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ABSTRACT

Title  of Dissertation: Application of Fuzzy Theory to Pattern Recognition 

David Usechak, Doctor of Engineering Science, 1983 

Dissertation directed by: Dr. Stanley S. Reisman

Associate Professor

Department of E lectrical Engineering

New Jersey Institute of Technology

Piecewise curve approximation is used to describe boundaries of objects in 

pictures and waveforms. The method consists of linear and quadratic piecewise 

polynomial approximations in which the error must not exceed a predetermined 

cost threshold. A fuzzy Bayes model is used to determine if  a breakpoint exists 

within an interval In or between intervals I and In+  ̂ and to determine whether 

these intervals can be merged for data compaction reasons. In order to achieve 

these objectives a new fast algorithm has been proposed which gives good 

curve/object fitting . This algorithm uses a technique for generating generalized  

inverse matrices once an in itial generalized inverse m atrix has been determined. 

The continuity requirements at the breakpoints are relaxed such that the only 

requirement is that the data point for interval I  ̂ is the starting point for interval 

I . Results of computer experiments with graphic outlines and radar data are 

reported.
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CHAPTER I 

A PATTERN RECO G NITION PROBLEM

1.0 Introduction

The purpose of this research is to apply the concepts and techniques of fuzzy  

set theory to the detection of contours or boundaries of signals for pattern  

recognition of objects. To do this, we w ill use fuzzy set theory in the decision­

making portion of the problem as it w ill shorten the decision tim e required for a 

solution. Since fuzzy theory is based largely on subjective information it  can aid a 

process under consideration by supplying in itial input data or data updates. For 

most pattern recognition schemes an in itia l training period is required to teach the 

algorithm the input data space characteristics. This method works well if the input 

data space is large. For the small input data space, subjective inputs are 

particularly helpful as they can teach the algorithm until a sufficient data base has 

been established. Problems also exist when the benefits derived from  an algorithm  

training period are minimal because of the nature of the input data and/or problem 

under investigation. For example, in the design of new automobile bodies the 

contour has a very small or nonexistent sample space because the body shape is 

determined by such factors as new engines, and materials, etc.. The same is true in 

other design areas where new objects with different shapes and contours are being 

developed. One technique which has been used extensively for the description of 

object boundaries with variable knots, specifically for automobile body design, is 

spline theory [55,58]. A knot is defined as a point where the describing polynomial 

changes slope. Spline theory imposes a slope continuity requirement at the knots. 

However, for pattern recognition this requirement is not always relevant because 

of the possibility of boundary discontinuities i.e. sharp corners. Also, the 

computational e ffo rt required when the continuity requirement is imposed is

1



2

greater than when it  is absent [3 9 ]. Therefore, if the local continuity requirement 

could be ignored in the search for an approximating polynomial on a subinterval and 

then adjusted globably, we could achieve a near optimum solution with reduced 

computational tim e.

A key feature in the recognition of an object is its shape. The perceived 

shape of an object as suggested by Attneane [6 ]  depends upon the boundary's points 

of maximum curvature. The exact location of the maximum curvature can be 

determined from the second derivative of the polynomial which describes the 

contour precisely. However, from  a practical point of view, exact contour 

descriptions are not necessary because approximating polynomials w ill yield good 

results with small cost(error) and the computational complexity involved is 

reduced. Approximating polynomials w ill give the approximate location of the 

maximum contour curvature. Such maxima in general w ill be close to the actual 

maxima of the second derivative of a polynomial which describes the contour 

exactly.

The problem of shape and edge detection is one of the central issues in 

pattern recognition and as such it has received considerable attention. The 

importance of this topic is reflected in the immense amount of literature  dealing 

with recognition of characters, waveforms, cells, machine parts, etc. [1 4 , 16, 39]. 

In this research we w ill restrict ourselves to the study of plane objects; i.e. we w ill 

deal only with waveforms, and 2-dimensional segmented pictures. We w ill not draw 

any conclusions or inferences to higher dimensional figures. Also, we w ill consider 

objects which have only closed external boundaries, i.e. they do not contain 

internal edges or boundaries. In order to decrease computational tim e, the 

boundaries for this study w ill be described by using piecewise linear or quadratic 

polynomial approximations. The term  "piecewise" refers to approximations on 

subintervals within a closed interval [a,b]. Futhermore, these approximations could
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be composed of combinations of linear or quadratic polynomials on the interval [a,b] 

. The approximating polynomials w ill be found by using fuzzy decision-making along 

with the least squares technique.

1.1 Background

The fundamental concepts of pattern recognition have been applied across 

many different fronts, from data classification to motion recognition, and in all 

cases they have several characteristics in common. Some of the major common 

characteristics within the various areas of pattern recognition are: the solutions 

are very problem oriented, perfect recognition is very d ifficu lt to achieve, and the 

computational time can be enormous if the cost function requirement is too s tric t. 

Thus, in a global sense, a generalized theory within pattern recognition w ill 

probably never exist because of the many d ifferent types of objects (patterns) 

which can be contained within a scene.

One of the fundamental attributes of a human being is his ability to recognize 

objects. Given a complex environment human beings perform pattern recognition 

with fuzzy or ill defined object characteristics and they do this task very well with  

a minimum amount of e ffo rt. One reason why pattern recognition can be 

considered a fuzzy process is that the boundaries between d ifferent patterns 

within a scene are not w ell defined. One method of analyzing patterns in scenes is 

to use statistical decision and estimation techniques for their classification . There 

is a great deal of information on the application of statistical decision-making to 

pattern recognition. However, if  the amount of information of the sample patterns 

is small or non-existent, then this approach is not very helpful in the pattern  

decision process. For situations where the sample space is small and vague, the 

fuzzy decision process is helpful in the classification of objects because of the 

admissibility of subjective input data. Zadeh [5 8 ], who developed the theory of 

fuzzy sets, has studied the uses of fuzzy sets in engineering systems (and also
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algorithms associated w ith those systems) because in itially  in most engineering 

systems the specifications are ill-defined or vague. This then permits a much larger 

design and decision space. In order to reduce this space to a manageable size the 

system design parameters must be assigned to groups and subgroups within the 

system design-decision space. To accomplish this on a small and vague input space, 

Zadeh and others have used one of the attractive  features of fuzzy set theory 

which is the notion of grades of membership or the grade of belonging. Imprecision, 

fuzziness, relates not to randomness but to a lack of a clearly defined membership 

in a class of objects. In classical mathematics, as for example in abstract algebra, 

an object either belongs to a specific class or it does not. However, in the real 

world a class of objects may belong to several categories in varying degrees or 

grades of membership. This is a fundamental concept of fuzzy sets. For example, 

the classification of smells is based upon subjective information which can be 

represented by grade of membership of all smells. Imprecise descriptions and the 

relaxing of the requirement of a numerical input for decision analysis has been 

discussed by Watson [55].

The aim of this dissertation w ill be to use the a ttractive  features of fuzzy set 

theory and the least-squares technique to detect edges and breakpoints within noisy 

data. The approach w ill be to use a piecewise polynomial approximation on subsets 

of the set of all input data. In particular, for shape detection, we are interested in 

detecting breakpoints, given optimum or near optimum piecewise linear or 

quadratic polynomial fits , and minimizing the computational time required for a 

complete solution on a given data set. An attribute of shape detection is the 

curvature of the boundary and a primary characteristic of curvatures is a point of 

infin ite curvature, i.e. a corner given a continuous curve. The above applies for 

continuous data but it can also be extended for discrete data which w ill be shown 

later in the tex t. The cost function for both the continuous and discrete cases for
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evaluating goodness of f i t  of the approximations w ill be the 12-norm, lmax> anc  ̂

slope. These cost functions w ill be defined la ter in the text.

1.2 Statem ent of the Problem

A short description of the entire pattern recognition process w ill now be 

provided , because this process can be decomposed into several unique processes, 

and w ill identify the area in which the problem under consideration occurs. From  

this discussion the problem under investigation w ill be defined by presenting, 

without proof, the mathem atical approach to be taken in this study. The results of 

this discussion w ill perm it us to precisely define the problem to be investigated.

One of the problems of pattern recognition is that the environment can 

provide large volumes of data to a pattern recognition system such that the system 

could be overloaded to the point where it  would hardly produce an output. Figure

1.2.1 represents an overview of a typical pattern recognition problem. In this figure 

sensors provide information about the environment, which is of infin ite dimension, 

to a pattern recognition system. The sensors, which do not have infin ite sensing 

capabilities, w ill provide a lim ited set of information to the recognition system. 

The feature extraction process w ill elim inate or filte r  the sensor information which 

a priori does not contribute to the process under consideration. The feature space, 

output from the extraction process, is normally less than the input space. The 

feature space inform ation(data) is further processed by a classifier to determine 

the data class. The objective is to achieve, depending on the problem, either data 

reduction (compaction) or classification of the original data. The problem we are 

interested in is data compaction or the representation of the input data in a shorter 

form. Also, we are interested in fittin g  a polynomial to a given set of data. One of 

the methods for accomplishing this e ffic ien tly  is the least squares technique. In 

general the least squares technique is a method of polynomial approximation; that 

is a function f(x ) is approximated by a polynomial function F n(x) of degree n on an
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interval a <x _< b. For approximating continuous functions by the least squares 

technique, we are interested in determining a polynomial of the form

F n(x )=  cQ + c^xl + C2 + --------- + cnxn 1.2.1

which minimizes the mean squared error, or ^  norm,

11^" I I  =  ̂ /  [ f ( x ) - F  ( x ) ] ^d x ) ^ ,  1.2.2
" a n

between the two functions . The norm, | |g | |, satisfies the following:

(a) | | g | | > 0 ,

(b) | (g | | =0 i f  and only i f  g=0,

(c) | | K g | | = | | K | | * | | g | |  fo r  any constant K,

(d) | |g+h| |<J | g | | + | | h | | , the t r i a n g l e  in e q u a lity .

A function,^ (c), can be defined for n+1 variables by using equation 1.2.1 and any

function f (x)as follows:

'K cqjC.j ,  ,c n> = /  [ f ( x ) - F n ( x ) ]  dx.  1.2.3

Note that by minimizing ^ (c )th is  w ill also m inim ize| j f (x) -  ^ ( ^ l  |*

In order to find the polynomial that minimizes ip (c ) in equation 1.2.3 we must find a

coefficient c = (cg,c^,....... »cn *̂ The coefficient "c" defines a point in the n+1

dimensional space for which ip (c) is a minimum. We start our solution by expanding 

equation 1.2.3 which gives:
b ? n b .

^CcQ,c1 ,  c ) = /  f  (x )dx-2E  c . f  x f ( x)dx
a i —o a
n n .b i+ i  1 .2A

+ £ T. c . c . / x  dx,  
i=o j= 0 1 Ja

where t  is a quadratic function in Cj. To find the minimum of ip we take the

derivative with respect to the coefficients, Cj and set the derivative equal to zero

. This can be w ritten as:

(Cg ,C^, ...........jCp)
= 0 , 1-2-5

c=c

Substituting equation 1.2.4 into equation 1.2.3 we get:
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n -  b i+ l b I = 2 C. E c. /  x d x - /  x f ( x ) d x )  = 0 ,  
“ i=o t a a 1.2.6

where 1 = 0 ,l,2 ,....,n .

Equation 1.2.6 is known as the normal equation which is defined for a system of n+1 

linear equations. The normal equation, 1.2.6 which defines a system of n+1 linear 

equations, can be w ritten  as
b

/  x ° f ( x ) dx  a

U . . .
r 1 + J -i/  x dx

f  xnf (x)dx  
a

Since almost all pattern recognition systems used today are d igital, and ours is no 

exception, the above equations must be rew ritten  for the discrete case. Starting

with equation 1.2.2 we can write

| f - F  I I = ( E ( f ( x . )  -  F ( x . ) } 2 )*2 1 n 1 1 i n i
1 =  0

1.2.7

Equation 1.2.7 holds for a fixed set of data points. That is we assume that we are 

given an input data set (x0,x i,. . . . ,x n ). Also, the constraint n w ill be imposed

where N is the number of equations. Continuing with equations, 1.2.3 thru 1.2.6 we 

can now w rite

W c 0 , c r . . . . , c n> 5 | | f~Fn | |2 . 1.2.8

Expanding equation 1.2.8 for the discrete condition and using the same notation as 

given above, we get
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ijjCc , c . ,  ,c ) = E f 2 ( x . ) - 2E c, E x . f C x . )
o’ 1 ’ n i= 0  i L=o Li=1 1 1

n n N
+ E E c . c . E x  

■ _ i 3 • _ i 1=0 j=o i - o

l + j
1.2.9

A necessary condition for 41 to have a minimum is given by the normal equation,

i.e.

^  ̂  o ’ C1 ’ ’ ' ’ n
3c ^ _ = 0 ,

c=c

1.2.10

where 1 = 0 ,l,2 ,...,n .

Equation 1.2.10 w ill yield the discrete form of the normal equation 1.2.6 which can 

be w ritten  as

E xT 
i =1 1

l+ j

c Ex° f ( x^ )
0

■ •
m

■ •

• •
cn Ex^f  (x .)i i

Using the above equation, an approximating polynomial(s) can be found, via the 

least squares method, over intervals [a,b] and [b,c] -  see Figure 1.2.2 . The question 

to be asked is if  an approximating polynomial over the interval [a,c], as given in 

Figure 1.2.2, can be determined with reduced computational effort? In order to 

answer this question, we need to predict a priori whether an approximating 

polynomial, over the interval [a,c], exists within a specified threshold value(cost). 

The following agument contributes to the solution of this problem. The process of 

edge and pattern detection done by human beings, which by the way is very 

e ffec tive , is not a precise process; that is, it is a fuzzy process. Precise edges and 

patterns are not necessarily a primary variable when humans perform these 

processes. Thus the process, when implemented by a machine, should allow for
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imprecise edge or corner descriptions, but at the same tim e not miss significant 

object features in the pattern. This can be accomplished by using fuzzy sets, as 

mentioned above, with an interval of evaluation defined as [0 ,1 ]. A fuzzy model 

which can provide answers to the question of polynomial approximations across two

Y

b X

Two edges represented by another edge.

Figure 1.2.2

intervals is called a fuzzy Bayes' model. This model, which we w ill develop later in 

Chapter III,  can be represented as

a priori 
pattern

a posteriori 
pattern

information about 
the pattern
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Fuzzy Bayes' Model 

Figure 1.2.3

M athem atically we can w rite  the fuzzy Bayes' equation as

/ b  ( G |H )o f  = / ' B  <H|Y)of  , 1-2 ‘ 13
H y x G

where
'Xj

f  represents a fuzzy integral

and

o represents the composition of two functions.

The a posteriori fuzzy measure,3y (G| x) , can be determined from equation 1.2.13 

for each interval. From this a final fuzzy value can be calculated to show if  a 

corner exists between these two intervals. For this problem CG ] x -) represents 

the grade of fuzziness of the statement that "a corner of some magnitude exists in 

interval In" which has been subjectively scored from some criterion yj. This final 

fuzzy value w ill then be compared against some empirical threshold to determine if  

a f i t  is possible. The in itia l threshold value must be approximated, and then for 

every iteration thereafter it  shall be adaptively adjusted to give a near optimum  

solution. The term "near optimum" is used because we are not interested in the 

exact optimum solution for either the linear or quadratic case. Instead, we want a 

solution which describes the boundaries or contours of an object well enough, and 

with a minimum amount of processing, so that it  can be easily recognized by a 

human. Thus, the contour/boundary detection and pattern recognition problem can 

be stated as:

Given a fin ite  set of discrete input data on an object's contour, find and 
describe the edges or boundaries such that the description is smooth and 
continuous. Futhermore, this is to be accomplished in minimum tim e and w ith  
minimum number of describing polynomials to meet a given error criterion.

The approach which w ill be followed to achieve the above objective w ill be to use a 

combination of linear and quadratic piecewise polynomial approximations with
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fuzzy decision-making on the amount of polynomial compaction. That is, a decision 

is made within a subinterval or between two contiguous subintervals to determine 

if  a breakpoint exists. Also, fuzzy linguistic descriptive values w ill be used to vary 

the goodness of the approximation on the description of the object's contour. The 

above investigation w ill provide information on a unique way to describe contours.

Linear contour approximations have been investigated and are reported in [33] 

and [39], cubic approximations in [39 ], and higher order approximations in [43]. 

However, to date no work has been reported on using the quadratic polynomial or a 

combination of approximating polynomials. Linear approximation is very a ttractive  

because it  is simple and computationally very fast. However, it  does not provide 

smooth traces. Cubic and higher order approximations provide good edge detection 

and object representation but they are computationally complex. Thus, the 

attem pt in this paper w ill be to show reasonable edge detection and object 

representation by using piecewise linear and quadratic polynomials with fuzzy 

decision-making.

1.3 Dissertation Outline

A summary of the details involved in the solution to the above stated problem 

are presented in the following discussion. This summary also contains the

contributions of this paper to the problem of pattern recognition of contours and

boundaries.

Chapter II deals with the m atrix formulation of the problem. The contents of 

Chapter II include:

(a ) The least square solution using generalized inverse and

(b )The optimum breakpoint location within an interval.

Chapter III deals with the fuzzy decision model formulation of the problem.

The contents of Chapter III include:

(a ) Presentation of fuzzy concepts
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(b) Presentation of fuzzy integrals with proofs and

(c) Presentation of fuzzy Bayes' Model.

Chapter IV deals with the application of Chapters II  and III to the edge 

detection problem. The contents of Chapter IV include:

(a) Presentation of an adaptive threshold scheme and

(b) Presentation of a physical application of the fuzzy model .

Chapter V deals with the algorithm and its differences from other algorithms.

The contents of Chapter V include:

(a) Applying the algorithm to real world data and

(b) A comparison of the new algorithm with other edge detection 

algorithms of the same class.

Chapter VI deals with the computational complexity of the algorithm. In 

particular it  details the computational tim e of the algorithm developed in this 

study and compares this computational tim e with that of other algorithms of the 

same class.

Five appendices are provided which show either detailed mathem atical proofs 

of equations given in the text or results of the algorithm as applied to the 

detection of d ifferent types of contours. Appendix A shows a detailed proof of the 

optimum breakpoint location within an in te rv a l[a ,b ]. A discussion and proof of the 

optimum polynomial for data fittin g  using least-square techniques is given in 

Appendix B. Appendix C presents the results of the algorithm's ability to detect the 

contours of various objects. A detailed numerical example of the short m atrix  

method, as presented in the text, is presented in Appendix D. Appendix E presents 

the computer program listing of the algorithm developed in this study.

The contributions of this paper to pattern recognition of edges/contours 

include:

(a ) A unique adaptive thresholding scheme for contour fittin g  on an



14

interval and for the merging of several intervals.

(b)The application of a fuzzy Bayes model for the detection and 

decision making of whether breakpoints exist within the given 

intervals.

(c) A unique inverse m atrix computational method for reducing the 

algorithm's processing tim e.

(d )The admissibility of heuristic inputs to aid the algorithm in the 

detection and processing of breakpoints for a given contour input.



CHAPTER II 

M A T R IX  THEO RY

2.0 Introduction

As presented in Chapter I, equation 1.2.7, the discrete least squares method 

can be w ritten  in m atrix form. In this chapter we w ill examine the conditions which 

w ill perm it a solution of equation 1.2.7. The primary reason for formulating the 

problem as a set of matrices is that we want to solve the contour problem via a 

digital computer. This formulation is prim arily motivated by Pavlidis [39] and 

McClure [33] because contour approximating on large amounts of data is very 

expensive computationally. As stated earlier the investigation w ill consider only 

linear and quadratic polynomial approximations of data; i.e. a function f(x ) can be 

approximated by a function F(x) which can be expressed for the linear case as 

F j(x )=  cq iKx )+  C]̂  ijr(x) 

and for the quadratic case as

F q(x )=  CgiJ^x) + c1 ^ (x )+  c 2 x ) 

where F^(x) and F^(x) are the linear and quadratic approximating functions 

respectively. In this paper the 's are defined as : 

if»0(x )=  1,

<K|(x)= x,

and
2

=  x  •

The functions i[io>iJ^and are chosen in advance and the coefficients Cg, c^, and C2 > 

are to be determined. To determine the coefficients such that F (x ^  f(x), a set ofq
linear system equations can be w ritten in the following form:

C g ^ X g ) *  C l ^ X g ) +  C ^ ( X g ) =  f ( X g )

cgiJj(xi) + i/^x1 ) + c ^ ( x x ) = fCxj^) 2 .0 .2

13
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c0 ^ o 2 ^+ c1 ^ x2 ^+ c 2 ^ x2 ^= f x̂2 '̂

For linear approximations equation 2.0.2 w ill take the following form  

c^ x0 ) + c l ^ x0 ) = f ( x 0 )

c0^ xl ^ + ci ^ xi ) =

2.1 M atrix  Attributes

A discussion on some key m atrix  attributes and the associated vector space is 

presented in the following sequence along with a least squares geometrical 

interpretation of equation 1.2.7. We start our discussion by defining the matrix  

equation 2 .0 .2  as

4*C =~b 2 .1.1

where is a square m atrix consisting of ^ X j) ,  C is a column vector composed of 

[cg,Cp...,cn ] ,  and b is a column vector composed o f[f(X g),...,f(xn)] . That is, a

solution to equation 2 . 1.1 must lie in a plane spanned by the column vectors ofi|>. 

This column space is usually referred to as the range of ^ ,and w ritten  as R(iJj). 

Further, the dimension of the column space R (^ )is  defined in this paper to be equal 

to the rank, which is also equal to the dimension of the row space. The rank of a 

m atrix is equal to the number of nonzero pivots in the elim ination process. 

Furthermore, equation 2.1.1 could have been defined in a row space by transposing 

the matrices in equation 2.1.1. This equation, 2.1.1, is the m atrix form of equation 

1.2.7. The polynomial, as given in equation 1.2.1, may be viewed as a coordinate 

vector in a "function space" of all polynomials of degree n . The actual function, 

f(x), and the approximating function, F(x), have been defined to lie in a vector 

space . Thus a determination of the amount of separation between these two 

functions can be made. This distance, in the least squares sense, w ill be the error 

between the actual function, f(x), and the approximating function, F(x). A detailed 

discussion of the error vector w ill be given in Chapter IV .

In the linear space of two or three dimensions, known as "Euclidean", the use
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of a norm can be defined for the general case as

2.1.2

where p >_ 1 .

This is popularly known as the 1p-norm . We are interested in two particular norms

because of the amount of information they contain. The two norms of interest are 

the 12-norm, which is defined by equation 1 .2 .2 , and the lmax-norm defined as

1 QV -  Max Ix- I 2.1.3
ma* x e ta ^ ] 1

over a closed interval [a,b]. The above Euclidean norms, 12 and lmax» must satisfy 

the properties as given in section 1.2  on a given linear space.

A geometrical interpretation of the solution to polynomial approximations, 

when using the Euclidean norm in two and three dimensions, is the shortest 

distance between a point and a linear subspace. For the problem under 

consideration this means that the error vector, E (x) = f(x ) -  F n(x), must be 

perpendicular to the subspace spanned by the v e c to r s 'l^ , '^ 1̂  if  the norm of E is 

to attain  a minimum .

2.2 Matrices

The system ^ C = b, equation 2.1.1, of n equations and m unknowns is 

popularly known as the normal equation(s) within the least squares technique. Upon 

investigation of equation 2 .1 .1 , we find that there are certain conditions which 

must be examined before a solution is possible. Otherwise, errors are introduced 

which make the system, ^ C = b, give invalid results. There are three conditions 

which we must consider in order to avoid solution and computional errors. These 

conditions are listed as follows:

(a ) A determination of the linearly dependent and independent system

vectors which can be defined in either the column or row space of

(b) A determination of whether the system is orthogonal, and
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(c) A determination of whether the system is consistent or 

inconsistent.

Since we are interested in solutions to systems of linear equations, a brief

condition (a) we investigate the homogeneous solution of equation 2 .1.1  where the'Jl

there exists at least one combination of vectors which is linearly dependent. The 

maximal number of linearly independent rows or columns i.e. the basis of the row 

or column space of a m atrix is referred to as the rank. We w ill have more to say 

about the rank of a m atrix in Chapter IV. Let ft ,& | ,. .ft be a basis for a column 

space; then the column space has an orthonormal basis consisting of n vectors. This 

leads to condition (b) where, if  the columns are assumed to be orthonormal, we can 

then form a diagonally dominant m atrix. A diagonally dominant m atrix is one 

which has its diagonal elements,a.. , greater than a radius rj, where radius is

w ill be described in Chapter IV when we try to solve the system equation 1.2.6. In 

order to construct a diagonally dominant coefficient m atrix for the continuous 

function F n(x), equation 1 .2 . 1, we start by writing the function as

where G .(x) is a set of orthonormal polynomials of degree i. Substituting the above

examination of the above conditions where solutions exist is in order. Starting with

are column vectors of \p are said to be linearly independent if the linear equation Cq 

^  + C1 V  + c n V °  is satisfied only if  the coefficients c- = 0 . Otherwise

n
defined as r; =E T a . . ]  w ith its center located at the element entry location ajj. A 

diagonally m atrix has some very desirable computational attributes which

n

equation into equation 1.2.3 and solving for the normal equations, as shown in

equation 1 .2 .6 , we get:

a J

n b
£ c . /  G. (x )  G. (x)dx  

i =1 J a J
2.2.1

where j = 0 ,1 , 2 , . ...,n.
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As {G.(x)} is an orthonormal set it satisfies:
1 b

/  G. ( x ) G . (x)dx = 6 . . ,  ? ? ?a j i j i ’

where 6 . . is the Kronecker delta, which then gives the coefficients as 
J1 b

c. = /  G . ( x ) f ( x ) d x .  2.2.3
1 a J

The construction of an orthonormal set of polynomials can be accomplished by 

using the Gram-Schmidt process (see reference [44 ]) . We may assume that the 

interval [a,b] = [-1 ,1] since this can be accomplished by a linear change of

variables. Now for example, we can use the Chebyshev, Legendre, or Lagrange 

polynomials. The important point is that all of these methods yield a diagonally 

dominant coefficient m atrix in the transformed space. Once a solution has been 

determined in the xj' space, a transformation into the x; space can be accomplished 

by a linear change of variables.

For condition (c) we must consider whether the system = b is inconsistent, 

i.e. b is not in the column space of R(C). Where the column space of C is often  

referred to as the range of C. The range R (C ) of a m atrix is the same as the range 

of the linear function L(x) = ^  x . That is, if L (x) is given, then x represents the 

domain and the value of L (x) represents the range.

The last m atrix concept we w ill cover briefly  is that of inverses. A m atrix  

inverse is defined for a nonsingular square m atrix; it  is used in the solution of 

equation 2 .1.1  where the number of equations equals the number of unknowns. 

However, real world data which describe a system could yield a nonsquare m atrix  

and the technique used to solve for this system of equations is referred to as the 

pseudoinverse or generalized inverse - see [7 ]. If  a m atrix A has more rows than 

columns, the generalized inverse can be defined as

A+ = (a T a >1a T

for a nonsingular (A ^A ). A solution of equation 2.1.1 under these conditions is 

called the over determined case; there are more equations than unknowns. The
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resulting solution can be expressed as the column vector C, composed of the 

coefficients Cg,Cp...,cn, which equals the generalized inverse of the square m atrix  

ip+ times the column vector's. W ritten m athem atically we have

C =4)+b,

is the minimum in the least square sense. See Appendix B for a proof that C =ll;+b 

is the optimum least square solution. I f  we have more unknowns than equations, 

this condition is referred to as the under determined case. This gives an infin ite  

number of least square solutions. The generalized inverse for the under determined 

case (more columns than rows) is w ritten  as

A+ = AT (AA>1.

In this paper we w ill restric t ourselves to the over determined case. A detailed  

discussion of the properties of the generalized inverse can be found in [7,9].

2.3 Optimum Breakpoint Location

Up until now we have presented a discussion of least square polynomial 

approximation on a set of data in [ a,b ]. In order to avoid confusion all input data 

w ill be normalized onto the -1 to 1 interval. The concept of using an approximating 

function to describe a contour fails if  the resulting solution exceeds a 

predetermined error threshold E j  =| (f -  F | | . When this happens it indicates that a 

corner or breakpoint exists within the interval |t,b] and we need to use a piecewise 

polynomial approach to find the location of the breakpoint(s) w ithin [a ,b ]. A 

breakpoint, in this paper, is defined as a change in the slope of the given contour 

which causes the error threshold to be exceeded. Or said another way, we would 

like to find the location of the breakpoint without using a tr ia l and error approach. 

