02496600
	137.0	21.0	00011276	02499829	
0.05	32,30		0022292	ı	
	53,25	20.95	0022287	02459102	
	74.20	20,95	0022287	02459102	
	95.10	20.96	-,0022292	02490921	02493514
	116.05	20.95	0022292	02529223	
	137.00	20.95	0022292	02529223	
Frequency o	Frequency of Disturbance = (0.3	Amplitude of Disturbance	ice = 0.9	18.

TABLE III : Comparison of \mathbf{Y}_{av} in Table II

Δt	Y av	$\frac{(Y_{av})_{\Delta t} - (Y_{av})_{\Delta t = 0.1}}{(Y_{av})_{\Delta t = 0.1}}$	× 100
0.4	02770449	10.900	
0.2	02514892	0.609	
0.1	02496600	-	
0.05	02493514	0.123	

different step size Δt with reference to $\Delta t = 0.1$,

As the average value of Y is obtained by summation of individual Y values, lowering the step size Δt, will increase the number of intervals in any given cycle. This will result in a higher number of Y values to be summed up per cycle leading to higher roundoff errors. Table IV shows the Y_{aV} obtained for different step sizes using double and single precision arithmetic. From this Table IV it is seen that the effect of roundoff error even for the smallest step size condisered is only 0.018 percent, which is quite insignificant.

Coupling of the above effects as shown in Tables INT and IV, with the availability of computer time, it appears that the optimum step size to use is 0.1 for the parameters involved and accordingly computer calculations were carried out using $\Delta t = 0.1$ as a step size.

The computer programs for the calculation of average exit concentration due to the forcing of step disturbances on concentration, feed flow rate and both the concentration and the feed flow rate are shown in the Appendix. Also shown in the Appendix is a complete printout of a time versus concentration change profile for step concentration disturbance.

TARLE IV: Comparison of Y from Double and Single Precision Arithmetic

Δt	Y _{av} double precision	Yav single precision	$\frac{Y_{av} - \overline{Y}_{av}}{Y_{av}} \times 100$
0.4	-0.02770449	-0.02770394	0.0020
0.2	-0.02514892	-0.02514795	0.0039
0.1	-0.02496600	-0.02496418	0.0073
0.05	-0.02493510	-0.02493069	0.0180

CHAPTER 3

DISTURBANCES IN REACTOR FEED CONCENTRATION

The various types of concentration upsets considered are sine, ramp and step disturbances. These are diagrammed in Figure 1. All the disturbances are symmetrical about a mean value which corresponds to the steady state concentration so that over a given period, the net input of the reactant remains constant and averages out to steady state operation.

Consider a second order irreversible reaction of the type

2A → Products

taking place in a single, isothermal CSTR, with such disturbances applied on the inlet reactant concentration. Let A_O be the inlet reactant concentration at any time t, and A can be the concentration of the reactant in the reactor, which is the same as the exit concentration for an ideal CSTR. By material balance, accumulation of A in the reactor equals the net rate of flow of A in, less the rate at which A is converted to products, as formulated by

$$V(dA/dt) = Q (A_O - A) - kVA^2 ... (26)$$

_ %~~ v

Here, V is the volume of the reactor, Q is the volumetric flow rate and k is the specific reaction rate constant. If $A_{\rm g}$ represents the steady state exit concentration

FIGURE 1: Types of Concentration Disturbance Forced on the System.

of reactant A, and $Q_{\rm S}$ denotes the steady state flow rate, then at the steady state, equation 26 reduces to

$$V(dA_s/dt) = Q_s (A_{os} - A_s) - kVA_s^2 = 0$$
 ... (27)

If we now let Y represent any deviation in the exit concentration from $\mathbf{A}_{\mathbf{s}}$, then, by definition

$$A = A_s + Y \qquad ... (28)$$

By subtracting equation 27 from equation 26 and eliminating A with the help of equation 28, there is obtained

$$dY/dt + ((Q_s/V) + 2kA_s) Y + kY^2 = (Q_s/V) (A_0 - A_{0s})$$
 ... (29)

where $\mathbf{Q}_{\mathbf{S}}$ is the constant flow rate of the steady state. Now, $\mathbf{A}_{\mathbf{O}}$ itself is a function of time and can be rewritten as

$$A_{O} = A_{OS} + F(t)$$
 ... (30)

where F(t) depends on the type of disturbance being forced. Models of these disturbances are listed in Table V. Substitution of F(t) inequation 29 finally results in

$$(dY/dt + Q/V + 2kA_s)Y + kY^2 =$$
 (Q/V) F(t) ... (31)

Differential equation 31 is nonlinear and nonhomogeneous. It is solved numerically on a digital computer using the fourth order Milne-Hamming predictor-corrector method (10, 11, 12) to give (QA)_{av}, the time average flow rate of reactant A out of the reactor. For the numerical

calculations, the values of the parameters used were V=100; $Q_s=10$; k=1.2 and $A_{os}=1.0$. Substituting these values in equation 27 results in

$$10(1-A_{s}) - 1.2 \times 100A_{s}^{2} = 0$$

$$12 A_{s}^{2} + A_{s} - 1 = 0$$

$$A_{s} = \frac{-1 + \sqrt{1+48}}{24}$$

$$= + 0.25 \text{ or } -0.333$$

Neglecting the negative value, which is physically meaningless,

$$A_s = 0.25$$

The steady state rate of production may be measured by the change in concentration of A. By material balance, this is $QA_{OS} - QA_{S}$. A net change in the production rate attributable to a disturbance can conveniently be represented by the change in the output rate of reagent A, which is given by $(QA)_{av} - (QA)_{s}$. If this difference is negative in value, more A has been converted and the production rate has been improved. Conversely, a positive value of the difference indicates deterioration of the productivity of the reactor. Of greater significance to the designer is the effect of the periodic disturbance relative to the steady state performance of the reactor. This can be formulated into a figure of merit, symbolized by

TABLE V : F(t) For Disturbances Shown in Figure 1.

				
Refer To Fi- gure	Periodic Disturb- ance		$\mathbf{z_1}$	\mathbf{z}_{2}
la	Sine	a Sinwt	-	_
1b	Ramp	a(t - mT) / (T/4)	0	1/4
		$a(t - (m+\frac{1}{2})T) / (T/4)$	1/4	1/2
		-a($(m+\frac{1}{2})T - t$) / $(T/4)$	1/2	3/4
		-a((m+1) T - t) / (T/4)	3/4	1
1c	Step	0	О	3/8
		+a	3/8	1/2
		0	1/2	7/8
		- a	3/4	1
1d	Step	0	0	1/4
		+a	1/4	1/2
		0 .	1/2	3/4
		- a	3/4	1
1e	Step	+ a	0	1/4
		0	1/4	3/4
		-a	3/4	1
lf	Step	+a	0	1/2
		-a	1/2	1
lg	Ramp	a(t-mT) / (T/2)	0	1/2
		a($(m+1)T - t) / (T/2)$	1/2	1

$$\Delta = ((QA)_{av} - (QA)_{s}) / ((QA_{o})_{s} - (QA)_{s})) \times 100$$
 ... (32)

A negative value of the figure of merit, \triangle , indicates improved productivity of the reactor relative to the steady state performance. Figures of merit have been calculated for a range of frequencies and amplitudes, not all of which are necessarily practicable, for the different types of disturbances. The results are plotted in Figure 2. All the results plotted in Figure 2 and in the subsequent figures have been tabulated separately and are listed in Appendix A.

The periodic disturbance of the feed concnetration, of whatever form, leads to definite improvement in the reactor performance. An examination of the results indicates, however, that the relative improvements vary with both frequency and amplitude of a given form of disturbance. This variation is best generalized by noting that the relative improvement in performance is proportional to the absolute area included under the cover of the concentration disturbance.

(Area) =
$$2m \int_{0}^{T/2} F(t) dt$$
 ... (33)

where m is the integral number of cycles in time t, or m = t/T as long as t is an integral multiple of T. For a given amplitude, a, and frequency, these areas are at for the step disturbance, 0.63...at for the sinusoidal disturbance and ½at for the ramp disturbance. Thus it

FIGURE 2: Effect of Concentration Disturbances of Various Functions.

is expected that the change in performance will be maximized by the step disturbance and least for a ramp disturbance. This is confirmed by the results summarized in Table VI.

The step disturbances modelled in Figures 1b, 1d and 1e, with the same amplitude and frequency, have exactly the same areas, yet the relative change in performance, A , is different for each of them. This difference can be qualitatively correlated with the number of times in a cycle the slope of the disturbance curve undergoes a change, as shown in Table VII. The results clearly indicate the trend toward decreasing values of las the number of slope changes increases. For a given included area under the curve, it would be expected that a sinusoidal disturbance, with constantly changing slope would be a preferred form of feed concentration disturbance. Given the same amplitude and frequency, however, in a sinusoidal and a step disturbance, the former includes only about 0.63 times the area of the step disturbance. This areal difference outweighs the effect of continuous slope change enjoyed by the sine disturbance. To include the same included area with a sinusoidal disturbance as with a step necessitates operating at a higher amplitude for the former. If such an amplitude is indeed achievable, in practice it would be better processing strategy to force the step disturbance to take advantage of the improved performance which the step would provide.

TABLE VI: Effect of Area Under the Disturbance Curve on Reactor Performance.

Refer to Figure	Form	Area	Δ	Amplitude a
lf	Step	at	•89	•5
la	Sine	0.63 at	.51	•5
lb	Ramp	0.50 at	.33	•5

TABLE VII: Effect of Slope Changes on Reactor Performance

Disturbance Model, Fig.	Slope Changes Per Cycle	Δ
1b	2	.33
1 d	4	•45
le	3	.36
lg	1	. 26

CHAPTER 4

STEP DISTURBANCE ON CONCENTRATION AND FLOW RATE

Frequency Effects in Step Disturbances of Concentration

Because the step disturbance of feed concentration appears to provide the best operating strategy, a detailed study was made of the effect of step frequency the results of which are presented in Figure 3. For all cases, the figure of merit, Δ , is a negative quantity, and for a given amplitude of the disturbance, decreases with increasing frequency. At lower frequencies, the system approaches zero frequency effect conditions. However, at higher frequencies, the system cannot respond to infinitely fast switching and it tends to operate closer to a steady state condition of concentration which is the mean of the upper and lower bounds of the disturbance and which, for a symmetrical disturbance corresponds to the original steady state inlet concentration. This is more readily explained by reference to Figure 4 which represents the steady state response curve for various inlet concentrations. This response surface is the locus of points obtained by solving for As in equation 27 for various values of inlet feed concen-This means that any point on the surface represents tration. a reactor exit concentration for a corresponding inlet feed concentration for a second order irreversible reaction. For

FIGURE 3 : Full Step Concentration Disturbances

example, consider an exaggerated disturbance of amplitude 0.7, symmetrically imposed on a steady state inlet concentration of 1.0. This results in an inlet feed concentration of 0.3 for one half of the disturbance cycle and 1.7 for the other half of the cycle. For zero frequency effect, the exit concentration can be approximated by operation under steady state for two different inlet concentrations of 0.3 and 1.7; the final exit concentration is then given by the mid-point of the chord joining these two points. For very high frequency the disturbances are too fast for the system to respond and the system behaves as if it were operating at an inlet feed concentration value 1.0 which is the mean of 0.3 and 1.7. This mean value is nothing but the steady state operation value of the inlet feed concentration and hence the exit concentration is a point on the steady state response curve for a mean inlet, concentration of 1.0. Between these two points is the locus for the exit concentrations for other. intermediate frequencies obtained by solving for Y in equation 31 for step concentration disturbance of amplitude It can also be appreciated that if the steady state response curvature had been opposite to that shown in Figure 4, there would have been experienced a deterioration in performance rather than an improvement.

Figure 5 provides a comparison between the performance of step and sine concentration disturbances for an otherwise identical system. It is seen that even for low amplitudes,

FIGURE 4: Effect of Frequency on the Concentration Disturbance.

FIGURE 5: Performance Improvement of Full Step Disturbance in Concentration Compared to Sinusoidal Disturbance.

the percentage improvement in performance brought about by the step disturbance is in the range of 170 to 185 percent of the improvement due to a sinusoidal disturbance, a significant improvement.

Step Disturbances in Feed Flow Rate

For the same reactor system, if a step disturbance is forced on the inlet flow rate, it may be modelled by the equation

$$Q = Q_s + F_1$$
 (t) ... (34)

where the flow disturbance F_1 (t) has an amplitude b, and F_1 (t) and b have the same significance as F_1 (t) and in Table V, except that they apply to flow rate instead of concentration. The material balance for such a system gives

$$V (dA/dt) = (Q_s \div F_1 (t)) \times (A_{os} - A) - kVA^2$$
... (35)

subtracting equation 27 from equation 35 results in

$$V (dY/dt) = F_{1}(t)A_{os} - ((Q_{s} + F_{1}(t))A)$$

$$A + Q_{s}A_{s} - kV (A - A_{s}) (A + A_{s}) ... (36)$$

Substituting equation 28 into 36 and rearranging leads to

$$dY/dt = F_{1}(t) (A_{os} - A_{s}) / V$$
- ((Q_s + F₁(t))/V) + 2kA_s)Y - kY²
... (37)

For a sinusoidal flow disturbance it was shown by Douglas
(1) that the resulting effect would be opposite to that
obtained by concentration disturbances. The data plotted

in Figure 6, resulting from the numerical solution of differential equation 37 shows that A is positive, indicating that flow disturbances result in deterioration of reactor performance in the present case of a second order reaction. Step disturbances of the feed flow rate produce greater deterioration in performance than do sinusoidal disturbances of the same amplitude and frequency.

FIGURE 6: Effect of Full Step Flow Disturbances on Performance.

CHAPTER 5

SIMULTANEOUS STEP DISTURBANCES IN FEED CONCENTRATION AND FLOW RATE

The effect on reactor performance due to coupled disturbances in feed composition and flow rate was investigated. In addition to the amplitude and frequency variables in both kinds of disturbances, it is necessary to consider the phase lag between the two disturbances. If the flow rate disturbance given in equation 34 lags behind the concentration disturbance of equation 5 by an angle \emptyset , then substitution of equations 23 and 30 in equation 26 and subtraction of equation 27 from this results in

$$V(dY/dt) = Q (A_{os} + F_1(t) - A_s - Y) - Q_s$$

 $(A_{os} - A_s) - kV(A - A_s) (A + A_s)$... (38)

Rearranging equation 38 leads to

$$V dY/dt = (Q - Q_S) (A_{OS} - A_S) + Q (F(t)-Y) - kVY (2A_S + \frac{V}{2}) ... (39)$$

and finally substitution of 34 for Q produces

$$V dY/dt = F_1(t) (A_{os} - A_s) + (Q + F_1(t)) (F(t) - Y) - kVY(2A_s + Y)$$
... (40)

The difference in performance resulting from the forcing of step and sine wave types of disturbances follow the patterns previously described for the individual variations. The absolute value of Δ is higher for the step disturbance, indicating the greater effection.

tiveness of the latter.

The application of equation 32 for the calculation of Δ would be quite misleading in studying the performance of the reactors with combined disturbances since the amount of reactant A fed into the reactor for disturbances of the same frequency depends on the phase lag ϕ and can differ from the steady state value of Q_s A_{OS} . For example, for simultaneous sine wave disturbances, the average amount of reactant A into the reactor is

$$(QA_O) = (\int_O^T (A_{OS} + a \sin \omega t))$$

$$(Q_S + b \sin (\omega t - \phi)) dt,) / (\int_O^T dt) \qquad ... (41)$$

Noting that sine and cosine are orthogonal and periodic in nature, equation 41 reduces to

$$(QA_0) = Q_S A_0 + \frac{1}{2} ab Cos \phi$$
 ... (42)

For simultaneous step disturbances, euqation 41 can be rewritten as follows

$$(QA_{O}) = (\int_{O}^{T} (A_{OS} + F(t)))$$

 $(Q_{S} + F_{1}(t)) dt) / (\int_{O}^{T} dt)$... (43)

which, after some manipulation reduces to

$$(QA_0) = Q_SA + ab G (\phi)$$
 ... (44)

where, if ϕ is in radians

$$G(\phi) = (-4\phi / 2\pi) + 1; (0<\phi<\pi)$$
and
$$G(\phi) = (4\phi / 2\pi) - 3; (\pi<\phi/<2\pi)$$
... (45)

The function, $G(\emptyset)$ is shown in Figure 7.

