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ABSTRACT

Title of Dissertation: Application of Fuzzy Theory to Pattern Recognition
David Usechak, Doctor of Engineering Science, 1983
Dissertation directed by: Dr. Stanley 5. Reisman

Associate Professor

Department of Electrical Engineering

New Jersey Institute of Technology

pictures and waveforms. The method consists of linear and quadratic piecewise
polynomial approximations in which the error must not exceed a predetermined
cost threshold. A fuzzy Bayes model is used to determine if a breakpoint exists
within an interval In or between intervals In and In+l and to determine whether
these intervals can be merged for data compaction reasons. In order to achieve
these objectives a new fast algorithm has been proposed which gives good
curve/object fitting. This algorithm uses a technique for generating generalized
inverse matrices once an initial generalized inverse matrix has been determined.
The continuity requirements at the breakpoints are relaxed such that the only
requirement is that the data point for interval In-l is the starting point for interval
In' Results of computer experiments with graphic outlines and radar data are

reported.
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CHAPTER I
A PATTERN RECOGNITION PROBLEM

1.0 Introduction

The purpose of this research is to apply the concepts and techniques of fuzzy
set theory to the detection of contours or boundaries of signals for pattern
recognition of objects. To do this, we will use fuzzy set theory in the decision-
making portion of the problem as it will shorten the decision time required for a
solution. Since fuzzy theory is based largely on subjective information it can aid a
process under consideration by supplying initial input data or data updates. For
most pattern recognition schemes an initial training period is required to teach the
algorithm the input data space characteristics. This method works well if the input
data space is large. For the small input data space, subjective inputs are
particularly helpful as they can teach the algorithm until a sufficient data base has
been established. Problems also exist when the benefits derived from an algorithm
training period are minimal because of the nature of the input data and/or problem
under investigation. For example, in the design of new automobile bodies the
contour has a very small or nonexistent sample space because the body shape is
determined by such factors as new engines, and materials, etc.. The same is true in
other design areas where new objects with different shapes and contours are being
developed. One technique which has been used extensively for the description of
object boundaries with variable knots, specifically for automobile body design, is
spline theory [55,58]. A knot is defined as a point where the describing polynomial
changes slope. Spline theory imposes a slope continuity requirement at the knots.
However, for pattern recognition this requirement is not always relevant because
of the possibility of boundary discontinuities i.e. sharp corners. Also, the
computational effort required when the continuity requirement is imposed is

1



greater than when it is absent [39]. Therefore, if the local continuity requirement
could be ignored in the search for an approximating polynomial on a subinterval and
then adjusted globably, we could achieve a near optimum solution with reduced
computational time.

A key feature in the recognition of an object is its shape. The perceived
éhape of an object as suggested by Attneane [ 6] depends upon the boundary's points
of maximum curvature. The exact location of the maximum curvature can be
determined from the second derivative of the polynomial which describes the
contour precisely., However, from a practical point of view, exact contour
descriptions are not necessary because approximating polynomials will yield good
results with small cost(error) and the computational complexity involved is
reduced. Approximating polynomials will give the approximate location of the
maximum contour curvature. Such maxima in general will be close to the actual
maxima of the second derivative of a polynomial which describes the contour
exactly.

The problem of shape and edge detection is one of the central issues in
pattern recognition and as such it has received considerable attention. The
importance of this topic is reflected in the immense amount of literature dealing
with recognition of characters, waveforms, cells, machine parts, etc. [ 14, 16, 39].
In this research we will restrict ourselves to the study of plane objects; i.e. we will
deal only with waveforms, and 2-dimensional segmented pictures. We will not draw
any conclusions or inferences to higher dimensional figures. Also, we will consider
objects which have only closed external boundaries, i.e. they do not contain
internal edges or boundaries. In order to decrease computational time, the
boundaries for this study will be described by using piecewise linear or quadratic
polynomial approximations. The term "piecewise" refers to approximations on

subintervals within a closed interval [a,b]. Futhermore, these approximations could



be composed of combinations of linear or quadratic polynomials on the interval [a,b]
. The approximating polynomials will be found by using fuzzy decision-making along
with the least squares technique.

1.1 Background

The fundamental concepts of pattern recognition have been applied across
many different fronts, from data classification to motion recognition, and in all
cases they have several characteristics in common. Some of the major common
characteristics within the various areas of pattern recognition are: the solutions
are very problem oriented, perfect recognition is very difficult to achieve, and the
computational time can be enormous if the cost function requirement is too strict.
Thus, in a global sense, a generalized theory within pattern recognition will
probably never exist because of the many different types of objects (patterns)
which can be contained within a scene.

One of the fundamental attributes of a human being is his ability to recognize
objects. Given a complex environment human beings perform pattern recognition
with fuzzy or ill defined object characteristics and they do this task very well with
a minimum amount of effort. One reason why pattern recognition can be
considered a fuzzy process is that the boundaries between different patterns
within a scene are not well defined. One method of analyzing patterns in scenes is
to use statistical decision and estimation techniques for their classification . There
is a great deal of information on the application of statistical decision-making to
pattern recognition. However, if the amount of information of the sample patterns
is small or non-existent, then this approach is not very helpful in the pattern
decision process. For situations where the sample space is small and vague, the
fuzzy decision process is helpful in the classification of objects because cf the
admissibility of subjective input data. Zadeh [58], who developed the theory of

fuzzy sets, has studied the uses o fuzzy sets in engineering systems (and also



algorithms associated with those systems) because initially in most engineering
systems the specifications are ill-defined or vague. This then permits a much larger
design and decision space. In order to reduce this space to a manageable size the
system design parameters must be assigned to groups and subgroups within the
system design-decision space. To accomplish this on a small and vague input space,
Zadeh and others have used one of the attractive features of fuzzy set theory
which is the notion of grades of membership or the grade of belonging. Imprecision,
fuzziness, relates not to randomness but to a lack of a clearly defined membership
in a class of objects. In classical mathematics, as for example in abstract algebra,
an object either belongs to a specific class or it does not. However, in the real
world a class of objects may belong to several categories in varying degrees or
grades of membership. This is a fundamental concept of fuzzy sets. For example,
the classification of smells is based upon subjective information which can be
represented by grade of membership of all smells. Imprecise descriptions and the
relaxing of the requirement of a numerical input for decision analysis has been
discussed by Watson [55].

The aim of this dissertation will be to use the attractive features of fuzzy set
theory and the least-squares technique to detect edges and breakpoints within noisy
data. The approach will be to use a piecewise polynomial approximation on subsets
of the set of all input data. In particular, for shape detection, we are interested in
detecting breakpoints, given optimum or near optimum piecewise linear or
quadratic polynomial fits, and minimizing the computational time required for a
complete solution on a given data set. An attribute of shape detection is the
curvature of the boundary and a primary characteristic of curvatures is a point of
infinite curvature, i.e. a corner given a continuous curve. The above applies for
continuous data but it can also be extended for discrete data which will be shown

later in the text. The cost function for both the continuous and discrete cases for



evaluating goodness of fit of the approximations will be the l2-norm, lqnaxs and

slope. These cost functions will be defined later in the text.

1.2 Statement of the Problem

A short description of the entire pattern recognition process will now be
provided , because this process can be decomposed into several unique processes,
and will identify the area in which the problem under consideration occurs. From
this discussion the problem under investigation will be defined by presenting,
without proof, the mathematical approach to be taken in this study. The results of
this discussion will permit us to precisely define the prablem to be investigated.

One of the problems of pattern recognition is that the environment can
provide large volumes of data to a pattern recognition system such that the system
could be overloaded to the point where it would hardly produce an output. Figure
1.2.1 represents an overview of a typical pattern recognition problem. In this figure
sensors provide information about the environment, which is of infinite dimension,
to a pattern recognition system. The sensors, which do not have infinite sensing
capabilities, will provide a limited set of information to the recognition system.
The feature extraction process will eliminate or filter the sensor information which
a priori does not contribute to the process under consideration. The feature space,
output from the extraction process, is normally less than the input space. The
feature space information(data) is further processed by a classifier to determine
the data class. The objective is to achieve, depending on the problem, either data
reduction (compaction) or classification of the original data. The problem we are
interested in is data compaction or the representation of the input data in a shorter
form. Also, we are interested in fitting a polynomial to a given set of data. One of
the methods for accomplishing this efficiently is the least squares technique. In
general the least squares technique is a method of polynomial approximation; that

is a function f(x) is approximated by a polynomial function Fn(x) of degree n on an
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interval a <x < b. For approximating continuous functions by the least squares
technique, we are interested in determining a polynomial of the form
Fr(x)=cg + cyxl + c2 X2 4 —mmmme + cpxn 1.2.1
which minimizes the mean squared error, or 12 norm,
[1F= Foll =« afb[f(x)-Fn(x)]zdx)l/z, 1.2.2
between the two functions . The norm,| |g |}, satisfies the following:
@ |lgl]>0,
(b) ||g||=0 if and only if g=0,

) [lkgll=]]K]|

*[lg|| for any constant K,

(d) ||g*th|[<||a|]|*]|n]]|, the triangle inequality.
A function,y (c), can be defined for n+l variables by using equation 1.2.1 and any
function f(x) as follows: )

lp(co,c.],....,cn) = g [f(x)-Fn(x)]de. 1.2.3
Note that by minimizing y(c) this will also minimize| |f(x) - Fn(x)] k
In order to find the polynomial that minimizesy (c) in equation 1.2.3 we must find a
coefficient c = (CO’Cl" ..... ,cn). The coefficient "c" defines a point in the n+l
dimensional space for which ¥ (c) is a minimum. We start our solution by expanding

equation 1.2.3 which gives:
b

2 0 i
PCCmsCasenassC ) = [ £5(x)dx=28 ¢,/ x F{x)dx
0°~1° “n 3 i=o 15
N n b g 1.2.4
+ % 2 cacit xdx,

i=o j=o ' Ja
where ¥ is a quadratic function in cj. To find the minimum of ¥ we take the
derivative with respect to the coefficients, ¢ and set the derivative equal to zero

. This can be written as:

CUACHPT PR c) 1.2.5

Substituting equation 1.2.4 into equation 1.2.5 we get:



n_ b L+
W = -2[ X Lfoodx + Z £ X" + I c.S/ x “dx=0,
c
n b . b
g-li) _=2(%¢, [ x1+de-f x"f(x)dx) = 0,
te o1 S 2 1.2.6

where | = 0,1,2,....,n
Equation 1.2.6 is known as the normal equation which is defined for a system of n+1

linear equations. The normal equation, 1.2.6 which defines a system of n+1 linear

equations, can be written as _b _—
— [ x%f (x)dx
o a .
o a
c
b ... 1 — .
+ . =
S ox " dx . bt
a - n
n J %" (x)dx .
. L_.a -

Since almost all pattern recognition systems used today are digital, and ours is no
exception, the above equations must be rewritten for the discrete case. Starting

with equation 1.2.2 we can write
[f=F |} = ¢ {fx,) = F (x,)}17? 1.2.7
n . i n-"i
i=o

Equation 1.2.7 holds for a fixed set of data points. That is we assume that we are
given an input data set (Xg,X1,e..esXn) Also, the constraint n < N will be imposed
where N is the number of equations. Continuing with equations, 1.2.3 thru 1.2.6 we
can now write

Pl o*¢ ¢,

2
g [1£-F 1]°. 1.2.8
Expanding equation 1.2.8 for the discrete condition and using the same notation as

given above, we get



N

2

n
2 L
= - % x.f(X.)
ll)(co,c,',....,cn) iEo f (x1.) %Eocliﬂ 3 3
n n N .
+
*L Loy Z 0 1.2.9
i=o j=o i=o

A necessary condition for ¥ to have a minimum is given by the normal equation,

i.e.

U CHLIPRPRPE ,Cp) 1.2.10

acL c=c

where 1 = 0,1,2,...,n.
Equation 1.2.10 will yield the discrete form of the normal equation 1.2.6 which can

be written as

_ ..o -
‘. Zx,lf(x,l)
n Iy - :
z Xl:J - =
=1 - -
] Zx?f(xi) .

Using the above equation, an approximating polynomial(s) can be found, via the
least squares method, over intervals [a,b] and b,c] - see Figure 1.2.2 . The question
to be asked is if an approximating polynomial over the interval [a,c], as given in
Figure 1.2.2, can be determined with reduced computational effort? In order to
answer this question, we need to predict a priori whether an approximating
polynomial, over the interval [a,c], exists within a specified threshold value(cost )

The following agument contributes to the solution of this problem. The process of
edge and pattern detection done by human beings, which by the way is very
effective, is not a precise process; that is, it is a fuzzy process. Precise edges and
patterns are not necessarily a primary variable when humans perform these

processes. Thus the process, when implemented by a machine, should allow for
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imprecise edge or corner descriptions, but at the same time not miss significant
object features in the pattern. This can be accomplished by using fuzzy sets, as
mentioned above, with an interval of evaluation defined as [0,1]. A fuzzy model

which can provide answers to the question of polynomial approximations across two

4 + + »
a b c X

Two edges represented by another edge.
Figure 1.2.2
intervals is called a fuzzy Bayes' model. This model, which we will develop later in

Chapter III, can be represented as

a priori a posteriori
pattern pattern
e ——— > B

information about
the pattern
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Fuzzy Bayes' Model

Figure 1.2.3

Mathematically we can write the fuzzy Bayes' equation as

o N
S B (G|Hof = [ B (H[Y)of , 1.2.13
H b4 X G z
where
N
J represents a fuzzy integral
and

o represents the composition of two functions.

The a posteriori fuzzy measure,By(GIX), can be determined from equation 1.2.13
for each interval. From this a final fuzzy value can be calculated to show if a
corner exists between these two intervals. For this problem By(GlXi) represents
the grade of fuzziness of the statement that "a corner of some magnitude exists in
interval In" which has been subjectively scored from some criterion yj. This final
fuzzy value will then be compared against some empirical threshold to determine if
a fit is possible. The initial threshold value must be approximated, and then for
every iteration thereafter it shall be adaptively adjusted to give a near optimum
solution. The term "near optimum" is used because we are not interested in the
exact optimum solution for either the linear or quadratic case. Instead, we want a
solution which describes the boundaries or contours of an object well enough, and
with a minimum amount of processing, so that it can be easily recognized by a
human. Thus, the contour/boundary detection and pattern recognition problem can
be stated as:

Given a finite set of discrete input data on an object's contour, find and
describe the edges or boundaries such that the description is smooth and
continuous. Futhermare, this is to be accomplished in minimum time and with
minimum number of describing polynomials to meet a given error criterion.

The approach which will be followed to achieve the above objective will be to use a

combination of linear and quadratic piecewise polynomial approximations with
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fuzzy decision-making on the amount of polynomial compaction. That is, a decision
is made within a subinterval or between two contiguous subintervals to determine
if a breakpoint exists. Also, fuzzy linguistic descriptive values will be used to vary
the goodness of the approximation on the description of the abject's contour. The
above investigation will provide information on a unique way to describe contours.

Linear contour approximations have been investigated and are reported in [33]
and [39], cubic approximations in [39 ], and higher order approximations in [45].
However, to date no work has been reported on using the quadratic polynomial or a
combination of approximating polynomials. Linear approximation is very attractive
because it is simple and computationally very fast. However, it does not provide
smooth traces. Cubic and higher order approximations provide good edge detection
and object representation but they are computationally complex. Thus, the
attempt in this paper will be to show reasonable edge detection and object
representation by using piecewise linear and quadratic polynomials with fuzzy
decision-making.

1.3 Dissertation Qutline

A summary of the details involved in the solution to the above stated problem
are presented in the following discussion. This summary also contains the
contributions of this paper to the problem of pattern recognition of contours and
boundaries.

Chapter II deals with the matrix formulation of the problem. The contents of
Chapter II include:

(a) The least square solution using generalized inverse and
(b) The optimum breakpoint location within an interval.

Chapter III deals with the fuzzy decision model formulation of the problem.

The contents of Chapter Il include:

(a) Presentation of fuzzy concepts
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(b) Presentation of fuzzy integrals with proofs and
(e) Presentation of fuzzy Bayes' Model.

Chapter IV deals with the application of Chapters II and IIl to the edge

detection praoblem. The contents of Chapter IV include:
(a) Presentation of an adaptive threshold scheme and
(b) Presentation of a physical application of the fuzzy model .

Chapter V deals with the algorithm and its differences from other algorithms.

The contents of Chapter V include:

(a) Applying the algorithm to real world data and

(b) A comparison of the new algorithm with other edge detection
algorithms of the same class.

Chapter VI deals with the computational complexity of the algorithm. In
particular it details the computational time of the algorithm developed in this
study and compares this computational time with that of other algorithms of the
same class.

Five appendices are provided which show either detailed mathematical proofs
of equations given in the text or results of the algorithm as applied to the
detection of different types of contours. Appendix A shows a detailed proof of the
optimum breakpoint location within an interval[ a,b]. A discussion and proof of the
optimum polynomial for data fitting using least-square techniques is given in
Appendix B. Appendix C presents the results of the algorithm's ability to detect the
contours of various objects. A detailed numerical example of the short matrix
method, as presented in the text, is presented in Appendix D. Appendix E presents
the computer program listing of the algorithm developed in this study.

The contributions of this paper to pattern recognition of edges/contours
include:

(a) A unique adaptive thresholding scheme for contour fitting on an



interval and for the merging of several intervals.

(b) The application of a fuzzy Bayes model for the detection and
decision making of whether breakpoints exist within the given
intervals.

(c) A unique inverse matrix computational method for reducing the
algorithm's processing time.

(d) The admissibility of heuristic inputs to aid the algorithm in the

detection and processing of breakpoints for a given contour input.

14



CHAPTER II

MATRIX THEORY

2.0 Introduction
As presented in Chapter I, equation 1.2.7, the discrete least squares method

can be written in matrix form. In this chapter we will examine the conditions which
will permit a solution of equation 1.2.7. The primary reason for formulating the
problem as a set of matrices is that we want to solve the contour problem via a
digital computer. This formulation is primarily motivated by Pavlidis [39] and
McClure [33] because contour approximating on large amounts of data is very
expensive computationally. As stated earlier the investigation will consider only
linear and quadratic polynomial approximations of data; i.e. a function f(x) can be
approximated by a function F(x) which can be expressed for the linear case as

Fi(x)= cou)gx)+ cy \[)1(x)
and for the quadratic case as

Fq(x): col,()éx) +cy 11)1(x) + czwz(x)
where Fl(X) and Fq(x) are the linear and quadratic approximating functions

respectively. In this paper the {'s are defined as :

wo(x)= 1,

llh](x)= Xy
and

Uo(x) = X2 .

The functions djo,luland l\!é are chosen in advance and the coefficients s Cq» and Cos
are to be determined. To determine the coefficients such that Fq(xg f(x), a set of
linear system equations can be written in the following form:
chJO(xo) + cl%xoh czlpz(xo) = f(xg)
colpo(xl)+ cy %xl)+ czué(xl)= f(x;) 2.0.2
15
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Colp(oxz) + cll‘)'l(xz) + Czl\(}é)(z) = f(XZ)-

For linear approximations equation 2.0.2 will take the following form
cghixg) + e ¥ixg) = f(xg)
Cowc;xl) + clll){xl) = fxq X

2.1 Matrix Attributes

A discussion on some key matrix attributes and the associated vector space is
presented in the following sequence along with a least squares geometrical
interpretation of equation 1.2.7. We start our discussion by defining the matrix
equation 2.0.2 as

YC=b 2.1.1

where is a square matrix consisting of l,Ui(xJ.), C is a column vector composed of
[CD’Cl""’Cn ], and b is a column vector composed of[f(xo),...,f(xn)] . Thatis, a
solution to equation 2.1.1 must lie in a plane spanned by the column vectors ofy.
This column space is usually referred to as the range of ¥ ,and written as R(Y )
Further, the dimension of the column space R(Y) is defined in this paper to be equal
to the rank, which is also equal to the dimension of the row space. The rank of a
matrix is equal to the number of nonzero pivots in the elimination process.
Furthermore, equation 2.1.1 could have been defined in a row space by transposing
the matrices in equation 2.1.1. This equation, 2.1.1, is the matrix form of equat-ion
1.2.7. The polynomial, as given in equation 1.2.1, may be viewed as a coordinate
vector in a "function space"” of all polynomials of degree n . The actual function,
f(x), and the approximating function, F(x), have been defined to lie in a vector
space . Thus a determination of the amount of separation between these two
functions can be made. This distance, in the least squares sense, will be the error
between the actual function, f(x), and the approximating function, F(x). A detailed
discussion of the error vector will be given in Chapter IV .

In the linear space of two or three dimensions, known as "Euclidean", the use
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of a norm can be defined for the general case as
n p l/p
el =CZ Ix [P 7, 2.1.2
i=1
where p > 1.
This is popularly known as the lp-norm . We are interested in two particular norms
because of the amount of information they contain. The two norms of interest are
the lg-norm, which is defined by equation 1.2.2, and the lmax-norm defined as
1 = Max [x: | 2.1.3
max XE [a , b]l
over a closed interval [a,b]. The above Euclidean norms, 12 and gy, must satisfy
the properties as given in section 1.2 on a given linear space.
A geometrical interpretation of the solution to polynomial approximations,
when using the Euclidean norm in two and three dimensions, is the shortest
distance between a point and a linear subspace. For the problem under

consideration this means that the error vector, E(x) = f(x) - Fn(x), must be

perpendicular to the subspace spanned by the vectorsV O,Wl,wz if the norm of E is

to attain a minimum .
2.2 Matrices
The system ¥ C = b, equation 2.1.1, of n equations and m unknowns is
popularly known as the normal equation(s) within the least squares technique. Upon
investigation of equation 2.1.1, we find that there are certain conditions which
must be examined before a solution is possible. Otherwise, errors are introduced
which make the system, YC=h, give invalid resuits. There are three conditions
which we must consider in order to avoid solution and computional errors. These
conditions are listed as follows:
(a) A determination of the linearly dependent and independent system
vectors which can be defined in either the column or row space of
v,

(b) A determination of whether the system is orthogonal, and
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(c) A determination of whether the system is consistent or
inconsistent.

Since we are interested in solutions to systems of linear equations, a brief
examination of the above conditions where solutions exist is in order. Starting with
condition (a) we investigate the homogeneous solution of equation 2.1.1 where thellJi
are column vectors of { are said to be linearly independent if the linear equation g

Y+ Vet b= 0 is satisfied only if the coefficients ¢; = 0 . Otherwise
there exists at least one combination of vectors which is linearly dependent. The
maximal number of linearly independent rows or columns i.e. the basis of the row
or column space of a matrix is referred to as the rank. We will have more to say
about the rank of a matrix in Chapter IV. Let QO,Q 5 'Qn be a basis for a column
space; then the column space has an orthonormal basis consisting of n vectars. This
leads to condition (b) where, if the columns are assumed to be orthonormal, we can

then form a diagonally dominant matrix. A diagonally dominant matrix is one

which has its diagonal elements,aii , greater than a radius rj, where radius is
n
defined as v: £ 2 [aij] with its center located at the element entry location ajj. A

diagodgﬁﬁnﬁntﬁnant matrix has some very desirable computational attributes which
will be described in Chapter IV when we try to solve the system equation 1.2.6. In
order to construct a diagonally dominant coefficient matrix for the continuous
function Fn(x), equation 1.2.1, we start by writing the function as

Fn(x) =_ir=21§iGi(x)
where Gi(x) is a set of orthonormal polynomials of degree i. Substituting the above

equation into equation 1.2.3 and solving for the normal equations, as shown in

equation 1.2.6, we get:
b
c, S Gj (x) G_i (x)dx 2.2.1

b n
JG.x)flxddx = &
a J =1 J

a

.i

where j = 0,1,2,..0.5N.
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As {Gi(x)} is an orthonormal set it satisfies:

b
£ Gj (X)G'i (x)dx = 6j'i’ 2.2.2
where Gji is the Kronecker delta, which then gives the coefficients as
b
c.= [ G, (x)f(x)dx. 2.2.3
i~ 3 7]

The construction of an orthonormal set of polynomials can be accomplished by
using the Gram-Schmidt process (see reference [44]) . We may assume that the
interval [a,b] = [-1,1] since this can be accomplished by a linear change of
variables. Now for example, we can use the Chebyshev, Legendre, or Lagrange
polynomials. The important point is that all of these methods yield a diagonally
dominant coefficient matrix in the transformed space. Once a solution has been
determined in the x;' space, a transformation into the x; space can be accomplished
by a linear change of variables.

For condition (c) we must consider whether the system UC=bis inconsistent,
i.e. b is not in the column space of R(C). Where the column space of C is often
referred to as the range of C. The range R(C) of a matrix is the same as the range
of the linear function L(x)= ¥ x . That is, if L(x) is given, then x represents the
domain and the value of L(x)represents the range.

The last matrix concept we will cover briefly is that of inverses. A matrix
inverse is defined for a nonsingular square matrix; it is used in the soclution of
equation 2.1.1 where the number of equations equals the number of unknowns.
However, real world data which describe a system could yield a nonsquare matrix
and the technique used to solve for this system of equations is referred to as the
pseudoinverse or generalized inverse - see [7]. If a matrix A has more rows than
columns, the generalized inverse can be defined as

A+ = (ATAY1AT
for a nonsingular (ATA). A solution of equation 2.1.1 under these conditions is

called the over determined case; there are more equations than unknowns. The
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resulting solution can be expressed as the column vector C, composed of the

coefficients CsCyreeesC which equals the generalized inverse of the square matrix

n?
P+ times the column vector b. Written mathematically we have

C =ib,
is the minimum in the least square sense. See Appendix B for a proof that C =V*p
is the optimum least square solution. If we have more unknowns than equations,
this condition is referred to as the under determined case. This gives an infinite
number of least square solutions. The generalized inverse for the under determined
case (more columns than rows) is written as

A+ = AT (AAYL.
In this paper we will restrict ourselves to the over determined case. A detailed

discussion of the properties of the generalized inverse can be found in [7,9].

