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ABSTRACT

A method is presented for the exact determination of absolute
and relative stability of linear feedback control systems containing
transport or distributed lag. All results are in terms of two variable
system parameters. The method utilizes an extension of modern parameter
plane techniques that allows for the inclusion of transcendental
functions in the system characteristic equation. The design of
controllers in linear systems containing transport lag is then considered.
A design technique is proposed that allows for the systematic determina-
tion of two variable controller parameters in order to meet frequency

or time domain design specifications.

The design technique is formulated in terms of the familiar
"dominant root'" concept for systems that do not contain transport lag.
The proposed design technique gives the system designer "at least' as
much control over the system response as conventional design procedures

for systems without transport lag.

The investigation of absolute and relative stability, as well as
the proposed method for controller design, is no more complicated for
multiloop feedback control systems than for single loop systems. This
is because the characteristic equation of the closed-loop system trans-
fer function is utilized rather than the conventional open-loop methods.
Further, if a digital computer is used, high-order systems are dealt

with as easily as low-order systems.



A method of constructing the root-locus of systems containing
transport lag is then proposed so that this familiar engineering tool

can be utilized in conjunction with the proposed analysis and design

technique.

Finally, nonlinear systems containing transport lag are considered
where describing function analysis is applicable. It is shown that the
amplitude and frequency of limit cycles can be predicted where the

describing function is real and is dependent upon the amplitude of the

input signal to the nonlinearity.

iii
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CHAPTER 1

THE PARAMETER PLANE

1.1 Introduction

The object of this work is to develop a systematic design and
analysis technique for feedback control systems whose transfer func-
tions contain transcendental functions. Transcendental functions
appear in all feedback control systems that, for one reason or another,
exhibit the phenomenon of a pure time lag somewhere between the input
and the output of the system. The transcendental function, e—ST in the
case of transport lag and EJET.for distributed lag, generates an infi-
nite number of roots in the characteristic equation of the system
transfer function thereby making it extremely unwieldy to analyze. An
analog similation of the system is difficult since the transcendental
function can, at best,only be approximated by using a Padé approxima-
tion or some analogous—;épresentation. Frequency domain approaches
via the Nyquist criterion are one parameter techniques and only infor-

mation with respect to absolute stability is obtained.

Work has been performed by many researchers (3, 21, 23, 27] in
connection with the absolute stability of second-order and third-order
control systems with transport lags for systems containing one free
parameter. Y. Chu [2]) has presented a phase-angle loci method that
can be used on systems with one free parameter, usually the gain, as

in the normal root-locus method. However, Chu's method becomes



increasingly difficult for higher order systems, as do all root-locus
methods, since the determination of the root-locus is accomplished by
first determining the phase-angle loci for all angles, not merely for

the angle -180°.

In this work a method is presented for analyzing systems with
transport lag or distributed lag in terms of two free parameters where
high-order systems are dealt with as easily as low-order systems. This
two parameter method is first used to formulate a systematic technique
for the investigation of relative stability as well as absolute sta-
bility of linear feedback control systems. Next a formal technique for
the design of controllers is proposed. The method is then used to
yield a new method for determining the root-locus for systems containing
transport lag. Finally, the existence of limit cycles in nonlinear

systems is examined where describing function analysis is applicable.

The baSic approach is the parameter plane representation of the
characteristic equation of the system transfer function as introduced
by Mitrovié [16] and generalized by Siljak [25, 26]. This method
deviates from Siljak's by representing the coefficients of the charac-
teristic equation in a new manner in order to incorporate transcenden-
tal functions into the equation. The result is a useful technique for
the investigation of linear and nonlinear feedback systems containing

transport or distributed lag.



1.2 Historical Development of the Parameter Plane

A general and straightforward method for factoring polynomials
has been long recognized as a central problem in feedback control
theory. This is true since an interpretation of control systems
design as an adjustment of the root locations of the relevant charac-
teristic equations permits the designer to readily obtain information
about, and control over, the system stability and other pertinent
characteristics of the system responses. However, in gll but the
simplest systems, difficulties arise due to the absence of an explicit
correlation between the root locations and the adjustable parameters

that appear in the coefficients of the characteristic equation.

From the classical point of view, a central problem of linear
feedback control theory could be identified as the stability problem.
Numerous criteria [9, 12, 16, 18, 19, 20, 24, 25] have been developed
for investigations of .absolute, as well as relative, stability of
linear control systems. On the basis of these criteria, it is possible
to design control systems for dynamic performance specified by a
certain degree of stability. However, the stability criteria do not
constitute a complete and satisfactory theory for the design of
control systems. This is because in a wide variety of control prob-
lems, the designer is interested not only in the stability of the
system, but also in numerous other essential features of the system
response. Thus, in control theory there has been a strong emphasis on

the development of refined techniques for the analysis and synthesis



of control systems in terms of the system response to typical or test

input signals.

In general, there are three approaches to the synthesis and
analysis of linear control systems: frequency characteristics, alge-
braic domain, and integral criteria. In synthesizing control systems
each of these approaches has certain advantages and disadvantages, and
the proper approach should be chosen depending upon the nature of the
control problem and specifications which must be satisfied. Thus, the
integral criteria [29] are particularly suitable for investigations of
the statistical properties of control systems, while the frequency and
algebraic domain approaches are more convenient for thg synthesis of

control systems excited by deterministic input signals.

The frequency domain approach which is based upon the work of
Nyquist [20], Bode [1], and Nichols [29], permits the designer to modify,
in a simple manner, the open-loop system in order to obtain appropriate
closed-loop frequency characteristics. However, at the very outset of
the design, the complex variable s is replaced by its imaginary part ju,
and the entire s-plane is, in effect, reduced to the imaginary axis.
Therefore, only unwieldy relationships exist between the frequency and
transient responses. For example, the time-domain characteristics such
as the overshoot, the rise time, the settling time, etc., can hardly be
recognized from frequency characteristics such as the bandwidth, the

zero frequency behavior, etc. Moreover, the frequency response tech-



niques are not suitable for the design of multiloop control systems,
particularly in the cases when a system has more than one adjustable

parameter.

Since the correlation between the frequency and transient re-
sponses is absolutely essential in the vast majority of control systems,
the Laplace transform with the concept of complex frequency s has
become a powerful mathematical tool in the analysis and synthesis of
feedback controls. One direct consequence of the Laplace transform
applications has been a strong effort on the developméﬂt of synthesis
techniques in the algebraic domain where the characteristics of hoth

the transient and the frequency responses are evident.

The term "algebraic domain" is fundamentally the modern "pole-
zero" approach to linear automatic control systems. However, a perti-
nent distinction should be made between the voluminous works produced
in this country, where root-locus techniques are generally employed, and
the European investigations where a slightly different approach has been
largely utilized in the investigation of parameter variations. The
root-locus method is basically a one parameter variation method where
the open-loop system is the basis for analysis and synthesis. In
eastern Europe the closed-loop system is the basic structure where one
or two variable parameters may appear in many or all of the coefficients.
That is, the emphasis has been upon the investigation of the character-
istic equation of the elosed-loop system with respect to parameter

variations.



The idea of investigating the transient response of feedback con-
trol systems in the closed-loop algebraic domain was first introduced
by Vishnegradski [30]. Vishnegradski assumed that the two middle coef-
ficients of the characteristic equation of a third-order system could be
considered as variables. In the plane of the variable coefficients, a
diagram was plotted which enabled the determination of these coefficients
with respect to both the stability and the nature of the system transient

response.

An extension of Vishnegradski's work was presented in 1948 by
Neimark [18] in his D-partition method for the stability analysis of
control systems. By utilizing this procedure, the designer may assume
two system parameters, which appear linearly in the coefficients of the
nth order characteristic equation, to be variables. Then, the mapping
of the imaginary axis of the s-plane onto the plane of the variable
parameters (or the parameter plane) permits the designer to determine the
number of left-hand-plane roots of the characteristic equation. Attempts
to apply the D-partition method to the design of control systems in terms
of transient response generate difficulties since the method essentially
belongs to frequency response techniques. By applying the D-partition
method, the designer is unable to obtain information about, or control
over, the root locations of the characteristic equation. See Polack [22]

for a comprehensive discussion and proof of this technique.

In 1948, Evans [7] presented his root-locus technique for the
synthesis of control systems in the s-plane. The root-locus technique

readily provides information about all the roots of the characteristic



equation and permits a simple numerical evaluation of these roots for
different values of the open-loop gain and, usually less simply, for
other single variable parameters. Applying the full potential of the
Laplace Transform, the procedure proposed by Evans admits control over
both the time-domain and the frequency domain characteristics. How-
ever, the root-locus method has two significant limitations: First,
it is basically a one parameter method, and second, it makes the
synthesis of multiloop systems inconvenient in much the same manner‘as
do the frequency response techniques. Thus the root-locus method
suffers from the same difficulties experienced in applying frequency
response techniques to the design of multiloop structures with more

than one adjustable parameter.

The algebraic problem of control system synthesis was partially
solved by Mitrovié€ [16] in 1958. Mitrovié's method designates that

the first two coefficients of an nth

order characteristic equation may
be considered as variables. Then, by a proposed graphical procedure,
which utilizes the concept of a parameter plane, the variable coeffi-
cients are chosen so that the characteristic equation has prescribed
root values. Hence, this method permits the design to be guided by

the behavior of both transient and frequency responses. Limitations

of the method arise due to the fact that only the first two coefficients
representing two parameters may be considered as variables. Unfortu-

nately, the adjustable system parameters frequently appear in more than

two coefficients of the characteristic equation. In such cases, by



applying Mitrovié's method, it is not possible to adjust the system
parameters without the applicétions of approximations, limitations

and transformations.

In 1964 Siljak [25] generalized Mitrovié's method to the point
where two variable parameters could appear linearly in any two coeffi-
cients of the characteristic equation. A second generalized Mitrovic's
method was proposed by Siljak in 1964 [267] that greatly increased the
cffectiveness of the parameter plane techniques. This second gener-
alized method allows two variable system parameters to appear linearly

in all the coefficients of an nth

order characteristic equation, elimi-
nating a fundamental disadvantage in Mitrovil's method. Further, the
introduction of Chebyshev functions in this work greatly simplifies

the proposed procedure and makes simulation more convenient on both

analog and digital computers.



CHAPTER 2

REVIEW OF PARAMETER PLANE METHODS

2.1 Vishnegradski Curve

A detailed discussion of the concept of the parameter plane
logically begins with the work of Vishnegradski. I. A, Vishnegradski
[30] considered the general third order characteristic equation of the
form Z3 + a22 + 8Z + 1 = 0, and, in the co-ordinate system of the
parameters a and 8, plotted curves which divide the plane into stable
and unstable regions. The parameters a and 8 are functions of the
coefficients of the equation and are known as the Vishnegradski
parameters and the curves mentioned above are called the Vishnegradski
curves. In general, a cubic equation can be reduced to a form in which
it depends on the parameters a and 8. This is shown as follows,

consider a third order equation,
F(s) = aps3 + a;s2 + a,s +a; =0 (2.1.1)

Dividing the whole equation by a, and introducing the notation,

ao a; V)
bo=—, by=—", by=" (2.1.2)
as a3 a,
gives,
F(s) = bgs3 + bls2 + bzs +1=0 (2.1.3)

Carrying out the following substitution of variables,
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Z
s = ——
3, (2.1.4)
gives
b, b,
F(2) = 723 + 72 + Z+1=0 (2.1.5)
3
bl Mo
Defining
b, b,
=a TrI=—°=8 (2.1.6)
Wb - % 3k,

and substituting (2.1.6) into (2.1.5) gives the Vishnegradski form

F(Z) = 23 + aZ2 + BZ + 1 (2.1.7)

If « > 0 and 8 > 0, the Routh-Hurwitz criterion gives the sta-

bility conditions for equation (2.1.7) to be

aB -1 >0 (2.1.8)

The equation of the stability boundary is obtained if, instead of the

inequality sign in (2.1.8), the equality sign is introduced, whence

aB =1 (2.1.9)

This is the equation of a hyperbola, which divides the a-8 plane
into the stable and unstable regions, and was the starting point for the
parameter plane concept. The Vishnegradski curve is shown in Figure
2.1.1, where the regions of stability and instability are easily deter-

mined from the inequality of equation (2.1.8).
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2.2 D!-Partition Boundaries

The concept of D-partition boundaries was formulated by Neimark
(187 and, as will be seen, is the basis for modern parameter plane

techniques. Consider the general characteristic equation.

F(s) = ansn + an_1s"'1 + .. .+as+a; =0 (2.2.1)

The aggregate of values ay, a;, a,, . . ., a, may be interpreted

geometrically as a point in an (n+1)-dimensional space. To each point
of this space there correspond definite values of the coefficients and
consequently definite values of the roots s

S S

1? 39 ¢ o -

2 » Sy of the

characteristic equation. Thus, if a region, R, exists in this space
such that all the roots of (2.2.1) lie to the left of the imaginary
axis in the s-plane, then the hypersurface bounding R is called the
boundary of the region of stability. When there are only two indepen-
dent coefficients, this region is bounded by a plane; when there are

three, by a three-dimensional surface, etc.

Since the coefficients, ay, are functions of the system parameters,
such as gains and time constants, stability regions can be plotted in
terms of these system parameters. For example, consider a character-
istic equation in which all the coefficients except a, and a, are known,

Suppose that for some definite values of a, and a the characteristic

1The symbol D represents the usual operational notation of
differential equations, i.e., d/dt or s.
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equation has k roots lying to the left and n-k roots lying to the right
of the imaginary axis in the s-plane (see Figure 2.2.1a). It follows
that there is a curve on the a -a, plane that bounds a region in which
each point defines a polynomial also having k roots lying to the left
and n-k roots to the right of the imaginary axis (see Figure 2.2.70).
Neimark denoted this region by D(k,n-k) where, for example, if (2.2.1)
is of third order (n=3), then in general the regions D(0,3), D(1,2),
D(2,1) and D(3,0) can be found in the a,-a, plane. The region D(3,0)
is the region of stability in the a,-a, plane. The partition of the

a ~ap plane of (2.2.1) into regions corresponding to the same number of

roots lying to the left of the imaginary axis is called the D-partition.

It is obvious that the imaginary axis of the s-plane is the
reflection of the boundary of the D-partition, and the crossing of the
latter in the a -a, plane is represented by the roots in the s-plane
crossing the imaginary axis. This suggests the method for determining
the D-partition boundary: its equation is found in parametric form by re-

placing s by jw in the given polynomial (where w is the variable). From

this equation the houndary may be constructed by varying w from -« to

+o,

2.2.1 The construction of stability regions in the plane of one

parameter--Neimark's technique. Define a to be a complex parameter

whose value is varied in order to investigate stability and assume that

the characteristic equation can be reduced to the form
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Q(s) + aR(s) = 0 or a =-gg-% (2.2.2)

Thus, for example, in the case of the equation
s2+s+a=0 (2.2.3)
it follows that
Q(s) =s2 +s , R(s) =1 (2.2.4)

Only real values of a have any practical value. However, for now
assume that a is complex and transform the imaginary axis in the s-
plane into the a-plane. To do this set s=jw in (2.2.2) giving

a(ju) = -%81:))_ (2.2.5)

Separating real and imaginary parts gives
a(jw) = u(w) + jv(w) (2.2.6)

By giving w values from -» to += a curve is constructed which is the
transformation of the imaginary axis of the s-plane on the a-plane,

i.e. the boundary of the D-partition in the a-plane.

If w varies from == to += in the s-plane (Figure 2.2.2a) then the
region of stability will always be on the left (the shaded side of
Figure 2.2.2a). Since the mapping is conformal, the region to the left
in the s-plane maps into the region in the o-plane that is to the left

of the D-partition when w varies from -= to +=. Thus, proceeding along
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the boundary curve of the D-partition from the point corresponding to
w = ~» to the point corresponding to w = +», the curve is shaded on the
left (Figure 2.2.2b). If a takes on a series of values such that the
boundary of the D-partition in the a-plane is crossed from the shaded
to the unshaded side, then in the s-plane one root has crossed the

imaginary axis, passing from the left-hand plane to the right-~hand

plane.

Thus it is sufficient to know the distribution of the roots
relative to the imaginary axis for any one arbitrary value of a (a is
usually set to zero for this determination) in order to determine the

distribution for any other value of a.

2.2.2 The construction of stability regions in the plane of

two parameters--Neimark's Technique. Neimark extended his technique
discussed in the previous section to account for the variation of

two system parameters [13]. Since this is basically an extension of
Vishnegradski's method, the resulting curves are called the generalized
Vishnegradski diagrams. A Vishnegradski diagram is a plane of any two
real parameters of a system in which the lines separating the region
of stability are plotted. The Vishnegradski diagram may thus be

obtained by constructing the D-partition of the plane of two parameters.

Suppose that the coefficients of the characteristic equation
(2.2.1) of the system depend on two parameters, a and 8, and further

assume that the parameters enter into the equation linearly, so that



this equation can be reduced to the form
aQ(s) + BP(s) + R(s) =0
For example, the equation
(as + 1)(5s + 1) + 38 =10
can be reduced to the form
a(552 + s) + 3+ (5s + 1) =0

So that in this case

Q(s) =552 + s
P(s) = 3
R(s) = 55 + 1

Further, substituting s = jw into (2.2.7) gives

+

aQ(jw) + BP(Juw) + R(juw) =0

Now denoting

QGjw) = Q,(w) + jQy(w)
P(ju) = P () + iPy(u)
RGjw) = R () + iR,(w)

equation (2.2.11) can be written in the following form

[aQ, (W) + 8P (w) *+ Ry()] + jLaQy(w) *+ BP,(w) + Ry(w)] = 0 (2.2.

(2.2.

(2.2.

(2.2.

(z.2.

(2.2.

(2.2.