The amount of reactant A fed into the reactor is thus higher than, equal to or lower than the steady state value, Q_S A_{OS} , depending on the value of phas angle \emptyset . Values of $(QA)_{av}$ - $(QA)_S$ are shown in Figure 8 as a function of different amplitudes and frequencies of the oscillatory disturbances.

The question arises: what would happen if the process were to run at a new equivalent steady state condition, with the new reactant feed concentration given by

$$A'_{os} = (Q_s^A_{os} + (ab/2) \cos \phi) / Q_s$$
(46)

for sinusoidal disturbances and

 $A_{OS}^{\dagger} = (Q_S A_{OS} + ab G (\phi)) / Q_S$... (47) for step disturbances. Equations 44 and 45 show that the reactant feed concentration does not vary from the old steady state value for phase angles of 90° and 270° and has a maximum deviation for 0° and 180° . Table VIII demonstrates that for a phase angle of 0° , which represents the highest inlet concentration, the new equivalent steady state operation appears to be more favourable than does

FIGURE 7: Function G(Ø) for Simultaneous Full Step Concentration and Flow Rate Disturbances.

FIGURE 8: Simultaneous Full Step Disturbances on Concentration and Flow Rate

TABLE VIII : Comparison Between Simultaneous Step Disturbance and the Equivalent Steady State Operation

	. 1													45
ļ	Reac- tant Convd.			8.800			11,768			6.138			3,413	
	(QA')			.2720 2.720			.3132 3,132 11.768			.2262 2.262			.1687 1.687	
	A .			.2720			.3132			.2262			.1687	
	(QA' S			11.6			14.9			8.4			5.1	
	A			1.16			1.49			0.84			0.51	
	Reac- tant Convd.	8.732	8.773	8.824	11.283	11,415	11.548	6.179	6.167	6.150	3.522	3.476	3.441	
	(QA _{av})	2.868	2.827	2,776	3.617	3,485	3,352	2,221	2,233	2,250	1.578	1.624	1.659	
	ø)# (QA _O)* (QA _{av})	11.6	11.6	11.6	14.9	14.9	14.9	8.4	8.4	8.4	5.1	5.1	5.1	
	abG(ø)#	1.6	1.6	1.6	4.9	4.9	4.9	-1.6	-1.6	-1.6	6.4-	-4.9	6.4-	
	д	4	4.	4.	.7	.7	.7	4.	4.	4.	.7	.7	.7	
	rð	4.	4.	4.	.7	.7	.7	4.	4.	4.	.7	.7	.7	
	Phase Lag	0	0	0	0	0	0	۴	/=	/=	/ =	 =	/=	
	Distur. Freq.	0.2	0.5	8.0	0.2	0.5	0.8	0.2	0.5	8.0	0.2	0.5	8.0	

Equation 45 * Equation 44

periodic operation. For a phase lag of 180, although periodic operation appears to give performance which is superior to that produced by the new equivalent steady state value, it still operates at a disadvantage when compared to the old steady state. Since either the feed rate or the product capacity of the reactor is pretty well fixed, the best operating strategy would be to run as close as possible to phase lag of 90° or 270°. However, Figure 8 shows that (QA) - (QA) is positive, indicating deteriorating reactor performance. This leaves the region around the 270° phase lag, for which $(QA)_{aV}$ -(QA) is negative. For the step disturbance, a comparison of \triangle for the 270 phase lag shows that somewhat better performance results when a disturbance is forced only on the concentration. These considerations indicate a useful strategy which might be followed in operating a reactor where the feed concentration alone cannot be changed periodically without disturbing the steady state flow, thus involving in addition the forcing of the flow disturbance.

CHAPTER 6

THE INFLUENCE OF KINETIC PARAMETERS

The effect of the residence time, \mathcal{T} , on Δ for periodic step disturbances was briefly investigated for the irreversible second order reaction. The results are plotted in Figure 9. In essence, at a given amplitude and frequency of the periodic disturbance, Δ increases with decreasing residence time. This corresponds to a closer approach to the zero-frequency case which produces the greatest effect on Δ , as we have already noted. The effect is a considerable one. For example, for a frequency of 0.1 radians per hour, and concentration amplitude varying between 0.1 to 0.9, at \mathcal{T} of 10 hours, Δ varies from -0.05% to -4.75%. With the same disturbance parameters, at \mathcal{T} of 1.0 hour, Δ ranged from 0.2% to 20.5%, greater than a fourfold increase in effectiveness.

The effect of a periodic disturbance depends essentially on the non-linearity of the kinetic system. For a first order system, which is linear, disturbances symmetrical about a mean steady state have no net effect on the system productivity, and Δ is invariably zero-valued. As the reaction order increases, for a given disturbance, the change in performance is amplified. For example, Figure 10 shows $|\Delta|$ for a third order reaction to be higher than for a second order reaction with a corresponding disturbance. As the order of reaction falls below first, the sign of Δ for a particular kind of disturbance changes. Thus, for a half order reaction, we should find $\Delta < 0$ for cyclic flow disturbances, and $\Delta > 0$ for feed concentration, optimum strategy would be to force

FIGURE 9: Effect of Full Step Concentration
Disturbance for a Third Order Reaction.

FIGURE 10: Effect of Residence Time

cyclic feed flow disturbances without changing the feed concentration.

A very brief study was made of the effect of temperature disturbance on the reactor system. Since the rate constant is an exponential function of the temperature, a very slight change in temperature should result in a substantial change in rate constant. It is assumed that the two are related by the equation

 $k = E_0 \exp \left(-E_1 / Rx \text{ Temp}\right) \qquad ... \qquad (47a)$ where E_0 is 1.08713 x 10¹⁴ cu. ft. / lb. mole - hr and E_1 is 44700 B.T.U. / lb. mole and R is the Universal constant equal to 1.987 B.T.U. per lb. mole - O R.

Substitution of the above constants and the temperature of 700°R in equation 47a results in value of k equal to 1.2, which is the same as the one used all along in this work. Amplitude variation of ten percent in temperature from the steady state value of 700°R leads to

 $k = 0.376 \text{ for } 630 \text{ }^{\circ}\text{R}$ and $k = 22.285 \text{ for } 770 \text{ }^{\circ}\text{R}$

When substituted in equation 27, these result in steady state value of A, as noted by $A_{\rm S}$, of 0.7745 and 0.06478 respectively.

For zero frequency effect due to the full step disturbance, the exit concentration can be approximated by equal steady state operation for k=0.376 and 22.285, and is given by $A_{\rm S}$ of 0.41964 which is the average of the above two values

;

of A_s and indicates a deterioration in performance. For very high frequency, the system should behave as if it were operating at a temperature of $700^{\circ}R$ and k=1.2, because the disturbances are too fast for the system to respond and should approach a value of A_s equal to 0.25.

Actual calculations confirm the zero frequency effect, but at high frequency it was found that Y_{av} approaches zero at about a frequency of 0.4 and then undergoes a reversal in sign and approaches a value of about minus 0.09. Before any conclusions can be made about this contradicting behaviour at high frequency, it is suggested that a detail separate study be made of the temperature effects.

CHAPTER 7

SERIES REACTORS AND THE INLET CONCENTRATION DISTURBANCE

The results outlined in the previous chapters show that the forcing of a periodic disturbance on the feed concentration results in the improvement of the reactor performance and also that reactor exit concentration stream concentration is periodic in nature. Based on this, the concept of forcing periodic step disturbances on the feed concentration has been extended to a series of backmix reactors.

Consider a second order irreversible reaction of the type

2A → products

taking place in a series of N isothermal CSTR of volumes V_1 , V_2 , V_3 V_N .

Let the subscripts 1, 2, 3 N in the concentration terms refer to the streams coming out of the reactor number 1, 2, 3 N respectively. Then by definition A_{1s} , A_{2s} , A represent the steady state exit concentration of reactant A from the reactor number 1, 2, N respectively and Y_1 , Y_2 ... Y_N the deviation in the exit concentration from A_{1s} , A_{2s} ... A_{Ns} respectively.

Based on this notation, equation 28 can be rewritten as:

$$A_1 = A_{1s} + Y_1$$
 for reactor number 1 ... (48a)
 $A_2 = A_{2s} + Y_2$ for reactor number 2 ... (48b)
 $A_N = A_{Ns} + Y_N$ for reactor number 3 ... (48N)

Since the exit stream for reactor number

1(2,3,...N-1) is fed in toto into the reactor

number 2 (3,4,...N), the concentration of the

stream entering any reactor is same as the concentration

of the stream leaving the previous reactor, equation 30

too can be rewritten as:

$$A_{0} = A_{0s} + F(t)$$
 ... (49a)
 $A_{1} = A_{1s} + Y_{1}$... (49b)
 $A_{2} = A_{2s} + Y_{2}$... (49c)
 $A_{N-1} = A_{(N-1)s} + Y_{N-1}$... (49N)

By material balance on the reactant A around reactor number 1, equations 26, 27, 29 and 31 can be rewritten as follows:

$$V_1 (dA_1/dt) = Q (A_0 + A_1) - kV_1A_1^2 ... (50)$$

$$v_1 (dA_{2s}/dt) = Q_s (A_{os} - A_{1s}) - kv_1 A_{1s}^2 = 0$$
 ... (51)

$$dY_{1}/dt + ((Q_{s}/V_{1}) + 2kA_{1s}) Y_{1} + kY_{1}^{2} = (Q_{s}/V_{1}) (A_{0} - A_{0s}) \dots (52)$$

$$\frac{dY_{1}}{dt} + ((Q/V_{1}) + 2kA_{1s}) Y_{1} + kY_{1}^{2} = (Q/V_{1}) F(t) \qquad ... (53)$$

Similarly for reactor number 2, the equations are :

$$V_2 (dA_2/dt) = Q (A_1 - A_2) - kV_2A_2$$
 ... (54)

$$V_2 (dA_{2s}/dt) = Q_s (A_1 - A_{2s}) - kV_2 A_{2s}^2 = 0$$
 ... (55)

$$dY_{2}/dt + ((Q_{s}/V_{2}) + 2kA_{2s}) Y_{2} + kY_{2}^{2} = (Q_{s}/V_{2}) (A_{1} - A_{1s}) ... (56)$$

$$(dY_2/dt) + ((Q/V_2) + 2kA_{2s}) Y_2 + kY_2^2 = (Q/V_2) Y_1$$
 ... (57)

The same procedure can be repeated for any number of reactors. For the Nth reactor the final differential equation is given by

$$(dY_{N}/dt) + ((Q/V_{N}) + 2kA_{NS}) Y_{N-1} + kY_{N}^{2} =$$

$$(Q/V_{N}) Y_{N-1} \qquad ... (58)$$

These differentials have been solved by the method previously used on the digital computer and the results are plotted in Figure 11. As may be expected $|\Delta|$, the figure of merit, decreases with increasing number of reactors. This arises because the reactor exit stream, even though periodic in nature will be of relatively lower amplitude compared to the inlet periodic concentration disturbance because of the damping effect resulting from the holding time of the reactor. This in turn will affect the figure of merit, Δ , because Δ itself is a function of amplitude.

Also since a plug flow reactor system can be approximated by an infinite number of backmix reactors in series, the results can be expected in the limit to predict the behaviour of a plug flow system under forced inlet concentration disturbance condition.

FIGURE 11: Effect of Full Step Concentration
Disturbance for a Series of Reactors

NOMENCLATURE

- A = reactant concentration
- a = amplitude of oscillations of feed composition disturbances.
- b = amplitude of oscillations of flow rate disturbances.
- G = functional variattion of phase lag of simultaneous disturbances.
- k = specific rate constant.
- N = number of reactors
- 0 = volumetric flow rate
- T = period of oscillation
- t = real time
- v = reactor volume
- Y = deviation from steady state reactor composition of reactant A.
- Z = fraction of period of oscillation.

Greek Letters

- residence time in the reactor.
- phase angle or lag between disturbances
 in feed composition and flow rate.
- ω = frequency of the disturbance

Superscripts and Subscripts

- av = average value
- o = feed condition
- s = steady state condition
- equivalent steady state operation
- 1,2,N = number of the reactor.

APPENDIX A

Tabulation of Results, Obtained Through Computer, Which are Used for Plotting of the Various Figures.

TABLE A-Ia: Yav for Different Concentration Disturbance Shown in Figure 1.

Type of Disturbance	nce	Şine (Figure 1a)	re 1a)		Ramp (Figure 1b)	re 1b)		Ramp (Figure 1g)	ure 1g)
Frequency Amplitude	y 0.3	o. v.	6.0	0.3	0 تا	6.0	0.3	0.5	6.0
0.1	-,00015	00012	90000"-	-,00010	-,00007	- 00004	00007	-,00005	-,00005
0.5	- .00381	-,00294	00164	00250	00193	-,00109	00281*	00200%	00116*
6 ° 0	01350	76600	00541	-,00859	-,00646	00357	- 00640	00459	00258

*Represents values for amplitude of 0.6

Order of the Reaction : Second

100
$$K = 1.2$$

10 $N = 1$

П

œ

11

>

$$A_{S} = 0.2$$

60.

TABLE A-TB : △ for Different Concentration Disturbance Shown in Figure 1.

Type of Disturbance	ance	Sine (Figure 1a)	re 1a)	Ramp	Ramp (Figure 1b)	(91	Катр	Ramp (Figure 1g)	(£
Frequency Amplitude	cy 0.3 de	0.5	6.0	0.3	0.5	6.0	0.3	0.5	6•0
0.1	-0.020	-0.015	600*0-	-0.013	-0.010	900 0-	-0.010	-0.007	-0.004
0.5	-0.508	-0.392	-0.219	-0.555	-0.258	-0-145	-0.374%	-0.267%	-0.155*
6.0	-1.800	-1.329	-0.721	-1.146	-0.861	-0.475	-0.861	-0.612	-0.344

*Represents values for amplitude of 0.6

TABLE A-IIa: Y for Different Concentration av Disturbance shown in Figure 1

Type of Disturbance		Step (Figure 1c)	c) Step(Figure 1d)	ire 1d)	Step (Figure 1e)	jure 1e)	Full Step (Figure 1f)	rure 1f)
Frequency Amplitude	0.5	7.0	0.5	7. 0	6.0	0.7	0.3	0.7
o.5	-,00109	68000*-	00329	00187	00272	00149	-, 00669	00390
o *0	00580	00199	01159	00613	00945	-,00459	02494	01290

Order of the Reaction: Second $V = 100 \quad k = 1.2 \qquad A_{OS} = 1.0$ $Q = 10 \qquad N = 1 \qquad A_{S} = 0.25$

TABLE AIIb : A for Different Concentration Disturbance shown in Figure 1

Type of Disturbance Step (Figure 1c)	Step (F	'igure 1c)	Step (Fi	Step (Figure 1d)	Step (Fi	Step (Figure 1e)	Full Step	Full Step (Figure 1f)
Frequency Amplitude	0.3	7.0	6.0	7.0	0.3	0.7	6.0	7.0
0 5	-0.145	-0-	-0.439	-0.249	10.363	-0.198	-0,892	-0.521
6*0	-0.507	-0,265	.1.545	-0.818	-1.260	.0.612	-3,325	-1.719

TABLE A-III : Yav and A for Full Step Concentration
Disturbance of Figure 1f

Frequency		0.1	6.0	3	0.5	5	0.7		6.0	
Amplitude	Yav	✓ 3	y av	٧	Yav	٥	Yav	٥	Yav	□ .
0.1	-,00032	-0,042	-,00025	-0.034	00020	-0.026	00019	-0,025	00011	-0.015
0.3	-,00294	-0.391	00233	-0.311	00177	-0.236	-,00144	-0,192	66000*-	-0.132
0.5	-,00856	-1.141	69900*-	-0.892	-,00500	699*0-	00390	-0.521	00276	-0.368
0.7	-,01830	-2,439	01385	-1.847	01010	-1.350	-*00768	-1.024	00547	-0.730
6*0	03556	-4.741	02494	-5.325	01749	-2.552	01290	-1,719	00918	-1,223

	1.0	0.25
Second	A _{os} =	As ==
Reaction:	k = 1.2	N = 1
Order of the	V = 100	Q _S = 10

64.

TABLE A-IV : Y_{av} and \triangle for Sine Concentration Disturbance of Figure 1a.

