Optimization of a new linear FM detector using digital signal processing techniques

Edward J.A. Kratt
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Electrical and Electronics Commons

Recommended Citation

Kratt, Edward J.A., "Optimization of a new linear FM detector using digital signal processing techniques" (1983). Dissertations. 1276.
https://digitalcommons.njit.edu/dissertations/1276

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

OFTIMIZATION OF A NEW LINEAF FM DETECTOF USING IIGITAL SIGNAL FROCESSING TECHNIQUEG

EDWAFILI J. A. KFIATT III

THESIS FOR MOCTOF OF ENGINEERING SCIENCE DEGREE ELECTFICAL ENGINEERING IEFAFTMENT NEW JERSEY INSTITUTE OF TECHNOLOGY MAY 26. 1983
JACOE KLAFPEEF Advisor

Abstract

AESTFACT

This dissertation describes and synthesizes a new member of the family of FM detectors irtroduced earlier by klaffer and K゙ratt. A salient froferty of these detectors is low delay with excellent sensitivits. The emphasis in the new detector is. on the ease of disital implementation. In additiong the new detector is also extremely linear. In consruence with the other klamper-kratt detectorsy it makes use of zero aroup delas elements, balance at RF, quesi-sunchronous detection and carrier cancellation. The ferformance of the detector is mathematicelly analyzed under the conditions of a modulated inmut wavey sinewave interferenceg and noise. The results indicate improved ferformance over other members of the family in terms of limearituy thresholdy and ease of disital implementation Fealization of the detector usins FIf disital sisnal Frocessins methods is discussedy includins linearity owtimization S Substantal alsorithm simplification was achieved. Hish center frequencies with low samelins freauencies are obtainable due to the frequency foldover effect. Narrowbaris fredetection filteriris can be included in the detector frovided a wider fredetection filter is fresent. Fesults of a workins model are showr.

BY

```
EIWARII J. A. KRAFT III
```


A dISSERTATION
 FFESENTEII IN PARTIAL FULFILLMENT OF
 THE REQUIREMENTS FOR THE LEGREE

OF
dOCTOR OF ENGINEERING SCIENCE IN ELECTRICAL ENGINEERING
AT
NEW JERSEY INSTITUTE OF TECHNOLOGY

This dissertation is to be used only with due regard to the rights of the author. Bibliosrafhical references mas be noted but Fassases must not be copied without the permission of the Institute and without credit given in subsequent written or published work.

Newark, New Jersey

Name: Edward John Andrew Kratt III

Hesree and date to be conferred: II.Engr. Sc., 1983

Secondary education: Butler Hisi Schooly Jure 1960

Collesiate Institutions Mate Mesree liate of mesree

Lenish Uriversity 1960-1964 GSEE Jure 8. 1964

NCE 1967-1973 MSEE June 1, 1973

NJIT 1973-1983. M.Ensr. Sc. Mas 26. 1983

Major: Electrical Ensineerins

Fosition held: Chief Ensr., FFL Industries, Eoontony N.J. 07005

AFFFROVAL OF IISSERTATION

OFTIMIZATION OF A NEW LINEAF FM IEETECTOF USING IIIGITAL SIGNAL FFOOCESSING TECHNIQUES

BY
ELIWAFII J. A. KFAATT III

FOF

IEF'AFTMENT OF ELECTRICAL ENGINEEFING NEW JEFSEY INSTITUTE OF TECHNOLOGY

EY
FACULTY COMMITTEE

NEWAFK, NEW JERSEY

OCTOBEF 1982

$$
(\pi x p 1 p g)
$$

The author also acknowledses the encourasement and understandins of his family, and the supfort of colleases, who have all helfed make this work fossible.

TABLE OF CONTENTS

Fase
CHAFTER I: INTRODUCTION
1.1 Backaround 1
1.2 Investisation of an Improved Iletector 3
References - Charter I 8
CHAFTEF II: FUNCTIONAL DESCRIFTION
2.1 Introduction 10
2.2 Wide-Band Quasi-Coherent FM Iniscriminator 10
2.3 Cancellation of FF 13
CHAFTEF III: THEORETICAL FEFFOFMANCE
3.1 Modulated Irifut Wave 14
3.2 Sine Wave Interference 17
3.3 Noise Ferformance 20
Feferences - Chapter III 28
CHAFTEFF IV: IIIGITAL IMPLEMENTATION
4.1 Iritroduction 29
4.2 Linear-Fhase Realizations 29
4.3 Linearity Optimization 36
Feferences - Chafter IV 39
CHAFTEF: U: REALIZATION
5.1 Introduction 43
5.2 Alsorithm Simplification 43
5.3 Ssstem Confisuration 46
5.4 Software Mescription 49
Fieferences - Chaster V 53
CHAFTER UI: ACTUAL FEFFORMANCE
6.1 Introduction 55
6.2 Narrow-Band Ferformance 58
6.3 Wide-Fand Ferformance 61
6.4 Sine Wave Interference 64
6.5 Noise Ferformance 64
References - Charter VI 69
CHAFTEF UIIः CONCLUSIONS
7.1 Conclusions 70
7.2 Sussestions for Future Efforts 71
Fieferences - Charter VII 72
AFPENMIX I: Iletector Outrut for Narrow-Band FM Wave 73
AFFENIIX II: Baseband Qutrut for Sine Wave Interference 76
AFFENAIX III: SNF-CNF LIerivation 78
AFFENIIX IV: Frequencs Resfonse of a Linear-
Finase FIF Network. 87
AFFENLIX V : Frequency Fesponse of the Iletector 93
AFFENDIX UI: Time Fesporise of the Detector 99

TABLE OF CONTENTS (contd)

LIST OF FIGUFES

Fistre Fiage
1-1 Elock Liagram of the Orisinal fletector 2
1-2 Output Characteristic of the Orisinal Inetector 4
1-3 Intesrator Froblem under Wide-Eand Conditions 5
1-4 Block IIasram of Another Form of the netector 6
1-5 Block Inasram of a Third Form of the fetector 7
2-1 Elock Iliasram of the New lletector 11
3-1 \&eo $(t) \geqslant v s+\Delta \omega_{i} / \omega_{0}$ for Various Values of B / A 19
3-2 Comflete Inetector for Noise Calculations 22
$3-3$ FSn of $x(t)$ and $y(t)$ 22
3-4 FM System Ferformarice 26
3-5 Threshold (CNF AM $_{\text {G }}$ Characteristics 27
4-1 Frecuencs Fesponse of Inifferentiators 31
4-2 Frequency Fesponse of Hilbert Transformers 32
4-3 IIetector Outwut 35
4-4 Non-Ideal Elock Fefreseritations 38
4-5 LIetector Ontfut with Linearity Oftimization 40
4-6 Equivalent Gain Response of the Ietector 42
5-1 Simblified Metector Block Iiasram 45
5-2 Enuivalent SimFlified Metector Elock Miasram 47
5-3 Metector Sustem Block IIiasram 48
5-4 Fre-lietection $k F F$ Freatencs Fiesforise 50
5-5 Inetector Alsorithm Flow liassam 51

TABLE OF CONTENTS (conts)
5-6 Feal-Time Alsorithm Computations 54
6-1 Actual Detector Response 56
6-2 Multi-Eand Netector Response 57
6-3 Narrow-Band Ferformance 59
6-4 Wide-Band Ferformance 62
6-5 Sine Wave Interference 65
6-6 Actual 《eo $(t)\rangle$ vs. $\Delta \omega_{i} / \omega_{0}$ for Various B / A 66
6-7 Exferimental Noise Ferformance of the Netector. 68

LIST OF TABLES

Table Fase
3-1 Modulated Infut Wave 15
3-2 Sine Wave Interference 21
4-1 Orisinal Iletector Coefficients 34
4-2 Oftimized Iletector Coefficients 40

CHAFTEF I

INTFONUCTION

1.1 Eacksrourid

The FM detector described in this fafer is one of a family of FM detectors (Kef. 1) that orisinally resulted from the need to discriminate a frequency modulated sisnal with extremely low delas and excellent sensitivity.

UF to that time, all FM detectors used low-Fass filters to remove the undesired carrier freasency components and their harmonics senerated in the detection frocessy and usually a tured circuit for the $F M$ to $A M$ conversion. These circuits would normally not be low delay circuits. Components such as intesrators, differentiatorsy summersy and multifliersy on the other handy are low delay (zero srouf delas) elements. Howevery even frevious FM detectors usins intesrators and differentiators still incorforated low-rass filters in their outfut circuitry (kefs. 2, 3 , and 4).

The solution to this froblem utilized an intesratorg differentiator and summer to ferform the FM to AM conversion. A sunchrorious demodulator was used to detect the amplitude modulation. This circuitry has theoretically zero delay and the only undesirable froduct froduced is the second harmonic of the carrier frequencey which was eliminated bs addins an additional intesrator and multiflier to senerate a cancellins sisnal. The resultins detector is shown in fisure 1-1.

Pase 2

Fisure 1-1. Block Liasram of the Orisinal Iletector

Slisht variations of this circuit are fossible by usins the differentiator outrut or the difference between the intesrator and differentiator outfuts for the reference sisnal in the synchronous detector.

Althoush the detector performs well under narrow-band conditions, there are some froblems when used under wide-band conditions. First, the non- linearits of the output causes distortion frosucts that are no lonser reslisibleg as indicated in Fisure 1-2, Secondly an intesrator froblem exists if the imput frequencs to the detector is chansed instantaneously. This situation as shown in fisure 1-3, causes a de component to affear at the intesrator outfut due to the effective initial condition of the intesrator at the time of the frequencs chanse. This de component at the infist of the multiflier causes a considerable component of the fundamental carrier frequency to affear at the output.

A form of the detector that does not reasire intesrators in the discrimination section and therefore is not subject to the initial condition froblem is shown in fisure 1-4. An intesrator is still needed in the carrier cancellation section, and the outfut is still non-linear. Another basic form of the detector is shown in Fisure 1-5. However, all these forms reauired intesrators and froduced outputs that were not ideally linear.

Fisure 1-2. Outfut Characteristic of the Orisinal netector

Fisure 1-3. Iritesrator Froblem under Wide-Band Conditions

Fisure 1-4, Block Liasram of Another Form of the Letector

Fisure 1-5. Block Diasram of a Third Form of the Detector

1.2 Irivestisation of an Improved Metector

At present, all work done with this family of detectors assumed analos realization, usins oferational amplifiers and analos multifliers. With the recent advancement of the disital sisnal frocessins technolosy, nowevery disital implementation of systems is becomins quite attractive. Therefore, an investisation was made to utilize the advantases of disital sisnal processins techniques to develof a new version of detector that had oftimal wide-band ferformance.

Fesearch irito disital realizations of the basic functional blocks showed that differentiators could be readily realized, but intesrators still had froblems. Howevery realization of the Hilbert transformer was found to be comparable to that of the differentiator with sood accuracy, even thoush an accurate Hilbert transform analos realiaation is usually rather complex. The Hilbert transformer is another zero delay elemerit with a 90 desree fhase shift for all freauencies. $B y$ reflacins the intesrators in the detector of Fisure 1-1 with Hilbert transformers, the resultins detector was found to have theoretically ferfect linearity and excellent wide-band fotential.

FEFERENCES - Charter I

1. J. Klaffer and E. Kratt, "A New Family of Low-Melay FM - Iletectors" IEEE Transactions on Commurications, Vol. COM-27, No. 2, Feb. 1979.
2. K. K . Clarke and II. T. Hess, "Communications Circuits: Analysis and Nesisn": Addison-Wesles. 1971.
3. J. Parky "An FM Metector for Low S/N," IEEE Transactions on. Communication Technolosyy Vol. COM-18y No. 2y Afril 1970.
4. E. T. Fatronis" "A Frequency Modulation Detector usins Oferational Amplifiers," Audio Mas., Feb. 1970.

CHAFTEF II

FUNCTIONAL MESCRIFTION

2.1 Introduction

A block diasram of one form of the new detector is siven in Fisure 2-1. It is comerised of a differentiator, two Hilbert transformersy two summers, and two multifliers -- all compatible with FIF discrete time sisnal processins techniaues. The detector mas be divided into two basic functions: 1) wide-band quasi-coherent discriminatory and 2) low-delay carrier sufression.

2.2 Wide-Eand Quasi-Coherent FM Iiscriminator

This function is ferformed by the fortion of the detector in the dashed box. The infut sisnal is fed simultaneously into differentiator $[1$ and Hilbert transformer H1. The outrut of the differentiator leads the infut wave by 90 desreesy and its amplitude varies directly with freauency. For simplicity, the time constant is selected to sive unity sain at some radian freauencs ω_{0}. The output of the Hilbert transformer, on the other hand, also leads the infut wave by 90 desrees, but its amflitude is constant with freauency and has a sain of urity, The resilit is that the outeuts of lil and Hi are alwass in fhase, and their difference vanishes at ω_{0}. Thus a balance is achieved at the carrier frequency. Above and below ω_{0} the output of the summer 51 has an increasins amplitude frofortional to the frequency difference. There is, however,

Fisure 2-1, Block Hiasram of the New metector

Abstract

a Fhase reversal when soins throush ω_{0} g because below ω_{0} the Hilbert transformer outfut dominates, while above ω_{0} the differentiator outfut dominates. The wave thus lends itself to conerent detection.

The coherent detection is ferformed by the multiflier Mi. One input of $M 1$ receives the output of 51 , while the other infut receives the outrut of the Hilbert transformer H1. The output of $M 1$ is a wave containins the demodulated outfut and a carrier of twice the frequency and modulation indes.

Ori a steads-state frequencs-offset basis, the fertinent wave equations at each stase are shown in Fisure 2-1. An infut of sin t is assumed, where the freauencs is normalized with respect to the center freasencs (i.e. $\omega_{0}=1$). The outpul of the discriminator thus consists of a de component and a second harmonic component, both of which are frofortional to (ω - 1). The outfut thus exhibits ferfect arithmetic summetry about the center freauency a properts which the other discriminators in the same family can only aғfroximate.

As with the other discriminatorsy howevery all of the components in Fisure 2-1 are still capable of vers wide-band oferation and are instantaneous (introduce ro sroup delas).

2.3 Cancellation of FF

The output of $M 1$ is frofortional to $\cos ^{2} \omega t$. observe in Fisure 2-1 that the Hilbert transformer $H 2$ and multiflier $M 2$
receive infuts that are in quadrature with the corresfondins components in the discriminator fortion and senerate a wave profortional to sin ${ }^{2} \omega t$ with the same frofortionality factor. The outfuts of the two multifliers are combined in summer $\mathcal{S} 2$. Since $\cos ^{2} \omega t+\sin ^{2} \omega t=1$, the FF is fully cancelled instantaneously, introducins no delay. As is shown latery this characteristic also holds for a modulated infut wave because of the ferfect linearity of the detector. The cancellation is not ferfect for the frevious versions due to their nonlinear characteristics.

CHAFTEF III

THEORETICAL PERFORMANCE

3.1 Modulated Infut Wave

Consider a narrow-band FM wave, as in the case of a sine wave modulation of a small modulation index or the case in which a time-modulated FM wave was passed throush a narrow-band filter which attenuated all sidebands except the first fair. ', The infut to the detector may then be considered as an FM wave comprised of three components -- the center frequency and a fair of sidebands. It mas be written as

$$
\begin{equation*}
e_{i}(t)=A\left[\cos \omega_{0} t-k / 2 \cos \left(\omega_{0}-\omega_{m}\right) t+k / 2 \cos \left(\omega_{0}+\omega_{m}\right) t\right] \tag{3-1}
\end{equation*}
$$

where A and k are constants related to the amplitude of the wave and the modulation index $\left(k=\Delta \omega / \omega_{m}\right)$, while ω_{0} and ω_{m} are the center and modulation frequencies, respectively.

It can be shown (see Apfendix I) that the output of the detector is then siven bs

$$
\begin{equation*}
e_{0}(t)=\left(A^{2} k \cdot F / 2\right) \cos \omega_{m} t=\frac{A^{2}}{2}\left(\frac{\Delta \omega}{\omega_{0}}\right) \cos \omega_{m} t \tag{3-2}
\end{equation*}
$$

where F is the ratio of the modulatins freasency to the center frequency ($F=\omega_{m} / \omega_{0}$). Thus the outFut consists only of a undistorted baseband.

The outfuts of two other versions of the detector as computed in Ref. 1 and Fef. 2 are shown in Table 3-1. In addition to the undistorted baseband, these outputs also

TABLE 3-1
Modulated Infut Wave

Detector	$e_{0}(t)$	NORMALIRED RMS DISTORTION:	Assumptions
IntfaratorDifierentiator	$A^{2} k R\left[2 \cos \omega_{m} t+k R \cos 2 \omega_{m} t\right.$ $+\frac{R}{7}(2+3 R) \cos \left(2 \omega_{0}-\omega_{m}\right) t$ $-\frac{R}{4}(2-3 R) \cos \left(2 \omega_{0}+\omega_{m}\right) t$ $\left.-\frac{3}{2} K R\left(1-\cos 2 \omega_{0} t\right)\right]$	$\frac{[26(R K)}{} \frac{2}{4}$	$R \ll 1$
Dund Differentiator	$\frac{A^{2} k R}{2}\left[-4 \cos \omega_{m} t-k R \cos 2 \omega_{m} t\right.$ $+R \cos \left(2 \omega_{0}-\omega_{m}\right) t$ $-R \cos \left(2 \omega_{0}+\omega_{m}\right) t$ $\left.-K R\left(1-2 \cos 2 \omega_{0} t\right)\right]$	$\left.\frac{[7(R K)}{} \frac{x}{4}+2 R^{2}\right]^{1 / 2}$	$R \ll 1$
Differentiatorhilaget Tanust	$\frac{A^{2} t R}{2} \cos \cos ^{2} t$	\bigcirc	Nows

contain a low-level sisnal of twice the baseband frequencyy a low-level comfonent of first order sidebarids about twice the center frequencs, and low-level components of de and twice the center frequency. These results also assume that the modulating frequency is much smaller than the carrier freauency ($k \ll 1$). These terms result from the non-linearity characteristics of these other forms.

Expressions for the amount of rms distortion d at the various detector outputs are also shown in Table 3-1. These were obtained by takins the ratio of the distortion terms to the desired sisnal on an rms basis. The value of d for the new detector is zeror since there are no distortion terms. The values of a for the other two detectors are in the order of several fercent for $k=0.1$ and $k=0.1$ and vars profortionally with F, Thus, the distortion terms may be neslected for small values of k.