15

7)

8)

9)

10)

1)

12)

13)
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This yields two equations for the determination of o and g which sat-

isfy equation (2.2.11), namely,

aQ, (w) + 8P;(w) + Ry(w) =0
(2.2.14)
oQ, (w) + 8P, (w) *+ Ry(w) =0
Solving equations (2.2.14) for a and B8, gives,?
R (w) P (w) Q, (W) R (w)
-R,(w) P,(uw) Q,(w)  -R,(w)
a = ’ g = (2.2.15)
Q@) P (w) Q,(w) P, (w)
Q,(w) P,(w) Q,(w) P, (w)

Equations (2.2.14) are valid only for those values of w at which
equations (2.2.14) remain linearly independent and compatible. See
Reference 13 for a complete discussion of this point. The shading rule

now involves the following procedure. For all w values, at which:

Q) P (w)
Qw) P, (w)

A= >0 (2.2.16)

the left-hand side of the boundary is shaded; when A < 0 the right-hand

side of the boundary is shaded [13]. Hence, if a or B8 takes on a

21t will become obvious that this manner of representing the
variable parameters motivated much of the work of D. D. Siljak to be
discussed below.
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series of values such that the boundary of the D-partition in the a-8
plane is crossed from a shaded side to an unshaded side, then in the

s-plane one3

root has crossed the imaginary axis from the left-hand-
plane to the right-hand-plane. See Figure 4.3.2 for an example of an

a-8 plane.

Having obtained regions with an equal number of roots to the
left of the imaginary axis, it is then necessary to establish whether a
region of stability does or does not exist. This is accomplished by
choosing an arbitrary point in a region and verifying the stability of
the original equation in which the co-ordinates of the chosen points
have been substituted for o« and 8. This stability verification can be

performed by using any one of the standard stability tests.

2.3 Mitrovié's Method

Mitrovié utilized the general concept of the parameter plane and
the basic theorem of Cauchy. His contribution was to depart from the
jw axis and move out into the entire s-plane. The method is explained

as follows.* Consider the equation

3In most practical systems the a-B plot for negative values of w
will lie directly over the plot for positive values of w. However, the
sign of A will usually be such that the shading of the plot will always
be on the same side. The result is a doubly shaded plot indicating that
two roots leave the left-hand s-plane when the D-partition is crossed
from a shaded side to an unshaded side. This is the case when, for
example, a pair of complex conjugate roots crosses the imaginary axis in
the s-plane.

“This section follows Thaler's interpretation of Mitrovic's work
as presented in Chapter 10 of Reference 28.
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F(s) = ansn + an_1s“"1 tL...vas?+as+a =0 (2.3.1)

which may be considered the characteristic equation of a closed-loop
system. Assume that all the roots are in the left-hand half of the

s-plane so that equation (2.3.1) may be factored to give
F(s) = an(s +1))(s+r)(s+r)) ... (s+ rn) =0 (2.3.2)

Figure 2.3.1 shows a few of these roots plotted on the s-plane and
indicates the vectors which represent the factors of equation (2.3.2).
Note that in (2.3.2) the angle associated with F(s) is the sum of the
angles of all the factors and is therefore the algebraic sum of all the

angles associated with the vectors in Figure 2.3.1.

It is apparent that if the point s is allowed to move along any
selected path, the angles of all the vectors will change as s moves. If
any path is selected which is a closed path enclosing all the roots,
then each of the vectors makes a complete revolution as s traverses
this path. Assume counterclockwise movement of s along such a closed
path; then the vectors rotate counterclockwise and the angle of F(s)
goes through a total positive angle of n(2r), where n is the number of
roots encircled. In order to check absolute stability the selected
contour of the s-plane must encircle the entire left-hand plane. Since
the order of the equation is known to be n, the number of roots is also
known to be n and the F(s) curve on the F(s) plane must encircle the
origin n times if all the roots are enclosed by the contour. If there

are fewer than n encirclements, some roots lie outside the contour,
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which means they are in the right-hand half-plane, and the system is

therefore absolutely unstable.

In a like manner the contour on the s-plane may follow a locus of
constant ¢ # 0 (radial lines on Figure 2.3.1) and close with a circular
arc of very large radius (often infinity). Note that when the contour
is the imaginary axis the value of ¢ is zero. A constant ¢ # 0 contour
does not enclose the entire left half of the s-piane, but may enclose
all the roots, in which case the number of encirclements by the F(s)
curve is once again the number n. In addition, if all the roots are
thus enclosed, it guarantees that no roots have a value of ¢ less than
the value specified by the mapping contour. If the selected contour on
the s-plane passes through a root, then for that particular value of s,
F(s) = 0. This means that the polar plot on the F{(3) plane must pass
through the origin for such values. It should be noted that the contour
on the s-plane for ¢ = 1.0 is the negative real axis and must pass

through all the negative real roots of F(s).

The concept of mapping constant ¢ lines is the basic contribution
of Mitrovié's method and the algebraic manipulations arising out of this
method are as follows. Let the contours selected for mapping be radial
straight lines in the left-hand s-plane for any and all values of 0 <
t < 1. Since the radial distance from the origin to any point on such
a radial line is W then the values of s which are to be substituted

in F(s) in the process of mapping are given by
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. s = -u, sin® + ju, cos8 = -tuw, *+ ju /T - ¢? (2.3.3)

where 6 is the angle of the line Z = constant (see Figure 2.3.1) and
the values of s are in the second quadrant. Substituting equation

(2.3.3) in equation (2.3.1), F(s) can be written in the following form.
F(s) = aqun (¢ + A=A + a g Vo ¢ AT e L L
+*au (e + T -2+ au -+ j/T -9 +a; =0 (2.3.4)

MitroviC designates that coefficients a; and a, be considered variables

where by definition a, is the o« and a; is the 8 of Section 2.1.2.

If, for example, the characteristic equation is of sixth-order,
equation (2.3.4) can be written as two simultaneous equations since the
summation of the reals and imaginaries must go to zero independently.

Solving these two equations for a and g gives

a,0n(20) + agun?(1 - 422) + agu 3(-4g + 823)

+ agu (-1 + 1222 - 165%) + aguyS(6r - 323 + 32¢3)
(2.3.5)

=
i

= aju? + a,un?(-28) + a,u (-1 + 4c2) + a . 5(4c - 829)
+ agw®(1 - 1282 + 162%) (2.3.6)

The functions which appear in the coefficients do not depend on the
order of the equation; i.e., for a fourth-order equation merely dis-

card all the terms above the a, terms, etc. This means that these



coefficients may be computed and tabulated for selected values of ¢;
then the tables are used when applying this method. Furthermore, a
general formula may be obtained for each coefficient so that the
coefficients of high-order terms are readily obtained as needed. To
obtain the formula for the coefficients, it is first desirable to

rearrange (2.3.6) by factoring out -u ?:
B = -wp?la,(-1) + aju,(22) + au?(1 - 452)
+ agu,3(-4g + 823) + agu (-1 + 12¢2 - 165Y) (2.3.7)

Comparison of equation (2.3.7) with (2.3.5) shows that identical

¢ functions appear in both. Thus it is convenient to define

\
¢O(C) =0 ’ ¢1(C) = -1 ’ ¢2(§) = 2¢
¢,(g) =1 -4c2, ¢ (2) = -4+ 83 (2.3.8)
6, (2) = -1 + 12¢2 - 165"

J

From equation (2.3.8) it is readily seen that each successive ¢(z) may
be obtained from the two preceding ¢(z)'s, according to the general

formula
9 (0) = - 2ty _1(2) * ¢y 5(2)] for k > 2 (2.3.9)

The equations for « and B for application to any order equation are

then:

21



22

Q
[

= jun,(2) *+ 3yun26,(8) * 3, () + .« . * apu™ lon (D)
(2.3.10)

w0
]

~un20a,6,(2) * azu0,(2) + a,a26,(2) + . . . +a w2 (2)]

(2.3.11)

Equations (2.3.10) are the fundamental tools in Mitrovic's method.
The characteristic equation to be analyzed is used only to read off the
values of its coefficients, which are then substituted into equations
(2.3.10) and (2.3.11). The value of ¢ is selected as desired; ¢} (%)
values are read from a previously tabulated table of ¢k(c) functions
and substituted into the equations. Thus all values in the equations
are defined numerically except a, B and w,, so it is a simple matter
to insert a sequence of values of wy and plot a curve of a versus B.
The points of the a-B curve define regions of absolute and relative
stability in the a-g plane corresponding to regions of absolute and

relative stability in the s-plane. Figure 2.3.2 shows a typical region

of absolute stability for a given characteristic equation.

2.4 The Generalized Mitrovil's Method-Siljak's Method

In 1964, D. D. Siljak® extended Mitrovié's method so that the
variable parameters « and 8 could appear as coefficients of any two
terms of the system characteristic equation [25]. Thus, the limita-

tion that only the coefficients a; and a, of the characteristic

_ 5This section follows the derivation presented by Siljak in
References 25 and 26.
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equation be variable was removed. This work was then generalized once
again by Siljak [26] in 1964 by developing a method whereby the two
variable parameters a and 8 could'appear linearly in all the coeffi-

cients of the characteristic equation, i.e., for example in the form,
F(s) = (aby + B, + dj) + (ab + fc, +d)s+ . . .+ (aby+ ey + dy)st=0
(2.4.1)

The first generalization procceds as follows. Consider the

characteristic equation

n
k
F = =0 2.4.2
© = 1 as (2.4.2)

k

Let s* in the above equation be expressed as

= WMR () + i@, k=012, . .. ,n  (2.4.3)

where Ry (¢) and I (o are functions of ¢. Then, by applying the condi-
tions that the summation of reals and summation of imaginaries must go
to zero independently, the characteristic equation may be rewritten as

two simultaneous equations

n

k
a R =(
kzo k“n Ry (2)
(2.4.4)
n k
L apuy, I, (2) =0



As shown in Reference 25, both the functions Rk(c) and I () can be

expressed by the Mitrovi€'s functions as follows

Re(z) = ¢ _q(2) + c& (¥)

(2.4.5)

L(z) = -1 =27 4 (¥)

Substituting (2.4.5) into (2.4.4), gives

n

kzoakwn“uk_,(c) + t4y ()] = 0

(2.4.6)

E Ka(2) = 0
ayw =
o2k fle

Combining the above equations gives

n

kZOak“nk¢k-1(c) =0

(2.4.7)
n

k
Loakun o) =0

These equations allow an arbitrary pair of coefficients to be
considered variable. Now, select two coefficients ap and aq (n>p>

q > 0) and rewrite the equations (2.4.7) as

n
p q - - k
anuy ép-1(2) * agugl og_(2) kZOakwn ¢x-1(8) (2.4.8)
k#p,q

24
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n
apwﬁp¢p(c) + agqunt¢q(z) = - kgoakwnk¢k(c)
k#p,q

Considering the coefficients ay and a, in the above equations (2.4.8)

q
as variables a and B respectively, there remain two equations in two
unknowns which may be solved for a and 8. (Note the similarity between
the linear simultaneous equations (2.4.8) and the equations (2.2.14)
proposed by Neimark in his D-partition method.) Solving equations

(2.4.8) for a and B gives

¢ (8)9g_1(8) - k-1 (2) 4k (2)
¢q(e)d5-1(8) - ¢q-1(z)op(2)

2
n

E k-p

L 3

k#p
(2.4.9)

n
g = kz aw K 4 ()8, 1(2) - o _4(2)45(2)
k#q ¢p(£)og-1(2) - ¢q(2)ép_1(2)

The equations (2.4.9) may be further simplified. If the Mitrovié's

functions ¢k(c) are defined for negative values of subscript k as

ok (x) = -4 (2) (2.4.10)

it can be proven that (see Reference 25)
05 (2)65-1(8) - ¢i-1(c)95(2) = ¢5-5(z) (2.4.11)

for any integer values of i and j. The equations (2.4.9) may then be
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rewritten as

n

1 k-
a =5 —— Zam Pg (2)
tap® K0 kn " %-q
(2.4.12)
1 n k-q
B = ——— § apuw, 0 _n(2)
b-q(8) k=0 k-p
k#q

The generalized equations (2.4.12) represent the loci of points in the

a-g plane with constant s-or wy in the same sense as do the fundamental

equations (2.3.5) for the specific case a, =a and a, = B. Plotting of
the aforementioned loci corresponding to the generalized case is simi-

lar to the plotting of the loci corresponding to the original Mitrovié's
method. Further, the application of the generalized method is the same

as the application of Mitrovié's method.

In 1964, Siljak further peneralized Mitrovil's method (the second

generalized method) by showing that (2.4.3) could be expressed as {{26]
sk = w K (-0) + 3T - gy (-0)] (2.4.13)

where

T (-0 = (D) and G(en) = Do (2.4.14)

The Ty (z) and Uy (¢) are Chebyshev functions of the first and the second
kind, respectively. The argument ; of these functions is 0 < |z| < 1,

but for stable systems 0 < ¢ < 1. The functions Ty (z) and U (z) may be
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obtained by applying the recurrence formulae

i
o)

Teeq(8) - 28Ty (8} + Ty _4(2) =
(2.4.15)

[}
o]

Upa1(2) - 22Up(2) + Uyoq(c)

with To(g) =1, T,(5) = ¢, Uy(c) =0, and U (z) = 1. Since the
functions T (¢) and Uy (z) play an important role in future develop-
ments, their numerical values for pertinent values of r are given in
Appendix I. Substituting (2.4.13) into (2.4.2), and then applying
the condition that the summation of the reals and the summation of

the imaginaries must go to zero independently, pives

n

} apw KTy (-0) = 0
Keo k“n ‘k
(2.4.16)
n
L oyt (-0) = 0

Now, consider the coefficients a to be linear fumctions of

variable system parameters a and B as follows
a, = abk *+ Bcy + dk (2.4.17)
Then equations (2.4.16) may be rewritten as

aBl(C’mn) + BC](Cawn) + DI(C’wn) =0
(2.4.18)

oB, (z,un) + BC,(g,u,) * D,(c,uy) =0
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where (omitting the arguments Z,w,)

=
n

n n
L7 L0 e @) By = L Dy (0)

T k. K ¥ k. K

Cp = 3 (Mo U _q(0) , Cp= T (-1 cu Uy (5) (2.4.19)
k=0 k=0
n n

D, = k_z_o(-ﬂkdkwnkUk_](z) , D, = kZO(-nkdkmnkuk(c)

Equations (2.4.18) are simultaneous equation in two unknowns, o and 8,
which may be solved thus:
ClD2 - CZDl Ble - BIDZ

o= ————— , g= ———— (2.4.20)
B,C, - R,C, B,C, - B,C,

The application of the second generalized method is identical to
the original Mitrovil's method. The second generalization, however,
is the most useful since the variable parameters, a« and 8, can appear
in the coefficients of the characteristic equation in the least

restrictive manner (see equation (2.4.17)).
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CHAPTER 3

TRANSPORT LAG--CONVENTIONAL SOLUTIONS

3.1 Introduction

In order to introduce the phenomenon of transport lag, which is
sometimes referred to as '‘dead-time or distance-velocity lag," a
practical example is piven. Consider a person controlling the tempera-
ture of the hot water for a shower. Because of the flow time between
the valve and the person (a transport lag), a change in valve setting
is not immediately sensed, and the user does not know how much change
he has made. After waiting until the change is sensed, he then tries
another '"blind" adjustment. If he is in a hurry, the sequence of
adjustments may become oscillatory, with unfortunate results. It is
obvious that high gain in a control loop with a transport lag can be
unstable. In this instance the man is the controller and the difference
in the temperature of the water from the desired temperature is the
error upon which the man acts. The transport lag is the time taken
for the water to flow from the valve to the man. If the man turns the
valve too quickly and too much in one direction, implying a large gain
within the control loop, he will overcompensate and eventually either

scald or freeze,.

An important point to be made for systems with transport lag is
that the output of the device producing the lag is identical to the

input except for the fact that it is delayed in time. This constant

~

'_ e

s
¥ N
—~
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time delay can be readily incorporated into the mathematical formila-
tion of the system transfer function. For example, consider that the
output from the fixed delay component is equal to the input delayed by

T sec. Mathematically this can be expressed as follows
Co(t) = ci(t - T) (3.1.1)

Taking the Laplace transform of both sides and dividing by Ci(s)

yvields

co(S)
Gy = ¢St (3.1.2)

Thus the transfer fumction for a constant transportation lag is the

transcendental function esT,

The phenomenon of transport lag occurs in many areas of engineer-
ing: for example, in certain types of transmission lines, long pneu-
matic control lines, the time of motion of a relay armature in an on-
off servomechanism, the flow of chemicals through pipes, etc. In order
to exemplify the existence of transport lag in an electrical system,
consider a transmission line that is terminated in its characteristic
impedance (see Figure 3.1.1a). The ratio of the output voltage to the

input voltage is [21]

¢STL (3.1.3)

where TL is the transport lag which is a result of the finite propaga-
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tion velocity u = z/VToco of the voltage wave along the transmission

line. The transport lag time TL thus depends on the length & and the

velocity u. Or
£
TL =0 (3.1.4)

Figure 3.1.2 shows a typical block diagram representation of a feed-

back control system containing a transport lag in the forward path.

A second type of lag that also occurs in engineering systems,
though less frequently, is the so called distributed lag. For
cxample, distributed lag occurs in certain types of transmission
lines, in thermal heat flow through solids and in acoustic lines with
a large ratio of acoustic capacity to inductance (27]. The trans-
mission line shown in Figure 3.1.1b exhibits the property of distributed

lag. The ratio of the output voltage to the input voltage is [21]

V,(s) -
o .St (3.1.5)
Vi (s)

- 2
where TL Rocoz .

The following sections of this chapter will review some of the
more popular techniques utilized in analyzing feedback control systems
containing transport lag. Further, since systems containing distributed
lag are less common than systems containing transport lag, the emphasis

in what follows will he on the latter. However, reference to distributed
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lag systems will be made where applicable.