A technique which is widely used [45]where approximating piecewise polynomials 

are used to accomplish the above is called variable breakpoint location. For 

example, in design applications where an interactive graphics system is used, it is 

possible to specify the breakpoint locations which minimize either the number of



21

describing polynomials or the error caused by theapproximations. Thus, it  is 

desirable to have a technique for finding the optimum breakpoint location within  

an interval. As shown above, the partial derivatives of equation 1.2.4, with respect 

to the coefficients c., give the normal equation 1.2.6. For optimum breakpoint 

location the partial derivative of E y  , with respect to x in equation 1.2.9 as shown 

in Figure 2.3.1, yields

Y

X X X Xi -1 i+1

Optimun Breakpoint Location 

Figure 2.3.1

^ (xi ) _ e i?i(xi ) = 0  2-3 J

where e. is the error associated with F. at location x. and e. . is the errori i i i+ l

associated with F-+j_ at x} and i = l ,2 , . . . ,n - l .  Equation 2.3.1 shows that for

optimum breakpoint location the absolute values of the pointwise errors from the

le ft  and right must be equal. In order to find the minimum, i.e . the optimum
92 Et

breakpoint location of equation 2.3.1, the m atrix of the second derivatives 

must be positive definite. A detailed discussion of positive defin ite matrices can
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be found in any text on linear algebra I l8 1. Pavlid is[39] has proved conditions for

the m atrix required for the equation

92eT ?
3 7 : - =  [ f  (x . )  -  F. (x . ) ]  -  [ f  (x .)  -  F . (x . ) ]dXT L i 1 1 J L 1 1+1 1 J

to be positive definite, see Appendix A for the detailed calculations. Pavlidis's 

proof shows the necessary and sufficient conditions for a positive definite m atrix  

of the above equation to be:

92 E_ 2 Z , e . C x ) .  . e . C x . )T _ 2 i i -1 i i
9x . 9x . x . - x . - ’ 2.3.2i -1  i i i -1

9 %
y - y *  2e <* , >;  <x,> -  2e 1+1<x ,

X .1

x r v i  x i + r )ci

9 Ej  ^ 2Z2 e .+1 ( x . ) e . +1 ( x .+1)

9x.9x. , . .  x . , _-x .i i +1 i +2 i

2
9 E

1 = 09x .9x

2.3.4

i K 2.3.5

where

Z1 = n2> 

z2 = ( - l f ’~1n,

6 j (Xj )= pointwise error at Xj,
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ej (xj )= derivative of the pointwise error,

and

n = number of terms.

There are two conditions which w ill exist at the breakpoint xj which are of 

interest. F irst, if the solution is sym m etrical, that is ej(xj) = - ej+i ( x}) > then the 

pointwise error can be defined as

— = 2 e . (x . )  [e . (x . )  + e .+1 ( x . ) ] .  2 3 6gx6 i i L i i i+1 i J l .j . o

Second, if the solution is continuous, i.e. ej (xj )= e}+i(x i), we have 

92.

3x‘

92E
2 e . C x . ) [ e . ( x . )  -  e . +1 ( x J ] .  2.3.7

Equation 2.3.6 says that the optimum breakpoint location is where the

approximation from the le ft  and right is symmetrical and where the slope of f(x)  

minus the average slope of the approximation, F n(x)m ust have the same sign as the 

pointwise error. Equation 2.3.7 says that the slope of the approximation on one 

side of the breakpoint minus the slope of other side has the same sign as the 

pointwise error.



CHAPTER III 

FU ZZY  THEORY

3.0 Introduction

In this chapter we w ill consider fuzzy sets and show a fuzzy Bayes model for 

use in decision making. The problem we are interested in is the ability of an edge 

detection algorithm's decision making process, that is to make decisions against an 

error threshold, given some a priori data. This e ffo rt is motivated by Zadeh [38 ], 

Terano and Sugeno [53]because for curve detection the precise description of a 

contour is not absolutely required. As described in Chapter I, we are interested in 

the magnitude of change of the slope at a corner within the interval [a,b], where 

corner has a fuzzy definition. Before presenting the development of the fuzzy  

Bayes model, a brief description of fuzzy m athem atical concepts w ill be presented 

in the next section. But, firs t we w ill present some set definitions which w ill be 

used through out the discussion. I f  we are given a space U , which contains a well 

defined set A, then we can determine whether each element û  in U belongs to A. 

This can be w ritten as u. e A if  u. is an element in A. If u. does not belong to A this 

can be w ritten as û  £ A. I f  we are given two sets in U, namely A and B, then we 

can make the statement that A is contained in B if every element of A is contained 

in B which can be w ritten  symbolically as A <= B or B => A.

3.1 Fuzzy Sets
a-

Fuzzy sets in this paper w ill be represented by A and non fuzzy sets by A 

without the 'v above the symbol.
O/

A fuzzy subset A of a set of discourse E is defined by the membership 

function y^: E->[0,1] which associates with each element xj of E a number y (xj) in
r \ j

the interval [0,1]. Thus, the fuzzy subset A of E can be denoted as
a,
A c E

24
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and the membership of elements within a fuzzy subset can be denoted as
rU '"V; Oj

x e A , ye A , and ze  A 
.1 1 .5

where the number below the symbol represents the grade(membership) of the 

element(s) within the specified fuzzy set; i.e .,y (x ) = .1, y ( y)=  1> and y ( z ) =  .5. 

Definition 3.1.1
% %

Given two fuzzy sets A and B over E, w ith membership functions y/\(x>and y^Cx) 

respectively, then one can introduce the following:
<\j 'Xj

1. The union of A and B symbolized by A UB is defined as
O i  'X,

the smallest fuzzy subset that contains both A and B. That is to

say,

V x e E :y ^  y ^ (x ) = V [y^(x),y  ^ (x ) ]

where v represents the maximum value with respect to the variable 

x.
'"V / O j  O j  O j

2. The intersection of A and B symbolized by AHB is defined as
'Xj %

the largest fuzzy subset containing A and B simultaneously. That 

is to say,

V x e E :y ^ ng(x)=A[y^(x), y ^ (x )]  

whereA represents the minimum value with respect to the variable 

x.
Oj 'Xj

3. The negation B of a fuzzy set A of E is defined as

Mx e E :y ^ (x )=  1 -  y ^<x).

This can also be denoted as 

E$ = A
<\j <Xj

or A = B.

In some texts negation is called complementation.
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Definition 3.1.2
Of

The a level set of a fuzzy subset A of E is a nonfuzzy subset of E denoted by

A„, and defined asa

A a = (x I ^ ( x )  -  a, x e E ) .

That is Aa is a subset of E whose members all have a grade of membership in A 

greater than or equal to a .

Defin ition 3.1.3
'v a.

The disjunctive sum of two fuzzy sets A and B is defined in terms of unions 

and intersections and can be expressed as
rV 'Xj 'Xj r\, O/
A +  B = ( Af l B)  U(AHB) .

The theory of fuzzy sets is based upon nonstatistical concepts and yet many 

readers think that probability theory provides all the necessary concepts and 

techniques for solving vague or ill defined problems. The la tte r  is not true because 

probability is concerned with the random occurrence of an event whereas fuzzy set 

theory deals with the situation where the object(event) is imprecise. That is to say, 

fuzzy set theory assigns to each element of a set a value of the membership 

function, y : E -* [0 ,1 ] . Probability theory assigns a number p e [0 ,1 ] to an element 

which constitutes a probability of an occurrence. We can assign a probability value 

to a fuzzy set, however we cannot do the reverse because we would violate the 

fundamental axioms of probability as given in [38] . Furtherm ore, probability 

theory is based upon the theory of distributive and complemented lattice  or 

Boolean la ttice  whereas fuzzy theory is based upon the theory of vector la ttice  [28] 

. The fundamental differences between vector and Boolean lattices are

(a ) The vector la ttice  is a totally ordered product set and

(b) the Boolean la ttice  has the least and greatest elements 0 and 1.

Also, for the Boolean la ttice  the condition a A(b v c )=  (a A b) V (aA c)

holds and for any "a" there exists an element a^ in the la ttice  such that a^ a l  =
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1 and a A a^ = 0. A detailed discussion of fuzzy subset theory and its operations can 

be found in [22 28, 58].

3.2 Fuzzy Measures

As mentioned in Chapter I we w ill use a fuzzy Bayes' model to aid in the 

detection of edges. The development of this model requires us to investigate 

measure theory which also forms the fundamental base for probability theory. We 

start our development by discussing some of the key attributes of measure theory 

which w ill lead to the definition of a fuzzy measure space. The difference between 

probability measure space and fuzzy measure space is shown in the sequel.

We w ill start the development of fuzzy measures by considering only
*  *  

functions v: K-> R , where K is a non-empty class of sets and R is the extended

real number system which is simply ordered if  we put -  oo < x <+ oo for all x e R 

where R denotes the real numbers. In the above, v defines for each E e K  a 

unique value which is e ither a real number or + m . I t  is assumed that the empty 

set (j) is always contained within K.

We w ill define a space as having a structure which is described in terms of a 

class of subsets called "open". One way of obtaining this class of open sets is to 

define a distance between a pair of points located within the space. Thus a non­

empty set E, together with a function v : E x E +  R , which is now defined as a 

distance function, w ill form  a m etric space if

( a ) v ( x , y ) =  v (y ,x ) -  0 for all x,y eE

(b)v (x ,y ) = 0 if  and only if  x = y
and

(c )v  ( x , y ) - v  (x , z )+  v (z ,y ) for all x ,y ,z eE.

I f  we think of v(x, y)as the distance between the points x and y, then (c) above can 

be called the triangle inequality.
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A set function v : K-* R *  can be defined as being fin ite ly  additive

(d) if v((J)) = 0 and

(e) for every fin ite  disjoint collections of sets E^, E2 >    En in K

whose union is also in K, we have 
n n

v ( U E . ) = E v ( E A  3.2.1
i =1 1 i =1 1

A ring is any non-empty class, say K, of subsets which are closed under the 

operations of union, intersection, d ifference, and (p e K  . For any ring K the set 

function v: K-> R *  is defined to be additive if , and only if, v (0 )=  0 

where

E , F e K ;

Efl F = tp 3.2.2

and

v(E n F ) = v (E ) +v(F). 3.2.3

From these conditions we can now obtain equation 3.2.1. A a additive set function v 

: K->- R *  is defined to be additive

( f ) if  v 0|)) = 0 , and

(g) for any sequence E]_, E2 , ------, En which are disjointed sets in K such

that

and

E =U E. £ K, 
i =1 1

v ( E )  = Zv ( EA  
1=1 1

Now a measure can be defined as a non-negative set function vs K-* R+ which is a 

additive on K; where

R + = { x e R * :  x>0}  .

A standard way of defining a measure on a subset of R is to consider R as a line of 

infinite length which is composed of an infin ite  number of intervals. Then we can 

define a length v(n)  of an interval as the difference between its end points. The
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domain can be defined as a collection of all intervals which are defined by a set 

function. This set function assigns an extended real number, v (n ) £  ± 00 f to each 

set in a class. This same idea can be extended to area, volume, and higher 

dimensional geometry.

Theorem 3.2.1 [23 ]
CO

I f  v is a measure on a ring K , and if  {E } where E ,c: E 0 c; . . . . .cziim E =Un 1 2  n n |</='|

E^ is an increasing sequence of sets in K for which lim nEn e K then

vClim E ) = tim v(E ) .  n n n n
Theorem 3.2.2 [23 ]

r i  nI f  v is a measure on a ring K , and if  IE  s where E .c  E „ c i................P lim  E =nn n n ,

E^ is a decreasing sequence of sets in K of which at least one has fin ite

measure and for which lim  E £ K  , then v ( l im  E ) = l im v(E ) .n n ’ n n n n

Now we can state that v , provided it is a measure as defined in Theorems 3.2.1 

and 3.2.2, is continuous from above and from below E in the lim n En. Up until now 

we have discussed the fundamental theory behind Lebesgue measure. If  more 

detail is desired, the reader should consult [241 Lebesgue measures consist of a set 

function with monotonicity and a additivity. However, for fuzzy set measures, 

the additivity requirement can be relaxed to the point where it applies only some 

of the tim e. In the human thought processes additivity has not been proved a 

necessary or a sufficient requirement for information processing, as it is for 

example in probability measures. Fuzzy set theory uses the term  "membership" or 

"grade" to define elements belonging to a set whereas probability theory uses the 

term "probability of occurrence" or "randomness of an element" to define which 

elements which occur given an experimental outcome. For the definition of fuzzy  

measure, in this paper, we w ill use the term  (p for the grade of an element(s) 

belonging to a given set. We start by defining an arbritrary set U as the universe 

of discourse and an empty set as (J .
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We are now in a position, a fte r some brief definitions on measure theory, to

define a fuzzy measure space. A function, v : u j  R*, is defined to be B-measurable

if and only if 
_1

v (A) e B
-ft

for every A e a . B-measurable refers to a Borel set [23,38]  and a is defined as 

the class of Borel sets in R . Now, using Terano's and Sugeno's [53]definitions, we 

define a fuzzy measure space as a trip le t (X,B,cj>) where B is the Borel field. I f  we 

let h :X ^  [0,1] and F = (X  | h (X)  >a} and if  F c B ,  then h can be called B-Ci ct

measurable.ot is defined as a level or threshold value and h as a mapping from X to 

[0,1 ]. This leads to the following fuzzy measure definition which can be found in [33]

Definition 3.2.1

A set function <J) (X ) with the following properties is called a fuzzy measure:

(h)cf,0})= 0, <KX)= 1

( i)  A,BeB and A c B  then <KA)- <J>(B)
a.

( j ) F  eB and F is a montone sequence, then lim<j)(F )=tj)(limF )• 
n n n-*» n-*°°

From Definition 3.2.1 we see that (h) means boundedness and non-negativity, (i)  

means monotonicity, and ( j)  means continuity. Condition (j) can be dropped if  our 

set X is fin ite .

As a comparison to probability space, we know from [38] that the trip let (X ,

B, P)has the following properties:

(k) P(0)= Q, P ( X ) =  1

(1) A,B e C and A c  B then P(A) *  P(B)

(m ) F eC then lim (F ) = Pdim F ). 
n n-*>° ^

What we have shown in (h) through (m ) is that probability measures are a subset

of fuzzy measures. This is also supported by the fundamental definition of fuzzy
a,

subset theory as defined in [58], that is A c. A. Or, from another point of view,
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probability measures are more restrictive than fuzzy measures. In [28]and [ 58] the 

authors define fuzzy sets with respect to ordinary set theory. Basically fuzzy sets 

cover the entire universe of interest, including regions which are ill-defined, 

whereas ordinary set theory covers well defined regions as illustrated in Figure 

3.2.1.

universe of interest (U )

well defined area of 
interest(A )

ill-defined area of 
interest(A )

Definition of Fuzzy and Ordinary Regions 

Figure 3.2.1

O/
As can be seen in Figure 3.2.1, an ordinary set A is a subset of the fuzzy set A

O/
which can be w ritten a s  A c  A.

We can measure fuzzy occurrence by using probability measures with
O/

additivity. Therefore we can w rite  P(A), which represents the randomness of a 

fuzzy event. However, we cannot do the reverse since it has not been proven that 

additivity exists within fuzzy theory. This is because of the human subjective 

input. Thus, a good assumption would be to throw away the additivity requirement 

in the fuzzy measure as Terano and Sugeno have done. What this means is that 

equations 3.2.2 and 3.2.3 do not necessarily hold. For example, in Figure 3.2.2 we

are given two sets E and F in which E fl F 4 0 but E(1 F = 0. That is, for a given
0/ 0/ 0/ 0/  

problem space the quantities E and F could be ill-defined where the condition Efl F

4 0 exists. This indicates that the additivity term  is empty. But for well defined

quantities, where probability measures hold, the additivity term must be empty i.e.
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EflF = (]). We w ill return to Figure 3.2.2 in order to give a complete description of 

fuzzy measures a fte r we have developed some fundamental fuzzy integral 

definitions.

'Xj

E

E

Additivity Fails 

Figure 3.2.2

3.3 Fuzzy Integrals

The next step in the development of our model w ill be to define an integral of 

a function on the fuzzy measure space (X , B, cjO where X is a space, B a a  field of 

subsets X, and <j> a measure on B . Since fuzzy set theory covers a more general 

domain than ordinary set theory, as shown in Figure 3.2.1, we can now w rite  fuzzy  

functions which look a lot like ordinary set functions. Thus, we are now in a 

position to define a fuzzy integral which is very similar to the Lebesgue integral as 

defined in [38]. We start by defining a simple function as

f ( x )=  S 6 X  ( x ) ,  3.3.1
i - 1  i

where 3• is a fin ite  set of real numbers and Xr-(x) is the characteristic function of a1 —*t-

measurable set E. The characteristic function is defined as

X,- (x )= 1 if  xeE.
- E i 1

or

= 0 if  xfcE.

Thus,
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3- i f  xeE.=1, . .  .n,  
f ( x ) =  1 1

0 if  E. U ................ UEp
The simple function, equation 3.3.1, has been defined on a measurable space which

is composed of disjoint measurable sets such that

"j
E. n E. = (p for i t  j 3.3.2

and

^ E .(x) = i= lB E j

The integral of the non-negative simple function, equation 3.3.1, can be expressed 

as
— n

/  f(<f>)dXC(j>) = Z 3 *<j> ( E . )
i = 1  1 1

where the E.'s are measurable sets in the space x and 3 . > 0 for i = 1, 2, . . . ., n.

The above integral amounts to averaging the function over the given space. In 

order to show the sim ilarity between Lebesgue integrals and the fuzzy Lebesgue 

integrals, we w ill define very briefly the Lebesgue integral. F irst le t X be a 

Lebesgue measure on the a field  B of Lebesgue measurable sets . Then the

Lebesgue integral, on the measure space (x , B, X ) o f  f  over E, is defined as

/ _ f (X)dX = E 3.<J>(AflE.) ,  ,  ,E — — i= i  v  i 3.3.3

where E is a Lebesgue measurable set in x. We have assumed that 0<3  i ^.1 f ° r 1 < i <

n and that 3 j is an ordered monotone increasing sequence. Graphically, the right

E i
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Lebesgue Integral Defined Over A 

Figure 3.3.1

side of equation 3.3.3 is shown in Figure 3.3.1 where equation 3.3.2 holds and 

X E - . l x  eEj  

= 0 x ^ E j  •

Now equation 3.3.1 can be w ritten as

f (x )= .V1 [ 3 .AX£.<X) ] .  3 -3 '4

This means equation 3.3.1 can also now be w ritten in a fuzzy form similar to

equation 3.3.4. We start by writing a simple fuzzy function as 
^ n _
f ( x ) =  . £ . A . XC (X) .

1-1  i - F ,

The above fuzzy function can be expressed in the same form as in equation 3.3.4  

namely
n _

f ( x ) =  V [ A . A X f ^ x ) ] . 3.3.5

Thus, we can see the sim ilarity between equations 3.3.4 and 3.3.5. The fuzzy

integral, as defined in [53]over A eB of f ( x )wi th  respect to a fuzzy measure <|>(x)

can be defined as
%

ZfCxJo <|><x) = V [AAcf, CAfl F, 3 ] 3.3.6
A Ae [0 ,1]  A

where

F a = { x | f  (x ) > A}.

Equation 3.3.6 can be rew ritten as
'Xj a. n

/  f ( x ) o  Cj)(x) = V [ f ( x . ) A  <|>(AflF.)]
A i=1 1 1

n a*
= V [ f ( x . ) A  cf>CF.3] 

i =1 1

if f (xj ) is arranged in increasing order and if  we le t Fj = {xj,  xj+j,  , x ^ .

Then another way of writing equation 3.3.6 is as follows:
'Xi

/fdx_ = V /  <t> dx_ 
n

= V[ Z A .4) (AnE.) ]  
i =1 1 1
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n
_ V [A.A (KATIE.)] .
" i =1 1 1

O/
The symbol for the fuzzy integral w ill be w ritten  as /  .

%
In the above we refer to F^cB which represents a class of all fuzzy subsets of 

A with B- measurable membership functions. As defined earlier, B c  B can be 

viewed as an extension of B into B which preserves all the properties of B. These 

properties are defined in detail in [53]. As pointed out in [26]and[53]these fuzzy  

integrals are also called fuzzy expectations and can be compared to the 

probabilistic expectations as defined in [38], In [26] the authors point out that the 

difference between the probabilistic expected value and the fuzzy expected value 

when defined with respect to p is

|A| = | / f ( x ) d p  -  / f ( x )  o p (F-^) |_< h .

That is by using subjective information via the fuzzy membership value the average 

difference between the fuzzy expected value and the probabilistic expected value 

could be as large as 25%. Take for example five people whose monthly incomes are 

respectively $2200,$2500,$2700,$3500, and $10000. In order to compute the fuzzy 

expected value(FEV)w e need to form the fuzzy measure, which acts as a standard 

probabilistic measure [53 ], from

Vk Ct ^) = u[y|zCy)  > A] = gp <A)

where

g (A)= M  
K P

and

P = to tal population.
Xj

Next the fuzzy density, f Xj, must be formed. In this paper the fuzzy density values 

are derived from a subjective rating curve as shown in Figure 3.3.2. Forming the 

union of the fuzzy density and fuzzy measure we get a set of 2n + 1 elements. This 

set of 2n + 1 elements is arranged in increasing order because of the Max-Min
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comparison operations. That is, we w ill take the minimum of every comparison.

The results must lie to the le f t  of the element position n+1. Next we take the

maximum of these minimum values, which obviously is the value in position n+1 , 

because the array is ordered. This number is the mean of the array. Using the

subjective rating values from Figure 3.3.2 the fuzzy densities are

1.0 A

Membership 
Value

.5 •

 1------------------ 1--------------------------------►
5 10 x lO^

Income/Month

Subjective Rating  
Figure 3.3.2

$2200 = .25 

$2500 = .30 

$2700 = .35 

$3500 = . 45  

$10000  =  1.00

N ext we compute the fuzzy measure Pj according to the above defined F.

sequence. This computation yields: 

p^(x^)  = . 8  

P2 ( t^ )  = . 6
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W  = - 4

P4 ( t x) = .2

where

j = i - 1.

The fuzzy density values, which include 0 and 1, give d ifferent thresholds within  

the interval [0,1] . Forming the union of the fuzzy measure and fuzzy density 

values we get .2 ,.25 ,.3 ,.35 ,.4 ,.43 ,.6 ,.8 , and 1.0. The FEV as discussed above w ill be 

found in position (n + l)/2  and for this example the value is .4. The probabilistic 

expected value(mean) of the subjective ratings on the [0,1] interval is .47. The 

difference between the two methods of computing the expected value is .07 or 7%. 

I f  we change our subjective rating to 

$2200 =  .10 

$2500 = .12 

$2700 = .35 

$3500 = .98 

$10000 =  1.0

then the probabilistic expected value is .51. The difference between the FEV value 

and the mean value for the second case is .11. We see that a change did occur 

between the probabilistic expected value and the FEV. It  is possible to have a 

difference between the mean and the FEV greater than .25. However, the data in 

that case would not make any sense; i.e. the data would not be realistic. As another 

example, if  we changed the subjective rating of the above case to 

$2200  =  .10 

$2500 = .12  

$2700 = . 70  

$3500 = .98  

$10000  =  1.00
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the probabilistic expected value becomes .34 but the FEV becomes .6 . We see from  

the above examlpes that the FEV varies according to the subjective rating scheme. 

This comes as no surprise because fuzzy set theory allows for subjective selection 

of the membership function.

Since fuzzy subset theory is based upon a membership function, we can now 

le t fy (x ) be a membership function of a set Y . The fuzzy measure of Y  can be 

defined as
<\j 'V

<|>(y) = /  0 3.3.7

and the fuzzy integral over Y as

/  f ( x )  o cf>Cx3 = /  [ f  ( x ) A f ( x ) ]  o cj>(x).
y y

From the above definitions we can see that fuzzy measures include probability 

measures as a special case. However, fuzzy measures cannot be used in a 

probabilistic setting because of the subjective nature of fuzzy subset theory.

The additivity of Lebesgue measures is a fundamental concept in measure 

theory. This can be seen if we le t a be a Lebesgue measure, as defined in [24 ]. 

Then it follows that

(a) if A n B = 0 3.3.8
then

/  h(x)da = / h ( x ) d a  + /  h(x)da,  3.3.9
AUB A B

(b) 3.3.10

f  (h., (x ) + h0 ( x ) ) d a  = /  h - ( x ) da  + /  h->(x)da 
X 1 C  X 1 x £-

However, for fuzzy integrals, monotonicity is the fundamental concept which gives

(c) if  A c B  

then

3.3.11
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/  h(x)  
A

0 cp(x) < /  h(x)  
B

3.3.12

( d ) i f h 1 5 h 2 3.3.13

then

If  equations 3.3.8 thru 3.3.14 are viewed from the concept of functionals then the

Lebesgue integrals (equations 3.3.8 thru 3 .3 .1 0 )are linear functionals and the fuzzy

integrals (equations 3.3.11 thru 3.3.14) are non-linear functionals where a

functional is an operation which assigns a number to a function.

Now we can define fuzzy conditional measures which are similar to

probability conditional measures which possess the following properties. We start

by letting (X , Bx, cp ) be a fuzzy measure space and (y , B  ) be a Borel measurable 
x y

space. Also, le t a fuzzy conditional measure with respect to x be w ritten  as £ (F | x )  

with the following conditions:

(a ) For a fixed F e By, £(F |x) is, as a function of x, a Bx -  

measurable function.

(b) For a fixed x eB,£y(F|x) is a fuzzy measure of ( y , B y ) .

A fuzzy measure of Y  can be w ritten in a form similar to equation 3.3.6 by using

the above defintions in (a ) and (b). Writing this equation, we have

<J> (F ) = ^ £ ( F | x )  o <p ( E ) ,  3.3.15
y  X y x

or w ritten another way,
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See Figure 3.3.3 for a graphical definition of F.

Ec:X  and F c Y  and the Conditionals are Defined on Their 
Respective Sets Within X and Y .

Figure 3.3.3

The expression for £x(E|y)can be w ritten  as

4 (E) = /  £ (E y) o tp (F ) 3.3.16

or
% % r\j

f  h (x ) o 4 ( E )  = /  [ /  h (x ) o £ (E |y ) o <f> <F).x y x  ̂ y

See Figure 3.3.3 for a definition of E. Now from equations 3.3.13 and 3.3.16 we

can w rite an expression showing the relationship between £ (F |x )a n d  £ (E |y ) .y x

However, before the relationship can be expressed the sets E and F , as shown in

Figure 3.3.3, must be defined as E c X  and FcrY. Futher, if  we letcf> (E ) =<p (F ) thenx y

the relationship can be expressed as

r\j 'b
f  K (E ly ) o 4 (F) = /  £ (F ix )  o cf> (E ).  
F x 1 r y £ y x 3.3.17

As can be seen, equation 3.3.17 is Bayes1 formula w ritten in fuzzy terms, see [38], 

for the probabilistic expression of Bayes' formula. In equation 3.3.17,^ (E ) is called
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the a priori fuzzy measure and E (E |y ) is called the a posteriori fuzzy measure.X

Equation 3.3.17 can be rew ritten as

E CF | x ) o (p (E)
Z J E  |y> =_ y

CF>

E (F ix ) o 4> (E)_ y 1______  x

/ \  (F |x )  o cj>(E). 3 -3 *18
F y

As can be seen, equation 3.3.18 represents the continuous case for fuzzy measures.

The generation of fuzzy measures as described below is according to Terano 

and Sugeno [53]. They define a fin ite  set X as { x ^ . . . .  >xp} and then consider 

how to generate a fuzzy measure of a fuzzy measure space(x,2x,(p). F irst they start 

by letting 0<<()1<1 for 1 £ i<  n where (f)1 is defined as the fuzzy density. Next[53]

defines a A rule as 
n

A = it (1 +AcJ>1 >—1 3.3.19
i =1

where

-1< A < °° .

Now for a set E czX, as defined earlier, we have

4>, CE) = 1 [  £ (1+Acj>'i ) - 1 ]
A A 1=1

where all i's e E. Thus with the aid of the above definition, we can obtain }]=c()1

for 1 n and if  A fl B £ 0, then

cJ)a (AUB) = (j)^(A) + cjjA CB> + AcJ)A(A)ct>A(B ). 3 3 20

If  A= 0, then c^^CAUB) becomes a probability measure. From equation 3.3.20, if  A>0

then

(j>A(AUB) > (j>A<A) + (f>A(B)

and if  A <_ 0 then

<f>A(AUB) < cJ)A CA) + <j>A<B).

The lambda rule is a technique to incorporate additivity into fuzzy measure
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theory. For example, as shown in Figure 3.3.4, if  the subspaces A i  and B j exhibit 

A i  D B j = 0 then what is the additivity i.e. (A UB), or what is the solution to 

equation 3.3.20? If  the point of interest occurs in A i ,  as shown in Figure 3.3.4, the 

effec t can be determined by solving equation 3.3.19 for A • Thus, given a fuzzy  

density of <f)1, lambda w ill give a measure of spaces or subspace intersections, i.e. 

a grade of relationship of spaces or subspaces with respect to one another. For this 

example we have ci>̂ =1 and <J>g=0 . Substituting these values into equation 3.3.19 

and solving for lambda we get A =0. Thus, equation 3.3.20 reduces to

4>a (AUB) = cj^CA) + 4>X(B)

as expected because of the condition A^fl B^ = 0 .

Point of interest

A

A

Space and Subspace Intersections 

Figure 3.3.4
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C O RNER/EDG E DETECTIO N CRITERIO N

4.0 Introduction

In this chapter we are concerned with the application of the above techniques 

to corner and edge detection w ithin a noisy environment. The technique of 

describing an object's boundaries by using piecewise linear approximating 

polynomials was motivated by A lbano[4], McClure [33], and Pavlidis [39]. Also, this 

motivation is driven by a need to develop an algorithm which is computationally 

fast and by the desire for data compaction. It  has been shown elsewhere, [ 14, 33, 

45], that approximating polynomials of order n >_ 3 are computationally complex 

and time consuming. Higher order approximating polynomials give a smooth 

continuous contour for curve fittin g  on the given data space. However, these 

polynomials normally have a strong continuity requirement which is not necessarily 

a requirement for corner and edge detection because of a possibility of 

discontinuities in the pattern. Pavlidis [ 39] has shown a number of ways to 

approach the contour approximating polynomial problem when a continuity 

requirement is desired. For linear polynomial approximations Pavlidis [39] has 

shown, corners are likely to occur near a maxima of the second derivative of the 

approximating polynomial and, by minimizing the least square error, the location of 

the maxima of curvature can be determined. The question to be answered next is 

what is the definition of a corner or maximum of curvature. This question w ill be 

answered in the following sequence.