Frequency		0.1	0	0.3	0	0,5	0	0.7	O	6*0
Applitude	Yav	٧	Yav	٥	Yav	٥	Yav	٥	Yav	۷
0.1	00017	-0.023	00015	-0.020	00012	-0.015	60000*-	-0.012	90000*-	600*0-
0.3	00157	-0.210	00134	-0.179	00104	-0-139	00078	-0.104	69000*-	-0.078
٥ ت	00453	-0.604	00381	-0.508	-,00294	-0.392	00219	-0.292	00164	-0.219
7.0	00946	-1,261	08600*-	-1.040	00587	-0.783	00435	-0.580	00324	÷0.432
6*0	01739 -2.319	-2.519	01350	-1.800	7600 °-	-1.329	00730	-0.973	00541	-0.721

Second Order of the Reaction:

$$= 100 k = 1.2 A_{os}$$

= 10 N = 1 A

11

$$\frac{1}{4} = \frac{1}{8} = 0.25$$

65.

(QA) and A for Full Step Flow Rate Disturbance. TABLE A-V:

Frequency		0.1	0	0.3	0	O.5	0	7.0		6.0
Amplitude	(QA) _{av}		(QA)av		(QA) _{av}		(QA) _{av}		(QA)av	
1.0	2,50656	0.087	2,50525	0.070	2,50400	0.053	2,50200 0,027	0.027	2,50220	0*020
3.0	2,55942	161.0	2.54730	0.63	2,55610	0.481	2,52395	0.319	2,52024	0.270
5.0	2.66710	2,230	2.65185	1.756	2,58980	1.197	2,56945	0.926	2,55567	0.743
7.0	2.83413	4.450	2,75900	3.450	2.69110	2,546	2,63755	1.833	2.60843	1.447
0*6	3.06870	7.573	2,92695	5,680	2,81690 4,220	4.220	2,72655	5.023	2,67694	2,356
						i				

Order of the Reaction : Second

1.0	0,25
п	11
A OS	As
1.2	·
и	Ħ
ᅜ	Z
= 100	= 10
>	Q _s

66.

TABLE A-VI : (QA) av and Afor Sine Flow Rate Disturbance

Amplitude (QA) _{av}	◁								
		(QA)	◁	(QA) _{av}	Δ	(QA)	∇	(QA) _{av}	◁
	0,047	2,50307	0.041	2,50239	0.032	2,50178	0.024	2,50142	0.019
5.0 2,53198	0.426	2,52755	0.367	2,52149	0.287	2,51615	0.215	2,51258	0.165
5.0 2.58977	1,197	2,57663	1.022	2,55958	0.794	2,54479	0.597	2.53410	0.455
7.0 2.67877	2,584	2,65057	2,008	2,61640	1,552	2,58741	1.165	2,56476	0.864
9.0 2.80248	4.033	2,74947	5.326	2,69138	2,552	2.64353	1.914	2,60674	1.423
				0	1	1	† •	1	

·	0
и	10
A os	As
1.2	-
11	П
৸	Z
100	10
11	11
Λ	တို့

Full Step Concentration and Flow Rate Disturbance TABLE A-VII : (QA) and Amount A Converted for Simultaneous

Frequency of Concentration and Flow Rate	Amplitude of Disturbances	e of nces		Phase	Lag of	Flow Rate	Disturb	Phase Lag of Flow Rate Disturbances in Degrees	grees ø	
Disturbances	Concen- tration	Flow Rate		00	06	0	180 ⁹	Ĉ	270 <mark>0</mark>	
	๙	Ą	(QA) _{av}	Amount A Converted	(QA) av	Amount A Converted	(QA) _{av}	Amount A Converted	(QA) _{av}	Amount A Converted
0.2	0.1	1.0	2,5230	7,5766	2,5050	7,4950	2,4830	7.4170	2,5010	7,4990
	0.4	4.0	2.8675	8,7325	2.5794	7,4206	2,2206	6.1794	2,5064	7,4936
	0.5	5,0	5.0751	9,4269	2,6217	7.5783	2,0555	5,4445	2,5124	7,4876
	7.0	7.0	5.6169	11,2851	2,7243	7,2757	1.5783	5.5217	2,4937	7.5063
	6*0	0.6	4.3284	13,7716	2,8271	7.1729	0.7955	1.1045	2,4275	7,5725

(continued)

Full Step Concentration and Flow Rate Disturbance TABLE A-VII : (QA) and Amount A Converted for Simultaneous

b (QA) _{av} Amount A (QA) _{av} Converted Convert	Frequency of Concentration and Flow Rate Disturbances	Amplitude of Disturbances Concen Flot	e of nces Flow		00	Phase L	Lag of Flow 90°	Rate Dis	Phase Lag of Flow Rate Disturbances in Degrees 90 ^o 180 ^o 270	n Degrees	ees ø 270
0.1 1.0 2.5250 7.5751 2.5057 7.4943 2.4834 7.4166 2.4987 0.4 4.0 2.8266 8.7735 2.5978 7.4022 2.2354 6.1666 2.4681 0.5 5.0 3.0094 9.4906 2.6508 7.3492 2.0761 5.4239 2.4470 0.7 7.0 3.4852 11.4148 2.7857 7.2143 1.6238 3.4762 2.3840 0.9 9.0 4.1076 13.9924 2.9428 7.0572 0.8264 1.0377 2.8224		ત્ત	ا و	(QA) _{av}	Amount A Converted	(QA) _{av}	Amount A Converted	(QA) _{av}		(QA) _{av}	Amount A Converted
0.1 1.0 2.5250 7.5751 2.5057 7.4943 2.4834 7.4166 2.4987 0.4 4.0 2.8266 8.7735 2.5978 7.4022 2.2334 6.1666 2.4681 0.5 5.0 3.0094 9.4906 2.6508 7.3492 2.0761 5.4239 2.4470 0.7 7.0 3.4852 11.4148 2.7857 7.2143 1.6238 3.4762 2.3824 0.9 9.0 4.1076 13.9924 2.9428 7.0572 0.8264 1.0377 2.8224											
4.02.82668.77552.59787.40222.23546.16662.46815.05.00949.49062.65087.54922.07615.42592.44707.05.485211.41482.78577.21431.62583.47622.38409.04.107615.99242.94287.05720.82641.03772.8224	5 *0	0.1	0.	2,5250	Z,57.51	2,5057	7.4943	2,4834	7,4166	2,4987	7,5013
5.0 5.0094 9.4906 2.6508 7.3492 2.0761 5.4239 2.4470 7.0 5.4852 11.4148 2.7857 7.2143 1.6238 5.4762 2.3840 9.0 4.1076 13.9924 2.9428 7.0572 0.8264 1.0377 2.8224		0.4	4.0	2,8266	8,7735	2,5978	7,4022	2,2354	6,1666	2,4681	7.5319
7.0 5.4852 11.4148 2.7857 7.2143 1.6238 3.4762 2.3840 9.0 4.1076 13.9924 2.9428 7.0572 0.8264 1.0377 2.8224		0.5		5.0094	9,4906	2,6508	7,5492	2,0761	5,4239	2,4470	7.5530
9.0 4.1076 13.9924 2.9428 7.0572 0.8264 1.0577 2.8224		7.0	7.0		11,4148	2,7857	7.2143	1.6238	3,4762	2,3840	7.6160
		6.0	0.6		15,9924	2,9428	7.0572	0.8264	1.0377	2,8224	7,1776

(Continued)

Full Step Concentration and Flow Rate Disturbance TABLE A-VII: (QA) and Amount A Converted for Simultaneous

in Degrees ϕ	2700	(QA) Amount A Converted	2,4947 7,5053	2,4422 7,5578	2,4046 7,5954	2,3245 7,6755	2,2403 7,7597	
urbances ir	180	Amount A Converted	7,4141 2	6,1501 2	5,4005 2	3,4414 2	1.0083 2	
Rate Dist	1	(QA) _{av}	2,4859	2,2499	2,0995	1.6586	0.8917	
Phase Lag of Flow Rate Disturbances	0	Amount A Converted	7,4952	7,4099	7.3457	7.2322	7.0677	
Phase	006	(qA) _{av}	2,5048	2,5901	2,6563	2,7678	2.9323	
	00	Amount A Converted	7,5851	8,8240	9,5659	11.5480	14,2047	
	0	(QA) _{av}	2,5150	2.7760	2,9341	5,3520 11.5480	5.8953 14.2047	
e of nces	Flow Rate	Q	1.0	4.0	5.0	7.0	0.6	
Amplitude of Disturbances	Concen- Flotration Rat	œ	0.1	0.4	0.5	7.0	6.0	
Frequency of Concentration and Flow Rate	Disturbances		8.0					

(QA) av I (QA_{os}) + ab Cos ϕ 11 Amount A Converted

Order of the Reaction : Second

$$V = 100 k = 1.2 A_{oS} = 1.0$$

 $Q_{S} = 10 N = 1 A_{S} = 0.25$
 $Q_{S} = 10 O.25$

(QA) and Amount A Converted for Simultaneous Sine Concentration and Flow Rate Disturbances TABLE A-VIII:

of Concen-		te or L	Amplitude of Disturbances	nces	Pnase	Lab or	Flow Kat	riow Kate Disturbance	ដ	Degrees ø
tration and Flow Rate	Concentration	Flow Rate	0		0 06	o	18	180	2	270°
Disturbances	4		(QA) _{av}	Amount A* Converted	(QA)	Amount A* Converted	(QA)	Amount A* Converted	(QA) _{a1}	Amount A* Converted
0.2	0.1	1.0	2,5121	7.5379	2,5033	7,4967	2,4913	7,4587	2,5001	7,4999
9	O (1)	5,0	2,8013	8,4489	2,5831	7,4169	2,2763	6.4757	2,4991	7,5009
	6.0	0.6	3,4659	10,5841	2,7654	7.2346	1.7022	4.2478	2,4623	7.5377
0.5	0.1	1.0	2,5107	7.5393	2,5041	7,4959	2,4918	7.4582	2,4983	7.5017
	0.5	5,0	2,7666	8,4854	2,6024	7.3976	2,2889	6,4611	2,4567	7.5433
	6.0	0.6	3,3575	10,6925	2,8251	7.1749	1.7650	4.1856	2,3459	7.6541
ñ. O	0 C	, r	2,5095 2,7268	7.5405 8.5123	2.5058 2.5053	7 4962	2.4921	7,45/9	2,49/8	7 5556
	0		5.2632	10.7868	2.8018	7.1982	1.8005	4.1495	2.5145	7,6857
*Amount A	*Amount A Converted	H	$(QA_{os}) + 1/2$	1/2 ab Cos	1	(QA) _{av})	: 100 K =	1.2 A	70 0.1 11 80
Order of	Order of the Reaction:		Second				G _N	10 N II	5	$A_{S} = 0.25$
						· ·	<i>ب</i> ا	1,0		

TABLE A-IX : Yav and A for Full Step Concentration Disturbance

Frequency		0.1		٥.٥		ດ໌ ()
Amplitude	Yav	◁	Y av	∇	Y av	ℴ
0.1	00054	. 0086	00030	-0.048	- 00016	.0.026
0.3	-,00508	0.811	-,00276	-0.441	-,00142	-0.227
0.5	01506	-2,405	00773	-1.234	00395	-0.631
7.0	03297	-5,265	01552	-2,478	00776	-1.240
6*0	06517	0.407	02627	-4.195	01289	-2,059

Order of the Reaction: Third

$$V = 100 k = 1.2 A_{os}$$

 $Q_s = 10 N = 1 A_s$

TABLE A-X: (QA) and A for Full Step Flow Rate Disturbance

		0.1		0.5		0.9
Amplitude	(QA) _{av}	٧	(QA) _{av}	Δ	(QA) _{av}	۷
1.0	5.74380	660*0	3.74110	0.050	3.73963	0.026
2.0	5.78934	0.820	3,76580	0.444	5,75242	0.230
5,0	3.8820	2.303	5.81472	1,225	5.77770	0.634
7.0	4,02694	4.614	5,88242	2,306	5.81822	1,281
0.6	4.25090	7.871	5.97955	3,853	3,86345	2,003

Order of the Reaction: Third

	11	ц
1	Aos	A S
	1.2	5
•	н	П
	৸	Z
	100	10
	11	H
	Λ	Qs

10

11

Reaction Y and $^{\Delta}$ for Full Step Concentration Disturbance TABLE A-XI ; Comparison Between Half Order and Second Order

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Order of the Reaction	e e	Half Order	Order			Sec	Second Order		
Yav Yav <th>Frequency</th> <th>0.3</th> <th></th> <th>0</th> <th>J.</th> <th>0.3</th> <th></th> <th></th> <th>0.5</th> <th></th>	Frequency	0.3		0	J.	0.3			0.5	
00040 0.059 .00024 0.05600028 -0.068 00657 0.965 .00554 0.52100706 -1.708 02454 5.608 .01117 1.54502329 -5.658 0 10	Amp1itude	Yav	Ą	Yav	4		V	} }	Φ	
00657 0.965 .00554 0.52100706 -1.708 02454 3.608 .01117 1.54302529 -5.658 0 10 10 10 10 I 1 1 10 N 1 1 k 0.12 Aos 1.0 0.520	0.1	.00040	0,059	.00024	0.036	. 00028	-0.068	-,00015	-0.035	
Q 10 10 10 10 10 10 10 10 10 10 10 10 10	0.5	.00657	0,965	.00354	0.521	00706	-1.708	00280	-0.678	
10 10 1 0.12 1.0 0.520	o. O	.02454	3,608	.01117	1.543	-,02529	-5,638	£6600* -	-2,405	
10 10 1 0.12 1.0										
100 10 0.12 1.0 0.320		œ	10			10				
10 1 0.12 1.0 0.320		Λ	100			100				
1 0.12 1.0 0.320		۲	10			10				
0.12 1.0 0.320		N	Н			←				
1.0		৸	0.12			0.12				
0,320		Aos	1.0			1.0			73.	
		As	0.52	0		0.320				

Disturbance for Different Residence Time. Y for Full Step Concentration av TABLE A-XIIa

	P	1.0			- E 5		l
Frequency Amplitude	0.1	0.6	6*0	0.3	0.3	6*0	
0.1	-,00084	00073	-,00066	65000*-	-,00055	00052	
9•0	03270	02791	02505	01527	01258	00821	
6 0	08450	06971	06126	03976	03105	01919	
	Λ	10		50			
	O	10		10			
	भ्य	1.2		.12			
	Z	-		- -			
	Aos	,		-			74.
	As	0,5870		0.5355			•

TABLE A-XII b : A for Full Step Concentration Disturbance for Different Residence Time

		τ = 1.0			T = 5.0			τ = 10.0	
Frequency Amplitude	0.1	9*0	6.0	0.3	0.5	6*0	0.1	0,5	6.0
0.1	-0.201	-0.176	-0.162	-0.058	-0,049	-0.033	-0.042	-0.026	-0.015
0.6(0.5)*	-8.070	-6.770	-6,060	-2,290	-1,887	-1.232	-1.141	699*0-	-0.368
6 ° 0	-20.400	-16,900	-14.850	-5.964	-4.657	-2.879	-4.741	-2.232	-1.223

* 0.5 for residence time T = 10.0

TABLE A-XIIIa : Y for Full Step Concentration Disturbance For Series of Reactors.

Frequency		0.1			0.5			6.0	
Amplitude		Reactor Number	lumb er	Rea	Reactor Number		React	Reactor Number	
	-	2	3	-	2	5	-	2	3
0.	00032	-,0000091	8000000	00020	000200000045	-0000004			
0.5	.00856	00147	00074	00500	00073	00032	-,00276	00043	00012
o *0	03556	01377	00248	01749	- 00506	00417	-,00918	00258	00159
Order	of the Rea	Order of the Reaction : Second	puo						
اا ش	10	k = 1.2	Z	11 23	A = 1.0	0.			
$V_1 =$	100	$V_2 = 100$	V ₃	= 100	}				
$A_{1s} =$	0.25	$A_{2s} = 0.1$	0.1086 A _{3s}	= 0,0062					
r r	10	$\tau_2 = 10$	^۲ کر	= 10					7

TABLE A-XIIIb: △ for Full Step Concentration Disturbance for Series of Reactors

Frequency		0.1			0.5			6.0	
	Re	Reactor Number	mber	Reac	Reactor Number		4	Reactor Number	nber
Amplitude		2	2	,	2	2	-	2	2
0.1	-0.042	-0-001	-0.042 -0.001 -0.00008	-0.026	026 -0.00050 -0.00004	-0,00004	-0.015		
O •	-1,141	-0.165 -0.074	-0.074	0.669	-0.082	-0.032	-0.368	-0,049	-0.012
6 *0	-4.741	-1,545	-0.249	-2.232	-0,568	-0.420	-1.223	-0,290	-0.160

$$\tau = 10$$
 $\tau_2 = 10$ $\tau_3 = 10$

TABLE A-XIVa : Y for Full Step Concentration Disturbance av for Series of Reactors.