3.2 Approximation Techniques

The open-loop transfer function of Figure 3.1.2 is given by

Co(s)

=G -sT
E(S) G(s)e (3.2.1)

where G(s) is an algebraic rational function. Equation (3.2.1) contains
the transcendental lag term, s_ST, so that analysis is difficult. A
popular analytical procedure is to convert the transcendental transfer
function into a rational function by approximating the exponential term
by a polynomial or ratio of polynomials in s, and then the usual tech-
niques of analysis can he applied. For example, suppose the G(s) of

Figure 3.1.2 is

K
G) = 5@+ (T * 1,5 (3.2.2)

and the absolute stability of the system is to be examined in terms of
the direct transmission gain, K, the time constants, v, and t,, and the

time delay, T. The characteristic equation for this system is given by

KE—ST
1+ =0 (3.2.3)
s(1 + 1;5)(1 + 1,5)

The Routh criterion is the standard test for the absolute stability

of linear systems, but it only applies to finite polynomials in s. Since



38

the transcendental temm, e‘ST, is an infinite polynomial in s, it is

approximated for small T, and low frequency, by
ST oy et (3.2.4)
Thus the characteristic equation becomes
T

11253 * (Tt 12)52 + (1 -KDs +K=20 (3.2.5)

This is a cubic equation so the Routh criterion gives the condition for
absolute stability in terms of the coefficients as (assuming that all the

coefficients are positive)
(1 - KT) (1, + 1,) > Kuy71y (3.2.6)
Rearranging (3.2.6) yields the condition for stability as

1
<
T + T 3.2.7
1 2/(Tl ‘1) ( )

The boundary between stability and instability occurs when

T, 1 -1
K = 12 + T
1;1 + T, (3.2.8)

Equation (3.2.8) is graphed in Figure 3.2.1, where K is plotted
versus T for constant T, and T, For any given value of transport lag
the system is stable if the gain K lies below the critical curve and

unstable if K lies above it. The closer K lies to the curve, the more
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likely the system is to become unstable for any unfavorable variations
of the time constants, LN and t,. It must be emphasized that the
stability condition of (3.2.8) depends upon the accuracy of the approxi-
mation of (3.2.4). If the exponential is expanded to include more

terms of the series and the Routh criterion is then applied, a more

cxact statement of the stability condition is obtained.

Another approximation to the transcendental function is sometimes

obtained from the fact that

nao |1 + ST (3.2.9)

If a finite value of n is used, the transcendental function is approxi-
mated by a pole of order n located at -n/T on the negative real axis in
the s-plane. For example, an n of 3 yields

-sT 1 3

€ H
1+ 2L

3

(3.2.10)

The impulse response of the actual function and that of the approxima-
tion are sketched in Figure 3.2.2. The approximation is not particu-
larly good, with the maximum value of the impulse response occurring at

2T/3.

A third approach to the approximation of the exponential function
is to utilize a rational algebraic function approximation. One such
function is the Padé approximant. The Padé approximation is a rational

algebraic function, with numerator polynomial of degree n and denominator
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of degree m, such that the maximum number of terms in the Maclaurin
expansion of the approximating function agree with similar terms in
the expansion of the exponential function. Thus if e-ST is to be
approximated by the ratio of cubic to quadratic polynomials, there are

six coefficients which can be selected arbitrarily:

o1 1+as+ a,s? + a,s?
€ = (3.2.11)

2
b0 + bls + bzs

These six coefficients can be chosen such that at least the first
six terms are equal in the two Maclaurin expansions. In this specific

cxample, the appropriate rational algebraic function is!

_ 3 3mac2 _ 1 13.3
"ST . 1 g’TS + ZD‘T S —G—G-T S
£ = 5 . (3.2.12)
1 + §Ts + EE)--'I‘ S

The Maclaurin expansion of the fraction is

6 24 120 800 R

T
1-Ts + %TZSZ - 1733 + Lpusu - 1 Tsss « : A 1656 - 4
)
- (3.2.13)

The first six terms are simply those of the expansion of e"ST; the last
term given is the first one to differ. The Padé approximant technique,
although better than the two previously mentioned techniques, is still

an approximation and therefore limited in its application.

lReference 5 shows a general method for constructing Padé
approximants.
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3.3 Nyquist Diagrams

Because of the disadvantages associated with approximations to
the transcendental function, a graphical procedure often provides a
much simpler approach to problems involving transportation lags. If
the substitution s = jw is made, the transcendental term of the trans-
fer function becomes ¢ J“T and is readily interpreted in terms of either
the Nyquist diagram or the Bode plot. In this instance no approximation
is necessary, but the result is a frequency response analysis of the
system with all the limitations thereof. In either the Nyquist plots
or the Bode plots, multiplication of a transfer function by g~ JuT

represents merely a phase shift varying linearly with frequency. This

is because

e 30T = 730T /oyt = 1 /=T rad. (3.3.1)

In terms of the Nyquist diagram, each point on the diagram is
rotated through an angle of -.T rad., where w is the angular frequency
corresponding to the point on the original locus. For example, in the
system of Figure 3.1.2, the transfer function G(s) is given by

K

G(s) = —
s(s + 1)

The Nyquist plots for the open-loop transfer function of the system for
various values of time lag (T = 0, 0.5, 1.0, 1.5 sec.) and K = 1 are
constructed in Figure 3.3.1. From this plot it is seen that the closed-

loop system is always stable when the time-lag is zero, but the stability
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deteriorates as the time-lag is increased, and for large values of lag

the system is unstable since the (-1.0, 0) point is encircled.

The multiplication of G(s) by eJuTl simply rotates each point on
the G(s) curve by an angle of wT rad. in the clockwise direction (see
Figure 3.3.1). Therefore, in this case, the Nyquist plots of the system
with transportation lag spiral towards the origin as the frequency v
approaches infinity. From the plots in Figure 3.3.1 it appears that the
marginal value of T for stability lies somewhere between 1.0 and 1.5 sec.
The exact value of T that will make the Nyquist plot go through the

point (-1, 0) can be determined by trial and error or algebraically.

3.4 Bode Plots

The Bode plot, or the logarithmic gain and phase plots, permit a
convenient method of analysis of the closed-loop system with a trans-
portation lag. The gain curve is unchanged by the introduction of the

lag factor, but the phase lag is increased proportional to frequency.

Figure 3.4.1 presents the change caused by the introduction of the e—ST

X
s(s + 1)
allowable gain, K, for a stable system is rapidly determined. The gain

factor in the transfer function considered previously. The

of the ;E——%f;;-plot at the frequency at which the phase shift of the
total opei—loop transfer function is -180° is -1.1db., if T is 1 sec.

K can then be as high as +1.1db. or 1.14. The desirable characteristic
of this approach to the problem of transportation lag is that the situ-
ation is not particularly complicated by increased complexity in the

rest of the open-loop transfer function.
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3.5 Root-Locus

The popular root-locus technique can he applied to control
systems exhibiting transport lag. In order to appreciate the concept
as applied to systems with transport lag, a brief discussion of the
conventional root-locus technique is first given. In the root-locus
method the locus of the roots of the characteristic equation of a
feedback system are plotted, the gain usually being the variable
parameter. Thus the locus gives a representation of these roots simul-
taneously with their corresponding values of gain. Transient solutions

can be worked out once these roots are determined.

Consider again the feedback control system shown in Figure 3.1.2
where, if T = o, the system reduces to a conventional feedback control

system without transport lag. The characteristic equation of this

system can be expressed as
G(s) = -1 (3.5.1)

This equation is complex and may be rewritten as two equations by

equating magnitudes and phase angles on both sides of (3.5.1) to each

other. Thus, the magnitude equation is
1G(s)| = 1 (3.5.2)
and the phase angle equation is

/G(s) = %180 degrees (for the principal plane) (3.5.3)
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The plot for the phase angle equation is called the root-locus (since
the roots of the characteristic equation are points on the locus),
while the magnitude equation gives the value of the gain on each point
of the locus. Figure 3.5.1 illustrates the root-locus for the transfer
function

K(s + 0.3)

52

G(s) = (3.5.4)
This particular transfer function will be used as an example in later
work so the discussion of this function will be given in detail. Note
that the locus is symmetrical with respect to the real axis. Equation
(3.5.3) indicates that the root-locus is a curve on which every point

has a phase angle of *180 degrees.

This concept has been gneralized by Chu? by considering loci with
other values of phase angle. Equation (3.5.3) is then expressed as
/G(s) = ¢ where ¢ is a constant phase angle. Thus, a family of loci can
be plotted for various values of ¢. Figure 3.5.2 illustrates a family
of constant phase-angle root loci for the transfer function G(s) of
equation (3.5.4). Such a family of curves for a given transfer function
is called '"the phase-angle loci." Since the locus with phase angle ¢
is symmetrical to that with phase angle (-¢) with respect to the real
axis, only the loci on the upper half plane are shown. If the feedback

control system contains a transport lag e'ST, then the characteristic

2This section follows the derivation presented by Chu in Reference 2.
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equation is (see Figure 3.1.2)
Ges)e ST = -1 (3.5.5)
The phase angle equation is accordingly
/G(s) + [E:EI.= t180 degrees (3.5.6)
where the phase angle equation can be simplified into

/G(s) - uT = $180 degrees (3.5.7)

The technique for constructing the root-locus for a feedback con-
trol system with transport lag is based on (3.5.7). First the family

of root-loci (or phase-angle loci) are constructed for

/G(s) = ¢, (3.5.8)

Next, another family of root-loci is constructed for the transport lag
term of (3.5.7), (sometimes referred to as the transport lag phase-angle

loci) from the relation
~oT = ¢, (3.5.9)

Then by superimposing these two families of loci, the points of inter-
section of the corresponding curves where the sum of phase angles ¢,,
and ¢, equal to :180 degrees are the points of the locus required. The
curve drawn through all these points of intersection is the required

root-locus. The determination of the gain can then be carried out by
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the criterion used in the conventional root-locus method. The magnitude
equation is from (3.5.2)

_ 1
IG(s)e-sT | (3.5.10)

which will give the gain K of any point on the required root-locus.

To illustrate this method, an example is selected with the transfer

function previously discussed, namely

G(s) = 82 0:3) -sT (3.5.11)

52
For convenience, it is separated into two transfer functions
(s + 0.3)

G,(s) = T , G,(s) = e”S (3.5.12)

where G(s) = Gl(s)Gz(s) and T is assumed to be unity. By following the
previously mentioned procedure, a family of root-loci of the following

equation is constructed

/Gy (s) = ¢,

This family of root-loci has been shown in Figure 3.5.2. Next a family

of transport lag loci is constructed from the relation

-

"
-

(3.5.13)

This family of loci is shown in Figure 3.5.3. Finally, these two

families of loci are superimposed on the same s-plane. The required
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root-locus is the points of intersection of every two loci with the sum
¢, and ¢, equal to +180 degrees as shown in Figure 3.5.4. The points
of the required root-locus in the upper half plane are those with a
phase angle of -180 degrees. Since the locus is symmetrical with

respect to the real axis, only those in the upper half plane are shown.

As an example, the points on Figure 3.5.4 which give unity gain

are from equation (3.5.10)
o, = -0.41, o * ju, = -0.17 ¢ 31.17 (3.5.14)

The characteristic equation has an infinite number of roots, which can
be obtained by constructing additional branches of the required locus.
Figure 3.5.5 shows the second and third branches, as well as the funda-
mental branch. Again at the points which give the unity value of gain,

the second and third pairs of roots are found to be

0, * ju, = -2.06 * j7.56

o3 * Jwy = -2.65 * j13.92 (3.5.15)
In conclusion, the root-locus technique developed by Chu is per-
haps the most fruitful of all techniques when designing feedback control
systems containing transport lag. The technique, however, is fraught
with difficulties when considering high-order systems, or systems where
the variable parameter is not a multiplying gain factor in the forward

loop.
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CHAPTER 4

ABSOLUTE AND RELATIVE STABILITY OF SYSTEMS WITH TRANSPORT LAG

4.1 Derivation of Parameter Plane Equations

The fundamental equations and concepts of this dissertation are
derived in this chapter and are applied here to the determination of
the absolute and relative stability of a linear feedback control

system with transport or distributed lag [6].

Consider the linear unity feedback control system with a trans-
port lag in the forward path shown in Figure 4.1.1. The ratio of C(s)

to R(s) is

c( ) N(s) N(s)
— s - -
R E(s) D(s)eST + N(s) (4.1.1)

where T is a constant time delay in seconds and s is the complex

variable
s = ~fwy * jup/l - r? (4.1.2)

Here ¢ is the dimensionless damping ratio and w is the undamped

natural frequency in radians per second (see Figure 4.1.2b).

The stability of the system is determined by the locations of

the roots of the system characteristic equation F(s). Setting F(s) =0

gives

F(s) = D(s)eST + N(s) = 0 (4.1.3)
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Note that (4.1.3) will remain unchanged if the transcendental function
appears in the feedback path of Figure 4.1.1. Since D(s) and N(s) are

polynomials in s, they can be expressed as

0 .
D(s) = k. N(s) = k (4.1.4)
(s) kzoqks (s) kzorks

where Gy and r, are real and j < n for a practical system configuration.

Then from (4.1.3)

n j n
E(s) = 5T | q sk + % rsk= ] a(s)sk=0 (4.1.5)
k=0 k=0 k=0

Since the ak(s) will be a function of €51 for T # 0 and will
contain the system parameters, the ak(s) are defined in the following
manner in order to include all possible linear combinations of

parameters .
a, (s) = ab, + aceST + Bd, + BeyeST + £ + gieST (4.1.6)

where o and 8 are system parameters that can be chosen or adjusted,
i.e. system gains, time constants, etc. The cases in which a and 8
appear non-linearly as well as linearly, i.e., as a, B; aB, a?, etc.,

are not considered.
1f
S = ~fu, + jwn¢1 -2

then it can be shown that (see Reference 26)
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S = u "1, (-0) + 3T T 4 (-0)] (4.1.7)
where Tk(-c) is the Chebyshev function of the first kind, and Uk(-C) is

the Chebyshev function of the second kind. The Chebyshev functions can

be constructed by means of the following identities and recursion

formilas.
(-0 = (-D* (0, Y0 = 0¥ o (4.1.82)
Tk+1(c) - Zch(c) + Tk_1(c) =0 (4.1.8b)
Upsq(8) = 200, (8) + Uy _4(2) = 0 (4.1.8¢)
where
Ty(@) =1, T &) =c, Ula) =0, Uj() =1 (4.1.8d)

These functions may also be evaluated by means of the following

trigonometric definitions (see Tables I and II of Appendix I):

sin(k cos” ] z)
sin(cos™1 ) (4.1.9)

Ty (g) = cos(k cos_] g} 5, UYlg) =

Substituting (4.1.6) and (4.1.7) into (4.1.5) and applying (4.1.8a)

gives
F(mn, g) = [aBl(mn, g) + BCI(wn, z) f,Dl(“’n’ z)]

+ jTeBy(uwy, &) + 8C2(w,, 2) + Dalay, 2)] (4.1.10)
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where
n
Bl==k§0mnk[g-1)ka(c)bk + 5-¢Ck((-1)ka(;)cose ‘(“)k+1/T73?TUk(asine)]

n k )
C =kzomn [('1)ka(C)dk + e ¢ek(("1)ka(C)COSG _ (‘1)k+1/1__:?uk(c)sine)]

n
" kZownk [(-1)ka(c)fk * E—(bgk(("’1)k'fk(c)cose - ("1)k+1"1—'—ETUk(c)sine)]

(4.1.11)
n —
Bz= Len [( 0¥, ()T 22y
+ e ((- Hk Uk(c)/T_:_Zfbose + -0k (C)Slne)]
n
C,= kzo . B ¥ uk(;)JT':“EYHR
%e, ((-D¥* Ny, ()T = tZcose + (-1KT, (2)sine)]
n
D= L en [0 o T,

+e gk(( 1) U (2)/1T - cZcose + (- 1)kT (;)smeﬂ
In equation (4.1.11) the arguments w, and ¢ have been omitted for

simplicity, and use has been made of the identity

T = €g¢(cose-rjsine)
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where

¢ = CwnT and 8 = w V1 - 2 T (4.1.12)

Setting F(s) = 0, or setting the reals and imaginaries of

(4.1.10) to zero, Yyields

ch1 + BC

1 "
aB2 + BC2 =-D2 (4.1.13)
Then!
o = CIDZ - DICZ = Dle - DZBI
A ’ A
>
s =BC, - CB, (4.1.14)

J

Equation (4.1.14) for o and B8 are parametric equations in w and g,
where 0 is the varying parameter and ¢ is a given constant, or vice

versa.

The -8 curves are mappings of curves from the s-plane, where

the characteristic equation is the transformation function, so that

lThe following equations are indeterminate for ¢z = *1. See
Appendix II for a detailed discussion of this point.
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care must be taken with respect to which regions of the s-plane map
into corresponding regions in the a-8 plane. The procedure is as
follows. If a curve in the s-plane is shaded as shown in Figure 4.1.2a,
then the side to be shaded in the a-8 plane is determined by the sign

of the Jacobian determinant [14]

X X
da 9B
J =
Ay Y
da 3B (4.1.15)

where the elements of J are the partial derivatives of
X = uB1 + BC1
Y = aB2 + BC2

Thus from (4.1.15)

J=a=BC -BC
12 21

and if A > 0 then the curve in the a-8 plane should be shaded on the

left facing the direction of increasing Wy and vice versa.

It is important to note that when symmetrically enclosing the
entire left-half s-plane or a region therein, it is not necessary to
compute values of «,B for w, < 0. This is becauée the curves generated
in the a-8 plane for values of w, < 0 will retrace the curves for

wy > 0. Hence, the curves in the o-8 plane would be doubly shaded on
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the same side.? This assertion will now be proven.

Since all complex roots must appear with conjugates, the real
parts of the conjugate roots must be equal. Since Re(s] =0 = ~gw
it follows that if w, > 0 (wn < 0) then ¢ > 0 (¢ < 0) in order that
0 = -tu. Substituting Wy G < 0 into (4.1.11) and utilizing (&.1.8a)

gives the following:

Bl(-wn, ~g) = Bl(wn’ z)
C (upy =2) = C (up, &)
D (-ugs =€) =D (un, ©)
Bz(-wn, -2) = -B (wy, 1)
Cz(-wn. -g) = *Cz(wn, z)
D (-upy -2} = =D (uy, )
So that from (4.1.14)

8(=w, =) = ~8(w, &)
a(-w , ~2) = afw , T)
B(-w » ~2) = B(w,, ©)

2The practical implication of this statement is as follows. If
a change in value of a system parameter causes a pair of complex
conjugate roots to cross a shaded boundary in the s-plane, this will
cause the corresponding point in the a-8 plane to cross a doubly shaded
boundary.
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Thus when traversing the s-plane through values of W% < 0
the sign of 4 changes but the values of a and 8 remain the same. It
follows that the a-B curve for wo,t < 0 falls directly over the curve
obtained for w sG> 0 and is shaded on the same side. The result is a
doubly shaded a-8 curve. This does not limit the procedure in any way

since all complex roots must appear with conjugates.