Femovins the restriction of narrow-band oferationy consideration will now be siven to the ferformance of the detector with wide-band modulated infut sisnals, where the infut frequency to the detector could theoretically chanse instantaneously.

Feferrins back to Fisure 2-1, no de comfonents should be -fresent at the infuts of the multifliers if the detector is to perform as freviously described. If this condition is violated, a considerable component of the fundamental carrier frequency will affear at the outfut. By investisatins the
sources for the multifliersy no comfonents theoretically
produce any de components under these conditions. The
detector should therefore Ferform eaually as well under
wide-band conditions.

As shown in Ref. 1, this does not hold for other versions of the detector that use intesrators, since de components are senerated as a result of the effective initial conditions of the intesrators at the time of a rafid frequency chanse. This was one of the orisinal surfoses for seneratins a version of the detector without usins intesrators.

3.2 Sine Wave Interference

Consider the case where the infit wave corisists of a desired carrier of a frequencs ω_{d} and an interference carrier of a freausency ω_{i}, such as

$$
\begin{equation*}
e_{i}(t)=A \cos \omega_{d} t+B \cos \omega_{i} t \tag{3-3}
\end{equation*}
$$

where $\omega_{d}=\omega_{0}+\Delta \omega_{d}$ and $\omega_{i}=\omega_{0}+\Delta \omega_{i}$.

It can be shown (see Appendix II) that the baseband output of the detector shown in Fisure 2-1 is then siven bs

$$
\begin{equation*}
e_{0}(t)=A^{2} \frac{\Delta \omega_{d}}{\omega_{0}}+E^{2} \frac{\Delta \omega_{i}}{\omega_{0}}+A B\left(\frac{\Delta \omega_{d}}{\omega_{0}}+\frac{\Delta \omega_{i}}{\omega_{0}}\right) \cos \left(\omega_{d}-\omega_{i}\right) t \tag{3-4}
\end{equation*}
$$

For the case where $\Delta \omega_{d}=0$, the normalized output of the detector reduces to

$$
\begin{equation*}
e_{0}(t)=\left(\Delta \omega_{i} / \omega_{0}\right)(B / A)^{2}+\left(\Delta \omega_{i} / \omega_{0}\right)(B / A) \cos \Delta \omega_{i} t \tag{3-5}
\end{equation*}
$$

and the rms value of the normalized outfut is siven by

$$
\left\langle e_{0}(t)\right\rangle=\left\{\left[\left(\Delta \omega_{i} / \omega_{0}\right)(E / A)\right]^{2}+(1 / 2)\left[\left(\Delta \omega_{i} / \omega_{0}\right)(B / A)\right]^{2}\right\}^{1 / 2}(3-6)
$$

Curves of $\left\langle e_{0}(t)\right\rangle$ for various values of B / A and $\Delta \omega_{i} / \omega_{0}$ are shown in Fisure 3-1. Since the outfut is symmetric about $\Delta \omega_{i} / \omega_{0}=0$, only fositive values of $\Delta \omega_{i} / \omega_{0}$ are srafhed.

Corrinston (Fef. 3) has derived the equivalent output of a conventional wide-band limiter-discriminator for $\Delta \omega_{d}=0$ as

$$
\begin{equation*}
e_{o c}(t)=\frac{\left(\Delta \omega_{i} / \omega_{0}\right)\left(\cos \Delta \omega_{i} t+B / A\right)}{2 \cos \Delta \omega_{i} t+A / B+B / A} \tag{3-7}
\end{equation*}
$$

The equivalent rms output for $A / B<1$ is siven bs

$$
\begin{equation*}
\left\langle e_{o c}(t)\right\rangle=\frac{\left(\frac{\Delta \omega_{i}}{\omega_{0}}\right)^{2}(B / A)^{2}}{2\left[1-(B / A)^{2}\right]} \tag{3-8}
\end{equation*}
$$

Curves of <eoc $(t)\rangle$ for various values of B / A and $\Delta \omega_{i} / \omega_{0}$ are also shown in Fisure 3-1. In comparins these curves with those of the detector of Fissre 2-1, one observes that the two curves are almost identical for small values of B / A. However, as B / A affroaches 1 , the outfiut of the ideal limiter-discriminatar affroaches infinity, while the outfut of the new detector remains finite. This mas also be observed bs comparing Equation 3-5 and Equation 3-7. Therefore, as the interference increases, the detector of Fisure 2-1 has a much better outfut furity both in terms of rms and peak-to-feak valuesy and this improvement increases without bound.

Fisure $3-1$ ($\left.e_{0}(t)\right\rangle V s, \Delta \omega_{i} / \omega_{0}$ for Various Values of B / A

In comparison, similar results for the detectors of Fisure 1-1 and Fisure $1-4$ as siven by Ref. 1 ard Ref. 2, respectively, are shown in Table 3-2. The expressions for《e (t) > are identical to Equation 3-6 if the freauency Seviations are small comfared to the carrier frequency ($\Delta \omega_{i} / \omega_{0}$ $\ll 1$ and $\left.\Delta \omega_{d} / \omega_{0} \ll 1\right)$. These assumptions were not needed in the derivation of ERuation 3-6, which therefore describes the detector of Fisure 2-1 also under wide-band sinusoidal interference conditions.

3.3 Noise Performance

Consideration will now be siven to the ferformance of the detector of Fisure 2-1 in the fresence of narrow-band noise. The complete detectory includins the pre-detection and Fost-detection filters, is shown in Fisure 3-2. The definition of outfut SNF used in this derivation is taken to be the ratio of mean outfut sisnal power to mean outrut noise Fower, where the sisnal fower is measured in the absence of noise and the noise fower in the absence of sisnal (i,e, the carrier is urimodalated). This definition is valid for hish SNF, where the mean sismal and noise fowers may be assumed to add linearlyy and the sisnal fower measured in the absence of noise does not differ substantially from that measured with noise fresent. Sisnal suffression occurs as the values of CNR Jrof below 0 dB (Ref. 4).

The noise is assumed to be of a bandwidth no wider than twice the carrier center frequency and therefore mas be

TABLE 3-2
Sine Wave Interference

Detectur	NORMALIFED $e_{0}(t) *$	$\left\langle e_{0}(t)\right\rangle^{*}$	Assumptions
IntsGrator Dirferentiator	$\frac{\omega_{r}}{\omega_{0}}\left(\frac{B}{A}\right)^{2}+\frac{\omega_{r}}{\omega_{d}} \frac{B}{A} \cos \omega_{n} t$	$\left\{\left[\frac{\omega_{r}}{\omega_{0}}\left(\frac{B}{A}\right)^{2}\right]^{2}+\frac{1}{2}\left[\frac{\omega_{r}}{\omega_{0}} \frac{B}{A}\right]^{2}\right\}^{1 / 2}$	$\frac{\omega_{m}}{\omega_{0}} \ll 1$
Dual Differentiator	$-\frac{\omega_{-}}{\omega_{0}}\left(\frac{B}{A}\right)^{2}-\frac{\omega_{-}}{\omega_{0}} \frac{B}{A} \cos \omega_{r} t$		$\frac{\omega_{c}}{\omega_{0}} \ll 1$
DIFFERENTIATORHMBERT TAANJF.	$\frac{\omega_{r}}{\omega_{0}}\left(\frac{\beta}{A}\right)^{2}+\frac{\omega_{r}}{\omega_{0}} \frac{B}{A} \cos \omega_{r} t$		Noner
LIMITER DISCimiminntor (Corainaton)	$\frac{\frac{\omega_{0}}{\omega_{0}}\left(\cos \omega_{-} t+\frac{B}{A}\right)}{2 \cos \omega_{r} t+\frac{R}{B}+\frac{B}{A}}$	$\left[\frac{\left(\frac{W_{r}}{W_{0}}\right)^{2}\left(\frac{B}{A}\right)^{2}}{2\left[1-\left(\frac{B}{A}\right)^{2}\right]}\right]^{1 / 2}$	

Fisure 3-2. Comflete Netector for Noise Calculations

Fisure 3-3. FSII of $x(t)$ and $y(t)$
represented by

$$
n(t)=x(t) \cos \omega_{0} t-y(t) \sin \omega_{0} t
$$

which consists of a carrier at the center freauency ω_{0} " modulated by two random variablesy $x(t)$ and $y(t)$. The noise is also assumed to have a zero mean and a Gaussian distribution. The random variables $x(t)$ and $y(t)$ thus have the followirs froperties: a) Lowfassy rectansular fower spectral density of bandwidth $B / 2$ and amplitude n as shown in Fisure $3-3, b)$ Equal variances for $n(t), x(t)$, and $y(t)$ and c) $x(t)$ and $y(t)$ are indefendent.

Therefore, consider an infut sisnal siven by

$$
\begin{equation*}
e_{i}(t)=A \cos \omega_{0} t+x(t) \cos \omega_{0} t-y(t) \sin \omega_{0} t \tag{3-10}
\end{equation*}
$$

which consists of an unmodulated carrier with added narrow-band roise. It. may be shown (see Affendix III) that the baseband outaut of the detector is then siven by

$$
\begin{equation*}
e_{0}(t)=1 / \omega_{0}\{\dot{x}(t)[A-y(t)]+\dot{y}(t) x(t)] \tag{3-11}
\end{equation*}
$$

The outfut power sfectral density may then be obtained by takins the Fourier Transform of the autocorrelation function of $e_{0}(t)$. By intesrating this result over the post-diserimination bandwidth and dividins by 2π the detector outfout noise fower is shown to be siven by

$$
\begin{align*}
& \text { NOISE FOWER }=\frac{A^{2} n \omega_{b}^{3}}{3 \pi \omega_{0}^{2}} \\
& \quad+\frac{n^{2}}{\pi^{2} \omega_{0}^{2}}\left[\frac{B^{3} \omega_{b}}{12}-\frac{B^{2} \omega_{b}^{2}}{8}+\frac{B \omega_{b}^{3}}{6}-\frac{\omega_{b}^{4}}{12}\right] \tag{3-12}
\end{align*}
$$

Next, the outfut sisnal fower may be obtained usins a modulated infut sisnal siven by

$$
\begin{equation*}
e_{i}(t)=A \cos \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{3-13}
\end{equation*}
$$

where A is the carrier amplitudey β is the modulation index, and ω_{m} is the modulation frequency. The corresporidiris output Fower is then shown to be siven by

$$
\begin{equation*}
\text { SIGNAL POWER }=\frac{A^{4} \beta^{2} \omega_{m}^{2}}{8 \omega_{0}^{2}} \tag{3-14}
\end{equation*}
$$

The outwut SNF is obtained by takins the ratio of the output sisnal fower to the noise fower. In terms of the CNF at the irimat, the SNR is siven by

$$
\begin{equation*}
\text { SNK }=\frac{\frac{3}{2}(C N R) B \beta^{2} \omega_{m}^{2} / \omega_{b}^{3}}{1+\frac{1}{\operatorname{CNR}\left[\frac{x^{2}}{4}-\frac{3 x}{8}+\frac{1}{2}-\frac{1}{4 x}\right]}} \tag{3-15}
\end{equation*}
$$

where $x=E / \omega_{6}$. The only assumftions made were that $\omega_{6}<E / 2$ and that the sisnal and noise terms are additive.

1
For the special case of hish CNF, the denominator in Equation 3-15 becomes unity. Lettins $\omega_{m}=\omega_{b}$ for optimum Ferformance, and usins the relationshif CNF $=(C N F)_{A M}\left(2 \omega_{6} / E\right)$, then the SNF for hish CNF conditions is given bs

$$
\begin{equation*}
\mathrm{SNR}_{H I G H C N R}=3 \beta^{2}(C N F)_{A M} \tag{3-16}
\end{equation*}
$$

which is identical to the expression for a limiter-discriminator well above threshold (Ref. 5). The Ferformance of the detector is therefore identical to a
limiter-discriminator well above threshold, but without usins a limiter.

As indicated in Fisure 3-4, the threshold point for an FM system is usually defined as the foint where the SNR has dropfed 1 di more than that fredicted by the linear improvement resion. Referrins to Equation 3-15. this occurs where the denominator increases an amount above unity equivalent to $\bar{i} d B$. The result mas be written as

$$
\left(C N R_{A M}\right)_{T h}=1.931\left[x^{3} / 2-3 x^{2} / 8+x / 2-1 / 4\right] \cdot(3-17)
$$

In comparison, the SNR relationshif for the detector of Fisure 1-4 is given by Tarbell (Ref. 6) as

$$
\begin{equation*}
\mathrm{SNK}=\frac{\frac{3}{2}(C N R) B \beta^{2} \omega_{m}^{2} / \omega_{0}^{3}}{1+\frac{1}{\operatorname{CNR}}\left[\frac{x^{2}}{2}-\frac{3 x}{4}+\frac{1}{2}-\frac{1}{8 x}\right]} \tag{3-18}
\end{equation*}
$$

The correspordins equation for the threshold CNF is

$$
\begin{equation*}
\left(\mathrm{CNF}_{A M}\right)_{T h}=1.931\left[\mathrm{X}^{3} / 2-3 \mathrm{X}^{2} / 4+\mathrm{x} / 2+1 / 8\right] \tag{3-19}
\end{equation*}
$$

The results of Equation 3-16 and Eauation 3-18 are shown in Fisure 3-5 for various values of $B / 2 \omega_{6}$, alons with data for a conventional limiter-discriminator (Fef. 7) for comparison. The new detector has a 3 dB improvement in threshold Ferformance over the detector of Fisure $1-4$, but still no imfrovement over the limiter-discriminator.

Fisure 3-4. FM Sustem Performance

Fisure 3-5. Threshold (CNF) AM Characteristics

FEFERENCES - Chafter III

1. J. Klapper and E. Kratt, "A New Family of Low-nelas FM Detectors" ", IEEE Trans, on Commanicationsy Vol, COM-27, No. 2, Feb. 1979.
2. G. J. Kersus, "Analysis of the Klapfer-Kiratt FM Detectory" M.S. Froject, Neft. Elec. Ens., New Jerses Inst. Technol., 1976.
3. M. S. Corrinstor" "Frequencs Modulation Caused by Common-and-Adjacent-Channel Interference," RCA Rev., Vol 7, Iec. 1946.
4. F. F. Fanter, Modulationy Noisey and Spectral Analysis" Char 14, McGraw Hill, 1965.
5. M. Schwartey Information Transmissiong Modulationy and Noise, Chafter 6, McGraw Hill, 1959.
6. A. Tarbell and J. Klaffery Noise Ferformance of the Klaffer-K゙ratt Low Melay FM Detectory" NTCy Washinstony II.C., Nov. 1979.
7. J. Klapfer and J. T. Frantle, Fhase Locked and Frequency Feedback. Systems, Chapter 7, Fisure 7-14, Academic Fressy 1972.

CHAFTEF IV

IIGITAL IMFLEMENTATION

4.1 Introduction

A direct apfroach to disitally implementins the detector was ferformed first by seneratins alsorithms that will closely resemble the differentiator and Hilbert transformer over the frequency band of interest. The correspondins samples were also added and multiflied as reauired to ferform the functions shown in Fisure 2-1.

The differentiator and Hilbert transformer were realized usins a finite imfulse resfonse (FIR), or non-recursive, desisn method. Such desisns exhibit no fhase errorsy and have delass of affroximately $N / 2$ samplins feriods, where N is the order of the network. Thes are also unconditionally stable, since they are sunthesized usins only zeros.

Obviously the disital system cannot still have theoretically zero delay due to the discrete time samples and the delays in seneratins the functional blocks. Howevery if actual delas is not of major importarice, then the detector should offer much imfroved ferformance in other areas.

4.2 Linear-Fhase Fiealizations

A computer frosram called EQFIR (Ref. 1) was used to senerate the coefficients for FIR realizations of both differentiators and Hilbert transformers. The prosram
oftimizes the results over a frescribed freauency ranse, which was selected as $0.15 f_{s}$ to $0.35 f_{s}$, where f_{s} is the samplins frequency. These values will then senerate a detector that is centered at half the Nyquist freauency with a relatively wide linear bandwidth of two-fifths the Nyauist frequency.
. Usins these reauiremerits, the coefficients were comfuted for differentiators with $N=5,7$, and 9 . Only odd values of N were selected so that the delayed outfut of the function be an exact number of sample feriods for froser confisuration of the total network. The delay of the FIF block is (N-1)/2 samplins Feriods, which for odd values of N causes the delased outputs to fall on exact sample times, allowins the results to be combined with other equally delased values to ferform the additional functions. Each output is senerated by multiflyins the N successive samples by the correspondins coefficients, and then summins the results.

The equations sivins the frequency response of a seneral FIR confisıration were derived (see Apfendix IV) and used to evaluate each set of differentiator coefficients. The results are shown in Fisure 4-1, Reasonable results were obtained for $N=7$, with $N=9$ sivins vers sood results.

In a similar mannery coefficients for Hilbert transformers were computed and evaluated for $N=5,7,9$ and 11. The results are shown in Fisure 4-2. The response for $N=7$ and 9 are the same and frovide a relativels close apfroximation.

Fisure 4-1. Frequency Resfonse of Nifferentiators

Fisure 4-2. Frequency Resfonse of Hilbert Transformers

At first, it misht seem stranse that two values of N sive identical results. However, the freauencs response equation for a FIF network is based on a Fourier structure, and any particular component that is not symmetrical with respect to the desired response has a value of zero. For examfle, all even harmonics of. a square wave are zero. Therefore, increasins the order does not necessarily add useful terms.

Selection of a value of N was based on firidins the minimum value . that save arproximate resultsy with the assumftion that later oftimization of the total detector would sreatly imfrove the resfonse of the detector. A lower value of N also means a simpler alsorithm for easier implementation and smaller values of delay. As a result, $N=7$ was chosen for both the differentiator and Hilbert transformer.