4.1 Error Criterion

Since our technique can be used against both wave forms and two dimensional 

curves, we must define the error criterion and the computional method for both 

cases. For wave forms we can define the point wise errors as

43
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e. = I f  -  F I .  4.1.11 1  n 1

The error ê  is computed along the coordinate axis which is perpendicular to the 

tim e axis. However, this is not the case for a two dimensional curve because 

equation 4.1.1 w ill not give meaningful results with respect to the approximating 

curve. The Euclidean distance from  a point (x., y j) to  the approximating curve w ill 

be ill-defined because of the increase of the problem dimensional space, i.e. from  

one to two. Therefore, we w ill define an expression e, which gives the normal 

Euclidean distance between a point, (xj, y j), and the approximating curve F n(xiX 

Perkins in [43] shows an equation of the form

x.cos 0 + yjsin0 - d  4.1.2

Y

X
Definition of Terms Used in Equation 4.1.2  

Figure 4.1.1

for determinimg the error between f(x j)an d  F (x .) where d is the distance from the 

origin to the approximating curve. The first two terms in equation 4.1.2 give the 

distance from a point to the origin where 0 is the angle between the distance 

vectors and the x axis. The error, ej, can then be computed by taking the 

magnitude of equation 4.1.2 which can be w ritten as

e. = | Xjcos 0 + y.sin0 -  d |. 4.1.3

Equation 4.1.3 is one method of solving for equation 4.1.1 if no constraints are 

imposed upon the input data. In the following sequence we w ill show another 

method for solving equation 4.1.1. In this problem we w ill solve for ej by using the
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constraint that all input data be spaced along a coordinate direction at regular 

intervals. This requirement is easy to achieve because we can control the input 

data to the feature extractor as shown in Figure 1.2.1. The following conditions, 

which are shown in Figures 4.1.2 and 4.1.3, must be accounted for:

(a) The data point is located above the approximating curve

(b) The data point is located below the approximating curve

(c) The data point is located such that the xj or yj component is zero. 

This is shown in Figure 4.1.4.

As can be seen from Figures 4.1.2 through 4.1.4 , ej is given as

e. = IA xsinCtan"1 ^  ) I if  the data point x-,y- is located below F (x ) as shown in
i 1 Ax i i n

Figure 4.1.3 or e. =|A ysin(90 - tan” ^  ) if  the condition shown in Figure 4.1.2  

exists. For the condition shown in Figure 4.1.5, if  either the Ax or Ay component is 

zero then ej equals the non zero component. Using either equation 4.1.3 or 4.1.4

The optimum piecewise linear polynomial approximation over an in te rva l[ a,b] 

can be determined by one of two methods: 1 ) find the polynomial of the lowest

order n, in this case n equals either 1 or 2 , where the error ej is equal to or less 

than some given threshold, or 2 ) for a given order, n, minimize the error.

we can determine the error norm over the data set, D. > of interest.

X

Data Point Above Approximating Curve

Figure 4.1.2
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Y

X

Data Point Below Approximating Curve 

Figure 4.1.3

Y

X
a b

x, or y. Component is Zero 

Figure 4.1.4

In this study we w ill use the first method because computationally it is easier and 

the accuracy of the describing contour can be varied. The second method requires 

fitting  a polynomial or set of polynomials of a given order n on the interval [ a,b J 

within the specified error bound. Potentially the second method could give a more 

accurate description of the contour by decomposing the interval [ a,b] into smaller 

subintervals in order to meet the error threshold. Computionally this method is 

expensive and it is not absolutely clear that that much e ffo rt is necessary. The 

firs t method works w ell on an interval [a,b ] no m atter what the input data
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characteristics are even if the input data has been corrupted by noise. Consider the 

situation where the input data has been corrupted by noise as shown in Figure 4.1.5. 

I f  the error bound, E, has been set low as in Figure 4.1.5a then the algorithm would 

report that a corner exists within the data. Conversely, if  the error bound is high 

Figure 4.1.5b the system would report that there were no corners. This situation is 

a dilemma because the system could miss or could interpret the existence of false 

corners, caused by noise, as actual object breakpoints and thus give false reports.

g(t)

t

g(t)

E

■E

t

a b

Noisy Input Signal 

Figure 4.1.5.

One cannot completely avoid such situations, but by experimenting to determine an 

in itia l error bound one can m inim ize false detections. We are concerned with two 

different types of error bounds within this paper. The firs t one has to do with error 

on an interval, or a segment of the in te rva l[ a,b], where the error norm is compared
i i

against a specified error threshold. This can be expressed as e j<  E. where Ej 

represents the specified interval error . The second error threshold is concerned 

with error over the continuum of two segments(intervals). That is if In and In+i  are 

contiguous intervals, then the maximum error in, Inu In+1 > cannot exceed Ej. Ej is 

the adaptive upper error bound over n continuous intervals and it
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adjusts according to the signal's characteristics. Experimentally it was determined 

that for good contour descriptions the adaptive error threshold can be expressed as:

E i = E i-1  +Pi(s/ N ) + e ±Pi

where

Eg = in itia lly  estimated or experimentally determined threshold

p.j = fuzzy value determined from  the model( w ill be discussed

in Section 4.2)

E i-1  = error computed over interval 1^  and

S/N = signal to noise power ratio .

The last term  in expression 4.1.4 was experimentally determined to require the 

following conditions:

(a) use +P,. to determine the upper error bound 
for merging intervals In_i and In-

(b) use -P^to determine the upper error bound 
on an interval In.

The +p. term , for the upper error bound, has been designed to allow the error 

criterion to increase or decrease according to the intervals I  ̂ and In fuzzy value. 

This term also has the e ffec t of smoothing the contour when merging several 

continuous intervals and, in addition, it controls the magnitude of the upper error 

bound. The -p.. term , for the lower error bound, has been designed in such a way as
I

to lim it the amount of error, E j , per interval In . The error lim it per interval is 

directly dependent upon the fuzzy value p^. Thus the p. term  w ill guarantee that 

the computed error over n continuous segments w ill not exceed the error bound. 

This is significant because we can now achieve data compaction by minimizing the 

number of describing polynomials for the object. This result is also heavily 

dependent upon our fuzzy definition of a corner which w ill be presented later.



49

4.2 Fuzzy Criterion

The use of fuzzy sets in this study is a way of evaluating the existence of a 

corner w ithin an interval In or between intervals I and In+i  f or purposes of 

merging. As mentioned earlier, an element of a set is assigned a grade of 

belonging to that set by the fuzzy membership function. The membership function 

is assessed subjectively and this type of assessment has received lit t le  attention in 

the lite ra tu re . As Zadeh points out in [48], it is not in keeping with the spirit of 

the fuzzy set approach to be too concerned about the precision of this number. 

Also, as mentioned earlier, we are not too concerned with the precise detection of 

edges or boundaries. For our purposes it  was decided that as p.., the membership 

value, approaches one the presence of a corner is diminished to the point where no 

corner exists whenp..= 1. Figure 4.2.1 shows the relationship of existence of corners 

versus p̂  . We could have chosen the reverse logic, i.e. when p .=  0 no corners 

exist. The only criterion for selecting any membership function like the one shown 

in Figure 4.2.1 is that it  represent, although not precisely, the desired e ffec t. As 

can be seen, this has been accomplished by our chosen membership function. What 

we are interested in is making a decision about whether the approximating 

polynomial over interval In is good given some input data and some other 

information gathered from the process being studied. The fuzzy Bayes' model as 

discussed earlier w ill supply a fuzzy output measure on an interval In. In order to 

discuss this model with respect to the m ulti-variable problem under investigation, 

we start by considering Figure 4.2.2. This Figure can be viewed as showing how 

much B belongs to the various a /s . A is considered to be the space which can be 

described by several attributes, a.'s, where some are w ell defined and others are 

ill-defined. For the fuzzy Bayes' model, Figure 1.2.3, aj could represent the a 

priori subjective input and B would then represent the inform ation about the
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process, that is $z(y |x l  The subjective inputs for our problem are related to three  

information elements: I2 , lmax> ancl slope. These w ill be discussed later in the

text. Membership values are assigned according to these information elements on 

each interval In. We w ill assign higher membership values, subjectively, to 

parameters which provide a significant amount of information about the process 

being studied. For this study the significant information parameters are and 

slope( 0 ). The ^  value, when computed over an interval [a,b ], can be viewed as

1.0

Existence

Corner

1.0

Existence of Corners Versus 

Figure 4.2.1
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Venn Diagram for a M ulti-Variable Problem  

Figure 4.2.2

providing the average error between the actual and approximating function across 

the interval. The slope parameter gives information as to the amount of direction  

change an approximating polynomial makes. For merging intervals a comparison 

can determine the amount of change between the two intervals and a decision can 

be made if a corner exists between these two intervals. Based upon the above 

statements that ^  and slope provide a significant amount of information about the 

process, we w ill subjectively(initially) select high fuzzy density values for these
r\j

terms. The in itially  selected values were f y, = f v o= .5 . Since 1 does not
Al2 v max

provide a great deal of information about the process, we in itially  selected the a 

priori fuzzy density value as fx max = *1 • A fte r  a training period as described in 

what follows which is necessary to determine the best possible set of values, our 

in itia l values could change. We w ill provide a discussion in the sequence below on
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the e ffec t training has on these information elements. The information term , 3z(y) 

x), w ill be defined as:

e .

and

?3 ^ y 3 > | x i ) =

where e. is as defined in section 4.1 , x. is defined as the input data position within  

an interval In, and S j ( { y j } | x j  ) is as defined in section 3.3. In a fuzzy m ulti- 

parameter problem, humans tend to assimilate information for the determination  

of a near optimum or optimum solution with lit t le  or no e ffo rt. Problems of this 

type, which represent nearly every problem processed by humans, have certain ill-  

defined parameters which are dependent upon the occurrence of other parameters 

as described by the fuzzy model given above.

For most pattern recognition systems a period of training is necessary to 

teach the algorithm on a representative set of data. The algorithm involved with

edge and corner detection in this paper can also go through a learning period,
a,

although it is not necessary. The learning process of the fuzzy measure term  ( fXj),

which is defined in this problem to be in terms of 10, 1 , and 0 , can ber z 7 max 7

accomplished by iterating over a sample data set until the results converge to a

constant or near constant value. Here, "near constant" implies that the final values
%

of f Xj could oscillate about a constant value. Thus, an expression is needed which 

w ill lim it each of the f x. terms in the model. That is, the f Xj values must be 

allowed to vary over a bounded range which w ill yield an acceptable solution. In 

order to simplify the a priori fuzzy measure, an iterative  learning process was 

used. The following learning ru le [52 ]w as  applied in order to achieve a good in itia l
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a priori fuzzy measure value f x. for the model . The rule is as follows:

. ,1 4.2.1
a,

f x = Afx _ ^ ( 1+ A H  (A |x m ) for 1 = 1 ,2 ,.
l i -1

'Xi %
f = Af 

Xj x . ^
for i = 1+1,1+2, . . ,n. 4.2.2 

where A=0< A < 1 . A is a multiplying term which affects the rate of convergence

° f  fx .. To determine the behavior of f Xj we need to give the decision maker 

information on a representative, training, set of data. We start by presenting to 

the decision maker the a posteriori fuzzy measure data,!^. ({y^.} | x ..) , as shown in 

Table 4.2.1 . The fuzzy measure of y can be determined from

VE,= /V fV|xi)0 V 4.2.3

The data given in Table 4.2.1 is an example of a fuzzy measure process where the 

data is not related to any specific contour detection problem in this paper. This 

example is intended to show how we can use ill-defined(fuzzy) information to make 

a decision. In the example, the x's represent a system state. As shown we have 

three states, and the y's are functions which are evaluated given a system state. 

Thus, we have three functions which have been evaluated subjectively given the 

three system states. The subjective evaluation could also have been performed by 

using functions which have been subjectively selected for the process being 

evaluated. The concept is to allow decision making, given some ill-defined terms 

and subjective inputs, in a fuzzy environment.

Y i  Y 2 Y 3

X l .78 1.0 .55

X2 .60 .84 .55

X3 .56 .77 .55

A Posteriori Fuzzy Measure Data
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Table 4.2.1

' b  i \ j

We start by solving for Ey(A|x.. ) and 1 in equation 4.2.1. In order to find £y(A|x^)  

in equation 4.2.1 we must first define a fuzzy expression for the output 

information. This expression can be w ritten as

f j A ) =  /  I  ( y )o f  (E) 4.2.4y y n 7 y
where

'b
I ( y )  represents the menbership function of the fuzzy set A whichn

contains the ill-defined elements.

If  we substitute equation 4.2.3 into the above expression and solve we get

0-1 /  ■ \  ' b  'X j ' b

where

4.2.5
'X j  ' b  , ' Aj

*  i
V A | x . )  = / \ ( y ) o 5 yC t y . J | x f ) .  4^ 6

'b
The grade of fuzziness of the information fy(A;  must be evaluated in order to 

determine if  the a priori fuzzy density values are reasonable. These fuzzy densities 

are later described in terms of linguistic descriptive values for use by humans. 

However, through this example we are able to determine the in itia l numerical 

fuzzy densities. These in itia l densities w ill be correlated with the linguistic 

descriptive terms to determine an in itial starting value. Solving equation 4.2.5 we 

get
' b  n  r x j  r \ j

f  ( A )=  V [£ (A lx . ) A f  ( { x . , X o , . . . . , x . } ) ] .  4.2.7y y 1 i x 1 c i
1 1  < b  rX j

From equation 4.2.7 we can define 1 as the intersection of E (A|x . )  and f  ({  x , , x 9,
X I X 1 z

 ,x. } ). This definition was discussed in section 3.3 of this paper. The learning

rule objective is to decrease or elim inate the a priori fuzzy grade. This is 

accomplished by iterating with equations 4.2.1 and 4.2.2 to increase the value of
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fy (A )• That is,a small a priori value indicates that an event has occurred and in our

problem this means that the information indicates the nonexistence of a corner in

the interval In. Some typical cases of the above procedure are presented in order

to show the e ffe c t of d ifferent types of information on the a posteriori values. For

our example we w ill choose three kinds of information conditions as shown in Table

4.2.2. The data presented in Table 4.2.2 represents the objective information which

the decision maker holds a priori on the states W^ thru Wy  For condition one, data

entry W^, the decision maker indicates that it  has occurred and the remaining data

has not. Condition two represents data which has occurred in a decreasing order.

In condition three, the occurrence of thru W-j is ill-defined such that the

decision maker has assigned a value of .5 indicating that a ll events are weighted

equally. Results of the learning process on f  are discussed and shown below. The
xi

decision maker was presented the information as shown in Tables 4.2.1 and 4.2.2

against which the learning rule, equations 4.2.1 and 4.2.2, was iterated until f x.
%

converged.The reason for this training period was to determine some in itia l f Xj 

values given three d ifferent types of input information about the process. That is, 

if  the decision maker is given some deterministic information, as in condition one, 

event one, then we should expect the f x. value associated with that event to be 

high as shown in Figure 4.2.3. When the information is fuzzy then as expected the 

curves w ill converge to a final value more slowly than for the determ inistic case. 

This can be seen in Figure 4.2.4. The results of iterating the learning rule are 

shown in Figures 4.2.3 through 4.2.5. When the decision maker is presented 

information which is fuzzy, it w ill take longer for the process to converge to a 

steady state as shown in Figure 4.2.4. This can be observed by comparing the 

results as shown in Figures 4.2.3 and 4.2.4. In particular, even a fte r 11 iterations, 

state lmax (shown in Figure 4 .2 .4 ) is still converging to its steady state value of .6  

as shown in Figure 4.2.3. I f  the information is so fuzzy that the best we can do is
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1.0 ■

xi

J=number of iterations

1 02 max

Non Fuzzy Information Given To Decision Maker

Figure 4.2.3
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1.0 •

x i
•J= ll

■ J = 3

J=0

J=number of iterations

1 02 max

Fuzzy Inform ation Given To Decision Maker

Figure 4.2.4
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1.0  -

j= n

J=3
J=0

V

J=number of iterations

02 max

Constant Fuzzy Inform ation Given To Decision Maker 

Figure 4.2.5



Wi W2 W3

Conditions
1 1 0 0

2 .8 .6 .5

3 .5 .5 .5

Objective Information  

Table 4.2.2

to assume a constant, across all y's, the process w ill coverge to the constant value. 

This is demonstrated in Figure 4.2.5. As we can see and intu itively expect, if the 

information is known then a solution should be readily obtained. However, if the 

information is vague, as shown in Figure 4.2.4, then the convergence tim e to a 

solution w ill be longer. Finally, if  the information is very vague, then the results 

w ill become vague as shown in Figure 4.2.5. In the above calculations A was 

assumed to be .5 . The e ffect A has on the entire process is on the rate of 

convergence; that is A acts like a damping term . Another point to be made is 

that when In(y)and f x. values are large the convergence is rapid. This means that 

the event measured by that param eter has occurred. This is shown by the 

parameter ^  in Figure 4.2.3. The above process works well if  we have good 

numerical values to give to the decision maker. However, fuzzy set theory is based 

upon a subjective input made by humans and humans do not use numbers effective ly  

when describing a process. They tend to use adjectival descriptions which 

somehow humans seem to understand better than numerical descriptions. Thus, if 

we use linguistic descriptive values as a means of input, then a fuzzy measure can
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be easily described in terms which humans can understand. A detailed discussion of

descriptive linguistic or syntactical pattern recognition can be found in [ 19,54] . 

The linguistic descriptive terms used in this paper are based upon the following 

criterion. The descriptive terms used must allow for the subjective rating of each 

term as it  relates to the problem under investigation. For example, in our problem  

this applies to the subjective rating of importance or unimportance of the 

information terms ^ ’^max’ anc* ® ' ^ us’ linguistic descriptive terms used in 

this paper relate the importance of the information terms to the detection of edges 

and corners. The linguistic terms are defined as

A linguistic descriptive membership function (shown in Figure 4.2 .6) was generated 

in order to define the membership values. The shape of this membership function 

was chosen such that it  would allow for a smooth continuous transition from one 

membership value to the next and at the same tim e it would fa ll o ff or rise rapidly 

on either side of w(x) = .5. Thus, the membership function w (x) for each linguistic 

descriptive term can be determined by using equation 4.2.8 which can be w ritten as

( a ) l 2 im portant = l2 i

(b) lmax less important = lmaxH
and

(c) slope important = si.

K ( x - a T )
UKCx-ct')^ > a '  — x £  00 4.2.8

and

to(x)= 0 , 0 < x < a ' .

Graphically equation 4.2.8. can be shown as
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w(x)

1.0

a

Membership Function of Equation 4.2.8  

Figure 4.2.6

For our problem we w ill define "important" as having a membership value of .5 and 

"less im portant" as having a membership value of .1. These definitions w ill then 

define k and a '  in equation 4.2.8 as .04938 and .5 respectively. Based upon Zadeh's 

[39] work we w ill define the following linguistic variables for our problem as

(a ) much/very X = (X)2 4.2.9

(b) medium X = (X)1*5 4.2.10

(c) not X = 1 ( X ) =  (1 -X ) 4.2.11 

where 1 = not.

These terms w ill allow us to subjectively change, during the training period, the a 

priori fuzzy density term  f Xj. For example, applying the term  "very important" to

equation 4.2.8 we obtain

,  .  K(Cx-a ' ) 2 ) 2very important =

and applying the term  "not very important" we have

not very important = "l(very important).

With the above, a human can subjectively vary the results according to some

criterion which is germane to the particular problem under investigation.

Bayes fuzzy model as used in this problem will generate three outputs per
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interval, In (lo,l , 6 ), from which we must determine the best possible solution. ’ n Z’ max

It  has been experimentally determined that the fuzzy disjunctive sum 

operation w ill yield a term  which best describes the interval's characteristics. The 

disjunctive sum can be w ritten  as follows:

^  = <l 2 AW v ( i 2Almax> 4 ' 2 ' 12

C = (C A e) V (c l  A 0) 4.2.13
n  a  —  — a

where I £, i rnax> ar,d are the complements of their respective parameters. By 

using equation 4.2.13 we find a term  which represents the characteristics of
'Y, O.

interval In. This value C n, along with the value Cn from interval In_ l, w ill be

used in equation 4.2.14

D = (C A ?  J V C C  A c  ) 4.2.14n —n-1  —n n-1

to determine if  a corner exists between these two intervals. The determination is 

made by comparing D against an experimentally derived threshold value E. to see if

the criterion has been satisfied. The results of the threshold value have been

summarized in Figure 4.2.7 for one and two or more intervals respectively.

1.0

1.0

two or more intervals 
upper lim it

one interval upper lim it
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Piecewise Decision Space 

Figure 4.2.7

4.3 M atrix Criterion

As discussed in Chapter II, we are interested in solving the system equation 

ipC  = b, equation 2.1.1, as e ffic ien tly  as possible. "E ffic iently" as used in this 

study has two meanings; they are

(1 ) e ffic ien t computationally

(2 ) and e ffic ien t solutions, i.e. optimum or near optimum.

The above two meanings are areas which have received a great deal of attention  

[16, 19, 39, 54 ] by investigators in the field  of pattern recognition. In Chapter II we 

discussed ways of reducing a system m atrix  to a diagonally dominant m atrix. 

These methods work reasonably well on one set of data. However, given a data 

space as defined for this problem, there exist two methods for enhancing the 

solution(s) to equation 2.1.1. F irst, for a solution on an interval In, we know that 

all input data w ill be spaced one unit apart in the dominant coordinate direction. 

Knowing this fact we can quickly reduce the C m atrix, in equation 2.1.1, to a 

diagonally dominant m atrix as discussed in Chapter II. Another method of 

accomplishing this is to reduce the C m atrix by using a multiplying factor a fte r  

transforming the data into the -1 to 1 space. A discussion on the determination of 

the multiplying factor <5 w ill be presented in Chapter V. This multiplying factor, 

once determined, w ill allow us to compute C + without actually performing any of 

the required m atrix operations. For example, given five consecutive input data 

points in one coordinate direction and a fte r transformation, the linear C m atrix  

becomes

C =

Multiplying C above by 6 , the multiplying factor, gives C + as

5 0 

0 2.5

4.3.1
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C+ =
.2 0 

0 .4

4.3.2

We can verify  the results of equation 4.3.2 by using the techniques as discussed 

earlier. I f  the above technique works well on one interval of data, can we find a 

method for applying it to n consecutive intervals as shown in Figure 4.3.1? The 

answer is yes, as discussed below.

We are now interested in forming the sum of two generalized inverse 

matrices in order to shorten the computional method of finding the generalized 

inverse over two consecutive intervals. That is to find

Y

X

Optimum Curve Y 3 was Found, Given Yj. and Y 2 

Figure 4.3.1

C 3+ = (C 1 + C 2 )+. 4.3.3

Before we show the proof of equation 4.3.3 for the generalized inverse case, we 

w ill start by firs t considering only square invertible matrices. We know from
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m atrix theory how to find the inverse of a m atrix and, if  given two nonsingular 

matrices, we can find the inverse of C^C2 as C 2"^Cx“^. The problem we are 

interested in is to find where C 3 "'*' = (C l + C 2 )~ \ in terms of C l - -*- because

we have already computed

We start by defining C 3 - l  as

C 3_1 = (C^ + C 2 )_1 = C ^ 1 -  C 1 "1C 2C 1 "1 4.3.4

where a = tr  C 2Cx-  ̂ and we are assumming that the inverse exists. Equation 4.3.4  

is known as the Sherman-Morrison Equation [12 ]. I f  we consider a square m atrix H 

of rank one, then all eigenvalues, except possibly one, are zero. We know from  

m atrix theory that the sum of the eigenvalues is the trace. Thus for such a m atrix, 

H, the eigenvalue is tr  H . A m atrix of rank one can be formed from two nonzero 

column vectors b and d of the same dimension. The m atrix H -  dbT has rank one 

because b and d were given as having rank one. From [23] a m atrix H of rank one 

is composed of nonzero vectors b and d such that H = dbT. Now if we are given 

any square m atrix C and a square m atrix H, as defined above, then we can define 

H CH as

HCH = dbT cdbT = fl dbT = Q, H 4.3.5

where

= bilinear form  b^cd.

Thus, we can w rite the m atrix Cx + H as

C 1 + H = (I + H C 1"1 X: 1 4.3.8

and, since Cx is nonsingular, the m atrix HCx"-*- w ill have a rank of one. One 

eigenvalue of I + H C x- -*- is 1 + tr  H C x-  ̂ and the remaining eigenvalues are one. 

The m atrix Cx + H is nonsingular if  and only if tr H C “1 £ -1 .

In order to w rite the right hand side of equation 4.3.3 it  is convenient to 

consider a function f(x). Le t f (x )be differentiable on an interval a £ X  £ b . Using
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the law of the mean 29 , we can define an f(x)as

f(x)  = f(a) + *f(fib)x 4.3.9

where

0 < n < 1 .

I f  we now le t f (x )=  (x + b )- l,  then we can w rite

(x + bX 1 = b"1 -  (1 r 2 b"1 xb_1 4.3.10

where a = 0 .

Equation 4.3.10 can be rew ritten as

(x + b )-1  = b' 1 - t  b"1xb“1 4.3.11

where

x =  (1 +

Now if we identify b with A j  and x with H we get

(H + C p -1 = C j" 1 - t C 1"1H C 1“1. 4.3.12

If  equation 4.3.12 is the inverse of H + Cl> then their product must be the identity

m atrix I. To prove this, s tart by forming the product as

(H + C 1 XC1 "1 -  tC 1 ' 1H C 1“1 )=  I - t H C 1 "1 + H C 1" 1

-x H C ^ H C j1. 4.3.13

Solving the right hand side of equation 4.3.13 for gives

tH C -l"1 -  H C 1 _1 + t ( H C 1 - 1 )2 = 0 4.3.14
o

From equation 4.3.7 we find (H C -1) = n HC, and by substituting this into equation 

4.3.14 we get

(x  + L + Tfi) HC  ̂ = 0 4.3.13

Solving equation 4.3.15 for t we find 

T -  1 + Tft = 0 ,

or T = 1

or
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1
T 1+trHC 4 .3 . I 6

We have now shown that given two matrices, one square and the other of rank one, 

the inverse of there sum can be found by equation 4.3.4. What we w ill show next is 

tha t, given two square nonsingular matrices of rank r, equation 4.3.4 w ill still hold. 

To start, assume that m atrix C 2 in equation 4.3.4 is of rank r, which can be w ritten  

as

C 2 = H1 + H 2 + .............. + H r 4.3.17

where each H i, 1 < i £  H r , has rank one [23]. Now equation 4.3.4 can be solved 

recursively but before we can do that we must show that C 2 , which now is w ritten  

as equation 4.3.17, is nonsingular. As given above, the eigenvalue of H C _1 £ 1 

allows C i  + C 2 = (I + C 2 C i - l )  C i  to be nonsingular. I f  we le t Z be a nonsingular 

m atrix where J = Z- 1 (C 2C i _l)Z , this is the Jordan form of C 2 C i“l ;  and if J = J^ +

J2 + ................. + Jr where the kth row of J|< is the kth row of J, then the remaining

rows of Jk are zero. This gives the m atrix Jj a rank of one which then gives I + J i  

+ J2 + ..............+ J|< as a nonsingular m atrix for k = 1 ,2 ,......... ,r. Now we can w rite

(i + z_1 JzX:1 = (i + 31 + j 2 + .+ Jk)z)c1

= c 1 + z '1Jzc1 +  +z"ljkc i

which is nonsingular for k = l, ...... ,r. Since Z ^ J^ Z C ^  has a rank of one, we can

le t C 2 = Z ~ ^ \ Z C y  The above can now be stated as

"Given two square matrices, C i  and C 2 , we can form  a
m atrix as

C3"1 = (cx + c 2)_1 = c f 1 - ^  c 1-1c 2c 1-1

where

1
3 1 + t r C 2 C1-1 '

That is, the inverse of the sum of two nonsingular matrices can be found by a 

straight forward solution as given above. Now, returning to the generalized inverse
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case, the proof of equation 4.3.4 depends upon the existence of the product of 

(AB>- = B+A+ 4.3.18

because according to Greville [ 7 ] this situation does not always exist. Greville  

shows in [7] a proof which says that the conditions R (A *A B )C R(B) and R (B B *A *) ^  

R (A * ) must exist in order for equation 4.3.18 to hold where *  denotes the 

conjugate transpose of A. R(B) and R (A *)  denote the range of B and A * .  Also, the 

following equations must be satisfied before equation 4.3.18 is true:

1)A +A B (A B )* = B(AB)*

2)B B +A *A B  = A *A B

Or, stated another way, the rank of B+A+ must equal the rank of AB which 

means that B+A + e AB. That is if  rank x = rank A, then R (xA ) = R (x) because these 

two subspaces are identical if , and only if, they have the same dimensions. We 

know that the rank of any m atrix is the dimension of its range [23]. Therefore we 

can w rite  R (xA ) c R(x). Also, nullity of any m atrix  is the number of columns minus 

the rank [2 3 ] . So N (A ) = N (xA ) if , and only if, A and Ax have the same null space. 

