Correlation and prediction of vapor-liquid equilibrium in electrolytic solutions

Anil Krishna Rastogi
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Chemical Engineering Commons

Recommended Citation

Rastogi, Anil Krishna, "Correlation and prediction of vapor-liquid equilibrium in electrolytic solutions" (1981). Dissertations. 1261.
https://digitalcommons.njit.edu/dissertations/1261

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

300 N. ZEEB RD., ANN ARBOR, MI 48106

Rastogi, Anil Krishna

CORRELATION AND PREDICTION OF VAPOR-LIQUID EQUILIBRIUM IN ELECTROLYTIC SOLUTIONS

New Jersey Institute of Technology D.Eng.SC. 1981
University Microfilms
International ${ }_{300} \mathrm{~N}$.Zeeb Road, Ann Arbor, M4 48106

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page(s) \qquad lacking when material received, and not available from school or author.
12. Page(s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other

CORRELATION AND PREDICTION OF
 VAPOR-LIQUID EQUILIBRIUM IN

ELECTROLYTIC SOLUTIONS

by
Anil Krishna Rastogi

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the Institute and without credit being given in subsequent written or published word.

Dissertation submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Engineering Science

1981

APPROVAL SHEET

Title of Thesis: Correlation and Prediction of Vapor-LiquidEquilibrium in Electrolytic Solutions
Name of Candidate: Anil Krishna Rastogi Doctor of Engineering Science, 1981
Thesis and Abstract Approved:

Dimitrios Tassios
Professor Department of Chemical Engineering \& Chemistry

VITA

Name: Anil Krishna Rastogi

```
Degree and date to be conferred: D. Eng. Sc., 1981
```

Secondary education: Government Intermediate College, Meerut City, India; June, 1965

Collegiate institutions attended Dates Degree Date of Degree
University of Roorkee, India 7/69-5/73 BE(ChE) 1973
New Jersey Institute of 1/75-8/76 MS (ChE) 1977 Technology, N.J.

New Jersey Institute of 9/76-5/81 D.Eng.Sc.1981

Technology, N.J.
(ChE)

Major: Chemical Engineering
Publications: "Non-Equilibrium Parametric Pumps," H.T. Chen, A. Rastogi, C.Y. Kim, L. Rak, Separation Science, 11 (4), 335, (1976)
"Prediction of Binary Vapor-Liquid Equilibrium from One Parameter Equations," A. Krumins, A. Rastogi, M. Rusak, and D. Tassios, Presented at 27th Canadian Chemical Engineering Conference, Alberta, Canada, (1977); Canadian Journal of Chem. Eng., Vol 58, p 663, Oct. (1980)
"Estimation of Thermodynamic Properties of Binary Aqueous Electrolytic Solutions in the Range $25-100^{\circ} \mathrm{C}, "$ Anil Rastogi and D. Tassios, Ind. Eng. Chem. Process Design Develop., Vol 19, No 3, p 477, July (1980)
"Prediction and Correlation of VLE in Solutions Containing Two Non-electrolytes and One Electrolyte," Anil Rastogi and D. Tassios, to be submitted to AIChE Journal for Publication
Positions Held:
1978-1981 Special Lecturer in Chemical Engineering, NewJersey Institute of Technology
May 1978 \& Assistant Lecturer--on "Applied Distillation"May 1979 offered by "The Center for Professional Advance-ment"
1976-1978 Teaching Assistant--New Jersey Institute ofTechnology, Chemical Engineering Laboratory
1973-1974 Chemical Engineer--Sahu Chemical and Fertili-zers, Varanasi, India

ABSTRACT

Title of Thesis: Correlation and Prediction of Vapor-Liquid Equilibrium in Electrolytic Solutions

Anil Krishna Rastogi, Doctor of Engineering Science, 1981 Thesis directed by:Dimitrios Tassios, Professor of Chemical Engineering

Two expressions for the excess Gibbs free energy are presented which correlate and predict vapor-liquid equilibrium and the mean molal activity coefficient of an electrolyte in a ternary mixture containing water and either MeOH or EtOH . The proposed equations take into account coulombic forces between ions and the physical interaction forces between ion-solvent and solventsolvent molecules in a solution.

Model \#l is a combination of an extended Debye and Hückel equation and the local composition of non-random two liquid (NRTL) model. A ternary mixture requires six adjustable binary parameters to predict activity coefficients. These six parameters are evaluated from three separate binary data reductions. Ternary data are predicted with an average error of $|\Delta Y|$ less than 0.03 up to $I=2$. The parameters are considered temperature independent within a 30 to $40^{\circ} \mathrm{C}$ temperature range for aqueous electrolyte mixtures and within a 15 to $20^{\circ} \mathrm{C}$ temperature range for nonaqueous electrolyte mixtures. Both isothermal and isobaric ternary experimental data have been tested for ternary correlation. Iso-
thermal ternary data correlation for systems containing watermethanol solvents give results with an average error of $|\Delta Y|$ less than 0.01 up to $I=6$. Whereas isobaric ternary data are correlated with an average error of $|\Delta Y|$ less than 0.02 up to $I=4$. It is possible to extend this model to multi-component mixtures although this has not been investigated in this work.