4,2 Distributed Lags

The method described above is directly applicable to systems
containing distributed lags. Only minor modifications of the equa-
tions derived are necessary. Consider Figure 4.1.1 and assume that

the lag is distributed; then the lag term becomes E-JET. If

S = ~fw +jw¢1-c2
n n

then

AT = 7 [((u? + 0% + )]+ 5/?[(((%)2 + u?)% - o)
4.2.1)

Defining Re[/ST] = ¢ and Im[ /sT) = 8 it is only necessary to substitute

¢ for ¢ and 8 for 6 in all of the equations of Section 4.1 derived for

the transport lag. The ensuing interpretation of the curves in the

a-B plane is unchanged.

4.3 Example of Absolute and Relative Stability of a Linear Feedback
Control System

An example is now introduced in order to apply the derivation of

Section 4.1, and to form a basis for the development of further theory.
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Consider the control system?® of Figure 4.3.1 containing a proportional-

integral controller, plant and constant delay, then

G(S)=N.(§)—=__(_—__1.Ks+r
D(s) s?

For a stability investigation of this system form the characteristic

equation
F(s) = eSTs2 4 ks + Kr = 0

define the adjustable parameters to be

then
F(s) = eSTs2 4 as + 8 = 0 (4.3.1)

From (4.1.6)

o
[}
—
-
(@]
[}
(=]
-
[« %
[}
=]
(¢
n
(o]
Hh
n
[om]
o
n

0 (4.3.2)

3This particular system was analyzed in [2] for t = 0.3 sec.,
T = 1 sec. The technique used was a root-locus method where the single
parameter K was varied. Thus, in this example comparisons of data can
be made for T = 0.3 sec. and T = 1 sec. See Figure 3.5.5 in Chapter 3.



so that from (4.1.11)

B1 = -fuwp,
C =1
1
D = wn25"¢([2;2 - 1] cos8 + 2t¥1 - tZ sins)
1 (4.3.3)
B = w1 - CZ
2 n
C =0
2

D = wnze'¢(-2c¢1 = ¢Z cos® + (2¢2 - 1) sine)

Substituting (4.3.3) into (4.1.14) gives

-¢
€
a = n (2c/7 - £Z cost + (1 - 2t2) sine)
e
_ wn2€'¢
B = (/T = ¢Z cosé - ¢ sine) (4.3.9)
1-z
A= -mn¢1 - 2

The variables o and B are now graphed with either w,; or ¢ as the
running parameter. The various regions of the s-plane to be mapped

are shown in Figure 4.1.2.

In order to determine the limiting values of «,8 for absolute

stability it is only necessary to set ¢ = 0 in (4.3.4) and let u,

68
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vary from zero to infinity (see Figure 4.1.2a). Recall that values of

wy < 0 need not be plotted.

Then from (4.3.4), setting ¢ = 0 gives
a=w Sin w T
n n

R = mnzcos w T (4.3.5)
A graph of (4.3.5) is shown in Figure 4.3.2 where T = 1 sec. was chosen

as the time delay. If, for example, 1 = 0.3 sec. then

g8 =Kt =0,3K=0.3

The above equation is a straight line which is also shown in
Figure 4.3.2. It follows that the infinite set of frequencies, “n,
Uyt Y ot ot s at which the complex roots cross the imaginary axis
are determined by the intersections of the a~8 curve and the straight
line 8 = ta. Further, dropping a perpendicular from the points labeled
Gn s nys Yy v v to the a axis gives the gains at which the complex
roots cross the imaginary axis. Because the characteristic equation con-
tains a transcendental term there will be an infinite number of such
points corresponding to the infinite number of roots of the characteristic

equation.

The interpretation given above is deduced from the fact that the
entire imaginary axis of the s-plane of Figure 4.1.2a has been mapped
into the a-g locus shown in Figure 4.3.2. The entire left-hand s-plane

has been mapped within the indicated doubly shaded region. Note that
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in this example it is always true that & = -wn¢1 - zZ < 0, since
0 <z <1and w2 0, so that the a-B curve is shaded on the right

facing the direction of increasing W

The axes of the first quadrant of the a-8 plane are singly shaded
to include this quadrant since from a practical point of view, a and
B > 0. This divides the first quadrant into regions Ry, R, R;, . . .
R where R, DR, DRy D . o DR Only values of a and 8 chosen in
R, will render the system absolutely stable." This is because crossing
from a shaded region to an unshaded region in the s-plane has the same
meaning in the a-8 plane, and vice versa. Thus, moving from R, to R,
implies that a pair of complex roots has migrated from the left-half
s-plane into the right-half-plane and so on for R, to R,, etc. Thus,

only Rlcan contain all the roots since it is completely closed and

contains no subregions.

For example, if a working point M(e;, B;) is chosen in R,, all
the roots of F(s) will be in the left-half-plane except for one pair
that has migrated to the right-half-plane at some frequency W, In
this instance the first two conjugate roots can leave R, at mnl =
1.35 rad./sec. for a system gain of 1.32. Therefore the maximum gain
allowable for absolute stability is a« = K = 1,32, -Note from Figure
4.3.2 that since w continuously increases along the a-B locus, the

intersections of the a-f locus and the 8 = ta locus will occur at ever

“The concept of absolute stability is now slightly modified due to
the restriction o and B > 0. However, in Section 4.7 real root boundaries
are introduced and this restriction can be omitted.
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larger gains. This continual increase of the a-8 locus towards
infinity with increasing w, is easily predicted from (4.3.5); since

z =0, g-tonl = 1 and the«%land wnz terms of (4.3.5) dominate. These
results are easily confirmed by examining the root-locus for this

system, shown in Figure 3.5.5 of Chapter 3.

In order to investigate the relative stability of the system of
Figure 4.3.1 with respect to constant g lines, the procedurec is almost
the same as for absolute stability except that values for g = cl of
Figure 4.1.2b are substituted into (4.3.4)°, Figure 4.3.3 shows the
a-8 curve for ¢ = cl = (0,2. This figure is interpreted the same way
as Figure 4.3.2 with respect to shadings. The figure indicates what
must be true of all systems with transport lag under the relative
stability constraint of ¢ = cl. That is, the locus must eventually
terminate at the origin due to the existence of the e 7T term as
opposed to the termination of the locus at infinity for ¢ = 0. Thus,
there exists no value of «,8 for all the roots of the characteristic
equation of the system to be within arbitrary radials, ¢ = cl #0,
since there will be no region that contains all the roots. In Figure
4.3.3, for example, the relative positions of the complex roots with
respect to radials defined by ¢ = 0.2 in the s-plane is determined

as follows.

5Note that if values of ¢ = ¢ < 0 and > 0 are substituted
into (4.3.4) the resulting a-8 curvés yield information about the
complex roots in the right-hand s-plane. The right-hand s-plane,
however, is not of interest since the absolute stability of the system
with respect to complex roots can be guaranteed.
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The line B8 = 0.3a is considered to be a reference line L. Note

that although the o-B locus is graphed for increasing W it crosses

L at frequencies mnA = 7.75 > mnB =0.95 < mnC = 14.2 rad./sec., etc.
Next,define the intersection of L and the a-g locus for smallest w, as
the relative position of the fundamental complex roots, the intersection
of L and the locus for the next highest w as the relative position of
the secondary complex roots, etc. Now we choose a point on L, say

LB = mnB = M(0.9, 0.3), and investigate the effect of moving from
different points on L to LB with particular emphasis on the crossings

of shaded boundaries. Since LB was chosen on the ¢ = 0.2 locus, the
values a_ = 0.9 and BB = 0.3 locate the fundamental complex roots on

B
radials of ¢ = 0.2 at a frequency of w, = 0.95 rad./sec. It is easily
B

verifiable from Figure 4.1.2b that the fundamental complex roots are
located at the points®
s1 = -;wnB t jmnBv'l - ¢? (4.3.6)

in the s-plane.

Now if the point LA moves to LB it must cross a doubly shaded
boundar;_ffom an unshaded side to a shaded side. In the s-plane this
means that a pair of complex roots must cross from an unshaded to a

shaded side across the boundary ¢ = 0.2. Thus, the secondary complex

5This is quite useful as a synthesis technique to place dominant
roots at a predetermined location as will be demonstrated later.
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roots lie below the radials ¢ = 0.2 since the reverse crossing must
have occured for LA to be in its present position. If the point L
moves to LB a doubly shaded boundary is crossed from a shaded side to
an unshaded side. Thus, the secondary complex roots lie above the
radials ¢ = 0.2. This procedure is continued until the relative loca-
tion of as many complex roots as desired is determined. For verifica-

tion of these results see Figure 4.3.4 which was taken from [2].

4.4 Relative Stability with Respect to Finite Semicircular Regions

Consider Figure 4.1.2c where the finite interior of the shaded
region in the left-hand s-plane is to be mapped onto the «-8 plane.
This mapping is easily facilitated through equations (4.3.4) by first
setting ¢ = 0 and allowing w to vary from 0 to wn', then holding wy
fixed at wn' and allowing ¢ to vary between 0 and 1. When w = 0 or
z = 1 the points o = 0 and mn’ respectively are mapped from the s-plane
onto the o-8 plane. These s-plane points are the boundaries across
which real roots must cross if they are to leave the finite region
under discussion. These points can be mapped onto the -8 plane by
substituting s = -o into equation (4.3.1) and then plotting the
resulting a,8 locus for ¢ = 0 and o = wn'. The‘mapping is singly
shaded since crossing this a-B curve corresponds to a single real root
leaving the interior of the finite s-plane region under consideration.
The rules for shading (both single and double) the resulting a-8 plane

curves are unchanged, as are the conditions for w, < 0.
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Suppose that it is desirable to know what values of «,8 will

cause the roots that lie within the semicircle of radiusy ' =5
rad./sec. to leave this region of the s-plane shown in Figure 4.1.2c.
This information can be obtained by superimposing’ the a-B8 plane
curves for ¢ = 0, the curve obtained by holding w fixed at wn' =5
rad./sec. and allowing ¢ to vary between 0 and 1, and the curves
obtained from (4.3.1) where s = -0 = 0 and mn'. The resulting a-8
curve is shown in Figure 4.4.1 and is interpreted as follows. The
curve corresponding to varying ¢ never intersects the g8 = 0.3a line,
consequent ly there is no positive value o or B such that the existing
complex roots in the shaded region of the s-plane can leave this
region via the locus of points described by the semicircle. They can,
however, leave by crossing the imaginary axis as usual. The singly
shaded line corresponding to o = -5 intersects the 8 = 0.3a line so
that a single real root can leave the semicircle in the s-plane by

crossing the point o = -5,

Now we extend the semicircle to a radius w,' =10 rad./sec.

(see Figure (4.4.2)). The portion of the a-B curve corresponding to
a variable ¢ now crosses the g = 0.3c line so it is possible for one
pair of complex roots to leave the semicircle of radius wn' =10
rad./sec. Further, the singly shaded line corresponding to ¢ = -10

intersects the B = 0.3a line so that a single real root can leave the

7In fact, any of the mappings discussed can be superimposed
to form new mappings.
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semicircle in the s-plane by crossing the point ¢ = -10. The shading
of the curves for varying ¢ and constant o are as shown in Figures
4.4.1 and 4.4.2, since this is simply a continuation of the varying
w, curve with respect to shading procedures. These results are clearly

verified from the root-locus plot of the system shown in Figure 4.4.3.

Figure 4.4.3 shows the fundamental, secondary and real root-loci
for this system where T = 1 sec. and v = 0.3 sec., also shown are the
finite semicircles of radius wn' = 5 and 10 rad./sec. Note that for
wp,’ = 5 rad./sec. the fundamental and secondary root-loci never inter-
sect the semicircle but the locus of the real roots does. When
w," = 10 rad./sec. the secondary root-locus, as well as the real root-
locus, does intersect the semicircle so that one pair of complex roots

and one real root can leave the semicircular region.

4.5 Relative Stability with Respect to Constant Settling Time Lines

The mapping of a constant settling time line as shown in
Figure 4.1.2d can be effected by manipulation of a and 8 from the
original equations (4.3.4). In this instance the mapping traverses
a contour of constant o = g and the dimensionless damping ratio,
¢, is variable. Thus the equations for o and 8 can be rearranged such
that ¢ never appears alone, but only in the product o = gw . Rearrang-

ing (4.3.4) so that only o and w, appear as variables gives

N — a4 v aa—— 2 - 262Y si =
a /E;z_j*Ez'(ZOJQ“ o7 cosvu T - 07T+ (v, - 20%) 51m’mnz oZT)

(4.5.1)
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NZE-OT
n

g = —————— (V.2 - 0% cosvw,* - 0T - osin - 04T
T (Y, ™ Yup? = o)

for w2 > o2,
Since the mapping is for 0 < w, < = there is a portion of the contour
in Figure 4.1.2d where “nz < g2, In this case (4.5.1) becomes (see

Appendix III)

~oT
a = ———— (20/67 - w2 cosh/o? - w ZT+ (w2 - 202) sinhv/o? - 47T
o
2 ~oT (4.5.2)
u)n E
B = —————— (VoZ - wnz coshve?Z - wnzT - osinhvo? - w _7T)
T = uy?

for w 2 < o2.
n
The singularity occuring when ¢ = w, implies that ¢ = t1 and is removed

as explained in Appendix II.

For example, consider the instance where ¢ = -0.5. The exponen-
tial terms in (4.5.1) and (4.5.2) are fixed at a constant value and the
a-B curve must spiral out to infinity and not into the origin as in the
case of a constant ¢ line. Figure 4.5.1 shows the a-8 curve obtained
and is interpreted as follows. The locus of points where the g = 0.3«
line intersects the a~B curve determines the frequencies and gains
where the complex roots of the characteristic equation (4.1.5) cross
the constant settling time line ¢ = -0.5. Since the B8 = 0.3a locus

does not enter Rl, the fundamental complex roots lie to the right of



o = -0.5, and cannot cross this line for any value of gain (see the
root-locus plot for Figure 4.4.3). The remaining complex roots all
lie to the left of o0 = -0.5 and would cross this line at frequencies
Wy, 7.7, “, = 14.1 rad./sec., . . . , etc. for values of gain equal
to ay = 4.7, «; = 8.5, . . . , respectively. Since a constant ¢ < 0
line can be interpreted as a shifting of the imaginary axis ¢ units to
the left, it is reasonable that the a-8 curve should closely resemble

the a-8 curve for ¢ = 0. It also follows that the interpretation of

both curves are identical.

4.6 Real Roots

The question of the determination of the real roots of the
characteristic equation (4.1.5) is now considered. The technique uti-
lized to resolve this question is a natural continuation of previous
results since equations (4.1.14) are applicable to any point in the
s-plane. In order to investigate the nature of the real roots of the
characteristic equation only the real axis is considered. Substituting

s = o + jO0 into (4.1.5) gives

¥ k
F(o) = ] o (o)a" =0 (4.6.1)
k=0

Then substituting (4.1.6) into (4.6.1) gives

T

n n n
k oT k oT k o
a) oMb + e’ ) +Blo(d tee )t Lo (f +ge ) =0 (4.6.2)
k=0 Kk ke Kk %k k=0 Kk °k
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Thus, for a given value of o, (4.6.2) represents a straight line in

the a-8 plane. Note tﬁat since a point in the s-plane maps into a

line in the o-B plane the mapping is not conformal. For a given
working point M(a,, B,) every value of o that satisfies (4.6.2) is a
real root of (4.1.5). These real roots may be determined by graphing
(4.6.2) for different values of o until the straight line passes
through the point a , 8,. The values of ¢ that accomplish this condition
are real roots of (4.1.5). Since (4.6.2) is the equation of a straight
line for a given o, the graphing is not tedious and interpolation
between curves is readily effected. Figure 4.6.1 shows the curves
represented by (4.6.2) with various values of o for the case of
Equation (4.3.1). Thus, when a = 1, 8 = 0.3 a real root is determined

to be at o = ~0,413.

As an aid in determining the real roots, an alternate procedure
can be employed that not only approximately determines the real root
values, but also indicates how many real roots exist. The question of
the number of real roots is not trivial since the characteristic equa-
tion has an infinite number of roots. The procedure is as follows:
construct the a-f curves for ¢ = *1 and note the values of frequency,
Wy, On these curves. Then draw straight lines through the working
point M(a,;, 8;) that are tangent to the ¢ = 1 curve. The number of
roots equals the number of tangent lines that can be constructed and
the values of these real roots are equal to negative values of the

. = 4
frequencies, “ny Yn,t Yngr c ot ot o noted on the ¢ 1 curve or the

positive values of the frequencies noted on the ¢ = -1 curve at these
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tangent points. Proof of this statement is given in Appendix IV.
Thus, the values of the real roots are obtained along with the number

of real roots.

Using the procedure of Appendix II the equations for the a-8

curves for ¢ = +1 become

a = wne-wn(Z -w), B= mn2€"“’n(] - uxn) (4.6.3)
and for ¢ = -1 the a-8 equations become

a =-uhemn(2 - mn) , B = mnzewn(1 + uy) (4.6.4)

Figure 4.6.2 shows these a-8 curves and illustrates that there
is only one possible straight line that is tangent to the ¢ = #1 curve
from the working point M(1.0, 0.3). The frequency at this tangent
point is w_ = 0.4 rad./sec. so that there is a single real root of
approximate value ¢ = -0.4. At this point it is pertinent to discuss
the nature of the curvature of the ¢z = *1 curve for this example. The
slope of the ¢ = t1 curve is determined, from equations (4.6.3) and

(4.6.4), to be for ¢ = +1

ds duwp dg ug
dw da ) da
n (4.6.5)
and for ¢ = -1
ds dw dg
—_— .__P—) = — = -wn
duw dao da
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Thus the slopes of the ¢ = t1 curves increase or decrease mono-
tonically with w and it is not possible for these curves to have any
points of inflection; this also méans that the curves are always either
concave upward or concave downward with a discontinuity at the point
where the curve changes direction. This clearly shows that a tangent
to the curve cannot exist at the points where the curve changes direc-
tion, that is, at the tips of the loops in the regions denoted as A
and A’ on Figure 4.6.2. This point is emphasized since, at first
glance, it may not be obvious that a tangent line cannot be drawn to
the curve from the point M(1.0, 0.3) to the discontinuous® extreme

points in the regions A and A'.