Frequency		0.1			0.5			6*0	
Amplitude		Reactor Number	er	React	Reactor Number	-	IL.	Reactor Number	بر ف
	-	2	2	- -	2	3	-	2	2
0.1	00084	0000450	00004500000026	-,00065	-,0000355	0000021	99000*-	0000443	-,0000026
0.5	02207	00745	00236	01937	00641	00201	01846	00584	00179
6 ° 0	08430	06624	04528	07274	05424	03554	06126	04461	02762
Order of the Reaction: $q_s = 10$ V_2 $V_1 = 10$ V_2 V_2 $V_3 = 1$ $V_4 = 1$	the React	tion: Second k = 1.2 V ₂ = 10 A _{2s} = 0.5975	n N V 5 975 A 5s	= 5 = 10 5s = 0.2938	A _{os} = 1.0	0.			78.

TABLE A-XIVb : △ for Full Step Concentration Disturbance for series of Reactors.

	Re	Reactor Number	r	Rea	Reactor Number	er		Reactor Number	mber
Amplitude	-	2	3	-	2	8	<u></u>	2	2
						_			
0.1	-0.201	-0,00740	-0.00037	-0.158	-0.0059	-0.00030	-0.162	-0.00735	-0.00037
0.5	-5,341	-1.236	-0.534	-4.687	-1.063	-0.284	-4.466	896*0-	-0.2544
o 0	-20.400	-10,990	-6.412	-17.603	066-8-	-5.033	-14.850	-7.402	-5.911

$$\tau_1 = 1$$
 $\tau_2 = 1$

APPENDIX B

COMPUTER PROGRAMS USED IN THE SOLUTION
OF THE DIFFERENTIAL
EQUATIONS

COMPUTER PROGRAM 1

Computer Program for Simulation of Periodic Tank Reactor under Forced Concentration Disturbance Conditions.

SYMBOL	DEF INITION
TM	Number of frequencies for which computation is performed.
L	Number of amplitudes for which computation is performed.
TIME 1	Initial time at which the disturbance is forced.
DELTT 1	Initial step size.
DELTPR	Interval at which the results are printed.
FREQ	Frequency of the disturbance.
AMP	Amplitude of the disturbance.
Q	Inlet Volumetric flow rate.
v	Volume of the reactor.
AS	Steady state, reactant A exit concentration.
RK	Specific rate constant.
Ql	Reciprocal of residence time.
QlA, Q2	Dummy Variables.
DELTT	Additional step size for which the computations can be repeated.
Yl	Change in reactant A exit concentration from the steady state value.
YID	Difference between YI values at time t and time t plus delta t.
TIME	Total Time at a particular instance since the initial forcing of the disturbance.
TPR	Time at which the results are printed.
YD	Value of the concentration change at the point i-3.

SYMBOL	DEFINITION					
YA	Summation of YI values calculated by the Runge-Kutta method.					
DY ()	L values in the Runge-Kutta equation Concentration change of A as represented by YI plus some value of L in the Runge-Kutta equation.					
ARG	Step function of concentration disturbance.					
YR ()	First three final YI values as calculated by the Runge-Kutta method.					
DYF ()	First three final values of the differential equation (Equation 30) as calculated by Runge-Kutta method.					
YDD1,YDD2, YDD3	Final value of the differential equation (Equation 30) at the points i-2, i-1 and i respectively as calculated by the Milne-Hamming method.					
YD1, YD2, YD3	Final values of YI at the points i-2, i-1 and i respectively as calculated by Milne-Hamming method.					
YD3P, YD3C	Predicted and corrected values respectively of YI at the point i.					
KS, SK	Number of steps representing negative values of YI in a cycle.					
KP,PK	Number of steps representing positive values of YI in a cycle.					
YA1	Summation of the positive values of YI in a cycle.					
YA2	Summation of the negative values of YI in a cycle.					
YD4P, YD4M, YD4C	Predicted modified and corrected values respectively of YI at the point i + 1.					
Tl	Time for completion of one cycle of the disturbance.					
SN1	Time for completion of integral number of cycles					

SYMBOL	DEF IN ITION				
YDD4	Value of the differential equation (Equation 30) based on the modified and the final values of YI at the point $i + 1$.				
YD4F	Final value of YI at the point i + 1.				
YAVG	Average value of exit concentration change of reactant A per cycle.				

THPTOAT TVOIT SOURCE PROGRAM

```
PRUGBAY PALHAM
          TOPLICIT REALMSMA-HOUSEZE
          UIMENSIPHOYSES, YESSS, DYESSS
                                           JAMP%104 JEREU%124
 4 C SECUPO OPDER INREVERSIPLE STEP FUCT ON FEED CONC.
      REFER JAMES , SHITTH , MULEURD , PP 380
 4 C
     DATA PRIMTED IN READ DROFK
      COMO REPRESENTS VARIATION FROM STEADY STATE VALUE :
          KEND ZOLKO L
 O
          READ 3, TIME1,
                            DELTT1 .. DFLTPR
10
         MEAU 40 DO VO ASO RK
11
          READ 41, % FREDENWY, NU # 1,
12
          READ 41, % AMPMN< , N # 1, L <
13
          FORMAT %7F10.4 <
      41
                  %212 <
14
          FORMAT
15
          FUFMAT % 3F10.4 <
16
       4 FURBAT %4F1044<
17
          bolbil.
                  203
     2030 FURMAT % 210, /// 20x, CCALCULATIONS FOR STEPS,
· 1 n
19
        1 1X, acdicentration disturbancea <
20
          PRIMT 204
     204
          FURMAT % /// 12xx @SECUND UPDER IRREVERSIBLE REACTIONS<
21
27
          PRIMT
                  78
23
          FORMAT %
                      ///// 12X, SDATA USED IS AS FULLOWS <
      78
24
          PPINT 79, LW
25
      7909 FORMAT %
                           // 12x, @CALC. FOR NO. UF FREQ #@, I2<
        FEPRINT BO , L
24
27
     80
          FORMAT "
                            / 12X, acalc. FOR NO. OF AMPL #8, 124
Su
                  RI, TIMEI
20
          FORMAT M/12X, WINITIAL TIME #8, F5.2 <
      81
    4.75
30
          PRINT 82, DELTTE
31
    . 82
          FORMAT M/12X, OSTEP SIZE #0, F5.2 <
32
                 P7, DELTPR
      87
          FORMAT % / 12X, aprint Step Size #a, F5.2 <
32
          PRINT 83, W
34
35
          FORMAT %/12X, WINLET FLOW RATE #0, F5.1 <
      83
36
          PRIMT 84, V
37
      84
          FORMAT %/12X, OREACTOR VOLUME #8, F6.1 < -
30
          PRIMT 85 , AS
30
          FORMAT %/12X, STEADY STATE REACTOR/CONC. #5, F5.2<
      85
40
          PRINT 86 PK
          FORMAT %/12X, WRATE CONSTANT #0, F5.2 <
41
      86
42
          00 33
                  JW #
                         1.W
47
             Ħ
                FPE0%JW<
44
          00 32
                    J # 1,
45
                  AMP%J<
                               JERFO%JWC
41.
                       AMP#J<
          PRINT
                  420
47
                               DAMPLITUDE #a, F6.2,
      420 FORMAT%010,/// 12X,
48
        1@FREQUENCY #@, F6.2 //// <
49
         01 #
                VVQ
50
          Q1A
               # 01*AM
```

```
TUPTEAN IVOLTISCURCE PROPRAM PALHAM PROGRAM
           02 4 Q1 8 " 2.4KK*A5<
           OFLIT # OFLITT
   52
   57
         1 YI # 0.0
           YID # 0.0
   54
            TIME # TIME1
   55
  54
            TPR # DELTPR
  57
           PRINT 6
         60 FURMAT " /// 16X, OTIMES, LOX, SEXIT CONC CHANGES
   57
  50
          1 , 9X, aster disturb.a <
           PRINT 201
  60
       201 FORMAT " 56X, DAMPLITUDED < PRINT 7, TIME, YI
  61
  62
         7 FURMAT % / 12X, F9.3, 8y, F15.5 / <
  63
            YD # YI
  64
  65
            YA # YD
  66
            DY%1< " 0.0
            DO 18 K # 12 3
  67
  60
           DU 19 11 # 2,5
            GO TO %11, 12, 13, 12, 13 < , N
  69
  70
        13
            TIME # TIME R% DFLTT/2.0 <
           Y # YI & %DY%N-1< /2.0 <
  71
        12
  72
            IF %N.LE. 4< GU TO119
            Y # Y & % DY %N-1 < / 2.0 <
  72
            CONTINUE
  74
       119
  75
            ARG # 1.0
            ARG1 # AM*ARG
DY%N< #% %01A* ARG < - '%RK*Y*Y< -Q2*Y<*DELTT
  76
  77
  70
            YID # %1./6.0<*%DY%2<6% 2.*%DY%3< & DY%4<<< & DY%5<<
            YI # YI & YID
  70
  90
            YR%K< # YI
            YA # YA 6 YR%K<
PRINT 9 TIME, YI, ARG1
  81
  82
  83
            ARG # 1.0
            ARG1 # AM*ARG
  84
  85
        180 DYF%K< # %Q1A* ARG
                                     C -%RK* YR%K<*YR%K< <
  86
          1 - % Q2* YR%K< <
  87
            YDD1 # DYF%1<
  89
            YDU2 # DYF%2<
            YDU3 # DYF%3<
  გი
  90
            YD1 # YR%1<
  91
            YD2 # YR%2<
  92
            YD3 # YR%3<
            PRINT A
  93
         80 FORMAT %//12x; athe fullowing values calculateda
  94
          1 , a BY HAMMING EQUATION a/<
  95
  96
            TIME # 4.0*DELTT
  97
            YD3P
                  #YD3
            YD3C
  93
                  # YD3
  99
            KS # 0
  100
```

```
FORTMAN IVOIT SUNRCE PROGRAM PALHAM PROGRAM
  191
            YAT "
                    0.0
  102
            445 P
                   ( · · · · · ·
  107
            00 31 I # 5% 20000
  104
        105
          1 * PELTT <
            YD4P # YD4P -%112./121.< *%YD3P -YD3C<
  104
            T1 # " 2.0* 3.1415927 < / W
  107
  100
            DO 129 NS # 1 , 10
  100
            SM # 115
  110
            5N1. 4 SN*T1
            1F " TIME .LT. SN1. < GO TO 121
  111
  112
            CHATINUE
       129
  113
       121
            CONTINUE
  114
            QM # SN - 1.0
            IF 7 TIME .LE. % T1 * % QM& % 1./2. <<< < Gn Tu 142
  115
  1.16
            IF % TIME .LE. 7 T1 * % QN& % 4./4. <<< < Gn TO 143
  117
       141
            ARG # 0.0
  117
            ARGI #
                     AM*ARG
            GO TO 151
  119
  120
       142
            ARG # 1.0
 121
            APG1 # AM*ARG
            GO TO 151
 122
 123
       143
            ARG # -1.0
            APG1 # AM*ARG
 124
 125
            GO TO 151
 126
            CONTINUE
           YDD4 #%01A* ARG < -%RK*YD4M*YD4M< -%Q2*YD4M<
 127
          O YD40 # %.125< *%%9.*YD3< -YD1 & %% 3.*DELTT<*%YDD4
 12R
          1 & %?.*YDD3 < - YDD2 < < <
 127
 1.30
            YD4F # YD4C & %9./121.< **YD4P - YD4C <
 1.31
          O YDU4 # %Q1A* ARG
                               < - %RK*%YD4F*YU4F<<.p>
          1 - % U2*YD4F <
 132
            IF % TIME .LE. %8.1/W< < GO TO 23
 133
            IF % YD4F - 0.0 < 75, 71, 71
 134
            IF % KP - 2 < 23, 72, 72
 135
        75 IF % KS - 1 < 74, 74, 73
 134
 137
            YAZ # YAZ & YD4F
 138
            KP # KP & 1
 137
            GO TO 23
            YA1 # YA1 E
 140
        72
                           YD4F
 141
            K S
                #
                  KS & 1
 142
            GIT
               TD 23
 143
        73
            SK #
                  K S
 144
            ÞΚ
                #
                  ΚP
 1.45
            YAVG # % YA1 & YA2
                                           < / % SK & PK
 146
            PRINT 14, TIME, YD4F, YAVG
 147
        140 FDRMAT%//12X,F9.3,8X, E15.5, 4X, DAVERAGE CUNCENTRATIOND
 148
          1 , /49X, achange#a, E14.6 <
 149
            PRINT 17, SK , YA1
 150
        170 FORMAT% / 12X, and. OF -VE PTS. #0, F7.1 ,
```

```
1 a AND ITS TOTAL NO. E16.6 <
151
           PRIMT DIE PR ECYAZ
152
       910 FULMAT% 12x, aNJ. OF EVE PTS. #0, F7.1 .
152
154
         1 a AND ITS TOTAL HAS E16.6 // <
15"
           KP # 1
           KS # 0
154
           YA1 # 0.0
157
           YA2 # YD4F
150
150
           60 TO 23
           IF % TIME - TPR < 26, 25, 25, 25
160
       23
           PRINT 9, TIME, YOUF , ARGI
       25
161
       . 9
           FURMAT % 12X, F9.3, 8X, E15.5 , 7X, E15.5 <
162
           TPR # TPR & DELTPR
163.
       27
           IF \%TIMF - \% % 6.3/W<*6.9< < 20,21,21
164
       26
           Λ # I
165
       20
           TIME # A*DELTT
166
           YD # YD1
1.67
           AUT # ADS
168
           YU2 # YD3
160
170
           YD3
               # YD4F
           YD3P # YD4P
171
172
           Y030 # YD40
177
           YDD1 # YDD2
           YDUS #
174
                   YDD3
175
           YDD3 # YDD4
176
       31
           CONTINUE
177
           PRINT 43
           FORMAT%///W AVG. CHANGE IN COMC. ISAC
172
       43
170
       21
              % DELTT .GE. 0.110 < GD TO 22
180
               IF % DELTT .LE. 0.110 < GO TO 11
           GO TO 11
181
182
       22
           DELTT # DELTT/2.0
           TIME # TIME1
187
           PRIMT 24 > DELTT
184
       240 FORMAT %///@ ANOTHER CASE WITH DIFFERENT DELTT #@
185
186
         1, F5.3 <
           GO TO 1
187
188
           CONTINUE ,
       11
189
       32
           CONTINUE
           DELTT # DELTT1 -
190
1,91
           TIME # TIME1
       33 CONTINUE
192
193
          STOP
194
          END
```

CALCULATIONS FOR STEP CONCENTRATION DISTURBANCE

SECOND ORDER TRREVERSIBLE REACTION

DATA USED IS AS FOLLOWS

CALC. FOR NO. OF FREQ = 1

CALC. FOR NO. OF AMPL = 1

INITIAL TIME = 0.00

STEP SIZE = 0.10

PPINT STEP SIZE = 2.00

INLET FLUW RATE = 10.0

REACTOR VOLUME = 100.0

STEADY STATE REACTOR CONC. = 0.25

RATE CONSTANT = 1.20

	TIME	EXIT	CONC	CHANGE		SIFP DIS	
	0.000	٠ ،	. ดบุดบา	on nö			
	0.100		16892			0.000000	00
	0.200	n,	16774	+U-01		0.900000	UO .
	0.300	Λ,	24283	30-01		0.900000	vo.
THE	FULLOWING	VALUES CA	LCUL/	TED BY	HAMMING	EQUATION	
	2.100	ο,	92065	50-01		0.900000	00
	4.100	. 0	10598	BD 00.		0.909090	OO.
	6.100	0.	10806	00 Ü		0.900000	ΟÙ
	0.100	Λ.	10037	70 OO	•	0.900000	00
	10.100	Λ,	10841	.D 00			00
	12.100	ο.	10942	iu on 🐇		0.400000	.un
	14.100	Λ.	10942	00 G		0.000000	üΩ
'	16.100	n.	10942	: 00 d	•	0.900000	00
	10.100	0.	10942	מס טי		0.900000	OD .
;	20.100	0.	10/142	10 OO		0.000000	00
:	22.100	, 0.	10942	:D 00	•	0.900000	00
;	24.100	n.	10842	10 00 U	•		00
:	26.100	0.	10742	D OO		0.900000	00
	28.100	ο.	10942	(D) OO		0.900000	00
	30.100	0.	10042	D 00		Q.30000D	VO.
	32.100	n,	19229	0-01	٠,	-0.400000	00
	34.100	- 0.	98480	0-01 .		_0.900000D	On .
	36.100	-0.	14259	00 at	•	-0.90000D	00
	30.100	-n,	16377	7D 00		-0.90000U	00
	40.100		17515			-0.°00000	00 .
1	42.100	-0.	18162	30 00. ·		-0, 200000	00
	44.100	-0.	18544	ED OO		-0.90000D	00
1	46.100	-0.	18773	an oo		-0.000000	OO ,
	48.100	- 0.	18712		* .	-0.90000D	UO .
	50.100		18996			-0.º00000	UO
	52 .1 00 / 3		19048			-0.000000	un
	54.100		19080			-0.900000	00
	56.100		1910 0			-0.90000D	UO .
	58.100		19112			-0.900u0D	UO '
	60.100		19120			-0.900000	00
	62.100		19125	•		-0.00000D	00
	64.100	-0	13080	3D+01		-0,•90000p	OO .