Model \#2 is a combination of the Bromley equation, the simplified NRTL equation and an additional ternary salting out expression. The behavior of each electrolyte-solvent binary is described by a one parameter form of the Bromley equation. The temperature dependency of the binary parameters has been established with a two constant equation. Prediction of aqueous electrolyte binary data ($\gamma \pm$ and vapor pressure depression) is obtained with an average percent error less than 10.0 at intermediate temperatures. Correlation of ternary VLE and $\gamma \pm$ data require four binary parameters and two additional ternary adjustable parameters. This model is limited to binary and ternary data correlation only. The maximum concentration range for the correlation of ternary systems containing water and methanol solvents is about $I=3$. The correlation of vapor-liquid equilibrium data results in an average error of $|\Delta Y|$ less than 0.012 , except for the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $60^{\circ} \mathrm{C}$ where the average error in $|\Delta \mathrm{Y}|$ is 0.02 .

PREFACE

The thermodynamic study of electrolytic solutions can be categorized into three groups: one containing strong electrolytes in aqueous solvents; the second comprising volatile weak electrolytes in aqueous/nonaqueous solvents; and the third consisting of strong electrolytes in nonaqueous solvents or in mixed solvents.

The first type of system has been of interest in various chemical, metallurgical and geological problems. Debye and Hückel (1923) proposed the classic thermodynamic excess Gibbs free energy expression for strong electrolytes in a single solvent. Guggenheim (1935) extended the range of validity of the Debye-Hückel equation to 0.1 molal solutions. Recently, many workers have proposed semi-empirical correlations for concentrated electrolyte aqueous solutions viz, Bromley et al. (1972, 1973, 1974); Meissner et al. (1972); Pitzer et al. (1973, 1974, 1977, 1979); and Cruz and Renon (1978). Two important and different approaches among the above are by Bromley (1973) and Cruz and Renon. Bromley modified Guggenheim's equation to a one parameter form per binary whereas the Cruz and Renon expression is a combination of the Debye-Hückel equation, a salting out contribution given by the Born model, and the NRTL model.

The second type of systems recently became important due to the necessity of pollution control in the chemical and
petroleum industries. The recovery of weak volatile electrolytes such as ammonia, carbon dioxide, hydrogen sulfide, sulfur dioxide and hydrogen cynanide from effluent streams requires the thermodynamic representation of vapor-liquid equilibrium. The most interesting work reported in this area is by VanKrevelen (1949); Van Krevelen, Hof zer and Hunt ens (1949); Edwards et al. (1975, 1978); Beutier and Renon (1978); Chen et al. (1979); and Mason and Kao (1979).

Theoretical and correlation for the third type of system, electrolytes in nonaqueous solvents andin mixed solvents is sparse. A knowledge of the VLE and electrolyte activities in such solutions could be useful in different chemical and electrochemical applications. The correlation work in the literature for this category are by Rousseau et al. (1972, 1975, 1978); Bakerman and Tassios (1975); Hala (1969); Chen et al. (1979) and Tomasula and Tassios (1980). The most systematic approach is given by Hala and Chen et al. They have considered different ion-ion, ion-solvent and solventsolvent interactions in an electrolytic solution. Both have used two types of terms for the Gibbs free energy. One of these terms is the Debye-Hückel equation to represent ion-ion interactions. For the other interactions,Hala used the two suffix Margules equation, whereas Chen et al. used an expression based on the two liquid nonrandom theory. Unfortunately, none of the above approaches presents a predictive scheme for a ternary electrolytic solution; also they are complex in nature.

It would be appropriate to categorize the present state of the art for such systems as in a developmental stage. Therefore we have taken an approach to develop thermodynamic analytical expressions to represent VLE of the third type of electrolytic solutions. Our models also combine the two types of terms, which are derived by the modification of Bromley (1973) and Cruz and Renon (1978) binary equations. These are different than the equations of Hala and Chen et al. The proposed models require a minimum amount of information. Model I has the possibility of extension to multicomponent mixtures containing more than two solvents and single or multi electrolytes.

DEDICATION

I dedicate this thesis to my parents whose
encouragement and love made it possible.

ACKNOWLEDGEMENT

I thank my advisor, Professor Dimitrios Tassios, for his suggestions, guidance and criticism throughout this research. His friendly attitude and subtle discussions during the preparation of this research are very much appreciated. Thanks are extended to Dr. R.P.T. Tomkins for his suggestions during the review of the manuscript, to Dr. C. Tsonopoulos, Dr. Deran Hanesian and Dr. R. Plastock for their comments.