2.3 Optimum Breakpoint |_ocation

Up until now we have presented a discussion of least square polynomial
approximation on a set of data in | a,b]. In order to avoid confusion all input data
will be normalized onto the -1 to 1 interval. The concept of using an approximating
function to describe a contour fails if the resulting solution exceeds a
predetermined error threshold E =| If - Fnl | . When this happens it indicates that a
carner or breakpoint exists within the interval B,b] and we need to use a piecewise
polynomial approach to find the location of the breakpoint(s) within [a,b]. A
breakpoint, in this paper, is defined as a change in the slope of the given contour
which causes the error threshold to be exceeded. Or said another way, we would
like to find the location of the breakpoint without using a trial and error approach.
A technique which is widely used [45]where approximating piecewise polynomials
are used to accomplish the above is called variable breakpoint location. For
example, in design applications where an interactive graphics system is used, it is

possible to specify the breakpoint locations which minimize either the number of
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describing polynomials or the error caused by theapproximations. Thus, it is

desirable to have a technique for finding the optimum breakpoint location within

an interval. As shown above, the partial derivatives of equation 1.2.4, with respect
to the coefficients c;, give the normal equation 1.2.6. Far optimum breakpoint
location the partial derivative of E4, with respect to x in equation 1.2.9 as shown

in Figufe 2.3.1, yields

A
Y
X1 X Xier X
Optimun Breakpoint Location
Figure 2.3.1
2 2 _
ei(xi) - ei+l(xi) =0 2.3.1

where e, is the error associated with Fi at location X; and ei+l is the error

associated with Fi+l at x; and i = 1,2,...,n-1. Equation 2.3.1 shows that for

optimum breakpoint location the absolute values of the pointwise errors from the

left and right must be equal. In order to find the minimum, i.e. the optimum
52E

breakpoint location of equation 2.3.1, the matrix of the second derivatives 5;21

must be positive definite. A detailed discussion of positive definite matrices can
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be found in any text on linear algebra [18 1. Pavlidis[39] has proved conditions for
the matrix required for the equation

2E
9 =T _ _ 2 _ _
TER [f(xi) F1.(x_i)] [f(xi) F1.+1(xi)]

to be positive definite, see Appendix A for the detailed calculations. Pavlidis's
proof shows the necessary and sufficient conditions for a positive definite matrix

of the above equation to be:

0 E; ) 222e1.(x)1._1ei(x_.')
- b
9x _,IBX_i XX 2.3.2
32ET L] .
E R L R M T R IS T 2.3.3
.'I
2 2
) 221ei(x1.) _ 22,|e1.+,l (Xi)
X751 341775
82E 2Z e, . (x.Je.  (x, . 0)
T R%i i im 2.3.4
9% 541 X427
2%
T
=0
X 43X 2.3.5
where
Zl = n2’
22 = (-l)—]-ln,

e;(x;) = pointwise error at x;,
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éi(xi)= derivative of the pointwise error,
and
n = number of terms.

There are two conditions which will exist at the breakpoint x; which are of

interest. First, if the solution is symmetrical, that is ei(xi) = -ei+1(xi) , then the

pointwise error can be defined as

3 E - . .
5;21'1- Zei(xi)[ei(xi) + el (xi)]. 2.3.6

Second, if th% solution is continuous, i.e. ej(xj) = ej;+1(xi), we have

:—Xgl= 2e. (x I[e (x.) = e g (D], 2.3.7
Equation 2.3.6 says that the optimum breakpoint location is where the
approximation from the left and right is symmetrical and where the slope of f(x)
minus the average slope of the approximation, Fn(x) must have the same sign as the
pointwise error. Equation 2.3.7 says that the slope of the approximation on one

side of the breakpoint minus the slope of other side has the same sign as the

pointwise error.



CHAPTER III

FUZZY THEORY

3.0 Introduction

In this chapter we will consider fuzzy sets and show a fuzzy Bayes model for
use in decision making. The problem we are interested in is the ability of an edge
detection algorithm's decision making process, that is to make decisions against an
error threshold, given some a priori data. This effort is motivated by Zadeh [58 ],
Terano and Sugeno [53 ]because for curve detection the precise description of a
contour is not absolutely required. As described in Chapter I, we are interested in
the magnitude of change of the slope at a corner within the interval [a,b], where
corner has a fuzzy definition. Before presenting the development of the fuzzy
Bayes model, a brief description of fuzzy mathematical concepts will be presented
in the next section. But, first we will present some set definitions which will be
used through out the discussion. If we are given a space U, which contains a well
defined set A, then we can determine whether each element u; in U belongs to A.
This can be written as u, € A if u; is an element in A, If U does not belong to A this
can be written as u; ¢ A. If we are given two sets in U, namely A and B, then we
can make the statement that A is contained in B if every element of A is contained
in B which can be written symbolically as A=B or B 2 A.

3.1 Fuzzy Sets

Fuzzy sets in this paper will be represented by K and non fuzzy sets by A
without the v above the symbol.

A fuzzy subset /;\b of a set of discourse E is defined by the membership
function E-+[0,1] which associates with each element x; of E a number u (x;) in
the interval [0,1]. Thus, the fuzzy subset A of E can be denoted as

K cE

24
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and the membership of elements within a fuzzy subset can be denoted as
N " "
xeA,ve Ayand ze A
1 1 .5
where the number below the symbol represents the grade(membership) of the
element(s) within the specified fuzzy set; i.e.,u(x)=.1,u (y)=1, and p(z) =.5.
Definition 3.1.1
N n :
Given two fuzzy sets A and B over E, with membership functions MaX)and ugix)
respectively, then one can introduce the following:
V) Y N
1. The union of A and B symbolized by A UB is defined as
v Y
the smallest fuzzy subset that contains both A and B. That is to

say,

Vx e Bk | l(x) = VIHYOO)m B3]

where v represents the maximum value with respect to the variable

Xe

Y] Y AVAV]
2. The intersection of A and B symbolized by ANB is defined as
v Y
the largest fuzzy subset containing A and B simultaneously. That
is to say,
Vx € Exy g alx) =/\[UA“(X), U"B(X)]
wherep represents the minimum value with respect to the variable
Xo
n v

3. The negation B of a fuzzy set A of E is defined as
vx e Esuylx)= 1 -1 A{x).

This can also be denoted as

1]
We Po

or

> 1w

In some texts negation is called complementation.
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Definition 3.1.2
The o level set of a fuzzy subset IA\\J of E is a nonfuzzy subset of E denoted by
AOL and defined as
Ag = xIMx)2 a, x €E).
That is Aa is a subset of £ whaose members all have a grade of membership in A
greater than or equal to «.
Definition 3.1.3
N N

The disjunctive sum of two fuzzy sets A and B is defined in terms of unions

and intersections and can be expressed as
v} V) ooy ooy
A+ B=(ANB) UANB)

The theory of fuzzy sets is based upon nonstatistical concepts and yet many
readers think that probability theory provides all the necessary concepts and
techniques for solving vague or ill defined problems. The latter is not true because
probability is concerned with the random occurrence of an event whereas fuzzy set
theory deals with the situation where the object(event) is imprecise. That is to say,
fuzzy set theory assigns to each element of a set a value of the membership
function,u: E~[0,1] . Probability theory assigns a number p € [0,1] to an element
which constitutes a probability of an occurrence. We can assign a probability value
to a fuzzy set, however we cannot do the reverse because we would violate the
fundamental axioms of probability as given in [38] . Furthermore, probability
theory is based upon the theory of distributive and complemented lattice or
Boolean lattice whereas fuzzy theory is based upon the theory of vector lattice [28]
. The fundamental differences between vector and Boolean lattices are

(a) The vector lattice is a totally ordered product set and

(b) the Boolean lattice has the least and greatest elements 0 and 1.

Also, for the Boolean lattice the condition a A(bv ec)=(a A b)V (apc)

holds and for any "a" there exists an element al in the lattice such that aV al =
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1 and ahal = 0. A detailed discussion of fuzzy subset theory and its operations can
be found in [22 28, 58].

3.2 Fuzzy Measures

As mentioned in Chapter 1 we will use a fuzzy Bayes' model to aid in the
detection of edges. The development of this model requires us to investigate
measure theory which also forms the fundamental base for probability theory. We
start our development by discussing some of the key attributes of measure theory
which will lead to the definition of a fuzzy measure space. The difference between
probability measure space and fuzzy measure space is shown in the sequel.

We will start the development of fuzzy measures by considering only
functionsv: K > R* , where K is a non-empty class of sets and R* is the extended
real number system which is simply ordered if we put - © < X<+ » for all xe R
where R denotes the real numbers. In the above, v defines for each EcK a
unique value which is either a real number or + & . It is assumed that the empty
set () is always contained within K.

We will define a space as having a structure which is described in terms of a
class of subsets called "open". One way of obtaining this class of open sets is to
define a distance between a pair of points located within the space. Thus a non-
empty set E, together with a function v : E x E > R, which is now defined as a
distance function, will form a metric space if

(@) v(x,y) = \)(y,x)->0 for all x,y €E

(b)y (x,y)=0if andonly if x =y
and

(©)v (x,y) Sy (x,2) + v(z,y) for all x,y,z €eE.

If we think of v(x, y)as the distance between the points x and vy, then (c) above can

be called the triangle inequality.
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A set function v : K+ R* can be defined as being finitely additive
(d)if V(@) =0 and

(e) for every finite disjoint collections of sets E7, E2, ....., En in K

whose union is also in K, we have

n n
VUE)=sv(E.) 3.2.1
=1 U= 0 1

A ring is any non-empty class, say K, of subsets which are closed under the

operations of union, intersection, difference, and § € K . For any ring K the set

function v: K+ R¥ is defined to be additive if, and only if, v (0)=0

where
E,F eK;
ENF=0 3.2.2
and
V(E NF)=v(E) +AF ) 3.2.3

From these conditions we can now obtain equation 3.2.1. A ¢ additive set function v
: K+ R* is defined to be additive

(f) ifv(@)=0, and

(g) for any sequence Ej, E2, ----, Ep which are disjointed sets in K such
that
n
E=UE. ¢K,
j=1!
and

v(E) = Zv(E. )
i=1 !
Now a measure can be defined as a non-negative set function v: K+ R* which is o
additive on K; where
R* = xeR x>0} .
A standard way of defining a measure on a subset of R is to consider R as a line of

infinite length which is composed of an infinite number of intervals. Then we can

define a length v(n) of an interval as the difference between its end points. The
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domain can be defined as a collection of all intervals which are defined by a set
function. This set function assigns an extended real number, vln) < * ® tgeach
set in a class. This same idea can be extended to area, volume, and higher

dimensional geometry.

Theorem 3.2.1 [23]

[00]

If v is a measure on a ring K, and if {En} where E\CE, G. ... Slim E_ -_-K[=J1

E) is an increasing sequence of sets in K for which limnEn e K then
v(L1mnEn) = L1mnv(En).

Theorem 3.2.2 [23]

If v is a measure on a ring K, and if {En}where E)CE,Seee. Flim E_ EE']

Ek is a decreasing sequence of sets in K of which at least one has finite

measure and for which limnEneK , then \)(LimnEn) = limn\)(En).
Now we can state that v , provided it is a measure as defined in Theorems 3.2.1
and 3.2.2, is continuous from above and from below E in the limy Eq. Up until now
we have discussed the fundamental theory behind Lebesgue measure. If more
detail is desired, the reader should consult [24] |_ebesque measures consist of a set
function with monotonicity and o additivity. However, for fuzzy set measures,
the additivity requirement can be relaxed to the point where it applies only some
of the time. In the human thought processes additivity has not been proved a
necessary or a sufficient requirement for information processing, as it is for
example in probability measures. Fuzzy set theory uses the term "membership" or
"grade" to define elements belonging to a set whereas probability theory uses the
term "probability of occurrence" or "randomness of an element" to define which
elements which occur given an experimental outcome. For the definition of fuzzy
measure, in this paper, we will use the term ¢ for the grade of an element(s)

belonging to a given set. We start by defining an arbritrary set U as the universe

of discourse and an empty set as ¢
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We are now in a position, after some brief definitions on measure theory, to
define a fuzzy measure space. A function, Viw > R*, is defined to be B-measurable
if and only if

\J—1(A) e B
for every A € a” . B-measurable refers to a Borel set [23,38 Jand a” is defined as
the class of Borel sets in R*. Now, using Terano's and Sugeno's [53]definitions, we
“define a fuzzy measure space as a triplet (X,B,9) where B is the Borel field. If we
let h:X~* [0,1] and Fo = {X |h(X) 24} and if Fac: g, then h can be called B-

measurable.d is defined as a level or threshold value and h as a mapping from X to

[0,1 ]. This leads to the following fuzzy measure definition which can be found in [53]

Definition 3.2.1
A set function ¢ (X) with the following properties is called a fuzzy measure:
(h)¢@)=0, ¢(X)=1
LV v
(i) A,BeBand Ac=B then ¢(A)S ¢(B)
4V}
(j)FneB and F is a montone sequence, then lim d)(Fn):d)(lian)-
N> n->
From Definition 3.2.1 we see that (h) means boundedness and non-negativity, (i)
means monotonicity, and (j) means continuity. Condition (j) can be dropped if our
set X is finite.
As a comparison to probability space, we know from [38] that the triplet (X,
B, P) has the following properties:
(k) P(0)=0, P(X)=1
(1) A,BEC and A=B then P(A) <P(B)
(m) F_gC then lim(F_) = P(limF_)
n ndo N’ Ao n
What we have shown in (h) through (m) is that probability measures are a subset

of fuzzy measures. This is also supported by the fundamental definition of fuzzy

"
subset theory as defined in [58], that is A = A. Or, from another point of view,
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probability measures are more restrictive than fuzzy measures. In[28]and[58]the
authors define fuzzy sets with respect to ordinary set theory. Basically fuzzy sets

cover the entire universe of interest, including regions which are ill-defined,
whereas ordinary set theory covers well defined regions as illustrated in Figure

3.2.1.

/{ universe of interest (U)

< well defined area of
interest(A)

X~ ill-defined area of
interest(A)

Definition of Fuzzy and Ordinary Regions

Figure 3.2,1

As can be seen in Figure 3.2.1, an ordinary set A is a subset of the fuzzy set ’/\&
which can be written as A< 2:

We can measure fuzzy occurrence by using probability measures with
additivity. Therefore we can write P(I,X‘), which represents the randomness of a
fuzzy event. However, we cannot do the reverse since it has not been proven that
additivity exists within fuzzy theory. This is because of the human subjective
input. Thus, a good assumption would be to throw away the additivity requirement
in the fuzzy measure as Terano and Sugeno have done. What this means is that
equations 3.2.2 and 3.2.3 do not necessarily hold. For example, in Figure 3.2.2 we
are given two sets E and F in which’\é n l:'b #0but EN F = (. That is, for a given
problem space the quantities g and l-ibcould be ill-defined where the condition En II-E

# 0 exists. This indicates that the additivity term is empty. But for well defined

quantities, where probability measures hold, the additivity term must be empty i.e.



32

ENF = ¢ We will return to Figure 3.2.2 in order to give a complete description of
fuzzy measures after we have developed some fundamental fuzzy integral

definitions.

A% A"
E ~ L
E ] F

Additivity Fails

Figure 3.2.2

3.3 Fuzzy Integrals

The next step in the development of our model will be to define an integral of
a function on the fuzzy measure space (X, B, ¢) where X is a space, B a 0 field of
subsets X, and ¢ a measure on B . Since fuzzy set theory covers a more general
domain than ordinary set theory, as shown in Figure 3.2.1, we can now write fuzzy
functions which look a lot like ordinary set functions. Thus, we are now in a
position to define a fuzzy integral which is very similar to the Lebesgue integral as
defined in [38] We start by defining a simple function as

i=1
where 8;is a finite set of real numbers and XE(X) is the characteristic function of a

n o _
f(x)= I B.X (), 3.3.1
i

measurable set E. The characteristic function is defined as

gEi(x)= L if x ek,
or
= 0 if x¢E,

Thus,
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B, if xeE.=1,...n,
fix)= ! .
Cifx¢E.U..... - UE
The simple function, equation 3.3.1, has been defined on a measurable space which

is composed of disjoint measurable sets such that
Ei n Equlfori;éj 3.3.2

and
n

n_
i=12E,

The integral of the non-negative simple function, equation 3.3.1, can be expressed

e (0=
1

as
S£($IAX () =1_§1 BLOCE.)
where the Ei's are measurable sets in the space x and 31, > Ofori=1,2,....nN.
The above integral amounts to averaging the function over the given space. In
order to show the similarity between Lebesgue integrals and the fuzzy Lebesgue
integrals, we will define very briefly the Lebesqgue integral. First let 8 be a
Lebesgue measure on the ¢ field B of Lebesque measurable sets . Then the
Lebesgue integral, on the measure space (x , B, _>2) of f over E, is defined as
St ®IdX =i:§1 B, CANE ) B 53,3
where E is a Lebesgue measurable set in x. We have assumed that O<g; <1 for 1 <i <

nand that g; is an ordered monotone increasing sequence. Graphically, the right
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Lebesgue Integral Defined Over A
Figure 3.3.1
side of equation 3.3.3 is shown in Figure 3.3.1 where equation 3.3.2 holds and
in =1x ek,
=0x¢E, .
Now eguation 3.3.1 can be written as
n
= X, 3.3.4
fx) =V, [BAXE . K],
This means equation 3.3.1 can also now be written in a fuzzy form similar to
equation 3.3.4. We start by writing a simple fuzzy function as

n n _
f(x) = 1.§1>\1.5F1. X

The above fuzzy function can be expressed in the same form as in equation 3.3.4
namely
n —
f(x)= v [)\il\_)gpi(x)]. 3.3.5

i=1
Thus, we can see the similarity between equations 3.3.4 and 3.3.5. The fuzzy

integral, as defined in [53Jover A €B of f(x) with respect to a fuzzy measure ¢(x)
can be defined as

n

Jf(xdo p(x) = V[)\/\d)(AnF)\)] 3.3.6
A Ae[0,1]
where

Y]
Fy= Ix]f G > Ak

Equation 3.3.6 can be rewritten as

nony n
J o ¢Cx) =V [Fx. I ¢(ANF,)]
A =1 !
n
=V [f(x N ¢C(F)]
=1 !
v}
if f(x;)is arranged in increasing order and if we let Fi = {xj, Xj4is ~==- s Xt

Then another way of writing equation 3.3.6 is as follows:
N

ffdx =V S ¢ dx

i}

n
V[ Z

1_1>\i¢(AnE'i)]
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[A;A $CANE].

< 3
—

3

The symbol for the fuzzy integral will be written as fm.

In the above we refer to F;\nghich represents a class of all fuzzy subsets of
A with B- measurable membership functions. As defined earlier, B cr\é can be
viewed as an extension of B into r\é which preserves all the properties of B. These
properties are defined in detail in [53]. As pointed out in [26]and[53]these fuzzy
integrals are also called fuzzy expectations and can be compared to the
probabilistic expectations as defined in [38]. In [26] the authors point out that the
difference between the probabilistic expected value and the fuzzy expected value

when defined with respect to p is
[a]=]/10ddp = ST 0 p (F|< 4.

That is by using subjective information via the fuzzy membership value the average
difference between the fuzzy expected value and the probabilistic expected value
could be as large as 25%. Take for example five people whose monthly incomes are
respectively $2200,$2500,$2700,$3500, and $10000. In order to compute the fuzzy
expected value(FEV) we need to form the fuzzy measure, which acts as a standard

probabilistic measure [53 ], from

wiCry) = ulylzty) > A1 = g, (V)
where
p
and

P = total population.
AV}
Next the fuzzy density, fxi’ must be formed. In this paper the fuzzy density values
are derived from a subjective rating curve as shown in Figure 3.3.2. Forming the

union of the fuzzy density and fuzzy measure we get a set of 2n + 1 elements. This

set of 2n + 1 elements is arranged in increasing order because of the Max-Min
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comparison operations. That is, we will take the minimum of every comparison.
The results must lie to the left of the element position n+l. Next we take the
maximum of these minimum values, which obviously is the value in position n+l,
because the array is ordered. This number is the mean of the array. Using the

subjective rating values from Figure 3.3.2 the fuzzy densities are

1o 4

Membership
Value
.5
+ 4 P
5 10 x103
Income/Month
Subjective Rating
Figure 3.3.2
$2200 = .25
$2500 = .30
$2700 = .35
$3500 = .45

$10000 = 1.00
Next we compute the fuzzy measure uj (TA) according to the above defined Fi

sequence. This computation yields:

1l

Hq (TA) .8

Mo (TA) = .6
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u3 (’I.‘)\) = .4

u4(r>\) = .2

where
j=i-1.

The fuzzy density values, which include 0 and 1, give different thresholds within
the interval [0,]] . Forming the union of the fuzzy measure and fuzzy density
values we get .2,.25,.3,.35,.4,.45,.6,.8, and 1.0. The FEV as discussed above will be
found in position (n+1)/2 and for this example the value is .4. The probabilistic
expected value(mean) of the subjective ratings on the [0,1] interval is .47. The
difference between the two methods of computing the expected value is .07 or 7%.

If we change our subjective rating to

$2200 = .10
$2500 = .12
$2700 = .35
$3500 = .98
$10000 = 1.0

then the probabilistic expected value is .51. The difference between the FEV value
and the mean value for the second case is .11. We see that a change did occur
between the probabilistic expected value and the FEV. It is possible to have a
difference between the mean and the FEV greater than .25. However, the data in
that case would not make any sense; i.e. the data would not be realistic. As another

example, if we changed the subjective rating of the above case to

$2200 = .10
$2500 = .12
$2700 = .70
$3500 = .98

$10000 = 1.00
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the probabilistic expected value becomes .54 but the FEV becomes .6. We see from
the above examlpes that the FEV varies according to the subjective rating scheme.
This comes as no surprise because fuzzy set theory allows for subjective selection
of the membership function.

Since fuzzy subset theory is based upon a membership function, we can now
let fy(x) be a membership function of a set Y . The fuzzy measure of Y can be

defined as
f\,

N
9Cy) = [ £ ) 0 9, 3.3.7
and the fuzzy integral over Y as

" n
J fx) o ¢p(x) = [ [fy(x)/\f(x)] o p(x).
Y

From the above definitions we can see that fuzzy measures include probability
measures as a special case. However, fuzzy measures cannot be used in a
probabilistic setting because of the subjective nature of fuzzy subset theory.

The additivity of L.ebesgue measures is a fundamental concept in measure
theory. This can be seen if we let o be a Lebesgue measure, as defined in[24 ]

Then it follows that

(a)ifANB =0 3.3.8
then

/ h{x)da = Sfhix)da + f h(x)da, 3.3.9

AUB A B

(b) 3.3.10

f (hy () + hy(x))do = [ h, (xdda + [ hy ()da
X X X

However, for fuzzy integrals, monotonicity is the fundamental concept which gives

(c) if AcB 3.3.11

then
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¥

v
S hix) o ¢(x) < J hix) o ¢(xD 3.3.12
A B
. <
(d) if hl- hZ 3.3.13
then
v "
S h,'(x) 0 ¢(x) < J hy(x) o ¢(x). 3.3.14

If equations 3.3.8 thru 3.3.14 are viewed from the concept of functionals then the
Lebesque integrals (equations 3.3.8 thru 3.3.10) are linear functionals and the fuzzy
integrals (equations 3.3.11 thru 3.3.14) are non-linear functionals where a
functional is an operation which assigns a number to a function.

Now we can define fuzzy conditional measures which are similar to
probability conditional measures which possess the following properties. We start
by letting (X, Bx,q)x) be a fuzzy measure space and (y,By ) be a Borel measurable
space. Also, let a fuzzy conditional measure with respect to x be written as EY(F | x)
with the following conditions:

(a) For a fixed F ¢ By’ E(F |x) is, as a function of x, a By -
measurable function.
(b) For a fixed x eB,Ey(le) is a fuzzy measure of (y,By) .
A fuzzy measure of Y can be written in a form similar to equation 3.3.6 by using
the above defintions in (a) and (b). Writing this equation, we have

Voo
o (FY =) E(le) oo (E), 3.3.15
Y x Y X

or written another way,

n n ny
S h(y) o ¢ (F) = S [ S hiy) o E_CF|x)] o ¢_(E).
y Y Xy y X
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See Figure 3.3.3 for a graphical definition of F.

EcX and F €Y and the Conditionals are Defined on Their
Respective Sets Within X and VY.

Figure 3.3.3

The expression for EX(EIy)can be written as
n
¢ (E) = JE (E|ly) o ¢_(F) 3.3.16
X X X y

or

fwh( ) (E) = fm ™
; Xx) o Cbx = J [){ hix) o Ex(Ely) o) ¢y(F)'

See Figure 3.3.3 for a definition of E. Now from equations 3.3.15 and 3.3.16 we
can write an expression showing the relationship between Ey(FIx)and gx (E]y) .
However, before the relationship can be expressed the sets E and F, as shown in_
Figure 3.3.3, must be defined as EcX and Fc Y. Futher, if we let¢x(E) =¢y(F) then
the relationship can be expressed as

Y v

{ £x<5|y> o ¢ (F) = é £, (FIx) o ¢, (E). 5317
As can be seen, equation 3.3.17 is Bayes' formula written in fuzzy terms, see [38],

for the probabilistic expression of Bayes' formula. In equation 3.3.17,%, ®is called
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the a priori fuzzy measure and EX(E|y) is called the a posteriori fuzzy measure.
Equation 3.3.17 can be rewritten as

Ey(F|x) o ¢, (E)

E_(E|y)
X f¢y(F)

Ey(FIx) o ¢ (Ed

émgy(ﬂx) 0 $(E). 3.3.18

As can be seen, equation 3.3.18 represents the continuous case for fuzzy measures.
The generation of fuzzy measures as described below is according to Terano

and Sugeno [53]. They define a finite set X as {X1 cesa ’Xn} and then consider

how to generate a fuzzy measure of a fuzzy measure space (x,2x,¢). First they start

by letting 0_<_¢>ii1 for 1 <i< n where d>-i is defined as the fuzzy density. Next|53]

defines a A rule as
n .
A= (4 -1 3.3.19
i=1
where
Sl A < o,
Now for a set E <X, as defined earlier, we have
_1;n iy
¢>\(E) = 7\_[121 1+xg )-1]
where all i's € E. Thus with the aid of the above definition, we can obtain ¢)\[{X1- H=¢'

for 1 <i< n andif AN B £0, then
¢}\(AUB) = q))\(A) + ¢>\(B) + )\(b)\(A)d)}\(B). 3.3.20
If A=0, then ¢)\(AUB) becomes a probability measure. From equation 3.3.20, if A>0
then
¢A(AUB) > ¢>\(A) + ¢>\(B)
and if A < 0 then
¢>\(AUB) < ¢>\(A) + ¢>\(B).

The lambda rule is a technique to incorporate additivity into fuzzy measure
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theory. For example, as shown in Figure 3.3.4, if the subspaces Aj and Bj exhibit
A1 N B) = 0 then what is the additivity i.e. ¢y (A UB), or what is the solution to
equation 3.3.20? If the point of interest occurs in A1, as shown in Figure 3.3.4, the
effect can be determined by solving equation 3.3.19 for A . Thus, given a fuzzy
density of q)i » lambda will give a measure of spaces or subspace intersections, i.e.
a grade of relationship of spaces or subspaces with respect to one another. For this
example we have ¢/1;=1 and ¢;=O . Substituting these values into equation 3.3.19

and solving for lambda we get X =0. Thus, equation 3.3.20 reduces to
d))\(AUB) = ¢, A + qbk ®

as expected because of the condition Aln Bl = 0.