The eauation for the freauency response of the detector was derived (see Arfendix U), and is Given by

$$
\begin{aligned}
E_{0}(F)= & 1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) c_{H m} \\
& {\left[\cos (m-n) 2 \pi F-\cos \left(N+1-n_{1}-m\right) 2 \pi F\right] }
\end{aligned}
$$

where F is the frequencs normalized to the samflins frequencs, $C_{D i}$ is the ith coefficient (or imfulse resfonse) of the differentiator and $c_{H i}$ is the ith coefficient of the Hilbert transformer. The detector response was then computed usins the coefficients for $N=7$, as siven in Table 4-1. The results are shown in Fisure 4-3, which indicates an almost sinusoidal resfonse with much sreater linearity error than indicated by

TABLE 4-1
Orisinal Netector Coefficients (Impulse Fiesponse)

Fisure 4-3. Netector Output
any of the individual comfonents This is because the Farticular errors of each block set multiflied when combiners in the total detectory resultins in a much larser error.

Also observe that the detector output reduces to zero at both zero freauency and the Nuquist frequencyr since the outpists of both the differentiator and Hilbert transformer so to zero at these freauencies. Thereforey the detector also Frovides an equivalent inherent linear whase bandmass filter characteristic. For hisher order realizations, this internal bandFass froferty mas he utilized with other bandwidths and center freauencies to eliminate undesired sisnals within the Nucaist band.

4.3 Linearity OFtimization

Consideration was now siven to oftimizins the detector coefficients for linearity over the frequency ranse of interest $(0.15<F<0.35)$. Constraints had to be placed on the coefficients in order to retain certain necessary Froferties. First, the nesative symmetrs of the coefficients is required to freserve the limear-miase (actually a constarit 90 desree shase) characteristic of the FIR blocks. This requires that $c_{i}=-C_{N+1-i}$, and $C_{(N+1) / 2}=0$ since N is odd. The 90 desree phase froferties of the comporients is reauired to maintain the quadrature relationships for carrier cancellation. As a result, only three values are reauired to define the seven seneral coefficients of each FIR block.

Next, the amplitude reauirements need to be determined. This may be accomplished by assumins that each fIR block is multiflied by a corresfondins amplitude function of freruency F, as shown in Fisure 4-4. These amplitude functions refresent the non-ideal amplitude variations in the realization of each function. Assumins an infut $e_{i}(t)=$ sinwt, and solvins in a maner. similar to that used in Affendix Ir the corresfonding outfut is found to be given by

$$
\begin{equation*}
e_{0}(t)=\left[A_{1}(\omega)-A_{2}(\omega)\right]\left[A_{2}(\omega) \cos ^{2} \omega t+A_{3}(\omega) \sin ^{2} \omega t\right] \tag{4-2}
\end{equation*}
$$

Therefore, the carrier component will cancel exactly only if $A_{3}(\omega)=A_{2}(\omega) \ldots$ This means that the coefficients of the two Hilbert transformers must be identical. Linearity of the detector is then controlled bs $A_{1}(\omega)$ and $A_{2}(\omega)$, which mas vary from unity and still sive the desired result of (ω - 1) as lons as thes are related by the ekfression

$$
\begin{equation*}
A_{1}(\omega)=\frac{1}{\omega}\left[\frac{\omega-1}{A_{2}(\omega)}+A_{2}(\omega)\right] \tag{4-3}
\end{equation*}
$$

In the implementationy computer routines were senerated (See Affendi\% UII) to minimize a least squares linearity error function usins the Fletcher-Fowell alsorithm (Fef. 2). The error function was senerated by summinis the sauares of the differences between the actual and desired detector outputs usins a number of frequencs foints over the interval $0.15<F<0.35+$

Fisure 4-4. Nor-Ideal Block Representations

Ufon conversence, the oftimized coefficients shown in Table 4-2 were obtained. The corresfondins oftimized detector output is shown in Figure $4-5$, where it is compared with both the orisinal detector output and the ideal output. Over the freauencs ranse of oftimization, the outrut is found to be extremely lineary with substantial imfrovemerit over the orisinal resfonse.

The interral bandrass characteristic of the detector is also improved. An eauivalent sain response of the detector was senerated by takins the ratio of the actual outfut to the ideal outrut of a theoretical wide-band detector. The results are shown in Fisure 4-6.

FEFERENCES - Chafter IV

1. J. H. McClellang-T. W. Farks and L. R. Fiabinery "FIR Linear Finase Filter Ilesisrl Frosram," Frosrams for Ilisital Sisnal Frocessins, Chaf, 5.1, IEEE Fress, New Yorky 1979.
2. K. Fletcher and M. J. II. Fowell, "A rapidly conversent descent method for mirimization"" Comfuter J., Vol. 6, No. 2. 2 July 1963.

TABLE 4-2
Oftimized Netector Coefficients (Impulse Fesfonse)

Fisure 4-5. Iletector Output with Linearity Oftimization

Fisure 4-6. Equivalent Gain Resfonse of the Detector

CHAPTER v

REALIZATION

5.1 Introduction

The optimized detector was realized usins 11 bit A / D and D/A convertersy and a IIEC LSI-11 processor with an extended arithmetic chif. Even thoush this processor is relatively fast, it still takes apfroximately $60 \mu s$ for a multiflication and $8 \mu s$ for an addition or subtraction. Since a direct approach to realizins the detector of Fisure 2-1 usins the coefficients siven in Table 4-2 would require eleven multiflicationsy si\% additions and ten subtractions, considerable time will be used in ferformins the functions of the alsorithm alone, without even includins time to ferform other related functions that are necessary to infut, output, or internalls shift data durins each cycle. The lonser the computins time, the lower the maximum samplins frequencs, and thereforeg also the maximum oferatins freauencs. Howevery by investisatins the values of the coefficients and the structure of the basic detector alsorithmy substaritial simplifications to the alsorithm were discovered, which sreatly increased the maximum freauencs of operation.

5.2 Alsoritm Simelification

Observins the coefficients shown in Table 4-2, the coefficients for the differentiator and Hilbert transformer blocks are found to be fractically identical for both the
first and third values. Feferrins back to Fisure 2-1, the outputs of HI and H 1 are subtracted in summer Si. Since multifluins an infut sample bs two different coefficients and then takins the difference of the results is eauivalent to multiflyins the infut sample by the difference of the two coefficientsy then the functions of $\operatorname{li}, \mathrm{H}$, and Si mas be replaced by a sinsle block, as shown in fisure 5-1, with coefficients equal to $c_{D i}-c_{M j}$. Therefore the first and third coefficients would be zero, while the second coefficient is -0.20959 .

The fact that two of the coefficients of this new block are zero did not occur by accident. Recall that the outfut of 51 is actualls the outfut of the discriminator before synchronous detection. The frequencs resfonse should therefore be zero at the center freauencs ($F=0.25$), and have odd symmetry around this foint. A nesative value, in this case, means a reversal of phase. Comearins this with the theoretical frequency response of a FIF block, which was derived (see Affendix IV) as

$$
\begin{equation*}
H(F)=j \sum_{n=1}^{\frac{N-1}{2}} 2 c_{n} \sin (N+1-2 n) \pi F \tag{5-1}
\end{equation*}
$$

only the term for $n=2$ froduces odd symmetry about $F=0.25$. The other two terms have even symmetry, and must therefore be zero.

Ey observins Equation $5-1$ for larser values of N, alternate terms will be seen to have even symmetry and

Fisure 5-1. Simplified Netector Block Hiasram
therefore must be equal to zero. As a result, similar simplifications mas also be made for hisher order detectors of different bandwidths, as lons as $F_{0}=0.25$. Larser bandwidths, however, will require hisher values of N in order to retain sood linearity. Other values of F_{0} do not allow such simplifications since the resfonse is not symmetrical and therefore senerally reauires all terms.

Since the $\mathrm{I}-\mathrm{H}$ block has only one non-zero coefficient, then only one subtraction and one multiflication is needed to realize the function. The Hilbert transformer, howevery reauire three times as much. We would therefore like to reduce the number of Hilbert transformersy which would also reduce the computation time.

This was accomplished by taking the dual of the setector of Fisure 5-1, which resulted in the confisuration shown in Fisure 5-2. The two detectors are equivalent in ferformance since the multiflier infuts are still identical. This simplified confisurationg however, requires only six multiflications, one additiony and five subtractions, which is about half the complexity of the orisimal realization.

5.3 System Confisuration

The detector of Fisure 5-3 was realized in a system based on an LSI-11 frocessory which was used basically as a convenient laborators tool for the exferimental verification of the theoretical detector. However, the principles used

Fisure 5-2. Equivalent Simplified Netector Elock Niasram

Fisure 5-3. Detector Sustem Block. Niasram
here may readily be apflied to other disital (or discrete-time analos) sisnal frocessins hardware beins used in the industry.

As shown in Fisure 5-3, sampled data to and from the processor is accomplished usins a nRV-11 Farallel Interface card, which has two sixteen-bit forts, one in each direction. The infist data is obtained from a 11 -bit A / D convertery where one of the bits is folarity. The converter was desisned to senerate 1000 samples fer second, with the end of conversion pulse beins used to synchronize the frocessor. An oftional EFF mas be used frior to the A / I converter to remove undesired sisnals; or limit the noise bandwidth. A seventh order active transitional BPF, with a bandwidth of approximately 270 Hz , was used when makins noise ferformance tests. The response of the filter is shown in Fisure 5-4.

The outfut samples from the frocessor drive a 11-bit $1 / A$ converter, with one bit asain beins folarity. The frocessor outputs the previous result when it receives new inest from the A/I converter. An active, Sth order Eutterworth LFF usins Sallen and Key sections (Fief. 1) was used to filter the output of the $I / / A$ converter. A cutoff freauency of 200 Hz was used for normal operation. The cutoff was chansed to 30 Hz for noise tests.
5.4 Software Iescriftion

A flow diasram showins the alsorithm for the detector in Fisure 5-2 is siven in Fisure 5-5. Two arrays of numbers must

Fisure 5-4. Pre-Hetection EFF Frequency Fesfonse

$$
\text { Ourput }=R I_{6} \cdot H_{L}-R Z_{6} \cdot \Sigma_{C}
$$

Fisure 5-5. Netector Alsorithm Flow Iiasram
be held in memors. One arras holds ten consecutive infut, voltase samples, while the other contains seven outputs of the Hilbert transformer. The frevious samples affear to the risht.

Followins the diasram, the value of H_{3} is senerated usins

$$
\begin{equation*}
H_{3}=\left(E_{0}-E_{6}\right) \cdot c_{H 1}+\left(E_{2}-E_{4}\right) \cdot c_{H 3} \tag{5-2}
\end{equation*}
$$

which is fossible due to the symmetry of the coefficients. The outfut of the second $\mathrm{I}-\mathrm{H}$ block, called $\mathrm{R} 2, \mathrm{is}$ obtained from

$$
\begin{equation*}
\mathrm{F}_{2}=\left(\mathrm{H}_{4}-\mathrm{H}_{8}\right) \cdot \mathrm{C}_{52} \tag{5-3}
\end{equation*}
$$

The delay of three sample feriods for each block realizationy or sik for the total detector, mas be seen bs observins the subscrifts.

Iri a similar mannery the outfut of the first $\mathrm{Im}-\mathrm{H}$ block is siven by

$$
\begin{equation*}
R 1_{6}=\left(E_{4}-E_{8}\right) \cdot C_{52} \tag{5-4}
\end{equation*}
$$

and the outfut of the detector is found usins

$$
\begin{equation*}
\text { OUTFUT }=R 1_{6} \cdot H_{6}-R 2_{6} \cdot E_{6} \tag{5-5}
\end{equation*}
$$

The values in the arrass are then shifted to the risht by one, with a new sample enterins at the left, and the frocedure is refeated.

The above frocedure has been kept seneraly even thoush the delay could have been reduced by one sampling period since the first coefficient of $\mathrm{F2}$ (c_{sz}) is zero. This would allow the calculations of the $[1-H$ blocks to be shifted left one time slot, puttins the output at only five delay units.

Also observe that only three different values of coefficients are reauired to ferform the alsorithm. The values of these coefficients are $\mathrm{c}_{\mathrm{HI}}=0.19045, \mathrm{c}_{\mathrm{HZ}}=0.54146$ and $c_{\text {s2 }}=-0.20959$.

These results were incorforated into the prosram RTDET.MAC, which was used to ferform the alsorithm in real time. The frosram is shown in Fisure $5-6$. The besinnins of the frosram handles data $1 / 0$, which is followed bs the alsorithm computations. The latter fortion of the frosram shifts the arrays in preparation for the next sample. Affroximately $800 \mu s$ of computims time are required for each $1000 \mu s$ cucle.

FEFERENCES - Chafter U

1. F. F. Sallen and E. L. Kiey, "A Fractical Method of Ilesisnins FC Active Filters:" IRE Trans. Circuit THeory vol. CT-2, no. 1, March 1955.

LOOF:	$\begin{aligned} & \text {. TITLE } \\ & \text { TST } \end{aligned}$	RTDET.MAC	-TEST FOR NEW MATA
	BMI	LOOF	;TEST FOR NEW DATA ;LOOF IF NONE
	MOU	Q $\ddagger 167774$, Fi	\%GET NEW SAMFLE
	MOV	F0, 0 *167772	; OUTPUT PREUIOUS RESULTS
	CMF	*176000, 下1	; CHECK FOR -O INPUT
	ENE	NEXT	
	CLR	R1	
NEXT:	MUL	* $40, \mathrm{R1}$	¢SHIFT DATA 5 bits
	MOV	R1, ESIG	©STORE SAMPLE
	SUB	ESIG+14,R1	\%CALC HTMF
	MOU	R1, R 0	
	MUL	*14141,R0	\%HTMF IN RO
	MOU	ESIG+4,R2	¢CALC HSIG(1)
	SUB	ESIG+10, F 2	
	MUL	*42517, F 2	
	AIII	R2, R0	
	MOU	RO,HSIG	¢STORE RESULTS
	MOU	ESIG+10,F0	;CALC S1SIGF*HSIG(4)
	SUE	ESIG+20,RO	
	MUL	HSIG+6,RO	FFESULT IN RO
	MOV	HSIG+2,F2	\%CALC S2SIGF*ESIG(7)
	SUE	HSIG+12,R2	
	MUL	ESIG+14,R2	; RESULT IN R2
	SUE	R2, R 0	; CALC OUTFUT
	MUL	*162455,RO	\%OUTFUT IN RO
	MOV	\#10, R 3	; SHIFT ESIG liata
	MOU	*ESIG+20,R4	
	MOU	*ESIG+22, FS	
LOOF'1:	MOU	-(R4) - - (R5)	
	HEC	F3	
	BGT	LODP1	
	MOU	*5, F 3	; SHIFT HSIG IAATA
	MOU	*HSIG+12, R 4	
	MOV	\#HSIG+14, FS	
LOOF2:	MOU	-(R.4), -(R5)	
	LEC	F3	
	EGT	LOOF2	
	JMF'	LOOF	
ESIG:	- ELKW	9.	; ESIG(9) AFRAY
HSIG:	- ELKW	6.	;HSIG(6) ARRAY
	- ENA	1000	

Fisure 5-6. Real-Time Alsorithm Computations

CHAFTEF UI

ACTUAL PERFORMANCE

6.1 Introduction

The resfonse of the detector was first measured under steads-state conditions, the results of which are shown in Fisure 6-1. Compared with the theoretical resfonse shown in Fisure 4-5, the two curves are found to be almost identical. There were no noticeable carrier components on the de output of the detector.

As fredicted by the foldover theory of sampled systems, a mirror imase of the detector outfut was found to result for freauencies immediatels above the Nyouist freauency (500 to $1000(\mathrm{~Hz}$), where the Nyauist freauency (or aliasins freauency) is one-half the samplins frequency (Ref. 1). At the samplins frequency of 1000 Hzy the detector refeated its baseband response. Actually the baseband response is duflicated startins at multifles of the samplins frequency, while an inverted baseband response occurs just below each of these freasencies, Therefore, as shown in Fisure 6-2, a freauency translation mas also be incorforated into the detector as lons as the $A / I I$ converter has a sood sample-and-hold circuit, Fecall that the samplins frequency is based on the modulation information and not the carrier.

The ferformance of the detector usins a modulated infut was next observed under both narrow- and wide-band conditions.

Fisure 6-1. Actual Detector Resfonse

NOTE:

1. $f_{N}=$ Nyauist Fipequency
2. $f_{s}=2 f_{N}=$ Samphing Frequency

Fisure 6-2. Multi-Fand Iletector Response

This was then followed by an evaluation of the detector under sinusoidal and noise interference conditions.

6.2 Narrow-Band Ferformance

The sisnal source was derived from a voltase controlled oscillator, which was modulated by a 50 Hz square wave output of a waveform senerator. A 270 Hz bandwidth fre-detection bandfass filter was used in series with the sisnal source to remove hisher frequencs sidebands of the orisinal wide-barid sisnal. The source was adjusted for a center frequency of 1250 Hz (the first shifted band of the detector) and a peak. shift of 50 Hz . A 200 Hz fost-discriminator lowfass filter was used to remove frequencies above the Nyauist frequencs (500 Hz).

Fisure 6-3a preserits the waveform at the infut to the detector. The received carrier is square wave modulated but the narrow-band filter before the detector eliminated all sidebands besond the first, reducins the modulation to that of a sine-wave and introducins amplitude variations on the carrier. The outrut of the detector frior to the filter is shown in Fisure 6-3b, and after filterins in Fisure 6-3c. Observe that since the alsorithm completely balances out all carrier components, no riffle components affear at the detector output.

a) Modulated irifut sisnal (vert; $200 \mathrm{mV} / \mathrm{cm}$; horiz: $5 \mathrm{~ms} / \mathrm{cm}$)

b) Ietector outfut before filterins (vert; $50 \mathrm{mU} / \mathrm{cm}$, horiz: $5 \mathrm{~ms} / \mathrm{cm}$)

Fisure 6-3. Narrow-Eand Ferformance

c) Letector outfut after filterins (vert; $50 \mathrm{mU} / \mathrm{cm}$, horiz: $5 \mathrm{~ms} / \mathrm{cm}$)

Fisure 6-3. Narrow-Band Ferformance (contd)

6.3 Wide-Eiand Ferformance

In order to demonstrate the wide-band performance of the detectory the bandrass filter was removed from the test confisuration. The outfut of the detector was then compared with the modulatins sisnaly usins four different modulatins waveforms, as shown in Fisure 6-4. The modulation frequency was 20 Hz for all waveforms.