The exchange of ideas and mutual discussions with John Ordoz, Gregory Czerwienski and the other members of Professor Tassios' research group (Thermo Club) were useful during this research.

Gratitude is expressed to Mrs. Diana Muldrow who typed the manuscript. Thanks are extended to the Department of Chemical Engineering and Chemistry, NJIT for financial support during my stay at the school and also to the Computer Center of NJIT for use of its facilities. Thanks are due to Mr. Frank Freund, Computer Services, for helping with computer programs.

Special thanks to Peggy Tomasula whose friendship and discussions about the research were valuable.

TABLE OF CONTENTS

Chapter Page
PREFACE. ii
DEDICATION v
ACKNOWLEDGEMENT vi
LIST OF TABLES x
LIST OF FIGURES xiv
LIST OF COMPUTER PROGRAMS xx
INTRODUCTION 1
1 DEVELOPMENT OF FUNDAMENTAL RELATIONSHIPS FOR VAPOR-LIQUID EQUILIBRIUM IN ELECTROLYTIC SOLUTIONS 2
1.1 Criteria of Equilibria 3
1.2 Mixture of Solvent (2) - Solvent (3) - Binary (2-3) 6
I. 3 Mixture of an Electrolyte and a Solvent (Binary l-2 or l-3) 8
1.4 Mixture of an Electrolyte (1) - Solvent (2) - Solvent (3) (Ternary 1-2-3) 10
1.5 Criteria for the Excess Gibbs Free Energy 11
2 CORRELATION AND PREDICTION OF VAPOR-LIQUID EQUILIBRIUM AND THE MEAN MOLAL ACTIVITY COEFFICIENT BY MODEL I IN ELECTROLYTIC SOLUTIONS 13
2.1 Excess Gibbs Free Energy Function 14
2.2 Procedure: Data Reauction and Prediction 18
A. Binary 2-3: Mixture of Solvent (2) - Solvent (3) 18
B. Binary 1-2 or 1-3: Mixture of an Electrolyte and a Solvent 19
Chapter Pace
C. Prediction of Ternary VLE (Y2, Y3, P and $\gamma_{ \pm}$) 20
D. Correlation of Ternary Data 22
E. Binary Data Prediction Using the Parameters Evaluated by Ternary Data 24 Reduction Reduction
25
2.3 Results
A. Binary Data Reduction 25
B. Temperature Dependency of the Binary Parameters 27
C. Maximum Molality Applicability 33
D. Ternary Data Prediction 33
E. Ternary Data Correlation 37
F. Binary Data Preäiction 40
2.4 Discussion 44
2.5 Conclusions 51
3 CORRELATION OF VAPOR-LIQUID EQUILIBRIUM AKD MEAN MOLAL ACTIVITY COEFFICIENTS WITH MODEL II IN ELECTROLYTIC SOLUTIONS 52
3.1 Gibbs Free Energy Expression 53
3.2 Procedure: Data Reduction 56
A. Solvent-Solvent Binary 56
B. Electrolyte-Solvent Binary 56
C. Electrolyte-Solvent-Solvent Ternary 57
3.3 Results 62
A. Aqueous Electrolyte Binary 62
B. Nonaqueous Electrolyte Binary 69
C. Isothermal Ternary Data Correlation 70
3.4 Discussion 72
Chapter Page
3.5 Conclusions 774 A COMPARATIVE STUDY OF TWO MODELS IN COR-RELATING AND PREDICTING BINARY/TERNARY $\gamma_{ \pm}$AND VLE DATA IN ELECTROLYTIC SOLUTIONS78
A. Binary Data Correlation 79
B. Ternary Data Prediction and Correlation 80
APPENDIX A EXPRESSIONS FOR THE ACTIVITY COEFFICIENT OF THE SOLVENT AND THE MEAN ACTIVITY COEFFICIENT OF AN ELECTROLYTE IN A BINARY MIXTURE FOR MODEL I 82
APPENDIX B A STEPWISE PROCEDURE FOR THE DEVELOP- MENT OF TERNARY ACTIVITY COEFFICIENT EXPRESSIONS FOR MODEL I 86
APPENDIX C A STEPWISE PROCEDURE FOR THE DEVELOP- MENT OF TERNARY ACTIVITY COEFFICIENT EXPRESSIONS FOR MODEL II 101
APPENDIX D DEBYE-HUCKEL CONSTANTS, DIELECTRIC CONSTANTS AND DENSITIES OF PURE SOLVENTS AND MIXED SOLVENTS; VAPOR PRESSURE CONSTANTS OF PURE SOLVENTS 115
APPENDIX E CALCULATION OF FUGACIYY COEFFICIENTS AND POYNTING EFFECT 130
APPENDIX F COMPUTER PROGRAMS 134
APPENDIX G TABLES AND FIGURES FOR MODEL I 203
APPENDIX H TABLES AND FIGURES FOR MODEL II 243
NOMENCLATURE 280
SELECTED BIBLIOGRAPHY 285
2.1 Multiplicity of Roots in Model \#l for Aqueous Electrolytic Solutions with Preset Values of $\alpha_{A 2}=0.2$ and $\alpha_{B 2}=0.0$ 29
2.2 Prediction of Binary VLE Data by Model \#l at One Temperature Using Binary Parameters (Second Pair of Roots) at Another Tempera- ture with Preset Values of $\alpha_{\text {A2 }}=0.2$ and $\alpha_{B 2}=0.0$ 31
2.3 Performance of Model I in Correlating Binary VLE Data for Different Molality Ranges 32
2.4 Prediction of γ_{+}in Ternary Mixtures Using Binary Parameters from Tables G. 4 (Binary 1-2); G. 5 (Binary l-3); and G. 3 (Binary 2-3) 34
2.5 Prediction of Vapor-Phase Composition and Total Pressure by Model \#l Using Binary Parameters from Tables G. 4 (Binary 1-2); G. 5 (Binary 1-3); and G. 3 (Binary 2-3) 35
2.6 Prediction of Binary VLE and $\gamma_{ \pm}$Data Using Parameters Obtained by Ternary Data Cor- relation, Tables G.11 and G.l2 41
3.1 Data Sources 61