Point of interest
AY

\B

Space and Subspace Intersections

Figure 3.3.4



CHAPTER IV
CORNER/EDGE DETECTION CRITERION

4.0 Introduction

In this chapter we are concerned with the application of the above techniques
to corner and edge detection within a noisy environment. The technique of
describing an object's boundaries by using piecewise linear approximating
polynomials was motivated by Albano[4], McClure [33], and Pavlidis [39]. Also, this
motivation is driven by a need to develop an algorithm which is computationally
fast and by the desire for data compaction. It has been shown elsewhere, [ 14, 33,
45], that approximating polynomials of order n > 3 are computationally complex
and time consuming. Higher order approximating polynomials give a smooth
continuous contour for curve fitting on the given data space. However, these
polynomials normally have a strong continuity requirement which is not necessarily
a requirement for corner and edge detection because of a possibility of
discontinuities in the pattern. Pavlidis [39] has shown a number of ways to
approach the contour approximating polynomial problem when a continuity
requirement is desired. For linear polynomial approximations Pavlidis [39] bhas
shown, corners are likely to occur near a maxima of the second derivative of the
approximating polynomial and, by minimizing the least square error, the location of
the maxima of curvature can be determined. The question to be answered next is
what is the definition of a corner or maximum of curvature. This question will be
answered in the following sequence.

4.1 Error Criterion

Since our technique can be used against both wave forms and two dimensional
curves, we must define the error criterion and the computional method for both
cases. For wave forms we can define the point wise errors as

43
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4.1.1

e = f-F |-
The error ej is computed along the coordinate axis which is perpendicular to the
time axis. However, this is not the case for a two dimensional curve because
equation 4.1.1 will not give meaningful results with respect to the approximating
curve. The Euclidean distance from a point (Xi’ Vi) to the approximating curve will
be ill-defined because of the increase of the problem dimensional space, i.e. from
one to two. Therefore, we will define an expression e; which gives the normal
Euclidean distance between a point, (xi, yij), and the approximating curve Fp(xj*

Perkins in [43] shows an equation of the form

xicose + yisine -d 4.1.2

< >
X

Definition of Terms Used in Equation 4.1.2

Figure 4.1.1

for determinimg the error between f(xi)and Fn(xi)where d is the distance from the
origin to the approximating curve. The first two terms in equation 4.1.2 give the
distance from a point to the origin where 6 is the angle between the distance
vectors and the x axis. The error, ej, can then be computed by taking the
magnitude of equation 4.1.2 which can be written as
e; =| x;,cos 8 + y;sin6 - d | 4.1.3

Equation 4.1.5 is one method of solving for equation 4.1.1 if no constraints are
imposed upon the input data. In the following sequence we will show another

method for solving equation 4.1.1. In this problem we will solve for ej by using the
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constraint that all input data be spaced along a coordinate direction at regular
intervals. This requirement is easy to achieve because we can control the input
data to the feature extractor as shown in Figure 1.2.1. The following conditions,
which are shown in Figures 4.1.2 and 4.1.3, must be accounted for:

(a) The data point is located above the approximating curve

(b) The data point is located below the approximating curve

(c) The data point is located such that the x; or yj component is zero.

This is shown in Figure 4.1.4.

As can be seen from Figures 4.1.2 through 4.1.4 , ej is given as
e; = A xsin(tan™* —ﬁ% )| if the data point x;,y; is located below Fn(x) as shown in
Figure 4.1.3 or e =|A ysin(90 - tan'l —ﬁ% ) if the condition shown in Figure 4.1.2
exists. For the condition shown in Figure 4.1.5, if either the Ax or 4y component is

zero then e; equals the non zero component. Using either equation 4.1.3 or 4.1.4

we can determine the error norm over the data set, Dj , of interest.

X

Data Point Above Approximating Curve
Figure 4.1.2
The optimum piecewise linear polynomial approximation over an interval{ a,b]
can be determined by one of two methods: 1) find the polynomial of the lowest
order n, in this case n equals either 1 or 2, where the error ej is equal to or less

than some given threshold, or 2) for a given order, n, minimize the error.
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-
X
Data Point Below Approximating Curve
Figure 4.1.3
vA vA
XYy F
o
o P>
X X
a b

xi or y;j Component is Zero
Figure 4.1.4
In this study we will use the first method because computationally it is easier and
the accuracy of the describing contour can be varied. The second method requires
fitting a polynomial or set of polynomials of a given order n on the interval [ a,b
within the specified error bound. Potentially the second method could give a more
accurate description of the contour by decomposing the interval[ a,b] into smaller
subintervals in order to meet the error threshold. Computionally this method is
expensive and it is not absolutely clear that that much effort is necessary. The

first method works well on an interval [a,b] no matter what the input data
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characteristics are even if the input data has been corrupted by noise. Consider the
situation where the input data has been corrupted by noise as shown in Figure 4.1.5.
If the error bound, E, has been set low as in Figure 4.1.5a then the algorithm would
report that a corner exists within the data. Conversely, if the error bound is high
Figure 4.1.5b the system would report that there were no corners. This situation is
a dilemma because the system could miss or could interpret the existence of false

corners, caused by noise, as actual object breakpoints and thus give false reports.

g(t) ‘T ar) #
E |
£l
-E
E |
> : g
t t
a b

Noisy Input Signal
Figure 4.1.5.
One cannot completely avoid such situations, but by experimenting to determine an
initial error bound one can minimize false detections. We are concerned with two
different types of error bounds within this paper. The first one has to do with error
on an interval, or a segment of the interval[ a,b], where the error norm is compared
against a specified error threshold. This can be expressed as ej< Ei' where Ei'
represents the specified interval error . The second error threshold is concerned
with error over the continuum of two segments(intervals). That is if I and I, are
contiguous intervals, then the maximum error in, InU In4+1 , cannot exceed Ej. Ej is

the adaptive wupper error bound over n continuous intervals and it
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adjusts according to the signal's characteristics. Experimentally it was determined

that for good contour descriptions the adaptive error threshold can be expressed as:

+p.
Ei =E; +Ps(S/N)+e "1 4.1.4
where
EO = initially estimated or experimentally determined threshold
p. =  fuzzy value determined from the model( will be discussed

in Section 4.2)

B error computed over interval I;_; and
S/N =  signal to noise power ratio.
The last term in expression 4.1.4 was experimentally determined to require the

following conditions:

(a) use +p1-to determine the upper error bound
for merging intervals I5.] and In.

(b) use -P;to determine the upper error bound

on an interval Ip.
The +p1. term, for the upper error bound, has been designed to allow the error
criterion to increase or decrease according to the intervals In-l and In fuzzy value.
This term also has the effect of smoothing the contour when merging several
continuous intervals and, in addition, it controls the magnitude of the upper error
bound. The =P, term, for the lower error bound, has been designed in such a way as
to limit the amount of error, Ei" per interval Irl . The error limit per interval is
directly dependent upon the fuzzy value Pse Thus the Py term will guarantee that
the computed error over n continuous segments will not exceed the error bound.
This is significant because we can now achieve data compaction by minimizing the

number of describing polynomials for the object. This result is also heavily

dependent upon our fuzzy definition of a corner which will be presented later.
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4.2 Fuzzy Criterion

The use of fuzzy sets in this study is a way of evaluating the existence of a

corner within an interval I or between intervals Irl and In+1 for purposes of

merging. As mentioned earlier, an element of a set is assigned a grade of
belonging to that set by the fuzzy membership function. The membership function
is assessed subjectively and this type of assessment has received little attention in
the literature. As Zadeh points out in [48], it is not in keeping with the spirit of
the fuzzy set approach to be too concerned about the precision of this number.
Also, as mentioned earlier, we are not too concerned with the precise detection of
edges or boundaries. For our purposes it was decided that as Pss the membership
value, approaches one the presence of a corner is diminished to the point where no
corner exists when Ps= 1. Figure 4.2.1 shows the relationship of existence of corners
versus p. . We could have chosen the reverse logic, i.e. when P;= 0 no corners
exist. The only criterion for selecting any membership function like the one shown
in Figure 4.2.1 is that it represent, although not precisely, the desired effect. As
can be seen, this has been accomplished by our chosen membership function. What
we are interested in is making a decision about whether the approximating
polynomial over interval I, is good given some input data and some other
information gathered from the process being studied. The fuzzy Bayes' model as
discussed earlier will supply a fuzzy output measure on an interval In. In order to
discuss this model with respect to the multi-variable problem under investigation,
we start by considering Figure 4.2.2. This Figure can be viewed as showing how
much B belongs to the various aj's. A is considered to be the space which can be
described by several attributes, aj's, where some are well defined and others are
ill-defined. For the fuzzy Bayes' model, Figure 1.2.3, aj could represent the a

priori subjective input and B would then represent the information about the
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process, that is Bz(ylx). The subjective inputs for our problem are related to three
information elements: g, ljax, and slope. These will be discussed later in the
text. Membership values are assigned according to these information elements on
each interval I,. We will assign higher membership values, subjectively, to
parameters which provide a significant amount of information about the process
being studied. For this study the significant information parameters are 12 and

slope( 8 ). The L, value, when computed over an interval [a,b ], can be viewed as

A
1.0 A
Existence
of
Corner

1.0

Existence of Corners Versus 01-

Figure 4.2.1
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Venn Diagram for a Multi-Variable Problem
Figure 4.2.2
providing the average error between the actual and approximating function across
the interval. The slope parameter gives information as to the amount of direction
change an approximating polynomial makes. For merging intervals a comparison
can determine the amount of change between the two intervals and a decision can
be made if a corner exists between these two intervals. Based upon the above
statements that 12 and slope provide a significant amount of information about the
process, we will subjectively(initially) select high fuzzy density values for these

n n

terms. The initially selected values were fx12 = fx g= .5 . Since I hax does not

provide a great deal of information about the process, we initially selected the a
n,

priori fuzzy density value as fxmax = .1 . After a training period as described in

what follows which is necessary to determine the best possible set of values, our

initial values could change. We will provide a discussion in the sequence below on
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the effect training has on these information elements. The information term, Bz(yl
x), will be defined as:
e.
- i
£y Hxd = E1({—L—£}lx1.),

e.
i

& Uy, Hx ) = B Ugg Xy

and
£3C{Y3}|xi) = 53({61}|xi,

where e, is as defined in section 4.1, X; is defined as the input data position within
an interval In’ and Ej ({yj }lxi ) is as defined in section 3.3. In a fuzzy multi-
parameter problem, humans tend to assimilate information for the determination
of a near optimum or optimum solution with little or no effort. Problems of this
type, which represent nearly every problem processed by humans, have certain ill-
defined parameters which are dependent upon the occurrence of other parameters
as described by the fuzzy model given above.

For most pattern recognition systems a period of training is necessary to
teach the algorithm on a representative set of data. The algorithm involved with
edge and corner detection in this paper can also go through a learning period,
although it is not necessary. The learning process of the fuzzy measure term (r:“xi),
which is defined in this problem to be in terms of 12, lmax’ and 6 , can be
accomplished by iterating over a sample data set until the results converge to a
constant or near constant value. Here, "near constant” implies that the final values
of,;’lxi could oscillate about a constant value. Thus, an expression is needed which
will limit each of the P;‘i terms in the model. That is, the :’in values must be
allowed to vary over a bounded range which will yield an acceptable solution. In

order to simplify the a priori fuzzy measure, an iterative learning process was

used. The following learning rule[ 52 Jwas applied in order to achieve a good initial
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A"
a priori fuzzy measure value in for the model . The rule is as follows:

,\J '\/
fxi = Afxi-1 (1+A)Ey(A|xi-1) fori=1,2,0..., 4.2.1
v ny
= Af for i = 1+1,1+2, . . ,n. 4.2.2
X X3-1

where A=0< A <1 . Alis a multiplying term which affects the rate of convergence
of ’%in' To determine the behavior of ?in we need to give the decision maker
information on a representative, training, set of data. We start by presenting to
the decision maker the a posteriori fuzzy measure data,Ej‘({yj}Ixi) , as shown in
Table 4.2.1 . The fuzzy measure of y can be determined from

Y 0

fy(E)= f £y<{yj}!x1.>o fxi. 4.2.3
The data given in Table 4.2.1 is an example of a fuzzy measure process where the
data is not related to any specific contour detection problem in this paper. This
example is intended to show how we can use ill-defined(fuzzy) information to make
a decision. In the example, the x's represent a system state. As shown we have
three states, and the y's are functions which are evaluated given a system state.
Thus, we have three functions which have been evaluated subjectively given the
three system states. The subjective evaluation could also have been performed by
using functions which have been subjectively selected for the process being
evaluated. The concept is to allow decision making, given some ill-defined terms
and subjective inputs, in a fuzzy environment.

Y1 Y2 Y3

X1 (.78 1.0 .55
Xp | .60 .84 .55

X3 |.56 .77 .55

A Posteriori Fuzzy Measure Data
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Table 4.2.1

" n

We start by solving for Ey(AIx_i) and | in equation 4.2.1. In order to find Ey(Alx_i)
in equation 4.2.1 we must first define a fuzzy expression for the output
information. This expression can be written as

v Y v

f(A)= J I (y)of (E) 4.2.4

y y n y
where

"N

In(y) represents the menbership function of the fuzzy set A which

contains the ill-defined elements.

If we substitute equation 4.2.3 into the above expression and solve we get

n N n u
fy(A)— iln(y)o {){ Ey({yj}'xi)Ofx }

.i

"o 4.2.5
= ){ gy(Alxi)Ofxi
where n A v
Ey(Alx_i) = ;lf I (y)o Ey({yj}lxi). ey

The grade of fuzziness of the information ?Y(A) must be evaluated in order to
determine if the a priori fuzzy density values are reasonable. These fuzzy densities
are later described in terms of linguistic descriptive values for use by humans.
However, through this example we are able to determine the initial numerical
fuzzy densities. These initial densities will be correlated with the linguistic
descriptive terms to determine an initial starting value. Solving equation 4.2.5 we
get
f (A) v L (A|x MWE DX a%os X DT 4.2.7

From equation 4.2. 7 we can define | as the intersection of E (AIX ) and f ({ X11Xp3
seeesegXy } ). This definition was discussed in section 3.3 of this paper. The learning
rule objective is to decrease or eliminate the a priori fuzzy grade. This is

accomplished by iterating with equations 4.2.1 and 4.2.2 to increase the value of
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N
fy(A). That is,a small a priori value indicates that an event has occurred and in our
problem this means that the information indicates the nonexistence of a corner in
the interval In. Some typical cases of the above procedure are presented in order
to show the effect of different types of information on the a posteriori values. For
our example we will choose three kinds of information conditions as shown in Table
4.2.2. The data presented in Table 4.2.2 represents the objective information which
the decision maker holds a priori on the states Wl thru W3. For condition one, data
entry Wl’ the decision maker indicates that it has occurred and the remaining data
has not. Condition two represents data which has occurred in a decreasing order.
In condition three, the occurrence of W1 thru W3 is ill-defined such that the
decision maker has assigned a value of .5 indicating that all events are weighted
equally. Results of the learning process on r;;xi are discussed and shown below. The
decision maker was presented the information as shown in Tables 4.2.1 and 4.2.2

n
against which the learning rule, equations 4.2.1 and 4.2.2, was iterated until fxi

n
converged.The reason for this training period was to determine some initial in

values given three different types of input information about the process. That is,
if the decision maker is given some deterministic information, as in condition one,
event one, then we should expect the ?xi value associated with that event to be
high as shown in Figure 4.2.3. When the information is fuzzy then as expected the
curves will converge to a final value more slowly than for the deterministic case.
This can be seen in Figure 4.2.4. The results of iterating the learning rule are
shown in Figures 4.2.3 through 4.2.5. When the decision maker is presented
information which is fuzzy, it will take longer for the process to converge to a
steady state as shown in Figure 4.2.4. This can be observed by comparing the
results as shown in Figures 4.2.3 and 4.2.4. In particular, even after 11 iterations,
state lmax (shown in Figure 4.2.4) is still converging to its steady state value of .6

as shown in Figure 4.2.3. If the information is so fuzzy that the best we can do is
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In(y)

Conditions
1 1 0 O

2 |.8 b6 S

3 1.5 S5 .5

Objective Information

Table 4.2.2
to assume a constant, across all y's, the process will coverge to the constant value.
This is demonstrated in Figure 4.2.5. As we can see and intuitively expect, if the
information is known then a solution should be readily obtained. However, if the
information is vague, as shown in Figure 4.2.4, then the convergence time to a
solution will be longer. Finally, if the information is very vague, then the results
will become vague as shown in Figure 4.2.5. In the above calculations A was
assumed to be .5 . The effect A has on the entire process is on the rate of
convergence; that is A acts like a damping term. Another point to be made is
that when In(y) and fqui values are large the convergence is rapid. This means that
the event measured by that parameter has occurred. This is shown by the
parameter 12 in Figure 4.2.3. The above process works well if we have good
numerical values to give to the decision maker. However, fuzzy set theory is based
upon a subjective input made by humans and humans do not use numbers effectively
when describing a process. They tend to use adjectival descriptions which
somehow humans seem to understand better than numerical descriptions. Thus, if

we use linguistic descriptive values as a means of input, then a fuzzy measure can
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be easily described in terms which humans can understand. A detailed discussion of
descriptive linguistic or syntactical pattern recognition can be found in [ 19,54] .
The linguistic descriptive terms used in this paper are based upon the following
criterion. The descriptive terms used must allow for the subjective rating of each
term as it relates to the problem under investigation. For example, in our problem
this applies to the subjective rating of importance or unimportance of the
information terms 12’lmax’ and & . Thus, the linguistic descriptive terms used in
this paper relate the importance of the information terms to the detection of edges
and corners. The linguistic terms are defined as
(a)l2 important = 12i

(b) Imax less important = Imaxlj
and

(c) slope important = si.
A linguistic descriptive membership function (shown in Figure 4.2.6) was generated
in order to define the membership values. The shape of this membership function
was chosen such that it would allow for a smooth continuous transition from one
membership value to the next and at the same time it would fall off or rise rapidly
on either side of w(x) = .5. Thus, the membership function w (x) for each linguistic

descriptive term can be determined by using equation 4.2.8 which can be written as

~y2
K(x=a.") 0’ <x <

W) = a2 4.2.8
and
wlxx0, 0<x <a’.

Graphically equation 4.2.8. can be shawn as
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1.0

wilx)

.

Membership Function of Equation 4.2.8
Figure 4.2.6
For our problem we will define "important" as having a membership value of .5 and
"less important" as having a membership value of .1. These definitions will then
define k and o~ in equation 4.2.8 as .04938 and .5 respectively. Based upon Zadeh's

[59] work we will define the following linguistic variables for our problem as

(a) much/very X = (X)2 4.2.9
(b) medium X = (X)L.5 4.2.10

(c) not X=1(X)=(1-X) 4.2.11
where 71 = not. A
These terms will allow us to subjectively change, during the training period, the a
priori fuzzy density term r\fin. For example, applying the term "very important” to

equation 4.2.8 we obtain

K((x=0")2)2

2Ty i tant = ’
very importan TR ()22

and applying the term "not very important" we have

not very important = 7(very important).
With the above, a human can subjectively vary the results according to some
criterion which is germane to the particular problem under investigation.

Bayes fuzzy model as used in this problem will generate three outputs per
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interval, I (12’lmax’ 8), from which we must determine the best possible solution.

It has been experimentally determined that the fuzzy disjunctive sum

gperation will yield a term which best describes the interval's characteristics. The

disjunctive sum can be written as follows:

n,
Ca = (IZA-!max) v (lZAlmax) 4.2.12
¢ A Y

L=(C N 9V I(C, Ne) 4.2.13

where 1o, lmax’ and 0 are the complements of their respective parameters. By
using equation 4.2.13 we find a term which represents the characteristics of
n N

interval In. This value Cn’ along with the value Cn-l from interval In.1, will be
used in equation 4.2.14

N A n N A n

D= (Cn gn_l) \ (_(;n Cn-l) 4.2.14

to determine if a corner exists between these two intervals. The determination is
made by comparing D against an experimentally derived threshold value Ei to see if

the criterion has been satisfied. The results of the threshold value have been

summarized in Figure 4.2.7 for one and two or more intervals respectively.

1.0

two or more intervals
i upper limit

one interval upper limit

Y

1.0 P
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Piecewise Decision Space
Figure 4.2.7

4.3 Matrix Criterion

As discussed in Chapter II, we are interested in solving the system equation
$C = b, equation 2.1.1, as efficiently as possible. "Efficiently" as used in this

study has two meanings; they are

(1) efficient computationally

(2) and efficient solutions, i.e. optimum or near optimum.
The above two meanings are areas which have received a great deal of attention
[16, 19, 39, 54 lby investigatars in the field of pattern recognition. In Chapter II we
discussed ways of reducing a system matrix to a diagonally dominant matrix.
These methods work reasonably well on one set of data. However, given a data

space as defined for this problem, there exist two methods for enbancing the
solution(s) to equation 2.1.1. First, for a solution on an interval In, we know that
all input data will be spaced one unit apart in the dominant cbordinate direction.
Knowing this fact we can quickly reduce the C matrix, in equation 2.1.1, to a
diagonally dominant matrix as discussed in Chapter II. Another method of
accomplishing this is to reduce the C matrix by using a multiplying factor after
transforming the data into the -1 to 1 space. A discussion on the determination of
the multiplying factor § will be presented in Chapter V. This multiplying factor,
once determined, will allow us to compute C+ without actually performing any of
the required matrix operations. For example, given five consecutive input data
points in one coordinate direction and after transformation, the linear C matrix
becomes

50 4.3.1

Multiplying C above by § , the multiplying factor, gives C+ as
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.20 4.3.2
Ct=

0 l4 .
We can verify the results of equation 4.3.2 by using the techniques as discussed
earlier. If the above technique works well on one interval of data, can we find a
method for applying it to n consecutive intervals as shown in Figure 4.3.1?7 The
answer is yes, as discussed below.

We are now interested in forming the sum of two generalized inverse

matrices in order to shorten the computional method of finding the generalized

inverse over two consecutive intervals. That is to find

Optimum Curve Y3 was Found, Given Y and Y2

Figure 4.3.1

+ +
C3 = (Cl + CZ) . 4.3.3
Before we show the proof of equation 4.3.3 for the generalized inverse case, we

will start by first considering only square invertible matrices. We know from
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matrix theory how to find the inverse of a matrix and, if given two nonsingular
matrices, we can find the inverse of C1C2 as C2-1C;-1l. The problem we are
interested in is to find C3'l, where C3'l =(Cy + Cz)‘l, in terms of C1-1 because

we have already computed Cj-1.

We start by defining C}'l as

-1 101
) -1+a 1 Czcl

where a = tr C2C1'1 and we are assumming that the inverse exists. Equation 4.3.4

-1 -1

C;l=(Cy+ Gt =y 4.3.4
is known as the Sherman-Morrison Equation[12 ] If we consider a square matrix H
of rank one, then all eigenvalues, except possibly one, are zero. We know from
matrix theory that the sum of the eigenvalues is the trace. Thus for such a matrix,
H, the eigenvalue is tr H. A matrix of rank one can be formed from two nonzero
column vectors b and d of the same dimension. The matrix H - dbT has rank one
because b and d were given as having rank one. From [23]a matrix H of rank one
is composed of nonzero vectors b and d such that H=dbT. Now if we are given
any square matrix C and a square matrix H, as defined above, then we can define
HCH as

HCH=db'edb' =@ db' =0 H 4.3.5
where

= bilinear form chd.

Thus, we can write the matrix Cj + H as

C.+H=U+ Hcl‘l)cl 4.3.8

1
and, since Cj is nonsingular, the matrix HCl'1 will have a rank of one. One
eigenvalue of | + HCl'l is 1+ tr HCl'l and the remaining eigenvalues are one.
The matrix Cy + H is nonsingular if and only if tr HC-1 # -1.

In order to write the right hand side of equation 4.3.3 it is convenient to

consider a function f(x). Let f(x)be differentiable on an interval a < X <b. Using
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the law of the mean 29 , we can define an f(x) as

f(x) = f(a)+ F(2bX 4.3.9
where

0< Q< 1.
If we now let f(x) = (x + b)}1, then we can write

(x +byL=b1 -1 +0 )2 Ixp! 4.3.10
where a = 0.
Equation 4.3.10 can be rewritten as

(x + byl =bt -7 p Ixb7L 4.3.11
where

=01+ Q)-z.

Now if we identify b with A and x with H we get

(H+cy ! = ¢, -rc;He, 4.3.12°

If equation 4.3.12 is the inverse of H + C], then their product must be the identity
matrix [. To prove this, start by forming the product as
-1 -1 -1 1 -1
(H+CXC,™ - 1C;THC ™) +HC,
HCT 4.3.13

=1 -THCl

-1
-THCl

Solving the right hand side of equation 4.3.13 for gives
tHC; - Hey s T M = 0 4.3.14
From equation 4.3.7 we find (HCZ'l)2 = QHC, and by substituting this into equation

4.3.14 we get

(T+ L+ HC ! =0 4.3.15

Solving equation 4.3.15 for T we find

T-1+1tQ =0,

or =

R e

ar
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1+trHC 4.3.16
We have now shown that given two matrices, one square and the other of rank one,
the inverse of there sum can be found by equation 4.3.4. What we will show next is
that, given two square nonsingular matrices of rank r, equation 4.3.4 will still hold.
To start, assume that matrix C2 in equation 4.3.4 is of rank r, which can be writt-en
as
C2=H1+H2+......+Hr 4.3.17
where each Hj, 1 < i < Hy, has rank one [23]. Now equation 4.3.4 can be solved
recursively but before we can do that we must show that Cp, which now is written
as equation 4.3.17, is nonsingular. As given above, the eigenvalue of HC-1 # 1
allows Cy + C2 = (I + CzCl'l) Cj to be nonsingular. If we let Z be a nonsingular
matrix where J = Z-1 (C2C1-1)Z, this is the Jordan form of CoC1-1; and if J = jl +
Jo+eennnn + J_r where the kth row of Ji is the kth row of J, then the remaining
rows of jk are zero. This gives the matrix Jj a rank of one which then gives I + J_l
+ J_z +eesaat J—k as a nonsingular matrix for k = 1,2,. . . . . ,+ Now we can write

1= - = =
GJ+2 sz:l=(1+:11+32+.....+Jk)z)cl

=C1+Z JZC1+.....+Z chl

which is nonsingular for k=1,. . . . .,r. Since z-likzcl has a rank of one, we can
let Cp = Z'lj|'<ZCl. The above can now be stated as

"Given two square matrices, Cj and C2, we can form a
matrix C3‘1 as

-1 S R R I | -
Cy =(Cy+Cy) " =C, 7 - 7353 C; C,Cy

1

where

1

1+tr‘C2C1—1 -

That is, the inverse of the sum of two nonsingular matrices can be found by a

a-=

straight forward solution as given above. Now, returning to the generalized inverse
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case, the proof of equation 4.3.4 depends upon the existence of the product of

(AB) = B+A+ 4.3.18
because according to Greville [ 7 ] this situation does not always exist. Greville
shows in [7] a proof which says that the conditions R(A*AB)< R(B) and R(BB*A*) <
R(A*) must exist in order for equation 4.3.18 to hold where * denotes the
conjugate transpose of A. R(B) and R(A*) denote the range of B and A*. Also, the
following equations must be satisfied before equation 4.3.18 is true:

1)A+AB(AB}* = B(AB)*

2)BB+A*¥AB = A*AB
Or, stated another way, the rank of B*A+ must equal the rank of AB which
means that B*tA+ e AB. That is if rank x = rank A, then R(xA) = R(x) because these
two subspaces are identical if, and only if, they have the same dimensions. We
know that the rank of any matrix is the dimension of its range [23]. Therefore we
can write R(xA) ©R(x). Also, nullity of any matrix is the number of columns minus
the rank [23]. So N(A) = N(xA) if, and only if, A and Ax have the same null space.
They do because they have the same rank, i.e. the same number of columns. By
applying Penrose equations [7] it can be demonstrated that equation 4.3.18 daes
exist. Thus, if these conditions are satisfied, we can then write equation 4.3.4 as

+ 1

+ + + +
C3" = (Cy +C,) =C" -5 C;"CCy " 4.3.19



CHAPTER V

ALGORITHM

5.0 Introduction

Up to this point, we have discussed the theory behind approximating contours
by using linear and/or quadratic polynomials. Also, as mentioned earlier, we are
concerned with the closeness of fit of polynomials at corners (breakpoints) within a
given interval or between intervals. In this chapter we will present an algorithm
which uses the fuzzy Bayes model to ascertain if a corner exists within an interval
Ih. Results of the algorithm are presented and are compared to results from other

algorithms of the same class on the same set of data. Before starting our
discussion, we will establish the conditions/constraints of the input data and the
constraints of the approximating polynomials at breakpoints. Before the algorithm
will process the data; all data presented to the algorithm must be equally spaced in
a given coordinate direction throughout the entire data space. For example, if the
input data is a time varying signal, then the time coordinate data must be equally
spaced. If the input data is a 2-dimensional figure, then either the x or y-
coordinate data must have uniform spacing. The second constraint on the algorithm
is that the ending point for interval In is the starting point for interval In+1; that is
Inj n I(n+l)j # 0. This constraint will give an approximation which is continuous at
either a breakpoint or at the end of an interval. This condition is demonstrated in
Figure 5.0.1. This last constraint is significant because now a contour or boundary
of an object is closed. Pavlidis[39] uses a symmetrical constraint which does not
give a continuous representation of a contour; instead gaps can exist within the

object's describing contour. For example, in Figure 5.0.2 we see a symmetrical

condition and note the gap in the contour. The constraints which Pavlidis uses are

69
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Y
' ' + >
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Continuous Condition in an Interval
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A
Y
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a a' b X

Continuous Condition at a Breakpoint
(b)
Figure 5.0.1
valid for linear polynomial approximation, but the overall boundary description is
not very good because of these gaps. In our investigation we are concerned with
good boundary descriptions but we must bear in mind the computational time
penatly one pays if good contour description is desired. A discussion on

computational times will be given in Chapter VI. In addition to the above
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Symmertical Constraint Can Give a Gap
Figure 5.0.2

conditions, the algorithm being presented will also use a quadratic polynomial to
aid in contour description. For example, in Figure 5.0.2 the algorithm would use
two quadratics to describe the given curve as shown in Figure 5.0.3. The
difference between our algorithm, which uses linear and quadratic approximating
polynomials, and algorithms which use linear approximating polynomials is that we
could have more describing polynomials per object. However, this is not
necessarily true for all cases because quadratic polynomials will give a certain
amount of data compaction on describing an object's boundary.