4.7 Real Root Boundaries

a-8 curves for ¢ = t1 were introduced in the previous section
where these curves were used to predict positive and negative real
root locations. It will be shown that ''real root boundaries'' can be
defined using the ¢ = -1 curve that will have the same significance
as complex root (double shaded) boundaries. These real root boundaries
can easily be constructed by noting the regions in the «-8 plane from
which tangent lines to the ¢ = -1 curve can be constructed. Namely,
if a tangent line can be drawn to the ¢ = -1 curve from M(e,, 81) then

a positive real root exists for the values o = o, B = B,.

8For an excellent discussion on the determination of discontinu-
ities of parametric equations see Chapter 5 of Reference 4.



As an example, consider Figure 4.7.1 which shows the a-8 curve
for ¢ = -1. From the slope of the ¢ = -1 curve (recall %% = -w,) it
is obvious that if M(a,, B,) lies in region I real positive roots
cannot exist. This is because a tangent line cannot be drawn from
M(a;, B;) to the ¢ = -1 curve. However, a point M(a,, -8,) in region

IT will generate a real positive root so that the o 2 0 axis is singly

shaded.? Note that the slope of the ¢ = -1 curve at w =0 is
%%‘]mn:O =uw =0 so that a tangent line can be constructed from the
entirela > 0 axis. Proceeding in this manner it is obvious that the
remaining real root boundary is the ¢ = -1 curve as shown in Figure
4.7.1.

Figure 4.7.2 shows the real root boundary and the complex root
boundary for absolute stability (¢ = 0) which is simply the super-
position of Figures 4.7.1 and 4.3.2. Note that the restriction that
a and B be positive in order to define regions of stability can be
omitted. Thus, conventional regions of stability can be defined. It
is noted, however, that R, is still the region of absolute stability
since the real root boundary is the positive a axis and the singly

shaded curve in the second quadrant of Figure 4.7.2.

In conclusion, this chapter has presented an exact method for

determining the absolute and relative stability of linear feedback

3The implication being that crossing a singly shaded boundary in
the a-8 plane causes a single real root to cross the imaginary axis in
the s-plane. _

81
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control systems containing transport or distributed lag. In order to
accomplish this it was necessary to determine the locations of the
infinite number of roots of the system characteristic equation. A
knowledge of the root locations also establishes the nature of the
system transient response. Thus, the next logical step is to apply

the theory of this chapter to the design of system controllers.
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CHAPTER 5

CONTROLLER DESIGN FOR SYSTEMS WITH TRANSPORT LAG

5.1 Introduction

The parameter plane method applied to contrbl systems containing
transport lag gives the designer a degree of control over the loca-
tions of the roots of the characteristic equation. Thus, a detailed
discussion of the relationship between the time domain response of a
linear feedback control system and the s-plane root locations is per-
tinent. In the design of a linear feedback control system the deter-
mination of the controller parameters can be guided by the concept of
judiciously placing the roots and the zeros of the transfer function
in desirable s-plane locations. Mulligan [17] has shown the response
of such a system is very often dominated by a single pair of complex
roots of the system characteristic equation. These roots of the
characteristic equation, or poles of the transfer function, are termed
the "dominant roots' of the system. The modern philosophy of control-
ler design is to choose controller parameters that place the dominant
roots in a desirable s-plane location with respect to the transient

and steady state response.

These desirable root locations depend upon the applications of
the control system. Simultaneously with this, an attempt is made to
place the remaining roots (if there are any) in positions such that

the desired dominant roots are indeed dominant. That is, the



remaining roots are placed in regions of the s-plane where they will
have minimal effect on the system response. The location of the
dominant roots with respect to the remaining roots and zeros of the
system transfer function should be guided by the following
considerations:

1. The further to the left in the s-plane the non-dominant
roots are as compared to the dominant pair, the better will be the
dominant root approximation.

2. The closer to the real axis the dominant roots are with
respect to the non-dominant roots, the better will be the dominant
root approximation.

3. There should be no complex zeros too close to the dominant

roots.

Thus the design of controllers for a desired time domain
response depends upon a convenient and accurate analytical relation-
ship between the roots of the transfer function and the transient

response. With this relationship, the transient response can be

98

quickly evaluated without actual computation of the transient solution.

In the design of controllers, the input and output are specified, and
certain parameters of the system transfer function, related to the
open-loop transfer function by the root locations, must be found.
Therefore, it is necessary to establish a test input and a resulting

output, regarded as known.
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Because of the various choices of the accepted input and the
desired output, there are different methods of design. In this work,
a unit step function is selected as the input. Such an input is a
convenient and widely used test signal for linear systems because
many other inputs can be closely approximated by a combination of
step inputs. For the desired output, a response with a slight oscil~
lation and slight overshoot, as shown in Figure 5.1.1, is selected.
The actual desired number of oscillations and actual desired amount of
overshoot will be left to be decided in each particular application.

Such a desired output is also widely accepted and used.

The desired response, as shown in Figure 5.1.1, requires the
existence of a pair of dominant complex roots in the system fumction,
as can be clearly shown on the s-plane. Figure 5.1.2 shows such a
plane, where the pair of dominant complex roots are indicated. Thus,
the roots should be chosen through some design method such that their
configuration is of the pattern shown in Figure 5.1.2. If the design
method does not offer any possibility of such a pattern, such a desired
response is unlikely to be obtained. A derivation of the analytical
relationships between the s-plane root locations and the transient

response is given in Appendix V.,

5.2 Controller Design for Systems with Transport Lag

In the case of a feedback control system containing a transport
lag, the design of controllers is quite cumbersome and very little

work has been done with respect to a formal design technique. This
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is especially true where the design is directed towards the concept
of two free controller parameters. The reason for the difficulty
encountered in dealing with feedback control systems containing trans-
port lag is the transcendental nature of the system characteristic
equation. Thus, the characteristic equation is of infinite order and
has an infinite number of roots. Due to the intractability of this
transcendental function with respect to controller parameter values
and the resulting root locations, conventional methods of specifying

dominant roots and insuring this dominance have not heen developed.

In this work the dominant root philosophy is maintained, and
the parameter plane concept (as developed here) is applied to systems
containing transport lag. Specifically, the dominant roots will be
placed in predetermined locations to yield the desired time domain
transient response and simultaneous attempts will be made to locate
the remaining roots and zeros in s-plane locations that tend to main-

tain this dominance.

Examples will be given first in which the output specifications
are given in the frequency domain. Further examples will be shown in
which the specifications are given in the time domain. The specific
examples are chosen to show that this method gives the designer at
least as much control over the system design as would be available if
the system did not contain a transport lag. If it is not possible to
meet the output specifications the implication are that

1) A different type of controller must bhe utilized.
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2) The same controller can possibly be utilized but a more
complicated s-plane root-zero configuration is required (without
clearly dominant roots) and the secondary effects duc to the non-

dominant roots must be taken into account.

5.3 Integral-Proportional Controller

An example of the procedure for selecting the controller para-
meters K and t of an integral-proportional controller is now given.
Consider the system shown in Figure 5.3.1 and let the design specifi-
cations be for T = 1 sec.

1) The dominant roots are to be located at approximately! z, = 0.3
and un, = 1 rad./sec.

2) The controller gain, K, is to be as large as possible.

3) The system is to be absolutely stable, a reasonable specification

for systems containing transport lag.

Since the stability of the system was investigated in Chapter 4,
the characteristic equation, the o-B equations and some a-B curves are
available there and will be referred to or repeated in this section as

needed.

The design begins by examining the a-8 curve for ¢, = 0.3 shown
in Figure 5.3.2 (see equations (4.3.4)). Only the first quadrant of

these curves are shown here since for a practical system the gain

11t is assumed that the designer is aware of the response these
dominant roots will yield. Note that the dominant roots reflect the
presence of the transport lag so the resulting time domain response
must begin at time t = 1 sec.
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(K = ) and the time constant (tr = 8/a) are both positive. The curves
are labeled M), @, G . . . to indicate the order in which they
traverse the origin, that is in the order of increasing w,. If a
point on the ;l = 0.3 locus is chosen on traversal (I) the frequency
mnl can be chosen to be 1 rad./sec., shown as point M. As will be
shown below, the fact that traversal (2) intersects traversal (1) near
“n, = 1 rad./sec. will be useful in the design. The choice of “n, =

1 rad./sec. is quite logical since it not only satisfies the first
specification of cl = 0,3 and “n, = 1 rad./sec., but it also insures
that the remaining complex roots will lie above the radials of ¢ = 0.3.
This is easily established by drawing the straight line g = ta through
the point (¢ = 0.3, “n, = 1), which defines a working point M(a,8) at
M(0.777, 0.239). As discussed in Section 4.3, since the traversals
@, ®, @, . . . intersect the line g = ta to the left of

M(0.777, 0.239), the secondary and higher complex roots will lie above
the radials Cl = 0.3, This insures that all of the non-dominant roots
will be well above the dominant roots. In contrast to this, if

mnl = 0.7 rad./sec. were chosen, the secondary complex roots would lie
below the radials ¢ = 0.3, since traversal () would intersect the

B = 1a line to the right of traversal (1). The fact that the secondary
roots lie below radials of cl = 0.3 does not necessarily mean that they

will lie below the dominant roots, but it does mean that they will be

closer to the dominant roots in terms of imaginary part separation.
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Another point in favor of the initial choice of cl = 0.3 and
“n, = 1 rad./sec. is that the gain is K = a = 0.777 which is almost
the largest gain possible for cl = 0.3. For example, if Y were
increased to approximately 1.3 rad./sec. along the cl = 0.3 locus,
the gain could be increased to 0.875. However, this would cause the
slope of the 8 = ta line to become excessively small and ensuing

difficulties in synthesizing the controller for such small values of

t would follow.

The specification that the system be absolutely stable is recon-
ciled next. Figure 5.3.3 shows the first traversal of the a-8 curves
for 0 < 7 s 1.0, as well as the line B = 1a. Since the locus of points
for ¢ = 0.3 is completely contained within the region Rl, which from
Section 4.3 is the region of absolute stability, any working point
M(a,8) chosen on the ¢z = 0.3 curve for traversal () will render the
system absolutely stable.?2 At point M(0.777, 0.239) the value of the

controller time constant t is easily determined to be

o

.239
JT77

2 jw

= (0.307 sec.

T =

=]

so that the closed loop transfer function has a real zero at o = -0.307.

Since values of o and 8 have been tentatively chosen, the design

is fixed and the following information is known. The dominant roots

2Note that the maximmm gain for absolute stability is a = K = 1,31
from the intersection of the 8 = ta line and the ¢ = 0 curve.



104

are located in the s-plane at ;1 = 0.3, wnl = t1 rad./sec., a real
zero is located at o = -0.307, and the controller parameters are
K =0.777 and t = 0.307 sec. The numerical values of the dominant

roots are easily determined from (4.3.6) which is repeated below

s =-guw *juw /- Clz = -0.3 ¢+ j0.955 (4.3.6)

It is now necessary to determine the locations of the real roots and

the secondary and higher order complex roots.

The secondary complex roots are determined from (4.3.6) by noting
which constant ¢ curve, say ;2, intersects the point M(0.777, 0.239) on
traversal (2) and noting the frequency %o of this intersection. The
third complex roots are determined from traversal (3, etc. It should
be pointed out that specification 1) implies a secondary yet important
specification. Namely, if dominant complex roots are specified, the
implication is that the secondary and higher real and complex roots
have real parts that are from two to five times or more greater than
the real parts of the dominant roots (see Appendix V). This implica-
tion was considered in the choice of the working point M(0.777, 0.239)
and will now be explained. The separation between the real part of the
dominant roots and the real parts of the remaining complex roots is not
as apparent from the o-g curves as the separation along the imaginary
axis. However, this separation can be determined as follows. The real

part of the nth pair of complex roots is given by

oy = Re [Sn] = —gnwnn
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Since it is desirable that the ratio of the magnitude of the real parts
of the higher order complex roots to the dominant roots be as large as
possible, the following inequality is formed:

o | = |-t uw >> |o | = |-z w
ol = 1=ty | 2> o1 = I oy | 55

Note from Figure 5.3.2that the working point M(0.777, 0.239) was
chosen such that traversal (Z) almost passes through this point, indi-
cating that the secondary complex roots lie nearly along radials of
z = 0.3. Then equation (5.3.1) reduces to Imnzl >> Imnll or 7.9 » 1
(since ;2 = cl in this case) which is considered to be a good magnitude
separation for the real parts of the roots. A glance at the a-B curves
and‘the B = ta line indicates that in general “n, = 7wnx’ but if
;2 # cl the real part of the separation between complex roots will not
be as large as it could be while still having the secondary complex
roots lying well above the dominant roots. Then the secondary complex

roots are located at

s = - + 3 /A -¢ % =-2,37+37.15
2 Czwnz Jmﬂz r’2 ]

The third pair of complex roots are determined by noting which
a-g curve passes through M(0.777, 0.239) on traversal (3. From Figure
5.3.5 this situation is satisfied for L, = 0.2 and Y03 = 14.15 rad./sec.
so that the real part of the complex roots equals —camna = ~2.83, which

is to the left of the secondary complex roots.
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It is obviously impractical to continue computing the remaining
infinite number of complex roots, so the question of how many complex
roots to compute is now of interest. The ratio of the real parts of
the secondary complex roots to the real parts of the dominant roots
is 7.9, and the ratio of the real part of the third complex roots to

that of the dominant roots is |2

68§| = 9.43, so it is obvious that the
effect of the secondary and third.complex roots are negligible as com-
pared to the dominant roots. The question is then, do any higher order
complex roots exist, the real part of which is less than the real part
of the secondary complex roots? If the answer is in the affirmative,
then the dominancy of the "dominant roots'" is destroyed and these high
frequency complex roots have to be accounted for. If the answer is
negative, then it is safe to neglect the higher order complex roots.

To settle this question it will be proven that, for this system, all

of the complex roots with the exception of the dominant and secondary

roots have real parts that are greater in magnitude than the real parts

of the secondary roots.

Consider the a-8 curve, shown in Figure 5.3.6, of the constant
settling time contour for o = -2.5 (which is slightly greater than the
real part of the secondary roots but less than the real part of the
third complex roots). Since the working point M(0.777, 0.239) lies in
R3 the interpretation is that two pair of complex roots lie to the
right of o = -2.5, since two doubly shaded boundaries must be crossed

from R1 to reach R3. Recall from Section 4.3 that since it contains
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no sub-regions, only Rl can contain all of the complex roots. It

follows that the remaining complex roots (an infinite number of them)

must be to the left of o = -2.5 so the proof is complete.

The real roots are now determined in the manner developed in
Section 4.6. That is,the number of real roots and their approximate
values are determined from straight lines drawn through the working
point M(0.777, 0.239) that are tangent to the ¢ = t1 curves. Figure
5.3.7 shows the curves for ¢ = t1. Note that only one tangent is
possible to the ¢ = +1 curve, so there is only one negative real root.
The value of this root is approximately o = -0.5 since w, & 0.5 rad./sec.
at the point of tangency. Recall from Section 4.6 that the tips of the
t = +1 curve are not points of inflection and tangent lines from

M(0.777, 0.239) cannot be drawn to these tips.

A more accurate value of this root is determined from equation
(4.3.1) of Section 4.3 which is repeated here for s = -o since it is

already known that the single real root is negative.
£ %2 - a0 +B=0 (4.3.1)

Graphing this equation for various values of ¢ indicates that when
o = -0.51 the straight line passes through the point M(0.777, 0.239)
(see Figure 5.3.8). Thus the value of the single real root is

o = -0.51

Figure 5.3.9 shows the relevant root and zero locations for the

transfer function of this feedback control system. Note that the real
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root, although close to a zero, is also relatively close to the real

part of the dominant roots and therefore should be taken into account
(a magnitude separation of 1.7). Further, the real parts of the non-
dominant complex roots are relatively far from the real part of the

dominant roots.

The zero introduced by the controller is quite close to the real
root and will tend to nullify the effect of the real root on the system
response and tend to help maintain the dominance of the dominant roots.
To see the effect of the real root and the non-dominant roots on the

system response, the output response, c(t), is shown in Figure 5.3.10.

Figure 5.3.10 shows the output response c(t) obtained by consid-
ering the dominant complex roots as well as the single real root. Also
shown in this figure is the exact response c(t) which was obtained by
solving the system differential equation. The system differential
equation was solved by using difference equations. The time interval,
At, was chosen such that the solution is exact to two decimal places.
The difference between the exact solution of the system differential
equation and the response obtained from the dominant root locations is
due to the effect of the non-dominant roots of the system. The salient
differences between these responses are indicated on the figure in

terms of percentages.

5.4 Proportional Controller

An example of the procedure for the selection of the controller

gain K of a proportional controller is now given. Consider the system
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shown in Figure 5.4.1 and let the design specifications be the same

as for the integral-proportional controller feedback system of
Section 5.3 which are

1) The dominant zeros are to be located at approximately cl = 0.3 and
Wy = 1 rad./sec.

2) The controller gain K is to be as large as possible.

3) The system is to be absolutely stable.