3.2 Effect of the Number of Data Points Used in Evaluating B_{12} on the Accuracy of Calculated $\gamma_{ \pm}$Values ($\mathrm{T}^{12}=100^{\circ} \mathrm{C}$) 65
3.3 Values of B^{*} and B_{1}^{1} in Equation (3-20) for the Systems in Figures H. 5 and H. 6 67
D. 1 Liquid Molar Volume Data at Three Temperatures 124
D. 2 Liquid Density Data for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ System at $25^{\circ} \mathrm{C}$ 125
D. 3 Liquid Density Data for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ System 126
D. 4 Constants for Calculating the Dielectric Constants of Water-EtOH Mixtures at Various Temperatures, Equation (D-10) 127
D. 5 Constants for Calculating the Dielectric Constants of Water-MeOH Mixtures at Various Temperatures, Equation (D-10) 128
D. 6 Pure Component Vapor Pressure Constants (Equation D-12) 129
E. 1 Pure Component Properties 133
E. 2 Mixture Properties 133
E. $3 \phi_{i}^{o}$, P.E., $\hat{\phi}_{i}^{V}$ and F_{i} for Data Point \#1 133
E. $4 \phi_{i}^{O}$, P.E., $\hat{\phi}_{i}^{V}$ and F_{i} for Data Point \#2 133
G. 1 Binary Data Sources 204
G. 2 Ternary Data Sources 206
G. 3 Solvent-Solvent Binary Data Correlation 207
G. 4 Aqueous Electrolytic Binary Data Correlation with Two Objective Functions, Equations (2-9) and (2-10) 208
G. 5 Nonaqueous Electrolytic Binary Data Correlation with Two Objective Functions, Equations (2-9) and (2-10) 209
G. 6 Aqueous Electrolytic Binary Data Correlation with Temperature Independent Parameters Using Objective Function \#2, Equation $(2-10)$, and Presetting $\alpha_{A 2}=0.2^{\text {; }}$
G. 7 Nonaqueous Electrolytic Binary Data Correlation with Temperature Independent Parameters Using Objective Function \#2, Equation $(2-10)$, and Presetting $\alpha_{A 3}=0.2$ ${ }^{\alpha}$ B3 $=0.0$ 211
G. 8 Binary Data Correlation with Temperature Independent Parameters Using Objective Function \#2, Equation (2-10) and Presetting $\alpha_{A i}=0.2 ; \quad \alpha_{B i}=-1.0$ 212
G. 9 Binary Data Correlation with Temperature Independent Parameters Using Objective Function \#2, Equation (2-10) and Presetting $\alpha_{A i}=-1.0 ; \quad \alpha_{B i}=-1.0$ 213
G.l0 Prediction of Binary Data at One Temperature Using the Parameters at Another Tempera- ture, Presetting $\alpha_{A i}=0.2$ and $\alpha_{B i}=0.0$
G. 11 Isothermal Ternary $\gamma_{ \pm}$Data Correlation
for the Four Parameters: $\mathrm{G}_{ \pm 2}, \mathrm{Z}_{ \pm 2}, \mathrm{G}_{ \pm 3}$ and $\mathrm{Z}_{\mathrm{t}_{3}}$, Presetting the Solvent-SOlvent Binary Parameters Corresponding to $\alpha_{23}=-1.0$. 215
G. 12 A Comparative Study of the Three Objective Functions [Equations (2-19), (2-20), (2-21)] in Correlating Ternary Isothermal Data with Corresponding to $\alpha_{23}=-1.0$. 216
G. 13 Values of the Parameters Obtained with the Three Objective Functions for Isothermal Ternary VLE Data 217
G. 14 A Comparative Study of the Three Objective Functions [Equations (2-19), (2-20), (2-21)] in Correlating Ternary Isobaric VLE Data with the Four Parameters [$\Delta g_{A 2}, \Delta g_{B 2}, \Delta g_{A 3}{ }^{\prime}$ $\left.\Delta g_{B 3}\right]$ Presetting Δg_{23} and Δg_{32} Corresponding to ${ }_{\alpha} \alpha_{23}=-1.0, ~ T a b l e ~ G .3$ and $\alpha_{A 2}=0.2 ; \alpha_{B 2}=$ $0.0 ;{ }^{2} \alpha_{A 3}=0.2 ; \alpha_{B 3}=0.0$. 218
G. 15 Values of the Parameters Obtained with the Three Objective Functions for Isobaric VLE Data 219
H.l Typical m-DP Data from the Weast Compilation 244
H. 2 Values of B_{12} and Quality of Correlation of the Weast ${ }^{12}$ Data 245
H. 3 Quality of Results with the B_{12} Value at $70^{\circ} \mathrm{C}$ Obtained by Interpolation of the $\mathrm{B}_{12}\left(25^{\circ} \mathrm{C}\right)$ and $\mathrm{B}_{12}\left(100^{\circ} \mathrm{C}\right)$ Values in Equation ${ }^{1}\{3-20)$ 249
H. 4 Nonaqueous Electrolyte Binary Data Correlation with the Bromley Equation 250
H. 5 Aqueous Electrolytic Binary Data Correlation with the Bromley Equation 251
H. 6 Isothermal Ternary $\gamma_{ \pm}$Data Correlation with Model II 252
Table Page
H. 7 A Comparative Study of the Three Objective Functions [Equations (2-19), (2-20), (2-21)] in Correlating Ternary Isothermal VLE Data with Model II 253
H. 8 Values of the Parameters Obtained with Three Objective Functions for Model II 254
H. $9 \mathrm{~B}_{12}$ Values Obtained from Weast's Data and Equation (3-20) with the B^{*} and B_{1}^{1} Values from Table 3.3 255
H. $10 \quad \gamma_{ \pm}$Values for MgCl_{2} Using B_{12} Values from 256