5.1 Matrix Operations

In Chapter IV, a method was presented for computing the sum of two
generalized inverse matrices. It was noted that one of the major drawbacks with
the computation of equation 4.3.19 was the time required to obtain a final solution
and, as discussed in Chapter I, this is one of the major problem areas of pattern
recognition. In order to reduce the above matrix computional time we will now
show a unique scalar multiplying coefficient which will yield the left side of
equation 4.3.19. If we rewrite equation 4.3.19 as

A+

At + +
1 =A-TABAS, 5.1.1
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Quadratic Fit of the Curve Given in Figure 5.0.2

Figure 5.0.3

1

where Bi represents A2 and 1"1.= W

left side of equation 5.1.1 can be found by using a scalar multiplying term. That is

, then a result can be stated such that the

Ai++l can now be found by the expression

+ + +
Al =8 (A T+ A 5.1.2

where A’} =0 for i = 0.
Theorem 5.1: Given a set, ->:<+, of ordered data points which are equally
spaced (in distance between each point) along an axis, as shown in Figure 5.1.1a,
and if E<+ is partitioned into ordered subsets xi< g+,as shown in Figure 5.1.1b, then

a set of scalar multiplying 51 values can be determined as

8; = AL A0+ ASA 5.1.3

1 i+l 'i-1
+ —
Such that Ai+l _61- (A

l)'
i-1+ + Ai+) where X* represents the set of all natural
numbers. Now we can determine the generalized inverse matrix for X U xj by

equation 5.1.1. Computing the generalized inverse matrix A§+l by using the

Gaussian elimination method on intervals xj U X Uxi+l , where interval xj U X; has

already been found, is not a very efficient process. That is, the matrix
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il = {21,22,23}, Xy = {23,24,25} s s e e
n- {Zn-Z’Zn-l’Zn }

Ordered Data and Sets
Figure 5.1.1
computational time involved when using the Gaussian elimination method is too
large when compared to scalar multiplication. The scalar multiplying term 61. , @s
given in equation 5.1.3, can be determined a priori and stored within the algorithm.
The right side of equation 5.1.1 can be computed without having to perform any
matrix operations other than the operations indicated by equation 5.1.2. Writing
the new and short form of equation 5.1.1 we have
RS 4=, (AT +AD). 5.1.4

Appendix D contains a detailed example showing the results of equations 5.1.1 and

5.1.4. By preprocessing we can determine as many 61-terms as desired. These values

can then be stored in a look up table within the contour's algorithm. When the
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contour algorithm determines that two intervals can be combined,(this is one form
of data compaction) it will do so by choosing the appropriate 61. value and it will
then perform the calculations as indicated by equation 5.1.4. It must be noted that
we refer to the combining of two intervals in which the first interval, represented
by A;'_l in equation 5.1.4, could be composed of several combined intervals. That
is a; © A+i-1 where ai(i=l,.....,n) represents intervals which are subsets of Ai+-l'
Table 5.1.1 contains the set of 51- values used in this study for contour
approximating polynomials after the input data has been transformed onto the -1 to
1 interval. The table contains two sets of values; one for the linear case and one
for the quadratic case. Since all input interval data has been normalized between -
1 and 1, the resulting matrices are diagonally dominant as discussed earlier. It
should be pointed out that these Gi values will work for any object/signal as long
as the conditions as stated in this paper are satisfied. The  values contained in
Table 5.1.1, which have been plotted on a semi-logarithmic scale in Figure 5.1.2,
show a tendency to approach zero as the number of merged intervals approaches a
large number, that is, in the limit as n=> « , 51-"* 0. But large values of n, for
instance those greater than 10, are not practical because real world data is not
well behaved. However, if the data is well behaved, then the number of points per
interval should be increased to keep the number of 61- terms small. This increase in
points per interval will not change the G_ivalues as long as the number of points per
interval remains constant. Appendix D shows the calculations of some of the values
which are contained in Table 5.1.1.

5.2 Fuzzy Decision Values

Earlier we discussed using a fuzzy Bayes' model as an aid in determining if we
have encountered a corner/breakpoint within an interval. We also discussed the
subjective importance of certain parameters whose values contain significant

information on the data contained within the interval In' We defined these
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information parameters as lp, 1. » and slope ( 8 ). We will now present the effect

X

Matrix element
Position multiplying

coefficients

Intervals
Merged
11 922

1 2777 3333

2 .1282 .1648

3 .0735 .0980

4 0476 .0649

5 .0333 0461

6 0246 0344

L.inear Case

(a)



Matrix element

Position multiplying

coefficients
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Intervals
merged
811 8137831 22 33

1 2629 | .3030 | .3333 | .3636
2 1199 .1468 | .1648 | .1888
3 .0685| .0866 | .0980 | .1155
4 .0442| 0572 | .0649 | .0780
5 .0309 | .0405 | .0461 | .0561
6 .0228 | .0302 | .0344 | .0423

Quadratic Case

(b)

Multiplying Coefficients

Table 5.1.1
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Figure 5.1.2
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of various linguistic descriptive values have on the algorithm's ability to detect a
corner. The test data presented to the algorithm consisted of two intervals, each
containing five data points. The first interval was a straight line and, in all cases
considered below, the S/N = 0. The second interval contained data which started as
a straight line, 12 = lmax = 8 =0, and was varied so that a breakpoint was observed
at Inr n I(n+l)r where r represents the data point location within an interval. The
results of the second interval for these test cases are shown in Table 5.2.1 where
we can observe the effect the linguistic descriptive values have on the outcome.
The linquistic descriptive terms used in this study are shown below for both the
linear and quadratic approximations. They are defined as:

LI = large important

LS = large small

LVI = large very important

LMI = large medium important

- LMS = large rnedium small

LNMI = large not medium important.
Further, the numerical values for the above linguistic terms are defined on the [0,1 ]
interval with the subintervals defined as ranging over the following:

Small=0to .3

Medium = .4 to .6

large = .7 to 1.0.
The breakpoints introduced between intervals Il and 12 in the above Table have
angular differences of 00,300, and 45° for test cases 1,2, and 3 respectively. That
is, the slope for interval I2 was varied in order to cause a breakpoint to appear at
the intersection of the intervals I; and I. The results shown for test case number

one in Tables 5.2.1 and 5.2.2 are also the same as the results for interval Il.

Because of the non-existence of a breakpoint at Il n 12. For the remaining test



Test

Cases 1 2 3
12 0 0153
lmax 0 0219 0
6 0 3346 .5
oF 0 .900 .5
ET 0 984 0o

Linguistic Descriptive Values:

12=9 = LI and

Inax = LS
(a)
Test
Cases 1 2 3
12 0 015
| 0 021
max
3] 0 334 .5
P; 0 857 499
ET ] 984 0*

Linguistic Descriptive Values:

12 = 8 = LMI and

lmax = LMS

(e)

Test

Cases 1 2 3
12 0 015
lmax 0 021
0 1] 334 ")
P 0 665 499
ET 0 984 ox*

Linguistic Descriptive Values:

12 =0 = LVI and

lmax = LNVS
(b)
Test
Cases 1 2 3
12 0 015
| 0 021
max
§) 0 334 .5
P; 0 .90 .818
ET 0 98 ]

L_inguistic Descriptive Values:
I, = 9 = LNMI and

lhax = LS

(d)
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*Did not merge intervals I and Ipe Thus, ET represents the error over the

last interval, i.e. 12.
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Linear Approximation Case
Table 5.2.1

cases the results of 12,1 6 ,and ep shown in the tables are for interval IZ' The

max’
ET term represents the computed error for the merged intervals Il and I, except
where noted. The key term in these tables is P; for the following two reasons:
first, we compute |D1-" i1 Iand if this difference is less than the largest linguistic
value then a merging is possible; and second, the difference is substituted into
equation 4.1.4 so that an upper error bound can be established. Since the S/N = 0
the initial error term, ED’ in equation 4.1.4 was set equal to zero. Note that if a
merge fails then the resulting ET is for the last interval, which in this example is
interval IZ' A further interpretation of the results as presented in Table 5.2.1 is as
follows. If for example a corner/breakpoint of significance is defined to be greater
than 50 degrees, when measured from the horizontal, then all of the test cases as
given in Table 5.2.1 with there associated linguistic descriptive values are
acceptable. That is, given the linguistic terms for the various test conditions, the
resulting Py values are less than the corner/breakpoint threshold values derived
from the linguistic descriptive equation 4.2.8. Or stated differently, corners which
are less than 50 degrees are considered to be insignificant(not important). The
corners which are less than 50 degrees do not contain any significant amount of
information about the object's contour and therefore the object's contour over fhat
interval will be approximated by a single polynomial. However, if a corner is
defined to be 400, or greater, then the linguistic terms given in Table 5.2.1 a, b,
and c will indicate the absence of a corner. That is,for the linguistic values as
given in Table 5.2.1 the resulting P4 values must be greater than .6 for merging to
occur. Observe that this is true for the conditions given in Table 5.2.1 a,b,c, but
not d because of the linguistic values used and thus the resulting P; failed the test

i.e. p_ii w the significant linguistic descriptive value. These results occur because



Test

Cases 1 2 3

12 0 .68 .88
lmax 0 62 .69
6 8 9.9 6.5
Di 0 .09 09
ET 1] 1.62 1.16

Linguistic Descriptive values:

l2 =8=_LI and
lmax =L5
(a)
Test
Cases 1 2 3
12 0 .68 .89
1 0 .62 .69
max
§) 8 7.7 6.5
Py 0 .85 14
E.r 1] 1.61 1.164

Linguistic Descriptive values:
12 = 0= LMS and
lmax =LMS

(c)

Test
Cases 1 2 3
12 0 .68 .89
lmax 0 62 .69
) 8 7.7 6.5
i 0 -.8 -.8
ET 0 .68% .B8*

Linguistice Descriptive values:

l, =6 =LVl and

lmax = LNVS
(b)
Test
Cases 1 2 3
12 0 .68 .89
I 0 62 .69
max
&) 8 7.7 6.5
03 0 .9 .09
ET 0 1.6 1.16

Linguistic Descriptive values:
I, = 0 = LNMI and
Imax = LS

(d)
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*Did not merge intervals Il and 12. Thus, ET represents the error over the

last interval,i.e. Iz.
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Quadratic Approximation Case
Table 5.2.2

the corners/breakpoints are not properly detected by the 1 . term as discussed in
Chapter IV. Table 5.2.1d shows the effect of a poor selection of linguistic
descriptive terms for corner/breakpoint detection. For the quadratic case we find
that the linguistic terms as given above give good results as can be seen in Table
5.2.2. The quadratic test case was composed of two intervals in which the first
interval was held constant and the second was varied in order to cause a breakpoint
at Inrn I(n+l)r‘ Also, observe that in general the linguistic descriptive terms for
the quadratic case are lower than for the linear case. This fact is shown in Table
5.2.2 b test case 3 where the algorithm did not merge the intervals because of a
stringent corner requirement. The lower linguistic descriptive values for the
quadratic approximation can be attributed to the fact that there are more
describing terms for quadratic polynomials than for linear polynomials.

From the above discussion we can draw the following conclusion about the
merging of intervals for data compaction. If good edge and contour detection is
desired then higher linguistic values are required for the linear case than for the
quadratic case where the values can be a little lower. The converse of the last
statement is also true. For data compaction, the difference between pi-l and pn
must be less than or equal to the W values as determined by equation 4.2.8. The
conditions as to when to merge and when not to merge intervals In and In+l are
represented in Figure 5.2.1. As shown in Figure 5.2.1, if we change the linguistic
value then we get a corresponding shift, as expected, in the allowed merging
region. The allowable merging region is determined by forming the difference
between 01__1and P; and comparing this value aganist the W value as computed in

equation 4.2.8. If the difference is less than or equal to W the algorithm will then
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No
Merging
Region

Merging
Region

No
Merging
Region

Merging Regions
Figure 5.2.1
merge intervals In and In—l' Figure 5.2.1 applies for both the linear and quadratic

cases.

5.3 Error Threshold

The error criterion as presented in Chapter IV, equation 4.1.7, is dependent
upon several values. The most critical one is the initial threshold term because
two of the terms in equation 4.1.4 are dependent upon that value. The penalty for
an initial value which is too large is poor edge detection and, conversely, if the
initial threshold is too small, the algorithm will take a considerable amount of time
to process the data . This is normally undesirable. Therefore, we must be careful in
our selection of an initial error threshold value . The threshold constraint across
intervals In and In+l for polynomial approximation can be stated in the following
definition.

Definition 5.3.1:

Let In and In+1 be two contiguous intervals such that the maximum error of
approximation on each interval does not exceed Ei' Then the maximum error on InU
In+l is bounded from above by

E.=E._,+p. (S/N) + &P
i Ti=1 "4
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I\
1.0 ~ 0s
~——=E.=E _; 0{S/N)+e"]
E. {Upper error bound for I
|E1 | merged intervals. }
;
e~ E. =E, ; #6/N)+ &P
i-1
{Upper error bound for
one interval. }
$ -
1.0
P
Error Threshold for One and n Intervals
Figure 5.3.1
E= €, +PHS/N)+ e *P1 . 5.3.1

Equation 5.3.1, which is the same as equation 4.1.4, defines the maximum allowable
upper error bound which permits the merging of intervals In and I ;. Figure 5.3.1
shows the upper error bound for one interval and for In merged intervals. The
second term in equation 5.3.1 will move the curves either up or down but it will not
change the shape of these curves.
5.4 Algorithm

The algorithm developed for this study was motivated by Albano [4]and
Pavlidis [39 ] where speed of execution and minimum amount of required storage
are of importance. We will defer the discussion on speed of execution until
Chapter VI. In the following sequence we will provide a discussion on the
algorithm's processing scheme and will show some results against two different
types of input patterns. Pavlidis[39 Mdiscusses the advantages and disadvantages of
splitting and merging algorithms used for contour approximations. If the split-and-
merge techniques are implemented separately then the developed élgorithms will

not produce the best contour descriptions, nor can data compaction be achieved.
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However, if these two techniques are combined [ 4,39] , then it is passible to
achieve good contour descriptions and data compaction. The algorithm considered
in this study is of the split-and-merge type with some significant differences over
past algorithms of the same class. The significant differences are:
(1) two small input buffers instead of one large buffer,
(2) addition of fuzzy corner descriptions, and
(3) shorter matrix computations then in the previous algorithms.
The algorithm was designed to have small input buffers and thus they do not permit
the storage of all the input data. In a real time signal processing situation, the a
priori storage requirements are unknown; thus we cannot design a system to store
all the input data. The algorithm was designed to process the input signal's data in
real time with a minimum amount of storage.
The following is a discussion of how the algorithm works.
Algorithm: Fuzzy split-and-merge approximation algorithm.
Input : Boundary or contour points ><i and Yi’ i=1,250000 . P
Output: Segmented piecewise polynomial approximation of the
given object.
Step 1: Fill a buffer with np input data points and start processing
points where n < np. First check to see if eiF_'i for the
linear case. If it isn't, then try a quadratic fit and, if
this check fails, then split N in half. Repeat the linear and
quadratic approximations until the test e _<_Ei does not
fail. The algorithm will sense the N input data points to
determine if they are perpendicular to the primary
coordinate axis.The x-axis was chosen as the primary
coordinate for this study. If such a determination is made,

then a 90° data rotation is performed on the N points
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before processing continues.
Step 2: Process the next n points according to Step 1.
Step 3: Compute and compare fuzzy value p over intervals In

and 1 and if p < w then merge these intervals.

n+l
Step 4: Compute the optimum piecewise polynomial approximation
for merging intervals I and Inere
Step 5: Return to Step 1 if np < Y. Otherwise return to Step 2 and
continue processing. If np = 1, terminate the processing.
The following is a detailed discussion on each of the above steps of the algorithm.

Remarks: In Step 1 the buffer size, np, was set to 5 and the interval, ,to5
although they could have been set to any value as longas n < np. If interval In
fails the error test and must be split,then the next interval, In+l , will start with
the last point of the completed interval In' After the processing of Step 1 is
completed, the algorithm then proceeds to Step 3. In Step 3 the fuzzy decision
values for interval In are computed and compared against the values from interval
In-l' If the computed fuzzy values from intervals In and In-l pass the decision
threshold test, the processing continues to Step 4. Otherwise it returns to Step 2.

In Step 4, the computation for the linear or quadratic optimum approximation
across intervals I and I _; is accomplished. Note that interval [ _; is the running
polynomial approximation over n contiguous intervals which have been successfully
merged.

Step 5 returns to Step 1 or Step 2 to continue processing, or it terminates the
algorithm if np = ). The above steps are graphically represented in Figure 5.4.1
and, as can be seen, the algorithm is quite simple and will not iterate on the data
space like other algorithms of the same class.

We should emphasize that the above algorithm has two objectives. First it

must find a local approximating polynomial on a small subset of the input space
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which satisfies the error threshold as discussed earlier. Second it must determine
if a global approximating polynomial(s), which passes the error threshold for
multiple intervals, is possible.

Theorem 5.4: The algorithm, as discussed, will terminate after local and
global error thresholds are reached and all the input data has been processed.

Plausibility argument for Theorem 5.4: The error threshold criterion will
always be met because, after a sufficient number of split operations, the computed
error will become less than the threshold. Observe that the algorithm can fit
either a linear or quadratic polynomial through m points and the smallest number
of points where a good fit can be achieved is three because we can always fit a
quadratic through three points. Once the algorithm has satisfied the error
threshold inequality, it cannot reverse itself. Thus, we see that the algorithm as
given above will terminate. In addition to the above, the algorithm will
continuously process the data, in real time, by using small aggregates of the input
data. This is because of the input buffer size. The algorithm will find the optimum
solution(s) without the requirement of storing all the data .This is because of its
"local fitting" feature.

The algorithm has been tested on several different types of one and two-
dimensional data sets with considerable success. This particular algorithm was
implemented in Fortran V on an Interdata 7/32 digital computer. Data used to test
the algorithm was obtained from [39]as shown in Figures 5.4.2, 5.4.3 and some
synthetically generated objects as shown in Appendix C. Figure 5.4.4 shows the
results of the algorithm's ability to process an object, in this case a cell, as shown
in Figure 5.4.2. It can be observed that the algorithm will give an excellent
piecewise polynomial description of the object's contour. Further, oabserve that
when the data becomes perpendicular to the primary axis the algorithm will detect

this and process accordingly. Figure 5.4.5, which is an EKG signal as shown in
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Input Point

Number

1-5

5-17
17-21
21-25
25-29
29-33
33.37
37-41
41-45
45-50
50-55
55-59
55-63
63-67
67-71
71-75
75-79
79-83
83-91
91-95
95-99
96-100
100-105
105-109
109-113
113-117
117-121
118-122

Describing Polynomial

4.0
-.2315X + 5.414
A764Y +17.411

= 5.999

8X - 6.2
699X - 4.4
1.5X - 24,5
J99Y + 24.8
J199Y + 25.0
-478X + 41,77
.299Y + 17.89
1.346X - 10.76
SX + 7.6

17.0

-.1764Y + 16.411
A4411X + 14,73
1.038X + 4.923

= -.199Y + 24.199

Y =-333X + 36.06

= .5999X + 26.2

1.56X + 20.81
2.0X + 19.00
A99Y - 2.199
-1.0X + 22.0
-.199Y + 9.599
1.176X + 3.176
911X + 4.794

= 1.562X + 3.50

Cell Describing Polynomials

(a)
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Input Point Describing Polynomial

Number

1-5 Y = .25X - 2.39

5-9 Y = .599X - 4.59

9-13 Y = .899X - 19.79
13-17 Y = .783X + 17.30
17-29 Y = .03X - 8.18
29-33 Y = .30X2 - 34.97X + 1002.02
33.35 Y = 6.75X - 425.16
35-37 Y = -1.0X2 + 145.0X - 5202.0
37-39 Y = -.99X2 4 143.99X - 5129.89
39-41 Y = -.5X2 + 65X - 2014
41-43 Y = 1.99XZ - 331.99X + 13745.92
43-45 Y = 1.99X - 197.99
50-55 Y = .29X - 39.19
55-57 Y = .25X - 33.833
57-59 = -.49%2 4 114.99X - 6613.90
59-63 = -.05X + 3.8
63-67 = .11X2 - 27.22X + 1726.57
67-75 = .22X - 31.03
75-79 Y = .16X2 - 48.50X + 3660.85
79-83 Y = .29X - 41.8
83-87 Y = J09X2 - 29.54X + 2452.46
87-100 Y = 04X + 7.0
101-113 = -.59X + 129.10
113-117 = .1X - 26.8
117-121 Y = -.319

EKG Describing Polynomials

(b)

Describing Polynaomials
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Table 5.4.1
Figure 5.4.3, demonstrates the algorithm's ability to use both linear and quadratic
approximations on a given data set. Table 5.4.1 gives the set of linear piecewise
describing polynomials for Figures 5.4.4 and 5.4.5.

5.5 Other Algorithms

We will now compare our algorithm to other algorithms of the same class and
will note the differences in both techniques. As discussed earlier, our algorithm
does not iterate over the given data space, but the algorithms presented in[4,39 |
do iterate over the given data space. This is one major difference between these
algorithms. Another major difference is that the latter algorithms use either a
linear piecewise approximation or approximating polynomials of order three or
higher. In some cases higher order approximating polynomials are justified, for
example in automobile body design [45], but if a fast solution is desired then the
use of such approximating polynomials is not yet practical. Our algorithm uses a
combination of both the linear and quadratic approximating polynomals for
boundary detection and data compaction. Thus, we are not restricted to linear
approximations nor are we confined to the complex higher order mathematical
approximating polynomials.

Figure 5.5.1 shows the results of Pavlidis' split-and-merge algorithm [39] and,
when this is compared to Figure 5.4.4, we can observe a distinct improvement in
our algorithm's ability to detect and describe boundaries. That is, it can be
observed between these two figures that our algorithm gives a better description of
the object's contour/boundary. In Figure 5.5.1, gaps in the contour can be observed
and a significant amount of contour smoothing has occurred. iHowever in Figure
5.4.4, which is the output from our algorithm, there are no gaps and the smoothing

was greatly minimized.
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CHAPTER VI

COMPUTATIONAL COMPLEXITY

6.0 Introduction

As stated earlier, we are interested in the computational time required to
solve the boundary/contour detection and description problem. The computational
capabilities of the algorithm presented in this paper will be provided in this
chapter. An algorithm's processing capabilities, as presented by computational
complexity theory, are primarily concerned with the time and space requirements.
There are other possible computational measures, such as the number of iterations
required for a solution. Computational complexity theory, which has opened up a
relatively new field in algorithm computational techniques, has been applied to
problems such as the traveling salesman's schedule, the vertex coloring, and
maximum independent sets of vertices in graphs to determine if an optimum
solution exists. Stated another way, the theory is interested in polynomial-time
algorithms which are guaranteed to yield optimum solutions. The above mentioned
problems have been termed NP hard, that is to say, despite the intensive efforts of
many workers, optimum solutions for these problems have not been found.
Furthermore, if such polynomial-time algorithms exist, then this implies, according
to the theory, that algorithms for a much larger class exist [11]. We will not
consider NP problems. Instead we will draw from the theory behind NP
(computationally complex) problems. In our analysis of boundary/contour
algorithms a distinction between the worst case and expected time behavior will be
made. This distinction is made because certain boundary/contour algorithms may
require an enormous amount of processing time on a given data set. From a
practical point of view, since the a priori data set cannot be determined, the

average behavior is the more significant feature of an algorithm's ability to find a
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solution in time.