90.

```
0.87 076-01
 66.100
                                             0.909000 00
 66.100
                    0.107330 00
                                             0.000000 00
 70.100
                    0.107970 00
                                             0.200000 00
 72.100
                    0.109350 00
                                             0.900000 00
 74.100
                                             0.000000
                    0.100410 00
                                                      00
 76.100
                    0.100420 00
                                             0.000000 00
 70.100
                                             0.000000 00
                    0.100420 00
 80.100
                    0.1J242D Q0
                                             0.000000 00
 82.100
                    0.108420 00
                                            0.000000 00
 84.100
                    0.100420 00
                                             0.900000 00
                                             0.900000 00
 86.100
                    0.100420 00
 88.100
                    0.106420 00
                                            0.000000
 90.100
                    0.108420 00
                                            0.900000 00
 92.100
                    0.108420 00
                                            0.900000
                                                      00
 94.100
                    0.109420 00
                                            0.200000
                                                      UO
 96.100
                                           -0.90000D Q0
                   -0.664840-01
 90.100
                   -0.12902D 00
                                           -0.900000 00
100.100
                   -0.15691u 00
                                           -0.90000D 00
102.100
                   -0.171370 00
                                           -0.900000 00
104.100
                                           -0.90000D 00
                   -0.17945D 00
106.100
                   -0.18415D 00
                                           -0.40000D.00
108.100
                                           -0.00000 00
                   -0.18695D
                              00
110.100
                   -0.188640
                              00
                                           -0.400000 00
112.100
                                           -0.900000 00
                   -0.189670
                              00
114.100
                                           -0.90000D 00
                   -0.190310 00
116.100
                   -0.190700 00
                                           ~0.900000 00
118.100
                                           -0.900000 00
                   -0.190930 00
120.100
                   -0.191080 00
                                           -0.90000D
122.100
                   -0.191170 00
                                           -0.900000 00
124.100
                   -0.19123D 00
                                           -0.90000D
126.100
                                            0.900000
                   -0.115780 QO
                                                      00
128.100
                   .n.55268D-01
                                            0.900000
                                                      00
130.100
                                            0.900000 00
                    0.101790 00
132.100
                    0.107440 00
                                             0.300000 00
134.100
                                             0.900000 00
                    0.109280 00
136.100
                                             0.900000 00
                    0.10840D 00
                                            0.900000 00
136.100
                    0.108420 00
                                             0.900000
140.100
                    n.108420
                                             0.900000
142.100
                    0.108420
                              -00
                                                      OÜ
144.100
                    0.10R42D
                              00
                                             0.900000
                                                      00
146.100
                    0.10842D 00
                                             0.300000 00
                                             0.900000 00
148.100
                    0.108420 00
                                             0.200000 00
150.100
                    0.108420 00
                                             0.900000 00 -
152.100
                    0.108420
                              -00
154.100
                    0.10942D 00
                                             0.900000 00
156.100
                    0.108420 00
                                             0.900000 -00
```

NO. OF -VE PTS. = 308.0 AND ITS TOTAL = 0.317235D 02 NO. OF +VE PTS. = 320.0 AND ITS TOTAL = -0.540588D 02

AVERAGE CONCENTRATION CHANGE -0.355659D-01

-0.103260-03

```
-0.10°670-01
                                              -0.2000np un
  158,100
  140.100
                      -0.11644b 00
                                              -0.000000 00
  162.100
                      -0.14°030 00
                                              -0.100000 cc
  164.100
                      -0.16461D OO
                                              -0.900000 00
                      -0.174740 00
                                              -0.900000 00
  166.100
                                              -0.900000 00
  158.100
                      -0.182560 00
  170.100
                      <u>-0.184000 00</u>
                                              -0.90000D 00
  172.100
                      -0.18906D 00
                                              -0.900000 00
  174.100
                      -0.18032B 00
                                              -0.900000 00
  170,100
                                               <u>-0.500000 un</u>
                      -0.19009D 00
  170.100
                      -0.19056D Q0
                                              -0.9000nD 0n
                                               -0.90000D 0n
  180.100
                      -0.190850 QQ
  182.100
                                              <u>-0.300000.00</u>
                      -0.19103D OO
  184.100
                                              -0.900000 00
                      -0.19114D 00
  186.100
                      -n.191210 00
                                               -0.000000 00
                                               -0.90000D 00
  188.100
                      -0.191250 00
  190.100
                                                0.900000 00
                       0.200500-01
  192.100
                                                0.000000 00
                       0.942650-01
                                                0.000000 00
  194.100
                       0.104310 00
                                                0.000000 00
  196.100
                       0.109110 00
                                                0.900000 00
  190.100
                       0.108370 00
                                                0.900000 00
  200.100
                       0.108410 00
  202.100
                       0.108420 00
                                                0.900000 00
                                                0.900000 00
  204.100
                       0.108420 00
                       0.108420 00
                                                0.º0000D U0
  206.100
                                                0.900000 00
  208.100
                       0.10942U 00
                                                0.00000 00
  210.100
                       0.108420 00
                                                O.¤U000D U0
  212.100
                       0.109420 00
  214.100
                       0.109420 00
                                                0.900000 00
                                                0.900000 00
  216.100
                       0.10942D 00
  218.100
                                                0.900000 00
                       0.10942D 00
  220.100
                       0.817710-01
                                              -0.90000D 00
                                        AVERAGE CONCENTRATION
  220.800
                      -0.10326D-03
                                         CHANGE= -0.353369D=01
                                                   0.3183190 02
                     309.0
                             AND ITS TOTAL =
NO. OF -VF PTS.
                     320.0
                              AND ITS TOTAL =
                                                  -U.540588D 02
NO. OF +VE PTS.
                                               -0.90000D UD
                      -0.80011D-01
  222.100
                                               -0.900000 00
  224.100
                      -0.13459D 00
                                               -0.90000D un
  226.100
                      -0.159690 00
  223.100
                                               -0.90000D 00
                      -0.17289U 00
                                               -0.900000 00
  230.100
                      -0.18032D 00
                                               -0.900000 00
  232.100
                      -0.18466U 00
  234.100
                                               -0.90000D 00
                      -0.18726U 00
  236.100
                      -0.188830 00
                                               -0.900000 00
```

0.900000 00

0.900000 00

```
236.100
                     -0.18 ¹7º⊎ 00
                                             -0.000000 00
                     -1.19°370 00
  240.100
                                             -0.10000D UN
  242.100
                     -0.196740 QO
                                             -0.00000 un
                     -0.19096U 00
  244.100
                                             -0.000000 00
  246.100
                     -0.191100 00
                                             -0.90000p, un
  248.100
                                             <u>-0.000000</u>00
                     -0.19115p 00
  250.190
                     -0.19124D 00
                                             -0,700000 ON
  252.100
                     -0.72?370-01
                                              0.000000 00
                                              0.1000000 00
  254.100
                      0.754250-01
  250.100
                      0.103440 00
                                              0.200000 00
  258.100
                                              0.200000 00
                      0.107690-00
                                              0.00000D 00
  250.100
                      0.104310 00
                                              0.00000p Q0
  262.100
                      0.103400 00
                                              0.200000 00
  264.100
                      0.108420 00
                                              0.900000 00
  266.100
                      0.103420 00
                      0.108420 00
                                              0.300000 00
  268.100
                                              0.000000 00
  270.100
                      0.109420 00
                                              0.00000 00
  272.100
                      0.108420 00
  274.100
                      0.108420 00
                                              0.200000 00
                                              0.000000 00
  276.100
                      0.109420 00
  278.100
                      0.108420 00
                                              0.900000 00
  280.100
                                              0.900000 00
                      0.108420 00
                      0.108420 00
                                              0.900000 00
  282.100
                                       AVERAGE CONCENTRATION
  283.600
                     -0.10326U-03
                                        CHANGE= -0.355659D-01
                             AND ITS TOTAL =
NO. OF -VE PTS. =
                    .308.0
                                                 0.317235D 02
NO. UF +VE PTS. =
                    320.0
                             AND ITS TUTAL =
                                                -0.540588D 02
  284.100
                     -0.387310-01
                                             -0.900000 00
                                             -0.90000D 00
  280.100
                     -0.11814D 00
  288.100
                     -0.15164D 00
                                             -0.900000 00
                                             -0.90000D 00
  290.100
                     -0.16º530 00
  292.100
                     -0.177830 OO
                                             -0.90000D 00
                                             -0.900000 00
  294.100
                     -0.183190 00
                     -n.18638D 00
                                             -0.90000D
  296.100
                                             -0.90000D UN
  296.100
                     -0.18829D 00
                     -0.18946D 00
                                             -0.90000D
  300.100
                                                        ംഗറ
                                             -0.90000D 00
                     -0.19018D 00
  302.100
  304.100
                     -0.190610 00
                                             -0.900000 00
                                             d0000e.0-
  306.100
                     -0.190890 00
  308.100
                     -0.19105U 00
                                             -0.900000
                                             40.000000
                     -0.19115U 00
                                                        00
  310.100
                                             4000000
  312.100
                      -0.191220 00
                                             -0.900000
                      -0.191260 00
  314.100
                                              0.900000
                                                        UO
                       0.409190-01
  316.100
```

0.977610-01

0**.**10484D **0**0

318.100

0.000000 00

```
324.100
                        0.10"390 00
                                                 0.500000 00
                        0.10"420,00
                                                 no donnor on
   320.100
    320.100
                                                 0.000000 00
                        0.100420 00
    336.100
                        0.100420 00
                                                 0. 100000 00
    332.100
                        0.109420 00
                                                 0. 00000 un
    334.100
                                                 0.203000 00
                        0.100420 00
    330.100
                                                 0.000000 Jn
                        0.108420-00
    338.100
                        0.107420 00
                                                 0.000000 a0
   340.100
                        0.100420 00
                                                 0.000000 00
                                                 0.900000 00
   342.100
                        0.100420 00
   344.100
                        0.100420 00
                                                 0.000000 00
   346.100
                        0.300450-01
                                                -0•600000 00
   346.400
                       -0.10326U-03
                                         AVERAGE CONCENTRATION
                                          CHANGE= -0.355659D-01
· NO. UF -VE PTS. =
                      308.0
                               AND ITS TUTAL =
                                                    0.317235D 02.
 NO. UF +VE PTS. =
                      320.0
                               AND ITS TUTAL =
                                                   -0.540588D 02
   346.100
                       -0.951330-01
                                                -0.000000 00
   350.100
                       -0.141100 00
                                                -0.000000 00
   352.100
                                               -0.000000 00
                       -0.163000 00
   354.100
                       -0.17472D 00
                                                -0.000000 00
   356.100
                                               -0.400000 00
                       -0.18138U 00
   358.100
                                               -0.9000000 00
                       -0.18529b 00
   360.100
                       -0.18764U UO
                                               -0.900000 00
   362.100
                                               -0.000000 00
                       -0.18006D 00
                                               -0.0000000 00
   364.100
                       -0.18993U 00
                                               -0.9000000
   366.100
                       -0.19046U 00
                                                          -00
   308.100
                       -0.19079U UO
                                               -0.0000000
                                                          U()
   370.100
                                               -0.90000D 00
                       -0.190990 00
   372.100
                                               -0.00000D
                       -0.191120 00
                                                          U0
  .374.100
                       -0.19120D 00
                                               -0.00000 on
   376.100
                                               -0.700000 00
                       -0.19124D 00
   378.100
                       -0.241720-01
                                                0.900000 00
   380.100
                                                _0 • 500000D
                        0.857890-01
                                                          () N
   382.100
                        0.105020 00
                                                0.000000 00
   384.100
                        0.107920 00
                                                0.000000 00
   396.100
                                                0.300000 00
                        0.109350 00
   388.100
                                                0.900000
                        0.10941D 00
                                                          U0
   390.100
                        0.109420 00
                                                0.00000 00
   392.100
                        0.108420 00
                                                0.900000 00
   394,100
                        0.104420 00
                                                0.900000 00
   396.100
                        0.10842D 00
                                                0.000000 00
   398.100
                        0.109420 00
                                                0.900000 00
                                                0.900000 00.
   400.100
                        0.108420 00
   402.100
                        0.108420 00
                                                0.900000 00
   404.100
                        0.108420 00
                                                0.30000D 00
```

1.10 120 00

400.100 400.100	0.100420 00 0:100420 00	0.000000 un 0.00000 un
409.300	-0.10326b-03	AVERAGE CONCENTRATION : CHANGE= -0.353369D-01
MM. UF -VE PTS.		TUTAL = 0.318319D 02 TUTAL = -0.540588D 02
416.100 416.100	-0.170290 00 -0.179830 00	-0.00000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00
420.100 422.100 424.100 420.100 428.100 430.100 432.100 434.100	-0.18378U 00 -0.18473D 00 -0.18951D 00 -0.18959D 00 -0.19026D 00 -0.19066D 00 -0.19092D 00 -0.19107D 00	-0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00

COMPUTER PROGRAM 2

Computer Program for Simulation of Periodic Tank Reactor under Forced Flow Rate Disturbance conditions.

SYMBOL	<u>DEF INITION</u>
IW	Number of frequencies for which computation is performed.
L	Number of amplitudes for which computation is performed.
TIME 1	Initial time at which the disturbance is forced.
DELTT 1	Initial step size.
DELTPR	Interval at which the results are printed.
FREQ	Frequency of the disturbance.
AMP	Amplitude of the disturbance.
Q	Inlet steady state volumetric flow rate.
v	Volume of the reactor.
AS	Steady state reactant A exit concentration.
RK	Specific rate constant.
AFS	Steady state reactant A inlet concentration.
Q1, Q1A, Q2	Dummy variables.
DELTT	Additional step size for which the computation can be repeated.
YI	Change in reactant A exit concentration from the steady state value.
YID	Difference between YI values at time t and time t plus delta, t.
TIME	Total time at a particular instance since the initial forcing of the disturbance.
TPR	Time at which the results are printed.

SYMBOL	DEFINITION
ХD	Value of the concentration change at the point i - 3.
YA	Summation of YI values calculated by the Runge Kutta method.
DY ()	L values in the Runge Kutta equation.
Y	Concentration change of A as represented by YI plus some value of L in the Runge-Kutta equation.
YR ()	First three final YI values as calculated by the Runge-Kutta method.
DYF ()	First three final values of the differential equation (Equation 37) as calculated by the Runge-Kutta method.
ARG	Step function of flow rate disturbance.
YDD1, YDD2 YDD3.	Final value of the differential equation. (Equation 37) at the points i-2, i-1, and i respectively as calculated by the Milne-Hamming method.
YD1, YD2, YD3.	Final values of YI at the points i-2, i-1, and i respectively as calculated by Milne-Hammingmethod.
YD3P, YD3C	Predicted and corrected values respectively of YI at the point.
KS, SK	Number of steps representing positive values of YI in a cycle.
KP, PK	Number of steps representing negative values of YI in a cycle.
QA1, QA2	Summation of all QUSI values corresponding to positive and negative YI values respectively.
YA1, YA2	Dummy variables.
PA1	Summation of all the positive values of YI.
PA2	Summation of all the negative values of YI.

SYMBOL	DEF INITION

YD4P, YD4M, Predicted, modified and corrected values YD4C respectively of YI at the point i + 1 as calculated by Milne-Hamming equation.

Time for completion of one cycle of the disturbance.

SN1 Time for completion of integral number of cycles.