They do because they have the same rank, i.e . the same number of columns. By 

applying Penrose equations [7] it can be demonstrated that equation 4.3.18 does 

exist. Thus, if  these conditions are satisfied, we can then w rite equation 4.3.4 as 

C 3+ = (C^ + C 2 )+ = C 1+ -5r| i -C 1+C 2C 1+. 4.3.19



CHAPTER V 

ALG O RITHM

5.0 Introduction

Up to this point, we have discussed the theory behind approximating contours 

by using linear and/or quadratic polynomials. Also, as mentioned earlier, we are 

concerned w ith the closeness of f i t  of polynomials at corners (breakpoints) within a 

given interval or between intervals. In this chapter we w ill present an algorithm  

which uses the fuzzy Bayes model to ascertain if  a corner exists within an interval 

In. Results of the algorithm are presented and are compared to results from other 

algorithms of the same class on the same set of data. Before starting our 

discussion, we w ill establish the conditions/constraints of the input data and the 

constraints of the approximating polynomials at breakpoints. Before the algorithm  

w ill process the data; all data presented to the algorithm must be equally spaced in 

a given coordinate direction throughout the entire data space. For example, if  the 

input data is a time varying signal, then the tim e coordinate data must be equally 

spaced. If  the input data is a 2-dimensional figure, then either the x or y- 

coordinate data must have uniform spacing. The second constraint on the algorithm  

is that the ending point for interval In is the starting point for interval In+j_; that is 

Inj D I(n+i ) j  ^ 0* This constraint w ill give an approximation which is continuous at 

either a breakpoint or at the end of an interval. This condition is demonstrated in 

Figure 5.0.1. This last constraint is significant because now a contour or boundary 

of an object is closed. Pavlidis[39] uses a symmetrical constraint which does not 

give a continuous representation of a contour; instead gaps can exist within the 

object's describing contour. For example, in Figure 5.0.2 we see a symmetrical 

condition and note the gap in the contour. The constraints which Pavlidis uses are

69



70

a' X

Continuous Condition in an Interval 

(a)

Y

b X

Continuous Condition at a Breakpoint 

(b)

Figure 5.0.1

valid for linear polynomial approximation, but the overall boundary description is 

not very good because of these gaps. In our investigation we are concerned with  

good boundary descriptions but we must bear in mind the computational time  

penatly one pays if  good contour description is desired. A discussion on 

computational times w ill be given in Chapter VI. In addition to the above



71

A
Y

a a1 b X

Symmertical Constraint Can Give a Gap

Figure 5.0.2

conditions, the algorithm being presented w ill also use a quadratic polynomial to 

aid in contour description. For example, in Figure 5.0.2 the algorithm would use 

two quadratics to describe the given curve as shown in Figure 5.0.3. The 

difference between our algorithm, which uses linear and quadratic approximating 

polynomials, and algorithms which use linear approximating polynomials is that we 

could have more describing polynomials per object. However, this is not 

necessarily true for all cases because quadratic polynomials w ill give a certain  

amount of data compaction on describing an object's boundary.

5.1 M atrix  Operations

In Chapter IV, a method was presented for computing the sum of two 

generalized inverse matrices. It  was noted that one of the major drawbacks with  

the computation of equation 4.3.19 was the tim e required to obtain a final solution 

and, as discussed in Chapter I, this is one of the major problem areas of pattern  

recognition. In order to reduce the above m atrix computional tim e we w ill now 

show a unique scalar multiplying coefficient which w ill yield the le ft side of 

equation 4.3.19. If  we rew rite  equation 4.3.19 as

5.1.1
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Y

i' b X

Quadratic F it of the Curve Given in Figure 5.0.2 

Figure 5.0.3

where B. represents ar,d , then a result can be stated such that the

le ft  side of equation 5.1.1 can be found by using a scalar multiplying term . That is 

can now be found by the expression

A i+1 = W i + A i+) ^

where A+  ̂ = 0 for i = 0.

Theorem 5.1: Given a set, X +, of ordered data points which are equally 

spaced (in distance between each point) along an axis, as shown in Figure 5.1.1a, 

and if  X + is partitioned into ordered subsets x .<  X +,as shown in Figure 5.1.1b, then 

a set of scalar multiplying 5- values can be determined as

Si = AWAi-l<'*VAi-l>- _ ^
Such that At+  ̂ =6^ (A. + A. + ) where X + represents the set of all natural

numbers. Now we can determine the generalized inverse m atrix for Xj U Xj by 

equation 5.1.1. Computing the generalized inverse m atrix At+  ̂ by using the 

Gaussian elimination method on intervals Xj U Xj U xj+  ̂ , where interval Xj U Xj has 

already been found, is not a very e ffic ien t process. That is, the m atrix
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Y

-  { zp z2>z3 } » ^2 -  { z 3>z 4>z5 } >

X n = {zn-2’ zn - l ,zn }

Ordered Data and Sets 

Figure 5.1.1

computational time involved when using the Gaussian elim ination method is too 

large when compared to scalar m ultiplication. The scalar multiplying term 6. , as 

given in equation 5.1.3, can be determined a priori and stored within the algorithm. 

The right side of equation 5.1.1 can be computed without having to perform any 

m atrix operations other than the operations indicated by equation 5.1.2. Writing 

the new and short form of equation 5.1.1 we have

Appendix D contains a detailed example showing the results of equations 5.1.1 and

5.1.4. By preprocessing we can determine as many <$.j terms as desired. These values 

can then be stored in a look up table within the contour's algorithm. When the
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contour algorithm determines that two intervals can be combined,(this is one form

of data compaction) it  w ill do so by choosing the appropriate 6 . value and it w ill

then perform the calculations as indicated by equation 5.1.4. It  must be noted that

we re fe r to the combining of two intervals in which the firs t interval, represented

by A f   ̂ in equation 5.1.4, could be composed of several combined intervals. That

is a. c  where a .( i= l,......,n) represents intervals which are subsets of

Table 5.1.1 contains the set of <5. values used in this study for contour

approximating polynomials a fte r the input data has been transformed onto the -1 to

1 interval. The table contains two sets of values; one for the linear case and one

for the quadratic case. Since all input interval data has been normalized between -

1 and 1, the resulting matrices are diagonally dominant as discussed earlier. It

should be pointed out that these 6.. values w ill work for any object/signal as long

as the conditions as stated in this paper are satisfied. The values contained in

Table 5.1.1, which have been plotted on a sem i-logarithmic scale in Figure 5.1.2,

show a tendency to approach zero as the number of merged intervals approaches a

large number, that is, in the lim it as n -»■ °° , 6 ^  0. But large values of n, for

instance those greater than 10, are not practical because real world data is not

well behaved. However, if  the data is well behaved, then the number of points per

interval should be increased to keep the number of <S. terms small. This increase in

points per interval w ill not change the <5.. values as long as the number of points per

interval remains constant. Appendix D shows the calculations of some of the values

which are contained in Table 5.1.1.

5.2 Fuzzy Decision Values

Earlier we discussed using a fuzzy Bayes1 model as an aid in determining if  we

have encountered a corner/breakpoint within an interval. We also discussed the

subjective importance of certain parameters whose values contain significant

information on the data contained within the interval I . We defined thesen
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information parameters as lmax» anc* s^°Pe ( ® )■ We w ill now present the e ffec t

M atrix  element 

Position multiplying 

coefficients

Intervals

Merged

al l a22

1 .2777 .3333

2 .1282 .1648

3 .0735 .0980

4 .0476 .0649

5 .0333 .0461

6 .0246 .0344

Linear Case

(a)
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M atrix element 

Position multiplying 

coefficients

Intervals

merged

al l a13~a31 a22 a33

1 .2629 .3030 .3333 .3636

2 .1199 .1468 .1648 .1888

3 .0685 .0866 .0980 .1155

4 .0442 .0572 .0649 .0780

5 .0309 .0405 .0461 .0561

6 .0228 .0302 .0344 .0423

Quadratic Case 

(b)

Multiplying Coefficients

Table 5.1.1
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Linear
M ult.
C oeff.

.4

1

.05

.02
1 2 3 4 5

Number of Merged Intervals 

Multiplying Coefficients

(a)
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Quadratic
M ult.
C oeff.

13 ~ 31

.02
1 2 43 5

Number of Merged Intervals

Multiplying Coefficients

(b)

Figure 5.1.2
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of various linguistic descriptive values have on the algorithm's ability to detect a 

corner. The test data presented to the algorithm consisted of two intervals, each 

containing five data points. The firs t interval was a straight line and, in all cases 

considered below, the S/N = 0. The second interval contained data which started as 

a straight line, ^  = lmax = 9 = 0 ,  and was varied so that a breakpoint was observed 

at Vir *(n+l)r w*-|ere r represents the data point location within an interval. The 

results of the second interval for these test cases are shown in Table 5.2.1 where 

we can observe the e ffe c t the linguistic descriptive values have on the outcome. 

The linguistic descriptive terms used in this study are shown below for both the 

linear and quadratic approximations. They are defined as:

L I = large important

LS = large small

LVI = large very important

LM I = large medium important

LMS = large medium small

LN M I = large not medium important.

Further, the numerical values for the above linguistic terms are defined on the [0,1 ] 

interval w ith the subintervals defined as ranging over the following:

Small = 0 to .3 

Medium = .4 to .6 

Large = .7 to 1.0.

The breakpoints introduced between intervals 1̂  and ^  in the above Table have 

angular differences of 0 °,3 0 °, and 45° for test cases 1,2, and 3 respectively. That 

is, the slope for interval was varied in order to cause a breakpoint to appear at 

the intersection of the intervals I j  and I2- The results shown for test case number 

one in Tables 5.2.1 and 5.2.2 are also the same as the results for interval 1 .̂ 

Because of the non-existence of a breakpoint at 1̂  0 I F o r  the remaining test
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Test Test

l 2 0 .0153 0 l 2 0 .015 0

1max 0 .0219 0 ‘max 0 .021 0

6 0 .3346 .5 0 0 .334 .5

pi 0 .900 .5 pi 0 .665 .499

e t
0 .984 0 *

e t
0 .984 0 *

Linguistic Descriptive Values: 

I 2 = 9 = L I and

1 = LSmax

Linguistic Descriptive Values: 

I2 = 0 = LVI and

1 = LNVS max

(a) (b)

Test Test

Cases 1 2 3 Cases 1 2 3

l2 0 .015 0 ‘2 0 .015 0

I 0 .021 0 1 0 .021 0max max
0 0 .334 .5 0 0 .334 .5

pi 0 .857 .499 pi 0 .90 .818

e t
0 .984 0 *

e t
0 .98 0

Linguistic Descriptive Values: 

I2 = 9 = L M I and

1 v = LMS max

(c)

Linguistic Descriptive Values: 

12 = 0 = LN M I and

‘max = LS

(d)

*D id  not merge intervals Ix and l r  Thus, E j  represents the error over the 

last interval, i.e.
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Linear Approximation Case 

Table 5.2.1

cases the results of lo ,l„ ,„„, 0 .and p. shown in the tables are for interval I0. TheZ’ m a x ’ ’ ' i  Z

E j  term  represents the computed error for the merged intervals 1̂  and ^  except 

where noted. The key term in these tables is for the following two reasons: 

firs t, we compute |p .“Rj_«| | and if  this difference is less than the largest linguistic 

value then a merging is possible; and second, the difference is substituted into 

equation 4.1.4 so that an upper error bound can be established. Since the S/N = 0 

the in itia l error term , Eg, in equation 4.1.4 was set equal to zero. Note that if  a 

merge fails then the resulting E-j- is for the last interval, which in this example is 

interval A further interpretation of the results as presented in Table 5.2.1 is as 

follows. I f  for example a corner/breakpoint of significance is defined to be greater 

than 50 degrees, when measured from the horizontal, then all of the test cases as 

given in Table 5.2.1 with there associated linguistic descriptive values are 

acceptable. That is, given the linguistic terms for the various test conditions, the 

resulting values are less than the corner/breakpoint threshold values derived 

from the linguistic descriptive equation 4.2.8. Or stated d ifferently , corners which 

are less than 50 degrees are considered to be insignificant(not important). The 

corners which are less than 50 degrees do not contain any significant amount of 

information about the object's contour and therefore the object's contour over that 

interval w ill be approximated by a single polynomial. However, if  a corner is 

defined to be 40°, or greater, then the linguistic terms given in Table 5.2.1 a, b, 

and c w ill indicate the absence of a corner. That is,for the linguistic values as 

given in Table 5.2.1 the resulting p  ̂ values must be greater than .6 for merging to 

occur. Observe that this is true for the conditions given in Table 5.2.1 a,b,c, but 

not d because of the linguistic values used and thus the resulting p.. failed the test 

i.e. u) the significant linguistic descriptive value. These results occur because
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Cases 1

Test 

Cases 1

‘ 2 0 .68 .88 ‘ 2 0 .68 .89
1max 0 .62 .69 ‘max 0 .62 .69

0 8 9.9 6.5 0 8 7.7 6.5

Pi 0 .09 .09 pi 0 -.8 -.8

e t 0 1.62 1.16
e t

0 .68* .88 *

Linguistic Descriptive values: 

I2 = 6 = L I and

1 = LSmax

(a)

Linguistice Descriptive values:

12 = 0 = LVI and

1 = LNVSmax

(b)

Test 

Cases 1 2 3

‘ 2 0 .68 .89

1max 0 .62 .69

0 8 7.7 6.5

pi 0

LACO .14
I—

Ld 0 1.61 1.16

Test

Cases 1 2 3

‘ 2
0 .68 .89

1max 0 .62 .69

0 8 7.7 6.5

Pi 0 .9 .09

e t
0 1.6 1.16

Linguistic Descriptive values:

12 = 0= LMS and

1 v = LMS max

(c)

Linguistic Descriptive values: 

12 = 0 = LNM I and

‘max = LS

(d)

*D id  not merge intervals 1̂  and I2> Thus, E-p represents the error over the 

last in terval,i.e . I
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Quadratic Approximation Case 

Table 5.2.2

the corners/breakpoints are not properly detected by the Imax term as discussed in 

Chapter IV. Table 5 .2 .Id  shows the e ffec t of a poor selection of linguistic 

descriptive terms for corner/breakpoint detection. For the quadratic case we find 

that the linguistic terms as given above give good results as can be seen in Table 

5.2.2. The quadratic test case was composed of two intervals in which the first 

interval was held constant and the second was varied in order to cause a breakpoint 

at ^nr^ *(n + l)r’ Also, observe that in general the linguistic descriptive terms for 

the quadratic case are lower than for the linear case. This fac t is shown in Table 

5.2.2 b test case 3 where the algorithm did not merge the intervals because of a 

stringent corner requirement. The lower linguistic descriptive values for the 

quadratic approximation can be attributed to the fact that there are more 

describing terms for quadratic polynomials than for linear polynomials.

From the above discussion we can draw the following conclusion about the 

merging of intervals for data compaction. I f  good edge and contour detection is 

desired then higher linguistic values are required for the linear case than for the 

quadratic case where the values can be a litt le  lower. The converse of the last 

statement is also true. For data compaction, the difference between P.  ̂ and P. 

must be less than or equal to the w values as determined by equation 4.2.8. The 

conditions as to when to merge and when not to merge intervals In and In+  ̂ are 

represented in Figure 5.2.1. As shown in Figure 5.2.1, if we change the linguistic 

value then we get a corresponding shift, as expected, in the allowed merging 

region. The allowable merging region is determined by forming the difference 

between P. ^and P̂  and comparing this value aganist the (o value as computed in 

equation 4.2.8. If  the difference is less than or equal to to the algorithm w ill then
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1.0
No
Merging
Region Merging

Region
No
Merging
Region

0 1.0

Merging Regions

Figure 5.2.1

merge intervals In and I Figure 5.2.1 applies for both the linear and quadratic 

cases.

5.3 Error Threshold

The error criterion as presented in Chapter IV , equation 4.1.7, is dependent 

upon several values. The most c ritica l one is the in itia l threshold term  because 

two of the terms in equation 4.1.4 are dependent upon that value. The penalty for 

an in itia l value which is too large is poor edge detection and, conversely, if the 

in itia l threshold is too small, the algorithm w ill take a considerable amount of tim e  

to process the data . This is normally undesirable. Therefore, we must be careful in 

our selection of an in itia l error threshold value . The threshold constraint across 

intervals I and In+  ̂ for polynomial approximation can be stated in the following

Definition 5.3.1:

Let I and In+  ̂ be two contiguous intervals such that the maximum error of 

approximation on each interval does not exceed Ej. Then the maximum error on I U 

I  ̂ is bounded from above by

definition.

E .=E ._ /i+P . (S /N ) + e±Pi■ t  . A  ' M •1 1 -1  K1
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1.0

{U pperW ror bound for I 
merged intervals.}

f". • — "t * / 1 N J T w

{Upper error bound for 
one in te rva l.}

1.0

Error Threshold for Qne and n Intervals  

Figure 5.3.1

E.= E._1+pi(S /N )+  e ±pi . 5.3.1

Equation 5.3.1, which is the same as equation 4.1.4, defines the maximum allowable 

upper error bound which permits the merging of intervals In and In+]_- Figure 5.3.1 

shows the upper error bound for one interval and for In merged intervals. The 

second term  in equation 5.3.1 w ill move the curves either up or down but it  w ill not 

change the shape of these curves.

5.4 Algorithm

The algorithm developed for this study was m otivated by Albano [4] and 

Pavlidis [39 ] where speed of execution and minimum amount of required storage 

are of importance. We w ill defer the discussion on speed of execution until 

Chapter VI. In the following sequence we w ill provide a discussion on the 

algorithm's processing scheme and w ill show some results against two different 

types of input patterns. Pavlidis [39 {discusses the advantages and disadvantages of 

splitting and merging algorithms used for contour approximations. I f  the split-and- 

merge techniques are implemented separately then the developed algorithms w ill 

not produce the best contour descriptions, nor can data compaction be achieved.
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However, if  these two techniques are combined [ 4,39] , then it is possible to 

achieve good contour descriptions and data compaction. The algorithm considered 

in this study is of the split-and-merge type with some significant differences over 

past algorithms of the same class. The significant differences are:

(1) two small input buffers instead of one large buffer,

(2) addition of fuzzy corner descriptions, and

(3) shorter m atrix computations then in the previous algorithms.

The algorithm was designed to have small input buffers and thus they do not permit

the storage of all the input data. In a real tim e signal processing situation, the a

priori storage requirements are unknown; thus we cannot design a system to store 

all the input data. The algorithm was designed to process the input signal's data in 

real tim e w ith a minimum amount of storage.

The following is a discussion of how the algorithm works.

Algorithm : Fuzzy split-and-merge approximation algorithm.

Input : Boundary or contour points X. and Y j, i= l,2 , jP

Output: Segmented piecewise polynomial approximation of the 

given object.

Step 1: F ill a buffer with n^ input data points and start processing

points where h < n . First check to see if  e< E. for the-  p -  l

linear case. If  it isn't, then try a quadratic f it  and, if 

this check fails, then split h in half. Repeat the linear and 

quadratic approximations until the test e £ E .  does not 

fa il. The algorithm w ill sense the h input data points to 

determine if  they are perpendicular to the primary 

coordinate axis.The x-axis was chosen as the primary  

coordinate for this study. If  such a determination is made, 

then a 90° data rotation is performed on the q points
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before processing continues.

Step 2: Process the next p points according to Step 1.

Step 3: Compute and compare fuzzy value p over intervals I 

and Ip+2 and if p <_ w then merge these intervals.

Step 4: Compute the optimum piecewise polynomial approximation 

for merging intervals I and In+]_*

Step 3: Return to Step 1 i f  np < ip. Otherwise return to Step 2 and 

continue processing. If  np = ip, term inate the processing.

The following is a detailed discussion on each of the above steps of the algorithm.

Remarks: In Step 1 the buffer size, np, was set to 5 and the interval, , to 3 

although they could have been set to any value as long as h np* If  interval In 

fails the error test and must be split,then the next in terval, In+  ̂ , w ill start with  

the last point of the completed interval Ip. A fter the processing of Step 1 is 

completed, the algorithm then proceeds to Step 3. In Step 3 the fuzzy decision 

values for interval I are computed and compared against the values from interval 

In_j_. I f  the computed fuzzy values from intervals Ip and I  ̂ pass the decision 

threshold test, the processing continues to Step 4. Otherwise it returns to Step 2.

In Step 4, the computation for the linear or quadratic optimum approximation 

across intervals Ip and In_2 is accomplished. Note that in terval I is the running 

polynomial approximation over n contiguous intervals which have been successfully 

merged.

Step 5 returns to Step 1 or Step 2 to continue processing, or it terminates the 

algorithm if  n = ip. The above steps are graphically represented in Figure 5.4.1 

and, as can be seen, the algorithm is quite simple and w ill not iterate  on the data 

space like other algorithms of the same class.

We should emphasize that the above algorithm has two objectives. First it 

must find a local approximating polynomial on a small subset of the input space
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which satisfies the error threshold as discussed earlier. Second it must determine 

if  a global approximating polynomial(s), which passes the error threshold for 

multiple intervals, is possible.

Theorem 5.4: The algorithm, as discussed, w ill term inate a fte r local and

global error thresholds are reached and all the input data has been processed.

Plausibility argument for Theorem 5.4: The error threshold criterion w ill

always be m et because, a fte r a sufficient number of split operations, the computed 

error w ill become less than the threshold. Observe that the algorithm can f it  

either a linear or quadratic polynomial through m points and the smallest number 

of points where a good f i t  can be achieved is three because we can always f i t  a 

quadratic through three points. Once the algorithm has satisfied the error 

threshold inequality, it  cannot reverse itself. Thus, we see that the algorithm as 

given above w ill term inate. In addition to the above, the algorithm w ill 

continuously process the data, in real tim e, by using small aggregates of the input 

data. This is because of the input buffer size. The algorithm w ill find the optimum  

solution(s) without the requirement of storing all the data .This is because of its 

"local fitting " feature.

The algorithm has been tested on several d ifferent types of one and tw o- 

dimensional data sets with considerable success. This particular algorithm was 

implemented in Fortran V on an Interdata 7/32 digital computer. Data used to test 

the algorithm was obtained from [39] as shown in Figures 5.4.2, 5.4.3 and some 

synthetically generated objects as shown in Appendix C . Figure 5.4.4 shows the 

results of the algorithm's ability to process an object, in this case a cell, as shown 

in Figure 5.4.2. I t  can be observed that the algorithm w ill give an excellent 

piecewise polynomial description of the object's contour. Further, observe that 

when the data becomes perpendicular to the primary axis the algorithm w ill detect 

this and process accordingly. Figure 5.4.5, which is an EKG signal as shown in
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Input Point Describing Polynomial

Number

1-5

o
•II>-

5-17 Y = -.2315X  + 5.414

17-21 X = .1764Y + 17.411

21-25 Y = 5.999

25-29 Y = .8X -  6.2

29-33 Y = .699X -  4.4

33-37 Y = 1.5X - 24.5

37-41 X = .199Y + 24.8

41-45 X = .199Y + 25.0

45-50 Y = -.478X  + 41.77

50-55 X = .299Y + 17.89

55-59 Y = 1.346X - 10.76

55-63 Y = .5X  + 7.6

63-67 Y = 17.0

67-71 X = -.1764Y  + 16.411

71-75 Y = .4411X + 14.73

75-79 Y = 1.038X + 4.923

79-83 X = -.199Y  + 24.199

83-91 Y = -.333X  + 36.06

91-95 Y = .5999X + 26.2

95-99 Y = 1.56X + 20.81

96-100 Y = 2.OX + 19.00

100-105 X = .199Y - 2.199

105-109 Y = -1 .0X  + 22.0

109-113 X = -.199Y  + 9.599

113-117 Y = 1.176X + 3.176

117-121 Y = .911X + 4.794

118-122 Y = 1.562X + 3.50

C ell Describing Polynomials

(a)
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Input Point Describing Polynomial

Number

1-5 Y = .25X - 2.39

5-9 Y = .599X -  4.59

9-13 Y = .899X -  19.79

13-17 Y = .783X + 17.30

17-29 Y = .03X - 8.18

29-33 Y = .30X2 -  34.97X + 1002.02

33-35 Y = 6.75X -  425.16

35-37 Y = -1 .0X 2  + 145.0X -  5202.0

37-39 Y = -.99X 2 + 143.99X - 5129.89

39-41 Y = -.5X 2  + 65X - 2014

41-43 Y = 1 .99X 2 - 331.99X + 13745.92

43-45 Y = 1.99X -  197.99

50-55 Y = •29X -  39.19

55-57 Y = •25X - 33.833

57-59 Y = -.4 9 X 2 + 114.99X - 6613.90

59-63 Y = -.05X  + 3.8

63-67 Y = .11X 2 .  27.22X + 1726.57

67-75 Y = •22X - 31.03

75-79 Y = •16X2 -  48.50X + 3660.85

79-83 Y = •29X - 41.8

83-87 Y = .09X 2 - 29.54X + 2452.46

87-100 Y = •04X + 7.0

101-113 Y = -.59X  + 129.10

113-117 Y = . IX  -  26.8

117-121 Y = -.319

EKG Describing Polynomials

(b)

Describing Polynomials
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Table 3.4.1

Figure 5.4.3, demonstrates the algorithm's ability to use both linear and quadratic 

approximations on a given data set. Table 5.4.1 gives the set of linear piecewise 

describing polynomials for Figures 5.4.4 and 5.4.5.

5.5 Other Algorithms

We w ill now compare our algorithm to other algorithms of the same class and 

w ill note the differences in both techniques. As discussed earlier, our algorithm  

does not ite ra te  over the given data space, but the algorithms presented in [4 ,39J  

do ite rate  over the given data space. This is one major difference between these 

algorithms. Another major difference is that the la tte r  algorithms use either a 

linear piecewise approximation or approximating polynomials of order three or 

higher. In some cases higher order approximating polynomials are justified, for 

example in automobile body design [45], but if  a fast solution is desired then the 

use of such approximating polynomials is not yet practical. Our algorithm uses a 

combination of both the linear and quadratic approximating polynomals for 

boundary detection and data compaction. Thus, we are not restricted to linear 

approximations nor are we confined to the complex higher order mathem atical 

approximating polynomials.

Figure 5.5.1 shows the results of Pavlidis' split-and-merge algorithm [39] and, 

when this is compared to Figure 5.4.4, we can observe a distinct improvement in 

our algorithm's ability to detect and describe boundaries. That is, it can be 

observed between these two figures that our algorithm gives a better description of 

the object's contour/boundary. In Figure 5.5.1, gaps in the contour can be observed 

and a significant amount of contour smoothing has occurred. However in Figure

5.4.4, which is the output from our algorithm, there are no gaps and the smoothing 

was greatly minimized.
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CHAPTER VI 

C O M PU TA TIO N A L C O M PLEXITY

6.0 Introduction

As stated earlier, we are interested in the computational tim e required to 

solve the boundary/contour detection and description problem. The computational 

capabilities of the algorithm presented in this paper w ill be provided in this 

chapter. An algorithm's processing capabilities, as presented by computational 

complexity theory, are prim arily concerned with the tim e and space requirements. 

There are other possible computational measures, such as the number of iterations  

required for a solution. Computational complexity theory, which has opened up a 

re latively new field in algorithm computational techniques, has been applied to 

problems such as the traveling salesman's schedule, the vertex coloring, and 

maximum independent sets o f vertices in graphs to determine if  an optimum  

solution exists. Stated another way, the theory is interested in polynomial-time 

algorithms which are guaranteed to yield optimum solutions. The above mentioned 

problems have been termed NP hard, that is to say, despite the intensive efforts of 

many workers, optimum solutions for these problems have not been found. 

Furtherm ore, if such polynom ial-tim e algorithms exist, then this implies, according 

to the theory, that algorithms for a much larger class exist [ 11]. We w ill not 

consider NP problems. Instead we w ill draw from the theory behind NP 

(computationally complex) problems. In our analysis of boundary/contour 

algorithms a distinction between the worst case and expected tim e behavior w ill be 

made. This distinction is made because certain boundary/contour algorithms may 

require an enormous amount of processing tim e on a given data set. From a 

practical point of view, since the a priori data set cannot be determined, the 

average behavior is the more significant feature of an algorithm's ability to find a

99
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solution in tim e.

6.1 General Framework

We w ill begin by discussing a computational task in general terms. L et K be a 

computational problem; that is a series of computational tasks each of which we 

can call a procedure of K. A procedure of K is composed of n operations which 

are the minimum number required to perform the intended function. Now the K

problem can be formed by u K 2 u  U K -, i = l ,  ,m procedures where

each Ki has n operations. In the problem K we are primarly interested in two 

parameters. They are tim e and size, or the amount of memory required. The time  

and size required for a computational task depends upon the K. computational 

characteristics. For example, in a K. searching task there w ill be tim e required for 

query and for storage. These can be represented respectively as Q (N) = log N and 

S (N )=  N where Q (N) is the query processing tim e, S (N )the storage processing tim e  

and N equals the number of processing operations [49 ] . The total tim e required 

for task K. can then be w ritten as T (N ) = Q (N) + S(N) or T (N )=  log N + N . Thus, in 

order to evaluate computational algorithms of the same class, they must first be 

decomposed into tasks of K. such that the parameters of interest can be easily 

evaluated. Within a given algorithm class there may be differences in processing 

tim e and storage because of the method or methods used to solve the particular 

task. For example, consider the product of two complex numbers, a + jb and c + jd, 

which can be found in either of the following two ways. In the first method the real 

part of the product can be formed as X = ac -bd and the imaginary part as Y = ad + 

be, which requires four multiplications, one addition and one subtraction. In the 

second method the product can be formed as x = (a + bXc -d), y = ad and z = be 

where the final product is found by computing the real part X = x + y - z and the 

imaginary part Y = y + z. This method requires three additions, two subtractions, 

and three multiplications. Now it  is known that addition and subtraction operations
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on many computing machines take less time than multiplication/division. Thus, the 

second method is faster than the firs t method.

The above discussion was intended to:

(a) bound the following discussion on computations and

(b) suggest a way algorithms can be decomposed for comparison 

purposes.

However, it  is not the intent in this paper to prove or state conditions on 

computational complexity. These and associated items are le ft to the theory of 

computational complexities [17, 49].