In Section 5.3 the control of a feedback control system with an
integral-proportional controller was investigated. Figure 5.3.1 shows
a block diagram of this system. If the controller time constant T is
set to zero in Figure 5.3.1 the system reduces to the proportional con-
trol system of this section (see Figure 5.4.1). Therefore if a line
B8 = ta = (0)a = 0 is superimposed on the a-8 curves of Section 5.3 the
curves can be used where only the «-axis, corresponding to the g8 = 0
line, has meaning. This is analogous to introducing a dummy variable
parameter (t) into the system transfer function in order to utilize

the two variable parameter method developed in this work.

Figure 5.3.3 shows the first quadrant of the a-B curves for
traversal (1) and for 0 < ¢ < 1.0. It is immediately evident that in
order to locate the dominant roots at cl = 0.3 the gain must be equal
to 0.875, since the cl = 0.3 locus intersects the 8 = 0 line at

1.6

a = 0.875. The value of the frequency at this point is wn,

rad./sec. On the other hand, if the gain were reduced to o = 0.37,
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the frequency w,11 would be 1 rad./sec. but the value for z would be

cl = 1.0. Thus, it is not possible to simultaneously locate the domi-

nant roots at the specified values of ¢ = 0.3 and w, =1 rad./sec. with
an adjustment of only the gain parameter. This is a definite disadvan-
tage of a proportional controller, in contrast to the simultaneous con-

trol over both ¢ and ©n that is possible with a two parameter controller.

If it is possible to locate (exactly or approximately) the domi-
nant roots in the specified locations, the design proceeds in a manner
similar to the one of the previous section. Note that there is very
little flexibility with respect to the assurance that the remaining
non-dominant complex roots will lie above or below the specified radials
¢z = 0.3, or assurance that the magnitude separation of the real parts
be large. With only a single parameter control the designer is more or
less forced to settle for the remaining complex root locations associ-

ated with the specified dominant roots.

In order to determine the real root locations, recourse is made
to the = t1 curves graphed for the integral-proportional controller
shown in Figure 5.3.7. That is, a straight line is drawn from the
chosen value of a = o (or from the working point M(al,O))that is
tangent to the ¢ = t1 curves and the real root value is determined as
usual. A more accurate real root value is obtained by substituting
s = o into the system characteristic equation which is from (4.3.1)

with t=0and T = 1 sec.
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F(o) =0’ + a =0 (5.4.1)

The normal procedure is to substitute values of ¢ into this
equation until the equality is satisfied. Note that this procedure is,
in fact, the usual graphical technique for finding real roots of poly-
nomials. This is because a proportional controller has only one vari-
able prameter and the parameter-plane technique degenerates to standard

Teal root determination techniques.

5.5 Derivative-Proportional Controller

The derivative-proportional controller is usually designed in
order to obtain a desirable transient response, such as smaller over-
shoots, faster settling times, etc. For purposes of comparison, a
derivative-proportional controller will be designed to control the plant
and transport lag previously discussed. Figure 5.5.1 shows this linear
feedback control system where the controller has the following transfer

function:

K(1 + 15)

Since there is a time delay in the system, the design philosophy
will be to quicken the output response in order to overcome the inher-
ent transport lag or delay while still maintaining a reasonable tran-
sient response. For this type of response the output specifications
are most logically given in the time domain, as opposed to the frequency

domain specifications of the last section. Thus, assume that the time
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delay T = 1 sec., that the test signal is a unit step, and that the
output response specifications to occur after one second are":
1) The settling time, Ts < 6 sec.

2) The peak overshoot, M < 20%.

A

3) The peak time, Tp < 3 sec.
4) The number of oscillations, N < 2, or one overshoot and one

undershoot.

The design begins by forming the system transfer function g(s)

from Figure 5.5.1. Then

R F(s) (Kt + eST)s + K (5.5.1)
The characteristic equation, F(s), is for a =K, 8 = Krand T = 1 sec.,
F(s) = (B + e¢S)s +a =0 (5.5.2)

The parametric equations for a = a(w,), 8 = B(wn), A= A(mn) and

¢ # 1 are determined from (4.1.6), (4.1.11) and (4.1.14) to be
..¢ .
€ sin 6
o = D

e ®(-/T - ¢Z cos & + ¢ sin @)
g = (5.5.3)
- -7

V1-(;2 >0

“n

“See Figure 5.1.1 for the definitions of the following terms.
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When ¢ = 1 the a-8 equations are

o= w2, B= My - 1) (5.5.4)
and when ¢ = -1 the a-8 equations are
a = wnzswn, 8 =-£wn(wn + 1)

The curves representing (5.5.3) and (5.5.4) are shown in
Figures 5.5.2 through 5.5.5 where the shading would always be on the
left in the direction of increasing frequency, since & > 0. It is now
assumed that values of a and B can be chosen such that the specifica-
tions can be met. This is analogous to placing a pair of dominant
roots in a desirable s-plane location while simultaneously placing
the remaining roots of the characteristic equation and zeros of the
transfer function in positions that have a minimal effect on these

dominant roots.

From the specifications and the approximate equations of

Appendix V it is seen that from (V.8)

= 4 =42 0.067
o Eret G (5.5.5)

From (V.9)

. mo,N _ n(0.667) (1.3) _
wp = 21_ = > = 1.4 rad./sec. (5.5.6)
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So that from (V.10)

! = 1 = 0.44

g =
1 A+ (wm/al)2 /T + (1.3770.667)2 (5.5.7)

Since the values for “n, and cl are only approximate, their
values will be selected after making a quick examination of the a-B
curves. Figure 5.5.2 shows that values of « and B can be easily
chosen to yield “y T 1.4 rad./sec. Further, since a larger value of
¢ results in a smaller value of peak overshoot, a slightly larger
value of ¢ is considered, say ¢ = cl = 0.5. This slightly larger
value of ¢, = 0.5 rather than cl = 0.44 is also considered to help
offset any secondary effects due to the non-dominant roots. Figure
5.5.7 shows the first quadrant of the a-B plane for the first three
traversals of the ¢ = 0.5 locus. It is immediately apparent that if
cl = 0.5 and “n, = 1.4 rad./sec., the secondary and higher order
complex roots will be above the radials of ¢ = 0.5 in the s-plane.
This is because traversals @, ®, . . . , of the a-8 curve will
intersect the 8 = ta line to the left of the point M(al, Bl). A final
consideration is the absolute stability of the system. Figure 5.5.2
also shows that the ¢ = 0.5 locus is completely contained within the
z = 0 locus so that the system will be absolutely stable for this
choice of Z and Yn, Thus the choice of dominant roots is that they
are located at o, = 1.4 rad./sec. and cl = 0.5. It immediately
follows that the real part of the dominant roots is S, = -0.7, and



115

from Figure (5.5.2) the values of a and B are a = 0.752 and

B = 0.095.

The remaining roots of the characteristic equation and the zeros

of the transfer function are now computed. The transfer function

(5.5.1) has a real zero at s = -%, and from 8 = Kt = at the value of
this zero is % = % = %iggé = 7.92. The number of real roots along with

their approximate values is determined by placing a working point
M(0.752, 0.095) on the a-B curves for ¢ = *1. Figure 5.5.5 shows the
¢ = t1 curves and it is apparent that only onc tangent can be drawn to
this curve from M. Further, the value of the frequency noted on the

¢ = +1 curve at the point of tangency is approximatcly w = 8 rad./sec.
so that the system has a single real root located at approximately

o = -8.0, By substituting s = -0 into (5.5.2) (since it is already
known that the single real root is negative) and graphing the straight
lines for various o, it is seen that the straight line for ¢ = 7.92
passes through the working point M(0.752, 0.095) in the a-g plane (see
Figure 5.5.6). Thus an accurate value for the real root is o = -7.92
which is the same value as the real zero determined above. At this
point it would be fruitful to show, in the same manner as that of Section
4.6, that the point A on Figure 5.5.5 could not possibly be a tangent
point for a line drawn from M(0.752, 0.095) to the ¢ = +1 curve. From
(5.5.4) the slope of the ¢ = +1 curve is

ds -
da

5 1=

so that the curve is either concave upward or concave downward which
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proves the assertion.

The secondary complex roots are determined by the intersection of
the second traversal of the a~8 locus with M. Figure 5.5.3 shows that
traversal () intersects M at a frequency of v = 8.85 rad./sec. and

n2
r = 0.25 so that the real parts of the secondary roots are gzw = -2.21.

2 n2

The third pair of complex roots is determined by the intersection of the
third traversal of the a-8 curve and the M point. These roots are found
to be at Y 15.4 rad./sec. and c3 = 0.15 so that the real part of the
third coﬁplex roots 1is cawna = -2.31 (see Figure 5.5.4). In order to
insure that the remaining complex roots have real parts greater than the
real part of the secondary roots, the a-8 curve for a constant settling
time contour of ¢ = -2.25 is graphed. Figure 5.5.8 shows this a-8 curve
and since the point a = 0.752, 8 = 0.095 lies in region R3 the implica-

tion is that four complex roots lie to the right of o = -2.25 (the

dominant and secondary roots) and the remainder to the left.

Figure 5.5.9 shows the root-zero locations and the following
observations are made: The real zero is well situated since it lies
far to the left of the dominant roots and further it also lies on top
of the real root thereby cancelling its effect. The real root is well
situated since it lies far to the left of the dominant roots, i.e., the
ratio of the magnitude separation of the real root and the real part of
the dominant roots is 162%- = 11.3. The magnitude separations between

the real parts of the secondary and third complex roots with respect to

the real parts of the dominant roots are 3.14 and 3.3 respectively,
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which is considered to be a reasonable magnitude separation; and as

proven above, the magnitude separation for higher order complex roots

is even greater.

In order to see clearly the effect of the non-dominant roots,
pertinent portions of the output response are now computed based upon
the root-zero locations of the system. Figure 5.5.9 shows these
root-zero locations and computations will be based upon this figure.
The approximate settling time is computed first from (V.8)

A

4
5 =70.7 = 5.7 sec. (5.5.8)

1

Ts

which is less than the specified settling time of 6 sec. The number

of overshoots N is computed from (V.9)

(5.5.9)

which is within the specified N < 2. The time for the output to reach

the peak Tp is computed next from (V.11)

due due due to due to
to real to real secondary third
Zero root complex roots complex roots
i <~ e
1 (-9.5° + 9.5°) + (-79° + 81.5°) + (-83.5° + 84°)
T =137 [" + 180/~

(5.5.10)

Ty = TT%T [ ™+ @ %%631 L 18:2) ] = 2.64 sec.
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which is less than the specified Tp = 3 sec. Equation (5.5.10)
exemplifies the increasingly minor effect of the non-dominant roots

on the peak time. It also depicts how the proximity of the real zero
to the real root nullifies the effect of the real root. Obviously
the inclusion of even more complex roots will have a negligible effect
upon Tp. At this point the inequality (V.7) can be introduced to test
whether the dominant roots can be considered dominant, and thus to

show the validity of the approximations. Then

shows the validity of the assumption of dominance.

The last specification to be examined, and perhaps the most

important one, is the peak overshoot M. From (V.16)

due to due to due to due to
real secondary third real
root complex root complex roots Zero

7 - ~ 4

7.92 8.552 15.42 7,33
M= [( 7.33 )((7.41)(9.95) ((14.05)(16.55) )1 [7.92}-(0.7)(2.64)

M= [(1.07) [7A% [z | ] [0.035 | 71-848
(5.5.11)
= [(.om .99 (1.025) ] | 0.935] 71848
M = 0.1605

or 16.05% which is within the specified M < 20%. The numerical
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quantities of (5.5.11) are grouped in a manner to point out the effect
of the various roots and the single zero on the peak overshoot. Once

again it is obvious that the larger magnitude complex rooté have little
effect upon the peak overshoot and if more complex roots were included

their effect would be even less noticeable.

The design of the controller is now considered to be complete,
since the design specifications have been met and reasonable controller

- = B = 0.095 _
values of K = 0.752, 1 K077 0.1265 sec. were chosen.

To indicate the validity of the proposed controller design
technique, the output response of the system, c(t), is shown in Figure
5.5.10. The solid response curve was computed from the root-zero loca-
tions of Figure 5.5.9 where only the dominant complex roots and the
single real root and zero were considered. The dashed response curve,
on the other hand, is the actual output, c(t), which was obtained by
solving the system differential equations. The system differential
equation was solved by using difference equations. The time interval,

At, was chosen such that the solution is exact to two decimal places.

The difference between the actual and predicted responses is
due to the assumption that the effect of the non-dominant roots of the
system characteristic equation was negligible. The actual percentage
difference between the predicted and actual responses are noted on

Figure 5.5.10 and, as can be seen, are quite small.
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5.6 Tachometric Feedback Control

The effect of output rate damping or '"tachometric feedback' on
a linear feedback control system with transport lag is now investigated.
Tachometric feedback is introduced as a minor feedback loop around the
plant, resulting in a multiloop feedback system as shown in Figure
5.6.1. This is a widely used method of control because the derivative
action appears in a desirable position with respect to any noise
associated with the signal. The signal noise is greatly attenuated by
the low pass filter properties of the plant. It should be pointed out
that this system is multiloop and normally would be more difficult to
design because one of the two free parameters appears in each loop.
The parameter plane method, however, is based primarily upon the
system characteristic equation and the introduction of additional

feedback loops in no way complicates the problem,

The system specifications will be the same time domain specifi-
cations as given in Section 5.5 for the derivative-proportional con-
troller. These are reasonable specifications for a system containing
tachometric feedhack because this type of feedback is the counterpart
of the derivative-proportional control. This is due to the fact that
the latter differentiates the input signal before the plant and the
former differentiates the output from the plant and then feeds the
output back to the error detector. The similarity between the two
controllers is easily seen from the transfer function %(s) for the

system containing tachometric feedback. From Figure 5.6.1
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N
E-(s) ~ (s) _ Ky
R

T F(s)  seST # Kys + Ky (5.6.1)

Defining « = K, and 8 = KT’ the characteristic equation for T = 1 sec.
is

F(s) = (5 +B)s +a=0 (5.6.2)

Note that the characteristic equations for tachometric feedback (5.6.2)
and for derivative-proportional control (5.5.2) are identical. The
only difference between the two systems is that with derivative-

proportional control, the transfer function (5.5.1) contains a real

1

zero located at s = “r

whereas the tachometric feedback transfer

function (5.6.1) does not contain any real zeros.

As previously mentioned, controller design via the parameter
plane method deals primarily with the system characteristic equation.
Therefore,since the design specifications were satisfied for the
characteristic equation of this system in the previous section, the
next step is to remove the zero from the root-zero plot of Figure
5.5.8 and determine whether the specifications are still satisfied.
If they are, it follows that the values of the tachometric feedback
controller parameters are « = K; = 0.752 and B = KT = 0.095. Upon
removing the real zero from Figure 5.5.7 the following is noted.
Equations (5.5.8) and (5.5.9) remain unchanged so that the values of

T, and N are unchanged. Removing the -9.5° contribution of the real
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zero from (5.5.10) results in Tp = 2,78 sec. which is 5.04% greater
than the Tp of the derivative-proportional control system. Thus, the
peak time is still within the specified Tp < 3 sec. The peak over-
shoot M is determined from (5.5.11) by removing the term due to the
real zero and using the new value for Tp computed above. This gives
the result that the peak overshoot is now M = 15.3% which is 4.05%

less than the peak overshoot with a derivative-proportional controller.

Thus, the peak overshoot is well within the specification of M < 20%.
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Fig. 5.1.1 The Desired Hesponse.
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Fig. 5.1.2 Pattern of Root-Zero Configuration of the Desired
Response.,
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Fig. 5.3.1 Integral-Proportional Controller.
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Fige 5.3.9 Root Zero Locations.
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Fig. 5.5.1 Derivative-Proportional Controller.
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CHAPTER 6

ROOT-LOCUS FOR SYSTEMS WITH TRANSPORT LAG -

6.1 Introduction

The parameter plane approach is particularly useful as a means
for constructing the root-locus for systems with transport or distrib-
uted lag.! This methoed has the following advantages over Chu's method
(see Section 3.5).

1. The construction of the root-locus for high order control
systems is as easy to perform as for low order control systems.

2. The root-locus is easily constructed for either one of two
variable parameters in the system.

3. The value of the parameter with respect to which the root-
locus is graphed (usually the gain) is immediately available without
calculation.

4. If a new value of either of the two variable parameters is
chosen, the original a-B curves are used to obtain the new root-locus.

5. The root-locus for negative values of the system parameters

is also available from the original «-B8 curves.

11t must be emphasized that the determination of the system
stability, either absolute or relative, as well as the technique
developed for controller design, is more expeditiously performed with-
out the construction of the root-locus. However, the conventional
root-locus techniques are well known and this chapter is included in
order to more closely associate the parameter plane technique with
conventional techniques.
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6.2 Complex Root-Locus

As an example of the application of the parameter plane to the
construction of the root-locus of a system, consider the system of
Figure 6.2.1. This system was discussed in Section 5.5 in connection
with the design of the system controller, so that certain curves and
equations are available and will be referred to or repeated here as

needed.
The ratio of output to input for this system is

C K(1 + 15)
~(s) = ST
R e3ls + K + Kts (6.2.1)

defining o = K, 8 = Kr, and setting T = 1 sec. the characteristic

equation is
F(s) = (B+ e5)s +a =0 (6.2.2)

The parametric equations (see Section 4.1) for a(wp, t) and B(w,, &)

are, for g # 1,

(6.2.3)

5 = e ?(-/T= % cosé + ¢ sine)
T-17

for ¢ = +1
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a=w2 N, g=e -1+ q) (6.2.4)
and for ¢ = -1

B = - M(1+u) (6.2.5)

To determine the locus of the complex roots, equations (6.2.3) are
graphed for values of 0 < |¢| < 0.95 where w is the running parameter.
Since the root-locus will be determined from the locus of points de-
scribed by the constant f curves (the a-8 curves), it is also necessary
to graph equations (6.2.3) for values of ¢ < 0. This is because the
complex root locations in the right-half s-plane are characterized by
negative values of (see Figure 4.1.2b). For example, Figures 6.2.2
and 6.2.3 show the a-B curves for ¢ = +0.35 and ¢ = -0.35 respectively.
Note the curve for ¢ = +0.35 spirals into the origin as usual, and for
t = -0.35 the curve spirals towards infinity since the exponent of the

+ .
exponential terms, € ;m“, of equations (6.2.3) are now positive.