LIST OF FIGURES

Figure Page
1.1 Representation of the Vapor-Liquid Equilibrium in Electrolytic Solutions 4
2.1 A Stepwise Scheme for Correlation and Predic- tion of the VLE and Mean Molal Activity Coefficients with Model I 18
2.2 Comparison of Experimental Mean Molal Activity Coefficients and Vapor Pressure Depressions with those Predicted by Model I for the System $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ 27
2.3 Comparison of Experimental Vapor Pressure Depressions with those Predicted and Cor- related by Model I for the System $\mathrm{LiBr}-\mathrm{MeOH}$ at $15^{\circ} \mathrm{C}$ 28
2.4 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 36
2.5 Comparison of Experimental VLE with that Pre- dicted Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ 38
2.6 Comparison of Experimental VLE with that Pre- dicted Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 39
2.7 Prediction of $\gamma_{ \pm}$and DP Data for the System LiCl- $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ Using the Parameters Obtained by Ternary Data Correlation with Model I 42
2.8 Contribution of Different Terms to $\ln \gamma_{i}$ for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ in Model I 45
2.9 Thermodynamic Consistency Test for the System $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 47
3.1 A Stepwise Scheme for Correlation of the VLE and Mean Molal Activity Coefficients with Model II 55
3.2 Activity and Osmotic Coefficients for the System Water-Sodium Chloride at $100^{\circ} \mathrm{C}$ 64
3.3 Contribution of Different Terms to $\ln \gamma_{1}$ for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ in Model II 73
3.4 Contribution of the Salting Out Term to $\ln \gamma_{i}$ for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ in Model II 75
D. 1 Comparison of Experimental and Estimated Densities for the System $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 118
D. 2 Comparison of Experimental and Estimated Densities for the System $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ 119
D. 3 Comparison of Experimental and Estimated Dielectric Constants of the Mixture $\mathrm{H}_{2} \mathrm{O}-$ MeOH at $25^{\circ} \mathrm{C}$ 121
D. 4 Comparison of Experimental and Estimated Dielectric Constants of the Mixture $\mathrm{H}_{2} \mathrm{O}-$ EtOH at $25^{\circ} \mathrm{C}$ 122
G.l Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I for, the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{EtOH}}=0.0417$ 220
G.1A Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I up to $\mathrm{m}=0.2$ for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $X_{\text {EtOH }}=0.0417$ 221
G. 2 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{EtOH}}^{\prime}=0.0891$ 222
G.2A Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I up to $\mathrm{m}=0.2$ for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{EtOH}}=0.5$ 223
G. 3 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I for, the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\text {EtOH }}=0.5$ 224
G.3A Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Cor- related by Model I up to $m=0.2$ for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{EtOH}}=0.5$ 225