6.1 General Framework

We will begin by discussing a computational task in general terms. Let K be a
computational problem; that is a series of computational tasks each of which we
can call a procedure of K. A procedure of K is composed of n operations which
are the minimum number required to perform the intended function. Now the K
problem can be formed by K; U K, U.... UK, i=1,.....,m procedures where
each Kj has n operations. In the problem K we are primarly interested in two
parameters. They are time and size, or the amount of memory required. The time
and size required for a computational task depends upon the Ki computational
characteristics. For example, in a Ki searching task there will be time required for
query and for storage. These can be represented respectively as G(N) = log N and
S(N) = N where Q(N) is the query processing time, S(N) the storage processing time
and N equals the number of processing operations [49] . The total time required
for task K, can then be written as T(N) = Q(N) + S(N) or T(N)=1log N + N. Thus, in
order to evaluate computational algorithms of the same class, they must first be
decomposed into tasks of Ki such that the parameters of interest can be easily
evaluated. Within a given algorithm class there may be differences in processing
time and storage because of the method or methods used to solve the particular
task. For example, consider the product of two complex numbers, a + jb and c + jd,
which can be found in either of the following two ways. In the first method the real
part of the product can be formed as X = ac -bd and the imaginary part as Y = ad +
bec, which requires four multiplications, one addition and one subtraction. In the
second method the product can be formed as x = (a + bXc -d), y = ad and z = bc
where the final product is found by computing the real part X = x + y - z and the
imaginary part Y = y + z. This method requires three additions, two subtractions,

and three multiplications. Now it is known that addition and subtraction operations
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on many computing machines take less time than multiplication/division. Thus, the
second method is faster than the first method.
The above discussion was intended to:
(a) bound the following discussion on computations and
(b) suggest a way algorithms can be decomposed for comparison
purposes.

However, it is not the intent in this paper to prove or state conditions on
computational complexity. These and associated items are left to the theory of
computational complexities {17, 491

6.2 Computations of the Algorithm

Polynomial approximation algorithms of the edge/boundary class can be
decomposed into tasks called procedures for computional evaluation. The algorithm
developed in this paper, as stated earlier, uses input data which is uniformly spaced
along the prime coordinate axes. The algorithm as designed has two input buffers
of finite length in which data is initially stored. The size of these buffers was
initially set to the length of the number of data points in an interval. These two
buffers were designed to work like a flip-flop, i.e. after the first buffer has been
filled with data the algorithm starts processing while the second buffer has data
read into it. Then when the processing of data from the first buffer is completed
the algorithm will read the contents from buffer number two while buffer number
one reads more input data. This technique greatly reduces the amount of storage
space required for input data. The input buffer length can be adjusted according to
the object or signal characteristics. For example, if the training data has many
corners or the signal is noisy, the input buffer length could be made smaller and,
conversely, if the signal has few corners or very little noise the input buffer length
could be longer. Futhermore, this technique of adjustable input buffer lengths has

been shown experimentally to reduce the number of splits per interval which can be
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encountered during processing. The process of splitting an interval is

computationally costly, as pointed out in [39], because it requires more
computational time for a solution. At this point the algorithm must find a solution
to equation l.2.6 which requires a solution of equationlz.l.l. The solution to
equation 2.1.1 requires matrix multiplication and inversion. That is the algorithm
must form the matrix C = AVA, then form CY, and finally form D = C™*AT. The
time required to perform a square matrix multiplication is the time to perform n3
multiplications and nz(n-l) additions for a total computational time of T(n) = no +
n2 (n-1)[ 56 |. Thus, the time needed to solve matrix equation 2.1.1 using the
Gaussian elimination method [56]  requires l/3(n3+3n2-n) multiplications and
1/6(2n3+3n2+n) additions for a total of

Tm(n) = (2/30°+(3/2)n%-(1/6)n

= .16667n(4.019n%+8,998n-1) . 6.2.1

The fuzzy decision portion of this algorithm, as presented in Chapter 1V, requires 4
multiplications, 12 comparisons , and 12 additions for a total time of TF(n) =
4m+12g+12c; where m,g, and c equal the computing machine's multipy, add, and
compare times respectively. From the above we see that the total computational
effort required for this algorithm, using standard techniques, is

TT(n) = Tm(n) + TF(n)
or

T(n)= @/30° + (3/20n% - (1/6)n + bm +12g + 12c.  6.2.2
The Tm(n) term in equation 6.2.1 must be recomputed each time a determination is
made that intervals In and I ., can be merged because of the standard matrix
technique employed. Therefore the number of terms required to form the elements
of Ai in equation 2.1.1 will increase, thus requiring more computation time.
However, as pointed out in Chapter V, we can compute A; by using a method

which circumvents a significant amount of the required computation. That is, for a
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2x2 generalized inverse matrix the algorithm requires 2 multiplies and 2 additions
or T2 = 2m + 2g . For a 3x3 generalized inverse matrix we have Tz = 4m + 4g. This
gives the total computational time required, using the shorter matrix method, as
TT(n) = 1 (pm +qg) + I TF(n) 6.2.3
where
I'_l = number of intervals merged
and
p=q which equals 2 for a 2x2 matrix or
3 for a 3x3 matrix.
Also, note that Tm(n) in the above equation has now become a constant term
because therei is no longer a requirement to recompute the elements for the matrix

Ai in equation 2.1.1. For example, given a straight contour in a 2-dimensional space

of 100 points, where the contour is a line parallel to one of the axes, the time
required to process twenty intervals would be

T(n) =20 (2p + 2g) + 20 T(n).
Applying this equation, along with the characteristics of the computer used in this
study, the time required is approximately TT(n) = 7.03 x 10'6 seconds . The actual
measured processing time was TT(n) =7.11x 107 seconds . It can be observed that
the analytical computational time expression gives good results when compared to
the measured values. The time required to process the above 100 point contour by
using the method contained in equation 6.2.1 is

T ()=1T (n)+ PGY
or

T ()= 10.21 x 107 seconds . 6.2.4
Thus, we observe that the method introduced in this paper is indeed shorter when
compared to standard polynomial processing techniques.

6.3 Computations of Other Algorithms
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We will briefly look at other boundary/contour algorithms and compare them
computationally to the algorithm developed in this paper. First it should be pointed
out that for a true comparision all algorithms being compared should be tested
against the same data set and run on the same computer. This is not feasible in
most cases because of time and/or equipment constraints. The comparisons made in
this paper were made using the same data base but due to equipment constraints
we were unable to use the same type of computer. A discussion on the effect of
using two different types of computers and the results are presented below. We
start by comparing the approach given in [39, 42] on the set of data as given by
Figure 5.4.2. Pavlidis and Horowitz [42] showed that the execution time on an IBM
360-91 for a piecewise linear fit of a cell outline was approximately .35 seconds.
Their results are shown in Figure 5.5.1 . By comparison our results are shown in
Figure 5.4.4 which took about 1.2 seconds on a mini-computer. The time
comparison between these two methods can only be approximate because of the
different computers used. However, we can project the mini-computer's execution
time onto the IBM 360-91 by a dividing factor of about 2 to 3. Therefore, we see
that our algorithm is comparable time wise with the algorithm given in [ 39, 42].
One major difference between these two algorithms, given the time as computed
above, is the capability of the algorithm presented in this paper to accurately
describe an object's contour. This can be observed by viewing Figures 5.4.4 and
5.4.5 . Appendix C contains contours of other objects where results are presented
in the form of Figures in which the fuzzy decision space was varied. Figure 5.5.1
contains results which are very similiar to the results of the cell outline as given in
[39]. The execution time for Figure 5.5.1 was .9 seconds. Using the execution
assumptions as given above, we see that the algorithm as given in this paper is
faster than the one given in [39, 42]. Chang and Pavlidis [10] used a fuzzy

characteristic function to determine the angle at each knot in order to decide if



105

adjacent intervals could be approximated by a single higher order polynomial. Their
fuzzy characteristic function depends upon computing the slope between each paint
contained on the contour. Computationally this is expensive because of the large

number of multiplies required for a solution.



CHAPTER VII
CONCLUSIONS and RECOMMENDATIONS

7.0 Introduction

The observed results and areas for future investigation are presented in the
following two sections.
7.1 Conclusions

A new technique has been introduced which can determine the description of
any object's contour by using combinations of linear and quadratic approximating
polynomials. This technique incorporates into an algorithm the use of fuzzy
linguistic descriptors and fuzzy decision making for the detections and descriptions
of object contours. The fuzzy linguistic descriptors allow for dynamic error
threshold adjustment which in turn controls the goodness of an object's contour
description and the associated processing time. A fuzzy decision space was
generated by using a fuzzy Bayes model which produced values on the interval [0,1 ]
. From these fuzzy values a decision was made as to the existence of a breakpoint
within an interval [In-l’ In ] . This new method greatly improved the merging of
intervals for overall object contour descriptions and data compaction. That is,
based upon the output from the fuzzy model, a fuzzy decision was made on whether
a merge of intervals In_1 and In could occur within the computed error threshold.
The fuzzy model was integrated into a polynomial approximation algorithm which
used a combination of piecewise linear and quadratic polynomials to describe
object contours. This technique of using a combination of low order approximating
polynomials to describe contours is new and unique. It is unique for two reasons :
first because it uses a quadratic polynomial for contour approximation, and second
because it uses a combination of approximating polynomials to describe a contour.

This method proved to be highly successful, as shown by this study, in describing a
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contour while keeping the computational complexity to a minimum. Futhermore
with this technique we can describe, up to the optimum mathematical
approximation limit, any contour without using higher order approximating
polynomials and without the associated computational complexity. This scheme
demonstrated that good contour descriptions can be achieved for the linear case if
the fuzzy value is less than .3 and for the quadratic case if the fuzzy value is less
than .35. The quadratic polynomial approximation technique was shown to give a
smoother describing contour than the linear approximation technique.

One of the most important attributes of the fuzzy model, as applied in this
paper, is the admissibility of heuristic inputs. These inputs in the form of linguistic
parameters greatly affect both object description and processing time. Given a set
of linquistic parameters, the algorithm will find the near optimum or optimum
solution with minimal computational time. Near optimum solutions were defined,
in the least squares sense, to be no greater than 2% of the optimum error value.
The fuzzy model improved aobject contour detection when compared to the results
from other algorithms of the same class. Also, the fuzzy model allows for
breakpoint adjustment by using fuzzy linguistic descriptive values which aid in the
control of merging intervals. This method is further enhanced if an interactive
display is used because the object and the approximating contour can be displayed
simultaneously and a judicious selection of the linguistic parameter can then be
made.

It was demonstrated that the computational time required for interval
merging can be reduced by using a unique matrix operation as introduced in this
paper. This method uses a scalar multiplying term along with matrix addition to
produce a new generalized inverse matrix for interval merging. The determination
of the scalar multiplying term can be decided on in advance and then stored in the

algorithm's look up table routine. Using this scheme it was shown that the matrix



108

operations associated with interval merging can be significantly reduced.
Futhermore, the matrix muliplying term did not vary per interval unless the
number of data points per interval varied or the spacing between data points
varied.

The contour detection algorithm as given in this paper can operate on noisy
signals with good results. Also, it was shown that the algorithm was faster in
processing noisy signals than other algorithms of the same class.
same class.

7.2 Recommendations

This research has suggested that more work is required in the area of fuzzy
model development and in the application of these models to the pattern
recognition process. That is, the fuzzy modeling process needs to be refined and
extended to where ill-defined processes can be easily modeled to a level where the
ill-defined process can be defined. Once we understand a particular process we can
continue to investigate the process and(or), refine the model, by using classical
mathematical modeling techniques. Along those lines an investigation into
extending the fuzzy model presented in this paper to higher order approximating
polynomials should be made. In particular the breakpoint adjustment process for
higher order polynomials should be studied when several breakpoints occur within
an interval. Also, this process should be investigated where the computional
complexity is kept to a minimurn. One immediate area for investigation is the
extension of the fuzzy Bayes model's ability to predict the use of a conic
approximating polynomial over I, past intervals where computational complexity is

kept to a minimum.



APPENDIX A

OPTIMUM BREAKPOINT LOCATION

In this appendix the derivation of equations 2.3.2 thru 2.3.5 will be shown.
These equations show the optimum location of breakpoints within an interval where
the absolute values of the pointwise errors from the right and left of a breakpoint
Xy as shown in Figure A.l, are equal in an interval[ X;_19 xi+l] . A partition of[a,b]
is defined as a collection of subintervals which are ordered along an axis as follows
8=Xq<X<eeeenanannn xn_l<xn=b.

Within the subinterval [x; ;,x, ] let f(t) be a continuous differentiable function

which is to be approximated by Lpi(x). We can express the approximating polynomial

as
wi(X) = Coiem(x) + C‘He‘]i toeeens + CmiemiCX)

where
O<m<n.

Here em. ,61 oo ,em_iare orthonormal polynomials on [xi-l’ xi] which satisfy

fbe.(x)e.(x)dx = §,.
a 1 ] 1)

where 045 s the Kronecker delta, over the range [ a,b] . We will use these
orthonormal polynomials in order to simplify the computations, thereby reducing

round-off errors.

A
v
+ ' ' —
2 X1 X i+1 b
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Breakpoint Located At X,
Figure A.l
The following natation will be used within this derivation.
Gi(x) = [em.cx),eﬁ(x), .. ..T.,e .
Ci =[CUi,cli,o e o 8 0 o 0 a,cm,i ]

F. =% f(x) 6 (x)Xx, A.l
1 1
Xi_1

G, = (x BT (x)x, A.2
Lo g
i-1
where
ei(x) is a vector which represents the approximating
polynomial of degree m(m = 1,. . ... ,n-l)on[xi_l,xi i
CIi is the vector of coefficients of the approximating
polynomial on[ x;_1,%;]»
Fi is a vector associated with the actual function,
Gi is the Gram matrix, which is positive definite and
symmetric[13 ],
and
the superscript T denotes the transpose of a vector . The derivation

starts by defining the integral square error equation in the least square polynomial

approximation sense as
= -
E,(C) = ){.‘ [f = ;] dx A3
i=1
and

n
E=1ZE, A3

where f(x) is the actual function and lp1(x) is the approximating polynomial on [Xi-
1% 1+ Using the least squares criterion, the best approximation llii to f is found on

each interval to obtain E. The normal equations corresponding to A.3 can be
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written as

GiCi=Fi, i=1,2,00400,n A4
The minimum error E;, in A.3, is found by taking the partial derivative of E; with
respect to the Ci and setting the expressions equal to zero. In order to dertemine

the results of A.4 we start by expanding the definition A.3 which yields

X s
E. =/ [f2 - 2y.f + w?]dx
iy i i
i-1
X X
=0 fax 20 T ytan v £ (B A.S
-1 X5-1 1 Xj-1 ] ‘
Substituting m
“’1"" =L§OCL1.6l(x) A6
into A.5 gives
X . 2 m X -
E.= [ 1 f%dx-2 £ C,. /7 f(x)0, (x)dx
T x, t=o Ui X, _ L
i-1 i=1
mooom X s
+3¥ ZC .C..J "o (x)0, (x)dx
=0 K=o Li7Ks X1 L K

which can now be differentiated, as defined above, to yield the normal equations.

Since each Gi is the identity matrix A.4 can be solved for the coefficients as

follows
C.=F.
i i
Taking the partial derivatives of the above equation yields
oC. oF .
1= _1
BXK BxK

Substituting these coefficients into A.6 will yield the optimum approximating
polynomial across each of the intervals [xi_l,xi]in the least squares sense. Next we
will take the partial derivatives of E with respect to the xi's and set the results

equal to zero. This process will yield the optimum breakpoint location(s) within the
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given interval[ a,b] . Differentiating Ci with respect to the location xj yields

acC . oF .
e
axj axj A.7

We note the following formulas which will be used in the sequel. These equations

were obtained by differentiating equation A.1 which yields

oF ; X3 . 3
i f(xi) 0 (xi) + f fﬁe dx,
i X .
i-1
E)F_i X 5
8x1._1_ f(xi-‘l) 6 (x_i_,]) + )1('1_11‘5—)(—6 dx .

In the above equations the second term is dependent upon the end points which
evaluate to zero. Since 0 is orthornomal the results of differentiating equation A.2
will yield the identity matrix. Solving equation A.4 for Ci and differentiating with

respect to X, we get

oC . oF,
i i
X . X .
XJ XJ A.8
9 F1.
Substituting the results from 33 into the above equation will give
aC , !
L= -F,=f(x,)6,(x,)
X 3 i i771 774

then substituting Ci = Fi into the above equation yields

aC.
i

oX .
3

= =(C., - f(x.)O0.(x.))
i 7790

8.(x.0e.(x.)
LIRS AR B
where

ei(xi)zci—f(xi)ei(xi)'
Solving for X1 we get

ac .
1
ax

= 61.(x1._1)e_i(x1._1).

i-1

From 12 equation A.3' can be written as



b
E =/
a

Differentiating equation A.9 with respect to xj and substituting x—’and

2

£Ct)°dt T

n
- I F.C,.
i=1 1]

from above will give

dE  _

oX .
]

T
3Fi .
1 X4

.
: it R

-f{x.dec.+f(x.dc.
1 ] ] }=

T
+F. .= . .
]—1[CJ f(xJ)]

1

Bci]
oX .
]

T
~F, [c,—f(x,
J[cJ (xJ)]

A.9
T

Since Ci = F; and after substituting into the above equation we get

oE

oX .
]

which reduces to
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. . -C. + . .J)~cC. ]-c. .J)=c.
f(xJ)[cJ_.] cJ] €51 [f(xJ) cJ_,]J cJ[f(xJ) cJ]

g——§—= 2f(x.Jdc, _,=2f(x.Jdc.-c. 2+c2..
X ; it ity oTi-1 T A.10
Since
e = f(xi) -G, A.ll
we can solve for Ci and Ci-l which will yield
C, = f(xi) - ei(xi) A.l2
and
Ci.1= f(x,) -, 1(x;) A.13
Substituting equations A.12 and A.13 into A.10 gives
oE _ 2 _ 2
'g)q— eJ(XJ) ej_,](xj).
Differentiating this with respect to xj gives
BZE 2o ¢ )'c)e.(x.) de . _ (xj)
morm—— = 2e . (x,)—i—1— -2¢. (x, )1 1
3XJ-3XL 3] E)xL i=1°737 3x, A.14

Differentiating equation A.11 with respect to X gives

aej(xj)

oaf(x.) aC.
] - J

Bxk

Bxk 8xk
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and if j = k then

eJ. (XJ) = -d-q -
Solving Tx?— where k=j gives
Be.(Xj) . A.15
—L— =& x.) - C.e.(x.)
ij J ] 11 ]
Bej (XJ) A.l16
~. . - C.e.(x._,l)
Xj_1 B

and for k = j-1 we get

de,_4(x.)
IV e e e tx ) AL
Ix -t1 1"

i1
de._q(x.) A.18
= J = e.(x.)-C. e, 4(x.)
% . jooa ] ] ]

]
We now complete the proof by selecting particular families of orthonormal

polynomials. Pavlidis in personnel communications suggested that the above

equations can be simplified by introducting

_ AT -1 _ B
Ir'p,q,r,s) = 6 (pdc O(x) = P A.19

where

c is the Gram matrix defined on the interval q,r and B

does not depend uponr or q.
We will obtain the orthonormal families of polynomials by starting with the
Legendre polynomials Py,Py,. - - . . ,P_ which are orthogonal on [-1,1]. The
Legendre polynomials are defined as

Ment
em(x) == Pm

with the following properties
Pm(l) =1
_ m
P (-1)=(-1)

over the interval -1 to 1. We wish to find 90,91 5. 'em orthonormal on the interval
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[r,q] . It can be seen that with a change of variables the polynomials will become

6 o =j2ntlp ( Zxlrta)
m r+q m r=q

If we let xJ. =r then

6. 20 (1)
r-q n
which in turn give
n
eTc~1e =5 2n+1 .
.= g
7=o A.20
Expanding the right side of equation A.20 we get
n-1
Z2n+1 = 14345+.0..+(2n-1)
J=o
or
2s = 2(nXn)
or
s = n?
T -1 n2
Equation A.20 can now be writtenas 6 ¢ 0 = rrrgl

1
6(x__1) we get a different result. Writing

For terms of th% form o (xj)c_
S=1

j=06m(xj)6n (xJ._,])

Zn+

v

n
:.Z‘

1p (P 1)
J=O q n n

where

Since Pp(-1)= (-1 S can be expanded to give

8= (1-345-T4e s e v un (-1"(2n-1))/(r-q) .
Now if we let

s) = 1345, oo e (1 H2n-1)
and

s, =07 = 14345, .\ . .+ (2n-1)

we can then sum the above two equations as
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S] + o= 2014549+ v o v s s 2n-1) if n is even
= 2(1+5+9+. . . . . . . (2(n-1)-1)) if n is odd
Writing s in general terms we have
s =n§1(-1 N(2n+1)
If N is even the last term is negative, as shown below
s=1+5+9..... (2n-3)G+7+11+. . .. . +(2n-1)
=8+ 8
251 = (1+2n-3) + (5+2n-7). . . . . N/2
=(2n-2)n/2
$; = (2n-2)n/4
s, = (2n+2)n/2
Solving for s we get
S=-n
If N is odd the last term is plus as shown below
sy = 14549.......2n-1
S, = 3+7+11. o oo o 2n-3
2s; = ((n+1)2)2n
§) = n(n+1)/2
s, = n(n-1)/2
S=8)+s,= 1(n(n+1-m+1))
S=n

Thus the general expression for S can now be written as

S = (-1y+ln A.21
which upon substitution into A.20 givigl
- _asn
o tx.oc o, ) = S n
j i=1 r-q

We can now write equations A.20 and A.21 in terms used in Chapter Two of this

paper. Writing we have
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Zl =n",
and
Z, = (1",
where
n = number of terms.

Since ST(p)c-16(s)= r_z_—q equations A.15 thru A.18 can be written as

de.(x.) . Z1e.(x.)
] ]

- J_J
o S TG A22
=1

. (x. Z,e.(x.
BeJ (xJ) 25 (xJ_,])

= = A.23
BxJ_,] xJ. xj_,'
de; 0 (x.) (X )
aeJ+1 5 k2 J+1 ik A.24
"+ 41 7
de, . (x.) Zoe,, . (x.)
AT o e e L A.25
j S L

Substituting equations A.22 thru A.25 into equation A.14 we get

82E ) 222ej (xj_,])ej (xJ.)
E)xj_18xj X=X
2e . zz1e?<x.>
9E = 2e, (x, )e () + 2y, (e, (x.) - i)
32 S R I & o TR X. = X,
xj 2 j ji=1

221eJ+1( L)

- X

X541 j
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32E ) 222e3.+,l (xj)ej+1 (xj+1)
ijaxj_'_,l Xj+‘| - Xj
oX . 9%

j oL

The above four equations are the same as given in equations 2.3.2 thru 2.3.5 of

this paper.



APPENDIX B

OPTIMUM LEAST SQUARES SOLUTION
It will be shown in this appendix that the least-square technique gives the

best polynomial of order n < m given some input data space. From the theroy of
approximating functions it is known that a function can be uniquely approximated
by an mth degree polynomial which is equal to f at m data points. Because of
computational reasons we are not interested in such functions. Instead we are
interested in functions of order less than or equal to m. The primary reason for this
lack of interest in polynomials of order m is the computational costs involved.
Furthermore it has been shown in [7, 20] that a function, f(x), can be adequately
described by a polynomial of order less than m.

Assume that x is an approximate solution of the equation Ax = b which is the
minimum-norm least square solution i.e. a solution of the normal equation. It is
known that the error vector E is the length of the vector Ax-b between two points
or functions. One way of solving for the minimum of E is to find the first
derivative of Ej; that is —gs—- y set it equal to zero, and then to apply a second
derivative test. Another way1is to note that x is a solution of the normal equation,
which can be written as ATAX = ATb. Any other vector y can be written in the
form y = x + w then the square of the error is

||Ay-b||2 = H(Ax-b)+Aw|[2 B.1
Expanding equation B.1 gives
[ay=b] |2 = ||Ax=b||%+2Aw)T (Ax-b)+] |Aw| | B.2
The error vector E = Ax - b must be perpendicular to a column space which

contains the projection of b onto that space as shown in Figure B.1. Thus the vector

Aw in equation B.1 must be in the column space of A which is composed of a linear
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combination of the columns by the components Wipeoons » Wpe The error vector of
equation B.1 must be perpendicular to all vectors contained in the plane, i.e.
(Aw) (Ax -b)=0
or
wl(ATAx - ATb)= 0.
It follows that
[1ay = bl 1%=[[x = b] [P+ [aul1? > [[ax = b][°

with equality if and only if Aw = 0. Hence x minimizes the error.

Column
Space

Projection of b Onto a Column Space.

Figure B.1



APPENDIX C

CONTOUR EXAMPLES

In this appendix we will present the results of the algorithm's contour
detection capabilities on some objects. Figures C.1 and C.2 have been discussed in
the literature, see [39] , as being difficult to detect and describe. The reason the
author in [39] says that these objects are difficult to describe is because of the size
of the processing interval. That is, given a processing interval which is too large,
the algorithm will find a describing polynomial which passes the error threshold but
gives a poor contour description. The algorithm presented in this study does not
have that problem and thus, as shown in these figures, can give a good description
of an object's contour. The input data for all of the Figures in this appendix will be
represented by a dot and the algorithm's output data will be represented by an x.
Figure C.3 is presented to show the algorithm's ability to detect and describe a sine
wave. A higher order function, as shown in Figure C.4, was presented to the
algorithm and, as can be seen, the detection and description results are excellent.
The results presented in Figure C.5 were an attempt to reproduce the results as
reported in [39] by using our algorithm. The original results from [39 ]are shown in
Figure 5.5.1. As can be seen if we use the linguistic descriptive terms LMS and LS,
the algorithm's output will almost match those given in Figure 5.5.1. However, as
discussed in Chapter V, our algorithm can give better results without a loss in
performance. Figure C.6 is a radar return signal of a corner reflector with a S/N =
24 db and Figure C.7 is the algorithm's output of that signal. The input signal in
Figure C.B, which is the same as shown in Figure C.1, was corrupted by a random
noise signal. The input noise signal was 50% of the actual input signal. As can be
seen in Figure C.8 the algorithm can detect the desired object once the appropriate

fuzzy variables are selected. In both test cases the error criterion was held
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constant in order to demonstrate the effect changing the fuzzy variables would

have.
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Piecewise Polynomial Approximation of a

Square Using Fuzzy Variables LI and LS.

Figure C.1
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Piecewise Polynomial Approximation of a

Circle Using Fuzzy Variables LI and LS.

Figure C.2
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Piecewise Polynomial Approximation of a

Sine Wave Using Fuzzy Variables LI and LS.

Figure C.3
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Piecewise Quadratic Approximation of a

Cubic Function Using Fuzzy Variables LI and LS.