Fisure 6-4a compares the two waveforms for sine-wave modulation, with the outruts of the detector beins the lower waveforms. The ferformance is essentially identical to that of the narrow-band case. Ey comparins the phases of the waveforms, a total delas of apmroximately 10.5 ms is observed. This consists of one samplins feriod (1 ms) delay for the A / n conversion, a si火 samplins period (6 ms) delay for the FIR realization, and affroximately a 3.5 ms delay for the 200 Hz Butterworth lowfass filter. Fisure 6-4b presents the Ferformance usins triansular modulation and is asain found to be relatively ideal. However, the outrut of the detector when receivins a sawtooth modulatins waveform shows some rinsins and sloped transitions, as shown in Fisure 6-4c. The rinsins occurs only when there is a rafid freauency chanse in the infut sisnal to the detector. A similar situation occurs when receivins a sauare wave modulated carrier, as shown in Fisbure 6-4d. The roundins of the waveforms is due to the eauivalent, internal bandwidth of the detectory as shown in Fisure 4-6. The resultins sloped transitions of affrowimately 4 ms in

a) Sine wave modulation (vert: $200 \mathrm{~mW} / \mathrm{cm}$, horiz: $10 \mathrm{~ms} / \mathrm{cm}^{\text {) }}$

b) Triansular modslation
(vert: $200 \mathrm{mv} / \mathrm{cm}$; horiz! $10 \mathrm{~ms} / \mathrm{cm}$)

Figure 6-4. Wide-Earid Ferformance

c) Saw-tooth modulation
(vert: $200 \mathrm{mU} / \mathrm{cm}$, horiz: $10 \mathrm{~ms} / \mathrm{cm}$)

d) Square wave modulation
(vert $\ddagger 200 \mathrm{mv/cm}$, horiz $\$ 10 \mathrm{~ms} / \mathrm{cm}$)

Fisure 6-4, Wide-Band Ferformance (contd)

Fisure 6-4d are equivalent to those predicted bs computer simulation (see Affendix UI - Example), which shows four samplins periods (4 ms at a 1000 Hz samplins frequency) for a transition under steady state conditions. The fost-discriminator filter has almost twice the bandwidth, and therefore only smoothens the outrut of the D / A converter without disturbins the waveform.

6.4 Sine-Wave Interference

Usins the same test confisuration as for the wide-band ferformance, an unmodulated carrier at 1250 Hz and another sine-wave of variable amplitude and freauency were used for the infut to the detector. The waveform shown in Fisure 6-5 is the output of the detector when the two carriers are equal in amplitude and the undesired sisnal is 50 Hz hisher. As predicted by Eauation $3-5,0 n l y$ a dc term and a beat frequency sine-wave affear at the outfut of the detector. Results for various other conditions of the interferins tone were obtained usins an rms voltmeter, and are shown in fisure b-6. Comparing these results with the theoretical results in fisure 3-1, the two are found to be almost identical.
6.5 Noise Ferformance

The SNR-CNF relationshif was obtained by measuring the rms noise fower in the absence of modulation and the sisnal Fower in the absence of noise, and then computins the resultins ratio, As with the analytical derivationg the

Fisure 6-5. Sine Wave Iriterference
(vert: $50 \mathrm{mV} / \mathrm{cm}$, horizt $10 \mathrm{ms/cm}$)

Fisure 6-6. Actual $\left\langle e_{0}(t)\right\rangle v s+\Delta \omega_{i} / \omega_{0}$ for Various B / A
effect of modulation on threshold is isnored.

Followins this technique, an rms fower meter was used to measure the noise output at different values of CNR (with no modulation). A reference sisnal outputy from which the SNR calculations are made, is then obtained by removins the noise and addins tone modulation to the carrier at some specified deviation.

The measured SNF verses CNF characteristic for the detector is shown in Fisure 6-7. Recall that the term (CNF) ${ }_{\text {AM }}$ is the carrier to noise fower ratio with the noise measured in a filter bandwidth of twice the base bandwidth, or

$$
\begin{equation*}
(C N F)_{A M}=(C N R)\left(E / 2 \omega_{6}\right) \tag{6-1}
\end{equation*}
$$

The results show that the threshold occurs at $(C N R)_{A M}=24.6$ dB. The SNR infrovemerit above threshold is 9.0 dB .

For reference, the theoretical ferformance of the detector, as siven by Eruation 3-15 is also shown in Fisure 6-7. In these calculations, the followins experimental Farameters were used: $\mathrm{E}=2 \pi(266), \omega_{b}=2 \pi(28.5)$, and $\omega_{\alpha}=$ $2 \pi(50)$.

A limiter was then added between the output of the Fre-detection filter and the infut to the detector. The limiter also included a lowfass filter to remove the harmonics senerated in the limitins frocess. The same frocedure was then performed, with the results also shown in Fisure 6-7.

Fisure 6-7. ExFerimental Noise Ferformance of the Ifetector

Observe that this curve has a much sharfer break at threshold, which was found to occur at (CNF) ${ }_{\text {AM }}=22.0 \mathrm{~dB}$. The SNR improvement above threshold is 9.5 dB. Therefore, the addition of a limiter improves threshold performancy by 2.6 $d B$. The linear imfrovement resfion is not sufficiently chansed, with the difference beins due to experimental error.

REFERENCES - Charter UI

1. S. II. Stearnsy Misital Sisnal Analysis, Chaf. 4, Hasdeny 1975.

CHAFTEF UII

CONCLUSIONS

7.1 Conclusions

We have described a new extremely linear version of a family of detectors havins a wide bandwidth, excellent sensitivits, and theoretically low delay. The low-delay feature is obtained in a two-fold manner; 1) throush the use of networks havins zero srouf delay, and 2) throush an RF cancellation techniaue for the carrier. The detector exhibits excellent linearity due to its inherent structure.

The theoretical ferformance of the detector was analyaed for modulated infut sisnalsy ummodulated interference carriers, and narrow-band noise conditions. Theoretically, the detector has no distortiong due to the perfect linearity. For interference sismal levels affroachins the desired sisnal levely the new detector was shown to offer a considerable improvement over the limiter-discriminator. Noise ferformance was shown to be equal to the limiter-discriminator well above threshold, but had a hisher threshold. These results were also compared with those of other forms of the detector, showins improved ferformance in the areas of linearits and noise threshold.

The detector of Fisure 2-1 was realized usins FIF oisital sisnal processins methodsy and was then oftimized for linearity, resultins in substantial improvement. The disital
implementation of the detector was found to exhibit a useful inherent bandpass filter characteristic with delay froperties comparable to the alsorithm frocessins delas. After several alsorithm simplifications that resulted in a 35% reduction of total computins time, the detector of Fisure 5-2 was implemented usins laboratory disital frocessins hardware and used to fetect a modulated carrier above the Nuquist freauencs, demonstratins the bandfass characteristics resultins from freasency foldback in sampled systems. Experimental results were shown. Total system delays were associated mainly to filterins functionsy and were found to be comparable with those of conventional FM detection methods.

7.2 Sussestions for Future Efforts

It is worthwile to mention areas where future work should be performed. Several of these are siver below:
(1) An investisation into the proferties of the coefficients for other orders; center freauencies, and bandwidths of the detector.
(2) A seneral, efficient computer frosram to obtain the oftimized coefficients of the detector usins other techriauesy such as a Chebschev affroximation (Ref. 1), instead of a least squares approximation.
(3) Incorforation of the bandeass and lowfass filters into the same disital hardware, usins a hisher samplins rate for the filter functions and the freasency foldover froferty for the detector

Fortion.
(4) Detection of a series of equally spaced FM channels usins the same lowfass equivalent detector alsorithm and the frequencs foldover characteristics, includins time sharins of common hardware.

REFERENCES - Chafter UII

1. T. W. Farks and J. H. McClellany "Chebushev Approximation for Nonrecursive Disital Filters with Linear Fhase," IEEE Trans. Circuit Theory, Vol. CT-19, No. 2, March 1972.

APPENDIX I

DETECTOR OUTPUT FOR NARROW-EAND FM WAUE

This Aprendix derives the expression of the outfut of the detector shown in fisure 2-1 when the infut is a narrow-band FM wave, comprised of a component at the center freauency and one pair of sidebands. At the same time, we present the voltase expressions at the various foints of the circuit.

Fieference is made to Fisure 2-1. Without loss of senerality, we let the sains of the summers, multifliers, and Hilbert transformers be units and the sain of the differentiator be I. The infut sisnal, beins a small modulation index tone-modulated FM wave, is siven by E1 as

$$
\begin{align*}
E 1=e_{i}(t)= & A \cos \omega t-(A k / 2) \cos \left(\omega_{0}-\omega_{m}\right) t \\
& +(A k / 2) \cos \left(\omega_{0}+\omega_{m}\right) t \tag{A1-1}
\end{align*}
$$

where k is the modulation index. We further assume that the various blocks do not cause fhase inversions. Then the outrut of differentiator llis siven bu

$$
\begin{array}{rl}
E 2=-A I I & t \sin \omega_{0} t-(k / 2)\left[\left(\omega_{0}-\omega_{m}\right) / \omega_{0}\right] \sin \left(\omega_{0}-\omega_{m}\right) t \\
& \left.+(k / 2)\left[\left(\omega_{0}+\omega_{m}\right) / \omega_{0}\right] \sin \left(\omega_{0}+\omega_{m}\right) t\right\} \tag{A1-2}
\end{array}
$$

Froceedins further, we have the outrut of the Hilbert transformer H1 as

$$
\begin{aligned}
E 3= & -\left[A \sin \omega_{0} t-(A K / 2) \sin \left(\omega_{0}-\omega_{m}\right) t\right. \\
& \left.+(A k / 2) \sin \left(\omega_{0}+\omega_{m}\right) t\right]
\end{aligned}
$$

while the outrut of the summer 51 is

$$
\begin{aligned}
E 4= & E 2-E 3 \\
= & -A\left\{\left(1-\left[1 \omega_{0}\right) \sin \omega_{0} t\right.\right. \\
& +(k / 2)\left[11 \omega_{0}\left(1-\omega_{m} / \omega_{0}\right)-1\right] \sin \left(\omega_{0}-\omega_{m}\right) t \\
& \left.-(k / 2)\left[\square \omega_{0}\left(1+\omega_{m} / \omega_{0}\right)-1\right] \sin \left(\omega_{0}+\omega_{m}\right) t\right\} \quad(A 1-4)
\end{aligned}
$$

For carrier balance at center frequency ω_{0}, we reauire that

$$
n \omega_{0}=1
$$

(A1-5)

Due to Equation A1-5y the first term of Equation A1-4 vanishes and Fartial cancellation occurs in the other two terms. We mas then rewrite Equation A1-4 as

$$
\begin{equation*}
E 4=-(A k R / 2)\left[\sin \left(\omega_{0}-\omega_{m}\right) t+\sin \left(\omega_{0}+\omega_{m}\right) t\right] \tag{A1-6}
\end{equation*}
$$

where $\mathrm{F}=\omega_{m} / \omega_{0}$.

Now, the outfut of the multiflier M1 is

```
E5 = E3 P E4
    = ERt 2 cos \mp@subsup{\omega}{m}{}t-\operatorname{cos}(2\mp@subsup{\omega}{0}{}-\mp@subsup{\omega}{m}{})t-\operatorname{cos}(2\mp@subsup{\omega}{0}{}+\mp@subsup{\omega}{m}{})t
        +(k/2)[\operatorname{cos}(2\mp@subsup{\omega}{0}{}-2\mp@subsup{\omega}{m}{})t-\operatorname{cos}(2\mp@subsup{\omega}{0}{}+2\mp@subsup{\omega}{m}{})t]}
```

(A1-7)
where $B=A^{2} K / 4$.

Equation A1-7 is obtained bu collatins terms of the same freauencs after usins affrofriate trisonmetric identities. Note that ES is the outrut of the discriminator portion.

In a similar manmer, we find the expressions for the RF
cancellation circuit. The outfout of Hilbert transformer H2 is

$$
E 6=-(A k R / 2)\left[\cos \left(\omega_{0}-\omega_{m}\right) t+\cos \left(\omega_{0}+\omega_{m}\right) t\right] \quad(A 1-8)
$$

while the output of multiflier M2 is

$$
\begin{aligned}
E 7= & E 6 \cdot E 1 \\
= & -\operatorname{BF}\left\{2 \cos \omega_{m} t+\cos \left(2 \omega_{0}-\omega_{m}\right) t+\cos \left(2 \omega_{0}+\omega_{m}\right) t\right. \\
& \left.-(\mathrm{k} / 2)\left[\cos \left(2 \omega_{0}-2 \omega_{m}\right) t-\cos \left(2 \omega_{0}+2 \omega_{m}\right) t\right]\right\}
\end{aligned}
$$

(A1-9)
Finally, the outrut of the detector is E8 = E5-E7;

$$
\begin{equation*}
E 8=e_{0}(t)=2 E R \cos \omega_{m} t \tag{A1-10}
\end{equation*}
$$

which is equivalent to Equation 3-2.

AFFENDIX II

BASERANI OUTFUT FOF SINE WAVE INTEFFERENCE

This Affendix derives the expressions for the detector outrut when the infut consists of a desired and an interferins carrier, with the modulation of both the desired and the interferins carriers limited to de (frequency offset. .

Froceedins as in Affendix I, and referrins asain to Fisure $2-1$, we have a desired carrier at freauencs ω_{d} and ar interferins carrier at frequency ω_{i}. The infut to the detector is

$$
\begin{equation*}
E 1=A \cos \omega_{\alpha} t+B \cos \omega_{i} t \tag{A2-1}
\end{equation*}
$$

where A and B are the amplitudes of the desired and interferins carriers, resfectively. Let $\omega_{d}=\omega_{0}+\Delta \omega_{d}$ and ω_{i} $=\omega_{0}+\Delta \omega_{i}$ where $\Delta \omega_{d}$ and $\Delta \omega_{i}$ are the deviations of the desired and interferins carriersy respectivelyy from the center freauency of the detector. After differentiation

$$
\left.E 2=-\operatorname{II} A\left(\omega_{0}+\Delta \omega_{d}\right) \sin \omega_{d} t+E\left(\omega_{0}+\Delta \omega_{i}\right) \sin \omega_{i} t\right]
$$

The output of Hilbert transformer H1 is

$$
\begin{equation*}
E 3=-\left[A \sin \omega_{d} t+E \sin \omega_{i} t\right] \tag{A2-3}
\end{equation*}
$$

After summins and usins the center frequencs balance condition Equation A1-5, we set

$$
\begin{equation*}
E 4=E 2-E 3=-\left[A \frac{\Delta \omega_{d}}{\omega_{0}} \sin \omega_{d} t+E \frac{\Delta \omega_{i}}{\omega_{0}} \sin \omega_{i} t\right] \tag{A2-4}
\end{equation*}
$$

At the outrist of the discriminator fortion (outfut of M1), we have

$$
\begin{align*}
E 5= & 1 / 2 \kappa\left(A^{2} \frac{\Delta \omega_{d}}{\omega_{0}}+\mathrm{E}^{2} \frac{\Delta \omega_{i}}{\omega_{0}}\right) \\
& -A^{2} \frac{\Delta \omega_{d}}{\omega_{0}} \cos \left(2 \omega_{d} t\right)-\mathrm{B}^{2} \frac{\Delta \omega_{i}}{\omega_{0}} \cos \left(2 \omega_{i} t\right) \\
& \left.+A B\left(\frac{\Delta \omega_{d}}{\omega_{0}}+\frac{\Delta \omega_{i}}{\omega_{0}}\right)\left[\cos \left(\omega_{d}-\omega_{i}\right) t-\cos \left(\omega_{d}+\omega_{i}\right) t\right]\right\} \tag{A2-5}
\end{align*}
$$

Findins the expressions for the $F F$ cancellation circuit, the outfint of Hilbert transformer H_{2} is siven by

$$
E 6=-\left[A \frac{\Delta \omega_{d}}{\omega_{0}} \cos \omega_{d} t+E \frac{\Delta \omega_{i}}{\omega_{0}} \cos \omega_{i} t\right] \quad(A 2-6)
$$

while the outfut of M2 is

$$
\begin{aligned}
E 7= & E 6 \cdot E 1 \\
= & -1 / 2 \ell\left(A^{2} \frac{\Delta \omega_{d}}{\omega_{0}}+\mathrm{E}^{2} \frac{\Delta \omega_{i}}{\omega_{0}}\right) \\
& +A^{2} \frac{\Delta \omega_{d}}{\omega_{0}} \cos 2 \omega_{d} t+\mathrm{E}^{2} \frac{\Delta \omega_{i}}{\omega_{0}} \cos 2 \omega_{i} t \\
& \left.+A E\left(\frac{\Delta \omega_{d}}{\omega_{0}}+\frac{\Delta \omega_{i}}{\omega_{0}}\right)\left[\cos \left(\omega_{d}+\omega_{i}\right) t+\cos \left(\omega_{d}-\omega_{i}\right) t\right]\right]
\end{aligned}
$$

Finalls, the output of the detector is siven by

$$
\begin{align*}
E 8 & =E 5-E 7 \\
& =A^{2} \frac{\Delta \omega_{d}}{\omega_{0}}+B^{2} \frac{\Delta \omega_{i}}{\omega_{0}}+A B\left(\frac{\Delta \omega_{d}}{\omega_{0}}+\frac{\Delta \omega_{i}}{\omega_{0}}\right) \cos \left(\omega_{d}-\omega_{i}\right) t \tag{2}
\end{align*}
$$

which is the same as Easation 3-4.

AFPENLIIX III

IIEFIVATION OF CNF - SNF RELATIONSHIF

This Affendix computes the ferformance of the detector in the presence of noise. The $S N F$ is derived by findins the ratio of the detector outfut sisnal power for a simusoidal modulated infut wave and the detector output fower spectral density (FSII) for an unmodulated carrier with added narrow-band noise. This result is then compared with the CNR at the irifut of the detector.