If only positive values of gain and time constant are considered,
it is necessary to graph only positive values of a and 8. Figures 6.2.4
through 6.2.7 show the first quadrants of the first two traversals of
the a-B curves for 0 < |g| < 0.95. When the root-locus is to be deter-
mined for a given value of 1 in (6.2.1) the system gain will be the
running parameter on the root-locus. If t is chosen to be equal to say

0.5 sec, then

B = Kt = 0.5 = 0.5a (6.2.6)
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The straight line (6.2.6) is then superimposed on Figures 6.2.4 through
6.2.7 where the intersection of this line and the a-B curves yields the
necessary information to construct the first two root-loci for complex
roots lying in the upper portion of the s-plane. For example, the point
M, in Figure 6.2.4 indicates the existence of a pair of complex roots at
z = 0.6, w, = 0.3 rad./sec. (recall that the root-loci are symmetrical
with respect to the imaginary axis). A gain of a = 0.418 is obtained

by dropping a perpendicular from M, to the a-axis. Figure 6.2.8 shows
the two complex root-loci obtained in this manner. This procedure is

continued until the desired number of root-loci are obtained.

If a new value of ¢ is considered, say r = 1, = 0.3 sec., only the
slope of the B8 = ta line is changed and the procedure developed above is
again performed. This last feature is a distinct advantage over the con-
ventional root-locus technique, since it would normally be necessary to
re-graph all of the curves for any change in a parameter value. This
latter point is so significant that in instances where the root-locus is
desired fof feedback control systems that do not contain transport lag
it may well be advantageous to apply the parameter plane technique to
determine the root-locus. This is easily accomplished by setting
ck =ex =g =0 in equation (4.1.6) of Chapter 4, since this will elimi-

sT

nate the effect of the transport lag term €' in all ensuing equations.

The root-locus for negative values of a or B are determined from
the same a-8 curves where the second, third and fourth quadrants are now

utilized. For example, for « < 0 and 8 > 0 the 8 = -ta line is drawn in
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the second quadrant and the root-locus is constructed from the second
quadrant in the manner described above. Further, for « < 0 and B < 0
the third quadrant is utilized and for a > 0 and 8 < 0 the fourth quad-

rant is utilized.

In this example the parameter t was held fixed while the system
gain a = K was the variable parameter with respect to which the root-
locus was constructed. If it is desired to construct the root-locus for
a fixed value of gain a = Kl, in which case t is the running parameter,
then the B8 = ta line is replaced by the vertical line « = K, and the

root-locus is constructed as usual.

6.3 Real Root-Locus

In order to construct the locus of the real roots recourse is
made to the a-B curves for £ = t1 shown in Figure 6.3.1. The straight
line 8 = 0.5a is superimposed on the ¢ = t1 curves, and the real root

locations for varying o are determined from straight lines emanating

from points M(a, B) on the 8 = 0.5a line that are tangent to the ¢ = #1

curves. The negative value of the frequency w, indicated on the ¢ = +1
curve at the point of tangency is the value of a real root; and the
value of the frequency wy indicated on the ¢ = -1 curve at this point
is the value of a real root. The value of the gains producing these
real root locations are determined by dropping a perpendicular from the
points M(a, B) to the a-axis. In this case the real root locus is from

s = 0, corresponding to the point M(0, 0) to s = -2, The real root-

locus is also shown on Figure 6.2.3. Note that it is only possible for
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one tangent to the ¢ = +1 curve to exist for any point M(e,, 8,) so
that only one real root can exist for a given value of gain. Recall
from Section 5.6 that the point A on Figure 6.3.1 is not a point of

inflection.

The method discussed above yields the real roots only approxi-
mately, because the method is based on a graphical construction of a
tangent line to a curve. The origin and termination of the root locus,
however, can easily be exactly determined for this example in the
following manner. The origin of the locus is exactly s = 0 since a
line drawn from M(0, 0) is tangent to the ¢ = *1 curve at w, = 0, the
point where the ¢ = *1 curve originates. Further, the locus must
terminate at a zero of the open-loop transfer function which in this

c&eiss='-l= 2.0.
T
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Fig, 6.2.1 Feedback Control System.
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CHAPTER 7

NONLINEAR SYSTEMS

7.1 Introduction

In the preceding chapters, the analysis and design techniques
discussed were restricted to linear feedback control systems. However,
all practical systems are nonlinear to some extent; most physical
systems can be considered to be linear only within a limited range of
operation. If a feedback control system is designed according to
linear theory and methods, it is essential that the components used in
the system operate in linear fashions under various operating conditions,
If, under certain circumstances, the components are driven into the
region of nonlinear characteristics, linear design theory may describe
only approximately, or quite often may give a completely erroneous
prediction of the system performance. For systems in which the linearity
assumption is not valid, nonlinear differential equations must be used to

describe system behavior.

The study of nonlinear control systems is difficult because most
of the commonly used techniques for linear systems are no longer valid.
The transfer function concept of linear systems becomes inapplicable for
systems with nonlinear elements; poles and zeros have little meaning in
characterizing nonlinear systems. Furthermore, the root-locus diagrams
which are so convenient for the study of linear systems are meaningless
for nonlinear systems, simply because the characteristic equation is not

defined.
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7.2 Describing Functions

One of the popular techniques used in analyzing the absolute
stability of a class of nonlinear systems is the describing function
technique as developed by Goldfarb [8] and Kochenburger (10]. The
basic philosophy of this approach is to attempt to approximate a non-
linearity by a linear function and, in this way, extend the transfer
function concepts to nonlinear systems. Therefore, the describing
function concept suffers from the immediate limitations associated
with all approximate techniques. However, in may practical situations
the results, in terms of absolute system stability, are quite accurate.
Thus, the concept of the transfer function of a system, along with the
system characteristic equation, has been re-introduced. It follows
that the theory developed in this work can be applied to nonlinear

systems that can be characterized by describing functions.

The describing function method is based on the following assumptions
and considerations:

(1) The control system contains only one nonlinear element n; a
typical form of the nonlinear system under consideration is shown in
Figure 7.3.1a.

(2) The input to the nonlinear element n is assumed to be
sinusoidal. The output of the nonlinear element is, in general, not a
sinusoidal wave; nevertheless, it is a periodic function, and can be
represented by a Fourier series. The describing function analysis

assumes that only the fundamental component of the output is significant
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when fed back to the input. Actually, if the input to n is considered
to be sinusoidal, the output of n contains components at the fundamental
frequency, and, in general, at all higher harmonic frequencies. It can
be shown (Page 507 of Reference 2Y) that the harmonics in the outputs
of most of the common types of nonlinearities in servo systems are
often of smaller amplitudes than the amplitudes of the fundamental
components. Furthermore, most servo systems act as low pass filters,
so that the higher harmonics in the output of the nonlincar elements are

attenuated when compared to the fundamental component.

When the basic assumptions listed above are satisfied, the non-
linear element n can be represented by an equivalent transfer function
called the describing function, which is defined as the ratio of the
fundamental component of the output to the (sinusoidal) amplitude of

the input. Therefore,
Describing function N =

Fundamental component of output from Fourier analysis
Amplitude of the sinusoidal input signal

(7.2.1)

Although the describing function is defined as the ratio of
amplitudes of two sinusoidal signals of the same frequency, it is not
a linear transfer function. It will be shown that, in general, N may
be a function of the amplitude or the frequency, or both, of the input

signal to n. For instance, the describing functions of simple
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amplifier saturation and on-off relays without hysteresis are functions
only of the amplitude of the input sinusoid; the describing functions
of friction and inertia-controlled gear backlash depend not only on the
amplitude but also on the frequency of the input signal. In addition
to the ahove-mentioned properties, N may be a real number, as in the
case of simple amplifier saturation, or ideal relay; or N may be a

complex number, as in the case of a relay with hysteresis.

For the notation of Figure 7.3.1, if the input to the nonlinear

element n is assumed to be
x(t) = X sin ut (7.2.2)

the output of the nonlinear element y(t) is a periodic function, and
may be represented by the Fourier series

y(t) = } (Aycos nut + B, sinnut) , n=1,2,3, ... (7.2.3)
n=1

where

A, = %—[: y(t) cos nwt dut
(7.2.4)

B, = %-f: y(t) sin nut dut

The constant term in the Fourier series has been omitted due to the
assumption that the average value of y(t) is zero; this is true pro-

vided that the nonlinear element possesses symmetrical characteristics.
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According to the assumptions of the describing function, all higher
terms in the Fourier series of equation (7.2.3) may be omitted, leaving

only the fundamental component. Thus,

y(t) =y, (t) = Ajcos wt + B sin ut

(7.2.5)

JAIZ + Blz sin(wt + y) = Ylsin(wt +y)

where y = tan—l(él» and Y, = /A7 + B

B

The describing function is then defined according to equation (7.2.1) as

Y -
N(X,6) = 11 ¢l

— (7.2.6)
X

Therefore, N is a complex quantity when y is nonzero. It is a function
of input amplitude, X, and of frequency, w, if Yl and/or y is a function
of frequency.

7.3 Systems Containing a Single Nonlinearity with a Real Amplitude
Dependent Describing Function

Consider the nonlinear feedback control system with transport
lag in Figure 7.3.1a where the nonlinearity contains saturation and a
dead zone as shown in Figure 7.3.1b. The describing function for this
type of nonlinearity is purely real and dependent only upon the amplitude
of the input signal to the nonlinearity. Thus, N appears in the
characteristic equation as a gain varying with the amplitude of the

input to n (see page 569 of Reference 29).
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As an example, the transfer function G(s) in Figure 7.3.1a is
assumed to be the same one analyzed in Section 5.6 of Chapter 5. This
is convenient since the a-B curve for ¢ = 0 is readily available and
can be utilized with minor modifications. The characteristic equation

for this system is then

C ) NK(1 + st)
R(S) = &SST+NKn s + K (7.3.1)
Defining
a=KN, B8=KwN (7.3.2)

The system characteristic equation becomes
F(s) = (ST +8)s + a =0 (7.3.3)

which is identical to the characteristic equation of Section 5.5 (see
(5.5.2)) with the exception of the definitions of o and 8. Thus the a-8
curves of Section 5.5 can be used where the ordinate and the abcissa are

properly relabeled.

Figure 7.3.2 shows the first quadrant of the a-8 curve for ¢ = 0
where K = 1 and the two variable parameters are N and t. Only the first
three traversals are shown where the remaining infinite number of
traversals would lie above traversal (3) and intersect the point 8 = N =
1. Also shown on Figure 7.3.2 are two 8 = ta loci for t = 0.227 and
0.1314. Superimposed on each 8 = ta locus are the ratios of the ampli-

tudes to the dead zone, §3 for corresponding values of the magnitude of N.
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Other pertinent information relating to the nonlinearity characteristics
are shown on Figure 7.3.2. The data to plot the describing function was

obtained from standard curves in Reference 29, page 574.

By examining the position of the describing function loci with
respect to stable and unstable regions in the a-8 plane of Figure 7.3.2
the following properties of the feedback system are evident.

1. When t = 0.227: If the system is at rest, disturbances that

result in a magnitude of §-< 2.25 to the input of the nonlinearity do
not lead to instability. If the disturbance is of a magnitude such
that §-= 2.25 sustained oscillations of amplitude %-= 2.25 and w =

2 rad./sec. occur. A slightly larger disturbance, say 2.25 < %‘f 8,
results in a loop gain greater than unity and the oscillations increase
until §'= 8 is reached, at which time equilibrium again exists and
sustained oscillations of amplitude % = 8 and frequency w = 2 rad./sec.
occur. A still larger disturbance of magnitude é > 8 results in a
stable system, with a decay of oscillation amplitude back to §-= 8.
Thus, the two intersections of the 8 = 0.227a locus and the ¢ = 0 locus,
at amplitudes of %= 2.25 and g—= 8, represent unstable and stable
equilibrium conditions, respectively.

2. When 1 = 0,1314: If the system is at rest, disturbances at the

input to the nonlinearity that result in a magnitude of %-< 10 do not
lead to instability. If the disturbance is of a magnitude such that
§-= 10, sustained oscillations of amplitude §-= 10 and w = 1.8 rad./sec.
occur. A slightly larger disturbance results in a loop gain greater
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than unity and the oscillations increase towards §-= = at a frequency
w = 1.8 rad./sec. Thus, the intersection of the 8 = 0.1314c locus and
the ¢ = 0 locus, at an amplitude of §'= 10, represents an unstable

equilibrium condition.

In order to verify these results the inverse Nyquist plot and the
negative describing function locus of the system are plotted in Figure
7.3.3. That is, consider the open loop transfer function of Figure

7.3.1a. The limiting values for system stability occur when s = jw and

when
G(s)e STN = -1 (7.3.4)
or when
sT

€ = N

G(s) (7.3.5)
Setting s = juw yields

juT e

€ = N

GOw (7.3.6)

Figures 7.3.3 and 7.3.4 show Re vs. Im plots of equation (7.3.6)
for t = 0,227 and 0.1314 respectively. Note that these polar plots both
continually encircle the origin due to the existence of the transport
lag which contributes an infinite amount of phase lag as w + ». By

jwT
noting the intersections of the é%}]ﬁ'pIOt and the -N plot it can be
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seen that the interpretation of system stability given above is verified.
jwT
For example, in Figure 7.3.3 the -N locus intersects the E%:ijocus at
G(Jw
the frequency w = 2 rad./sec. for values of %-equal to 2.25 and 8 as
predicted from the a-g plot and -N locus of Figure 7.3.2. Similarly,
the critical point of Figure 7.3.4 corresponds to the intersection of

the 8 = 0.1314a locus and the ¢ = 0 locus shown on Figure 7.3.2.

In order to further verify the results predicted above, the con-
trol system of Figure 7.3.1 was simulated on a digital computer. The
system differential equation was solved by using finite differences and

all results are accurate to one decimal place. Figure 7.3.5 shows the
X
D
less than the critical value of % = 2.25. From Figure 7.3.5 it is seen

input waveform to the nonlinearity for v = 0.227 and - = 1.5, which is
that the system is stable. Figure 7.3.6 shows the steady state input
waveform to the nonlinearity for %-equal to 3 and 10. The values é'=

3 and 10 both result in oscillations of amplitude % = 8.6 and frequency
w = 2 rad./sec. The percentage difference between the predicted and
actual amplitudes and frequencies for v = 0.227 are noted on Figure 7.3.6

and, as can be seen are quite small.

When the system was simulated for 1 = 0.1314 the result was a

stable system when the input to the nonlinearity was §-< 10. For values

of %-> 10 oscillations were noted at a frequency of w = 1.84 rad./sec.
(a difference of 2.18% from the predicted value) that increased indefi-

nitely in amplitude. It was further determined that the value of %

at the unstable equilibrium point is between 9.65 < §~: 9.67 since the
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waveform decayed for %;- = 9,65 and increased in amplitude towards infinity
for —é— = 9,67. The difference is then approximately 3.4% from the pre-

dicted amplitude of oscillations.

Thus, the digital computer simulation further verifies the predicted
results obtained from the a-8 plane. The percentage differences in both
cases (1 = 0.227 and 0.1314) can be attributed to the error inherent in

the approximations associated with the concept of describing functionms.
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Fig. T«3.1 A Nonlinear Feedback Control System With Transport Lag.
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Fig. 7.3.4 Inverse Nyquist Plot and Describing Function Locus

for T = 0,1314.
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CHAPTER 8
CONCLUSIONS

A method is presented for the exact determination of absolute and
relative stability of linear feedback control systems containing trans-
port or distributed lag. All results are in terms of two variable
system parameters, whereas contemporary techniques determine only
absolute stability with respect to only one variable system parameter.
The method utilizes an extension of parameter plane techniques as
developed by Vishnegradski [30], Neimark [18], Mitrovié [16], and
Siljak [26].

The method is then applied to the design of controllers in linear
systems containing transport lag. A design technique is proposed that
allows for the systematic determination of two variable controller
parameters in order to meet frequency or time domain design specifi-
cations. The design technique is formulated in terms of the familiar
"dominant root' concept. The proposed design technique gives the
system designer '"at least' as much control over the system response as
he obtains with conventional design procedures for systems without

transport lag.

The investigation of absolute and relative stability, as well as
the proposed method for controller design, is no more complicated for

multiloop feedback control systems than for single loop systems. This
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is because the characteristic equation of the closed-loop system trans-
fer function is utilized rather than the conventional open-loop methods.
Further, if a digital computer is used, high-order systems are dealt

with as easily as low-order systems.

A method for constructing the root-locus of systems containing
transport lag is then proposed so that this familiar engineering tool
can be used in conjunction with the proposed analysis and design
technique. The root-locus technique proposed here has the following
advantages over the conventional method of Chu [27. -

1) The locus can easily be constructed from the parameter plane curves
for either one of two varifble system parameters. Further, the value
6f the variable parameter is immediately available without computation.

2) The system can be multiloop and if a digital computer is utilized

the order of the system does not complicate the root-locus construction.

Finally, the method is applied to nonlinear systems containing
transport lag where describing function analysis is applicable. It is
shown that the amplitude and frequency of limit cycles can be predicted
where the describing function is real and is dependent upon the ampli-

tude of the input signal to the nonlinearity.



CHAPTER 9

SUGGESTIONS FOR FUTURE INVESTIGATION

A further area of investigation is the application of the theory
developed in this dissertation to the "identification' of high-order
linear systems. A definite characteristic of higﬁ-order stable system
responses is the relatively long time required to reach a peak value,
followed by periodic variations. Such a response can be approximated
by the response of a low-order system (say second-order) containing a
transport lag. Figure 9.1 shows a typical response of a high-order
system and the suggested approximation by the response of a second-

order system with transport lag.

Another area of investigation that should prove fruitful is the
further application of this theory to nonlinear systems with transport
lag. The success of this investigation would probably depend upon the
specific type of nonlinearity involved. The author has initiated further
work in this area for the cases where the describing function can be

1. complex and dependent upon amplitude

2. real and dependent upon amplitude and frequency

3. a combination of two real amplitude-dependent describing functions.
The results have been encouraging and further work in this area is contem-

plated.