YDD4 Value of the differential equation (Equation 37) based on the modified and the final values of

YI at the point i + 1.

YD4F Final value of YI at the point i + 1.

AM4 Magnitude of the disturbance at any given

time t.

QUS Volumetric flow rate at any given time t.

YD4FA Product of QUS and YI.

QUS1 Exit molar flow rate of reactant A.

PAVG Average value of exit concentration change

of reactant A per cycle.

QAVG Average value of QUS 1 per cycle.

```
DRUGPAN PALHAL
          TUPLICAT REAL *6"A-H*0-ZC
         DIMENSIONDY 154, YRA54, DYFAS4 JAMPA104 JEREQ124
     SECOND UPDER IPROVERSIBLE STEP FUCT ON FEED FLOW
     REFER JAMES , SMITH , WULFORD , && 380
    DATA PRINTED IN READ DROFK
 5 C
      CONC REPRESENTS VARIATION FROM STEADY STATE VALUE
         READ 201 No L
         READ 3, TIMEL, DELTTI DELTPR
10
        PEAD 4, O, V, AS, RK
          READ 41, % FREO%NW<, NW # 1, LW <
11
          READ 41, % AMPKNO, N # 1, L C ...
12
          FURMAT %7F10.4 <
13
      41.
         FORMAT
                %212 <
14
15
         FORMAT % 3F10.4 <
14
       4 FEIRMAT %4F10.4<
17
          PRINT 2, LW, L
          PRINT
                3,
                    TIMEL DELTTI
J U
10
          PRINT
                    O, V, AS, RK
                4,
          P # 0.0
20
          DN 33 JW # 1. LW
21
22
          M # FREGAJW<
         DO 32 J # 1,
23
          AM # AMP%J<
24
         PRINT 42, AMP%JC , FREQ%JNC
25
      420 FORMAT %@1@j7X; 11HAMPLITUDE #j F6.2; 11HFREQUENCY #
26
27
        1 , F6.2 <
          AFS # 1.0
28
50
          U1 #
               AM/V
         Q1A # Q1* % AFS - AS <
30
         Q? # % %Q/V< & %2.0*RK*AS < <
31
32
         PRINT 44
37
                                              Q2
         FORMAT%/a
                      01
                                 QIA
34
         DELTT # DELTT1
35
         YI #
               0.0
        YID # 0.0
34
          TIME # TIMEL
37
38
          TPR # DELTPR
        PRINT 6
39
        FORMAT 4///10x,9HTIME%HRS<, 10x, 15HCONC%MOLES/CUFT<
40
        PRINT 5, Q1, Q1A, Q2
41
                   3E12.4///<
42
       5 FORMAT%
        PRINT 7, TIME, YT
43
          FORMAT% //7X, F9.3, 10X,
                                  E15.5 //<
45 .
        YD # YI
          YA # YD
46
          DY%1< # 0.0
47
          DO 18 K # 1, 3
48
         DO 19 N # 2,5
49
          GO TO %11, 12, 13, 12, 13 < , N
```

```
51
       13 TIME # TIME 8% DELTT/2.0 <
         Y # YT & SDYMH-1< /2.0 <
 52
 52
          JF %N.1E. 4< GU [0119]
          Y # Y & " NY %N-1 < / 2.0 <
 54
          A06 # 1.0
 55
      119
      190 DYank #% %01A* ARG
 56
                                    57
        1 - % Q1*ARG*Y < < * DELTT
 58
          YIU # %1./6.0<*%DY%2<6% 2.*%DY%3< & DY%4<<< & DY%5<<
 50
          UIY 3 IV W. IY
 60
          YR%K< # YI
          YA # YA & YP%K<
 61
          PRINT 9, TIME, YI
 62
      ARG # 1.0
180 DYF%K< # %Q1A* ARG
 63
 64
                                   65
        1 - % Q2*YR%K< <
        2 - % Q1 * ARG * YR%K< <
 65
67
          YDDI
                #
                   DYF%1<
                #
68
          Y002
                   DYF%2<
69
          YDD3 # DYF%3<
 71
          Y01 # YR%1<
          YD2 #
 71
                 YR%2<
          YD3 # YR%3<
72
73
          PRINT R
74
       BO FORMAT %//W THE FOLLOWING VALUES CALCULATED
 75
        I HANMING EQUATION & <
76
          TIME # 4.0*DELTT
77
          YN3P
                #YD3
79
          YDBC
                # YD3
          K5.# 0
79
80
          KP #
                 0
81
          UAL #
                 0.0
82
          QA2
              ##
                  0.0
83
          YAL
               11
                  0.0
              \boldsymbol{\psi}
84
          YA2
                  0.0
85
          PAL
                  0.0
86
          PA2 #
                  0.0
          00 31
87
                  I # 5, 20000
88
      100 YD4P# YD &%%4./3.<*%%2.*YDD1<- YDD2 & %2.*YDD3<<
 89
        1 * UELTT <
90
          YD4M # YD4P -%112./121.< *%YD3P -YD3C<
 91
          T1 # % 2.0* 3.1415927 < / W
          DO 129 NS # 1,30
92
 93
         . SN # NS
 94
          SN1 // SN*T1
          IF % TIME .LT. $N1 < GO TO 121
 95
96
     129
          CONTINUE
 97
          CONTINUE
     121
 98
          MO
             #
                 SN
                     - 1.0
 99
          IF % TIME
                     .LE. % T1*% ON 6% 1./ 2. <<< < GT TU 142
                     .LE. % T1*% ON 6% 4./ 4. <<< < GO TO 143
100
          IF % TIME
```

THE TYPE SHURCE PRUGRAM RALHAM PRUGRAM

```
101
           ARG # 0.0
           GO TU 151
102
1.13
      142
           APG # 1.0
104
           GO TU 151
105
      143
           AR6 # -1.0
           GC JO 151
105
107
      151
           COLTINUE
100
         OYODA #%ClA* ARG
                                C -%RK*YD4M*YD4MC -%Q?*YD4MC
100
           - % Q1*ARG*YD4M<
         0 YD4C # 4.125< *4%9.*YD3< -YD1 & %% 3.*DELTT<*%YDD4
110
         1 & %2. *YDD3 < - YDD2 < < <
111
           YD4F # YU4C & %9./121.< **YD4P - YD4C < ,
112
         0 YD04 # %Q1Δ* ARG < - %RK*%YD4F*YD4F<<
113
         1 - % Q2*YD4F < - % Q1* A9G * YD4F <
114
115
           AM4 # AM * ARG
           QUS # Q & AM4
116
           YD4FA # QUS * YD4F
117
                 # QUS * % AS & YD4F <
117
            QUS1
           IF % TIME .LE. %8.1/W< < GO TO 23
117
           IF % YD4F - 0.0 < 75, 71, 71
127
           IF % KP - 2 < 23, 72, 72
IF % KS - 1 < 74, 74, 73
121
       71
       75
122
       74
           PA2 # PAZ & YD4F
123
           QA2 # QA2 &
                           OUST
124
125
           KΡ
               #
                  KP & 1
           GO TO
124
                   23
127
       72
           PAI
               il
                   PA1 &
                            YD4F
                  QA1 &
123
           QA1 #
                           QUS1
                  KS & 1
127
           KS
               Ħ
           GIT
130
               TΠ
                  23
               #
131
       73
           SK
                  KS
132
           PK
               #
                  ΚÞ
           PAVG # %
                           E PA2
                                            < / % SK & PK
133
                       PAI
134
           QAVG
                 # %
                       Q \Lambda 1
                            a QA2
                                            < / % SK & PK
                       TIME , YD4F , QUS1
           PRINT 14,
135
           FDKMAT%//10X_{2}F9.3_{2}10X_{2}E15.5_{2}7X_{2}E15.5_{3}
136
       14
137
           PRINT 95, PAVG
138
       95
           FORMAT 7/35X, a AVG. COMC. ALONE #a, E15.7 //
           PRINT
                  79. QAVG
139
           FORMAT %/35X, & AVERAGE % CONC*QS<
                                                      #a, E15.7 /<
140
       79
           PRINT
                  93,
                       QAL, QA2
141
             FORMAT %/ E15.5, 7X, E15.5/<
14?
       93
143
           PRINT 17, SK, PK
           FORMAT % 2X, and. OF PTS. #a , F10.4, 10X, F10.4/<
144
       17
145
           KP # 1
           KS # 0
146
           QA1
147
               -#
                   0.0
           QA2
                #
                   QUS1
148
149
           PAL
               .#
                   0.0
150
           PA2
                #
                   YD4F
```

```
FORT AN IVOLT SOURCE PROGRAM RAIHAM
                                       PPUGRAM
             YA1
  151
                  11
                     0.0
             4 2 4 A
                     YD4FA
  152
  157
             GO TO
                     Ž3
             YDAE REPRESENTS AVEPAGE CHAMGE IN CONCEMTRATION
  154 C
             FRUM THE STEADY STATE WITH NO FEED CUMCENTRATION
  155 C
  156 C
             DISTURBANCE
  157
         23
             IF % TIPE - TPR < 26, 25, 25
             PRIMT91, TIME, YOUF , OUS ,
  150
         25
                                              QUS 1
                                                    YD4FA
         910 FURMAT " 10X, F9.3, 10X, F15.5 , 10Y, E15.5,
  157
           1 10x, E15.5 , 10X, E15.5 < FORMAT 4 10X, F9.3, 10X,
  160
  161
                                             E15.5
             TPR # TPR & DELTPR
  162
         27
  163
                IF "TIME - % % 6.3/W<*31.< < 20,21,21
         26
             A # I
  164
             TIME
                   # A*PELTT
  165
                  # YD1
  166
             YD
  167
             YDI
                  # YD2
  168
             YD2
                  # YD3
                  # YD4F
  169
             YD3
  170
             YD3P # YD4P
             YD3C # YD4C
  171
 172
             YDu1
                   # YDD2
             YDD2
                     YDD3
 173
                   #
 1.74
             YDU3
                   # YOD4
 175
             CONTINUE
 -176
             PRINT 43
             FORMAT%///@ AVG. CHANGE IN CONC. ISA<.
 177
         43
             IF % DELTT .GF. 0.110 < GO TO 22
 179
         21
                          .LF. 0.110 < GO TO 11
 179
             IF % DELTT
 180
             GO TO 11
             DELTT # DELTT/2.0
 181
             TIMF # TIME1
 182
             PRINT 24 , DELTT
 183
        240 FORMAT %///@ ANOTHER CASE WITH DIFFERENT 4ELTT
 184
 185
           1 F5.3 <
            60 TO 1
 136
             CONTINUE
 187
         11
 188
             CONTINUE
  189
             DELTT # DELTT1
  190
             TIME # TIME1
             CONTINUE
  191
  192
            STUP
  193
            END
```

COMPUTER PROGRAM 3

Computer Program for Simulation of Periodic Tank Reactor under simultaneous forced concentration and Flow Rate Disturbances.

SYMBOL	DEFINITION
IM	Number of frequencies for which computation is performed.
L	Number of amplitudes for which computation is performed.
LP	Number of phase lag for which computation is performed.
TIME 1	Initial time at which the disturbance is forced.
DELTT 1	Initial step size.
DELTPR	Interval at which the results are printed.
Q	Inlet steady state volumetric flow rate.
V	Volume of the reactor.
AS	Steady state reactant A exit concentration.
RK	Specific rate constant.
FREQ	Frequency of the concentration disturbance.
AMP, AM	Amplitude of the concentration disturbance.
PHP	Phase lag between two disturbances in degrees.
AM2	Amplitude of the flow rate disturbance.
AF S	Steady state reactant A inlet concentration.
Q1, Q1A, Q2	Dummy variables.
Q6	Rate of unconverted reactant A in the exit stream at steady state.
P	Phase lag between two disturbances in radians.
P1	Dummy variable.

O O

SYMBOL	DEF INITION
DELTT	Additional step size for which the computation can be repeated.
YI	Change in reactant A exit concentration from the steady state value.
YID	Difference between YI values at time t and time t plus delta t.
TIME	Total time at a particular instance since the initial forcing of the disturbance.
TPR	Time at which the results are printed.
YD	Value of the concentration change at the point i-3.
YA	Summation of YI values calculated by the Runge Kutta method.
DY ()	L values in the Runge Kutta equation.
Y	Concentration change of A as represented by YI plus some value of L in the Runge-Kutta equation.
YR ()	First three final YI values as calculated by the Runge-Kutta method.
DYF ()	First three final values of the differential equation (Equation 40) as calculated by the Runge-Kutta method.
YDD1, YDD2, YDD3	Final value of the differential equation (Equation 40) at the points i-2, i-1 and i respectively as calculated by the Milne-Hamming method.
YD1, YD2, YD3	Final values of YI at the points i-2, i-1 and i respectively as calculated by the Milne-Hamming method.
YD3P,YD3C	Predicted and corrected values respectively of YI at the point.
KS, SK	Number of steps representing positive values of YI in a cycle.

SYMBOL	DEFINITION
KP, PK	Number of steps representing negative values of YI in a cycle.
QA1, QA2	Summation of all QUSL values corresponding to positive and negative YI values respectively.
YA1, YA2	Dummy variables.
PA1	Summation of all the positive values of YI.
PA2	Summation of all the negative values of YI.
YD4P, YD4M, YD4C	Predicted, modified and corrected values respectively of YI at the point i + 1 as calculated by Milne-Hamming equation.
Tl	Time for completion of one cycle of the disturbance.
SN1	Time for completion of integral number of cycles.
YDD4	Value of the differential equation (Equation 37) based on the modified and the final values of YI at the point i + 1.
YD4F	Final value of YI at the point i + 1.
AM4	Magnitude of the disturbance at any given time t.
QUS	Volumetric flow rate at any given time t.
YD4FA	Product of QUS and YI
QUS1	Exit molar flow rate of reactant A.
PAVG	Average value of exit concentration change of reactant A per cycle.
QAVG	Average value of QUS1 per cycle.