Froceedins as in Affendix I, and asain referrins to Fisure 2-1, we first derive the detector output for an urimodulated carrier with added narrow-band noise as represented by Fisure 3-2. The infut to the detector is then siven bs

$$
E_{1}=A \sin \omega_{0} t+x(t) \cos \omega_{0} t-y(t) \sin \omega_{0} t \quad(A 3-1)
$$

After differentiatins, and usins the center frequency balance condition Easation A1-5, we set

$$
E_{2}=\left[A+\frac{1}{\omega_{0}} \dot{x}(t)-y(t)\right] \cos \omega_{0} t-\left[x(t)+\frac{1}{\omega_{0}} \dot{y}(t)\right] \sin \omega_{0} t
$$

The output of Hilbert transformer H_{1} is

$$
\begin{equation*}
E_{3}=A \cos \omega_{0} t-x(t) \sin \omega_{0} t-y(t) \cos \omega_{0} t \tag{A3-3}
\end{equation*}
$$

The summer output is then

$$
\begin{equation*}
E_{4}=\frac{1}{\omega_{0}}\left[\dot{x}(t) \cos \omega_{0} t-\dot{y}(t) \sin \omega_{0} t\right] \tag{A3-4}
\end{equation*}
$$

At the outfist of the discriminator portion (output of M, , we have

$$
\begin{aligned}
E_{5}= & \frac{1}{\omega_{0}}\left\{\dot{x}(t)[A-y(t)] \cos ^{2} \omega_{0} t+x(t) \dot{y}(t) \sin ^{2} \omega_{0} t\right. \\
& \left.-[A \dot{y}(t)+x(t) \dot{y}(t)-y(t) \dot{y}(t)] \sin \omega_{0} t \cos \omega_{0} t\right]
\end{aligned}
$$

($A 3-5$)
Findins the expressions for the FF cancellation fortion, the output of H_{2} is siven bu

$$
\begin{equation*}
E_{6}=-\frac{1}{\omega_{0}}\left[\dot{x}(t) \sin \omega_{0} t+\dot{y}(t) \cos \omega_{0} t\right] \tag{A3-6}
\end{equation*}
$$

while the outant of M_{2} is

$$
\begin{aligned}
E_{7}= & -\frac{1}{\omega_{0}}\left[\dot{x}(t)[A-y(t)] \sin ^{2} \omega_{0} t+x(t) \dot{y}(t) \cos ^{2} \omega_{0} t\right. \\
& \left.+[A \dot{y}(t)+x(t) \dot{x}(t)-y(t) \dot{y}(t)] \sin \omega_{0} t \cos \omega_{0} t\right]
\end{aligned}
$$

($A 3-7$)
Finally, the output of the detector is

$$
\begin{equation*}
z(t)=E_{8}=\frac{1}{\omega_{0}}[A \dot{x}(t)-\dot{x}(t) y(t)+x(t) \dot{y}(t)] \tag{A3-8}
\end{equation*}
$$

To determine the FSI of $Z(t)$ we must first find $F_{z z}(\tau)$; which is the autocorrelation function of $Z(t)$ and is defined 35

$$
\mathrm{F}_{z z}(\tau)=E\{Z(t) Z(t+\tau)\}
$$

(A3-9)

Let $C=A / \omega_{0}$ and $\mu=-1 / \omega_{0}$, then

$$
\begin{equation*}
z(t)=c \dot{x}(t)+n \dot{x}(t) y(t)-n x(t) \dot{y}(t) \tag{A3-10}
\end{equation*}
$$

Substitutins into Easation A3-9 and solvins by makins use of the expected value identities
$E[x(t) x(t+\tau)]=E[y(t) y(t+\tau)]$
and

$$
E[x(t) y(t+\tau)]=-E[x(t+\tau) y(t)] \quad(A 3-12)
$$

we obtain

$$
\begin{equation*}
\mathrm{F}_{z z}(\tau)=\frac{A^{2}}{\omega_{0}^{2}} \mathrm{R}_{\dot{x} \dot{x}}(\tau)+\frac{2}{\omega_{0}^{2}} \mathrm{~F}_{y y}(\tau) \mathrm{F}_{\dot{x} \dot{x}}(\tau) \tag{A3-13}
\end{equation*}
$$

after returnins to the orisinal equivalents for C and M .

The Fourier Transform of $\mathrm{F}_{z z}(\tau)$ will froduce the output Fower sfectral density $S_{z z}(\tau)$ in watts/Hz. Therefore,

$$
\begin{equation*}
s_{z z}(\tau)=\frac{A^{2}}{\omega_{0}^{2}} \omega^{2} s(\omega)+\frac{2}{\omega_{0}^{2}} \mathcal{f}\left[\mathrm{~F}_{y y}(\tau) \mathrm{F}_{\dot{x} \dot{x}}(\tau)\right] \tag{A3-14}
\end{equation*}
$$

where the noise spectral density $S(\omega)$ is siven in Fisure 3-3. The second term of Equation A3-14 mas be reduced by usins the convolution of $S_{y y}$ and $S_{\dot{x} \dot{x}}$, where $S_{y y}=S(\omega)$ and $S_{\bar{x} \bar{x}}=\omega^{2} S(\omega)$ over the same bandwidth (-E/2 $\approx \omega \notin B / 2)$; or

$$
\begin{equation*}
\mathcal{F}\left[R_{y y}(\tau) R_{\dot{x} \dot{x}}(\tau)\right]=\frac{1}{2 \pi}\left[s_{y y} * s_{\dot{x} \dot{x}}\right] \tag{A3-15}
\end{equation*}
$$

OF. BLANK 1 Substitutins the furictions, this becomes

$$
\exists\left[F_{y y}(\tau) F_{i x}^{x}(\tau)\right]=\frac{1}{2 \pi} \int_{-\frac{B}{2}}^{t+\frac{R}{2}} \eta\left(\eta \omega^{2}\right) \sigma \omega \quad-\mathrm{B}<\mathrm{t}<0 \quad \quad(A 3-16)
$$

which after solvins and chansins back to the orisinal variablesy results in the expression

$$
\mathcal{F}\left[R_{y y}(\tau) \mathrm{F}_{\dot{x} \dot{x}}(\tau)\right]=\left\{\begin{array}{lr}
\frac{\eta^{2}}{6 \pi}\left[(\omega+\mathrm{B} / 2)^{3}+(\mathrm{E} / 2)^{3}\right] & -\mathrm{B} \leqslant \omega<0 \\
\frac{\eta^{2}}{6 \pi}\left[(-\omega+\mathrm{B} / 2)^{3}+(\mathrm{B} / 2)^{3}\right] & 0 \leqslant \omega \leqslant \mathrm{~B}
\end{array}\right.
$$

($A 3-17$)
Therefore,

$$
S_{z z}(\omega)=\frac{A^{2}}{\omega_{0}^{2}} \omega^{2} S(\omega)+\frac{\eta^{2}}{3 \pi \omega_{0}^{2}}-\left[\begin{array}{ll}
(\omega+B / 2)^{3}+(B / 2)^{3} & -B \leqslant \omega<0 \\
(-\omega+B / 2)^{3}+(B / 2)^{3} & 0<\omega<B
\end{array}\right]
$$

Finally, the total noise fower at the detector outfut is eaual to the intesral of $(1 / 2 \pi) S_{z Z}(\omega)$ over the fost detection filter bandwidth, or

$$
\begin{equation*}
\text { Noise Fower }=\frac{1}{2 \pi} \int_{-\omega_{b}}^{\omega_{b}} s_{z 7}(\omega) \Delta \omega \quad \omega_{b}<B / 2 \tag{A3-19}
\end{equation*}
$$

which is equivalent to

$$
\begin{align*}
& \text { Naise Fower }=\frac{1}{2 \pi}\left[\frac{A^{2}}{\omega_{0}^{2}} \int_{-\omega_{b}}^{\omega_{b}} \omega^{2} s(\omega) d \omega\right. \\
& \quad+\frac{2 \eta^{2}}{3 \pi \omega_{0}^{2}} \int_{-\omega_{b}}^{0}\left[(\omega+\mathrm{B} / 2)^{3}+(B / 2)^{3}\right] d \omega \tag{A3-20}
\end{align*}
$$

The $1 / 2 \pi$ factor is necessary when intesratins over ω (radians/sec) since the units of $S_{z z}(\omega)$ are watts/Hz+ Solvins, the total noise fower at the detector outrut is siven by

$$
\begin{align*}
& \text { Noise Fower }=\frac{A^{2} \eta \omega_{b}^{3}}{3 \pi \omega_{0}^{2}} \\
& \quad+\frac{\eta^{2}}{\pi^{2} \omega_{0}^{2}}\left[\frac{B^{3} \omega_{6}}{12}-\frac{B^{2} \omega_{0}^{2}}{8}+\frac{B \omega_{6}^{3}}{6}-\frac{\omega_{6}^{4}}{12}\right] \tag{A3-21}
\end{align*}
$$

The sisnal outfut fower of the detector is obtained in a similar manner. Assume a modulated infut sisnal siven by

$$
\begin{equation*}
E_{1}=A \cos \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-22}
\end{equation*}
$$

where A is the carrier amplitude, β is the modulation index and ω_{m} is the frequency of the cosinusoidal modulatins sisnal. Asain referrins to fisure 2-1, the outfut of n, is

$$
\begin{align*}
E_{2}= & -A \sin \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \\
& -A \beta \frac{\omega_{m}}{\omega_{0}} \cos \omega_{m} t \sin \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-23}
\end{align*}
$$

while the output of H, is

$$
\begin{equation*}
E_{3}=-A \sin \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-24}
\end{equation*}
$$

After summins,

$$
\begin{equation*}
E_{4}=-A \beta\left(\frac{\omega_{m}}{\omega_{0}}\right) \cos \omega_{m} t \sin \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-25}
\end{equation*}
$$

The output of the discriminator portion (output of M_{l}) is then siven by

$$
\begin{equation*}
E_{5}=A \beta^{2} \frac{\omega_{m}}{\omega_{0}} \cos \omega_{m} t \sin \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-26}
\end{equation*}
$$

Obtainins the expressions for the cancellation section, the output of H_{2} is

$$
\begin{equation*}
E_{6}=-A \beta \frac{\omega_{m}}{\omega_{0}} \cos \omega_{m} t \cos \left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-27}
\end{equation*}
$$

while the outfint of M_{2} is

$$
\begin{equation*}
E_{1}=-A^{2} \beta \frac{\omega_{m}}{\omega_{0}} \cos \omega_{m} t \cos ^{2}\left(\omega_{0} t+\beta \sin \omega_{m} t\right) \tag{A3-28}
\end{equation*}
$$

The detector outfut voltase is then siven by

$$
\begin{equation*}
E_{8}=A^{2} \beta \frac{\omega_{m}}{\omega_{0}} \cos \omega_{m} t \tag{A3-29}
\end{equation*}
$$

which has a sisnal outfut fower of

$$
\begin{equation*}
\text { Sisnal Fower }=\frac{A^{4} \beta^{2} \omega_{m}^{2}}{2 \omega_{0}^{2}} \tag{A3-30}
\end{equation*}
$$

The SNF for the detector outfut mas now be determined from

$$
\begin{equation*}
\text { SNR }=\frac{\text { Sisnal Fower }}{\text { Noise Fower }} \tag{A3-31}
\end{equation*}
$$

Substitutins and dividins both numerator and denominator bs $A^{2} \eta \omega_{b}^{3} / 12 \pi$, we obtain

$$
\begin{equation*}
\operatorname{SNF}=\frac{\frac{3 \pi A^{2} \beta^{2} \omega_{m}}{2 \eta \omega_{b}^{3}}}{1+\frac{\eta}{\pi A^{2}}\left[\frac{B^{3}}{4 \omega_{6}^{2}}-\frac{3 B^{2}}{8 \omega_{6}}+\frac{B}{2}-\frac{\omega_{0}}{4}\right]} \tag{A3-32}
\end{equation*}
$$

Since the CNF at the infut to the detector is siven by

$$
\begin{equation*}
C N F=\frac{A^{2} / 2}{3 B / 2 \pi}=\frac{\pi A^{2}}{3 B} \tag{A3-33}
\end{equation*}
$$

then the SNR mas be rewritten in terms of the CNR. This results in the expression

$$
\begin{equation*}
S N F=\frac{\frac{3}{2}(\operatorname{CNR})\left(\frac{\Delta \omega}{\omega_{s}}\right)^{2} x}{1+\frac{1}{(\operatorname{CNR})}\left[\frac{x^{2}}{4}-\frac{3 x}{8}+\frac{1}{2}-\frac{1}{4 x}\right]} \tag{A3-34}
\end{equation*}
$$

where $x=\mathrm{E} / \omega_{b}$. This is equivalent to equation Equation 3-15.

A computer prosram called DETSNR.BAS was written usins the results of Eauation A3-34. The frosram lists values of SNR over a 20 dB ranise of CNF centered around the threshold

Abstract

value, which is also frinted. A listins of the frosram and an outfut example for the workins model of the detector are siven below.

FROGFAM LIETSNF + BAS

```
10 CO=10m.1
20 C1=CO-1
30 C=1/(2*C1)
4 0 ~ P F I N T T
50 FRINT "ENTER FRE-IIETECTION EW: "\hat{*}
60 INFUT FI
70 PFINT "ENTEF FOST-IIETECTOF CUTOFF FREQ.* *%
80 INFUT F2
90. FRINT "ENTEF MOMULATION FFEQUENCY; **
100 INFUT F3
110 FFINT MENTER FEAK FFEQ. IIEUIATION: **
120 INFUT F4
130 X=F1/F2
140 B=2*FI*F1
150 W1=2*FI*F2
160 BO=F4/F3
170V=C*(-.25+X/2-.375*X`2+.25*X`3)
180 AO=10*LOG10(v)
190 TO=10*LOG10(U*2/X)
200 I9=10*LOG10(3*(BO*F3/F2)~2)
210 FRINT
220 FRINT "THFESHOLII CNR IS "价'* [IE"
```



```
240 FRINT *SNF IMFRQUEMENT ABOUE (CNF)AM FOF HIGH CNF IS
    "%IM%" IEE*
250 FRINT
260 T1=INT (TO-10)
270 FFINT "CNF","(CNF:AM","SNF","SNF LIEGFAIIATION*
280 SO=1,5*BO"2*X*(F3/F2)m2
290 FOR }J=0\mathrm{ TO 20
300 T9=T1+J
310T=10-(T9/10)
320 A=T*X/2
330 A9=10*LOG10(A)
340 S=50*T/(1-(.25/X-.5+3*X/8-(X'2)/4)/T)
350 S9=10*LOG10(S)
360 FFIINT T9,A9,59,59-(A9+I9)
370 NEXT J
380 ENII
```

IETSNR - BAS EXAMFLE
(Workins Model of the Detector)
DETSNR 28-JUL-82 18:30:39

THFESHOLII CNF IS 18.5985 THE

CNF	(CNR)AM	SNF	SNR IEGRADATION
8	14.6901	18.3539	-5.98991
9	15.6901	20.0796	-5.26418
10	16.6901	21.7573	-4.58653
11	17.6901	23.3828	-3.96102
12	18.6901	24.953	-3.39075
13	19.6901	26.4663	-2.87752
14	20.6901	27.9221	-2.42166
15	21.6901	29.3217	-2.02204
16	22.6901	30.6676	-1.67614
17	23.6901	31.9635	-1.38029
18	24.6901	33.2138	-1.13002
19	25.6901	34.4234	-.920399
20	26.6901	35.5974	-.746372
21	28.6901	36.7408	-.602989
22	29.6901	37.8582	-.485619
23	30.6901	38.9537	-.390083
24	31.6901	40.0311	-.312664
25	32.6901	41.0936	-.250168
26	33.6901	42.1439	-.199886
27	34.6901	43.1843	-.159515
28	44.2166	-.127182	

READY

AFFENIIX IU

FREQUENCY RESFONSE OF A LINEAR-PHASE FIF NETWORK

This Afyendix derives the freatencs responsey includins both amplitude and fhaseg of a linear-phase FIR filter network siven the coefficients (which are identical to the imfulse response). The results are used to senerate the responses of the differentiators and Hilbert transformers used in the detector.

The delas of a linear-minase FIR network is (N - 1)T/2, where T is the samflins interval and N is the order of the network. Assumins an infut of e $(t)=e x p$ (jwt), the delaued outrut is then siven bu definition (Fief. 1) as

$$
\begin{aligned}
e_{0}(t)= & \mathrm{e}^{j \omega t} e^{j \omega\left(\frac{N-1}{2}\right) T}\left[c_{1}+c_{2} \mathrm{e}^{-j \omega T}\right. \\
& \left.+c_{3} \mathrm{e}^{-2 j \omega T}+\ldots+c_{N} \mathrm{e}^{-(N-1) j \omega T}\right] \quad \text { (A4-1)}
\end{aligned}
$$

where c_{i} is the i th coefficienty ω is the irifut radian frequency and T is the samflins interval. Ilefine a normalized frequencs F (relative to the samflins frequency) siven by

$$
\begin{equation*}
F=\frac{f}{f_{s}}=\frac{\omega / 2 \pi}{1 / T}=\frac{\omega T}{2 \pi} \tag{A4-2}
\end{equation*}
$$

Substituting,

$$
\begin{align*}
e_{0}(t)= & e^{j \omega t} e^{j(N-1) \pi F}\left[c_{1}+c_{2} e^{-j 2 \pi F}\right. \\
& \left.+c_{3} e^{-j 4 \pi F}+\ldots+c_{N} e^{-j z(N-1) \pi F}\right] \\
= & e_{i}(t)\{H(F)\} \tag{A4-3}
\end{align*}
$$

where $H(F)$ is the transfer functiong which determines the amplitude and phase of the result.

The transfer function may then be written as

$$
\begin{equation*}
H(F)=\sum_{n=1}^{N} c_{n} e^{j(N+1-2 n) \pi F} \tag{A4-4}
\end{equation*}
$$

ory in trisometric terms,

$$
\begin{equation*}
H(F)=\sum_{n=1}^{N} c_{n}[\cos (N+1-2 n) \pi F+j \sin (N+1-2 n) \pi F] \tag{A4-5}
\end{equation*}
$$

Then:

$$
\begin{equation*}
H_{R e}=\operatorname{Fe}[H(F)]=\sum_{n=1}^{N} c_{n} \cos (N+1-2 n) \pi F \tag{A4-6}
\end{equation*}
$$

and

$$
H_{I m}=\operatorname{Im}[H(F)]=\sum_{n=1}^{N} c_{n} \sin (N+1-2 n) \pi F \quad(A 4-7
$$

The amflitude resfonse is then siven by

$$
\begin{equation*}
\text { Amplitude }=\left[H_{R e}^{2}+H_{I m}^{2}\right] \tag{A4-8}
\end{equation*}
$$

and the fhase by

$$
\begin{equation*}
\text { Fhase }=\tan ^{-1}\left[H_{I m} / H_{R e}\right] \tag{A4-9}
\end{equation*}
$$

Now consider the special case of a linear-phase confisuration with a constant 90 desree fhase characteristic, as exists for differentiators and Hilbert transformers. The coefficients are then related (Fief. 1) bs

$$
c_{n}=-c_{N+1-n}
$$

Ther, is N is odd, the terms of $H(F)$ may be taken in pairs, resultins in the expression

$$
\begin{equation*}
H(F)=\sum_{n=1}^{\frac{N-1}{3}} c_{n}\left[e^{j(N+1-2 n) \pi F}-e^{-j(N+1-2 n) \pi F}\right] \tag{A4-11}
\end{equation*}
$$

Since $\left(e^{j x}-e^{-j x}\right)=2 j \sin x$, then $H(F)$ may be written as

$$
\begin{equation*}
H(F)=j \sum_{n=1}^{\frac{N-1}{2}} 2 c_{n} \sin (N+1-2 n) \pi F \tag{A4-12}
\end{equation*}
$$

where the j indicates the 90 desree phase response, The frequency response mas therefore be evaluated in a fourier manner, consistins of fundamental component of $2 \sin 2 \pi F$ and a number of harmonicsy each multiplied by a correspondins coefficient. Note that the first coefficient resresents the amplitude of the hishest frequencs component.