Figure C.4
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Figure C.5
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Detection of a Boundary Within a Noisy Signal

Figure C.8



APPENDIX D
NUMERICAL EXAMPLE

This appendix presents a detailed numerical example of interval merging
where the computations and results of two different matrix methods are shown.
The two methods which will be presented are

(a) a standard inverse matrix computation
and

(b) the short matrix method as presented in this paper.
These methods are concerned with computing A'l. We start by defining the input
data, X;s s being equally spaced along a coordinate axis. For this example the
number of X;s per interval will be five, however there is no limit on the number of
points per interval other than from a computational limit. The other requirement is
that the number of xS per interval be held constant. In order to keep the example
simple we will not transform the data onto the -1 to 1 space. Instead we will work
in the natural number space. To futher simplify the problem we will only consider a
contour/boundary which is parallel to the x-axis, i.e. a straight line. We will first
present method (a) above in order ta establish a basis from which comparisons can
then be made. First we form the A matrix in which its elements are derived from
the input data raised to the appropriate power and then summed. For the linear
case, which is written in general terms, yields

## of points X

X X2

A=

Next the inverse matrix of the above A matrix is formed. For the example
problem, as shown in Figure D.l and Table D.l, the Al and Al'l matrices are as

follows
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and
1 1.1 -3
Al = ’
-3 .1

where the subscript indicates the interval number. Solving for the second interval

in the same manner we have

5 35
Az
2" 135 255’
L 5.0 -7
-1
T

The fuzzy model when given the above data will make a decision that the first two

and

intervals can be merged. Thus, the expression which must be found is Asl or the
matrix inverse of all the data in 1, U I,. By method (a) above the first step which
must be accomplished is”the formulation of the sum of Al and A2. Since the
matrices Al and A2 already exist within the computer's memory, the sum can be

found easily. The inverse matrix A;l can be found by method (a) which gives

10 50
A, =
37150 310

516 -.083

and

A3‘1=
083  .0166
1

By method (b), A3'l can be computed by first forming Ag= Al + Ail. The inverse

matrices Ail and Ail already exist because of the computations performed for
intervals one and two. Next find the inverse matrix A31 by using the multiplying

coefficient as discussed in Chapter IV. This can be written as A3l = 51-A3 which for
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} t + : od
123456789 10 Datapoints
1 2 Intervals

Straight Contour

Figure D.1
Interval 1 2
Matrix A 1 A2
Input
Data X x2 X x2 .
1(1 5 25
2| 4 6 36
319 7 49
41 16| 8 64
5125 9 81
Total 15 55§ 35 255

Matrix Input Data For Intervals 1 and 2.

Table D.1
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this example will give the following:

6.2 -1.0
A, =
37 a0 2 |

and

516  -.083
Azl -
3=

..083 .0166

where the multplying coefficient 61. was set equal to .0833 as shown in Chapter V.
As can be seen, method (b) is indeed shorter than method (a) because method (b)
circumvents an inverse matrix computation. This becomes significant as the
number of intervals which will be merged continues to grow.

The following discussion is a demonstration, using the above example, on
solving for 6.. As pointed out in Chapter V we can find Gias

+ -1
6 =AF 4 Ai—l(I + Ai Ai-l) D.1

i+1
wherei=2,3,.....N.

Solving for 61. where 1 = 2 we get

1
(I + A2 A )
[:1 33 3, 1j E33 _3, 16]
083 -.0001
6 = D-Z

1 |-.0001 .083
Performing the check we have

At - (at +A‘2t)

3 1
(083 _o0001][6.2 -1.0

At =

3 ].o001 083 |{-1.0 .2
516  -.083

A;: D-3
-.083 .016 i

As can be seen equation D.3 does agree with the results as given above. The
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solutions given in equations D.2 and D.3 were performed in the data space [a,b].
This space works well if the input data set is small both in quantity and magnitude.
The reason for this is that computer round-off error greatly affects the solution.
To generalize this procedure, as discussed in Chapter V, we transform the input
data onto the -1 to 1 interval space. The following discussion is on the data for the

above problem but in the transformed space. Solving we get

5 0 5 0
A, = and A, =
o 25 27 1o 25
L
the resulting generalized inverses are
., |20 , [0
Al = and A, =
1o Z o wu].
Solving for 61 using D.1 we get
(1 o |l[5 o7 1 0] [2 o] o7]]1
61= +
_D 'ZZJ LQ 2.5 0 1} |O .4]0 2.5
— -~ r
S5 0 S5 0
61=
_Q .6@ _l_'._] )
27 0
61= D.4
0 33 1.

The 61 multiplying factor as given in equation D.4 is the same as displayed in Table

5.1.1. The results from equation D.4 must then be retransformed onto the original

data space which will yield D.2. By using the transformed data space we have

avoided the round-off error as discussed above.



APPENDIX E

COMPUTER PROGRAM LISTING

In this appendix we present a computer generated listing of the algorithm
developed for this study. The listing contains testing comment statements which
were inserted during the initial development and testing phase. These comment
statements have not been deleted since the completion of the algorithm. However,

the executable code as given is the final code for the algorithm.

136
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SBATCH
STITL Lsa
C¥IXFEZEIREXXEEFEF AR XXX EXRFRTIRETFRTIXXRX LS ARREEELRINIEEREEE
COMMON
X /HAIN /XIN(S50), YIN(S50), A(S,S), x(s),
X N, M, EVAL, ESQVAL, Y(50), DNORH,
X XINI(SO), . YINI(S0)
X /FUZZY /81G6(50), ENAX, ICOUNL, 1COUNQ,
X FUZLL, FUZLH, Fi, F2, F3,
X FuzoL, FUZGH
X /YOPT /XX(5), ISUML, I1SUKQ, c3(2),
X INTL, INTQ, MM, RHO1, SNR, RHO
X /SCALE /C, D, 1L
X /S0LIN 7E(5), ISK1P, FSOLIN(3)
X /0PTS0L /MSTAR, MFIN, E2, MFOPT, ’ .
X FYOPT(50,8), NY :
DIMENSION IARC(4),IT(4)
REAL NN,IY : . .
DATA NN,1Y,18,IBB/1HN,1HY,1H ,4H / .

DATA LI,LS,LVI,LNVS/2HLI,2HLS,3HLVI,4ALNVS/
DATA LMI,UMS,LNVI,LAMI/3HLMI1,3HLMS,4HLNVI,4HLNKL/
READ INPUT DATA FROM EITHER THE CARD READER OR FKON WIEHIN TH
PROGRAM,THE PROGRAM DATA IS EITHER A LINEAR CASE OR QUADRATIC CASE
OF KNOWN SOLUTIONS. THESE ARE THE TEST POINTS FOR THE ALGORITHMS.

IPASS IS USED TO INITIALIZE ICOUNT IN
FUZZY INORDER TO KEEP TRACK OF THE INTERYAL
WE ARE SOLVING 1.E.(1 OR 2},

=N NONO

0 CONTINUE
00 2 1=1,2
C3(I) = 0.0
ISUML = ©
ISUMO = 0
ICOUKNL
ICOUNQ
INTL =
INTO =
ISEC1
ISEC2
ANS =
MFOPT = 0 .
POWER 2,0
COHK = ,04938
ALPHA .5
IANSY 118
TANS2 I18
IANS3 IIB
«RITE(1,1050)
READ(1,2000) 1ANSH
ARITE(1,1060)
READ(1,2000) IANS2
WHRITE(1,1070)
READ(1,2000) TIANS3
DO 4 I=1,50
DO 6 J=1,8
FYOPT(I,J) = 0,0
6 CONTINUE
4 CONTINUE .
FS (5.0-ALPHA)*3POWER
Fb CONK*F5
F7 1.0¢F6
Fil F6/F7

~

0
[

conn

oo

B

none=nn

wnan

HoHnon




@)

r~

13

11

F2 = F1©

F8 = (2.0=ALPHA)®*POWER
F9 = CONK=»F8

F10 = 1,04F9

F3 = F9/F10

IF(IANSL .NE. LI) GO TO 7
IF(IANS2 .KE. LI) GD TO 7
IF(IANS3 .NE. LS) GO TO 7
GO 10 11

CONTIANUE

IF(IANS1 .NE. LVI) GO TO 8
IF(IANS2  NE. LVI) GD TO 8
IFC(IANS3 .NE. LNVS) GO TO 8
POWER = 4.0

FS = (5.0=-ALPHA)*®*P0OWER
F6 = CONKSFS

£7 = 1,0+F6

Fl = F6/F7

F2 = F1

F8 = (2,0-ALPHA)*¥PQUER
F9 = CONK*F3

F10 = 1,04F9

F3 = 1,0=-(F9/F10)

GO TO 11

CONTINUE

IFC(IANST . NE. LMI) GO TO 9
IF(IANS2 ,NE., LMI) GO TO 9
IF(IANS3 ,NE. LKS) GO TO 9
POWER = 3.0

FS5 = (5.0=-ALPHA)**POWER
F6 = CONK¥FS

F1 = 1.0+F6

F1 = F6/F7

F2 = Fl

F8 = (2.0=-ALPHA)**POWER
F9 = CONK*F8

F10 = 1,0+F9

F3 = F9/F10

GO 70 11

CONTINUE

IF(IANSL .NE, LNVI) GO TO 13

IF(IANS2 ,NE, LNVI) GO TO 13

IF(IANS3 NE. LS) GO TO 13 .
POWER = 4,0 .

F5 = (5,0=-ALPHA)*3POWER
F6 = CONK3*FS

F7 = 1.0eF6

Fll = Fb/F7

F1l = 1.,0=F11

F2 = F1

GO TO 11777

CONMTINUE

IFCIANS] .NE. LNNI) GO TO 11
IF(IANS2 (NE. LiiM1) GO TO 1}
IFCIANS3 .NE, LS) GO TO 11
POwER = 3,0

FS = (5.0=ALPHA)®3POWER
F6 = CONK=FS

F71 = 1,0+F6

Fil = F6/F7

Fi = 1.0-F11

F2 = F1

COKTINUE

138
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S s A e T

“N

~—

oo aonnn [a XNz EaNsXel [aNaNse] NnNon anan

C
C
C
C
c
c
c
c
C

o
o
c

anNnn

ann

WRITE(6,3000) Fi1,F2,F3

THIS FLAG 15 USED TO SKIP RESCALE wHEN COMPUTING
YOPT.

ISKIP = 0
THESE INDICATE THE ORDER OF THE POLY.

M = NUMBER OF POINTS

M=5
INITIALIZE THE GLOBEL VARIABLES
MM = A VARIABLE USED TO DETERMINE WHEN WE ARE FINISHEd
MM = 5
I0= NUMBER TO INDICATE IF WE ARE COMPUTING LINEAR OR
QUADRATIC COEFFICIENTS INITIALLY SET = 0,
10 =0 ’
E2 = RNS VALUE PER INTERVAL INITIALLY = 10,
E2 = 10,0

EMAX =ERROR VALUE OVER THE ENTIRE INTERVAL (A,B)
INITIALLY = 100,0,
EMAX = 100.0
EFTIFEFEFLBEFDASEFITEZFXAISIFBARIERRARSZRXAAIREREXAREEXASSLRELXRESNABIRX
SET SIGHAL TO NOISE RATIO (SNR)= 1.0
EXXCEERXFFIRIFFIFREIRENEREISERFRNERRAFRRCXRERRNSEFI XXX R LBAEREXEREXER
SNR = 1,0
CALL DATE ‘

CALL DATE(IAR)

DAl = TAR(1) .

DA2 = IAR(2)

DRI IAR(3)
THIS IS TO HELP FINISH AN INTERVAL.
L =0
ICOUNT = S

READ DATA FROM CARD READER

READ(4,530) E2,EMAX

READ(4,650) FUZLL,FUZLH,FUZQL,FUZOH
READ(4,660) DIF

READ (4,520) IIL

DIF1 = 1,0%DIF
DIFZ = 2.0%DIF
DIF4 = 4,0%DIF
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DIFS = 5,0%DIF
IFCIIL .GE. 50) GO TO 12
IL = IIL
Ll = 1IL
GO TO 14
12 CONTINUE
IL = S0
1Ll = S0
iL3 = S0
14 CONTINUE
READ(4,530) (XINCI),YINCI),I=1,IL)
WRITE(6,590)
4RITE(6,610)DA2,DA3,DAl
ARITE(6,560)(I,XINCI),YINCI),I=1,IL)
WRITE(6,600) E2,EKAX
WRITE(6,640) FUZLL,FUZLH,FUZOL,FUZQH
EVAL = E2
CALL TIMECIT)
ISEC1 = 3600%IT(1)+60FIT(2)+IT(3)
C C‘:"l"‘;l‘“"Il'l““’3"““'33'3""“'".‘.“l“l‘ll"';*‘l“"'
: c
c BUTLD XINI AND YINI ARRAYS. .
. ¢ :
C» CY¥XXXBEFXXEXERZXEEIFEETXIZREERIXRIEXSERARSISXFIERNITSAPLTRESXBEIEREBEEIXEREXRXEE
DO 15 I=1,IL
XINICI) = XINCI)
C 15 YINICI) = YINCI)

TN

O 0

(@]

)

ASUM = 0.0
. DELTX = 0,0
C DO 20 I=2,M

DELTX = ABS{XIN(I)=XIN(I=1))
. XSUM = XSUM4DELTX
< 20 CONTINUE
IF(XSUM ,GT., DIF4) GO TO 950
IF(XSU¥ .GE., DIF2) GO ID 109

. GO TO 107
40  CONTINUE
CALL SCALE
C c
c SCALE INPUT DATA TO THE INTERVAL (=-1,1). THIS IS TO
( C AVO1D ROUND OFF ERRORS,
<
. C ~
c CALL LINEAR SOLUTION
8 C
CALL LIN
c .
- c IF E2<DELTA ¥ HAVE FOUND A LIEAR FIT FOR THE
c GIVEN INTERVAL==GO AND READ KORE DATA.
C
IF(DNORM .GE. E2) GO TO 55
o
¢ c SET SOME CONSTANTS AND CALL FU2ZY ROUTINE
o
N =1
C‘ll’llllt8!'831!!‘l!lllttlllttl!!ltlttt‘!lll‘l"llttlt‘l'!l‘tl"&’ll
i
c
c BUILD FYOPT
C
L Cl‘t"tlUl‘t‘*'lttl!lt‘l'lltlttxl‘lll‘ll'tllll"l‘U'l‘l'ltlt'.ltttlllllﬂ

IF(M JEQ. 3) GO TO 46
. ITAR = MN = 4
- GO TO 47
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)

0

o0 0 000

.

~~

46 CONTINUE
ITAR = MM = 2
47 CONTINUE
MFOPT = MFOPT + 1
FYOPT(MFOPT,1) = ITAR
FYOPT(MFOPT,2) = wum
FYOPT(MFOPT,3) = AY
FYOPT(4FOPT,4) = FSOLIN(1)
FYUPT(MFOPT,5) = FSOLIN(2)
FYOPT(MFOPT,6) = 0,0
FYOPT(KFOPT,7) = EMAX
FYOPT(MFOPT,B) = DNORK
CALL FUZZY
GO T0 60
Ss CONTINUE ' .
CALL SCALE .
c
c CALL QUAD SOLUTION
c
CALL QUAD
[of
o IF E2<DELTA %E HAVE FOUND A QUADRATIC FIT FOR THE -
o GIVEN INTERVAL=-=-=GO AND READ MORE DATA,
c
IF(DNORM .GE., E2) GO TO 62 )
o
c SET SOME COHSTANTS AND CALL FUZZY ROUTINE
c .
N = 2
CEEXETZIETFFRRNRNXXRLFEXIRNESNSTIRRIRFLRERILRXNINERTZXEXLRRILSSEZXAEERNAERS
c
c BUILD Q FYOPT
c
CHAFTXXEFINNIFBFERAXSEZISEISEFAECSRSSFETRREREXFIRELXNRFESFESIRXXXRREEEXRE
IF(M ,EQ. 3) GO TIQ S6
ITAR = MK=4
G0 TO 57
56 CONTINUE
ITAR = MM=2
57 CONTINUE
MFUPT = MFOPT + 1
FYOPT(MFOPT,1) = ITAR .
FYOPT{%FOPT,2) = wv
FYOPT(MFOPT,3) = NY
FYOPT(MFOPT,4) = FSOLIN(1)
FYOPT(MFOPT,S) = F50LIN(2)
FYOPT(“FOPT,6) = FSOLIN(3)
FYOPT(MFOPT,7) = ENAX
FYOPT(M4FOPT,8) = DNCRW
CALL FU2ZY
GO TD 60
62 CONTINUE
c
c SPLIT INTERVAL IF E2> DELTA.
c . -
M = IFIX((A/2)+1,0)
MR = NN=2
GO TO 40

aonNnnNnNnnN

REARRANGE DATA wITHIN INTERVAL,
INPUT POINTS INDEXES.

THAT IS RENUMBER THE
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o0 0 O D

M

N0 0

112

CEFFEIXFZIFXXIEIXLXXIIRNERSIXFRSSRIAREEFESFRATATR RS UL AN KERE LSS XX ERTERX

[«
C
C
[of

MM = NM+Q
MK = KM =]

TEST TO SEE IF Y DATA IS PERPENDICULAR TO X

AXIS,

CEXEXFXXXTLXIRNS LSRN ELREXFFCFFEIEBELIEEALEERR XSS XIXASXETIXISINXREXREEEZES

108

107

XSUM = 0.0
DELTX = 0,0
D0 108 I= 2,M

DELTX = ABS(XIN(L)}=XIN(I-1))

XSUM = XSUM + DELTX
CONTINUE

IF(XSUM .GE. DIFS) GO TO 950
IF(XSUM .GE. DIF2) GO TO 109
IF(XSUN .EQ. DIF1) GO TO 107
IF(XSUM . NE. 0,0) GO TO 130

CONTINUE

CHEFFEXIDEIEAIXXNXITAEFIFLTRAIEFFFRREREISRETITNXILSCIRSEFIIRLNEXRXTRLAARE RS

c
C
C

REARRANGE THE INPUT DATA AND COMPUTE X

CrEXSEXXETXRN R IXREAENEXNENEREITEIERTINFSSNNTARFRASEIXERILFEZANENRBENY

109

114

11e

MM = MN=4

KK = §

J =0

00 111 I= t,KK
J = J+l
YIN(J) = XINI(HM)
XIN(J) = YINI(MM)

MM = MH+1

MH = Mu=}

IF( NY .EQ. 1) GO TO 40

CUNTINUE

IF( NY .EQ. 0) GO TG 40
NY = 0
ISUML
ISUMQ

GO TO 40

COWTINUE

I = (1L=-5)+1

NN = 1L

DO 116 J=1,5

YIN(J) = YINI(CI)

XINCJ) = XINI(I)

I = I+d

CONTINUE

0
]

CEREAFESXXXFFERTXFISAXRBAXRSLTSRETREREET KRN FIRRERNERFRTSXRESRRLXTTERRE

C
C
C
C

TEST DATA TO DETERMINC [F Y 1S PERPENDICULA fd

X AXIS.

CFEA RN IR I N ARSI RSN S A IR A EREERNL N XS RESARSEESRIESRENENIEFSESRERRINEESRNE

Xsuv = 0,0
DELTX = 0,0
DO 115 J=2,¥

DELTX = ABS{XIN(J) = XIN(J=1))

XSUX = XSUm + DELTX



~
N
c
~ c
\- c
c
60
O
C
c
80
C
85
C
C 86
C
C 88
C
90
C
AN
92
.
100
N C
c
) o
“ d
. c
c
c
~ o
. c
C
c

HO« MANY POINTS MUST BE ADDED TO FILL THE BUFFER OR

ARRAY TO S5 FULL POINTS?

COKTINUE

IF(s .EQ. 5) GO TO 100

IF((MM ,GT. IL) . AND. (DNORM LT, E2))GO TO 120
IF(MM .GE. IL) GO TO 120

IF(K .EQG. 3) GO TO 80

JJ o= 2

LL = 4

GO TO 85
CONTINUE
Jd = 3

LL = 3
CONTINUE

Do 86 I = 1,LL
XINCIY) =XIN(JJ)
YINCI) =YINC(JJ)
JJ = JJ+t
CONTINUE
LL = LL+1
pD 88 I=LL,S
MN = MM+
XINCI) = XINI(HN)
YINCI) = YINI(KA)
CONTINUE
IF(MM .GE. IL) GO TO 90
4 =9
GO TO 40
CONTINUE
IX1 = MM=IL
IF(IX1 L,EG., 0) GO TO 92
¥ = 5«Ix1
IF(s .EQ, 0) GO TU 120
GO TO 40
CONTINUE
%¥ = IL
IF(M .EQ, 0) GO TO 120
GO TO 40
CONTINUE

TEST TO DETERMINE IF WE HAVE FINISHED ALL THE DATA.

IF(MM ,EQ, IL) GO TOD 120

Ki = MM
KK = S

J = 0

NN = MM+S

TEST TO SEE IF ¥E EXCEEDED THE INITIAL INPUT DATA

(@47

IF(MN .GT, IL) GO TO 114
MM = MN=5 .

READ THE NEXT BLOCK OF S DATA POINTS.

DO 112 I =1,KK

J = J+l
YIACJ) = YINI(MN)
XIN(J) = XINI(Mm)

142
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!

(@)

o

115 CONTINUE
IF( XSUM ,Eu, DIF4) GO TO 119
IF(XSU¥ _GE. DIF2) GO TO 109
IF(XSUM .EC. DIF1) GO TO 107
IFC(XSUM _NE, 0.0) GO TO 130

CFEXFXRTAZINREELEAXSRRESFFEEXRSXASEERESEFEIRXIXLIENREZILXIXXNEXXXNEEFEXRS

C
C NO=--REARRANGE INPUT DATA.
C

144

CEEXZXITIRLEFRERRRRVSERERLEBFRRIREXXRNDIBETNEEBSSXESEEILRIRRARNEIBXNEREREFF

I = (IL=5)+1
poc 118 J=1,5
YINCI) = XINICI)
XINCJ) = YINICE)
I = I+1
118 CONTINUE
IF(NY ,EG. 1) GO TO 117
NY = 1
ISUNML
1SUKQ
117 CONTINUE
N =5
MM = IL
GO TO 40
119 CONTINUE
IF(NY .EQ, 0) GG TO 117

0
0

NY = O

ISUNL = 0

ISUHQ = 0

GO TOD 117

CEIEESTRTISIRERAARIESIITRRRRRERRNERARIZEREATRSES
c
o FOR XSUM = 3,0,
o

CEXRFSXEIIEIFXXSIAXISREITXIRNEIEITTIXATZINLXRRERSERESSX
150 CONTINUE

IF(NY ,EQ, 1) GO TO 152

MM = MM=1

I= MM=4

GO TO 160
152 CONTINUE

MM = MMN=] .

I = un=4

GO TO 140
CEERSIXBFIBITRSXSFRERIZAINFENUANSBENENIRIESREESEATRENSLLEESREES
C

c FINISH CONMPUTING THE EQUATION FOR THE
o NUMBER OF PDINTS LEFT OVER,
C

CrEXE RIS E RS AXSI A C AR AR ARSI RAEAIEREN SRR EXTIBRISIRNISSEAINES
130 CONTINUE

IFC(X8UK ,GT. 0.0) .AND,

X (XsSu® .LT. DIF1)) GO T0 960

IXSUK = IFIX(XSUM)

MM = (4M=4)+IXSUA
CERAEXTRIRSEITANREISIRSRSRINENS SIS ERRINSFERAFELSBIRESS IS SUSEBIFT
C

C BACK UP SOME NUMBER OF PONITS IN XIN AND YIN,

c

CU‘!(‘IUIIU‘tll'itll“tt!tlt"t#'ll‘.‘tl“"llttllll!!l‘lllx!tllll
1 = MM=4

IFC NY .EU. 1) GO TO 140
160 CONTINUE



O 0 o O O

c.0 0 o 0 o 0o o0 o 0

c

Do 132 9 = 1,5
- XINCJ) = XINICI)
YINCJ) = YINI(I)
1 = I+l
132 CONTINUE
GO TO 40

140 CONTINUE
DO 142 0 = 1
XIN(J) =
YIN(J) =
1 = I+1
142 CONTINUE
GD TO 40
120 CONTINUE
ANS = 1B
CALL TIME(IT)
ISEC2 = 3600FIT(1)+60%IT(2)+1T(3)
ISEC = ISEC2=ISEC1
WRITE(6,630) ISEC

*5
YINICI)
XINICI)

630 FORMAT(20X, SEC =,F10.5)

#RITE(6,590)

WRITE(6,620)(C(FYOPT(L,Jd),J=1,8),I=1,MFOPT)

WRITE(6,590)

CALL PLOT
CHEXSRRIREEFAFRLXARESTEEFRERL IR EXRFIXARFIEXFRTCISRNIE R K S

MFOPT = 0

ISUML = 0

ISUNQG = 0

JCOUNL = ¢

ICOUNG = 0

INTL = 0

INTG = @

ICOUNT = 5

L=20

ISKIP = 0

N =0

A =5

MM = §

D0 134 I = 1,2
134  €3(I) = 0.0
DD 136 1=1,50
DO 138 J=i,8 .
FYQPT(I,J) = 0.0 .

138 CONTINUE

136 CONTINUE

[of

C TEST TO SEE IF ALL INPUT DATA HAS
C BEEN READ.