O

O

```
PRINCHAL PALHAM
          I'I'LICUT REAL*89A-H>0-Z<
          OTHENSIONDYSSC, YPASC, DYFASC.
                                           JAMP%10< JFREQ%12<
                                   OTHENSION PRE%124
          SECTIND TROOP IRPEVERSIBLE SINGLE C.S.T.R.
          CO. RIME STEP DISTURBANCES ON FEED. FLOW AND FEED CONC.
          FOR A GIVEN CASE PUTH HAVE SAME FREQUENCY BUT THE
          AMPLITUDES MARY BY A FACTOR OF TEN
          FLOW DISTURBANCE LAGS BEHIND CONC. DISTURBANCE BY
          PHASE LAG IN DEGREES
10 0
      REFER JAMES , SHITH , WULFORD , &6 380
11
12 0
     PATA PRINTED IN PEAD URDER
13 C
      CONC REPRESENTS VARIATION FROM STEADY STATE VALUE
14
          READ 20 LWD LD LP
15
          READ
               3, TIME1, DELTTI ,DELTPR
14
         PEAU 40 00 Vo ASO RK
17
          READ
                41, % FREO%NW<, NV # 1, LW
18
          READ
                41 > % AMPSN< >
                                 N # 1, L <
10
          READ 41,4 PHP%MP< ,
                                 NP # 1, LP <
20
      41
          FORMAT %7F10.4 <
          FORMAT 9312
21
          FORMAT % 3F10.4 <
22
23
       4 FURHAT %4F10.4<
24
          PRINT 2, LW, L, LP
25
          PRINT
                 3,
                    TIMEL, DELTTI
                 49 OJVONSORK
26
          PRINT
27
          00 33
                 JW # l» LŴ
23
             # FREO%JW<
29
          ρn
             32
                   J # 1,
37
              # AMP%J<
          AM
31.
          AM2
              11
                  AM* 10.0
          00
              34
                      # 1,
32
                  NP
33
          P2
                 PHP%MP<
34
          PRINT
                 42,
                      AMPSUS FREQSUMS
                                           > PIIP%NPC
      420 FORMAT %%10,7X,
35
                          11HAMPLITUDE #, F6.2, 11HFREQUENCY #
34
        1 ,F6.2,5x,19H PHASE LAG DEGREE #, F8.2 <
37
          PRINT
                 46 , AM2
3 12
      460 FORMAT %/8
                            FLOW DISTURBANCE AMPLITUDE # 0,
39
        1 F6.2 <
40
          AF5
                  1.0
41
          ψl
              #
                 VW5 / A
4?
          QIA
              # Q1* % AFS - AS <
          42
43
              # Q/V
44
                 0 * AS
          Q6
45
          P #
                % 2.0* 3.1415927* P2 < / % 360.0 <
                 % P2 / 360.0 <
46
          P1
             #
47
          PRINT
                 44
4 P
          FORMAT%/a
                                                       2<
                       Q1 .
                                   QLA
                                                Q2
49
          DELTT
                    DELTTI
                 #
50
          YI
                 0.0
```

```
EMPTOAN IVOLT SHURCE PROGRAM RATHAN
                                       PPOGRAM
  51
          0.0 # 01Y
  50
             TIME # TIMES
  52
            TPR # DOLTER
  54
           TRILL &
         6 FURTAT M///10X, GHTIMEMHMS<, 10X,
  53
                                                15HCONC%WOLES/CUFT<
           PRIMT 57 Q1, Q1A, Q2
  54
  57
            FURMATA
                     3F12.4///<
  50
           PRIOT 75
                    TIME,YI
           FORMAT% //7X, FO.3, 10X, E15.5 //<
  50
  60
           YI) # YT
  61
            YA # YD
  62
            DY..1< " 0.0
            DO 18 K # 1, 3
  63
  64
           DO 19 H # 2,5
  65
            60 - 10 \%11, 12, 13, 12, 13 < 9 N
            TIBE # TIME 6% OFLTT/2.0 <
  66
        13
            Y # YT & %DY%N-1< /2.0
  67
        12
            IF %N.LE. 4< GU TP119
  60
  60
            Y # Y & % DY %N-1 < / 2.0 <
  70
        119
            APG # 1.0
            IF % Pl .LE. 0.0 < GD TO 115
  71
  72
            1F 7 P1 .LE.4./8.< GO TO 116
  72
            IF ".Pl .LE.8./R.< GO TO 115
  74
            ARG1# 1.0
       115
  75
            GO TU 117
  .74
       116
            ARG1 # -1.0
  77
            GN TU 117
  70
            CONTINUE
       117
  70
        190 UY; N< # % % Q1A * APG1 < & % % Q2 & % Q1* ARG1 < <*
  80
            %% AM*ARG< - Y<< - %% RK*
                                                Y< * %% 2.0*AS< &
  B 1
          2 Y<< < * DELTT
            YIU # %1./6.0<*%UY%2<6% 2.*%DY%3< & DY%4<<< & DY%5< <
  82
  83
            GIY 3 IY # IY
  84
            AB %K< H AI
  85
            YA # YA & YP%K<
  86
            PRINT 9,
                      TIME, YI
  87
        180 UYF%K< #
                      % Q1A * APG1 < & % % Q2 & % Q1* ARG1 < <*
  BB
             - %% AM*ΛRG< - YR%K<<< - - %% RK*YR%K<< * %% 2.0*ΔS< &
          1
  80
          2 YR4K< <<
  91
            YDOI
                  ##
                     DYF%1<
  91
            YPu2
                  #
                     DYF%2<
  92
            Y003
                  #
                     DYF%3<
  93
                 # YR%1<
            YDI
                 #
  94
            YD2
                    YR%2<
  95
                 # YR%3< .
            YD3
  94
            PRINT A
  97
           FORMAT %//a
                              THE FOLLOWING VALUES CALCULATED BY
          1 HAMMING EQUATION & <
  98
  99.
            TIME # 4.0*DELTT
            YD3P #YD3
 100
```

THRITTAN IVOIT SOURCE PROGRAM PALHAM PPUGRAM

```
101
             7113C
                    \mathcal{H}
                       V1)7
 102
             14.5
                 11
                     4
 102
             K D
                     \cap
                  11
 104
             КU
                     \mathbf{0}
                  #
 105
             ΚX
                     0
                  Ħ
 1116
             QAL
                      0.0
 107
             91/5
                      0.0
 100
             111
                   11
                      0.0
 ter
             YAZ
                      0.0
 117
                   #
             PVI
                      0.0
 111
             PA2
                   4
                      0.0
 112
             ហ្ស
                 31
                      I #
                             5,
                                 20000
 113
         100 YD4P# YP &%%4./3.<*%2.*YDD1<- YDD2 &
                                                        %2.*YDD3 <<*
 114
           1 DELTT
             Y0414
                    # YD4P -%112./121.< **YD3P -YD3C<
 115
 114
             T1 # " 2.0* 3.1415927 < / W
             DO 129 NS # 1 , 10
 117
                 # 45
 113
             511
             SM1 # SM#T1
 117
             IF " TIME .LT. SNI < GO TO 121
 120
 121
             CONTINUE
        129
 122
        121
             CONTINUE
             4 1/1
 123
                     SN -
                           1.0
 124
             IF % P1 .LE.%0.0
                                      < GU TO
                                                130
 125
             IF " P1 .LE.%1.0/8.0<
                                      < GO TO:
                                                131
             IF % Pl .LE.%2.0/8.0<
                                      < GU TO
                                                132
 125
             IF % Pl .LE.%3.0/8.0<
                                      < GD TO
                                                133
 127
                                      < GO TO
129
             IF % Pl .LE.%4.0/8.0<
                                                134
                                      < GU TO
                                                135
 120
             IF % P1 .LE.%5.0/8.0<
 130
             IF % Pl .LE.%6.0/8.0<
                                      < GU TO
                                                136
             IF % P1 .LE.%7.0/8.0<
                                      < GU TO
                                                137
. 131
             IF % P1 .LE.%8.0/8.0<
                                      < GU TO
                                                138
 132
             CONTINUE
 133
        130
                         .LE. % T1+% ON &% 4./ 8. <<< < Gn Tu 142.
             IF % TIME
 134
                         .LE. % T1*% ON &% R./ B. <<< < GO TO 144
             IF % TIME
 135
 134
        131
             CONTINUE
                         .LE. % T1*% ON &% √1./ 8. <<< < ℃0 TU 141
 137
             IF % TIME
                         .LE. % T1*% ON &% 4./ 8. <<< < GN TO 142
             IF % TIME
 130
                         .LE. % T1*% ON &% 5./ 8. <<< < Gn TU 143
             IF % TIME
 130
                         .LE. % T1*% ON 6% 8./ 8. <<< < GN Tu 144
 140
             IF % TIME
             CONTINUE
 141
        132
                         .LE. % T1*% ON &% 2./ 8. <<< < GO TO 141
             IF % TIME
 142
                         .LE. % T1*% ON 6% 4./ 8. <<< < GO TU 142
 143
             IF % TIME
                         .LE. % T1*% ON &% 6./ 8. <<< < GO TU 143
             IF % TIME
 144
                         .LE. % T1*% ON 6% 8./ 8. <<< < GO TO 144
 145
             IF % TIME
 146
             CONTINUE
        133
                         .LE._ % T1*% ON 6% 3./ 8. <<< < GD TU 141
 147
             IF % TIME
                         .LE. % T1*% ON 6% 4./ 8. <<< < GR TU 142
 148
             IF % TIME
                         .LE. % T1*% ON 6% 7./ 8. <<< < GN TU 143
             IF % TIME
 149
                         .LE. % T1*% ON 6% 8./ 8. <<< < GO TO 144
 150
             IF % TIME
```

```
151
       134
            COST 1 HUE
            1F " T1"E
                        .LF. % T1*% ON &" 4./ 8. <<< < 60 TU 141
152
            1F % T1"E
153
                        .LF. % 11*4 CN & 8./ 8. <<< < GN TU 143
            CONTINUE
154
       135
            IF " TIME
155
                        .LF. % T1*% ON &% 1./ 8. <<< < GO TU 142
            IF " TIME
                        .LF. % T1*% ON 6% 4./ 8. <<< < GD TD 141
154
            IF % TIME
                        *LF. % T1*% ON &% 5./ B. <<< < GO TO 144
157
            1F % TI"F
                        .LF. % T1*% ON &% 8./ 8. <<< < GD TU 143
150
157
       136
            CONTINUE
            IF % TIME
                        •LF. % T1*% ON &% 2./ Β. <<< < GO TO 142
160
            IF % TIME
                        .LF. % T1*% ON 4% 4./ 8. <<< < GO TU 141
161
162
            IF % TIME
                        .LF. % T1*% ON &% 6./ 8. <<< < GFI TU 144
            IF " TIME
163
                        .LF. % T1*% ON &% 8./ 8. <<< < 60 TU 143
164
       137
            CONTINUE
            IF % TIME
                        .LE. % T1*% ON 6% 3./ 8. <<< < GD TU 142
165
166
            IF % TIME
                        .LE. % TI*% ON 6% 4./ 8. <<< < Gn TU 141
            IF # TIME
                        .LF. % T1*% ON &% 7./ 8. <<< < GN TU 144
167
            IF % TIME
161
                        •LF. % T1*% ON &% 8./ 8. <<< < GO TU 143
       138
            CONTINUE
169
            1F % T11'E
170
                        .LE. % T1*% ON &% 4./ 8. <<< < GD TU 142
171
            IF " TIME
                        .LE. % T1*% ON &% 8./ 8. <<< < GD TU 144
172
            AR6 # 1.0
      141
            APG1 # -1.0
173
174
            GO TU 151
175
       142
            ARG # 1.0
            ARGT # 1.0
174
            GD TD 151
177
            ARG # -1.0
17<sup>n</sup>
      143
179
            ARG1 # 1.0
180
            60 TU 151
       144
            ARG # -1.0
181
182
            ARG1 # -1.0
            GO TO 151
183
184
       151
            CHNTIHUF
            YUD4 # % Q1A * APG1 < & % % Q2 & % Q1* ARG1 < <*
185
186
             %% AM*ARG< - YD4M<< - %% RK* YD4M< * %% 2.0*AS< &
187
          2 YD4M <<
184
          0 YD4C # %.125< *%%9.*YD3< -YD1 & %% 3.*DELTT<*%YDD4 &
          1 %2.*YDD3 < - YDD2 < < <
189
190
            YD4F # YD4C & %9./121.< **YD4P - YD4C <
             YUP4 # % Q1A * ARG1 < & % % Q2 & % Q1* ARG1 < <*
191
192
             %% AM*ARG< - YD4F<< - %% RK* YD4F< * %% 2.0*AS< &
193
          2 YD4F < <
194
            AM4
                 H.
                    AM2 * APG1
195
            QUS
                 #
                    Q & AM4
                   # QUS * YD4F
196
            Y114FA
                   # QUS * % AS & YD4F <
197
             QUS1
198
            IF % TIME .LE. % 5.1/4 < < GO TO 23
            IF % QUS1 - Q6 < 64, 65, 65
199
200
            KU # 5
       64
```

```
IF % VX - 5 < 23, 72, 23
 201
            IF % KU - 5 < 23,71, 23
 202
        65
            1F % KS - 2 < 75, 75, 73
 203
        71
 2014
        75
            1F % KP - 0 < 11, 76, 74
 205
        76
            PRINT 14, TIME, YD4F, QUS1
                # PA2 &
                           YD4F
 205
        74
            PAZ
                   0A2 & 41151
 207
            OAZ
                t‡
 208
            KP
                # KP 6 1
 200
            ΚX
                #
                   5
            GN
                    23
 210
                TO
                    PAI &
        72
            PΛI
                H
                            YN4F
 211
 212
            QAL
                #
                   3 140
                            GUST
 212
            KS.
                   KS & 1
 214
            GN
               TO 23
        73
            SK
                  KS
 215
                1#
            PK
                # KP
 214
                                PA2
                                            < / % SK & PK
            PAVG # % PA1 &
 217
                                            < / % SK & PK
                  #. %
                       011
                             & QA2
 218
            QAVG
            PRIMT 14,
                        TIME , YD4F , OUS1
 210
            FORMAT%//10X, F9.3, 10X, E15.5, 7X, E15.7 / <
 220
            PRIMT 95, PAVS
221
            FORMAT %/35X, & AVG. CUNC. ALONE #a,
                                                  E15.7 //<
. 222
223
            PRINT
                   79, QAVG
            FORMAT M/35X, & AVERAGE % CONC+OSC
                                                      #7. E15.7 /C
224
225
            PRIMT 93, QA1, QA2
             FORMAT %/ E15.5, 7X, E15.5/<
224
        93
            PRINT 17, SK, PK
227
            FORMAT % 2X, and. UF PTS. #a , F10.4, 10X,
228
           KP # 1
229
           K 5
230
                # 0
231
            UAL
                 Ħ
                    0.0
            QA2
                    QUS 1
232
                 Ħ
233
            PA1
                 11
                    0.0
            PA2
                ##
                    YD4F
234
                11.
235
            YAl
                    0.0
236
            YA2
                 #
                    YD4FA
237
            GD TO
                   23
            IF % TIME - TPR < 26, 25, 25
        23
231
            PRINT91, TIME, YN4F , OUS ,
                                           QUS1
                                                      , YD4FA
237
        25
        910 FORMAT % 10x, F9.3, 10x, E15.5 , 10x, E15.5,
240
            10X, E15.5 , 10X, E15.5 <
 241
            FORMAT %
                         10X, F9.3, 1UX, E15.5
 242
            TPR # TPR & DELTPR
        27
 243
            1F % TIME - % % 6.3/ W < * 6.4 < < 20, 21, 21
 244
        26
            A # 1
        20
 245
                  # A*DELTT
            TIME
 246
            YO : # YD1
 247
 248
            YDI
                 # YD2
                 # YD3
 249
            YD2
 250
            YD3
                 # YD4F
```

```
251
           Y030 " Y04P
252
           Y1130 # Y1140
                   YUNZ
253
           YPb1
                #1
254
                   YU03
           Y902
                14
255
           Y963 # Y004
           CHATINUT
254
       31
257
           PRIMT 43
           FORMATS///D AVG. CHANGE IN CONC. ISDC
250
       43
259
       21
           IF % DFLTT .GF. 0.110 <
                                       Gn Tn 22
           IF % DFLTT
                        .LF. 0.110 <
260
                                       GO TO 11
261
           .60 . TO 11
           DELTT # DELTT/2.0
262
       22
           TIME # TIME1
263
           PRIMT 24 , DELTT
264
265
      240 FORMAT %///@ ANOTHER CASE WITH DIFFERENT DELTT
         1 F5.3 <
264
           GO TO 1
267
26R
       11
           CONTINUE
           CONTINUE
269
       34
270
           DELTT #
                    DELTT1
2/1
           TIME #
                    TIME1
      `32
272
           CONTINUE
273
       33
          CONTINUE
274
          STOP
275
          END
```

COMPUTER PROGRAM 4

Computer Program for Simulation of Series of Periodic Tank
Reactors under Forced Concentration Disturbance Conditions.

SYMBOL	DEFINITION
NR	Number of reactors connected in series.
TM.	Number of frequencies for which computation is performed.
LA	Number of amplitudes for which computation is performed.
TIME1	Initial time at which the disturbance is forced.
DELTTI	Initial step size.
DELTPR	Interval at which the results are printed.
Q	Inlet volumetric flow rate.
RK	Specific rate constant.
v ()	Volume of the individual reactors.
FREQ	Frequency of the disturbance.
AMP	Amplitude of the disturbance
AS ()	Steady state reactant A exit concentration for each reactor.
AI ()	Change in reactant A exit concentration from the steady state for each reactor.
Q1A () Q2 (·)	Dummy variables.
DELTT	Additional step size for which the computation can be repeated.

SYMBOL	DEF INITION
TIME	Total time at a particular instance since the initial forcing of the disturbance.
TPR	Time at which the results are printed.
DY ()	L values in the Runge-Kutta equation.
YID	Difference between YI () values at time t and time t plus delta t.
Y ()	Concentration change of A as represented by YI () plus some value of L in the Runge-Kutta equation for each reactor.
YIP ()	Dummy variables.
DYF ()	First three final values of the differential equation (Equations 53, 57, 58) as calculated by the Runge-Kutta method.
YDD1 () YDD2 () YDD3 ()	Final value of the differential equation (Equations 53, 57, 58) at the points i-2, i-1, and i respectively as calculated by the Milne-Hamming method for each reactor.
YD1 (), YD2 () YD3 ()	Final values of YI at the points, i-2, i-1 and i respectively as calculated by Milne-Hamming for each reactor.
YD3P (),	Predicted and corrected values respectively of Yl at the point i.
YD ()	Value of the concentration change at the point $i-3$ for each reactor.
YAl ()	Summation of the positive values of Yl () in a cycle for each reactor.
YA2 ()	Summation of the negative values of YI () in a cycle of each reactor.
KS, SK	Number of steps representing negative values of YI in a cycle for the first reactor.
КР, РК	Number of steps representing positive values of YI in a cycle for the first reactor.