6.2 Computations of the Algorithm

Polynomial approximation algorithms of the edge/boundary class can be 

decomposed into tasks called procedures for computional evaluation. The algorithm  

developed in this paper, as stated earlier, uses input data which is uniformly spaced 

along the prime coordinate axes. The algorithm as designed has two input buffers 

of fin ite  length in which data is in itially  stored. The size of these buffers was 

in itially set to the length of the number of data points in an interval. These two 

buffers were designed to work like a flip -flop , i.e. a fte r the firs t buffer has been 

filled with data the algorithm starts processing while the second buffer has data 

read into it . Then when the processing of data from the firs t buffer is completed 

the algorithm w ill read the contents from  buffer number two while buffer number 

one reads more input data. This technique greatly reduces the amount of storage 

space required for input data. The input buffer length can be adjusted according to 

the object or signal characteristics. For example, if the training data has many 

corners or the signal is noisy, the input buffer length could be made smaller and, 

conversely, if  the signal has few corners or very litt le  noise the input buffer length 

could be longer. Futhermore, this technique of adjustable input buffer lengths has 

been shown experim entally to reduce the number of splits per interval which can be
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encountered during processing. The process of splitting an interval is 

computationally costly, as pointed out in [39] , because it requires more 

computational tim e for a solution. A t this point the algorithm must find a solution 

to equation 1.2.6 which requires a solution of equation 2.1.1. The solution to

equation 2.1.1 requires m atrix multiplication and inversion. That is the algorithm

T -1 - I Tmust form the m atrix C = A A, then form C , and finally  form D = C A . The

tim e required to perform a square m atrix m ultiplication is the tim e to perform n3

2 3multiplications and n (n-1) additions for a total computational tim e of T(n) = n +
O

n (n -1) [5 6  J. Thus, the tim e needed to solve m atrix equation 2.1.1 using the

3 2Gaussian elimination method [56] requires l/3 (n  +3n -n ) multiplications and 

3 2l/6 (2n  +3n +n) additions for a total of

T m(n )=  (2 /3 h 3+(3/2>i2-( l/6 > i

= .16667n(4.019n2+ 8 .9 9 8 n -l) . 6.2.1

The fuzzy decision portion of this algorithm, as presented in Chapter IV, requires 4 

m ultiplications, 12 comparisons , and 12 additions for a total tim e of Tp(n) = 

4m+12g+12c; where m,g, and c equal the computing machine's multipy, add, and 

compare times respectively. From the above we see that the total computational 

e ffo rt required for this algorithm, using standard techniques, is 

T-j-(n) = Tm(n) + Tp(n)

or

T-j-(n) = (2/3)n3 + (3 /2> i2 - (1/6 h  + 4m +12g + 12c. 6.2.2

The T m(n) term in equation 6.2.1 must be recomputed each tim e a determination is 

made that intervals In and In+-̂  can be merged because of the standard matrix  

technique employed. Therefore the number of terms required to form the elements 

of Aj in equation 2.1.1 w ill increase, thus requiring more computation tim e. 

However, as pointed out in Chapter V, we can compute A?" by using a method 

which circumvents a significant amount of the required computation. That is, for a
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2x2 generalized inverse m atrix the algorithm requires 2 multiplies and 2 additions 

or T2 = 2m + 2g . For a 3x3 generalized inverse m atrix we have T-j = 4m + 4g. This 

gives the total computational tim e required, using the shorter m atrix method, as 

T-p(n) = Ip (pm +qg) + In Tp(n) 6.2.3

where

and

I = number of intervals merged

p=q which equals 2 for a 2x2 m atrix or 

3 for a 3x3 m atrix.

Also, note that T (n) in the above equation has now become a constant term  

because there is no longer a requirement to recompute the elements for the m atrix  

A. in equation 2.1.1. For example, given a straight contour in a 2-dimensional space 

of 100 points, where the contour is a line parallel to one of the axes, the tim e  

required to process twenty intervals would be 

T T(n) = 20 (2p + 2g) + 20 Tp(n).

Applying this equation, along with the characteristics of the computer used in this 

study, the tim e required is approximately T^Cn) = 7.03 x 10“  ̂ seconds . The actual 

measured processing tim e was T ^ (n )=  7.11 x 10"^ seconds . It  can be observed that 

the analytical computational time expression gives good results when compared to 

the measured values. The tim e required to process the above 100 point contour by 

using the method contained in equation 6.2.1 is

Tm<") = 'n T n > > + I nTf<">

or

T m(n )=  10.21 x 10"6 seconds . 6.2.4

Thus, we observe that the method introduced in this paper is indeed shorter when 

compared to standard polynomial processing techniques.

6.3 Computations of O ther Algorithms



104

We w ill briefly  look at other boundary/contour algorithms and compare them  

computationally to the algorithm developed in this paper. F irst it should be pointed 

out that for a true comparision all algorithms being compared should be tested 

against the same data set and run on the same computer. This is not feasible in 

most cases because of tim e and/or equipment constraints. The comparisons made in 

this paper were made using the same data base but due to equipment constraints 

we were unable to use the same type of computer. A discussion on the e ffec t of 

using two d ifferent types of computers and the results are presented below. We 

start by comparing the approach given in [39, 42] on the set of data as given by 

Figure 5.4.2. Pavlidis and Horow itz [42] showed that the execution tim e on an IBM  

360-91 for a piecewise linear f it  of a cell outline was approximately .35 seconds. 

Their results are shown in Figure 5.5.1 . By comparison our results are shown in 

Figure 5.4.4 which took about 1.2 seconds on a mini-computer. The time  

comparison between these two methods can only be approximate because of the 

different computers used. However, we can project the mini-computer's execution 

tim e onto the IBM 360-91 by a dividing factor of about 2 to 3. Therefore, we see 

that our algorithm is comparable tim e wise with the algorithm given in [3 9 , 42 ]. 

One major difference between these two algorithms, given the tim e as computed 

above, is the capability of the algorithm presented in this paper to accurately  

describe an object's contour. This can be observed by viewing Figures 5.4.4 and 

5.4.5 . Appendix C contains contours of other objects where results are presented 

in the form of Figures in which the fuzzy decision space was varied. Figure 5.5.1 

contains results which are very sim iliar to the results of the cell outline as given in 

[3 9 ]. The execution tim e for Figure 5.5.1 was .9 seconds. Using the execution 

assumptions as given above, we see that the algorithm as given in this paper is 

faster than the one given in [39, 4 2 ] . Chang and Pavlidis [10 ] used a fuzzy  

characteristic function to determine the angle at each knot in order to decide if
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adjacent intervals could be approximated by a single higher order polynomial. Their 

fuzzy characteristic function depends upon computing the slope between each point 

contained on the contour. Computationally this is expensive because of the large 

number of multiplies required for a solution.



CHAPTER VII 

CONCLUSIONS and RECOM M ENDATIONS

7.0 Introduction

The observed results and areas for future investigation are presented in the 

following two sections.

7.1 Conclusions

A new technique has been introduced which can determine the description of 

any object's contour by using combinations of linear and quadratic approximating 

polynomials. This technique incorporates into an algorithm the use of fuzzy  

linguistic descriptors and fuzzy decision making for the detections and descriptions 

of object contours. The fuzzy linguistic descriptors allow for dynamic error 

threshold adjustment which in turn controls the goodness of an object's contour 

description and the associated processing tim e. A fuzzy decision space was 

generated by using a fuzzy Bayes model which produced values on the interval [0,1 ] 

. From these fuzzy values a decision was made as to the existence of a breakpoint 

within an interval [I In ] • This new method greatly improved the merging of 

intervals for overall object contour descriptions and data compaction. That is, 

based upon the output from the fuzzy model, a fuzzy decision was made on whether 

a merge of intervals I  ̂ and I could occur within the computed error threshold. 

The fuzzy model was integrated into a polynomial approximation algorithm which 

used a combination of piecewise linear and quadratic polynomials to describe 

object contours. This technique of using a combination of low order approximating 

polynomials to describe contours is new and unique. I t  is unique for two reasons : 

firs t because it  uses a quadratic polynomial for contour approximation, and second 

because it  uses a combination of approximating polynomials to describe a contour. 

This method proved to be highly successful, as shown by this study, in describing a
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contour while keeping the computational complexity to a minimum. Futhermore 

with this technique we can describe, up to the optimum m athem atical 

approximation lim it, any contour without using higher order approximating 

polynomials and w ithout the associated computational complexity. This scheme 

demonstrated that good contour descriptions can be achieved for the linear case if 

the fuzzy value is less than .3 and for the quadratic case if the fuzzy value is less 

than .35. The quadratic polynomial approximation technique was shown to give a 

smoother describing contour than the linear approximation technique.

One of the most important attributes of the fuzzy model, as applied in this 

paper, is the admissibility of heuristic inputs. These inputs in the form  of linguistic 

parameters greatly a ffec t both object description and processing tim e. Given a set 

of linguistic parameters, the algorithm w ill find the near optimum or optimum  

solution with minimal computational tim e. Near optimum solutions were defined, 

in the least squares sense, to be no greater than 2% of the optimum error value. 

The fuzzy model improved object contour detection when compared to the results 

from other algorithms of the same class. Also, the fuzzy model allows for 

breakpoint adjustment by using fuzzy linguistic descriptive values which aid in the 

control of merging intervals. This method is further enhanced if  an interactive  

display is used because the object and the approximating contour can be displayed 

simultaneously and a judicious selection of the linguistic param eter can then be 

made.

It was demonstrated that the computational tim e required for interval 

merging can be reduced by using a unique m atrix operation as introduced in this 

paper. This method uses a scalar multiplying term  along with m atrix addition to 

produce a new generalized inverse m atrix for interval merging. The determination  

of the scalar multiplying term  can be decided on in advance and then stored in the 

algorithm's look up table routine. Using this scheme it was shown that the m atrix
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operations associated with interval merging can be significantly reduced. 

Futhermore, the m atrix muliplying term did not vary per interval unless the 

number of data points per interval varied or the spacing between data points 

varied.

The contour detection algorithm as given in this paper can operate on noisy 

signals w ith good results. Also, it was shown that the algorithm was faster in 

processing noisy signals than other algorithms of the same class, 

same class.

7.2 Recommendations

This research has suggested that more work is required in the area of fuzzy  

model development and in the application of these models to the pattern  

recognition process. That is, the fuzzy modeling process needs to be refined and 

extended to where ill-defined processes can be easily modeled to a level where the 

ill-defined process can be defined. Once we understand a particular process we can 

continue to investigate the process and(or), refine the model, by using classical 

m athem atical modeling techniques. Along those lines an investigation into 

extending the fuzzy model presented in this paper to higher order approximating 

polynomials should be made. In particular the breakpoint adjustment process for 

higher order polynomials should be studied when several breakpoints occur within  

an interval. Also, this process should be investigated where the computional 

complexity is kept to a minimum. One immediate area for investigation is the 

extension of the fuzzy Bayes model's ability to predict the use of a conic 

approximating polynomial over In past intervals where computational complexity is 

kept to a minimum.



APPENDIX A

OPTIMUM BREAKPOINT LOCATION

In this appendix the derivation of equations 2.3.2 thru 2.3.5 w ill be shown.

These equations show the optimum location of breakpoints within an interval where 

the absolute values of the pointwise errors from the right and le ft of a breakpoint 

x., as shown in Figure A . l ,  are equal in an interval[ Xj x.+^] . A partition of[a,b] 

is defined as a collection of subintervals which are ordered along an axis as follows

Within the subinterval [Xj - ,̂x. ] le t f ( t )  be a continuous differentiable function  

which is to be approximated by di.(x). We can express the approximating polynomial 

as

where 6- j j  is the Kronecker delta, over the range [ a,b] . We w ill use these 

orthonormal polynomials in order to simplify the computations, thereby reducing 

round-off errors.

x ,< x„ = b. n - l  n

where

0<m <n.

Here 0o-j • , 0miare orthonormal polynomials on [x. X j] which satisfy

J*°Q  . ( x ) 0  . ( x ) d x  = 6 . .  
a i  J i  J

Y
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Breakpoint Located A t x. 

Figure A . l

The following natation w ill be used within this derivation. 

e . ( x )  =  [ 0 o . ( x ) , e 1 . ( x ) ,  , e m i C x ) ] T

r  r 7
1 [ c0 i’c l i ’.................... ,cm,i 1

where

and

F. = / xi  f(x ) 0.(x)dx, 
1 * i - 1  1

A .l

G. = /XT0(x )9T (x)dx, A .2
1 y . 1

0^(x) is a vector which represents the approximating

polynomial of degree m(m = 1,........... ,n - l )  on [Xj_^,x. ] ,

C. is the vector of coefficients of the approximating 

polynomial on [ Xj_pXj ] >

F. is a vector associated with the actual function, 
i ’

Gj is the Gram m atrix, which is positive definite and 

symmetric [13 ],

the superscript T denotes the transpose of a vector . The derivation

starts by defining the integral square error equation in the least square polynomial

approximation sense as

E <C > = / I  [ f  -  * , ] 2dx A ,3
Xi~1

and
n

E = E E A.3'
i=1 1

where f(x ) is the actual function and i[»jx) is the approximating polynomial on [x._ 

pX. ] .  Using the least squares criterion, the best approximation ^  to f is found on 

each interval to obtain E. The normal equations corresponding to A.3 can be
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-  . v  I U A  • J  t  • * - * *  / \  r
x i-1  X .  1 1 x i - 1

w ritten  as

GjC. = Fj , i = 1 ,2 ,  ,n A.4

The minimum error Ej, in A .3, is found by taking the partial derivative of Ej with  

respect to the Cj and setting the expressions equal to zero. In order to dertemine 

the results of A.4 we start by expanding the definition A.3 which yields

E.  = Z 1' [ f 2 -  2ip. f  + tjj2 ]dx 
xi-1

= f   ̂ f 2dx -  2 /   ̂ \jj__fdx + Z  ^ d x  
i-1

Substituting

ip. (x ) = E C. .0. (x ) A ,
i l= 0 *• A *6

into A .5 gives
x p ^ x .

E. = /  1 f  dx-2 Z  C, .  /  1 f ( x ) 0 . ( x ) dx  
1 x ._ , t=0 n  X , . ,  i

m m  x .
+ Z Z  C. .C„ .  S  1 0. (x )0 ,.(x )d x  

L=o K=o Ll Kl x . ^  L K

which can now be d ifferentiated , as defined above, to yield the normal equations. 

Since each Gj is the identity m atrix  A.4 can be solved for the coefficients as

follows

C. = F..l l

Taking the partial derivatives of the above equation yields 

9C . 9 F .i i
9 x 9 x

Substituting these coefficients into A .6 w ill yield the optimum approximating 

polynomial across each of the intervals [x̂  ^,Xj ] in the least squares sense. N ext we 

w ill take the partial derivatives of E with respect to the x /s  and set the results 

equal to zero. This process w ill yield the optimum breakpoint location(s) within the
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given in terva l[a ,b ] . D ifferentiating  Cj with respect to the location x. yields

3 C . 3 F .
i _ i

3x . 3 x . a  7
J J A<7

We note the following formulas which w ill be used in the sequel. These equations

were obtained by d ifferentiating equation A . l  which yields

9 F i x i 3
•5—  = f ( x . )  0 ( x . )  + /  f -5— 0 dx ,3x . i i v 3x ’

1 X i - 1
3 F . x .

— = f ( x  . -> 0 (x . 1 ) + /  1 f /  0 dx 
1 1 1  X . 3xi - 1

In the above equations the second term is dependent upon the end points which 

evaluate to zero. Since 0 is orthornomal the results of d ifferentiating equation A .2 

w ill yield the identity m atrix. Solving equation A A  for C j and d ifferentiating with 

respect to Xj we get

3 C . 3 F .i _ i
3 x . 3 x . A . 8

3 F .i
Substituting the results from "377  into the above equation w ill give

9 C ^
1 = - F  . - f  Cx . )  0 . (x  . )

3 x i i i l l
then substituting C. = F. into the above equation yields

9 C
V - -  = - ( C  . -  f (x  . ) 0  . (x . ) )3x . i i l li

= 0 . ( x . ) e . ( x . )

where

e.(X j)=  C j -  f(xj)0 ..(x  . ) .  

Solving for Xj_^ we get 

3C

3 x i _ 1 i A i - 1  1-1

From 12 equation A.3' can be w ritten as
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b p  n T
E = /  f ( t )  d t  -  E F.C . .  A 9

a i  = 1 1 1 T
J 9F- j  9C,

D ifferentia ting  equation A .9 with respect to Xj and substituting ——and —  ■'

from  above w ill give

| L _  = -  Z [ C . + f !9x . 9x . 1 i 9 x
j  i = 1  j  d X j

= - f  (x . ) c . + f  (x . )  c . ^ - f T  [ c  . - f  (x . ) ]i  j  j  j - 1  j  j  j  J

♦ F j . J t C j - f f X j ) ] .

Since C. = F- and a fte r substituting into the above equation we get

- I f — = f ( x . ) [ c .  1 - C . ]  + c .  1 [ f ( x . ) - c .  ] -C . [ f  (x . ) - c  . ]
3x j  J J - 1  J J - 1  J J - 1  J L J J J

which reduces to

= 2 f ( x . ) c .  <, - 2 f  (x . ) c  . - c  . h + c *?.
9 x j  J j - 1  J J J - 1  J A. 10

Since

e. = f ( x . ) - C .  A . l l

we can solve for Cj and C j  ̂ which w ill yield

C. = f(xj) - e^Xj) A.12

and

C. , = f ( x . ) - e .  . (x. )  A.13l - l  r  l - l  l

Substituting equations A.12 and A.13 into A .10 gives

9E -  2 , v i  2 r i■5- — -  e . ( x . )  -  e .  (x . ) .3x j j j j - 1  j
D ifferentia ting  this with respect to x̂  gives

pj2 p 9e . (x . )  9e .  . ( x . )
J t - f —  = 2 e . C x . ) — I ---3------- 2 e . „ (x .  —
9 x j 9 x L J J 9 x l j - 1  j 9x L A . 14

D ifferentiating  equation A . l l  w ith respect to x^ gives

9 e . ( x . )  9 f  C x - ) 9C .
J J _ J _  J_

3 x k *  3 x k 3 x fc
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and if j = k then
• * \   d fe . Cx .)  ="j j dx j 

9e.- Cx j )
Solving  where k=j gives

K
9e. Cx . )  A .15
— —̂ ■— = e . Cx. )  -  C. e . Cx. )

3x j j j j j J

3ej ( x  . )
7 = C.e.Cx.  . )
3 x J  J J- 1

A.16

and for k = j-1  we get

>eH “ .  c. A ' 17

9 e C x  . )  . A .18
— - —  = e . Cx . ) - C .  . e .  . C x . )

3* .  J 1 )_1 J_1 J
J

We now complete the proof by selecting particular families of orthonormal 

polynomials. Pavlidis in personnel communications suggested that the above

equations can be simplified by introducting
T “1 Br Cp , q , r , s )  = 0 Cp)c 0Cx) = —  A lg

where

c is the Gram m atrix defined on the interval q,r and B 

does not depend upon r or q .

We w ill obtain the orthonormal fam ilies of polynomials by starting with the 

Legendre polynomials Pg>Pp........................................... are orthogonal on [ -1 ,1 ] .  The

Legendre polynomials are defined as

0 M  = 1 ® ^m P2 m

with the following properties 

p m ^ - 1
m

over the interval -1 to 1. We wish to find SqjQ'j > orthonormal on the interval
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[r ,q ]. It  can be seen that^with a change of variables the polynomials w ill become 

0_(x)  =1 2n+1^p  ̂ 2 x -(r+ q ) j
1 r+q m r -q

If  we le t Xj = r then

0 . ( r )  (1:j D r -q  n

which in turn give

J  - 1 n _ " 2n+1
3 c 0 =  E

A .20
r-qj - o

Expanding the right side of equation A.20 we get 
n-1

E 2n+l = 1+3+5+...... + (2 n -l)
j=o

or

2s = 2(nXn)

or

s = n^

T -1 _ n^Equation A.20 can now be w ritten  as 0 c 0 -  -

T -1
For terms of the form 6 CxJc 0 (x m_^) we get a d ifferent result. Writing

S = . E  0 (x . )0  (x . . )  
j= o  m j n j - 1

= S iD ll {p _ (1 )p _ ( -1 ) }

where
j=o r ~<* n

x ._l = q

x. = r 
J

Since Pn(-1 )=  (-1 X1 S can be expanded to give

s = (1-3+5-7+................ ( - l / 1(2 n -l)) /(r -q )

Now if we let

sx = 1-3+5.............. + (-1 / 1_1(2 n - l)

and

S£ = n^ = 1+3+5...................+ (2 n -l)

we can then sum the above two equations as
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S1 + s2= ^(1+5+9+.................2 n - l)  if  n is even

= 2(l+5+9+..................(2 (n - l) - l) )  if  n is odd

Writing s in general terms we have 
n-1

s  =  Z ( - l ) P ( 2 n + l )  
o

If  N is even the last term  is negative, as shown below

s = 1+5+9.............(2 n -3 M 3 + 7 + ll+ ............. + (2 n -l)

-  S;L +

2sx = (l+ 2 n -3 )+  (5 + 2 n -7 )._____ N /2

= (2n-2)h/2 

s1 = (2n-2)n/4  

s2 = (2n+2h/2  

Solving for s we get 

S = -n

If  N is odd the last term is plus as shown below

s-̂  = 1+5+9...................2 n -l

s2 = 3+7+11................. 2n-3

2sx = ((n+l)/2)2n  

= n(n+l)/2  

s2 = n (n -l)/2

S = s  ̂ + s2 = £ (n (n + l-m + l))

S = n

Thus the general expression for S can now be w ritten as

S = ( - l^ + ln  A .21

which upon substitution into A.20 gives
T  —1 t *1e (x.)c ecx. .) = -*=12— Q- 

J J “1 r - q

We can now w rite  equations A.20 and A .21 in terms used in Chapter Two of this 

paper. Writing we have
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?
Z x = n ,

and

Z 2 = (- l)P +1n,

where

n = number of terms.

T -1 ZSince 0 (p )c  0 ( s ) -  equations A .15 thru A .18 can be w ritten  as

9e . (x . )  • Z. e . (x . )
— —  = e . ( x )  -  ------— 2—  A .229x . j x . - x .  *
J J ] J-1

9 e . ( x . )  Z - e . ( x .
j  J _ 2 j j - 1

8xj-1  Xj _Xj -1

8ej +1 (xj ) _ Z2 ej+1 ^ . +1) 

8xj+1 xj+1 ” x j

A .23

A .24

9 e . . ^ ( x . )  Z - e . j - C x . )_j22_j_= ; (x.) + JLai3_J_ A .25
9X j  J+1 j  x . +1 -  x .

Substituting equations A .22 thru A.25 into equation A .14 we get

~2C 2Z~e. ( x .  , . ) e . ( x . )3 E _ 2 j j - 1  j ]
9x . * 9x . x . - x .  ^j -1  j j j - 1

2 . • 2 Z .e ?  C x . )
- j . =  2 , . < x j ) e j ( x j ) + 2 e J+1( x j ) e J+1( x . )  -  -  _ ^

1 _

xj+1 ■ x j
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a2 E _ 2z2ej-n(lli)ej-n(l<i-n1 
3xj 3V l  x J + l ‘ x j

9 x . 9x.
J L

The above four equations are the same as given in equations 2.3. 

this paper.

thru 2.3.5 of



APPENDIX B

OPTIM UM  LEAST SQUARES SOLUTION  

It w ill be shown in this appendix that the least-square technique gives the

best polynomial of order n < m given some input data space. From the theroy of

approximating functions it is known that a function can be uniquely approximated

by an m*"*"1 degree polynomial which is equal to f  at m data points. Because of

computational reasons we are not interested in such functions. Instead we are

interested in functions of order less than or equal to m. The primary reason for this

lack of interest in polynomials of order m is the computational costs involved.

Furthermore it  has been shown in [7, 20] that a function, f(x), can be adequately

described by a polynomial of order less than m.

Assume that x is an approximate solution of the equation Ax = b which is the

minimum-norm least square solution i.e. a solution of the normal equation. It  is

known that the error vector E is the length of the vector Ax-b between two points

or functions. One way of solving for the minimum of E is to find the first

9e
derivative of E; that is , set it  equal to zero, and then to apply a second

i
derivative test. Another way is to note that x is a solution of the normal equation,

T Twhich can be w ritten  as A Ax = A b. Any other vector y can be w ritten  in the 

form y = x + w then the square of the error is

| | Ay—b | | 2 = | | ( Ax- b) +Aw| | 2 B .l

Expanding equation B .l gives

I | Ay—b | |2 = | | Ax—b | |2+2 (Aw)"*"(Ax-b)+1 | Aw | |2 B.2

The error vector E = Ax - b must be perpendicular to a column space which 

contains the projection of b onto that space as shown in Figure B .l. Thus the vector 

Aw in equation B .l must be in the column space of A which is composed of a linear
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combination of the columns by the components W p  , wn- The error vector of

equation B .l must be perpendicular to all vectors contained in the plane, i.e. 

(A w )T(A x -  b )=  0

or

wT(A TA x -  A T b) = 0.

It  follows that

| |Ay -  b | | ^ = | | Ax  -  b | | ^ + | | A w | >_ | |Ax -  b| 

with equality if and only if  Aw = 0. Hence x minimizes the error.

Aw

Column 
Space y

Projection of b Onto a Column Space. 

Figure B .l



A PPEN DIX C 

CO NTO UR EXAMPLES  

In this appendix we w ill present the results of the algorithm's contour 

detection capabilities on some objects. Figures C . l  and C.2 have been discussed in 

the litera ture , see [39] , as being d ifficu lt to detect and describe. The reason the 

author in [39] says that these objects are d ifficu lt to describe is because of the size 

of the processing interval. That is, given a processing interval which is too large, 

the algorithm will find a describing polynomial which passes the error threshold but 

gives a poor contour description. The algorithm presented in this study does not 

have that problem and thus, as shown in these figures, can give a good description 

of an object's contour. The input data for all of the Figures in this appendix w ill be 

represented by a dot and the algorithm's output data w ill be represented by an x. 

Figure C.3 is presented to show the algorithm's ability to detect and describe a sine 

wave. A higher order function, as shown in Figure C .4, was presented to the 

algorithm and, as can be seen, the detection and description results are excellent. 

The results presented in Figure C.5 were an attem pt to reproduce the results as 

reported in [39] by using our algorithm . The original results from [39] are shown in 

Figure 5.5.1. As can be seen if  we use the linguistic descriptive terms LMS and LS, 

the algorithm's output w ill almost match those given in Figure 5.5.1. However, as 

discussed in Chapter V, our algorithm can give better results without a loss in 

performance. Figure C.6 is a radar return signal of a corner reflector with a S/N = 

24 db and Figure C.7 is the algorithm's output of that signal. The input signal in 

Figure C .8, which is the same as shown in Figure C . l ,  was corrupted by a random 

noise signal. The input noise signal was 50% of the actual input signal. As can be 

seen in Figure C.8 the algorithm can detect the desired object once the appropriate 

fuzzy variables are selected. In both test cases the error criterion was held

1 2 1



1 2 2

constant in order to demonstrate the e ffec t changing the fuzzy variables would 

have.
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Y

10 •

9 •

8 ■

7 ■

6

5 ■

4 ■

3

2

1

0  1-------- j--------1 .|---------1-------- 1-------- 1--------i -i------- -i-------

1 2 3 4 5 6 7 8 9  10

X

Piecewise Polynomial Approximation of a 

Square Using Fuzzy Variables LI and LS.

Figure C .l
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10

9

8

7

6

5

4

3

2

1

9 106 75 82 3 40 1 x

Piecewise Polynomial Approximation of a 

C ircle  Using Fuzzy Variables L I and LS.

Figure C.2
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Y

3

2

1

0
1 2 3 4 5 6 7 8 9  10 11 12

X

Piecewise Polynomial Approximation of a 

Sine Wave Using Fuzzy Variables L I and LS.

Figure C.3
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100
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40

20

100800
X

Piecewise Quadratic Approximation of a 

Cubic Function Using Fuzzy Variables L I and LS.

Figure C.4
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200 5 10 15 25 30

Piecewise Approximation of a Cell Using 

Fuzzy Variables LMS and LS.

Figure C.5
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Case I
Fuzzy Variables = 
LI and LS.

Case II
Fuzzy Variables = 
LMS and LS.

+

1 2 3 4 5 6 7 8 9  10

X

Detection of a Boundary Within a Noisy Signal

Figure C.8



APPEN D IX  D 

N U M ER IC A L EXAM PLE  

This appendix presents a detailed numerical example of interval merging 

where the computations and results of two d ifferent m atrix methods are shown. 

The two methods which w ill be presented are

(a ) a standard inverse m atrix computation

and

(b) the short m atrix method as presented in this paper.