G. 4	Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-$ MeOH at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{MeOH}}^{\prime}=0.0584$. . . . 226
G. 5	Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for, the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{MeOH}}^{\prime}=0.1233 .2 . . .227$
G. 6	Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System LiCl-H2O-MeOH at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.0$? $0.05,0.1{ }^{2}$. . . 228
G. 7	Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.5,1.0$. 229
G. 8	```Comparison of Experimental Mean Molal Activity Coefficients with those Correlated for the System NaCl-H2O-MeOH at 25'C and Constant```
G. 9	```Comparison of Experimental Mean Molal Activity Coefficients with those Correlated for the System NaCl-H2O-MeOH at 25'C and Constant m}=0.2,0.5 231```
G. 10	Comparison of Experimental Vapor Phase Compositions with those Predicted and Correlated by Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.5$

G.ll Comparison of Experimental with Predicted and Correlated Vapor Phase Compositions Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=1.0$ 233
G. 12 Comparison of Experimental with Predicted and Correlated Vapor Phase Compositions Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $m=1.0$ 234
G. 13 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model I for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $40^{\circ} \mathrm{C}$. 235
G. 14 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model I for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 236
G. 15 Comparison of Experimental with Correlated

| Vapor Phase Compositions Using Model I for the |
| :--- | :--- |

| System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$ | • • • • 237 |
| :--- | :--- | :--- |

G. 16 Comparison of Experimental with Correlated
Vapor Phase Compositions Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1 \mathrm{~atm}$ 238
G. 17 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model I for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1$ atm 239
G. 18 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model I for the System $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $P=1$ atm 240
G. 19 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model I for the System $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1 \mathrm{~atm}$ 241
G. 20 Contribution of the NRTL Term to $\ln \gamma_{i}$ for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ in Model I 242
H. 1 Test of the Bromley Equation for the System: NaCl -Water at $100^{\circ} \mathrm{C}$ 257
H. 2 Test of the Bromley Equation for the System: $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ 258
H. 3 Test of the Bromley Equation for the System: $\mathrm{MgSO}_{4}-\mathrm{H}_{2} \mathrm{O}$ 259
H. 4 Activity Coefficients for the System: KBr- Water at $100^{\circ} \mathrm{C}$ 260
H. 5 Test of Temperature Dependency of B_{12} ' Equation (3-20) 261
H. 6 Test of Temperature Dependency of B_{12}, Equation (3-20) 262
H. 7 Test of the Bromley Equation for the System: LiBr-MeOH at $25^{\circ} \mathrm{C}$ 263
H. 8 Test of the Bromley Equation for the System: $\mathrm{LiCl}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$ 264
H. 9 Test of the Bromley Equation for the System: $\mathrm{CaCl}_{2}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 265

H. 10 Comparison of Experimental Mean Molal Activity	
Coefficients with those Correlated by Model	
	II for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and

H.ll Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the , System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $X_{\text {EtOH }}^{\prime}=0.0891$ 267
H. 12 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the, System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{EtOH}}^{\prime}=0.5$ 268
H. 13 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the, System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{MeOH}}^{\prime}=0.0584$ 269
H. 14 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the, System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{MeOH}}^{\prime}=0.1233^{2}$ 270
H. 15 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.02,0.05,0.5$ 271
H. 16 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the system $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.02,0.05$ 272
H. 17 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the System $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $m=0.2,0.5$ 273
H. 18 Comparison of Experimental and Correlated Vapor Phase Compositions Using Model II for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.5$ 274
H. 19 Comparison of Experimental and Correlated Vapor Phase Compositions Using Model II for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=1.0$ 275
Figure Page
H. 20 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model II for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $m=1.0$ 276
H. 21 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model II for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$. 277
H. 22 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model II for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ 278
H. 23 Comparison of Experimental with Correlated Vapor Phase Compositions Using Model II for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $40^{\circ} \mathrm{C}$ 279

LIST OF COMPUTER PROGRAMS

Page
Description of the Programs 135
Main Program 140
Subroutine INPDAT 151
Subroutine FITIT 155
Subroutine POLIFI 156
Function DETERM 158
Subroutine VAPPRE 159
Subroutine TEMPD 160
Subroutine LSQ2 161
Subroutine FN 166
Subroutine FIBN 170
Subroutine FUNC 173
Subroutine NRTLI 176
Subroutine BROML 177
Subroutine ADITON 180
Subroutine FUNCB 182
Subroutine FUNCT 183
Subroutine NRTL2 184
Subroutine DEBHUC 186
Subroutine MINFUN 189
Subroutine TITLE 190
Input Data Sequence 192
Sample Input 194
Sample Output 197

INTRODUCTION

Fundamental knowledge of the VLE behavior of electrolytic solutions and electrolytes in mixed solvents is limited at present. The characterization of equilibrium properties of such systems has become important in the process design and process simulation of different processes.