Coefficients with even symmetry will obviously produce similar results, except the output will be the sum of cosine terms and have a zero fhase characteristic.

These results were used in a computer prosram called FIFTST, BAS, which was used to analyze the individual differentiators and Hilbert transformers. A prosram listins and outfut examples for the differentiator and Hilbert transformer used in the orisinal detector are given below.

FEFERENCES

1. A. Antoniou, Iisital Filters: Analysis and Ilesisny Chap. 9, McGraw-Hill, 1979.
```
10 IIM C(20)
20 FFINT ENTER # COEFFIC *
30 INFUT N
40 FRINT "ENTEF COEF (H(1) TO H(N))"
50 FOF I=1 TO N
60 INFUT C(I)
70 NEXT I
80 FOR J=1 TO 20
90 F=.025*J
100 H1=0
110 H2=0
120 W=FI*F
130 FOF I=1 TO N
140 W2=(N+1-2*I)*W
150 <2=(N+1-2*I)*J/40
160 X1=X2+.5
170 IF AES(X1-INT(X1))<1.00000E-07 GO TO 190
180 H1=H1+C(I)*COS(W2)
190 IF ABS(X2-INT (X2))<1.00000E-07 GO TO 210
200 H2=H2+C(I)*SIN(W2)
210 NEXT I
220 A=SQF(H1*H1+H2*H2)
230 F=,5*FI*SGN(H2)
240 IF HI=0 GO TO 290
250 H3=H2/H1
260 F=ATN(H3)
270 IF H1<O THEN F=F'F'I
280 IF FOFI THEN F=F-2*FI
290 FFINT F,AyF
300 NEXT 」
310 F'FINT
320 GO TO 20
330 ENII
```


FIRTST. BAS EXAMFLE

 (Orisinal Differentiator)```
FIRTST 28-JUL-82 18:32:31
ENTER # COEFFIC
?7
ENTEF COEF (H(1) TO H(N))
? 0.08223
?-0.19502
? 0.57944
? }
? -0.57944
? 0.19502
?-0.08223
```

| FFEQ | AMFL | FHASE |
| :--- | :--- | :--- |
| .025 | +135423 | 1.5708 |
| .05 | .261905 | 1.5708 |
| .075 | .373007 | 1.5708 |
| .1 | .466633 | 1.5708 |
| .125 | .545703 | 1.5708 |
| .15 | .617424 | 1.5708 |
| .175 | .691293 | 1.5708 |
| .2 | .776234 | 1.5708 |
| .225 | .877548 | 1.5708 |
| .25 | .99442 | 1.5708 |
| .275 | 1.11861 | 1.5708 |
| .3 | 1.23475 | 1.5708 |
| .325 | 1.35939 | 1.5708 |
| .35 | 1.32578 | 1.5708 |
| .375 | 1.20853 | 1.5708 |
| .4 | 1.00411 | 1.5708 |
| .425 | .720425 | 1.5708 |
| .45 | 7.376482 | 1.5708 |
| .475 | $7.45058 E-09$ | 3.1408 |
| .5 |  |  |

FIFTST. BAS EXAMFLE
(Orisinal Hilbert Transformer)

| FIRTST | 28-JUL-82 18:34:01 |  |
| :---: | :---: | :---: |
| ENTER \# COEFFIC |  |  |
| ENTEF COEF | (H(1) TO H(N)) |  |
| ? 0.08510 |  |  |
| ? 0.00240 |  |  |
| ? 0.5808 |  |  |
| $? 0$ |  |  |
| ? -0.58080 |  |  |
| ? -0.00240 |  |  |
| ? -0.08510 |  |  |
| FREQ | AMPL | FHASE |
| . 025 | . 260467 | 1.5708 |
| . 05 | + 49947 | 1.5708 |
| . 075 | +699343 | 1.5708 |
| . 1 | . 849206 | 1.5708 |
| . 125 | . 946525 | 1.5708 |
| . 15 | . 996914 | 1.5708 |
| . 175 | 1.01225 | 1.5708 |
| . 2 | 1.00753 | 1.5708 |
| . 225 | . 997133 | 1.5708 |
| +25 | . 9914 | 1.5708 |
| . 275 | . 994166 | 1.5708 |
| +3 | 1.00188 | 1.5708 |
| . 325 | 1.00448 | 1.5708 |
| . 35 | . 987784 | 1.5708 |
| . 375 | . 936925 | 1.5708 |
| . 4 | . 840076 | 1.5708 |
| . 425 | . 691577 | 1.5708 |
| . 45 | . 493828 | 1.5708 |
| . 475 | +257501 | 1.5708 |
| . 5 | 2.23517E-08 | 3.14159 |

## AFFENIIX $U$

## FREQUENCY RESFONSE OF THE DETECTOR

This Apfendix derives the output response of the detector from the coefficients of the differentiator and Hilbert transformer blocks, which are of a linear-phase desisn. As such, each block has a delas of ( $N-1$ ) T/2, where $T$ is the sampling interval. For an infut of $e_{i}(t)=\sin \omega t$, the output of the FIF block is then given bs

$$
\begin{equation*}
e_{0}(t)=\sum_{n=1}^{N} e_{n} \sin \left[\omega t+\left(\frac{N+1}{2}-n\right) \omega T\right] \tag{A5-1}
\end{equation*}
$$

where $C_{n}$ is the $r_{1}$ th coefficient and $N$ is the order of the block.

Referrins to Fisure 2-1, the outpat of the differentiator is siven bu

$$
\begin{equation*}
E_{2}=\sum_{n=1}^{N} c_{D n} \sin \left[\omega t+\left(\frac{N+1}{2}-n\right) \omega T\right] . \tag{A5-2}
\end{equation*}
$$

while the output of Hilbert transformer Hi is

$$
\begin{equation*}
E_{3}=\sum_{n=1}^{N} c_{H n} \sin \left[\omega t+\left(\frac{N+1}{2}-n\right) \omega T\right] \tag{A5-3}
\end{equation*}
$$

The outrut of summer 51 is then

$$
\begin{align*}
E_{4} & =E_{2}-E_{3} \\
& =\sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) \sin \left[\omega t+\left(\frac{N+1}{2}-n_{1}\right) \omega T\right] \tag{A5-4}
\end{align*}
$$

Then the output of multiplier M1 is siven by

$$
\begin{align*}
E_{5}= & E_{3} \cdot E_{4} \\
= & 1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) c_{H m} t \cos (m-n) \omega T \\
& -\cos [2 \omega t+(N+1-n-m) \omega T]\} \tag{A5-5}
\end{align*}
$$

neterminins the eauations for the $F$ f cancellation circuit, the output of $\mathrm{H}_{2}$ is

$$
\begin{equation*}
E_{6}=\sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) c_{H m} \sin [\omega t+(N+1-n-m) \omega T] \tag{A5-6}
\end{equation*}
$$

while the outrut of multiflier M2 is

$$
\begin{align*}
E_{7}=1 / 2 \sum_{m=1}^{N} & \sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) c_{H m}\{\cos (N+1-n-m) \omega T \\
& -\cos [2 \omega t+(N+1-n-m) \omega T]\} \tag{A5-7}
\end{align*}
$$

The output of the detector is therefore siven bs

$$
\begin{align*}
E_{8}= & E_{5}-E_{7} \\
= & 1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) c_{H m}\left[\cos \left(m_{1}-n_{1}\right) \omega T\right. \\
& \left.-\cos \left(N+1-n_{1}-m_{1}\right) \omega T\right] \tag{A5-8}
\end{align*}
$$

In terms of the normalized freauence $F$ (relative to the samplins frequencs), which is defined by $F=\omega T / 2 \pi$, the detector outfut mas be written as

$$
\begin{gather*}
e_{0}(t)=1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-c_{H m}\right) c_{H m}\left[\cos \left(m_{1}-n\right) 2 \pi F\right. \\
\left.-\cos \left(N+1-n-m_{1}\right) 2 \pi F\right] \tag{A5-9}
\end{gather*}
$$

which is the same as Equation 4-1.

This result was incorporated into a computer prosram called GENNET.EAS, which calculates the complete frequency
response of the linear-phase FIF detector network from the coefficients. A listins of the frosram and outfut examsles for the orisinal and oftimized detector are siven below.

```
10 A=TTYSET (255%,133%)
20 DIM C1(9),C2(9),C3(9),EO(20),F(20)
30 FRINT *INFUT C1(1) T0 Ci(3):"
40 FOR I=1 TO 3 \ INFUT C1(I) \ NEXT I
50 FRINT "INFUT C2(1) TO C2(3):"
60 FOR I=1 TO 3 \ INFUT C2(I) \ NEXT I
70 FRINT \ FRINT " # FFEQ OUTFUT"
80 C1(4)=0
90 C2(4)=0
100 C3(4)=0
110 FO=.25
120 FOR I=1 TO 3
130 C3(I)=C2(I)
140 C1(8-I)=-C1(I)
150 C2(8-I)=-C2(I)
160 C3(8-I)=-C3(I)
170 NEXT I
180 FOR I=1 TO 19
190 F(I)=.025*I
200 W=2*FI*F(I)
210 EO(I)=0
220 FOR M=1 TO 7
230 FOR N=1 TO 7
240 X=Cos((M-N)*W)-\operatorname{cos}((8-N-M)*W)
250 EO(I)=EO(I)+.5*(C1(N)-C2(N))*C3(M)*X
2 6 0 ~ N E X T ~ N ~
270 NEXT M
280 GO TO 310
290 M1=M1+(F(I)-FO)*EO(I)
300 M2=M2+(F(I)-FO)M2
310 PRINT I,F(I),EO(I)
320 NEXT I
330 STOF
340 E=0
350 MO=M1/m2
360 FOR I=1 TO 9
370 E=E+(EO(I)-MO*(F(I)-FO))m2
380 NEXT I
390 FFINT E
400 ENII
```

GENDET. BAS EXAMFLE (Orisinal Detector)

```
GENIIET 28-JUL-82 18:35:47
INFUT C1(1) TO C1(3):
? 0.08223
? -0.19502
? 0.57944
INFUT C2(1) TO C2(3):
? 0.08510
? 0.00240
? 0.58080
\begin{tabular}{lll}
\(*\) & FREQ & OUTPUT \\
1 & .025 & -.0325697 \\
2 & .05 & -.118657 \\
3 & .075 & -.228221 \\
4 & .1 & -.324883 \\
5 & .125 & -.379388 \\
6 & .15 & -.378318 \\
7 & .175 & -.32489 \\
8 & .2 & -.233035 \\
9 & .225 & -.119242 \\
10 & .25 & \(2.99392 \mathrm{E}-03\) \\
11 & .375 & .123714 \\
12 & .325 & .233307 \\
13 & .35 & .319332 \\
14 & .375 & .367002 \\
15 & .4 & .364331 \\
16 & .425 & .309532 \\
17 & .45 & .216137 \\
18 & .475 & .1119 \\
19 & & .0306378
\end{tabular}
STOF AT LINE 330
REALIY
```


## GENDET. BAS EXAMFLE

 (Optimized Uetector)```
GENDET 28-JUL-82 18:37:38
INPUT C1(1) TO C1(3):
? 0.19019
?-0.21116
? 0.54117
INFUT C2(1) TG C2(3):
? 0.19071
? -0.00157
? 0.54175
\begin{tabular}{lcl}
\(\#\) & FREQ & \multicolumn{1}{c}{ OUTPUT } \\
1 & .025 & -.0444834 \\
2 & .05 & -.15884 \\
3 & .075 & -.295055 \\
4 & .1 & -.398986 \\
5 & .125 & -.4345 \\
6 & .15 & -.396504 \\
7 & .175 & -.307082 \\
8 & .2 & -.198598 \\
9 & .255 & -.0946343 \\
10 & .275 & \(-8.43114 E-05\) \\
11 & .3 & .0945655 \\
12 & .325 & .198714 \\
13 & .35 & .307228 \\
14 & .375 & .396379 \\
15 & .425 & .433909 \\
16 & .45 & .398027 \\
17 & .475 & .294079 \\
18 & & .158205 \\
19 & & .0442871 \\
& & \\
STOF AT LINE & 330 & \\
REAIY & &
\end{tabular}
```


AF'FENIIX UI

TIME RESFONSE OF THE IETECTOF

The furfose of this Appendix is to develof the reauirements for simulatins the detector in the time domaing includins the seneration of both sine wave and satare wave modulated FM sismals as sources for the detector.

In senerating a comfuter model of a source seneratory consider a General FM wave defined by

$$
\begin{equation*}
e_{F M}(t)=A_{c} \cos \left[w_{c} t+m_{f} \int_{0}^{t} s(\tau) d \tau\right] \tag{A6-1}
\end{equation*}
$$

where $s(\tau)$ is the modulation sisnal and mf is the modulation masnitude .

For simusoidal modulationg assume that

$$
\xi(t)=\cos \omega_{m} t
$$

(AG-2)

Theng the outfut is siven by

$$
\begin{equation*}
\mathbf{e}_{F M}(t)=A_{C} \cos \left[\omega_{c} t+\beta\left(\sin \omega_{m} t\right)\right] \tag{AG-3}
\end{equation*}
$$

where β is the modulation index (maximum freauency deviation divided by the modulation frequencs).

For square wave modulation (FSK), the modulation sismal may he written as

$$
s(t)=S G N\left(\cos \omega_{m} t\right)
$$

and

$$
\int_{0}^{t} s(\tau) d \tau=\sin ^{-1}\left(\sin \omega_{m} t\right)
$$

(A $6-5$)
where the inverse sine is limited by $\pm \pi / 2$. The senerator outrut is then siven by

$$
e_{F M}(t)=A_{C} \cos \left[\omega_{c} t+\beta \sin ^{-1}\left(\sin \omega_{m} t\right)\right] \quad(A G-6)
$$

where $\sin ^{-1}\left(\sin \omega_{m} t\right)$ is limited to $\pm \pi / 2$.

Simulation of the detector follows implementins the alsorithms freviously described.

A computer frosram called GENSIM. BAS was written usins the above results, For each sample time, the prosram shows the outputs at each foint in the detector. A listins of the prosram and a typical example of an FSK sisnal are siven below.

FROGRAM GENSIM.BAS

```
10 IIM C1(10),C2(10),C3(10)
20 IIIM U1(20), [11(20),H1(20),S1(20),M1(20)
30 A9=TTYSET (255%%133%)
40 FRINT "ENTER ORILEF OF SECTIONS (N ODD):";
5 0 ~ I N F U T ~ N ~
60 FRINT "ENTER COEFFIC (SLOPE=1/FO) FOF IIFFERENTIATOR
    ((N-1)/2):"
70 M=(N-1)/2
80 FOK I=1 TO M
90 INFUT C1(I)
100 NEXT I
110 FRINT "ENTER COEFFIC (AMFL=1) FOR HILEERT TRANSF.
    ((N-1)/2):"
120 FOR I=1 TO M
130 INFUT C2(I)
140 NEXT I
150 FRINT "ENTER COEFFIC (AMFL=1) FOR HILBERT TRANSF. #2
    ((N-1)/2):"
160 FOK I=1 TO M
170 INFUT C3(I)
180 NEXT I
190 FFINT " ENTEF IETECTOR CENTER FREQ. (0-+5):";
200 INFUT FO
210 FRINT "ENTEF IESIREI CARRTER FREQ. (0-.5) & AMPL:")
220 INFUT F,A
230 FRINT "ENTEF IIESIFEN MODULATION FREQ (0-.5):";
2 4 0 ~ I N F U T ~ F I ~
250 FFINT "ENTER MAX CAFRIER FFEQ SHIFT FROM FC:";
260 INFUT F2
2 7 0 ~ I F ~ F 1 = 0 ~ T H E N ~ K ゙ = 0 ~ G O ~ T O ~ 3 1 0 ~
280 K=F2/F1
290 FRINT "ENTEF MODULATION TYPE (O=SINEy1=FSK):";
300 INFUT M9
310 W=2*F'I*F
320 FRINT "ENTER OUTFUT LINES: ";
330 INFUT L1
340 T=-N
350 FOR I=0 TO N
360 T9=T-I I9=I
370 GOSUE 810
380 NEXT I
3 9 0 ~ F R I N T ~
400 PRINT "TIME"变AB(10)%** INFUT * OUTFUT *";
    TAB(66)%"OUTFUTS OF INTERNAL BLOCKS";TAB(125);"*"
4 1 0 ~ F R I N T ~
420 PFINT " T","U1(O)","U2(N-1)","D1(M)","H1(M)",
    "S1(M)","M1(M)","H2(N-1)","M2(N-1)"
430 PFINT
440 FEM CALCULATE ELOCKS
450 [11(M)=0
460 H1(M)=0
```

```
470 FOR I=1 TO M
480 L1(M)=H1(M)+C1(I)*(V1(I-1)-U1(N-I))
490 H1(M)=H1(M)+C2(I)*(U1(I-1)-U1(N-I))
500 NEXT I
510 S1(M)=H1(M)-N1(M)
520 M1(M)=51 (M)*H1 (M)
530 H2=0
5 4 0 ~ F O R ~ I = 1 ~ T O ~ M ~
550 H2=H2+C3(I)*(S1(I+M-1)-S1(N+M-I))
560 NEXT I
570 M2=H2*U1(N-1)
580 S2=M2-M1(N-1)
590 v2=52
600 REM U2 DELAYEI N-1 SAMFLLES
6 1 0 ~ I F ~ T < O ~ G O ~ T O ~ 6 3 0 ~
620 FRINT T,V1(O),V2,M1(M),H1(M),S1(M),M1(M),H2,M2
6 3 0 \mathrm { T } = \mathrm { T } + 1
640 FOR I=1 TO N-1
650 J=N-I
660 V1(J)=V1(J-1)
6 7 0 ~ N E X T ~ I ~
6 8 0 ~ F O F ~ I = M + 1 ~ T O ~ N + M - 1 ~
690 J=2*N-I-1
700 [11(J)=[11(J-1)
710 H1(J)=H1(J-1)
720 51(J)=51(J-1)
730 M1(J)=M1(J-1)
740 NEXT I
750 T9=T
760 19=0
770 GOSUE 810
780 IF T<L1 GO TO 440
790 FFIINT
800 GO TO 210
810 REM INPUT SIGNAL SURROUTINE
820 59=0
830 X=2*F1*T9
840 IF ABS(X-INT(X))<1.00000E-06 GO TO 860
850 S9=SIN(FI*X)
860 58=59
870 IF M9=0 GO TO 910
880 IF ABS(S9)=1 THEN S8=FI*S9/2 GO TO 910
890 Y=SQF(1-59*S9)
900 S8=ATN(S9/Y)
910 X=W*T9+k゙*S8
920 X1=X/FI
930 IF ABS(X1-INT(X1))<1.00000E-06 THEN U1(I9)=0 G0 T0 950
940 U1(I9)=A*SIN(X)
950 RETURN
```