0

SYMBOL	<u>DEF INITION</u>
YD4P () YD4M () YD4C ()	Predicted, modified and corrected values respectively of Yl at the point i + 1 for each reactor.
Tl	Time for completion of one cycle of the disturbance.
SN1	Time for completion of integral number of cycles.
D4F (1)	Step function of concentration disturbance into the first reactor.
YARG	Magnitude of the concentration disturbance into the first reactor.
YDD4 ()	Value of the differential equation (Equations 53, 57, 58) based on the modified and the final values of Y1 at the point i + 1 for each reactor.
YD4F ()	Final value of YI at the point i + 1 for each reactor.
YAVG ()	Average value of exit concentration change of reactant A per cycle for each reactor.

```
PRIGRA! PALHAM
           T*PLICIT REAL#8*A-11,0-2く
           DIAFMSION FREUMIOC . AMPWING
           DIBTHSION DYMOK , YMOK , DARGYOK , DYFMOK
           UTIFIED V"94 , A5%94 , 014%94 , 42%94
           BI FNSION YISOC , YOSOC , YIPSOC
           THE FINSION YD1%94 , YD2%94 , YD3%94
           ETERNION YOUTS , YOURS , YOURS
           UTHENSION Y03P%94 , Y04P%94 , Y03C%94 , YD4C%94
           DIDENSION YA1894 , YA2894 , YAVE894
I^{\alpha}
           DINENSION YDAM%OC , YDAF%9C , DAF%9C
11
           SECOND DRIVER IRREVERSIBLE REACTION
12 0
           SERIES OF STIPRED TANK PEACTORS
13 0
           DATA PRINTED IN READ ORDER
14 0
15 C
           SOUARE WELL TYPE DIST. ON FEED CONC.
           HUMPER OF REACTORS IN SERIES IS REPRESENTED BY MR
14 C
           REFER JAMES , SMITH , WOLFORD , PP 380
. 17 · C
l n
           CONC. REPRESENTS VARIATION FROM STEADY STATE VALUE
   C
10
           READ L. NR
           READ 2, LW , LA
20
           FORMAT # 124
21
22
           FORMAT %2124
23
           READ 3, TIME1, DELTTI, DELTPR
24
           KEAD 4, Q, PK
25
           FUKMAT % 3F10.4<
           FORMAT% 2F10.44
26
27
           NR 2
               H MR
                     S. 1
           READ 5. % V%NV< . NV # 1. NR <
28
29
           READ 5, % FREDWINK, NW # 1, LW <
           READ 5, % AMP%NC , N # 1, LAC
31
           READ 5, % AS%NS< , NS # 2, NR2 <
31
32
           FORMAT % 7F10.4 <
           PRINT 1, NR
37
           PRINT 2, LW, LA
34
           PRINT 3, TIME1 , DELTT1, DELTPR
35
36
           PRINT 4, Q , RK
           PRINT 6, % ASKNS< , NS #
                                       2. NR2 <
37
38
           PRINT 6, % V%NV< , NV # 1, NR <
           FORMAT " / 7F10.4 / <
39
40
           DO 10 JW # 1, LW
41
           W # FRFO%JUC
42
           DO 11 JA # 1, LA
43
           >AL % AMP%JA<
44
           PRINT 7, NR
45
        70 FORMAT % ala , 20X, a NUMBER OF REACTORS IN SERIES #a
46
         1 , 12 <
47
           PRINT 8, AMP%JAC , FREQ%JWC
        80 FORMAT %/ 7X, DAMPLITUDE #D, F6.2, 7X, DFREQUENCY #D,
4 R
49
         1 F6.2 <
           YI%1< #
50
                     0.0
```

FORTMAN IVOIT SOURCE PROGRAM RAUHAM PROGRAM

```
pn 12
                  1 # 2, NR2
51
52
                 41 O.O
           Y17.J<
57
           11 Nº J-1 / YMA # % 0 * MM / V V X J-1 <
54
           0221 = # % 0/V%1-1< < & % 2.0*RK* A5%J< <
       12
55
           PPINT 9, % 01A%J-1< , J # 2, NR2
           PRINT 13, % Q2%J< , J # 2, NR2 <
5%
57
           FORMAT % /8 01A-S #8, 5E15.4 <
 50
           FURMAT % / @ 02-$ #@, 5E15.4 <
       13
50
           DELTT # DELTTE
60
       67
           TIME # TIME1
           TPR # DELTPR
61
           PRIMT
62
                 14
       140 FURMAT % /// 10x, 9HTIME%HRS<, 10x,
63
64
         1 @ CONC. MNOLES/CU.FT. < @ <
           PRINT 15, TIME, % YI%J< ,
65
                                         J # 2, NR2 <
           FORMAT % //10X, F9.3, 10X, 4% E15.5 , 5X < <
66
       15
67
           DI) 20 K # 1, 3
           DF 21 J # 2, NR2
63
           IF %K-1< 22, 22, 23
6?
70
           TIME # TIME1
       22
           YI%J< # 0.0
71
72
           DY%1< # 0.0
73
           Y10 # 0.0
74
           DO 24
                  N # 2,5
       23
75
           GO TO % 100, 26, 27, 26, 27 < N
           TIME # TIME & %DELTT/2.0 <
76
       27
77
           Y%N< # YI%J< & %DY%N-1</2.0<
      26
           IF % N .LE. 4 < GO TO 28
78
           Y%N< # Y%N< & % DY%N-1</2.0 <
70
80
           CONTINUE
      28
81
           1F %J-2< 29,29, 24
           DARG%3< # 1.0
82
      29
83
           DARG%4< # 1.0 ·
           DARG%5< # 1.0
84
        O THE ABOVE THREE VALUES OF DARG VARY DEPENDING ON TYPE
85 C
86 C
        1 OF DISTURBANCE
87
           IF %K-1< 30, 30, 31
           DARG%2< # 0.0
88
     30
           GO TO 24
80
90
           DARG%2< #1.0
       31
91 C °
         O THE ABOVE TWO
                           VALUES OF DARG VARY DEPENDING ON TYPE
92 C
         1 OF DISTURBANCE
           GO TO 24
92
       240 DY%M< #%% Q1A%J-1<*DARG%N<< - % RK*Y%N<*Y%N< <
94
95
           -% Q2%J<*Y%N<< < * DELTT
         O YID # %1./6.0<* % DY%2< & % 2.0 * %DY%3< & DY%4< < <
96
97
         1 & DY%5< <
98
           Y1%J< #
                     3 >L%IY
                               YID
99
           DARG#2<
                    # Y%2<
100
           DARG#3<
                    # Y%3<
```

THE TEAM IVOIT SHURCE PROGRAM RALHAM PROGRAM

```
DAKG844 # 17844
101
          UAKG%5< # Y%5<
102
F(i)J
          1F " J-2 < 32, 32, 33
          YIP"J-1< # 1.0
104
          THE ABOVE THREE VALUES OF DARG VARY DEPENDING ON TYPE
105 0
106 C
          OF DISTURBANCE <
          60 TO 34
107
100
          Y1241-14 # Y1%J-14
      33
tun
          GN TO 34
       340 DYF\%K< # \% 01\wedge%J-1<*YTP%J-1< < - % RK*Y1%J<*Y1%J< <
110
111
        1 - % Q2%J< * Y1%J< <
          GO TO % 35, 36, 37 KK
112
113
          YD01%J< # DYF%1<
          YDI%J< # YI%J<
114
115
          GD TD 38
116
          YD02%J< # DYF%2<
117
          AD5%14 # A1%14
          GII TIJ 3R
113
          YDU3%J< # DYF%3<
117
      37
          YD3%J< # YI%J<
120
          GD TD 38
121
122
      38
          BK # K
123
          TIME # BK* DELTT
      21
124
          PRINT 15, TIME, % YI%JC, J # 2, NR2 <
125
          CONTINUE
126
          PRINT 39
      390 FORMAT % // a THE FOLLOWING VALUES CALCO. BY
127
128
        1 HAMMING EQUATION & <
129
          TIME # 4.0 * DELTT
          DD 40 J # 2, NR2
1.30
          YD3P%J< # YD3%J<
131
132
          AD3C%1< # AD3%1<
133
          YD%J< # 0.0
134
          YA1%J< # 0.0
          YA2%J< #
                    0.0
135
      40
             # 0
136
          KS
137
          KP
              # n
              41 1 # 5,
139
          DÜ
                           20000
130
          00 42 J # 2, NR2
        0 YD4P%J< # YD%J< & % %4.0/3.0< * % %2.0*YDD1%J< <
140
         1 - YDD2%J<
141
142
            & % 2.0*YDD3%J< < < *DELTT <
         0 YD4M%J< # YD4P%J< - % %112.0/121.0< * %YD3P%J<
143
144
         1 - YD3C%J< < <
145
           IF % J .GE. 3 < GD TO 43
           T1 # % 2.0* 3.1415927 < / W
146
147
           DD 44 NS # 1 , 10
          SN # MS
148
          SN1 # SN*T1
149
           IF % TIME .LT.
                          SN1 < G0 T0 45
150
```

FOR FRANTIVOLT SUURCE PROGRAM RALHAM PROGRAM

```
151
        44
            CONTINUE
 152
        45
            CHRITINUE
            0M # SN
 153
                       - 1.0
            IF % TIME .LT. % T1*% QM & %1./4.<<<GO TO 46
 154
            IF % TIME .LE. % T1*% QN & %1./2.<<<GD TD 46
 155
            IF " TIME .LT. " TI+" QN 8 "3./4.<<<<GO TO 47
 156
            1F % TIME .LE. % T1*% QN & %4./4.<<<GO TO 47
 157
            D4F%1< # 1.0
 158
        46
            YARG #
                      D4F%1<*AM
 150
            GII TO 49
 160
             D4F%1< # -1.0
 161
        47
            YARG # D4F%1<*AM
 162
            60 TU 48
 103
            CONTINUE
 164
        48
        430 YDU4%J< #% Q1A4J-1<* D4P4J-1< < - % RK*Y04M4J<*
 165
          1 Y044%J< <
 164
             - % 02%J< * YD4N%J< <
 167
             YD4C%J< # %0.125 < * % % 9.0 * YD3%J< < - YD1%J<
 169
          1 & %% 3.* DELTT <
 167
              * % YDD4%J< & % 2.0*YDD3%J< < - YDD2%J<<<
 170
          2
          0 YD4F%J< # YD4C%J< & % %9./121.< * %YD4P%J<
 171
 172
          1 - YD4C%J<<<
          0 YDU4%J< # % Q1A%J-1< * D4F%J-1< < - % RK*YD4F%J<
 173
          1 * YD4F%J< < -
 174
            % 02%J< * YD4F%J< <
 175
            IF. % TIME .LE. % 8.1/W < < GO TO 50
. 176
            1F % YD4F%2< - 0.0 < 49, 51, 51
 177
            IF % KP - 2 < 50,52, 52
 17R
        51
            IF % KS - 1 < 54, 54, 53
 179
        49
        54
            IF % J .GE. 3 < GO TO 55
 1.80
            ΚP
               # KP
                       1 3
 181
            4 > L % S A Y
                      YA2%J< & YD4F%J<
        55
 1.82
 183
            GO TO 50
        52
            IF % J .GE. 3 < GD TO 56
 1.84
 185
            KS.
               # KS
                      E 1
            YA1%J< # YA1%J<
                               E YD4F%J<
 186
        56
            GO TO 50
 187
3.88
        53
            IF
                % J .GE.3< GD TD
                                     57
 187
            SK
                #
                  KS
 190
            PK
                # KP -
            YAVG%J< # % YA1%J< & YA2%J< < / / % SK & PK <
        57
 191
                   J - 1
 192
            JY
                Ħ
                   58, TIME, YD4F%J<, YA1%J<, YA2%J<, YAVG%J<,JY
            PRIMT
 193
        580 FARMAT % // 10x, F9.3, 5x, F15.5, 5x, E11.4, 3x,
 194
 195
          1 E11.4 > 7X>
            a AVERAGE CONC. #a,E15.7, a
                                            IN REACTOR NUMBER 8, 12 <
 196
 197
            # >LXIAY
                      0.0
                   # YD4F%J<
            YA2%J<
 198
           IF %
                   J .LT. NR2
                                < GO TO
                                           50
 199
                   59, SK, PK
 200
            PRINT
```

FORTEAN IVOIT SHURCE PROGRAM RALHAM PROGRAM

```
FURMAT " / 2x, > NO. OF PUINTS # a, F10.4, 10x, F10.4<
201
200
207
            K.S.
                ##
        50
            CONTIBUE
294
 202
            YDかりく # YD1%りく
 246
            YD19JC
                    #/
                       YD2%J<
            >L,201
                    #
                        YD3%J<
207
                        YD4F%J<
            YD3%3<
203
                      Ħ
209
            YD3P%J<
                         YD4P%J<
                      #
210
            YD30%J<
                     #
                         YD40%JK
211
            YDu1%J<
                         YDD2%J<
212
            YDu2%Jく
                      # YDD3%JC
            Y003%J< # YDD4%J<
213
214
            り4ド% よく #
                       YD4F%J<
        42
            CHATINUE
215
216
            1F% TIME - TPR < 61, 60, 60
            PRINT 62, TIME, YAPG , % YD4F%J< , J # 2 , NR2<
217
        67
            FORMAT % 10X, F9.3, 5X, E15.5, 5% 5X, E15.5 < <
218
        62
219
            TPR # TPR & DELTPR
            IF % TIME - % % 6.3/W<*6.9< < 63, 64, 64
220
        61
            A #
221
        63
            TIME # A * DELTT
222
223
        41
            CONTINUE
            IF % DELTT .GE. 0.110 < GO TO 65
224
        64
225
            IF % DELTT .LE. 0.110 < GO TO 100
224
            GO TU 100
            DELTT # DELTT / 2.0
227
        65
            TIME # TIME1
229
220
            PRINT 66, DELTT
230
        660 FORMAT % /// @
                             ANOTHER CASE WITH DIFFERENY DELTT #2
231
          1 , F5.3 <
232
            GO TO 67
233
       100
            CONT INUF
            CHINT INUF
234
        11
            DELTT #
235
                      DFLTT1
            TIME # TIME1
 236
 237
        10 CONTINUE
 239
           STOP
 239
           END
```

LITERATURE CITED

- (1) Chang, K.S., Bankoff, S.G., ibid., 7, 635 (1966)
- (2) Douglas, J.M., Ripin, D.W.T., Chem. Eng. Sci., 21, 305 (1966)
- Douglas, J.M., <u>Ind. Eng. Chem. Process Design Development, 6</u>, 43 (1967)
- (4) Douglas, J.M., Gaitonde, N.Y., <u>Ind. Eng. Chem.</u>
 <u>Fundamentals</u>, 6, 265 (1967)
- (5) Horn, F.J.M., Lin, R.C., ibid., <u>6</u>, 21 (1967)
- (6) Horn, F.J.M., ibid., 6, 30 (1967)
- (7) Laurence, R.L., Vasudevan, C., ibid., 7, 427 (1968)
- (8) Ray, W.H., ibid., 7, 422 (1968)
- (9) Wilhelm, R.H., Rice., A.W., Bendelius A.R., <u>Ind. Eng.</u> Chem. Fundamentals, 5, 141 (1966)
- (10) Distefano, G.P., <u>AICHE Journal</u>, <u>14</u>, 946 (1968)
- (11) James, M.L., Smith, G.M., Wolford, J.C., Analog and Digital Computer Methods, International Text Book Company, Scranton, Pennsylvania 1962.
- (12) Hamming, R.W., <u>Numerical Methods for Scientists and Engineers</u>, <u>McGraw-Hill</u>, New York 1962.
- (13) Lapidus, L., <u>Digital Computation for Chemical Engineers</u>, McGraw-Hill, New York 1962.

VITA

Noshir P. Mistry was born on

in . He graduated from St. Xavier's High School, Bombay in 2956. In 1962 he received his Bachelor of Chemical Engineering degree from Department of Chemical Technology, University of Bombay. The following year he served as an assistant lecturer in Chemical Engineering at the University of Bombay. He received his Master of Chemical Engineering degree from Rensselaer Polytechnic Institute, New York in 1965.

He was employed as a Chemical Engineer from 1964 - 1965 with Tanatex Chemical Corporation, Lyndhurst, N.J. and from 1965 to 1967 with Scientific Design Company New York. During this period he attended evening classes at Newark College of Engineering. From 1968 he was a teaching assistant while studying for his Doctor of Engineering Science degree.