In this study, two semi-empirical models have been developed based on molecular and ionic interactions in the solutions. Both the models combine modified forms of the NRTL equation and some form of the extended Debye-Hückel equation for physical and coulombic forces in a solution, respectively.

In Chapter 1 thermodynamic relationships for the VLE of electrolytic solutions are presented. In Chapters 2 and 3 the two models are developed. Also, their performance in correlating and predicting binary and ternary data is investigated. In Chapter 4 a comparative study of the two models is discussed. The detailed development of the two models is given in Appendices A, B and C.

DEVELOPMENT OF FUNDAMENTAL RELATIONSHIPS FOR VAPOR-LIQUID EQUILIBRIUM IN ELECTROLYTIC SOLUTIONS

ASBSTRACT

In vapor liquid equilibrium calculations it might be necessary to find $y-T$ data from known $x-P$ data or to find $y-P$ data from given $x-T$ data or it may be required to interpolate or extrapolate the limited $x-y-P-T$ data. Secondly, in Chemical processes and electrochemical energy conversion, a knowledge of the activities of the solvents and the electrolyte may be useful to characterize the solution behavior. Therefore, in this chapter, some important thermodynamic relationships have been developed which are applied to a binary or a ternary electrolytic solution.

1.1 Criteria of Equilibria

Consider an electrolytic solution at equilibrium at a temperature 'T' and pressure 'P' as shown in (figure l.l). In the liquid phase, the electrolyte will be in ionic equilibrium due to the dissociation of the electrolyte into ions. In a concentrated electrolytic solution, one expects the presence of ion-pairs and ions depending upon the degree of dissociation. However, in this work, the electrolyte is assumed to be completely dissociated into ions for the concentration range and solvents under consideration. Therefore the liquid-phase, specifically, will consist of solvent molecules and ions. The vapor phase will consist of solvent molecules and the electrolyte in molecular form (if the electrolyte is volatile), because, for the temperature range considered in this work, dissociation of the electrolyte in the vapor phase is negligible.

When two phases are in equilibrium, the chemical potential for component i in the two phases will be the same

$$
\begin{equation*}
\mu_{i}^{L}=\mu_{i}^{V} \tag{1-1}
\end{equation*}
$$

The chemical potential in a single phase can be related to the fugacity of component i in a mixture by--

$$
\begin{equation*}
d \overline{G_{i}}=d \mu_{i}=R T d \ln \hat{f}_{i} \tag{1-2}
\end{equation*}
$$

A combination of equations (1-1) and (1-2), results in--

Figure 1.1 Representation of the Vapor-Liquid Equilibrium in Electrolytic Solutions

$$
\begin{equation*}
\hat{f}_{i}^{L}=\hat{\mathbf{f}_{i}} V \tag{1-3}
\end{equation*}
$$

The fugacity of a component can be further expressed in terms of measurable quantities, viz., X,Y, P and T. A ternary mixture, in this study, is defined as a mixture of an electrolyte and two solvents and the ternary mixture, is considered a combination of three binary mixtures
(1) binary 1-2: electrolyte (1) - solvent (2)
(2) binary 1-3: electrolyte (1) - solvent (3)
(3) binary 2-3: solvent (2) - solvent (3)

An expression of the fugacity in terms of $X-Y-P-T$ data, for an individual binary mixture and a ternary mixture, is considered in the following sections.
1.2 Mixture of Solvent (2) - Solvent (3) (Binary 2-3)

The liquid-phase fugacity for solvent 2 or 3 is given by

$$
\begin{equation*}
\hat{f}_{i}^{L}=X_{i} \gamma_{i}(P \cdot E)_{i} \phi_{i}^{o} P_{i}^{o} \tag{1-4}
\end{equation*}
$$

where,

$$
\begin{align*}
(\text { P.E. })_{i} & =\operatorname{EXP}\left[\int_{0}^{P_{i}^{O}}\left(\frac{v_{i}^{\circ} L}{R T}\right) d P\right] \tag{1-5}\\
\phi_{i}^{o} & =\operatorname{EXP}\left[-\frac{B_{i i} P_{i}^{o}}{R T}\right] \tag{1-6}
\end{align*}
$$