C

CERR XA F RSN AR R RN LSS R EFRSARNN ISR S BINSERRKSXRAEEEREES
ILY = IIL - ILd
IFCILL) 122,122,124
124 CONTINUE
IL2 = IL1~50
IF(IL2) 126,126,128
128 CONTINUE"

IL = S0
IL3 = IL3+50
ILl = IL3
GO TO 14
126 CONTINUE
IL = 1Lt

IL1 = IL3 + ILI

145



122

‘)

)

950

7

920

960

830

620

500
510
520
530
S50
560
570
580
- 590
- 600

610

650
C 640

NN nH N 0 N

660
1050
1060
1070
C 2000

3000

r\

—~

1000

_ STITL
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GO TO 14

CONTINUE

WRITE(1,570)

READ(1,510) ANS

IF(ANS .EQ. IY) GO TO 10

GO TO 1000

CONTINUE

WRITE(6,920)

FORMAT(10X *Sx*3xxINPUT DATA NOT ONE
X UNIT APARTX¥%x3x7)

GO TD 1000

CONTINUE

WRITE(6,930)

FORMAT(10X, %*5sxx33INPUT DATA DIFFERENCE
X BETWEEN 0.0 AND 1,0%3¥xxxx°)

GO TO 1000 )

FORMAT(10X, "MSTAR =",12,5X, MFIN =°,12,5%,"NY =,11,5X,
X°EY =°,E16.8,5X,”E2 =°,E16.8,5X,"E3 =" ,E16.8,/,20X%,
X*EMAX =°,E16.8,5X, "DNORK =°,E16,8,/,20X,
x’lttlltttt:!(tttll#tttll!t!t!lxl!ttltl#ll‘lt’)

FORMAT(3ISHREAD DATA FROX CARD READER (Y OR N))

FORNAT(AL)

FORKAT(I3)

FORKAT(F6.2,F6,2)

FORNKAT(38HDO YOU WANT A LINEAR SOLUTION (Y OR h))

FORMAT(27HDO YOU wANT A PLOT (Y OR N))

FORMAT(44HDO YOU «AKT TO RUN ANOQTHER SOLUTION (Y OR N))

FORMAT(10X,13,5X,F6.2,5X,F6.2)

FORMAT(1H1)

FORMAT(10X,4HE2 =,F6.2,5X,6HEMAX =,F6,.2)

FORMAT(62X,THLSQUARE,31X,12,1H/,12,14/,12,/,/)

FORKAT(F5,3,F5.3,F5.3,F5.,3)

FURMAT(10X, “FUZLL =" ,F5,3,10X, "FUZLH =°,F5,.3,5X,
X°‘FuzQL =" ,F5,3,5X,FUZOH =,F5,3)

FORMAT(FS5.2)

FORMAT("INPORTANCE OF L2 =7)

FORMAT(*IMPORTANCE OF SLOPE =)

FORMAT( “IMPORTANCE OF LXAX =*)

FORMATCA4)

FORMAT(10X,°L2 =°,F10,5,5X,“SLOPE =*,F10.5,5X,
X°LMAX =°,F10,5)
COKTINUE N
STOP .
END

SUMS/LSO

CEEXRIERTXIIFXTFRSNLILREXIXLIXISTIERRXRRSSEFE SIS REX LRSS RE XL R XK KTY

nnan

N

nnNnn

SUBROUTINE SUms

THIS ROUTINE WILL FORM THE SUMS OF THE VARIOUS TERMS
WHICH «“ILL BE REQUIRED LATER OM,

COMMON
X /HAIN /XIN(50), YIN(5D), A(5,5), X(5),
X N, X, EVAL, ESOVAL, Y(s0), DNORNM,
X XINI(SO), YINI(S50)

X  /SUMS 7YY, XY, XsQ1, AY(5,5),
X XYY, Xxsay
X /SCALE /¢, o, iL

DIMENSION XI(S0)
FIRST TEST TO DETERMINE IF WE ARE GOING TO USE LINEAR
OR QUADRATIC APPROXIMATIONS.
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CINITIALIZE SOME VARIABLES

XX
YY
S0Xx = 0
Xy = 0
XCuBI
XFOUR
XsQy = 0
IF(N .EQ. 2) GO TO 20
po 21 =1,5
Do 4 J =%,
ACI,J) =0
CONTINUE

0
0

0
0

5
.0

SUMS FOR LINEAR CASE

DO 10 I=1,X
XX = XX + XINCI)
S0X = S0X + (XIN(I))*%2
YY = YY + YINCI)
XY = XY + (XINCI)*YIN(I))

CONTINUE
AC1,1) = M
A(L,2) = xXx
A(2,1) = XX
A(2,2) = sOX
SCALE FOR YOPT SOLUTION
XYYy = 0
XX =0
sSax = 0

DO 1S I=1,¥

XICI) = (C(XINCI)*D)/2.0)+(C/2.0)

XX = XX+XI(I)

SAX = SQX+(XI(I))%¥2

XYY = XYY+(XICI)*YIN(IL))
CONTINUE
AY(L,1)
AY(1,2)
AY(2,1)
AY(2,2)
GO TO 40
COMTINUE

> x
>

1%
[=]
>

SUAS FOR QUADRATIC

DO 30 I=i,M

XX = XX+XIN(CI)

SAX = SQX+(XIN(1))¥*2

XCUBI = XCUBI+(XIN(I))**3

XFOUR = XFOUR¢(XIN(I))*34

XY = XY+ (XIN(I)*YINCI))

YY = YY+YIN(CI)

X5QY = XSQY+(((XINCI))I**2)8YIN(I))
CONTINUE

ACl,1) = &
AC1,2) = XX
A(1,3) = saQx
A(2,1) = XX
= 80X
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AC2,3) = XCUBL
A(3,1) = sox
c A(3,2) = XCUBI
A(3,3) = XFOUR
c
C ¢ SCALE FOR YOPT SOLUTIGN
c
xXXS0Y = 0
C XYY = 0
XX =0
sQx = 0
C XxCc = 0
XXF = 0
c
LN FORK COEFFICIENTS
¢
. DO 35 I =1,K
C XICI) = C((XINCI)*D)/2.0)+(C/2.0)
XX= XX+XICI)
SQX = S0X + (XI(1))**2
C XYY = XYY+(XI(I)®YINCI))
XXC = XXC+(XI(I))#*%3
XXF = XXF+(XI(1))*¥4
C XXSQY = XXSOY+(((XICI))I**2)*YIN(I))
35 CONTINUE
_ AY(1,1) =M
C AY(1,2) = XX
AY(1,3) = sax
AY(2,1) = XX
C AY(2,2) = S0X
AY(2,3) = XXC
] AY(3,1) = 50X
C AY(3,2) = xXC
AY(3,3) = XXF
§ 40  CONTINUE
C RETURN
END .
STITL GENINV/LSQ
C' C'"l'.‘ilt‘llllllll‘!lll“l"l‘ll"'!'i!lllll““l'ltltt“l"!
SUBROUTINE GENINV
COMNON
C X /HAIN /XIN(S0), YIN(S50), A(5,5), X(S),
X N, 9, EVAL, ESQVAL, Y(S0), DNGRN,
. X XINI(S0), YINI(50)
C X /GENINY /YG(10,10)
DIMENSICN YZ(10,10),AT(10,103,YY(10,10),
. X YI(10,10),Y2(10,10),Y1¢10,10)
<«
c FIRST FORM THE INVERSE AFTER INITIALIZING
c
~ [ oS
¢ FIRST TEST TO DETERNINE IF WE ARE COMPUTINE THE LINEAR
c SOLUTION OR GUADRATIC.
(& IF( N .EG. 2) GO TO 10
K =2
_ GO TO 20 °
N 10 CONTIRUE
k=3
. 20  COMTINUE
(&

c
C
- C

- bo

INITIALIZE YZ MATRIX

30 I=1,10

TO ZERO
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150

DO 40 U=1,10
- YZ(1,J) = 0.0
CONTINUE
GO TO 700

COMPUTE THE TRANSPOSE XT

po 50 I=1,K
DD 60 J=1,K
AT(J,1) = A(I,J)
CONTINUE

FORM YZ = (AT)*A

DO 70 Il=t,K : ;
DO 80 I = 1,K :
AL = 0.0
DO 90 J=1,K .
AA= AT(L,J)¥3(J,ID) . .
YZ(I,11) = YZ(I,1I)+Ah
CONTINUE
CONTIAUE .
CONTINUE
DO 710 I=1,K
DO 729 J=1,K .
YZ(1,J) = A(1,d)
CONTINUE
CONTINUE

ADD UNIT MATRIX TO YZ

DO 100 I=i,K
DO 110 J=1,K

YY(l,J) = 0.0
YY(i,I1) = 1.0
CONTINUE
CONTINUE
Do 120 1 =1,K
KK = K
DO 130 J=1,K
KK=KK+1
YZ(I,KK) = YY(1,J) -
CONTINUE
MATRIX INVERSION AND GENERALIZE INVERSE
ROUTINE.

FIRST TEST TO LETERMINE NOw HMANY PASSES
WE MUST MAXKE THROUGH TH1S SECTIOu,
IF(N .EQ. 2) GO TO 200

THIS NEXT SECTION WILL SOLVE FOR
THE LINEAR CASE,

START FIRST PASS

DO 140 U=1,4

YIC(I,d) = YZ2(1,d) /7 YZ(KK,KK)

1 =2

DO 150 J=1,4

YI(X,J) = YZ(1,J) = (YZ(I,KK)*YI(KK,J))
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START SECOND PASS

KK = 2

I =2

DO 160 J=1,4

Y2(1,J) = YIC1,J)/YI(KK,KK)

I =1

DO 170 U=1,4

Y2(I,J) = YI(I,J)=CYICI,KK)*Y2(KK,J))
GO TO 300

CONTINUE

THIS SECTION WILL SOLVE FOR THE QUADRATIC
CASE AS EVIDENT BY THE THREE PASSES.

-START FIRST PASS

DO 210 J=1,6
YICI,J) = YZC1,J)/YZ(KK,KK)
DO 220 1=2,3

DG 230 J=1,6

YIC(I,J) = Y2(1,3)=(Y2(1,KK)*YI(KK,d))
CONTINUE

START SECOND PASS

KK = 2
I =2
DO 240 u=1,6
Yi(1,J) = YI(I,Jd)/YI(KK,KK)
DO 250 1=1,3,2 .
DO 260 J=1,6
Y1(1,J) = YICI,J)=(YI(1,KK}*YL1(KK,J))
CORTINUE

START THIRD PASS

KK = 3
I =13
DO 270 U=1,6
Y2(1,9) = Y1(1,J)/Y1 (KK, KK)
D0 280 I=1,2
DO 290 J=1,6
¥Y2(I,J) = YI({I,J)=(YL(I,KK)*Y2(KK,J))
CONTINUE
CONTINUE

COMPUTE THE GENERALIZED INVERSE

FIRST SET THE MATRIX YG = ¢

DO 310 I=t,10
DO 320 u=1,10
YG(I,J) = 0,0
CONTINUE

150
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15
c
C
c

3¢ 3K I D e D D 2 D¢ M

- TEST TO DETERMINE wHICH SOLUTION IS DESIRED
I1.E. LINEAR(N=1) OR QUADRATIC(N=2),
IF(N .EQ., 2) GO TO 330
LL = 2
K = 2
GD TO 340
CONTINUE
LL = 3
K =3
CONTINUE

HOw COMPUTE THE INVERSE

DO 350 I=1,K
= LL
po 360 J=i,K
L = L+1}
YG(I,J) =
CONTINUE
CONTINUE
RETURN
END

Y2(1,L)

SOLIN/LSQ
SUBROUTINE SOLIN

COMPUTE THE LINEAR SOLUTION AND ERRORS,

COMMOKN
/MAIN /XIN(50), YIN(SO)}, A(S5,5), X(s),
N, M, EVAL, ESQVAL, Y(s50), DNORM,
XINI(S50) YINI(SO)
/SUMS /1Y, XY, xsay, AY(5,5),
XYY, XxsQy
/GENINYV /7YG(10,10)
/SOLIN /E(S), ISKIP, FSOLIN(3)
/FUZZY /S816G(50), EMAX, ICOUNL, ICOUNQ,
FUZLL, FUZLH, Fi, F2, F3,
FUZOQL, FUZOH

DIMENSION BR(S) N
FIRST IMNILIZE X(I) TO ZERO
DO 10

E(I)
x(I)

I =1,5
= 0,0
= 0.0
TEST TO DETERNINE IF N = 1 OR 2,

IF(N .EQ. 2) GO TOD 15

THEN BUILD THE B MATRIX
BB(1) = YY
BB(2) = XY
L =2

GO TO 18
CONTINUE

BUILD THE B MATRIX FOR QUADRATIC.
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B6(1)
BE(2)
BB(3)
L =3
8 CONTINUE

YY
XY
XsQy

uuwu

FIND COEFFICIENTS TO LINEAR EQUATION I.E. K1
AND K2,

[sNe R Ne Rad

DO 20 I =1,L
AA = 0,0
PO 30 J=4,L
Ak= YG(I,J)*BB(J)
ECI) = E(I) + AA
CONTINUE
IF(N .EQ. 2) GD TO 45
CONTINUE

N W
S o

N

TEST TO SEE IF WE SHOULD SKIP RESCALE
BECAUSE THIS IS FOR YOPTL.

RESCALE INTO ORIGINAL VALUES,

OO NOONON

CALL RESCAL

FORM LINEAR EQUATION ( Y= K(1) +K{(2)*XIN(I))
AT THE GIVEN X’S

s XeNeNel

XN R NN S XN XN I SN E AR RN AR NN SR EE I SRR RN A RRANINEF AN R AN RS AN NS KR INEFZ
C

C BUILD LINEAR MATRIX OF COEFFICIENTS,

C

CRF SRR R RN AN AR AT LIS R AN AN A AR ENFEIRTEFRRRSFFASIARFINARF SRR FES KA RIS RS
FSOLIN(1) = E(1)

FSOLIN(2) = E(2)

DO 40 I=1,H

40 Y(I) = E(1) +E(2)*XIN(I)
C
C NO¥W FOR4 THE ERRDR TERM E BETWEEN Y(I)
C AND YINCI), THAT IS E=SUM(YIN(I)~-Y},
C
GO TO 55
45 CONTINUE

C RESCALE INTO ORGINIAL VALUES.
C
CALL RESCAL
CARR NN SRR N A AR R E RN S S SNSRI BN S XS XTI RS F N SR SRE R SR ER SR A BN ES TR RES TR XEX
¢
C BUILD QUADRATIC MATRIX OF COEFFICIENTS.
[of .
NN R RS R E R IR RN BN AN AN SRR I AT AN C R IR AR ADN NSRS T IS TSRS NSRS SRS
FSOLIa(1) =.E(1)
FSOLIN(2) E(2)
FSOLIHN(3) = E(3)
c FORM QUADRATIC EQUATION AT THE GIVEN X°S.

DO 48 I=1,K
48 Y(I)SECL)+(EC2)$XIN(I))+(E(3)®(XIN(I)*¥2))

SS COSTIKUE
EE = 0,0
AA = 0,0

T T e B N e e ———_—_ . —— -~ ———— % ¢ mme = e —— e = 4 S——— e = s b e ee
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Q. 2) GO TO 54
GAX = ATAN(E(2))
CONTINUE
DO 50 I=i,M

AR = YIN(CI) = Y(I1)

SIG(I) WILL BE ASSIGNED THE DIFFERENCE BETWEEN
YIN AND Y COMPUTED. THIS 15 USED IN THE FUZ2Y
ROUTINE.

SIG(I) = AA

COMPUTE THE PERPENDICULAR DISTANCE BETWEEWN ’ -
YIN AND Y,

IF(AA L.LT. 0.0) GO TO 56
FOR VALUES OF YIN ABOVE Y. .

IF(N .EQ. 2) GO TO S8

E2D = (AAXSIN(90.0=GAM))**2
GO TO 64

CONTINUE

AW = (2,0%E(3))I*XINCYL)

GAM = 90.0=(ATAN(AM))

E2D = (AA®SIN(GAN))*¥2

GO TO 64

CONTINUE

FOR VALUES OF YIN BELOW Y,

IF(N .EC. 2) GO TO 62
E2D = (AA¥SIN(GAM))®32
GO TO 64
CONTINUE -
AM = (2,0¥E(3))®XINCI)
GAM = ATAN(ANK)
E2D = (AASSIN(GAM))®%¥2
CONTINUE R
DNORK1 = DNORM1 + E2D
EE = EE+AA
DNORK = SORT(DNORX!) B

COMPUTE SU% E SQUARE ERROR

ESO = 0,0 N
RA = 0,0 .
DG 60 I=L,K
AR = (YINCI)-Y(YX))=*2
ESQ = ESQ + AA
ESOVAL = SQKT(ESO)

C“l.!l,‘tll'll"l'lill::llll"l‘l‘l““’l!‘.‘l"“l‘l'l“3“"‘!“““"!!!

C

FIND EMAX FROK DELTA=Y,

CHEBBNESANNESIEIINSIRTIREEENFRSSESSNISAIERENABENERRRRSRENETRRD

EMAX = ABS(SIG(1))
DO 70 I=2,M
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ENAX = AMAX1(EKAX,ABS(SIG(I)))
70 CONTINUE

90 CONTINUE
c
C
C
c CALL FUZZY LOGIC ROUTINE
C
RETURN
END
STITL . RESCAL/LSO

CEEXEXERAFAFRARIRNTERIRIXERIXANSERZXIBINRNSNFERRARARTAFIFRERXEXBXIEE
SUBROUTINE RESCAL

COMHON
X /MAIN /XIN(S0), YIN(SO), ACS5,5), X¢5),
X N, N, EVAL, ESQVAL, Y(50), DNORM,
X XINI(50), YINI(SO0)
X /SOLIN /E(S), ISKIP, FSOLINC(C3)
X /SCALE /C, o, IL
00 10 1 =1{,M
10 XINCI) = ((XINCI)*D)/2.0)+(C/2,0)

IF(N ,EG, 2) GO TO 20
E(1) = E(1) =« (C/D)*E(2)
E(2) = (2,0%E(2))/D

GO TO 30
20 CONTINUE -
E(1) = E(1)=((C/DI*E(2))+(((C/D)**%2)*E(3))
E(2) = ((2.0%E(2))/D)=(4,0%C*E(3))/(D**%2)
E(3) = (4.0%E(3))/(D*%2)
30 CONTINUE
RETURN
END
STITL SCALE/LSQ

CEXEFERERBRERREXRRIERRFARFFRERRRRERENAFIRIRSNXISAINAEREANINANLXRSRE
SUBROUTINE SCALE

c
c THIS ROUTINE SCALES THE INPUT DATA TO THE INTERVAL
c (=1,1), THIS IS TO AVOID ROUND OFF ERRORS.
c
COMMON
X  /KAIN /XIN(50), YIN(S0), A(S,S), X(5),
X N, M, EVAL, ESQVAL, Y(50), DNORN,
X XINI(SO0), YINI(C50) .
X  /SCALE /C, D, IL
AA = XINC1) '
B = XIN(}1)
¢ .
¢ TEST FOR MIN AND MAX VALUES.
¢
DG 10 I=1,M
IF(XINCI) .LE. AA) GO TO 1S
GO T0 20
15 AA = XINCI)
20 CONTINUE
IF(B ,GE., XIN(I)) GO TO 10
B = XIN(I)
10 CONTINUE
C = B+AA
D = B=AA
c
g NOW COMPUTE THE NEW SCALED VALUES.

DO 30 1 =1,mM
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30 XINC(I) = ((2,0%¥XIN(I))=C)/D
RETURN
END
STITL QUAD/LSQ
cttt:ttttl:tl;t:t:ltlttitlt:::ttttt::t::xxx:lxtl.x:xx:txtxtxtt

SUBROUTINE 2UAD .

c
C THIS ROUTINE WILL COMPUTE THE QUADRATIC CURVE FIT
[ FOR THE GIVEN DATA,
c
COMMON
X /MLIN /XIN(CS50), YIN(50), A(S5,5), X(S),
X N, M, EVAL, ESGVAL, Y(50), DHORNM,
X XINI(50}, YINI(50)
N = 2
CALL SUKsS
CALL GENINV
CALL SOLIN -
RETURK .
END :
STITL LIN/LSQ

CHEEISCXXINAIFIIBREIIANEEREINITREREXSAIIERRNRXITAENESEIEINNENE
SUBROUTINE LIN

C
C THIS ROUTINE WILL COMPUTE THE LINEAR CURVE FIT FOR --.
o THE GIVEN DATA.
C
COMMON
X /MAIN /XIN(50), YIN(50), A(S,5), X(sy,
X N, M, EVAL, ESOVAL, Y(50), DNORM, "
X XINI(S50), YINI(50)
C
C SET N = 1
C
N =1
CALL SUMS
CALL GENINY
CALL SOLIN
RETURK
END
STITL FUZZY/LSO

CEESEXINNS SRS RN B FNSREEEIF SR RIS SEXAIFAINASESFSIRAIIRFXXRLXENNEANS
SUBROUTINE FUZZY

C
c THIS ROUTINE WILL COMPUTE THE FUZZY CHARACTERISTIC
c FUNCTION FOR THE BREAKPOINT, .
c
COMMNON
X /MAIN /XIN(50), YINCSO), A(5,5), X(5),
X N, K, EVAL, ESQVAL, ¥(50), DNORM,
X XINI(S50), YINT(50)
X /FuzZY /SIG(S50), EMAX, 1COUNL, ICOUNY,
X  FUZLL, FUZLH, Fi, F2, F3,
X FuzoL, FUZOK
X  /SGLIN /E(S5), ISKIP, FSOLIN(3)
X  /YOPT /XX(5), ISUML, 1SUkQ, €3(2),
X INTL, INTG, 'TH fHO1, SNR, RHO
X  /O0PTSOL /MSTAR, MFIN, E2, HFOPT,
X  FYDOPT(50,8), NY
DIMENSION C1(5),C2(5),G(10),C(3),C4(5),
XC6(5),D1(5,3),02(5,3),D03(5,3),D4(5,3)
c

C THE FOLLGING IS A LIST OF SYMBLOS USED IN THE

e N o e e ee e Caat .+ s ames o e e = e e e emar e ———— e
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PROGRAM WHICH REPRESENTS THE EQUATION SYMBOLS,

C(1) = G({X1])
c(2) = 6(lx2))
C(3) = G({x3])
C1(I) = SIGMA=Y([DELTAY(I)/L2)!X(1))
C2(I) = SIGHMA~Y(IDELTAY/LMAX]!IX(I))
C3(I) = SIGMA=Y(IS(I)/K]I!X(X))
C4(1) = SIGMA-Y([L2/DELTAY(I)]1!X(I1))
Yy = M
c(1) = F2
C(2) = F3
C(3) = F2

TEST TO SEE 1IF L2 IS ZERO.

IF(DNORX .GE. .01) GO TO S
DNORM3I = 0,0
CONTINUE

TEST TO SEE IF EMAX 1S ZERD,

IF(EMAX .GE. .1) GO TO 8
EKAX2 = 0,0
CONTINUE

TESAT TO SEE IF SIG(I) IS ZERO

IF(DNORK3 .EQ. 0.0) GO TO 9
DO 10 I=1,M
Ci(I) = ABS(SIG(1)/DNORM)
C2(I) = ABS(SIG(I)/EMAX)
CONTINUE
GO TO 13
CORTINUE
DO 11 I=1,M
C1(1) = 0.0
C2(1I) = 0.0
CONTINUE
CONTINUE N

TEST ORDER OF POLY.
IF(N .EQ. 2) GO TO 20

ICOUNL = ISUML + 1
ICGUNT = ICOUNL

ICOUNQ 0
DO 15 1=1,M
C6(I) = ((ATANCE(2)))/90,0)%57.3
CONTINUE
GG TC 30
COMTINUE
FORM L2 OF THE QUADRATIC SLOPE,
ICOUKQ = ISUNC + 1%
ICOUNT = ICOUNQ
ICGUNL = 0
¢ = 0.0
DO 26 I=1,M

O = E(2)+(2.0%E(I)*XIN(I))
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C6C(I) = (CATAN(D))/90.0)%57.3
e = 0,0

CONTINUE

CONTINUE

ORDER SIGMA-Y FROM LARGEST TO SMALLEST.

AA 2 0,0
K =1
J =1
COKTINUE
Do 70 I=1,M
IF(C1(I) .GT. Ci1(J)) GD TO 75

AA = C1(J)-
Ci(J) = Cc1(I)
C1(I) = AR
CONTINUE
AA = 0,0
IF(C2(1) .GT. C2(J)) GG TO 80
AR = C2(J)
C2(J) = C2(I)
C2(1I) = AA
CONTINUE
AA = 0,0
IF(C6(1) .GT. C6(J)) GO TO 85
AA = C6(CJ)
C6(J) = C6(I)
C6(I) = AA
CONTINUE
CONTINUE
IF(J .EQ., M) GD TO 95
J = J+1
K=J

Cl1(J) = CU(K) ~

C2(J) = C2(X)

C6(J) = Cb(K)

GO TO 60
CONTINUE

NOw FIND MIN(SIGMA=Y(I),C(I))

DO 210 I=1,N
D1(I,1) = AMINLI(C1(I),C(1))
D2(1,2) = AMINI(C2(I),C(2))
D3(I1,3) = AMINI(C6(I),C(3))
CONTIHUE

FIND MAX VALUES FROM CL1(I1),02(1),D3(I),AND
D4(I). THIS IS THE FUZZY BRYES® THEORENM KODEL.

ES '= D1(1,1)
€6 = D2(1,2)
E7 = D3(1,3)
DO 220 I = 2,K

E5 = AMAX1(ES5,D1(I,1))
E6 = AMAX1(E6,D2(1,2))
E7 = AMAX1(E7,D3(I,3))

b —— et e e s o s = v e =
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220  CONTINUE
-~ ES = 1,0+ES
C - E6 = 1.0+E6
£7 = 1.0+E7
. ES = 1.0-E5
(O E6 = 1.0-E6
E7 = 1.0=E7
~ CEHEFEEXFAZIAATFEXTIFRIBEEERELRLSRXXEAXNSZXERLERXR
L ¢
c FIND FUZZY DECISION BY USING
c DISJUNCTIVE SUN,
C ¢
Clt!“ttltt¥t3'¥333‘3¥'$(¥‘l‘!tt‘lt‘tt$13¥3
N E9 = 1.0-ES .
C E10 = 1,U-E6 . .
E11 = AMIN1(ES,E10) .
. E12 = AMIN1(E9,E6)
- E13 = AMAXI(EL1,E12) . -
E14 = 1,0-E13 : .
. E15 = 1.0=E7
C E16 = AMINI(EL3,EL1S)
E17 = AMINICE14,ET) °

. E18 = AMAX1(E16,ELT7)
C XX(ICOUNT) = E1B
FF = XX(ICOUKT) .-

- c TEST TO DETERMINE IF FUZZY VALUE IS
L c LESS THAN .25,
c
IF(ICOUNT .NE. 2) GD TO 240
~ RHO1 = ABS(XX(1)=XX(2))
c N
- c NO# COHMPUTE RHO USING 1=-(MINMAX RULE),
o
RHO = 1.0=RHOI
IF(K .EQ. 2) GO TO 250
L c
c
¢ NOw TEST TO SEE 1F WE HAYE A GOUD FIT.
C c
c .
( IFCC(RHO .LT. FUZLH) .AND. (RHO .GE. FUZLL)) GO TO 240
. [od h
¢ KO==BAD FIT=~SET XX(1) = XX(2) AND ICOUNT = 1.
c
C XX(1) = XX(2)
ISUNL = © .
CALL ¥YOPT
. GO TO 230
250 CONTINUE
. IF((RHO .LT. FUZOH) ,AND. (RHO .GE. FUZOL)) GO TO 240
‘. XX(1) = XX(2)
ISUKU = 0
. CALL YOPT .
C GO TO 230 ..
240  CONTINUE
c
C o WE HAVE A GOOD FIT. COMPUTE YOPT AiD COMPUTE
c A NEW FUZZY CHARACTERISTIC VALUE BASED DW YOPT.
) c
C c
CALL yYOPT
¢
- c TEST wHICH PASS THIS IS 1.E. 1 OR 2.
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[
IF(ICOUXT ,NE. 2) GO TO 230
Xxt1) = xx(2)
230 CONTINUE
RETURN
END
STITL YOPT/LSQ