ENTER ORIIIR OF SECTIONS (N OLID):?
ENTER COEFFIC (SLOFE=1/FO) FOR DIFFERENTIATOR ($(N-1) / 2):$
70.19019
$7-0.21116$
>0.54117
ENTER COEFFIC (AMFL=1) FOR HILHERT TRANSF, ($(N-1) / 2)$:
70.19071
-0.00157
0.54175

ENTER COEFFIC (AMFL=1) FOR HILEERT TRANSF. $2((N-1) / 2)$

- -0.00157
$0.541 / 5$
ENTEF LIETECTOR CENTER FREQ. (0-.5):? 0.25
ENTER UESIFED CAFRIER FREO, (0-.5) \& AMFL:? 0.25,1.0
ENTER UESIFED MOLULATION FREG (0-.5):? 0.030
ENTER MAX CNRRIER FREO SHIFT FKOM FC:? 0.075
NTER MOIULATION TYFE ($0=$ SINE, $1=F S K$):?
ENTER OUTFUT LINES: ? BO
TIME * INFUT * outfut *

$V 1(0)$	$V 2(N-1)$
0	.279291
.891007	.335416
-.809017	.290521
-.156435	.307235
.951057	.307228
-.707106	.307228
-.309017	.307228
.987688	.307228
-.587702	.307228
-.891007	.307235
0	.290521
.891006	.335416
.809016	.279291
-.156434	.229693
-.951056	.0497918
-.707108	-.120575
.309015	-.218434
.987688	-.323099
.587787	-.280292
-.453989	-.308479
-1.	-.307103
-.453992	-.307083
.587782	-.307083
.987688	-.307083
.309015	-.307083
-.707105	-.307082
-.309021	-.307146
.987689	-.318784
-.587782	-.280259
-.453995	-.283764
1	-.126588
-.453984	$-4.13604 E-04$
-.58779	.126806
.987688	.283835
-.309012	.28029

DI (H)
1.23118
-.732693
-.565913
1.24653
-.565913
-.732693
1.23118
-.3851991
-.881431
1.10241
-.292908
-.778001
.551144
.451824
.213612
-.331042
-.556269
-.17404
.398244
.535639
.0881059
-.455641
-.501819
$-4.15927 E-07$
.501816
.455642
.0340042
-.453609
-.558043
.832346
-.0728856
-1.00847
1.11066
$7.06352 \mathrm{E}-06$
-1.11067

Hi (H)	$51(\mathrm{H})$	H1 (II)
. 897096	-. 334088	-. 299709
-. 533873	. 19882	-. 106145
-. 41235	. 153564	-. 0633219
. 908279	-. 338253	-. 307228
-. 41235	. 153564	-. 0633219
-. 533873	. 19882	-. 106145
. 897096	-. 334088	-. 299709
-. 280673	. 104526	-. 0293376
-. 64225	. 239181	-. 153614
. 780481	-. 321924	-. 251256
-. 332108	-. 0392	. 0130186
-. 713492	. 0645083	-. 0460262
. 531803	-. 0193413	-. 0102858
. 745017	. 293194	. 218434
. 367851	. 15424	. 0567372
-. 530886	-. 199844	. 106094
-. 892078	-. 335809	. 29956 B
-. 279105	-. 105064	. 0293239
. 638657	. 240412	. 153541
. 858993	. 323354	. 277759
. 141293	. 0531873	7.51501E-03
$-.730702$	-. 275061	. 200988
-. 804757	-. 302938	. 243791
-1.42936E-06	-1.01343E-06	1.44856E-12
. 804753	. 302937	. 24379
. 730704	. 275061	. 200988
-. 0188481	-. 0528522	9.96162E-04
-. 641803	-. 188194	. 120784
-. 559013	-9.69648E-04	$5.42046 \mathrm{E}-04$
. 644619	-. 187727	-. 121012
-. 0196387	. 0532469	-1.04570E-03
-. 734815	. 273653	-. 201084
. 809281	-. 301384	-. 243904
5.55745E-06	-1.50607E-06	-8.36992E-12
-.809284	. 301386	-. 243907

$H 2(N-1)$	M2(N-1)
.0907246	.0280355
.257107	.181802
-.274624	.261183
.0481044	$7.52520 \mathrm{E}-03$
.248552	.201083
-.273742	0
0	.243906
.273742	.243906
-.248552	7.501083
-.0481044	$7.52520 \mathrm{E}-03$
.274624	.261183
-.257107	.181802
-.0907246	.0280355
.245737	.242711
$-6.40645 \mathrm{E}-03$	$3.76560 \mathrm{E}-03$
.146869	-.130861
.0378862	0
-.298945	-.266362
-.215321	-.174198
.0569634	$-8.91098 \mathrm{E}-03$
.292075	-.277779
.21714	-.153542
-.0948933	-.0293235
-.303302	-.299568
-.180499	-.106095
.139412	-.0632914
.307146	-.307146
.165189	-.0749943
-.134865	-.0792714
.286293	-.282768
-.0187845	$-5.80469 E-03$
$-1.81646 \mathrm{E}-04$	$1.28443 \mathrm{E}-04$
-.0187508	$5.79440 \mathrm{E}-03$
.286314	.28279
-.134754	.079206

-. 707111	. 318827	1.00846
. 951054	. 307164	. 195007
-. 156426	. 307228	-1.18552
-. 009023	. 307228	. 801425
. 891004	. 307228	. 385208
0	. 307228	-1.23119
-.891007	. 307228	. 732687
. 567782	. 307207	. 523842
. 99769	. 308599	-1.04172
. 309018	. 280259	. 510314
-. 707103	. 323208	. 647498
-. 951058	. 219064	-. 370574
-. 156438	. 119845	-. 452521
. 809019	-. 0501685	-. 398244
. 891007	-. 229954	. 174035
0	-. 278701	. 556272
-.891004	-.33542	. 331044
-. 809019	-. 390564	-. 255691
. 156438	-. 307076	-. 5632
. 951054	-. 307082	-. 255692
. 707111	-. 307083	. 331045
-. 309012	-. 307083	. 55627
-. 987688	-. 307082	. 174038
-. 587782	-. 307083	-. 39824
. 891001	-. 307076	-.452526
1.19842E-05	-. 290565	-. 370572
-. 89.9101	-. 335421	. 647492
. 809009	-. 278701	. 510319
. 156444	-. 229954	-1.04172
-.95106	-. 0501698	. 523823
. 707098	. 119842	. 732702
. 307021	. 219061	-1.23118
-. 987691	. 323206	. 385187
. 587778	. 280257	. 881439
. 453995	. 308598	-1.18552
-1	. 307207	. 194991
. 453984	. 307228	1.00847
. 587797	. 307228	-1.11066
-. 987687	. 307228	-9.15497E-06
.309001	. 307228	1.11067
. 707115	. 307227	-1.00846
-. 309012	. 307167	-. 0729082
-. 987687	. 318826	. 832355
-. 597787	. 280289	-. 558035
. 453904	. 293835	-. 453619

	$\begin{array}{r} .734809 \\ .142091 \end{array}$
	-. 863826
	. 642246
	. 28068
	-. 897099
	. 533868
	. 370162
	-. 749403
	. 531501
	. 712524
	-. 332686
	-. 775648
	-.638658
	. 279099
	. 89208
	. 530888
	-. 410045
	-. 903196
	-. 410045
	. 530888
	. 892079
	. 279104
	-.638653
	-. 775652
	-. 332686
	. 712519
	. 531504
	-. 749402
	. 370146
	. 533879
	-. 897094
	. 280664
	. 642256
	-. 863822
	. 142079
	. 734817
	-. 809277
	-5.09911E-06
	. 809287
	-.734808
	-. 0196568
	. 644626
	-. 559004
	-.64181

-. 273651	-. 201082	-. 165029	. 0749222
-. 0529166	-7.51895E-03	. 307164	. 307164
. 321698	-. 277891	-. 139477	. 0633205
-. 239179	-. 153612	-.180585	. 106146
-. 104528	-. 0293389	. 303445	. 299709
. 334089	-. 299711	-. 0949365	. 0293366
-. 19882	-. 106143	-. 217244	. 153616
-. 15368	-. 0568866	. 292168	. 277868
. 292318	-. 219064	-. 0568198	B.88810E-03
. 0211865	. 0112607	-. 215218	.174116
. 0650257	. 0463324	. 2989	. 266322
. 0378883	-. 0126049	. 0378315	0
-. 323127	. 250632.	-. 147143	. 131105
-. 240414	. 153542	-6.52642E-03	-3.83612E-03
. 105064	. 0293234	-.245582	-. 242559
. 335808	. 299568	-. 0908314	-. 0280686
. 199844	. 106095	. 257216	-. 181878
-. 154353	. 0632917	. 274685	-. 261241
-. 339996	. 307083	. 0479948	-7.50821E-03
-. 154354	. 063292	-. 248434	-. 200987
. 199843	. 106094	-. 273613	-.243791
. 335809	. 299568	-7.81554E-08	0
. 105066	. 0293242	. 273613	-. 24379
-. 240413	. 15354	. 248434	-. 200988
-. 323126	. 250633	-. 0479936	-7.50802E-03
. 037886	-. 0126041	-. 274685	-.261241
. 0650271	. 046333	-. 257216	-. 18188
. 021185	. 0112599	. 0908294	-. 0280674
. 292315	-. 219061	. 245581	-. 242558
-. 153676	-. 0568827	6.52762E-03	-3.83682E-03
-. 198823	-. 106147	. 14714	. 131102
. 334087	-. 299708	-. 0378283	-4.53343E-07
-. 104523	-. 0293358	-. 2989	. 266323
-. 239183	-. 153617	. 215214	.17411
. 321697	-. 277889	. 0568249	8.88992E-03
-. 0529117	-7.51763E-03	-. 29217	. 277871
-. 273654	-. 201085	. 217241	. 153611
. .301385	-. 243904	. 0949414	. 0293392
4.055日5E-06	-2.06813E-11	-. 303445	. 29971
-. 301386	-.243908	. 180582	. 106142°
. 273649	-. 201079	. 139481	. 0633237
. 0532514	-1.04675E-03	-. 307164	. 307164
-. 187729	-. 121015	. 165023	. 074918
-9.69768E-04	5.42104E-04	.134758	. 0792101
-. 188191	. 120783	-. 286314	. 282788

ENTER DESIRED CARRIER FREQ. (0-.5) \& AMPL:? º
stor at line 220
ktady

AFPENIIX UII

LINEARITY OFTIMIZATION OF THE DETECTOR

The farameters of the detector were optimized usins the subroutine FMFF,FOR, which is now included in most Fortran scientific subroutine packases. It is based on an alsorithm developed by Fletcher and Fowell to mirimize a function of a number of variables by varsins the value of the variables. The subroutine must be siven an initial set of values, which it then modifies by successive affroximations in order to reduce the value of the function. To accomplish this, the routine reauires that the value of the function and the sradient vector of the function with respect to each variable be calculated for each new affroximation.

Therefore, in order to oftimize the linearity of the detector in Fisure 2-1 usins the Fletcher-Fowell alsorithmy we must first senerate the expressions for both the error function to be minimized and the correspondins sradient vector.

As shown in Equation A5-9, the output of the detector for the normalized freauency F is জiven bu

$$
\begin{align*}
e_{0}(F)= & 1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left\{\left(c_{D n}-c_{H M}\right) c_{H m}\right. \\
& {\left.\left[\cos \left(m-n_{1}\right) 2 \pi F-\cos (N+1-n-m) 2 \pi F\right]\right\} } \tag{A>-1}
\end{align*}
$$

Usins the least sauares method, with the constraint that the ideal detector outfut be zero at F_{0} and have a slope of M, the
error function is then siven bs

$$
\begin{equation*}
\text { Error }=\sum_{i=1}^{P}\left[e_{0}\left(F_{i}\right)-M\left(F_{i}-F_{0}\right)\right]^{2} \tag{A>-2}
\end{equation*}
$$

where P is the number of freauency points used to refresent the function and M is the slope of the detector output. Due to the structure of the ideal detector, the slofe M is a constant siven by

$$
\begin{equation*}
M=1 / F \tag{A>-3}
\end{equation*}
$$

The sradient vector is defined as

$$
\begin{equation*}
\text { GRAD }=\frac{\partial(\text { Error })}{\partial c_{1}}, \frac{\partial(\text { Error })}{\partial c_{2}}, \ldots, \frac{\partial(\text { Frror })}{\partial c_{n}} \tag{A>-4}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial(E r r o r)}{\partial c_{j}}=2 \sum_{i=1}^{\rho}\left[e_{0}\left(F_{i}\right)-m\left(F_{i}-F_{0}\right)\right] \frac{\partial e_{0}(F)}{\partial c_{j}} \tag{A>-5}
\end{equation*}
$$

The expression for the rartial derivatives of the output with respect to the coefficient c_{j} depends on which block the coefficient is associated. For the coefficients of the differentiator $I f$, we have $c_{j}=C_{D_{n}}$, and the fartial derivative may be written as

$$
\begin{equation*}
\frac{\partial e_{0}\left(F_{i}\right)}{\partial c_{D n}}=1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(1-c_{H n}\right) c_{H m} \times\left(F_{i}\right) \tag{A>-6}
\end{equation*}
$$

where

$$
\begin{equation*}
x\left(F_{i}\right)=\cos (m-n) 2 \pi F_{i}-\cos (N+1-n-m) 2 \pi F_{i} \tag{A7-7}
\end{equation*}
$$

Then for Hilbert transformer $H 1$, we have $c_{j}=c_{A n}$ and

$$
\begin{equation*}
\frac{\partial e_{0}\left(F_{i}\right)}{\partial c_{H n}}=1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-1\right) c_{H m} \times\left(F_{i}\right) \tag{A>-8}
\end{equation*}
$$

And finally, for $H 2$ we have $c_{j}=c_{\text {Hm }}$ and

$$
\begin{equation*}
\frac{\partial e_{0}\left(F_{i}\right)}{\partial c_{H m}}=1 / 2 \sum_{m=1}^{N} \sum_{n=1}^{N}\left(c_{D n}-c_{H n}\right) x\left(F_{i}\right) \tag{A7-9}
\end{equation*}
$$

These results were then incorforated into subroutine FUNCT.FOR, which is called by the Fletcher-Fowell routine. The main frosram IETLN.FOK is needed to handle the infut and output data for the subroutines.

Listiriss of these computer frosrams are siven below.