These methods are concerned with computing A""*". We start by defining the input 

data, Xj, as being equally spaced along a coordinate axis. For this example the 

number of XjS per interval w ill be five, however there is no lim it on the number of 

points per interval other than from a computational lim it. The other requirement is 

that the number of XjS per interval be held constant. In order to keep the example 

simple we w ill not transform the data onto the -1 to 1 space. Instead we w ill work 

in the natural number space. To futher simplify the problem we w ill only consider a 

contour/boundary which is parallel to the x-axis, i.e. a straight line. We w ill firs t 

present method (a) above in order to establish a basis from which comparisons can 

then be made. F irst we form  the A m atrix in which its elements are derived from  

the input data raised to the appropriate power and then summed. For the linear 

case, which is w ritten  in general terms, yields

# of points x

Next the inverse m atrix of the above A m atrix is formed. For the example 

problem, as shown in Figure D . l  and Table D . l ,  the A^ and A^~^ matrices are as 

follows

131



132

A l  =

5 15

15 55

and

A"1-  A 1 "

1.1 -.3

_-.3 .1 _

where the subscript indicates the interval number. Solving for the second interval 

in the same manner we have 

5 35

A 2=

and

A '1-  2 "

35 255_

5.1 -.7

-.7 .1

The fuzzy model when given the above data w ill make a decision that the firs t two 

intervals can be merged. Thus, the expression which must be found is Ay*- or the 

m atrix inverse of all the data in 1̂  U I 2* By method (a ) above the firs t step which 

must be accomplished is the formulation of the sum of A^ and A 2- Since the 

matrices A-  ̂ and A2 already exist within the computer's memory, the sum can be 

found easily. The inverse m atrix Ay*- can be found by method (a) which gives 

10 50

A 3 =

and

A. -1

50 310

.516 -.083

-.083 .0166

By method (b), A^”*  can be computed by firs t forming A j  = A ^  + Ay*-. The inverse 

matrices Ay^ and Ay*- already exist because of the computations performed for 

intervals one and two. Next find the inverse m atrix A j^ by using the multiplying 

coeffic ient as discussed in Chapter IV . This can be w ritten  as Ay^ = 6 ^ ^  which for
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Y

A

1 2 3 4 3 6 7 8 9  10 Data points

1 2 Intervals

Straight Contour 

Figure D .l

Interval 1 2

M atrix A1 a 2
Input

Data X x2 X x2

1 1 5 25

2 4 6 36

3 9 7 49

4 16 8 64

3 25 9 81

Total 13 55 35 255

M atrix  Input Data For Intervals 1 and 2. 

Table D .l
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this example w ill give the following:

7.2 - 1.5"

- 1.0  .2A 3 =

and

A '1 -  A3 -

.316 -.083

_-.083 .0166

where the multplying coefficient 6,. was set equal to .0833 as shown in Chapter V. 

As can be seen, method (b) is indeed shorter than method (a) because method (b) 

circumvents an inverse m atrix computation. This becomes significant as the 

number of intervals which w ill be merged continues to grow.

The following discussion is a demonstration, using the above example, on 

solving for 6... As pointed out in Chapter V we can find 6^as

«i = A k l + A i - l (I *  A1 A i - i )_1 

where i = 2 ,3 , ............ ,n.

Solving for 6. where i = 2 we get

D . l

61 = A3 A ! (I + A2 A l }'
,-1

61 =

1.33 3.16

-.16 -.33

-.33 -3.16

.16 1.33

.083 -.0001

^.0001 .083 _

Performing the check we have

D.2

> + 11 (A j  + a £ )

.083 -.0001

A 3 = -.0001 .083

7516 -.083~

A 3 =✓
-.083 .016

6.2  - 1.0

- 1.0  .2

D.3

As can be seen equation D.3 does agree with the results as given above. The
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solutions given in equations D.2 and D.3 were performed in the data space [a ,b ] . 

This space works w ell if  the input data set is small both in quantity and magnitude. 

The reason for this is that computer round-off error greatly affects the solution. 

To generalize this procedure, as discussed in Chapter V, we transform the input 

data onto the -1 to 1 interval space. The following discussion is on the data for the 

above problem but in the transformed space. Solving we get

A l  =

5 0
and A - =

5 0

0 2.5 Z 0 2.5

the resulting generalized inverses are

A + -  1 "

Solving for 6̂  using D . l  we get

.2 0
and Ait =

.4 0

0 .4 z 0 .4

6r

V

61 =

.11 D 

0 .27

o 1  0 .2 0 5 0
+

0 2.5 0 1 _ —. 0 .4 0 2.5

.55

0

~21

0

0

.66

0 “

.33

.5 0 

0 .5

D.4

The 6̂  multiplying factor as given in equation D .4 is the same as displayed in Table 

5.1.1. The results from equation D .4 must then be retransformed onto the original 

data space which w ill yield D .2. By using the transformed data space we have 

avoided the round-off error as discussed above.



APPEN D IX  E 

C O M PUTER PROGRAM LISTING  

In this appendix we present a computer generated listing of the algorithm  

developed for this study. The listing contains testing comment statements which 

were inserted during the in itia l development and testing phase. These comment 

statements have not been deleted since the completion of the algorithm. However, 

the executable code as given is the final code for the algorithm .
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SBATCH
S T I T L  LSQ

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *»*******»*»♦
COMMON

X / M A I N / X I N ( 5 0 ) , Y I N C 5 0 ) ,  A C 5 , 5 ) ,  X ( 5 )  ,
X N, M, E V A L , E S O V A L ,  Y C 5 0 ) ,  DNOHM,
X X I N I C 5 0 ) Y I N 1 ( 5 0 )
X / F U Z Z Y / S I G C 5 0 ) , E N AX ,  I C O U N L ,  IC OU N O,
X F U Z L L , F U Z L H , F I ,  F 2 ,  F 3 ,
X F U ZO L , FUZQH
X / Y O P T / X X  C 5 ) , I S U M L ,  I S U M O,  C 3 C 2 ) ,
X I N T L , I N T O ,  MM R H O l ,  SNR,  RHO
X / S C A L E /  C ,  D, I L
X / S O L I N / E ( 5 ) , I S K I P ,  F S O L I N ( 3 )
X / O P T S OL / M S T A R , M F I N ,  E 2 ,  MFOPT,
X FYOPTCSO , 8 ) ,  NY

DI M E NS I ON  I A R C 4 ) , I T ( 4 )
REAL N N , I Y
DATA N N , I Y , I B , I B B / 1 H N , 1 H Y , 1 H  , 4 H  /
DATA L I , L S , L V I , L N V S / 2 H L I , 2 H L S , 3 H L V I , 4 H L N V S /
DATA L H 1 , L M S , L N V I , L N M I / 3 H L M 1 , 3 H L H S , 4 H L N V I , 4 H L N M I /

C READ I N P U T DATA FROM E I T H E R  THE CARD READER OR FROM W I T H I N  TH
C PROGRAM.THE PROGRAM DATA I S  E I T H E R  A L I N E A R  CASE OR QUADRAT I C CASE.
C OF KNOWN S O L U T I O N S .  THESE ARE THE TEST POI NTS FOR THE A L GO R I T H MS .

C I P A S S  I S  USED TO I N I T I A L I Z E  I C OU N T I N
C FUZZY INORDER TO KEEP TRACK OF THE I NTERVAL
C WE ARE S OL V I N G I . E . t l  OR 2 ) .

10 CONTI NUE
DO 2 1 = 1 , 2  

2 C 3 ( I ) = 0 . 0
I S U M L  = 0 
ISUMO = 0 
I C O U N L  = 0 
ICOUNO = 0 
I N T L  = 0 
I N T O  = 0 
I S E C 1  = 0 
I S E C 2  = 0 
ANS = I B  
MFOPT = 0 
POWER = 2 . 0  
CONK = . 0 4 9 3 8  
ALPHA = . 5  
I A N S 1  = I I B  
I A N S 2  = I I B  
I A N S 3  = I I B  
• R I T E C 1 , 1 0 5 0 )
READ C 1 , 2 0 0 0 )  1ANS1 
w R I T E C 1 , 1 0 6 0 )
READC1 , 2 0 0 0 )  I A N S 2  
W H I T E ! 1 , 1 0 7 0 )
RE A DC 1 , 2 0 0 0 )  I A N S 3  
DO 4 1 = 1 , SO 

DO 6 0 = 1 , 9
FYOPT C I , J ) = 0 . 0  

6 CONTINUE
4 CONTI NUE

FS = C S . O - A L P H A ) » * P O w E R  
F 6  = CONK *  F5 
F7 = 1 • 0 + F6 
F I  = F 6 / F 7



F2 = F I
F8 = C 2 . 0 - A L P H A ) » * P O W E R  
F9  = C 0 N M F 8  
F 1 0  = 1 . 0 + F 9  
F3 = F 9 / F 1 0
I F C I  A N S I  . N E .  L I )  GO TO 7 
I F C I A N S 2  .N'E.  L I )  GO TO 7 
I F C I A N S 3  . N E .  L S )  GO TO 7 
GO TO I I  
CONTI NUE
I F C I A N S 1  . N E .  L V I )  GO TO 8 
I F C I A N S 2  . N E .  L V I )  GO TO 8 
I F C I A N S 3  . N E .  L NVS)  GO TO 8 
POWER = 4 . 0
F5 = C S . O - A L P H A ) * * P O W £ R  
F 6 = CONK«F5 
F7 = 1 . 0 + F 6  
F I  = F 6 / F 7  
F2 = F I
F8 = ( 2 . 0 - A L P H A ) * » P 0 W E R  
F9 = CONK*F3 
F I  0 = 1 . 0  + F9 
F3 = 1 . 0 - C F 9 / F 1 0 )
GO TO 11 
CONTINUE
I F C I A N S !  . N E .  L H 1 )  GO TO 9 
I F C I A N S 2  . N E .  L M I )  GO TO 9 
I F C I A N S 3  . N E .  LMS)  GO TO 9 
POWER ~ 3 . 0
F5 = C 5 . 0 - A L P H A ) * » P O W E R  
F6 = CONK*F5 
F7 = 1 . 0 + F 6  
F I  = F 6 / F 7  
F2 = F I
F8 = ( 2 . 0 - A L P H A ) » » P O W E R
F9 = CONK»F8
F I  0 = 1 . 0 + F9
F3 = F 9 / F 1 0
GO TO 11
C ONTI NUE
I F C I A N S I  . N E .  L N V I )  GO TO 1
I F C I A N S 2  . N E .  L N V I )  GO TO 1
I F C I A N S 3  . N E .  L S )  GO TO 13 
POWER = 4 . 0
F5 = C 5 . 0 - A L P H A ) * » P 0 W E R
F6 = COn K * F 5
F7 = 1 . 0 » F 6
F I  1 = F 6 / F 7
F I  = l . O - F l l
F2  = F I
GO TO 1 1 ”
CONTI NUE
I F C I  A N S I  . N E .  L N M I )  GO TO 1
I F C I A N S 2  . N E .  L N M I ) GO TO 1
I F C I A N S 3  . N E .  L S )  GO TO 11 
POWER = 3 . 0
F5 = C 5 . 0 - A L P K A ) * * P O W E R
F6  = CONK*F5
F7 = 1 . 0 + F 6
F I  1 = F 6 / F 7
F I  = l . O - F l l
F2  = F t
CON TI N U E



o 
n 

n 
n 

n 
n 

n 
o
o
n
n
n
n
 

n
o
n
 

rj
n
o
 

n
o

o
n

139

W R I T E ( 6 , 3 0 0 0 )  F 1 , F 2 , F 3

T H I S  FLAG I S  USED TO S K I P  RESCALE WHEN COMPUTING 
YOPT.

I S K I P  = 0

THESE I N D I C A T E  THE ORDER OF THE P O L Y .

N = 0

M = NUMBER OF POI NTS 

M =  5

I N I T I A L I Z E  THE CLOBEL V A R I A B L E S

MM = A V A R I A B L E  USED TO DE TE R MI N E  WHEN WE ARE F I N I S H E D

MM = 5

1 0 =  NUMBER TO I N D I C A T E  I F  WE ARE COMPUTING L I N E A R  OR
QUADRAT I C  C O E F F I C I E N T S  I N I T I A L L Y  SET = 0 .

10 = 0
E2 = RMS VALUE PER I N TE R VA L  I N I T I A L L Y  = 1 0 .

E2 = 1 0 . 0
C
C EMAX =ERROR VALUE OVER THE E N T I R E  I N T E R V A L  C A . B )
C I N I T I A L L Y  = 1 0 0 . 0 .
C

EMAX = 1 0 0 . 0

C
C SET S I G N A L  TO N OI SE  R A T I O  ( S N R ) =  1 . 0
C

SNR = 1 . 0
C
C C A L L  DATE
C

C AL L  D A T E C I A R )
D AI  = I A R C 1 )
DA2 = I A R C 2 )
UA3 = I A R ( 3 )

C
C T H I S  I S  TO HELP F I N I S H  AN I N T E R V A L .
C

L = 0
ICOUNT = 5

C
C READ DATA FROM CARD READER
C

READC 4 . 5 3 0  > E 2 . E H A X
R E A D ( 4 , 6 5 0 )  F U Z L L , F U Z L H , F U Z O L , FUZOH
R E A D ( 4 , 6 6 0 )  D I F
READ ( 4 , 5 2 0 )  I I L
D I F 1  = 1 . 0 * D I F
D I F 2  = 2 . 0 * D I F
D I F 4  = 4 . 0 * D I F
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r
D I F 5  = 5 . 0 » D I F  
I F C I I L  . G E .  5 0 )  GO TO 12 

I L  =  I I L  
I L 1  = I I L  

GO TO 14 
V ' 12 CON T I N U E

I L  = SO 
I L 1 = SO 

L  I L 3  = 50
14 C ON T I NU E

READ ( 4 , 5 3 0 )  C X I N C I ) , Y I N 1 1 ) , 1  =  1 , I L )
C  W R I T E ( 6 , 5 9 0 )

W R I T E ( 6 , 6 1 0 ) D A 2 , D A 3 , D A 1  
W R I T E ( 6 , 5 B 0 ) C I , X I N ( I ) , Y I N ( I ) , I = 1 , I L )  
WRI T E  ( 6 , 6 0 0 )  E 2 , E H A X
W R I T E ( 6 , 6 4  0 )  F U Z L L , F U Z L H , F U Z O L , F U Z Q H  

_  EVAL  = E2
L  C A L L  T I M E C I T )

I S E C 1  = 3 6 0 0 * I T C l ) f 6 0 * I T ( 2 ) + I T C 3 )

C  C
C B U I L D  X I N I  AND Y I N I  ARRAYS.

C:
DO 1 5  1 = 1 , I L  
X I N I C I )  = X I N  C l )

C 15 Y I N I C I )  = Y I N C I )
XSUN = 0 . 0  
DELT X = 0 . 0  

C. DO 2 0  1 = 2 , H
D E L T X  = A B S C X l N ( I ) - X I N d - l )  )
XSUN = X5UN+DELTX 

V. 20 CON TI N U E
I F ( XSUN . G T .  D I F 4 )  GO TO 9 5 0  
I F C  XSUN . G E .  D I F 2 )  GO 10  1 09  
GO TO 107  

40  CON T I N U E
C AL L  SCALE

C C
C SCALE I N P U T  DATA TO THE I N T E R V A L  ( - 1 , 1 ) .  T H I S  I S  TO
C AVOI D ROUND OFF ERRORS.

< C
c
C C A L L  L I N E A R  SOLUTI ON
C

C AL L  L I N
C
C I F  E2<DELT A W HAVE FOUND A L I N E A R  F I T  FOR THE
C GI VEN I N T E R V A L — GO AND READ MORE D ATA.
C

IFC DNORM . G E .  E 2 )  GO TO 55
C
C SET SOME CONSTANTS AND C A L L  FUZZY ROUTINE

C c
N = 1

C
C B U I L D  FYOPT
C
C »  * > < > * * > > « * > * *  • < « < > > « « <

I FCM . E O • 3 )  GO TO 46  
I T A R  = HH -  4 
GO TO 47
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G

C

c

c

c

c

c.

c

v..

L .

c

c

c

46 CONTINUE 
I T A R  = HH -  2

47 CONTINUE
MFOPT = MFOPT + 1 
F Y O PT C MF O P T , 1 )  
F Y O PT ( MFOPT , 2 )  
F Y O P T ( M F O P T , 3 )  
F Y O P T C M F OP T , 4 )  
F YO PT C MF O P T , 5 )  
F Y O P T C M F OP T , 6 )  
F YO P TC M F OP T , 7 )  
F Y O P T ( M F O P T , 8 ) 
C A L L  FUZZY 
GO TO 60  
CONTI NUE 
C A L L  SCALE

5 5

C
C
C

C
C
c
c

c
c
c

I T AR
M»
NT
F S O L I N C 1 ) 
F 5 0 L I N ( 2 )  
0 . 0  
EMAX 
DNORM

CALL  OUAD S OL U T I ON  

C A L L  OUAD

I F  E2<DELTA NE HAVE FOUND A OUAORAT1C F I T  FOR THE 
GI VEN I N T E R V A L — - GO AND READ HORE DATA.

I FC  DNORM . G E .  E 2 ) GO TO 62

SET SOME CONSTANTS AND CALL  FUZZ Y  ROUTI NE

N = 2

B U I L D  0 FYOPT

56

5 7

6 2
C
C
C

I FC H . E Q .  3 )  GO TO 56
I T A R  = K H - 4
GO TO 57
CONTINUE
I T A R  = MM-2
CONTI NUE
MFUPT = MFOPT + 1
F YO P T C M F O P T , 1)  
F Y O P T C M F OP T , 2 )  
FY O P T C M F OP T , 3 )  
F YO PT C MF O P T , 4 )  
FY O PT C MF O P T , 5 )  
FY O P T C M F OP T , 6 )  
FY O PT C MF O P T , 7 )  
F Y O P T C M F OP T , 8 )  
C A L L  FUZZY 
GO TO 60  
CONTI NUE

ITARHH
NY
F S O L I N ( I ) 
F 5 0 L I N  C 2 )  
F S O L I N ( 3 )  
EMAX 
DNORM

S P L I T  I N T E R VA L  I F  E2> D E L T A .

M = I F I X C C M / 2 J + 1 . 0 )  
MM =  MM-2 
GO TO 40

REARRANGE DATA W I T H I N  I N T E R V A L ,  THAT I S  RENUMBER THE 
I N P U T P OI NT S I N D E X E S .
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1 1 2  HH =  HH+ 1 
MH = HH - 1

C
C TEST TO SEE I F  Y DATA I S  P E R P E ND I C U L A R  TO X
C A X I S .
C

O  XSUH = 0 . 0
DELTX = 0 . 0  
DO 108  1=  2 , H  

V. DELTX = A B S C X I N C D - X I N C I - l )  )
XSUH = XSUH + DELTX 

108  CONTINUE
C' I FCXSUH . G E .  O I F S )  GO TO 9 50

IF C  XSUH . G E .  0 I F 2 )  GO TO 1 09
IFCXSUH . EQ.  D I F l )  GO TO 107

C IFCXSUH . N E .  0 . 0 )  GO TO 1 30
1 07  CONTINUE

C C
C r e a r r a n g e  THE I N P U T  DATA AND COMPUTE X = AY ♦ B

c  c
HH = MH-4 
KK = 5 

C J  = 0
DO 111 1 =  1 , K K  

J  = J  + l
Y I N C J )  = X I N I C H M )
X I N C J )  s  Y I N I C M M )

111  HH = MM+1
C  HH = HH- 1

I FC NY . E O .  1 )  GO TO 40 
NY = 1 
I S U N L  = 0 
ISUHO = 0 

GO TO 40 
C 1 0 9  CONTINUE

I FC NY . E Q .  0 )  GO TO 40 
NY = 0

C ' I SUML = 0
ISUHQ = 0 

GO TO 40 
C 1 14  CONTINUE

I  = C 1 L - 5 1 + 1  
HH = I L  

C  DO 116  J = l , 5
Y I N ( J )  = Y I N I C I )
X I N C J )  = X I H I C I )

L  I  = 1+1
l i e  CONTINUE

C c
C TEST DATA TO DETERMINE I F  Y I S  P E R P E HD I C U L A  TO
C X A X I S .

XSU« = 0 . 0  
DELTX = 0 . 0
DO 1 15  J = 2 , H

DELTX = A 9 S C X I N C J )  -  X I N C J - 1 ) )  
XSUH = XSUH ♦ DELTX
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C

C

C

C HON MANY P OI NT S MUST BE ADDED TO F I L L  THE BUFFER OR
C ARRAY TO 5 FUL L  P O I N T S ?

C c 
c
60 CONTI NUE

V- I F  C N . E Q .  5 )  GO TO 1 00
I F  C( MM . G T .  I L )  . A N D .  (DNORM . L T .  E 2 ) ) G 0  TO 120
I F ( MH . G E .  I L )  GO TO 120  

v- I F C  H . E Q .  3 )  GO TO 80
J J  = 2 
L L  = 4 

GO TO 85  
80 C ONTI NUE

OJ =  3 
L L  = 3 

85 CONTI NUE
DO 86  I  = l . L L  

C X I N C I )  = X I N C J J )
Y I N ( I ) = Y I N C J J )
J J  = J J  + 1 

O  86 CON TI N U E
L L  = L L + 1

DO 88 I = L L , 5
HH = HM+1 
X I N C I )  = X I N I C H H )
Y I N  C I ) =  Y I N I C H H )

O  88 CON T I N U E
I F ( KM . G E .  I L )  GO TO 90
4  =  5

C  GO TO 40
90 CONTI NUE

1X1 a  H M - I L  
L  I F C I X 1  . E Q .  0 )  GO TO 92

N = 5 - 1 X 1
I F C  H . E Q .  0 )  GO TO 120  

v. GO TO 40
92 CONT I NUE

MM =  I L
I F ( N . E O .  0 )  GO TO 1 20  
GO TO 40  

1 00  CON T I N U E
C
C T E S T  TO DETERMINE I F  WE HAVE F I N I S H E D  A L L  THE DA T A .
C
C

I FC MH . E Q .  I L )  GO TO 120  
K1 = MM 
KK = 5 
J = 0 
MM = HH + 5

C
C T E S T  TO SEE I F  RE EXCEEDED THE I N I T I A L  I NP U T  DATA
C C I L ) .

v  C
IFCMM . G T .  I L )  GO TO 1 1 4  
MM = MM-5  •

C
C READ THE NEXT BLOCK OF 5 DATA P O I N T S .
C

DO 1 12  I  = 1 , K K  
J = J + l
Y I N C J )  = Y I N I C N M )  
X I N ( J )  = X I N I ( M m )
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C
1 15  CONTI NUE

I F C  XSUN . E U .  D I F 4 ) GO TO 1 19  
I F C  XSUN . G E .  D I F 2 )  GO TO 1 0 9  
I F CXSUH . E Q .  D I F 1 )  GO TO 1 07  
I F CXSUH . N E .  0 . 0 )  GO TO 1 3 0

NO— REARRANGE I N P U T  D ATA.

lie

1 17

119

I  = C I L - 5 ) + l  
DO 1 18  J = l , 5

Y I N C J )  = X I N I C I )  
X I N C J )  = Y I N I C I )
I  = 1 + 1 

CONTI NUE
I FC  NY . E Q .  1 )  GO TO 117  

NY = 1 
I S U H L  = 0
ISUHO = 

CONTI NUE 
H = 5 
HH = 10 
GO TO 40 
CONTINUE 
I F  C NY . E Q .  

NY = 0 
ISUHO = 
ISUHO = 

GO TO 117

0 )  GO TO 117

0
0

C

c

c

c 
c 
c

FOR XSUH 3 . 0 .

150

152

CONTINUE 
IF CN Y  . E Q .
HH = NM-1 
1= HH- 4 
GO TO 1 60  
CONTINUE 
M« =  h M - 3  
I  = m h - 4  
GO TO 1 40

1 )  GO TO 152

C
C
C
C
c*»»
130

F I N I S H  COMPUTING THE EQUATI ON FOR THE 
NUMBER OF POI NTS OEFT OVER.

CONTINUE
IFC CXSUH . G T .  0 . 0 )  . A N D .

X CXSUH . L T .  D I F 1 ) )  GO TO 9 6 0  
I X SU H  = I F  I X  CXSUH)
HH = C H N - 4 ) t I X S U M

160

BACK UP SOME NUMBER OF P ON I T S  I N  XI .N AND Y I N .

1 = H H- 4
IFC NY . E Q .  1 )  GO TO 140  
CONTI NUE
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O

DO 132  J = 1 , 5
. X I N C J )  = X I N I C I )

0  X I N C J )  = Y I N  I C I )
I  = 1 +  1 

132  CONTINUE 
C  GO TO 40

140  CONTINUE
DO 142  J = 1 , 5  

O  X I N C J )  = Y I N I C I )
Y I N C J )  *  X I N I C I )
I  = 1 + 1 

142  CONTINUE
GO TO 40 

1 2 0  CONTINUE 
C  ANS = I B

CA L L  T I M E C I T )
I S E C 2  = 3 6 0 0 * I T C 1 ) + 6 0 * I T C 2 ) + I T C 3 )

O  I S E C  = I S E C 2 - I S E C 1
W R I T E C 6 . 6 3 0 )  I S E C  

6 3 0  F O R H A T C 2 0 X , ' S E C  = ' , F 1 0 . 5 )
O  WRITEC 6 , 5 9 0 )

WRI TEC6 , 6  2 0 ) C C F Y O P T C I , J ) , J  = 1 , 8 ) , 1  = 1 , MFOPT)  
W R I T E C 6 . 5 9 0 )
C A L L  PLOT

MFOPT = 0 
ISUML =  0 
ISUMO = 0 
ICOUNL = 0 

C  ICOUNO = 0
I N T L  = 0
I N T O  = 0

G  ICOUNT = 5
L = 0

^  I S K I P  = 0
C  N =  0

M = 5 
MM = 5

C  0 0  134  I  = 1 , 2
1 34  C 3 C I )  = 0 . 0

DO 136  1 = 1 , 5 0  
G  DO 138  J = l , 8

FYOPT C I , J ) =  0 . 0  
138  CONTINUE

G  136  CONTINUE 
C
C TEST TO SEE I F  AL L  I NP U T  DATA HAS

G  C BEEN REAO.

G

C

C

G  I L l  = I I L  -  I L 1
I F C I L 1 )  1 2 2 , 1 2 2 , 1 2 4  

1 24  CONTINUE
G I L 2  = I L l " 5 0

I F C 1 L 2 )  1 2 6 , 1 2 b , 1 2 8  
128  C ONTI NUE '

G-  I L  =  50
I L 3  = I L 3 + S 0  
I L l  = I L 3  

G  GO TO 14
1 2 6  CONTINUE

I L  = I L l  
I L l  = I L 3  + I L l



GO TO 14 
1 22  CONTINUE

W R I T E C 1 , 5 7 0 3  
READ C1 , 5 1 0  3 ANS

IFC ANS . E Q .  I T )  GO TO 10 
GO TO 1 00 0  

9 5 0  CONTINUE
W R I T E C 6 , 9 2 0 3  

9 2 0  F 0 R M A T C 1 0 X ' * * * * * * » I N P U T  DATA NOT ONE 
X U N I T  A P A R T * * » * * » ' 3  

GO TO 1 0 0 0  
9 6 0  CONTINUE

W R I T E C 6 . 9 3 0 3
9 3 0  F O R M A T C I O X , ' * » * * * * * » INPUT DATA D I F F E R E N C E

X BETWEEN 0 . 0  AND 1 . 0 * » * * * * » ' 3  
GO TO 1 0 0 0

6 2 0  F O RM A T C I O X , ' M S T A R  = ' , 1 2 , 5 X , ' M F I N  = ' , I 2 , 5 X , ' N Y  = ' , I 1 , 5 X ,  
X ' E l  = ' , E 1 6 . 8 , 5 X , ' E 2  = ' , E l  6 . 8 , 5 X , ' E3 = ' , E l  6 . 8 , / , 2 0 X ,
X ' EMAX = ' , E 1 6 . B , 5 X , ' D N O R M  = ' , E l  6 . 8 , / , 2 0 X ,

5 0 0  FORMAT ( 35HREAD DATA FROM CARD READER ( V OR .V) )
5 1 0  FORMAT( A 1 )
5 2 0  FORMAT( 1 3 )
5 3 0  F 0 R H A T C F 6 . 2 , F 6 . 2 >
5 5 0  FORMAT( 3 8 HDO YOU WANT A L I N E A R  S OL UT I ON ( Y OR h ) )
5 6 0  FORMAT( 2 7  HDO YOU WANT A PLOT CY OR N 3 3
5 7 0  FORMAT C 44HDO YOU WANT TO RUN ANOTHER S O L UT I O N  CY OR N 3 3
58  0 F O R M A T C 1 0 X , I 3 , 5 X , F 6 . 2 , 5 X , F 6 . 2 3
5 9 0  FORMAT C1 H I )
6 0 0  F O R M AT CI O X , 4 H E2  = , F 6 . 2 , 5 X , 6HEHAX = , F 6 . 2 3
6 1 0  F O R M A T C 6 2 X , 7 H L S O U A R E , 3 1 X , I 2 , l H / , I 2 , l H / , I 2 , / , / 3
6 5 0  F O R M A T C F 5 . 3 , F S . 3 , F 5 . 3 , F 5 . 3 3
6 4 0  F O R M A T C I O X , ' F U Z L L  = ' , F 5 . 3 , 1  OX, ' FUZLH = ' , F 5 . 3 , 5 X ,

X ' F U Z Q L  = ' , F 5 . 3 , 5 X , ' F U Z Q H  = ' , F 5 . 3 3  
6 6 0  FORMAT C F 5 . 2  3
1 0 5 0  F O RMAT C' I MP ORTANCE OF L2 = ' 3  
1 0 6 0  FDRMATC ' I M P O R T A N C E  OF SLOPE =- '3 
1 0 7 0  FO RMATC' I MP ORTANCE OF LMAX = ' 3  
2 0 0 0  F0RMATCA4 3
3 0 0 0  F O R M A T C I O X , ' L 2  = ' , F I  0 . 5 , 5 X , ' S L O P E  = ' , F 1 0 . 5 , 5 X ,

X ' LM A X  = ' , F 1 0 . 5 3  
1 0 0 0  CONTINUE 

STOP 
END

S T I T L  SUMS/ LSQ
»**»**»*»»»*****»*»****»»***»*«*»****»*»**»*

SUBROUTINE SUMS
C
C T H I S  R OUTI NE  W I L L  FORM THE SUMS OF THE VARIOUS TERMS
C WHICH W I L L  BE REQUIRED LATER OH.
C

COMMON
X / H A I N  / X I N C 5 0 3 ,  Y I N C 5 0 3 ,  A C S , 5 3 ,  X C 5 3 ,
X N,  M, E V A L ,  E S OV A L ,  Y C S 0 3 ,  DNORM,
X X I N I C S 0 3 ,  Y I N I C 5 0 3
X /SUMS ' / Y Y ,  XY,  XSQY,  A Y C S , 5 ) ,
X X Y Y , XXSQY
X / S C A L E  / C ,  D ,  I L