The concept of "'root location sensitivity' with respect to parameter

variations for systems with transport lag seems feasible. This question
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can possibly be resolved by studying the parameter plane sensitivity

relationships previously developed by Kokotovié and Siljak [11].

Finally, problems related to the '"predictor method" of compensa-
tion of linear systems with transport lag can be investigated through
parameter plane techniques. The predictor method [27] utilizes the
feedback arrangement shown in Figure 9.2. The purpose is to make the
input to the controller appear as if the system had no transport lag.
If the controller lag, c;ST, is identical to the actual lag, EST, then

the system transfer function is

C G,(s)Gz(s)

E’(S)

"1+ 6,(5)G,(s)

which is independent of the transport lag. Since it is not possible

to perfectly synthesize s;ST in the controller, perfect cancellation of

- . . . -sT .
&ST in the plant is not possible. However, eas can be approximated and

the resulting system transfer function, although still in terms of EST

is amenable to parameter plane methods of analysis and design. The
author has done some preliminary work in this area and the results are

encouraging.
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Second-Order Response With Transport Lag.
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APPENDIX II

a-8 Curves for ¢ = t1

As mentioned in Section 4.1, care must be exercised when computing
values of a and B8 for ¢ = t1, If ¢ = t1 is substituted into (4.1.14)
the resulting equations are indeterminate. Specifically, substitution
of £ = t1 into (4.1.11) gives

n .
Bgnm@=k%vu%ﬁwk+éwﬂumvn

n k sunT
C(+1,u) = kzo(-nkmn (4 + &M e)T, (4 1)

D, (*1 ? -k k(f + Ty )1 (21
l( )wn) k=0( ) Wn k € gk k( )

B, (+1,un) = C,(+1,a) = D,(+1,up) = 0

Thus, from (4.1.14), the o-B curves are indeterminate due to a

singularity for ¢ = t1. To remove this singularity define

B, = B, (*1,u,)/71 - 72
C, = C,(*1,u)/ /T~ ¢F (IL.1)
62 = Dz(*l,mn)//TTTTFT

Further define

(11.2)
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Substituting (II1.1) into (I1.2) gives

- = =a
B,C, - C,B, B.C, - C/B,
_ DB, - DB, DB, - D,B,
B: = =~.B
B,C, - C,B, B, - CB,

sothat a = a and 8 = 8, and it remains to show that the singularity

can be removed by using 52, C,, D Note that

2 T2°
B,(¢1,un) » Co(tT,uy) , D, (1,up)

reduce to

- n v 3 T
B,Chu) = 3 DRl en g B
- T . - n
<t 51nmn¢1 2T z ('1)kck“nka(’1)
A=z k=0

| tt suT
e = ) D g s T o

C;mnT sinmn/1 -~ 2T

n k k
kzo(—1) e, un Tk(tl) (11.3)

o
51,00 = 1 05 Ku s+ Ty 4
ASLELN Lo ©y Yk kT € gk)

AunT sine /1 - zZ T
A=z

n
k§0<“)kgkwnka(*‘)
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Attention is now focused on the singular term of (II.3) when g = %1,

Namely, consider

lim £(¢) = lim sinwyv/1 - < T )
g+t g+t 1 1.4
=< (

and make the substitution x = V1 - ¢Z so that

lim £(g) = lim SinupTx = T
g1 x-0 X n

which is easily verified by taking a Taylor series expansion of (II.4).

Thus equations (II.3) become

- n 3w T
Bz(*l,mn) = kzo(-l)kﬂwnkUk(il)(bk +e D cx) +

-u. T D .
a e D kZO(-l)kckwnka(*1)

k+1

i

- n k 2wnT
Cy(21,up) kZO(-U wy U (B1) () +€ Teg) +
(11.5)
- n
wnTe*“nT y (-1)kekmnka(:1)
k=0
- n k""] k W T
D(*1,u) = kzo(-l) wy Uk (BT (£ + ¢ n gt *

+

T n
w Te' T kio(-ﬂ"gkwn"Tk(*U

and the singularity has been removed. Thus, the a-8 equations for
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z = ¢1 are determined from (4.1.14) where B,, C, and D, are replaced by

62(:1,%) , C,(*1,u) and D,(+1,u;) of (IL.3).



APPENDIX III

CONSTANT SETTLING TIME LINES

To show that the algebraic manipulations resulting in (4.5.1) and
(4.5.2) can always be effected, a formal derivation is offered that

yields explicit equations for a(o,mnz) and 8(o,wy?).

Since the contour of Figurc 4.1.2c is mapped for a given value of
0 = -Zw, as wp varies from zero to infinity, ¢ is a variable for this

contour, but the product o = -gu, is not. Thus rewrite from (4.1.12)

©
}]

t,wnT = oT

3
"
£
5
)
Y
N
~3
"
S
&
N
1
a
N
-3

Since the Chebyshev functions are functions of ¢ they are rewritten as

Py (0,up2) (-1)kwnk'l"k(c)

GULEPSSLINE

Q (o,un?)

Where the Py and Qy may be obtained from the following recursion

formulae [267)

[}
[en)

Pre1(o,un?) + 20P (o, wy?) + wp?R-1(0,up?)

|
oo}

Qk+1(°)wn2) + ZOQk(O,wnZ) + wnz Qk-](oywnz) =

—



Where

Pp=1, P=-0, Q=0, Q =1

Equations (4.1.11) can now be expressed as, for mn2 > g2
7 -4 s N
Bl(c,wn2) = kZ(kabk + ¢ " (Pycycoso - w,© -9 chksme)‘

n - .
Cl(o,mn2) = kz pkdk + € ¢(Pkekcose - ‘/“‘nz - 0% chksine).

#t

n :
D, (¢ ,un2) k{J?kfk + ¢ ¥ (P g cos0 - /57 T Qugsing)

(111.1)

n -
Bz(o,mnz) = kZO[kak»/wnz -0 + ¢ d’(th:,k»’mnz - 0% coso + Pkcksine)]

n -

Cz(o,mnz) = § [dek/mnz - o + ¢ ¢(lek'/“’n2 - 07 cose + Pkeksine)]
k=0
n

Dy(0,2) = 1 [Qfidin? =97 + " (Qygy /a7 — o7 coso + Pygysine)]
k=0

Equations (III.1) are valid for “’nz > ¢2; however, the mapping of
constant settling time contours is for 0 < u < = so that there are

values of Wy and o where “’nz < 02, Thus

/wnz_oz=j/gz_uhz

In this instance (II1.1) becomes, upon using the identities

cos jo? - wnz = coshvo? - “’nz
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sin j'c"" wp“ = j sinhvo?Z - wnz

2 2
w < Qg
for

n
) [pkbk +e ¢(Pkck cosh/o? - "w 7 T +
k=0

B, (0,u,?)
Vo? - mnz chk sinhv/o? - "’nz T)]

C[(O’wnz) =

n - N
L Pudi + 7 (e coshve? =z T

k

/oZ = w? Qeey sinhve? - w7 T)]

n
ki [Pkfk + E-¢(Pkgk cosh/o? - w7 T +
=()

Dl(oywnz)

/T = an? Qg sinh/o? = uZ T)]

- n _
B?-(o’“hz) kZO[kak + e ¢(chk coshvo? - "’nz T +

sinhvo? —wp? T
- Proy /52__:__(“;2_ ) ]

- n :
Colo,uy?) = kZO[dek te ¢(lek cosh/oZ = 7 T +

sinh/e? T a T
e ]
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(111.2)



192
- n -
D, (0 ,uy2) = kzo[qkfk + ¢ ¥ Qg cosh/eT T a7 +

sinh/o7 =57 T
e ]

Pyex

where

_ 2
Bz(°’“n2) = Esz:f&xil_ , etc.

j/aT = up?

Recall from Appendix II that introducing 52, 62 and 52 into
(4.1.14) does not alter these equations. Further, the singularities
that appear in (III.2) when 02 = wy? are easily removed as shown in

Appendix II.



APPENDIX 1V

REAL ROOT DETERMINATION

It will now be shown that the number of real roots equals the
number of straight lines drawn through a working point M(a,,8,) that are
tangent to the ¢ = +1 a-8 curve; and that the values of these real roots

equals the negative of the frequencies, “n,’ Y, . , at the

Wo,o o
tangent points on the ¢ = +1 curve. The argument issthe following:
any value of o that satisfies (4.6.2) for a given value of o = a, and
B = B, is a real root. Then if the slope of the ¢ = +1 curve is the
same as the slope of (4.6.2), the value of the slope of the 7 = +1
curve where it is tangent to (4.6.2) is also a real root. Consider
(4.6.2), which is the equation for the mapping of the real axis, and

determine its slope for a point on the negative real axis, i.e., sub-

stitute s = ~o into (4.6.2). Then,

n _oT n _oT
a ) (-1)kok(bk + e ? ) + 8} (-1)kck(dk * e ) +
k=0 k=0

n
k k -oT
L (Do (f +ge )=0
k=0 koK
The slope for a given working point M(a,,8,) is

n -
kZQ(“)kok(bk + Ck c OT)

=-"n _ (IV.1)
da, kzo(-n“ok(dk tep N
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Now consider (4.1.14) which are the parametric equations for o and

gand determine
ds
da | = +1
Note that when ¢ = +1 (which corresponds to the negative real axis)
s =[-tup * jun/T =2 J o 4y = -up=o0

and the real root equals the negative of the frequency on the 7 = +1

curve. Then from (4.1.14) and (IL.1)

- =y - - -t

dg _ ' '
do [(BICZ - C,B,) (DB, + B,D) - DB, - BD,) -

(D,B, - D,B,)(B,C, *+ C,B, - C,B) - B,C)]/ a2

172 2°1 1°2

and
e o CB.E..- CBICD +DC -DC -Co
do ( 172 1 2)( 172 271 172 2 1)

- ~ d ! iy J - !
(C,D, - D,CH(B,C, + CBy - C,B, = B,C))]/ 42

where B;, B;, . . . , etc. denotes differention with respect to o. It

can be shown after some manipulation that

[} - ’

B, = -oB, , C, = ~oC, , D, = -oD

so that dg/da reduces to

s [ds\fdo\ B, [Bs(C,D, - D,C,) + Cy(D,B, - D,B,) *+ Dj(C,B, - B,C,)

= L
- -
da do j\da C, Bz(D?_Cl - D

- ] '
1C) + C,(B,D, - D,By) + D,(B,C, - C,B,)
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or

("1)k0k (bk + CkE-OT)

2
[}
o

n
o
tk k_k =oT
kZO(-U o (dg *+ exe = )

| Thus, the slope at any point on the a-8 curve for ¢ = +1 is the
slope for the straight line obtained when mapping a point on the
negative real axis (see equation IV.1). In order to prove the proposi-
tion for ¢ = -1, the argument is the same except ¢ = -1 is substituted
in the above derivation. If the working point M(a;,8;) is chosen on the
r = t1 curve a double real root exists of magnitude 3w, denoted on the
curve. This is because the z = *1 line in the s-plane is the limiting
case of complex conjugate roots coalescing on the real root axis as

g-pz}_



APPENDIX V

RELATIONSHIPS BETWEEN ROOT LOCATIONS AND SYSTEM RESPONSE

The desired output established in Section 5.1 can be represented in
the s-plane by the configuration of roots and zeros of the system function
as shown in Figure 5.1.2. The next step in the process of establishing
the necessary relationships is to relate quantitatively this configura-
tion with the transient response. This relation is the general transient
solution. Because of the complexity of this general solution, approxi-
mating relations have been formulated by Chu!. These approximating rela-

tions along with their significance are the subject of this appendix.

For a given linear feedback control system without transport lag

(Figure 4.1.1 with T=0) the system transfer function % (s) is

C . _G(s) _ _ N(s)
R &) = 7566y - K i) V.1
where
m n
N(s) = T (s - z3) » F(s) = k§1(s-qk)

j=1

In this expression it is assumed no multiple roots exist and the order
of N(s) is smaller than that of F(s). These two assumptions are true in

most applications, and in the case of systems with transport lag in the

lThe material contained in this appendix is a slightly modified
version of a portion of a derivation contained in Reference 3.
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forward loop the existence of the term ST in F(s) (see equation 4.1.1)
guarantees that the order of N(s) is smaller than that of F(s). Further,
since the designer has control over the s-plane root locations it is a

simple matter to ensure the existence of no multiple roots.

The values of 25 and qi may either be real or complex. By using
the Laplace inverse transformation, the transient solution of (V.1) for

a unit step input with zero initial conditions may be expressed as

N(O n o N@ qit
. K K
c(t) =K Féﬁ% ' L qus%qki ¢ (v.2)

If the complex roots are combined, it may be written as

N(O n KN(4 t
t) = K F%—}'+ __L_g%___ Qt .,

qg=real

n
k=% "I Wk

(V.3)

This is the general transient solution within the limits of the assumptions
(note that for a system with transport lag equation (V.3) has an infinite
number of terms), The output response is the swmmation of all real modes
due to the real roots and of all complex modes due to complex roots in
addition to a constant term. The following assumption is now made in
order to reach a simple but practical result: It is assumed all the modes

of (V.3) may be neglected except the first constant term and those due to
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the pair of dominant roots. With such an assumption, equation (V.3)

becomes approximately

N(S - '
c(t) =K E(g +2 |K§I—F-T-(—S‘-)?— e™1%cos [wlt +/N(Sl) - /S, - JE'(8) ]

(V.4)
where s, = -0, * ju, are the dominant roots. By differentiating the
output with respect to time and equating the result to zero, the time

to reach the peak of the first overshoot, called Tp, is found to be

. = __1_ n - ’
T, (peak time) " [2 JN(S)) +/F (sl)] (V.5)
The amount of the first overshoot, M, is
M (peak overshoot) = 2wy KNGS,) €'°1Tp (V.6)
o) * w F,(Sl)

obtained from the difference between the output at Tp and the steady
state value of the output. Equations (V.5) and (V.6) are two approximate

equations to be discussed below.

The accuracy of the assumption resulting in these two approximate

. . . . . -g,t .
equations can be estimated readily. A certain simple mode K,e 92" is
considered from the exact solution, equation (V.3). This mode will

decay to 5 per cent of its initial value when t is equal to 3/g,. If

Tp is larger than this value, that is

3
Tp > é‘or o2 > 1 V.7
o, p

the effect of -this simple mode is small even though K, may be reasonably
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large. It has been shown [29] that the value of the coefficient K, is
small if this root s = -0, is not too close to the other roots, if no
.zero very close to the origin on the s-plane exists, or if a real zero is
very close to this root. Thus, equation (V.7) -shows the minimum value
above which the approximate equations will give quite accurate results.
It also may be applied to the case of a complex mode, where o, is then
the real part of the complex roots. In case a certain mode must be
accounted for, the magnitude of this mode at 'I‘p can be evaluated from the
ﬁ;oper term of the general equation (V.3) and can be added to the result

of equation (V.6) as a second approximation.

Simple yet accurate relationships between the transient response
and the chosen roots are now developed. The desired response (as shown

in Figure 5.1.1) is specified by the following four quantities:

1) The scttling time, T, the time at which the response reaches
a certain percentage of its final value. A commonly accepted value for

Tp is 2 per cent.

2) The number of oscillations, N, for the interval up to the

settling time.

3) The peak time, Tp, the time to reach the peak of the first

overshoot.

4) The peak overshoot, M, the amount of the first overshoot.

With these four quantities, together with the pattern of the chosen
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root-configuration (Figure 5.1.2), the desired response is virtually
known without its actual calculations. The first two quantities, Tg,
and N, can be computed from the dominant pair of roots, which are

-0, tjuw, = 3T tjwnl/1 - zZ . The settling time is from (V.4)

s 1 Clwnl (vV.8)

for a 2% deviation from the steady state value. The number of oscilla-

tions may be calculated approximately as follows

- settling time o 2wy
period of damped oscillations 33

2 /T-¢,? (v.9)

1 4

N

=

1

Solving for Z, from the two right hand relationships above yields the

useful result that

1

- p—

-
V' A (eile)? (v.10)

The third quantity, T_, the time to reach the peak of the first
overshoot, is calculated from the approximate equation (V.5). This can
be expressed in the following form

1

T = —

P 9
-0, * ju,) + (sum of angles from the other roots to the

[H/Z - {sum of angles from zeros to the dominant root

dominant root -, +jw1)] vV.11)

Thus, it may be concluded that zeros decrease Tp and additional roots

increase Tp. If the system is known to be approximately second order
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and without any zeros, then the peak time from equation (V.11) is

T = };- (V.12)

Because of the relation w, = mnlll - clz , another conclusion from
equation (V.11) is the peak time is inversely proportional to the undamped

natural frequency “n, of the dominant roots.

The last quantity, M, the amount of the first overshoot, is calcu-
lated from the approximate equation (V.6). It is the product of the

following two terms

~

(a) C‘o]Tp (this quantity is always less than

unity as o, and Tp are positive) (V.13)
h) (product of distances from zeros to the
K « dominant root -9, + juw;)
mnI‘ (product of distance f rom all roots to (V.14)

the dominant root -9, + jw, excluding the
distance between the two dominant roots)

It is obvious from the first term (a) that the smaller the Tp the larger
the M; thus the choice of Tp and M requires a compromise. The effect of
the second term (b) on the magnitude of M depends on K, usually a con-
troller parameter to be chosen. For a zero displacement error system,

K must have the following value (from equation (V.1)).

1

n
AL . ..

K = k=1 _ (product of distances from all roots to the origin)
m ~ (product of distances from all zeros to the origin) (V.15)
il Z. ,

i=1
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This is due to the fact that the output is equal to the input at steady
state for a step input in such a system. By substituting equations

(V.15) and (V.14) into (V.6), the result is

(product of distances from all roots to the origin
excluding distances from the two dominant roots to
_ the origin)
M= (product ot distances trom all roots to the dominant
root -%1 + jw, excluding the distance between the
dominant roots)

(product of distances from zeros to the dominant
root -o; +ij¥% )
(product of distance from all zeros to origin)
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