[ XX 2RI S22 222 2 222 223 R 2 2 22 22 R R 2R 2R 2R R 222 2SR 222222 2 X

SUBROUTINE YOPT

C
[ THIS ROUTINE #ILL COMPUTE A NEW YOPT ACROSS
o TwO INTERVALS (IN AND IN+1),
c
COMNON
X /MAIN /XIN(50), YIN(S50), A(S5,5), X(5), R
X N, K, EVAL, ESQVAL, Y(S0), DNORMNM,
X XINI(S0), TINI(50)
X /YOPT /XX(5}), ISUML, 1s5UKO, c3(2),
X INTL, INTOQ, LLP RHO1, SKNR, RHO
X /SUMS /YY, XY, xS0y, AY(5,5),
X XYY, XX82Y
X /SCALE /C, D, 1L
X /SOLIN /E(S), ISKIP, FSOLIN(3)
X /GENINV /Y¥G(10,10)
X /0PTSOL /MSTAR, MFIN, E2, MEOPT, ..
X FYOPT(50,8), NY
DIMENSION ALC20),8L(10),PI1(20),THETA(C20),X1(50),
X ML(50),MQ(50),ALLC10),BLL(10),PT2(20)
IF(N .EQ, 2) GO TO 30
ISUKL = ISUML + 1
[of
[o SOLVE FOR LINEAR CASE BY FORMING TWO SEPARATE ARRAYS
C THEN COMPUTE THE YOPT AND THEN SUBSTITUTE YOPT BACK
[« INTO THE INITIAL LINEAR ARRAY.
C
C TEST TO DETERMINE WHICH PASS THIS IS.
C .
CYIEEEBIUREFSRRXEFFRISRSRAREERRELEERESFIAANENRERZIREISSRXATAESNIFREIRES
[
C INITIALIZE SONME MULIPYING FACTORS I.E, PI(LINCASE) AND
o THETA(QUADRATIC CASE).
C .
CrEI s SNSRI NI RN NSRS ORI SN ENEEIXNEEAIELRISEANSRETNTSLEKLIBRSELEEEX
PI1CY) = ,277777779
PI1(2) = 12820512
P11(3) = ,07352942 .
PI1(4) = ,047619049
PI1(S) = ,03333339
PI2(1) = ,33333333
PT2(2) = ,16483533
PI2(3) = ,098039269
PI2(4) = ,064935207
Pr2(5) = ,046153914 .
IF(ISUML ,EQ. 2) GO TO 20
ML(1) = S
INTL = INTL + §
C
C FORM INITIAL LINAER ARRAY AND SCALE BY 10.
[«
AL(1) = AY(1,1)/710,0
ALC2) = AY(1,2)/710,0
ALC3) = AY(2,1)710,0
ALC4) =

AY(2,2)/10,0

——_———



e e o st S———

-

160

- s e e e e e

C
BL(1) = YY/10,.0
~ BL(2) = XYY/10.0
« ALLC1) = YG(1,1)
ALL(2) = ¥G(2,2)
- c
C o SET ISUMQ = 0O
c
- 1SUNQ = O
C ICOUNT = 0
Cltltllll!‘#?#l‘?“ltllt‘t#l1"“t&lltll‘¥l¥‘tttltl!l!itlt%#‘*‘
c
C c FIN STARTING VALUE
c
_ CEXSXERXERFELIEIXXEIRXRERREIFEPXBLSEFLIRAXAEEXXAFXEIRRFAEXXIENERETRXRX
C MSTAR = MM=4 )
NUMCOD = MM
. GO TO 200
C 20 CONTINUE - -
C R
c c FORM SECOND LINEAR ARRAY AND SCALE BY 10,
c .
AL(S) = AY(1,1)/10.0
AL(6) = AY(1,2)/10.0
C ALCT) = AY(2,1)/10.0
AL(B) = AY(2,2)/10.0 -
R BL(3) = YY/10,0
C BL(4) = XYY/10.0
c
_ c SET ISUMQ = 0O
C C
1SUM0 = 0
ICOUNT = ICOUNT + 1
C ALL(3) = YG(1,1)
ALL(4) = ¥G(2,2)
ALL1 = ALLC1)+ALL(3)
\ ALL2 = ALL(2)+ALL(4)
ALL3 = ALLI1*PI1(ICOUNT)
¢ ALL4 = ALL2¥PI2(ICOUNT)
. c
c NOW FORM LINEAR YOPT.
p v
C AC1,1) = AL(1) + AL(S) -
A(1,2) = AL(2) + AL(®)
_ A(2,1) = AL(3) + AL(T)
C A(2,2) = ALC4) + AL(8)
YY = BL(1) + BL(3) -
XY = BL(2)+BL(4)
<. CEEXEZXIXEXXFSERAAIZRXRSRTSEREXRIFESIRSASIIRELECSATEFESEXASTEESEERES
c
C FIND THE FINAL X DR Y VALUE,
. C
MFIN = MM
NUMCO = NUHMCO+4 -
[ NU¥COl = NUHCO = wmu .
IF(NUNCD1) 102,104,106
102  CONTINUE
o wRITE(6,600)

600 FORMAT(20X, "ERROR INTERVAL NUNBER IS NEGATIVE”)

i GD TO 2
(- 104 CONTINU

c‘ll‘3‘.-!!)Ull"!ll‘l‘l“l.:'l(lllll#t!‘lll‘l.ll(ll’ltl“‘l‘l“"

c
- c

00
E

COMPUTE THE Y = A’X MATRIX THE SHORT 4AY,

e e e e e e e e e e e ————— = e et —————— ——— e ¢+~ -



16l

DS TS

)

-~

9]

g;:::::{::::::t:txt:tt:a;;x;;z::::tttlt:xzu-t:t:x:t;v:t:t:u:;att
IF(NY ,EQ. 1) GO TO 36
DI = XINI(MSTAR)
D2 = XINI(XSTAR)
DO 26 I=MSTAR,MFIN
D1 = AMINI(DI1,XINI(I))
D2 = AMAX1(D2,XINI(I))
26 CONTINUE
DMIN = D2=D1
DMAX = D2+D1
CEFIIIREBE SN IS B EE N AT RSEXILIFXNSEINIIITINSSREITSRRSARSRACXREY

o
C SCALE XINI VALUES AND FORM THE PRODUCT
o Y = A%X.
(o
CEXIXIXERFZEZIFARFTIIIESIRLNEREIRZIREILXNXINSNSIEINSRIZRNFENFSXATNTENRERARE
val = 0,0
VAL = 0,0
YA2 = 0,0
DO 28 I=MSTAR,MFIN
VAL = (((2,0%XINI(CI))=D®RAX)/DMIN)I*YINI(I)
VAL = VAL+4VAL
VA2 = VA2 + YINI(Y)
28 CONTINUE

GO TO 39
36 CONTIKUVE
D1 = YINRI(MSTAR)
D2 = YINI(HSTAR)
DG 37 I=MSTAR,HFIMN
D1 = AMIN1(D1,YINI(I))
D2 = AMAX1(D2,YINI(I))
37 CONTINUE

DMIN = D2~D1} .

DMAX = D2+D1}

VAL = 0,0

vab = 0,0

VA2 = 0,0

DO 38 1=MSTAR,MFIN
VAL = (((2.0%YIHI(I))=DMAX)/DMIN)*XINI(I)
VAL = vAL + VAl
VA2 = VA2 + XINICI) i

38 CONTINUE
39 CONTINUE
CFES R s s NIRRT SN TSR RTINS SINRTEENTFZAENSXSRENCLRETNY
[«
c NOm» SOLVE THE MATRIX,
C
CHEEFFILEEITFSISXITSSERSSSRRINRIILIBISARSITIAILESTLS
ALLS = ALL3*VA?2
ALL6 = ALL43VAL
CEXB TS RIS FEAEFEINS SR ESUEEISIRETIRITFIRESSRSRTRNERS
c RESCALE ALLS AND ALLG6.
CEEFFIBEEIIEIXETIERENFXIRSSSSSETBIAIERSXSIATEXRRLE ¢
ALL? = ALLS=(DMAX/DMINI®ALLE
ALL8 = (2.0%ALL6)/DMIN
106 CONTIHUE
COBBES IR E RN EE SRS KN A SRS IITERSVATERFRRSR SRS SSSSESRSRESFRERIES

C

C COMPUTE ThHE UPPER ERROR BOUND ALLOWED
[ FOR A YOPT SOLUTION,

c

CrEBITSISIEISECSILSSISSSEBEISSRFEXINAEITSRAERESIERSABEINSTEERERTE
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e e e e e o s e —— A e 8 e S —— . S it AP = o P A P s o o b % v e e = -

'~ ECONS = E2
CONS = RHO1¥*SNR
' CONS1 = EXP(RHO)
E2 = EVAL+CONS+CONS!

»

NOW CALL THE APPROPRIATEZ ROUTIRES.

nNnon

CALL GENINY
CALL OPTSOL
£2 = ECONS

SET INITIAL LINEAR ARRAY EQUAL TO YOPT.

nnnN

AL(1)
AL(2)
AL(3)
AL(&)
BL(1)
BL(2) = X
INTQ = 0

ACL1,1)
ACL,2)
AC2,1)
A(2,2)
Yy

=< nuHpun

OoNn D 0 0O 0

SET ISUML = 1 AND SET ISKIP = 0

M
nan

1SUML
ISKIP
C GO TO
CONTIN
ISUKMG
C ISUKL

QO
.

]
E

W
o

nueNoun

ISUMO +
0

SOLVE FOR QUADRATIC CASE BY FORMING TWO SEPARATE
ARRAYS AND THEN COMPUTE YOTPQ AND THEN SUBSTITUTE
YOPTQO BACK INTO THE INITIAL QUADRATIC ARRAY.
TEST TO DETERMINE wHICH PASS THIS 1S.
IF(ISUMQ .E0. 2) GO TOD 40

FORN INITIAL GQGUADRATIC ARRAY.

,
nonn aonNnaonnnnnN

K =0
DO 32 I=1,3
C DO 34 J =1,3
K = K¢l
. AL(K) = AY(I,J)/10.0 .
C 34 CONTINUE
32 CONTINUE
BL(1) = YY/10,.0
C BL(2) = XYY/10.0
BL(3) = XX50Y/10,0

('\
noon

, SET ISuML = 0

- ISUML 0

o MSTAR = MM=4
"GO TO 200 °

0 CONTINUE

FORK SECOND QUADRATIC ARRAY

onnNn &

o k=9
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C

C

44

nNnn 0onn

60
50
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bo 42 1 =1,3
. DO 44 J =t,3

K=K+ 1
AL(K) = AY(I,J)/10,0
CONTINUE
CONTINUE
BL(4) = YY/10,0
BL(S) XYY/10,0

BL(6) = XXSQ@Y/10,0

SET ISUML = ©

1"
o -

ISUML
NOw FORM QUADRATIC YOPT
L=25s
K =20
po 50 I=1,3
Do 60 J=1,3
L = L+!
K= K+
ACI,J) = AL(K) + AL(L)
CONTINUE
CONTINUE

YY = BL{1) + BL(4)
XY = 8L(2) + BL(S5)
XsQY = BL(3) + BL(6)
MFIN = MM

CERFESFTFFIRIFIFXIRLAIFEFIESIER XIS EREESEEFEERSSEERIFTXASRXTEIIRIRAZEF LD

C
C
c

COMPUTE THE UPPER ERRQOR BOUND,

CRrESETEXRIRRIRIFAN XA EFEEAFERIFEXRERFEI LA AR SRR SXNENSRRIERLLTIZRNELRS

[aNaNs] NnNno

NnMNOn

80
10

ECOKNS = E2

CONS = (1.0=RHO1)¥SNR
CONS1 = EXP(RHO)

E2 = EVAL+CONS+CONS!

SET A FLAG TO SKIP HESCALE.

IsKlP = 1

NO4 CALL THE APPROPRIAT RUUTiNES

CALL GENINV
CALL OPTSOL
E2 = ECONS

SET INITIAL QUADRATIC ARRAY EQUAL TO YOPT.

K =20
Do 70 1 =1,3
DD 80 u=1,3

K = K+1i
AL(KY = ACI,J)
CONTINUE
CONTINUE
BL(1) = YY
BL(2) = XY
BL(3) = XxSOY

SET ISUMQ = 1 AND SET ISKIP

e U ——




0o o0 O 0O

A

e

N0 N

200

STITL

0
0

ISKIP
ISUML =
IsuMQ = 1
INTL = 0
CONTINUE
RETURN

END

SUBROUTINE

OPTSOL

164
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OPTSOL/LSO

CHINBREREAREREENIRFISRRRRSERISRASEEAFFARTERFEANRREEEEANERETRENNNERS

C
c
[«
C

COMPUTE THE OPTIMUN SOLUTION AND ERRORS
ASSOCIATED WITH THIS SOLUTION.

CEFXIF IR RS A E IR S RPN AR RIS E R R X FEXIRERF NI TIENEISAIEENIIRRRFXRAETETS

3 B P D D N D D D B B D e M

COMMON
/MAIN /XIN(S50),
N, v, EVAL,
XINI(SO0), YINI(50)
/SUMS /YY, XY,
XYY, XXSQY
/GENINY /7¥G(10,10)
/50LIN /E(S), I
/FUZZY /51G(50),
FUZLL, FUZLH,
FUZQL, FUZGH
/0PTSOL /MSTAR,
FYOPT(50,8), NY
/YOPT /XX(S),
INTL, InTG, MN,
DIMENSION BB(S),CE(3)

YIN(50),
ESQVAL,

Xsoy,
SKIP,
EXAX,
Fl,
MFIN,

ISUML,
RHO!L,

A(S5,5), X(s),
Y(so), DNORN,
AY(S5,5),
FSOLIN(3)
ICOUNL, 1couna,
F2, F3,
E2, HFOPT,
IsuMQ, c3c2),
SNR, RHO

CHEEFEINIXRTILINBISIERIFREN KN ERSEFIFI RS SR EF AN ENXFR SR EXXERAEINKREAFRIRE B RE

c
C
C

INITIALIZE X(I) TO ZERO

CERFREXRRRER IR NI ESREIRRSIREREXFXERFEEANRIRIS L ZERFEXRFEXRRRNERES

10

DO 10 I
CE(I)
CONTINUE

1,3
0,0

CHEXFBAFFINAFRUSIFFTERIRAFRASFIRTRELFEATRNBAXSINAREXSRS SRR R R R XS

C
c
C

TEST TO DETERMINE IF N

1 OR 2.

CHEREBXXENRNRRERRISRFLERISENRENAREFE NN FEEAXTSIABENRAREFFXEKEEERS

IF{N .EQ,

2) GO TO 15

CHEAZXEXSERXFINNSSRSENEESXERERF IS ARSI EEAIEEEXFANEERLSESXBREARSFES

C
C
c

THEN BUILD THE B MATRIX.

CEXXEIRFTRFXXSESIFIRSSINLINAISTAZASENAEEIZ RN SRR RN IRENEXEEFIRARIESE

15

BB(1)
BB(2)
L= 2
GO TO 18
CUHTINUE

Yy
XY

X N E RN R XX IS S F RN A SR RIS AN SR NI IR IR N E RN N E SR EE S XN EERE AN ENT

C
C
C

BUIL THE B MATRIX FOR QUADRATIC.

C""“l'l.i.tlll"!“‘!"'U'.‘ll‘tl!l‘(tllilll!'l‘lll'"ll‘l't‘t‘!l

BB(1)
BB(2)

144
XY
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BB(3) = XSOY
L =3
C 1 CONTIRUE
CFERRI RS E8R IS S S RRFERER IR EARRRAA SR RENTREIASRRETERTERARRASRRIEXEEE

¢
C} [od FIND COEFFICIENTS TO LINEAR EQUATION

c

CHEEF SRR RAB RSB EEAT IR EREXXRAEARAXRIFRFETXEEINRXSEFARIESERERSXINEREE
C DO 20 I=1,L

AA = 0,0
DO 30 J=1,L

C AA = YG(I,J)*BB(J)

30 CE(I) = CE(I)+AA
- 20 CONTINUE
< IF(N LEG. 2) GO TO 45

22 CONTINUE v
C"I‘"l"‘l*llllt'¥l‘ltl;ll!lll3SI“““3"#8'!‘3*‘:1333“'3'“"3‘

C c
c FORM LINEAR EQUATION AT THE GIVEN XS
c
C: C“"l“ll‘l!lt'll!‘l3‘tlltlt‘l‘l!l'l‘tl!llt“‘lllltll'l‘l!!“lltl#“‘
IF(NY .EQ. 0) GO TO 32
U0 34 1 = MSTAK,MFIN
C o3 Y(I) = CEC1) + CE(2)SYINICI)
GO TD 36 ..
~ 32 CONTINUE
C DO 40 I=MSTAR,MFIN
40 Y(I) = CE(1)+CE(2)*XINI(I)
. 36 CONTINUE
L Cl“"‘ll‘l'l#lll.llt‘U"l‘l‘lt*ltltlll*33!‘l‘t&‘l!!!!‘t"ltllllll'l
c
. c TEST TO SEE IF WE CAN REPLACE THE
[ PAST 2 EQUATIONS 8Y ONE,
c
Cl“‘l‘l"’lll!tlt';‘l‘l‘3‘UI"I‘3!*'tt"‘l‘it'l‘l!l‘!l"ltt"‘ll!t‘
I1 = MFOPTI=1
IF((FYOPT(II,3) .EQ. 0.0) ,AND.
X (FYOPT(MFOPT,3) .EQ. 0,0)) GO TO 42
C IF((FYOPT(II,3) .EO. 1.0) .AND.
X (FYOPT(MFOPT,3) .EC. 1.0)) GO TO 42
. GG TO 55
o 42 CONTINUE .
STAR = FLOAT(MSTAR) .
) FIN = FLOAT(MFIN)
< IF((FYOPT(II,1) .NE. STAR) .AND.
X (FYOPT(KFOPT,2) .NE, FIN)) GO TO 55 .
) MFOPT = II
C GO TO 55

45 CONTINUE
CESBEEXRR SRR SRS KRN FA ARSI IEE SRS ANERIS BN XERRXSFERTAFEIE AT SIS ESRRERES

- C

¢ FORN OQUADRATIC COEFFICIEATS.

R c

L c.“t;.llt;xt'3“""""““"“'!"“.""‘l“"“"83“3.""!"‘}33
IF(NY .EO. 0) GO TO 47 :

. DO 46 = PSTAR,NFIN

Z 4e Y(I) = CEC1)+(CE(2)*YINI(I))+(CE(3)*(YINIC(I)*%2)})
GO IO 49

. 47 CONTINUE

. DO 48 I=MSTAR,MNFIN

48 Y(I) = CECI)+(CEC2)3XINICL))+(CE(3)*(XINI(1)%32))
49 CONTINUE
CAITERE RN NI NN B I R R E N SIS RSN AT E ISR IE SN AN FSEESSSISRNARYSEERRLRETRE
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B et e D

v

O O

0

!

-~

(7

C
c
[o
[
Cc

52

55

S4

51
53
S8

57

61

62

59

63

TEST TO SEE IF WE CAN REPLACE THE
PAST 2 EQUATIONS BY ONE.

I1 = MFOPT~-1
IF((FYOPT(II,3) .EQ. 0.,0) .AND.
X (FYOPT(MFOPT,3) .EQ, 0.0)) GO TD 52
IF((FYOPT(II,3) .EQ. 1.0) .AND.
X (FYOPT(MFOPT,3) .EO, 1.0)) GO TO 52
GD TO0 SS§
CONTINUE
STAR = FLOAT(XSTAR)
FIN = FLOAT(MFIN)
IFC(FYOPT(II,1) .NE. STAR) .AND.
X (FYOPT(MFOPT,2) .NE. FIN)) GO TO SS
MFOPT = 11

CONTINUE
EE = 0.0
AA = 0,0

DNORM = 0,0
DNORM] = 0,0

E2D = 0,0
X$ = 0,0
X4 = 0.0

IF(N .EQG. 2) GO TO 54
GAM = ATAMN(EC(2))
CONTINUE
DO 50 I=MSTAR,MFIN
IF(NY .EG, O) GD TO Si
ARA = XINI(IX=Y(CI)
GO TO 53
CONTINUE )
AA = YINICI)=Y(I)
CONTIWUE
SIGCI) = AA
IF(AA .LT. 0.0) GO TO 56
IF(N LEG. 2) GO TO 58
E2D = (AA®SIN(90.0~GAK))*¥2
GO TO 64
CONTINUE
IF(NY .EO0., 0) GO TO §7
AK = (2,0%CE(3))*YINI(I1)

GO TO 61

CONTINUE
AM = (2,0%CE(3))*XINI(I)

CONTINUE
GAK = 90.,0~(ATAN(ANM))
E2D = (AA®SIKN(GAM))*3*2
GO TO 64

CONTINUE

IF(N .EQ. 2) GO TO 62
E2D = (AA*SIN(GAM))*¥2
GO TO 64
CONTINUE
IF(NY .EQ, 0) GO TOD S9
AR = (2,0%CE(3))*YINICI)
GO TO 63
CONTINUE
AM = (2,0%CECI))*XINICI)
CONTIKUE
ATAN(AN)
(AASSIN(GAM))I*32

SEXEFXEFETIEEEESIRSEEEEISIEEXSAISESXXFNRIAEXANFRFENFRIFEXEILEESERERESSX

’
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-

O 0O 0

o 0 0

)

64 CONTINUE
DNORM1 = DNORMI+E2D .
50 EE = EE+AA

DNORM = SORT(DNORM1)
CE R RN RS E ISR AN SR RN AR R F R RN SRR RE RS S SR AR RN F IR ERIL R R FRSS XXX ENER

C

o COMPUTE SUM E SQUARE ERROR,
o .
Cltttttltl‘tll‘lt!!ltll‘t!tl!tt‘#lltttllttltll“lt&l!lt!tttxzt:“t#
ESC = 0.0
AA = 0.0

DO 60 I=MSTAR,MFIN
AA = (YINIC1)=-Y(I))*¥2
60 ESQ = ESG4AA .
‘ESOVAL = SORT(ESQ) . .
CFEIXXXXXRTXAXFFEXFEIFLERESIEERARNRIBEFLEREFEAREXAFEESRASEXREXIERXEXE .
c
c FIND EMAX. . -
c. - .
c“l"""”"l""l!""3‘¥8¥"‘3!“1"‘;“'3*“3“}3'!'lt¥‘¥¥'
EMAX = ABS(SIG(MSTAR))
KK = MSTAR+1
DO 70 I=KK,MFIN
EMAX = AMAX1(EMAX,ABS(SIG(I)))

70 CUNTINUE e
90 CONTINUE

IF(DNORM .GT. E2) GO TO 1000

MFOPT = II

FYOPT(IL1,1) = MSTAR

FYOPT(I1,2) = MFIN

FYOPT(1I,3) = NY

FYOPT(II.4) = CE(1)

FYOPT(11,5) = CE(2)

IF(N .EQ. 2) GO TO 1010
FYOPT(11,6) = 0,0
GO TO 1020
1010 CONTINUE
FYOPT(II,6)
1020 CONTINUE
FYOPT(11,7) = ENAX
FYOPT(II,8) =
GO TO 1200
1000 COMNTINUE
MFOPT = II+1
1200 CONTINUE
RETURN
END
STITL PLOT/LSO
SUBROUTINE PLOT
C“l““‘“‘3"'3“*3!"“"l’l"l‘l"‘lltUC""‘C"F“*"“‘
c

CE(3)

C THIS ROUTINE 41LL COMPUTE THE VALUES OF THE FUNCTIOWN
o AND PLOT THEM AGANIST ThE INITIAL VALUES.
c .
T L R D T e
COMMON
X /MAIN /XIN(S0), YIN(SO), k(5,5), X(58),
X N, L1 EVAL, ESQVAL, Y(50), CKORM,
X XINI(50), YINI(S0)
X /0PTSOL /NSTAR, MFIN, E2, MFOPT,
X FYOPI(50,8), NY

DIMENSION AA(50),8X(50),C(50),D(50),E(50),F(50),
XIAA(50),I8X(50)
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0O 0 0 o o 0

O o 0 o o

~

o0 0 0o

o

\J

REAL HR,IYY
DATA HWK,IYY,IB/iHN,1HY,1H 7/
CHEFIREITAIRSSAERRSSRRRETEARITERIEESINEBEXNEFRRRI XSRS

o
[o TEST TO DETERMINE WHICH FUNCTION wE NEED
C TO PLOT,
gtllttlttttl!tlt‘tittlttll*l#lttlttt!tt#t:ltllt!t‘ttt::ttt
ANS = IB
XK = 0
K=0
J =1
I =1
Iy =0
IX =0
5 CONTINUE

IT = IFIX(FYOPT(I,3))
IF(II .EQ. 1) GO TO 20

IY = 1Y+l ,
C"“t’*“‘ll"x“U“!l""'ll“'l!l3“'3".il"tl!l’llll‘.‘l“
c

c COMPUTE Y = AX + B

c

CXEFIZRXFIFIXXIESXISFFRRARN R XRIXSARNSSRXEIREFAEXATXKXIXTSTITXRNNREX

MSTAR = IFIX(FYOPT(I,1))
MFIN = IFIX(FYOPT(I,2))
DO 10 J=MSTAR,MFIN
K = K+1
AA(CK) = FYOPT(1,4)+(FYOPT(I,S5)*XINI(J))+
X(FYOPT(I,6)*(XINI(J)®%2))
C(K) = XINI(J)
D(K) = YINI(J)
10 CONTINUE
I = I+}
IF(I .GI. MFOPT) GO TO 100
GO 10 5
20 CONTINUE
IX = IXel
NSTAR = IFIX(FYOPT(I,!))
PFIN = IFIX(FYOPT(I,2))
DO 30 J=MSTAR,NFIN
KK = KK+1 -
BX(KK) = FYOPT(I,4)+(FYOPT(1,5)%YINI(J))+
X(FYOPT(1,6)%(YINI(J)*%2))
E(KK) = XINI(J)
F(KK) = YINI(J)
30 CONTINUE
1 = 14}
IF(1 .GT. MFOPT) GO TC 100
GO TO 5
100 CONTINUE
IFCIY LEG. 0) GO TN 110
WRITE(6,530)
WRITE(1,550) -
READ(1,560) ANS
IFCANS ,EQ, IYY) GO TO 130
WRITE(6,500) (AACL),D(L),C(L),L=1,K)
GC TO 110
130 CONTINUE
DO 140 L=1,K
IAACL) = IFIXCAACL))
AAB = FLOAT(IAACL))
AAA 3 ABSCAACL)=AAB)
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160
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580

120

SBEND

IF(AAA .LT. .50) GO TO 140
IAACL) = IAA(L)+!
CONTINUE
WRITE(6,570)(IAA(L),D(L),C(L),L=1,K)
CONTINUE
IF(IX .EQ. 0) GO TO 120
wRITE(6,510)
WRITE(6,540)
WRITE(6,510)
IF(ANS .EQ. IYY) GO TO 150
WKITE(6,520)(BX(L),E(L),F(L),L=1,KK)
GO TO 120
CONTINUE
DO 160 L=i,KK
IBX(L) = IFIX(BX(L))
BAA = FLOAT(IBX(L))
BBA = ABS(BX(L)=BAA)
IF(BBA ,LT. .S0) GO TO 160
IBX(L) = IBX(L)+!
CONTINUE
WRITE(6,580)(IBX(L),E(L),F(L),L=1,KK)
FORMAT(10X,°Y =”,F10.5,5X,°YINn =°,F10,5,5%,
X “XIN =7,F10,5)

FORMAT(10X, "S¥S2 XXX ZXIFEEIRRXENEEIARAETILFFRBTASIARNREERE" )

FORMAT(10X,”X =°,F10.5,5%X,°XIN =°,F10.5,5X,
X *YIN =7,F10,5)

FORMAT(33X,°Y = AX + B?)

FORMAT(33X,°X = CY + D") .
FORMAT(“00 YOU WANT INTEGER OATA (Y OR W)?7)
FORMAT(AY)

FORMAT(10X,“Y =’,F10.5,5X,°YIN =,F10,5,5X,
X XIN =7,F10,5)

FORMAT(10X,"X =*,F10,5,5X,“XIN =’,F10,5,5X%,
X“YIN =°,F10,5)

CONTINUE

RETURN

END
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