C
DI MENSI ON X I C 50  3 

C F I R S T  TEST TO DETERMINE I F  WE ARE GOING TO USE L I N E A R
C OR QUADRAT I C  A P P R OX I M A T I ON S .
C



c

o

o

o

c

c

c

c

c

c

c

c

c

c

c

G

c

G

G

G

10

15

20

30

. I N I T I A L I Z E  SOKE V A R I A B L ES

XX = 0 
YY = 0 
SOX = 0 
XY = 0 
X C U B I  = 0 
XFOUR = 0 
XSQY = 0
I F C  N . E Q .  2 )  GO TO 20 
DO 2 I  = 1 , 5

DO 4 J  = 1 , 5  
A C I , J 1 = 0 . 0  

CONTI NUE

SUMS FOR L I N E A R  CASE

X I N C I )
♦ C X I N C I ) ) * » 2  
Y I N  C I )
C X I N C I ) * Y I N C I ) I

DO 10 1 = 1 , H 
XX = XX + 
SOX = SOX 
YY = YY + 
XY = XY + 

CONTI NUE 
A C 1 , 1 )  = M 
A d , 2 )  = XX 
A C 2 , 1 )  = XX 
A C 2 , 2  ) = SOX

SCALE FOR YOPT SOLUTION

XYY = 0 
XX = 0 
SOX = 0 
DO 15 1 = 1 , M

X I C I )  = C C X I N C I ) » D ) / 2 . 0 ) + C C / 2 . 0 )
XX = X X + X I C I )
SOX = S Q X + C X I C I ) ) * * 2  
XYY = X Y Y + C X I C I ) » Y I N C D )

CON T I N U E  
A Y C l . l )  = M 
AY C1 ,  2 )  = XX 
A Y C 2 . 1 )  =  XX 
A Y C 2 , 2 )  =  SOX 
GO TO 40 
CONTI NUE

SUMS FOR QUADRATIC

DO 30  1 = 1 , M
XX = X X + X I N C I )
SQX = S O X + C X I N C I ) ) » » 2  
XCUBI  = XC UB I  + C X m i ) ) * * 3  
XFOUR = X F O U R + C X I N C I ) ) * * 4  
XY =  X Y * C - X I N C I ) » Y I N C I ) )
YY = Y Y + Y I N C I )
XSOY = X S Q Y + C C C X I N C I ) ) » * 2 ) » Y I N C I ) )

C O N T I  
AC 1 ,  1 
A C 1 ,  2 
A C 1 ,  3 
AC 2 , 1 
A C 2 , 2

UE 
= H 
= XX 
= SQX 
= XX 
= SOX
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C
A C 2 , 3 )  = XCUBI  
AC3 , 1 )  = SQX 

C  AC 3 , 2 )  = XCUBI
A ( 3 , 3 )  = XFOUR

C -  C SCALE FOR YOPT SOL UTI ON
C

xxsor = o
C  XYY = 0

XX = 0 
SQX = 0

C xxc = o
XXF = 0

c
C FORM C O E F F I C I E N T S
C

DO 35  I  = 1 , M
X I C 1 )  = C C X I N C I ) * D ) / 2 . 0 ) * C C / 2 . 0 )

XX= X X + X I C I )
SQX = SOX + C X I ( 1 ) ) * * 2  
XYY = X Y Y + ( X I C I ) * Y I N C I ) )
XXC = X X C + C X I C I ) ) » * 3  
XXF = X X F + C X I C I ) ) » » 4  

C  XXSQY = XXSOY+ C C CXI  C l ) ) » * 2 ) * Y I N C I ) )
35 CONTI NUE

A Y C 1 . 1 )  =H 
C AY C1 , 2 )  = XX

AY C1 , 3 )  = SQX 
A Y C 2 , 1 )  = XX 

C AY C2, 2 ) = SQX
A Y C 2 . 3 )  = XXC
A Y C 3 . 1 )  = SQX

C  AY C3, 2 )  = XXC
AY C 3 , 3 )  = XXF 

4 0  CONTINUE 
C  RETURN

END
S T I T L  G E N I N V / L S Q

SUBROUTINE GENI NV 
COMMON

C  X / M A I N  / X I N C S O ) ,  Y I N C S O ) ,  A C 5 . 5 ) ,  X C 5 ) ,
X h ,  M, E V A L ,  E S QV A L ,  Y C 5 0 ) ,  DNORM,
X X I I . I C 5 0 ) ,  Y I N I C 5 0 )

w  X / G E N I N V  / Y G C 1 0 , 1 0 )
DI MENSI ON Y Z C 1 0 , 1 0 ) , A T C 1 0 , 1 0 ) , Y Y C 1 0 , 1 0 ) ,

X Y I C 1 0 , 1 0 ) , Y 2 C 1 0 , 1 0 ) , Y 1 C I O , 1 0 )
^  C

C F I R S T  FORM THE I N VE RS E  AFTER I N I T I A L I Z I N G
C
C ■
C F I R S T  TEST TO DETERMI NE I F  HE ARE COMPUTI NE THE L I N E A R
C SOLUTION OR Q U A D R A T I C .

IF C  N . E Q .  2 )  GO TO 10 
K = 2 
GO TO 20 '

^  10  CONTINUE
X = 3 

2 0  CONTINUE
C  C

C I N I T I A L I Z E  YZ M A T R I X  TO ZERO
C

DO 30  1 = 1 , 1 0
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DO 40  0 = 1 , 1 0  
^  4 0  . Y Z C I , 0 )  = 0 . 0

3 0  CONTINUE
GO TO 7 00

~  c
C COMPUTE THE TRANSPOSE XT
C

DO 5 0  1 = 1 , K 
Q  DO 6 0  0  = 1 , K

6 0  A T ( 0 , 1 )  = A ( I , 0 )
5 0  CONTINUE

C  C
C FORM YZ = CAT) »A

~  CC DO 7 0  1 1 = 1 , K
DO 80 I  = 1 , K 

AA = 0 . 0
DO 9 0  0 = 1 ,  K

AA= A T C I , 0 ) * A C 0 , I I )
90  Y Z C I , I I )  = I Z  C I , I I ) + AA

C 80  CONTINUE
70 CONTINUE 

7 0 0  CONTINUE 
C  DO 7 10  1 = 1 , K

DO 7 20  0 = 1 , K 
Y Z ( I , 0 )  = A ( I , 0 )

C 7 2 0  CONTINUE
7 1 0  CONTINUE 
C

L  C ADD U N I T  MATRI X TO YZ
C

DO 100  1 = 1 , K
C  DO 110  0 = 1 , K

Y Y ( I , 0 )  = 0 . 0  
Y Y ( I . I )  = 1 . 0  

110  CONTINUE
1 0 0  CONTINUE

DO 1 20  I  = 1 , K
C KK = K

DO 130  0 = 1 , K 
KK=KK+1

G 1 3 0  Y Z ( I , K K )  = YY C I , J )
1 2 0  CONTINUE 

C MATRIX I N V E R SI ON  AND GE N E R A L I Z E  I N V E R SE
C  C R OU T I NE .

C
C F I R S T  TEST TO DETERMINE NO* MANY PASSES
C WE MUST MAKE THROUGH T H I S  S E C T I O N .

IFC N . E O .  2 )  GO TO 2 00
C
C T H I S  NEXT SECTI ON WI LL  SOLVE FOR
C THE L I N EA R  CASE.
C

G KK = 1
1 = 1

C
C START F I R S T  PASS
C

DO 1 40  0 = 1 , 4  
1 4 u  Y I  C 1 , 0 )  = YZC1 , 0  ) /  Y Z C K K . K K )

I  = 2
0 0  1 5 0  0 = 1 , 4  

1 50  Y I C 1 , 0 )  = YZ C 1 , 0 )  -  C Y Z C I , K K ) » Y 1 C K K , 0 I )



: C
C

_ c
O  C START SECOND PASS

C
„  KK = 2
G  1 = 2

DO 1 60  J  = l , 4  
. 160  Y2 C I »J ) = Y I C I , J ) / Y I C K K , K K )
' O 1 = 1

DO 1 70  J  = l , 4  
1 70  Y 2 ( I , 0 )  *  Y I C I , J ) - C Y I C I , K K ) * Y 2 ( K K , J ) )

.• G  GO TO 3 0 0
2 0 0  CONTINUE

r . c
G  • C T H I S  SE C T I ON  W I L L  SOLVE FOR THE QU A D RA T I C

C CASE AS E V I D E N T  BY THE THREE P A S S E S .

c  c KK = 1 
I  =  1

G  C START F I R S T  PASS
C

DO 2 1 0  J = l , 6  
C 2 1 0  T I C I . J )  = Y Z C I , 0 ) / Y Z C K K , K K )

DO 2 2 0  1 = 2 , 3
DO 2 3 0  J = 1 , 6

C  2 3 0  Y I ( I , 0 )  = Y Z ( 1 , J ) - ( Y Z ( I , K K ) * Y I C K K , J ) )
2 20  CONTINUE

C C
C START SECOND PASS

r . c
C  KK = 2

I  = 2
DO 2 4 0  0 = 1 , 6  

C  2 40  Y 1 ( I , 0 )  = Y I ( I , J ) / Y I C K K , K K )
DO 2 5 0  1 = 1 , 3 , 2  

DO 2 6 0  0 = 1 , 6
C  2 6 0  Y 1 C I , 0 )  = Y I C I , J ) - C Y I C I , K K ) * Y 1 ( K K , 0 ) )

2 50  CONTINUE 
C

G  C
C START T H I R D  PASS
C

C  KK = 3
I  = 3
DO 2 7 0  0 = 1 , 6  

2 70  Y 2 ( I , J )  = Y1 C I , J ) / Y 1  C K K . KK )
DO 2 8 0  1 = 1 , 2

DO 2 9 0  0 = 1 , 6  
290  Y2 C I , J ) = Y 1 C I , J ) - C Y I C I , K K ) * Y 2 ( K K , J ) )
2 80  CONTINUE 
300  CONTINUE 
C
C COMPUTE THE G E N E R A L I Z E D  I NVERSE
C

L c
C F I R S T  SET THE MAT RI X  YG = U
C

_  DO 3 1 0  1 = 1 , 1 0
DO 3 2 0  J = 1 , 1 0  

320 YG C I , 0 )  = 0 . 0
U  310 CONTI NUE
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O

C

O

C

c
r~~K.

C

c

c

r .

C

c

o

c

c

KJ

c

o

3 30

3 4 0
c

t e s t  t o  d e t e r m i n e  w h i c h  s o l u t i o n  i s  d e s i r e d
I . E .  L I N E A R ( N = 1 )  OR 0 U A D R A T I C C N = 2 ) .

2 )  GO TO 330I F  £ N . E Q .  
L L  = 2 
K =  2 
GO TO 3 4 0  
CONTINUE 
L L  = 3 

K = 3 
CONTINUE

NOW COMPUTE THE I NVERSE

3 6 0
3 50

DO 3 50  1 = 1 , K 
L =  L L

DO 3 6 0  J = 1 , K  
L = L + l
Y G C I . J )  = T 2 ( I , L )

CONTINUE 
CONTINUE 
RETURN 
END

S T I T L  S O L I N / L S O

SUBROUT I NE SOLIN
C
C COMPUTE THE L I N E A R  S OL UT I ON AND ERRORS.
C

C O M M O N
X / M A I N / X I N  C 5 0 ) , Y I N ( 5 0 ) , A C 5 , 5 ) , X ( 5 ) ,
X N ,  M, E VA L , E S OV A L , Y C 5 0 ) , DNORM,
X X I M ( S O )  , Y I N K 5 0 )
X /SUMS / Y Y ,  XY, XSQY , AY C 5 , 5 ) ,
X XY Y , XXSOY
X / G E N I N V / Y G C I O . I O )
X / S O L I N / E ( 5 ) , I S K I P , F S O L I N ( 3 )
X / F U Z Z Y / S 1 G ( 5 0 ) , EMAX, I C O U NL , ICOUNO
X F U Z L L , FU Z L H ,  F I F2  , F 3 ,
X FUZQL, FUZOH

10
c
c
c

c
c
c '

15
C
C
C

D IM E N SI ON  B R ( 5 )

F I R S T  I N I L I Z E  X C I )  TO ZERO

DO 10 I  = 1 , 5  
E C I )  = 0 . 0  
X ( I )  = 0 . 0

TEST TO DETERMINE I F  N = 1 OR 2 .

I F ( N . E Q .  2 )  GO TO 15

THEN B U I L D  THE B MATRIX

BB C1 )  = YY 
B B C 2)  = XY 
L = 2 
GO TO 18 
CONTINUE

B U I L D  THE B MATRIX FOR Q U A D R A T I C .
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c
c

B 6(1) = YY 
B BC2)  = XY 
B B C 3 )  = XSQY

c 18
L = 3 
CONTINUE

C
c F I N D  C O E F F I C I E N T S  TO L I NEAR EQUATION I . E .  K1

o c AND K 2 .
c

c
DO 2 0  I  = 1 , L  
AA = 0 . 0

DO 30 J  = 1 , L

30
AA = Y G C I , J ) » B B C J )  

E C I )  =  EC I ) + AA
20 CONTINUE

C 22
I F ( N . E Q .  2 )  GO TO 45 

CONTINUE
C
C TEST TO SEE I F  WE SHOULD S K I P  RESCALE

c C BECAUSE T H I S  I S  FOR YOPTL.
C

c
C
C
C RESCALE I N T O  O R I G I N A L  VALUE S.
C

c C
CALL RESCAL

C FORM L I N E A R  EQUATI ON ( Y= K C 1 )  + K ( 2 ) » XI N C I))
c . C AT THE G I VE N  X ' S

c

G G
c B U I L D  L I N E A R  M A T R I X  OF C O E F F I C I E N T S .
c
c** ***»»*»***********»*******************¥»*****»****»**»»***** *»*=***»

v.. • F S 0 L I N C 1 )  = E C I )
F S O L I N  C2 ) = E C2)  
DO 40  1 = 1 , Hc 40 Y C I ) = E C U  + E C 2 ) * X I N C I )

C
C
C NOW FORM THE ERROR TERM E BETWEEN Y C I )
C AND Y I N C 1 ) .  THAT I S  E = S U M C Y I N C I ) -Y).

rs..
C

45
GO TO 55 
CONTINUE

C RESCALE I N TO  O R G I N I A L  VALUE S.
C

CALL  RESCAL

C
C B U I L D  OUADRATIC MATRIX OF C O E F F I C I E N T S .

C
C

F 5 0 L I . V C 1 )  = .  E C I )
FSOL I NC 2 )  = E C 2 )  
F S 0 L I N C 3 )  = EC 3 )

C FORM QUADRAT I C  EQUATI ON AT THE GI VEN X ' S .
c
48

DO 48  1 = 1 , H
Y C I ) = E C 1 ) + C E C 2 ) * X I N C I ) ) * C E C 3 ) » C X I N C I ) * * 2 ) )

55 CONTINUE

G
EE = 0 . 0  
AA = 0 . 0

------- - - _
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C

d n o r h  = 0 . 0
' ONORK1 = 0 . 0

C E2D = 0 . 0
X4 = 0 . 0  
X I  = 0 . 0  

I F t N  . E O .  2 )  GO TO 54 
GAM = AT AN C E C 2 ) )

5 4  CONTINUE
DO 50  1 = 1 , M

AA = Y I N  C l )  -  Y ( I )
C
C S I G C I )  W I L L  BE ASSIGNED THE D I F F E R E N C E  BETWEEN
C Y I N  AND Y COMPUTED. T H I S  I S  USED I N  THE FUZZY
C R O U TI N E .

C

S I G C I )  = AA
c c

C COMPUTE THE PERPENDICULAR D I S T A N C E  BETWEEN
C Y I N  AND Y .

I F C A A  . L T .  0 . 0 )  GO TO 56
C c

c FOR VALUES OF Y I N  ABOVE Y .
C

C  I F C N  . E Q .  2 )  GO TO 56
E2D = C A A * S I N C 9 0 . 0 - G A M ) ) » » 2  
GO TO 64 

C 58  CONTINUE
AM = C 2 . 0 » E C 3 ) ) » X I N C I )
GAM = 9 0 . 0 - C A T A N C A M ) )

C E2D *  C A A m S I N C G A M ) ) * * 2
GO TO 64 

56  CONTINUE
C C

C FOR VALUES OF Y I N  BELOW Y .
C

O  I F C N  . E O .  2 )  GO TO 62
E2D -  C A A * S I N C G A M ) J * » 2  
GO TO 64 

C 62  CONTINUE
AM = C 2 . 0 V E C 3 ) ) * X I N C I )
GAM = ATANCAM)

O  E2D = C A A * S I N C G A M ) ) * » 2
64  CONTINUE

ONORK1 = DNORM1 + E2D 
C  5 0  EE = EE+AA

DNORM = SORTCDNORM1)
C

^  C COMPUTE SUM E SQUARE ERROR
C

ESO = 0 . 0  
C '  AA = 0 . 0

DO 60  1 = 1 , M
a a  = ( Y i N c n - r c i )  > » * 2

O  60  ESQ = ESQ + AA
ES'OVAL = SORTCESQ)

c F I N D  EMAX FROM D E L T A - Y .

EMAX = A B S C S I G C 1 ) )
DO 70  1 = 2 , M
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r''
EMAX = A M A X 1 C E H A X , A B 5 C S I G C I ) ) )

7 0  CONTINUE
90 CONTINUE
C 
C 
C
C C A L L  F U Z Z *  L O G I C  ROUTINE

c
RETURN
END

S T I T L  R E S CA L / L S O
C c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE RESCAL 
COMMON

c X / M A I N  / X I N C 5 0 ) ,  Y I N C S O ) ,  A C 5 , 5 ) ,  X C 5 ) ,
X N ,  N , E V A L ,  ESQVAL ,  Y C S O ) ,  DNORM,
X X I N I C 5 0 ) ,  Y I N I C S O )

C X / S O L I N  / E C S ) ,  I S K I P ,  F S OL I NC 3 )
X / S C A L E  / C ,  D ,  I L

DO 10 1 = 1 , H  
C 10 X I N C I )  = C C X I N C I ) * D ) / 2 . 0 ) + C C / 2 . 0 )

I F C N  . E G .  2 )  GO TO 2 0  
E C I )  = E C I )  -  C C / D ) * E C 2 )

C E C 2 )  = C 2 . 0 * E C 2 ) ) / D
GO TO 30  

2 0  CONTINUE
L  E d )  = E C 1 ) - C C C / D ) * E C 2 ) ) + C C C C / D ) * * 2 ) * E C 3 ) )

E C 2 )  = C C 2 . 0 * E C 2 ) ) / D ) - C 4 . 0 * C * E C 3 ) ) / C D * * 2 )
EC 3 )  = C 4 . 0 * E C 3 ) ) / C D * * 2 )

C 30 CONTINUE
RETURN 
END

S T I T L  S C AL E / L SO
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE SCALE
L- C

C T H I S  R OU T I NE  SCALE S THE I N P U T DATA TO THE I N T E R V A L
C ( - 1 , 1 ) .  T H I S  I S  TO AVOI D ROUND OFF ERRORS.

C c
COMMON

X / M A I N  / X I N C 5 0 ) ,  Y I N C 5 0 ) ,  A C 5 , S ) ,  X C 5 ) ,
( X N,  M, E V A L ,  E SOVAL ,  Y C 5 0 ) ,  DNORM,

X X I N I C 5 0 ) ,  Y I N I C 5 0 )
X / S C A L E  / C ,  D ,  I L

AA = X I N C I )
B = X I N C I )

C
- C TEST FOR MI N  AND MAX V A L UE S.

C
DO 10 1 = 1 , M
I F C X I N C I )  . L E .  A A )  GO TO I S  
CO TO 20 

15 AA = X I N C I )
20 CONTINUE

I F C  B . G E .  X I N C I ) )  GO TO 10  
B = X I N C I )

10 CONTINUE
C = B+AA 
D = B - A A

C
C NOW COMPUTE THE NEW SCALED V A L UE S .
C

DO 30  I  = 1 , M
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O
30 X I N C I )  = C C 2 . 0 » X I N ( I ) ) - C ) / D  

RETURN 
0  END

S T I T L  QUAD/LSQ

O  S U B RO UT I NE  OUAD
C
C T H I S  ROUTI NE R I L L  COMPUTE THE QUADRATIC CURVE F I T

C C FOR THE GI VEN D A T A .
C

COMMON
V X / M A I N  / X I N C 5 0 ) ,  Y I N C 5 0 ) ,  A ( 5 , 5 ) ,  X C S ) ,

X N ,  M, E V A L ,  E S GV A L ,  I C 5 0 ) ,  DNORM,
^  X X I N I ( S O ) ,  Y I N I ( 5 0 )

C N = 2
CA L L  SUMS 
C A L L  GENINV 

C C A L L  S OL I N
RETURN 

_  END
L  S T I T L  L I N / L S Q

SUBROUT I NE L I N
C
C T H I S  ROUTI NE H I L L  COMPUTE THE L I N E A R  CURVE F I T  FOR
C THE G I VE N  DATA.

C- c
COMMON

X / M A I N  / X  I N ( 5 0 ) ,  Y I N C 5 0 ) ,  A C 5 , 5 ) ,  X C S ) ,
X N ,  M, EVAL ,  E SOVAL ,  Y C 5 0 ) ,  DNORM, '
X X I N I ( S O ) ,  Y I N I ( 5 0 )

C
C C SET N = 1

C
N = 1

C C A L L  SUMS
C AL L  GENINV 
C AL L  S OL I N  

C RETURN
END

S T I T L  F U Z Z Y / L S D

S UBROUT I NE FUZZY
C

C  C T H I S  ROUTI NE H I L L  COMPUTE THE FUZZY C H A R A C T E R I S T I C
C FUNCT I ON FOR THE B R E A K P OI N T .
C

L  COMMON

r - .

X / M A I N / X I N ( 5 0 ) ,  Y I N C 5 0 ) , A ( 5 , 5 ) , X ( 5 ) ,
X N , M, E V A L ,  E S OV A L ,  Y CSO) , DNORM,
X X I N 1 ( 5 0 ) , Y I N 1 ( 5 0 )
X / F U Z Z Y / S I G C 5 0 ) ,  EMAX,  I C O U N L , I C O U N O ,
X F U Z L L , F U Z L H ,  F I ,  F 2 ,  F 3 ,

c X F UZ Q L , FUZQH
X / S O L I N / EC  5 ) ,  I S K I P ,  F S O L I N C 3 )
X /  YOPT / X X C S ) ,  I S U M L ,  I SUMO, C 3 C 2 )  ,
X I N T L , I N T O ,  MM, R H0 1 ,  SNR, RHO
X / O P T S O L / M S T A K ,  M F I N ,  E 2 , MFOPT,
X FYOPT C 5 0 , B)  , NY

c 01 MENSION C l ( 5 ) , C 2 ( 5 ) , G C 1 0 ) , C ( 3 ) , C 4 ( 5 ) ,
XC6 C 5 ) , D 1 C S , 3 ) , D 2 ( S , 3 ) , D 3 C 5 , 3 ) , D 4 C S , 3 )

c
C THE F OLLOMI NG I S  A L I S T  OF S YM6L0S USED I N  THE
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PROGRAM WHICH REPRESENTS THE EOUATI ON SYMBOLS.

C ( l )  = GC C X I ) )
CC2)  = G t C X 2 J )
C C 3 J = G C C X 3 ) )

C 1 C I ) s S I G H A - Y C  CDELTAY C l ) / L 2 ) I X C I )  )
C 2 C I ) 3 S I G H A - Y C  C D E L T A Y / L M A X ) 1 X C I )  )
C 3 C I ) 3 S I G H A - Y C  C S C D / H )  1 X C I )  )
C 4 C I ) 3 S I G M A - Y C  C L 2 / D E L T A Y C I ) ) I X  C I )  )

YY = M
CC1) = F I
CC2) = F3
C C 3 ) = F2

TE S T  TO SEE I F  L2  I S  ZE R O.

I F ( DNORM . G E .  . 0 1 1  GO TO 5
DN0RM3 = 0 . 0
CONTINUE

TEST TO SEE I F  EMAX I S  ZERO.

I F ( EMAX . G E .  . 1 )  GO TO 6
EMAX2 = 0 . 0
CONTINUE

TESAT TO SEE I F  S I G C I )  I S  ZERO

IFCDNORM3 . E O .  0 . 0 )  GO TO 9 
DO 10 1 = 1 , M

C 1 C I )  = A B S C S I G C D / D N O R M )
C 2 C I )  = A B S C S I G C I ) / E M A X )

0 CONTINUE 
GO TO 13 
CONTINUE
DO 11 1=1 , M 

C 1 C I )  = 0 . 0  
C 2 ( I ) = 0 . 0

1 CONTINUE
3 CONTINUE

TEST ORDER OF P OL Y .

I FCN . E Q .  2 )  GO TO 20 
ICOUNL = I SU M L  + 1 
ICOUNT = ICOUNL  
ICOUNQ = 0 

DO 15 1 = 1 , M
C 6 C I )  = C C A T A N C E C 2 ) ) ) / 9 0 . 0 ) * 5 7 . 3  

5 CONTINUE
CO TO 30 
C ON I I N U E

FORM L2  OF THE QUADRAT I C S L O P E .

ICOUNO = ISUHO ♦  1 
ICOUNT = ICOUNQ 
ICOUNL = 0 

0  =  0 . 0  
DO 26  1 = 1 , M

0 = E C 2 ) + ( 2 . 0 « E ( 3 ) * X I N ( I ) )



C6 ( I )  = ( C A T A N C Q ) ) / 9 0 . 0 ) * 5 7 . 3

q = o.o
26 C O N I I N U E
30 CONTI NUE
C 
C
C ORDER S I G M A - Y  FROM LARGEST TO S M A L L ES T .
C
C

AA = 0 . 0  
A = 1 
J  = 1 

60  CONTI NUE
DO 7 0  1 = 1 , M

I F ( C H I )  . G T .  C l ( J ) )  GO TO 7 5  
AA = C l  CJ)
C 1 ( J )  = C l C 13 
C 1 C I )  = AA 

75 CONTI NUE
AA = 0 . 0
I F ( C 2 ( I ) . G T .  C 2 ( J ) )  GO TO 80  
AA = C 2 C J )
C 2 ( J ) = C 2 C I )
C 2 C I )  = AA 

80 CONTI NUE
AA = 0 . 0
I F C C 6 C 1 )  . G T .  C 6 C J ) ) GO TO 85  
AA = Co C J )
C 6 ( J )  = C 6 C I )
C 6 C I )  = AA 

85 CONTI NUE
70 CONTI NUE

I F C J  . E Q .  M)  GO TO 9 5  
J  = J + l  
K = J

C 1 C J )  = C 1 ( K )
C 2 C J )  =  C2CK)
C 6 1 J )  = CbCK)
GO TO 6 0  

95 CON TI N U E
C 
C
C NOW F I N D  M I N ( S I G H A - Y C I ) , C C I ) )
C
C

DO 2 1 0  1 = 1 , N
D l C I . l )  = A M I N 1 C C 1 ( I ) , C ( 1 ) )
0 2 ( 1 , 2 )  = A M I N H C 2 ( I ) , C ( 2 ) )
D 3 C I , 3 )  = A M I N H C 6 ( I ) , C ( 3 ) )

2 1 0  CONTI NUE
C
C
C F I N D  MAX VALUES FROM D 1 ( I ) , U 2 C I ) , D 3 ( I ) , AND
C D 4 ( I ) .  T H I S  I S  THE FUZZY B A Y E S '  THEOREM MODEL.
C
C

E5 ' =  D1 ( 1 ,  1 )
E6 = D 2 ( 1 , 2 )
E7 = D 3 ( 1 , 3 )
DO 2 2 0  I  = 2 ,  M

E5 = A M A X H E 5 , D 1 ( I , 1 ) )
E6  = A K A X H E 6 , D 2 C I , 2 ) )
E7 =  A M A X 1 ( E 7 , D 3 C I , 3 ) )



* * * * * * * * * * * * * * * * *
E9 = 1 . 0 - E 5
E 1 0  = 1 . 0 - E 6
E l l  = AMIN1C
E l  2 = AMIN1C
E l  3 = AMAX1C
E14  = 1 . 0 - E l
E l  5 = 1 . 0 - E 7
E l  6 = A M I N 1 C
E17 = AMIN1C
E l  8 = A MAX 1 C
X X C I C O U N T ) =

o
2 2 0  CONTINUE 

_  E5 = 1 . 0 + E 5
L .  E6 = 1 . 0 + E 6

E7 = 1 . 0 + E 7  
E5 = 1 . 0 - E 5  
E6 = 1 . 0 - E 6  
E7 = 1 . 0 - E 7  

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C c

■ C F I N D  FUZZY D E C I S I O N  BY USI NG
C D I S J U N C T I V E  SDK.

C C

0  

C

C X X C I C O U N T ) = E l  8
FF = XXCICOUNTJ 

C TEST TO DETERMINE I F  FUZZY VALUE I S
l- C LESS THAN . 2 5 .

C
I F C I C O U N T  . N E .  2 )  GO TO 2 40  
RH01 = A B S C X X C D - X X C 2 ) )

C
C NOa COMPUTE RHO USI NG 1 - CM I N M A X  R U L E ) .

' C
RHO = 1 . 0 - R H 0 1
I F CN  . E O .  2 )  GO TO 2 50

C
C
C NOW TEST TO SEE I F  WE HAVE A GOOD F I T .