FROGRAM IIETLIN,FOR

PROGRAM DETLIN
IIMENSION X(21),G(21),H(378),ARG(21),GRAD(21)
BYTE ANS
EXTERNAL FUNCT
WRITE (7,10)
10 FORMAT (' $⿻$ EENTER ORDEF (OND * (16):')
FEAII(5,*) NC
NC2=(NC-1)/2
$\mathrm{N}=2 * \mathrm{NC} 2$
$\mathrm{M}=\mathrm{NC} 2$
$\mathrm{FO}=0.25$
WRITE (7,15)
15 FORMAT ('\$LIFF COEF NOFMALIZED? ')
FEAII(7,16) ANS
16 FORMAT (A1)
WRITE(7,20)
20 FORMAT(' ENTER IIIFF COEF ($\left.(N-1) / 2):^{\prime}\right)$
$\operatorname{REAL}(5, *)(X(I), I=1, M)$
IF(ANS.EQ.'N') GO TO 26
DO $25 \mathrm{I}=1$, H
$X(I)=X(I) / F O$
25 CONTINUE
26 WFITE (7,30)
30 FORMAT(' ENTER HILE. TRANS + COEF ($\left.(N-1) / 2)^{\prime \prime}\right)$
$M S=N C 2+1$
$M F=2 * N C 2$
FEALI (5 , *) ($\mathrm{X}(\mathrm{I}), \mathrm{I}=\mathrm{MS}$, MF)
$\mathrm{EST}=0.01$
$E F S=1, E-6$
LIMIT $=1.00$
WFITE (7,46)
46. FORMAT(' ENTER EST, EFS \& LIMIT FOR FMFF.FOR: ')

FEALI 5 ,*) EST,EFS,LIMIT
CALL FMFF (FUNCT,N,X,F,G,EST,EFS,LIMIT,IER,H)
CALL FCTRLO
WRITE(7,50) F,IER
50 FOFMAT (/5X,'VALUE=',F12,5,10X,'IER=',I3/)
WRITE (7,60)
60 FORMAT (5X,'COEF OF II,H \& GRALI OF COEF:')
no $80 \mathrm{I}=1$, NC2
$\mathrm{I} 2=\mathrm{I}+\mathrm{NC} 2$
WRITE(7,70) I,X(I),X(I2),G(I),G(I2),
70 FORMAT (5X, I2,4F15,5)
80 CONTINUE
CALL EXIT
ENII

FROGRAM FUNCT.FOR

C SUBROUTINE FOR "FMFP.FOR" THAT CALCULATES A LINEARITY
C ERROR FUNCTION FOR A DETECTOR WITH ZERO OUTFUT AT CENTER
C FREQ. USING LINEAR FHASE COEFFIC. UF TO 15TH ORDER, ANI
C COMMON HILB. TRANS. COEFFIC. FOR ZERO CARRIER RIFFLE.
SURROUTINE FUNCT (N,ARG,VAL,GRAD)
IIIMENSION ARG(1), GRAD(1)
IIMENSION EO(21), DM (3,7), DEO (3,7,9)
IIMENSION CO(15), CH(15)
IIMENSION ES(15)
$\mathrm{FI}=3+1415926$
C IIEFINE FFEQ. FOINTS (FUNCTION)
FFEQ (I) $=0.125+0.025 * I$
$\mathrm{FO}=0.25$
NFFEQ=9
CALCULATE ORIEE OF SECTIONS = NC
$N C=N+1$
NC2=N/2
ORTAIN COMFLETE SET OF COEFFIC (NC ODII)
no $10 \mathrm{I}=1, \mathrm{NC} 2$
$C I(I)=A R G(I)$
$\mathrm{CH}(\mathrm{I})=\mathrm{ARG}(\mathrm{I}+\mathrm{NC} 2)$
$\operatorname{CII}(N C-I+1)=-\operatorname{CII}(I)$
$\mathrm{CH}(\mathrm{NC}-\mathrm{I}+1)=-\mathrm{CH}(\mathrm{I})$
10 CONTINUE
$\mathrm{NCM}=\mathrm{NC} 2+1$
$\operatorname{CI}(N C M)=0$.
$\mathrm{CH}(\mathrm{NCM})=0$.
$\mathrm{S} 1=0$.
$52=0$.
CALCULATE ERFOF
no 30 K゙=1, NFREQ
F=FREQ(K)
$W=2 . * F I * F$
$E=0$ 。
no $25 \mathrm{I}=1, \mathrm{NC}$
[10 $20 \mathrm{~J}=1$, NC
$X=\operatorname{Cos}((I-J) * W)-\operatorname{Cos}((N C+1-I-J) * W)$
EALII=((CH(J)-CH(J))*CH(I))*X
E=E+EALIL
ES (J)=EAMII
20 CONTINUE
25 CONTINUE
$E O(K)=0.5 * E$
$\mathrm{FI}=\mathrm{F}-\mathrm{FO}$
S1=S1+FI ${ }^{2}$ EO (K)
S2=S2+FIIFFI
30 CONTINUE
$U M=S 1 / S 2$
UMIL=1, /FO
$V A L=0$.

```
    MO 40 K=1 yNFFEQ
    F=FREQ(K゙)
    UAL=UAL+(EO(K゙)-UM[I*(F-FO))**2
    40 CONTINUE
            ITERATION FOR GRADIENT CALC
    IO 50 I=1,N
    GRALI (I)=0.
    5 0 ~ C O N T I N U E ~
    IO 70 I=1,NC2
    LIO 70 M=1,2
    IO 60 K=1,NFFEEQ
    IIEO(M,I,K゙)=0.
    6O CONTINUE
    MM (MyI)=0.
    70 CONTINUE
        II=52
            COMFUTE FAFTIAL IERIVATIVES
    IIO 100 K゙=1,NFREQ
    F=FFEQ(K゙)
    W=2.*FI *F
    110 90 I=1,NC
    10 90 J=1,NC
    X=C0S((I-J)*W)-COS((NC+1-I-J)*W)
    D0 80 L=1,NC2
    IF(J.EQ+L) GOTO 72
    IF(J+EQ+NC+1-L) GO TO 72
    GO TO 74
    72 F5=0.5*CH(I)*X
        IF(J,GT,NCM) FFS=-F5
        DEO(1,L,KK)=DEO(1,L,K゙)+FS
    74 UCM=1.
    IF(I.EQ.L) GO TO 75
    IF(I+EQ,NC+1-L) GO TO 75
    GO TO 76
    75 IF(I,EQ.J) UCM=2.
    F5=0.5*(CII(J)-VCM*CH(J))*X
    IF(I.GT,NCM) PS=-P5
    GO TO 79
    76 IF(J.EQ.L) GO TO 77
        IF(J.EQ+NC+1-L) GO TO }7
        GO TO 80
        77 F.5=-0.5*CH(I)*X
        IF(J,GT+NCM) FFS=-F'S
        79 IIEO(2,L,K゙)=IIEO(2,L,K゙)+PS
        80 CONTINUE
        90 CONTINUE
            110 95 L=1,NC2
            10 95 M=1.2
            IMM(M,L)=\operatorname{IM}(M,M)+(F-FO)*\operatorname{IEO}(M,L,NK)/I
        95 CONTINUE
    100 CONTINUE
        COMPUTE GRADIENT VECTOFS
    DO 120 K゙=1,NFREQ
    F=FREQ(K゙)
    W=2.*FI*F
```

```
        IO 110 M=1,2
        IOD 110 L=1,NC2
        I=3*(M-1)+L
        DM(M,L)=0.
        GRAII(I)=GRAII(I)+2**(EO(K゙)-UMM*(F-FO))*(DEO(MッL,N゙)
    1-\operatorname{Im(M,L)*(F-FO))}
110 CONTINUE
120 CONTINUE
    WRITE(7,150) VAL
150 FOFMAT(/E15.8)
    MO 170 J=1,2
    WFITE(7,160)(AFG(3*(J-1)+I),I=1,3),(GRAI(3*(J-1)+I),
    1I=1,3)
160 FOFMAT (15X,3E17,8,6X,3E17.8)
170 CONTINUE
    FETURN
    END
```


FROGRAM FMFF F FOF

5 KOUNT＝KOUNT＋1

C
C
C
SAUE FUNCTION UALUE，ARGUMENT UECTOR AND GRADIENT UECTOF
OLILF＝F
no $9 \mathrm{~J}=1 \mathrm{~N} \mathrm{~N}$
$\kappa=N+J$
$H(K)=G(J)$
K＝K゙ +N
$H(K)=X(J)$
C
C
HETEFMINE IIIRECTION UECTOR H
$K=J+N 3$
$T=0$ ．
no $8 \mathrm{~L}=1, \mathrm{~N}$
$T=T-G(L) * H(K)$
IF（L－J） $6,7,7$
6 K $=K+N-L$
GO TO 8
7 K゙＝K゙ +1
8 CONTINUE
$9 H(J)=T$
C
CHECK WHETHER FUNCTION WILL IECREASE STEFFING ALONG H．
$\mathrm{I} Y=0$ ． $H N K M=0$ ． GNFM $=0$ ．

CALCULATE IIFECTIONAL IERIUATIUE ANI TESTVALUES FOR IIRECTION VECTOF H AND GRAIIENT VECTOF G ．
no $10 \mathrm{~J}=1, \mathrm{~N}$
HNKM＝HNRM＋ABS（H（J））
GNFM＝GNFM＋ABS（G（J））
$10 \quad I Y Y=I Y Y+H(J) * G(J)$
REFEAT SEARCH IN IIKECTION OF STEEFEST DESCENT IF IIIRECTIONAL IIEREIUATIVE AFFEARS TO BE FOSITIVE OR ZEFO．
IF（IIY）11，51，51
FEFEAT SEAFICH IN IIFECTION OF STEEFEST DECENT IF IIFEETION VECTOR H IS SMALL COMFAREI TO GRADIENT UECTOR G．
11 IF（HNFM／GNFM－EFS）51，51，12
SEAFCH MINIMUM ALONG H
SEARCH ALONG H FOR FOSITIUE IIFECTIONAL DERIVATIUE
$12 \mathrm{FY}=\mathrm{F}$
ALFA $=2$ ．＊$(E S T-F) /$ LIY
AMEIA $=1$ 。
USE ESTIMATE FOR STEFSIZE ONLY IF IT IS FOSITIUE AND LESS THAN 1．OTHERWISE TAKE 1．AS STEFSIZE

IF (ALFA) $15,15.13$
13 IF (ALFA-AMEDA) $14,15,15$
14 AMELIA=ALFA
15 ALFA $=0$.
$16 \mathrm{FX}=\mathrm{FY}$
C
C
STEF AFGUMENT ALONG H
IIO $17 \mathrm{I}=1, \mathrm{~N}$
$17 \times(I)=X(I)+A M E D A * H(I)$
C
C
COMFUTE FUNCTION VALUE ANII GRADIENT FOR NEW ARGUMENT CALL FUNCT (N,X,F,G)
$\mathrm{FY}=\mathrm{F}$
COMFUTE IIIRECTIONAL IERIUATIUE DY FOR NEW ARGUMENT. TEFMINATE SEARCH, IF IIY IS FOSITIUE. IF IY IS ZERO THE MINIMUM IF FOUNI
$\mathrm{IIY}=0$.
no $18 \mathrm{I}=1, \mathrm{~N}$
$18 \mathrm{IIY}=\mathrm{IIY}+\mathrm{G}(\mathrm{I}) * \mathrm{H}(\mathrm{I})$
IF (IY) 19,36,22

SAUE FUNCTION ANI DERIVATIUE VALUES FOR OLI ARGUMENT

$$
\mathrm{IX} X=\mathrm{II} Y
$$

19 IF (FY-FX)20,22,22
REFEAT SEARCH ANI NOUBLE STEFSIZE FOR FURTHEK SEARCHES
20 AMETIA $=$ AMEIIA $+A L F A$
ALFA=AMEIIA
ENI OF SEAFICH LOOF
TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LAFGE IF (HNRM*AMEDA-1,E10) 16,16,21

LINIAR SEAFCH TECHNIQUE INIICATES THAT NO MINIMUM EXISTS
21 IEF=2
RETURN
INTEFFOLATE CUBICALLY IN THE INTERUAL IEEFINEI BY THE SEARCH ABOVE ANI COMFUTE THE ARGUMENT X FOF WHICH THE INTERFOLATION POLYNOMIAL IS MINIMIZEI.
$22 \mathrm{~T}=0$.
23 IF (AME [IA $) 24,36,24$
$24 \mathrm{Z}=3$. * ($\mathrm{FX}-\mathrm{FY}$)/AMELA $+\mathrm{MX}+\mathrm{II} Y$
ALFA=AMAX1 (ABS (Z), ABS (DX), ABS (IIY))
DALFA $=\mathrm{Z} / \mathrm{ALFA}$
IALLFA $=$ IIALFA $\operatorname{IIALFA}-$ IIX/ALFA $*$ DY/ALFA
IF (IALFA) $51,25,25$
$25 \omega=A L F A * S Q R T$ (IIALFA)
$A L F A=I I Y-I I X+W+W$

IF (ALFA) 250,251,250

250
ALFA $=(\operatorname{II} Y-Z+W) / A L F A$
GO TO 252
251 ALFA $=(Z+[I Y-W) /(Z+I I X+Z+$ IIY $)$
252 ALFA=ALFA*AMENA
mo $26 \mathrm{I}=1$, N
$26 X(I)=X(I)+(T-A L F A) * H(I)$
TERMINATE, IF THE UALUE OF THE ACTUAL FUNCTION AT X IS LESS THAN THE FUNCTION VALUES AT THE INTERUAL ENDS. OTHEFWISE REDUCE THE INTERVAL BY CHOOSING ONE ENI-POINT EQUAL TO X ANI REPEAT THE INTERPOLATION. WHICH ENII-FOINT IS CHOOSEN IEFFENDS ON THE UALUE OF THE FUNCTION AND ITS GFALIENT AT X.

CALL FUNCT (N,X,F,G)
IF (F-FX)27,27,28
27 IF (F-FY) $36,36,28$
28 UALFA=0.
no $29 \mathrm{I}=1$, N
29 IIALFA=IALFA+G(I)*H(I)
IF (IALFA) $30,33,33$
30 IF (F-FX) $32,31,33$
31 IF (IIX-LIALFA) $32,36,32$
$32 \mathrm{FX}=\mathrm{F}$
$\mathrm{II} X=$ IIALFA
$\mathrm{T}=\mathrm{ALFA}$
AMELIA=ALFA
GO TO 23
33 IF (FY-F) $35.34,35$
34 IF (IIY-IIALFA) $35,36,35$
$35 \mathrm{FY}=\mathrm{F}$
IIY=IIALFA
AMELIA=AMELIA-ALFA
GO TO 22

38 no $37 \mathrm{~J}=1$, N

$\kappa=N+J$
$H(K)=G(J)-H(K)$
$K=N+K$
$37 H(K)=X(J)-H(K)$
TEST LENGTH OF ARGUMENT IIFFERENCE VECTOR AND IIRECTION UECTOF IF AT LEAST N ITERATIONS HAVE BEEN EXECUTEI. TERMINATE, IF BOTH ARE LESS THAN EFS.
IER=0
IF (KOUNT-N) 42,39,39
$39 \mathrm{~T}=0$.
$Z=0$.
TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION
36 IF (OLDF-F+EFS)51,38,38
COMFUTE IIFFERENCE UECTORS OF ARGUMENT AND GRAIIENT FFOM TWO CONSECUTIUE ITERATIONS

```
    10 40 J=1 g
    K゙=N+」
    W=H(N゙)
    K=K゙+N
    T=T+ABS(H(K))
    40 Z=Z+W*H(バ)
    IF (HNFM-EFS)41,41,42
    41 IF(T-EFS)56,56,42
C
C
    42 IF(K゙OUNT-LIMIT)43,50,50
C
C FREFAFE UFDATING OF MATFIX H
    4 3 ~ A L F A = 0 .
        IIO 47 J=1.N
        K=J+N3
        W=0.
        IIO 46 L=1,N
        K゙L=バ+L
        W=W+H(N゙L)*H(K゙)
        IF(L-J)44y45,45
    44 K゙=ド+N-L
    GO TO 46
    45 K゙=バサ1
    46 CONTINUE
    N゙=N+」
    ALFA=ALFA+W*H(K)
    47H(J)=W
C
C
C
C
C UFIIATE MATFIX H
    48 k゙=k゙31
    IIO 49 L=1,N
    KL=N2+L
    IO] 49 J=L,N
    NJ=N2+J
    H(K゙)=H(K゙)+H(K゙L)*H(NJ)/Z-H(L)*H(J)/ALFA
    49 K゙=K゙+1
    G0 TO 5
        ENI OF ITEFATION LOOF
            NO CONUEFGENCE AFTER LIMIT ITEFAATIONS
    50 EFiF=1
        FETURN
C
C
    51 no 52 J=1,N
    N゙=N2+J
    52 X(J)=H(K)
    CALL FUNCT(N,X,F,G)
            REFEAT SEARCH IN UIRECTION OF STEEPEST DECENT IF
```

C DERIUATIUE FAILS TO EE SUFFICIENTLY SMALL IF (GNRM-EFS) 55,55,53
C
C TEST REFEATEI FAILURE OF ITEFATION
53 IF (IER)56,54,54
$54 \mathrm{IER}=-1$
GO TO 1
55 IER=0
56 RETURN
ENII

AFFENIIX UIII
SYSTEM SCHEMATIC IIAGRAMS

```
This Apfendix sives the schematic diasrams for those sustem components used in the experimental evaluation of the detector that had to be desisned and constructed. The followins schematics are included:
1) \(A / D\) Converter
2) \(11 / A\) Converter
3) Fre-detection BFF
4) Limiter with LPF
5) 30 Hz Fost-diseriminator LFF
6) 200 Hz Fost-discriminator LFF
```


II/A CONUERTER

FRE-IIETECTION EFF

LIMITER WITH LFF

$$
\text { ORAMMDJ }=\text { TんOQ4 }
$$

$$
D / 00 E-5=1 N 914 B
$$

30 HZ FOST-HISCRIMINATOR LFF

EIBLIOGRAFHY

BOOKS

1. K. K. Clarke and I. T. Hessy Commuications Circuits: Analysis and llesisn, Addison-Wesley, 1971.
2. F. F. Fianter Modulationy Noisey and Spectral Analysis, Chafter 14, McGraw Hill, 1965.
3. M. Schwartz, Information Transmission, Modulation, and Noise, Chafter 6, McGraw Hilly 1959.
4. J. Klaffer and J. T. Frankle, Fhase Locked and Frequency Feedback Sustemsy Charter 7y Fisure 7-14, Academic Fress; 1972.
5. S. 0. Stearnsp Misital Sisnal Analysis, Chapter 4, Hasdeny 1975.
6. A..Antoniou, Iisital Filters: Analysis and Nesisn Chafter 9: McGraw-Hill, 1979.

PAFERS

1. J. K゙lapfer and E. Kratt, "A New Family of Low-Ilelay FM Iletectors," IEEE Transactions on Communications, Vol. COM-27, No. 2, Feb. 1979.
2. J. Fark, "An FM Detector for Low S/N,". IEEE Transactions on Communication Technolosy, Vol. COM-18, No. 2, Afril 1970.
3. E. T. Fatronis, 'A Frequency Modulation Ietector usins Oferational Amplifiers," Audio Mas., Feb. 1970.
4. G. J. Kersusy "Aralusis of the Klapfer-Kratt FM Detectory" M.S. Froject, Lept. Elec. Ens., New Jersey Inst. Technol., 1976.
5. M. S. Corrinston, "Frequency Modulation Caused by Common-and-Adjacent-Chaniel Interference," RCA Rev., Vol 7. Ilec. 1946.
6. A. Tarbell and J. Klapper, .Noise Performance of the Klaffer-Kiratt Low Nelay FM Metector," NTC, Washinstor, II.C., Nov. 1979.
7. J. H. McClellary T. W. Parks and L. R. Rabinery "FIR Linear Fhase Filter liesisn Frosram" Frosrams for Iisital Sisral Frocessins, Chaf. 5.1, IEEE Fress, New York, 1979.
8. K. Fletcher and M. J. II. Fowelly "A rafidly conversent descent method for minimisation" Computer J., Vol. 6, No. 2, July 1963.
9. T. W. Fartis and J. H. McClellan, "Chebsshev Approximation for Nonrecursive Rigital Filters with Linear Fhase," IEEE Trans. on Circuit Theory, Vol. CT-19, No. 2, March 1972.
10. F. F. Sallen and E. L. Kes, "A Fractical Method of Mesisnins RC Active Filters," IfE Trans. Circuit Theory, Vol. CT-2, No. 1, March 1955.