L c
c

IFCCRHO . L T .  F U ZL H)  . A N D .  CRHO . G E .  F U Z L L ) ) GO TO 2 4 0
f . C

C NO— BAD F I T  — SET XXC1)  = XX C 2 )  AND ICOUNT = 1 .
C

X X C 1 )  = XX C 2 )
I S U M L  = 0 
C AL L  YDPT 

GO TO 2 3 0  
2 5 0  CONTINUE

IFCCRHO . L T .  FUZQH)  . A N D .  CRHO . G E .  F U Z O L ) )  GO TO 2 4 0  
X X C 1)  = XXC2 )

ISUMO = 0 
C A L L  YOPT 

C  GO TO 2 3 0
2 4 0  CONTINUE 

,  C
C WE HAVE A GOOD F I T .  COMPUTE YOPT AND COMPUTE
C A NEW FUZZY C H A R AC TE R I S T I C  VALUE BASED DN YOPT.
C

C C
C A L L  YOPT

C
C TEST WHICH PASS T H I S  I S  I . E .  I  OR 2 .
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e

v _ '

c

o

c

c

c

I F C I C O U N T  . N E .  2 )  GO TO 2 3 0
xxcn = xxc2 )

2 3 0  CONTINUE 
RETURN 
END

S T I T L  Y OP T / L S O
»■******»»»**»**«***»****♦*»****»***»*»****»****»♦»

S UBROUTI NE YOPT
C 
C 
C 
C

T H I S  R OUT I NE  W I L L  COMPUTE A NEW YOPT ACROSS 
TWO I N T E R V A L S  ( I N  A N D I N + 1 ) .

COMMON 
/ M A I N  
N,  M,  
X I N I ( 5 0 )  , 
/ YO P T  
I N T L .  
/SUMS 
XYY,

/ X I N ( S O ) ,  
E V A L ,  

Y I N M S O )  
/ X X ( 5 ) , 
I N T O ,
/ Y Y ,

XXS3Y

Y I N ( 5 0 ) ,  
E S OV A L ,

I S U M L ,
MM, R H 0 1 ,

X Y ,  XSOY,

A ( 5 ,  5 ) , 
Y(50) , X ( 5 )  , 

DNORM,

I SUMO,  C 3 ( 2 ) ,
SNR,  RHO

A Y ( 5 , S ) ,

C 
C 
C 
C 
C 
C 
C
Cv»»****»»» » * » * * * « > * « * * * * * * * *
C
C I N I T I A L I Z E  SOME M U L I P Y I N G  FACTORS I . E .  P I ( L I N C A S E )  AND
C T H E T A ( Q U A D R A T I C  C A S E ) .
C

/ S C A L E /c, D, I L
/ S O L I N / £ ( 5) , I S K I P , F S O L I N ( 3 )
/ G E N I N V / Y G ( 1 0 , 1 0 )
/ OP T S OL / M S T A R , M F I N , E 2 ,  HFOPT■
F Y O PT ( 5 0 , 8 ) , NY

D IM E N SI ON  A L ( 2 0 ) , B L ( 1 0 ) , P I 1 ( 2 0 ) , T H E T A ( 2 0 ) , X I ( 5 0 ) ,
M L ( 5 0 ) , HQ( 5 0 ) , A L L ( 1 0 ) , B L L ( 1 0 ) , P I 2 ( 2 0 )

IF(N . E Q .  2 ) GO TO 30
I S UML  = I SU M L + 1

SOLVE FOR L I N E A R  CASE BY FORMING TWO SEPARATE ARRAYS 
THEN COMPUTE THE YOPT AND THEN S U BS T I T U T E  YOPT BACK 
I N T O  THE I N I T I A L  L I N E A R  A RRA Y .

TEST TO DETERMI NE WHICH PASS T H I S  I S .

P I  1 (  1 ) = . 2 7 7 7 7 7 7 7 9
P I 1 ( 2  ) = . 1 2 0 2 0 5 1 2
P l l ( 3 ) = . 0 7 3 5 2 9 4 2
P I  1 ( 4 ) 3 . 0 4 7 6 1 9 0 4 9

L. P I  1 ( 5 ) 3 . 0 3 3 3 3 3 3 9
P I  2 ( 1 ) 3 . 3 3 3 3 3 3 3 3
P I 2 ( 2 ) 3 . 1 6 4 0 3 5 3 3_ P I  2 ( 3 ) 3 . 0 9 8 0 3 9 2 6 9
P I  2 ( 4 ) 3 . 0 6 4 9 3 5 2 0 7
P I 2 ( 5 ) 3 . 0 4 6 1 5 3 9 1 4

I F ( I S U ML  . E Q .  2 )  GO TO 20
M L ( l )  *  5
I N T L = I N T L

C
C FORM
C

A L U ) = A Y ( 1
A L U ) = AY ( 1
AL ( 3 ) = AY ( 2
AL ( 4 ) = AY ( 2

FORM I N I T I A L  L I N A E R  ARRAY AND SCALE BY 1 0 .
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c

p

C-

C

c

c

c

c

(_

c;

c

(_•

C-

c

c

c»*
c 
c 
c 
c*»

2 0
c
c
c

B L c n  = y y / i o . o 
B L C 21 = X Y Y / 1 0 . 0  
A L L C 1)  =  Y G d . l l  
ALLC21 =  Y G C 2 , 2 )

SET ISUMO = 0

I  SUMO = 0 
ICOUNT = 0

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

F I N  S T A R T I N G  VALUE

* * * * » * » » » » » * * * * » » » * * * * * » » * * * » » * » * * * » * « * * * * * « * * » * » * » * * * » » * * * »  
MSTAR = MM-4 
NUMCO = MM 
GO TO 2 00  
CONTINUE

FORM SECOND L I N E A R  ARRAY AND SCALE BY 1 0 .

A L C 5 )  = A Y ( 1 . 1 1 / 1 0 . 0  
ALC61 = A Y C 1 , 2 1 / 1 0 . 0  
ALC71 = A Y ( 2 , 1 1 / 1 0 . 0  
A L C 8 )  = A Y C 2 , 2 1 / 1 0 . 0  

BLC31 = Y Y / 1 0 . 0  
BLCA1 = X Y Y / 1 0 . 0

SET ISUMO = 0

ISUMO = 0 
ICOUNT '= ICOUNT + I  
A L L ( 3 1  = Y G C l . l )
A L L ( 4 1  = Y G C 2 . 2 1  
A L L 1  = A L L ( 1 1  ♦  A L L ( 3 1  
A L L 2  = A L L ( 2 ) + A L L  C 41 
A L L 3  = A L L 1 4 P I 1 ( I C O U N T !
A L L 4  = A L L 2 4 P I 2 C I C O U N T !

1 0 2

6 0 0

1 04
C * » »
c
c

NOW FORM L I N E A R  YOPT.

A ( 1 ,  11 
A ( 1 , 2 1  
A ( 2 , 1 1  
A C 2 , 21

A L U !
A H  21 
AL ( 3 1 
AL ( 4 1

AL  ( 5 1  
A L t  61 
AL ( 7  1 
A L ( 8 1

YY = BLC11 + BLC31 
XY = B L C 2 ! + B L ( 4 !

F I N D  THE F I N A L  X OR Y VALUE .

MFI N = MM 
NUMCO =  NUNCO+4 
NU“ C01 = NUMCO -  MM 

I F  t NUMCO11 1 0 2 , 1 0 4 ,  106  
CONTINUE

t R I T E ( 6 , 6 0 0 )
F 0 R W A T ( 2 0 X , ' E R R O R  I N T ER VA L  NUMBER I S  N E G A T I V E ' !
GO TO 2 00
CONTINUE

COMPUTE THE Y = A ' X  MATRIX THE SHORT WAY.



I F C N T  . E Q .  1 )  GO TO 36 
Dl '  = X I N I ( K S T A R )
D2 = X I N I C M S T A R )
DO 26  I = M S T A R , N F I N

D l  = A M I N 1 C D 1 . X I N I C I ) ) 
D2 = AM AX 1 ( D 2 . X I N I C I ) ) 

26  CONTINUE
D HI N  = D 2 - D 1  
DMAX = D2+D1

V A 1 = 0 . 0  
VAL  = 0 . 0  
VA2 = 0 . 0
DO 28  I = H S T A R , M F I N

VA1 = t t ( 2 . 0 » X I N I ( I ) ) - D » A X ) / D M I N J * V I N I ( I )
VAL = VAL+VA1
VA2 = V A2 + Y I N I C I )

28 CONTINUE
GO TO 39 

36 CONTINUE
D l  = Y I N  I ( A S T A R )
D2 = Y I N I ( M S T A R )
DO 37 I = M S T A R , H F I N

37 CONTINUE
D HI N  = D 2 - D 1  
DMAX = D2+D1
V A 1 = 0 . 0  
VAL, = 0 . 0
V A2 = 0 . 0
DO 38 1 = K S T A R , MFI N

V A 1 = ( C C 2 . 0 * Y I N I C I ) ) - D H A X ) / D H I N ) * X I N I C I )  
VAL = VAL + V A 1 
VA2 = VA2 + X I N I C I )

A L L 7  = A L L 5 - C D M A X / D M I N ) « A L L 6  
ALLS = C 2 . 0 » A L L 6 ) / D H I N  

106  CONTINUE

C
C COMPUTE THE UPPER ERROR BOUND ALLOWED
C FOR A YOPT S O L U T I O N .

C
C
C
C

SCALE X I N I  VALUES AND FORM THE PRODUCT 
Y = A ' X .

D l  = A M I N l ( D l . Y I N I C I ) )  
0 2  = A M A X 1 C D 2 , Y I N I ( I ) )

38 CONTINUE
39 CONTINUE

C
C
C

N0» SOLVE THE HATRI X

A L L S = A L L 3 * V A 2  
A L L 6  = A L L A * V A L

C RESCALE A L LS  AND ALL6
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c

r

O c

ECONS = £2  
CONS = RH01»SNR 
CONS1 = E X P ( R H O )
E2 = EVAL+CONS+CONS1

C NOW C A L L  THE APPROPRI ATE R O U T I N E S .
C

O C A L L  GENI NV
C A L L  OPTSOL 
E2 = ECONS

G  C
C SET I N I T I A L  L I N E A R  ARRAY EQUAL TO YOPT.

r . c
L A L C 1 )  = A C 1 , 1  )

ALC 2 ) =  A C 1 , 2 )
ALC 3 }  = A C 2 , 1 1

G ALC 4 )  = A C 2 . 2 )
B L C 1 )  = YY 

B L C 2 )  = XY 
C  I N T O  = 0

C
C SET I S U M L  = 1 AND SET I S K I P  = 0

G  C
I S U M L  = I
I S K I P  = 0

C  GO TO 2 0 0
3 0  CONTI NUE

ISUMQ = ISUMO + 1
C  I S U M L  = 0

C
C SOLVE FOR QUADRAT IC CASE BY FORMING TWO SEPARATE

C C ARRAYS AND THEN COMPUTE YOTPO AND THEN S U B S T I T U T E
C YOPTO BACK I NTO THE I N I T I A L  QUADRATIC ARRAY.
C

C c
C TE S T  TO DETERMINE WHICH PASS T H I S  I S .
C

■- I F  C ISUMO . E O .  2 )  GO TO 40
C
C FORM I N I T I A L  OUADRATIC ARRAY.

C  C
K = 0
DO 32  1 = 1 , 3  

C  DO 34  J  = 1 , 3
K = K + l
A L CK )  = A Y C I , J ) / 1 0 . 0  

34 CONTI NUE
32 CONTINUE

BL  C l )  = Y Y / 1 0 . 0
C B L C 2 )  = X Y Y / 1 0 . 0

B L C 3 )  = X X S Q Y / 1 0 . 0

C  C 
c

I S U M L  = 0 
C_. MSTAR = K M- 4

GO TO 2 0 0  '
4 0  CONT I NUE 
C
C FORM SECOND OUADRATIC ARRAY
C

K=9

SET I SUML = 0
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DO 42 I  = 1 , 3  
. DO 4 4  J  = 1 , 3

O K = K f 1

A L CK )  = A Y ( I , J ) / 1 0 . 0  
44  CONTINUE

O  4 2  CONTIHUE
B L C 4 )  = Y Y / 1 0 . 0  

_  B L C 5 )  = X Y Y / 1 0 . 0
O B L ( 6 )  = X X S 0 Y / 1 0 . 0

C
C SET I SU M L  =  0

G c

C
I S U ML  = 0

C
C NO« FORM Q U A D RA T I C  YOPT
C

L =  9 
K = 0
DO 50  1 = 1 , 3  

^  DO 6 0  J = 1 , 3
L  = L + l  
K = K + l
A C I , J )  = A L ( K )  + A L C L )

C  6 0  CONTINUE
5 0  CONTINUE

YY = B L t l )  + BL ( 4 )
C '  XY = B L C2 )  + BL C 5 )

XSQY = BLC 3 > + BL 1 6 )
MFI N = MM

C »»**»*******»*»***********»**»**»****»
C
C COMPUTE THE UPPER ERROR BOUND.

L.' c
ECONS = E2 

C  CONS = C 1 . 0 - R H 0 1 ) * S N R
C0NS1 = E X P ( R H O )

_  E2 = EYAL+CONS+CONS1
O  C

C SET A FLAG TO S K I P  RE S CA L E.
C

C  I S K I P  = 1
C
C N0«f C A L L  THE AP P ROP RI A T  ROUTINES

O  C
CALL  GENINV 
CALL  OPTSOL 

C  E2 = ECONS
C
C SET I N I T I A L  OUADRATI C  ARRAY EQUAL TO YOPT.

<-• C
K = 0
DO 70  I  = 1 , 3

O '  DO 80 J  = l , 3
K = K + l
A L I K )  = A ( I , J )

O  80 CONTINUE
70 CONTINUE

BL C1 )  = YY 
B L C2 )  = XY 
B L ( 3 )  = XSOY

C
C SET ISUMO = 1 AND SET I S K I P  = 0 .
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G

c

c

c

c

c

c

c

G

C

c

c

c

c

c

c

c

G

Nw

c

2 0 0

S T I T L

10

C
c
c

15

I S K I P  = 0 
ISUML = 0 

ISUMO = 1 
I N T L  = 0 
CONTINUE 
RETURN 
END

SUBROUTINE OPTSOL
OP T S OL / L S O

COMPUTE THE OPTIMUM S O L UT I O N  AND ERRORS 
ASSOCI ATED WITH T H I S  S O L U T I O N .

COMMON
X / M A I N  / X I N C 5 0 ) ,  Y I N C 5 0 ) ,  

N,  E V A L ,  E S QV A L ,
X I N I C 5 0 ) ,  Y I N I C 5 0 )
/SUMS / Y Y , X Y ,  XSOY,
X Y Y , XXSQY
/ G E N I N Y  / Y G C 1 0 , 1 0 )
/ S O L I N  / E C S ) ,  I S K I P ,  
/ F U Z Z Y  / S 1 G C 5 0 ) , E K A X ,
F U Z L L ,  F U Z L H ,  F I ,
F UZ QL ,  FUZOH
/ O P T S O L  / K S T A R ,

A C S , 5 )  , 
Y C S O ) ,

A Y C 5 . 5 ) ,

F S O L I N  C 3 )  
I C O U N L ,

F 2 , F 3 ,

X C 5 )  , 
DNORM,

1 C 0 U N 0 ,

FYOPTC 5 0 , 8 ) ,  NY 
/ Y O P T  / X X C S ) ,
I N T L ,  I N T O ,  MK, 

DIMENSION BB C 5 ) , C E C 3 )

H F I N ,

I S U M L ,
R H 0 1 ,

E 2 ,

I S U MO ,
SNR,

H F OP T ,

C 3 C 2 ) , 
RHO

I N I T I A L I Z E  X C I )  TO ZERO

DO 10 I  = 1 , 3  
C E C I )  =  0 . 0  

CONTINUE

TEST TO DETERMINE I F  N = 1 OR 2 .

IFCN . E Q .  2 )  GO TO 15

THEN B U I L D  THE B M A T R I X .

B BC1)  = YY 
BBC2)  = XY 
L=  2
GO TO 16 
CONTINUE

B U I L  THE B MATRI X  FOR Q U A D R A T I C .

8 B C1 )  = YY 
BBC2)  = XY
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O
BBC3 )  *  XSOT 
L = 3 

C 18 CONTINUE

_  C
C  c f i n d  c o e f f i c i e n t s  t o  l i n e a r  e q u a t i o n

c

C DO 2 0  1 = 1 , L
AA = 0 . 0

DO 30  J = 1 , L  
C AA = Y G ( I , J ) * B B l J )

30 C E ( I ) = C E C I l + A A
20 CONTINUE

I FCN  , E O .  2 )  GO TO 45 
22 CONTINUE

c
C FORM L I N E A R  EQUATI ON AT THE G I VE N  x s

I F ( N T  . E O .  0 )  GO TO 32 
DO 34 I  = MS TA R , HFI N  

C  34 Y ( I ) = CEC1 )  ♦ C E C 2 ) * Y I N I C I )
GO TO 36  

„  32 CONTINUE
V. DO 40  I = M S T A R , H F I N

40  Y ( I ) = C E ( l ) + C E C 2 ) * X I N I C I )
36 CONTINUE

I  C » * * » * * * « » » » * * * » * * * * * * * » « * . » * * * * * » * * * » * * * » .
c
C TEST TO SEE I F  NF. CAN REPLACE THE
C PAST 2 EQUATI ONS BY ONE.

I I  = HFOPT- 1
I F ( ( F Y O P T ( I I , 3 )  . E Q .  0 . 0 )  . A N D .

X ( F Y O P T ( H F O P T , 3 )  . E Q .  0 . 0 ) )  GO TO 42  
C  I F  C C F Y O PT ( 1 1 , 3 )  . E Q .  1 . 0 )  . A N D .

X < F Y O P T ( M F O P T , 3 )  . E Q .  1 . 0 ) )  GO TO 4 2  
GO TO 55  

O  42 CONTINUE
STAR = FLOATCMSTAR)
F I N  = F L O A T ( M F I N )

^  I F U F Y O P T C I I . l )  . N E .  S T A R )  . A N D .
X ( F Y O P T ( H F O P T , 2 )  . NE .  F I N ) )  GO TO 55  

MFOPT = I I  
C GO TO 55

45 CONTINUE

c
C FORM OUADRAT I C  C O E F F I C I E N T S .

I F CN Y  . E O .  0 )  GO TO 47 
DO 46  I  = M S T A R , M F I N  

4e Y ( I ) = C E C 1 ) + ( C E ( 2 ) * Y I N I C I ) ) + ( C E C 3 ) » C Y I N I C I ) * * 2 ) )
GO TO 49

47 CONTINUE
DO 48 I = M S T A R , MF I N

48  Y ( I ) = C E C 1 ) + C C E C 2 ) » X I N I C I ) ) + ( C E C 3 ) » ( X I M C I ) * » 2 ) )
49 CONTINUE
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0
c
C TEST TO SEE I F  WE CAN REPLACE THE

C  C PAST 2 EOUATIONS BY ONE.
C

C I I  = K F O P T - l
I F ( C  F Y O P T ( 1 1 . 3 )  . E Q .  0 . 0 )  . A N D .

X ( FYOPT C NFOPT, 3 )  . E Q .  0 . 0 ) )  GO TO 52  
C I F ( ( F Y O P T ( I I , 3 )  . E Q .  1 . 0 )  . A N D .

X ( F Y 0 P T ( M F 0 P T , 3 )  . E O .  1 . 0 ) )  GO TO 52  
GO TO 55  

C  5 2  CONT I NUE
STAR = FLOATCN.STAR)
F I N  = F L O A T ( H F I N )

^ I F ( ( F Y O P T ( I I . 1 )  . N E .  S T A R )  . A N D .
X ( F Y 0 P T ( K F 0 P T . 2 )  . N E .  F I N ) )  GO TO 55  

NFOPT = I I  
C 55  CONTI NUE

EE = 0 . 0  
AA = 0 . 0  
DNORM = 0 . 0  
DNORM1 = 0 . 0  
E2D = 0 . 0  

C X I  = 0 . 0
X4 = 0 . 0
1 F ( N . E Q .  2 )  GO TO 54 

C GAR = A T A N ( E ( 2 ) )
5 4  CONTI NUE

DO 5 0  I = H S T A R , H F I N  
C I F ( N Y  . E u .  0 )  GO TO 51

AA = X I N I ( I ) - Y d )
GO TO 53  

C 51 CONTI NUE
AA = Y I N I C I ) - Y ( I )

5 3  C ONTI NUE
C S 1 G ( I )  = AA

I F ( A A  . L T .  0 . 0 )  GO TO 56 
I F ( N  . E O .  2 )  GO TO 56 

C E2D = ( A A » S I N ( 9 0 . 0 - G A H ) ) * * 2
GO TO 64 

SB CONTINUE
C. I F ( N Y  . E O .  0 )  GO TO 57

AH =  C 2 . 0 » C E ( 3 ) ) * Y I N I ( I )
GO TO 61 

C 57  CONTI NUE
AH = ( 2 . 0 * C E ( 3 ) ) » X I N I ( I )

61  CONTI NUE
C GAH = 9 0 . 0 - ( A T A N ( A H ) )

E2D = ( A A * S I K ( G A H ) ) * * 2  
GO TO 64

1 5 6  CONTINUE
I F ( N . E Q .  2 )  GO TO 62  
E2D = ( A A * S I N ( G A H ) ) » * 2  

C GO TO 64
6 2  CONTINUE

I F ( NY . E Q .  0 )  GO TO 59 
L  AH = ( 2 . 0 * C E ( 3 ) ) » Y I . N I ( I )

GO TO 63  
59  CONTI NUE

L  AH = ( 2 . 0 * C E ( 3 ) ) * X I N I ( I )
63  CONTINUE

GAH = A T A N ( A H )
E2D = ( A A 4 S I N ( G A H ) ) * » 2



6 4  CONTINUE
DNORK1 = DNORM1+E2D 

5 0  EE = EE+AA
DNORM = SORT( D N O R M I )

c
c  COMPUTE SUM E SQUARE ERROR.
C

ESQ = 0 . 0  
AA = 0 . 0

DO 60  I = h S T A R , K F I N
AA = ( Y I N I C I ) - Y ( I ) ) * * 2  

60  ESQ = ESQ+AA
•ESOVAL = SORT ( ESQ )

cc f i n d  e m a x .c
EMAX = A B S C S I G t M S T A R ) )
KM = N.STAR + l  
DO 7 0  I = K K , M F I N

EMAX = A M A X 1 C E M A X , A B S C S I G ( I ) ) )
70  CONTINUE
90 CONTINUE

I F  t  DNORH . G T .  E2J GO TO 1 0 0 0
MFOPT = I I
F Y O P T ( 1 1 , 1 )  = MSTAR
F Y O P T ( 1 1 , 2 )  = MF I N
FYOPT ( 1 1 , 3 )  = NY
F Y O P T ( 1 1 , 4 )  = C E ( 1 )
FYOPT ( 1 1 , 5 )  = C E C2 )
I F ( N  . E O .  2 )  GO TO 1 0 1 0  
F Y O P T ( 1 1 . 6 )  = 0 . 0  
GO TO 1 0 2 0  

1 0 1 0  CONTINUE
F Y O P T ( 1 1 , 6 )  = CEC 3 )

1 0 2 0  CONTINUE
F Y O P T ( 1 1 . 7 )  = EMAX 
F Y O P T ( 1 1 . 6 )  = DNORM 
GO TO 1 2 0 0  

1 0 0 0  CONTINUE
MFOPT = I I + l  

1 2 0 0  CONTINUE 
RETURN 
END

S T I T L  P L O T / L S O
SUBROUTI NE PLOT

c
C T H I S  R OU T I NE  / I L L  COMPUTE THE VALUES OF THE F UNCT I ON
C AND PLOT THEN A G A N I S T  THE I N I T I A L  VALUES.
C

CO M M ON

X / M A I N  / X I N C 5 0 J , Y I N C 5 0 ) ,  A C 5 . 5 1 ,  X ( 5 ) ,
X N » M ,  E V A L ,  E S QV A L ,  Y ( 5 0 ) ,  DNORM,
X X I N I C 5 0 ) ,  Y I N I ( 5 0 )
X / O P T S O L  / M S T A R ,  M F I N ,  E 2 ,  MFOPT,
X FYOPT C 5 0 , B ) ,  NY

D I M E N SI ON  A A C 5 0 ) , B X C 5 0 ) , C ( 5 0 ) , D ( 5 0 ) , E C 5 0 ) , F ( 5 0 ) ,
X I A A C 5 0 ) , I B X ( S 0 )
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c

REAL U K , 1 1 7
DATA N K , m , I B / ’ l H N , l H Y , l H  /

C
C TEST TO DETERMI NE WHICH FUNCT I ON WE NEED

O C TO P L O T .
C

O  ANS = I B
KK = 0 
K = 0

C  J  = 1
I  = 1 

„  17 = 0
G ix = o

5 CONTINUE
I I  = I F I X C F Y 0 P T C I . 3 ) )

G  I F C I I  . E O .  1 )  GO TO 20
I Y  = I Y  + 1

C  C
C COMPUTE Y = AX + B

c c
MSTAR = 1 F I X  CFYOPT C l . 1 ) )
MFI N = I F I X C F Y O P T C I / 2 ) )

C  DO 10 J = * S T A R , M F I N
K = K + l

AACK)  = F Y O P T C I , 4 ) + ( F Y O P T C I , 5 ) * X I N I C J ) ) +  
C  X ( F Y O P T ( I , 6 ) * ( X I N I ( J ) * « 2 ) )

CCK)  = X I N I C J )
DCK)  = Y I N I ( J )

C 10 CONTINUE 
I  = 1 + 1
I F C I  . G T .  MFOPT)  GO TO 1 00  

C GO TO 5
20 CONTINUE

I X  = I X + 1
C  MSTAR = I F I X C F Y O P T C I . l ) )

MFI N = I F I X ( F Y 0 P T C I , 2 ) )
DO 30  J = M S T A R , H F I N  

C KK = KK+1
8 XCK K )  = F Y 0 P T C I , 4 ) + C F Y 0 P T C 1 , 5 ) » Y I N I C J ) ) +  

X C F Y 0 P T C 1 , 6 ) * C Y I N I ( J ) * * 2 ) )
C E ( K K ) = X I N I ( J )

F ( K K ) = Y I N I C J )
30 CONTINUE

C  1 = 1 + 1
I F C I  . G T .  MFOPT)  GO TO 1 00  
GO TO 5 

C  100 CONTINUE
I F C I Y  . E O .  0 )  GO TO 1 10  
« R I T E ( 6 , 5 3 0 )

G  WRITE C l . 5 5 0 )
READ C l . 5 6 0 )  ANS
I FCANS . E O .  I Y Y )  GO TO 1 30
W R I T E C 6 . 5 0 0 )  CAACL)  , D C L )  , C C L ) , L = 1 , K )
GO TO 110 

130  CONTINUE
O  DO 1 40  L = 1 , K

IA A  CL)  = I F I X C A A C L ) )
AAb = FLOAT C I A A C L ) )

O  AAA = ABSCAA C L ) - A A B )
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I F C A A A  . L T .  . 5 0 )  GO TO 1 40  
^  I  AA ( L )  = I A A C D  + 1

1 4 0  CONTI NUE
WPI  TEC 6 , 5 7  0 ) C I A a C L ) , D C L ) , C C L ) , L = 1 , K )

110  CONTI NUE 
O  I F C I X  . E Q .  0 )  GO TO 120

» R I T E C 6 , 5 1 0 )
WRI T E  ( 6 . 5 4 0 )

C  W R I T E C 6 , 5 1 0 )
I F CA N S  . E Q .  I Y Y )  GO TO 150  
W R I T E C 6 . 5 2 0 ) C B X C L ) , E C L ) , F C L ) , L = 1 , K K )

O  GO TO 120
150  CONTINUE

DO 1 60  L = 1 , K K  
C  I B X C D  = I F I X C B X C L ) )

BAA = F L O A T ( I B X  C D) )
BBA = A B S ( B X C L ) - B A A )

C I F C B B A  . L T .  . 5 0 )  GO TO 160
I B X ( L )  = I B X ( L ) + 1  

1 60  CONTINUE
C  W R I T E ( 6 , 5 8  0 ) ( I B X C L ) , E C L ) , F C L ) , L = 1 , K K )

5 0 0  F O R M A T C I O X , ' Y  = ' , F I  0 . 5 , 5 X , ' Y I N  = ' , F 1 U . 5 , 5 X ,
X ' X I N  s ' , F 1 0 . S )

C  5 1 0  F O R M A T C I O X , ' * * » * * » * * * * » * * * » * » » » * * » » » * » * * « * * * «
5 2 0  F O R M A T C I O X , ' X  = ' , F I 0 . 5 , 5 X , ' X I N  s ' , F 1 0 . 5 , 5 X ,

X ' Y I N  = ' , F 1 0 . 5 )
C  5 3 0  F O R M A T C 3 3 X , ' Y = AX + B ' )

5 4 0  FORMAT{ 3 3 X , ' X = CY + D ' )
5 5 0  FORMAT( ' D O YOU WANT I NTEGER DATA CY OR N ) ? ' )  

G 5 6 0  F O R M A T ( A l )
5 7 0  F O R M A T C I O X , ' Y  = ' , F I  0 . 5 , 5 X , ' Y I N  s ' , F 1 0 . 5 , 5 X ,

X ' X I N  = ' , F 1 0 . 5 )
C '  5 8 0  F O R M A T C I O X , ' X  = ' , F I  0 . S , 5 X , ' X I N  = ' , F 1 0 . 5 , 5 X ,

X ' Y I N  s ' , F 1 0 . 5 )
1 20  CONTINUE

G RETURN
END

SBEND
C

G 

C

C

L

C

c
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