The vapor phase fugacity is given by

$$
\begin{equation*}
\hat{\mathrm{f}}_{\mathrm{i}}^{\mathrm{V}}=y_{i} P \hat{\phi}_{i}^{V} \tag{1-7}
\end{equation*}
$$

where,

$$
\begin{equation*}
\hat{\phi}_{i}^{V}=\operatorname{EXP}\left[\frac{P}{R T}\left(B_{i i}+y_{j}^{2} \delta_{i j}\right)\right] \tag{1-8}
\end{equation*}
$$

Combining equations (1-4) to (1-8) gives

$$
\begin{equation*}
x_{i} \gamma_{i} P_{i}^{O}=y_{i} P F_{i} \tag{1-9}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{i}=\frac{\hat{\phi}_{i}^{V}}{\phi_{i}^{O}(P . E .)_{i}} \tag{1-10}
\end{equation*}
$$

At low pressures, and $T_{R_{i}} \ll 1.0, F_{i} \simeq 1.0$ (Appendix I)
This simplifies equation (1-9) to

$$
\begin{equation*}
x_{i} \gamma_{i} P_{i}^{O}=y_{i} P \tag{1-11}
\end{equation*}
$$

The total pressure is calculated by

$$
\begin{equation*}
P=X_{2} \gamma_{2} P_{2}^{\circ}+X_{3} \gamma_{2} P_{3}^{\circ} \tag{1-12}
\end{equation*}
$$

Equations (1-11) and (1-12) are used to correlate or predict the VLE in a solvent-solvent binary.

1.3 Mixture of an Electrolyte and a Solvent (Binary 1-2 or 1-3)

Case I volatile electrolyte
The liquid-phase fugacity for the electrolyte is given by

$$
\begin{equation*}
\hat{f}_{1}^{L}=m \gamma_{ \pm} H_{1} \tag{1-13}
\end{equation*}
$$

where,

$$
\begin{equation*}
H_{1}=f(T) \text { at low pressures } \tag{1-14}
\end{equation*}
$$

And the liquid-phase fugacity for the solvent is given by an equation similar to equation (1-11) in section (1-2)

$$
\begin{equation*}
f_{i}^{L}=X_{i} \gamma_{i} P_{i}^{o} \tag{1-15}
\end{equation*}
$$

The vapor-phase fugacity for both the electrolyte and the solvent is

$$
\begin{align*}
& \hat{\mathrm{f}}_{\ell}^{\mathrm{V}}=\mathrm{Y}_{\ell} \mathrm{P}, \text { assuming } \hat{\phi}_{\ell}^{\mathrm{V}} \simeq 1.0 \tag{1-16}\\
& (\ell=\text { electrolyte or solvent })
\end{align*}
$$

Combining equations (1-13), (1-14) and (1-16)

$$
\begin{align*}
& m \gamma_{ \pm} H_{l}=y_{l} P \tag{1-17}\\
& x_{i} \gamma_{i} P^{o}=y_{i} P \tag{1-18}
\end{align*}
$$

Case II non-volatile electrolyte
The vapor phase will have only solvent molecules. Equation (l-18) will be the only equilibrium relationship for the solvent i

$$
\begin{equation*}
X_{i} \gamma_{i} P_{i}^{o}=P \tag{1-19}
\end{equation*}
$$

Usually, binary electrolytic experimental data are expressed in terms of the osmotic coefficient ϕ, which is defined as

$$
\begin{equation*}
\phi=-\frac{1000}{\nu \mathrm{~m}_{\mathrm{w}}} \ln \hat{a}_{i} \tag{1-20}
\end{equation*}
$$

for Case II, the activity and the activity coefficient of the solvent are interrelated by

$$
\begin{equation*}
\hat{a}_{i}=\frac{p}{p_{i}^{o}}=\gamma_{i} x_{i} \tag{1-21}
\end{equation*}
$$

1.4 Mixture of an Electrolyte (1) - Solvent (2) - Solvent (3) (Ternary 1-2-3)

Case I volatile electrolyte The VLE relationship for the electrolyte and solvents (2) and (3) will be given by equations (1-17) and (1-18) respectively.

> Case II non-volatile electrolyte The vapor-phase will have only solvent (2) and (3) molecules. The VLE relationships will be the same as given in section (1.2), equations (1-11) and (1-12). In sections (1.2) to (1.4), the liquid mole-fraction of any component is defined, based on the complete dissociation of the electrolyte.

$$
\begin{equation*}
x_{i}=\frac{N_{i}}{v m+N_{2}+N_{3} \quad(i=2 \text { or } 3)} \tag{1-22}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}=\frac{m}{v m+N_{2}}+N_{3} \tag{1-23}
\end{equation*}
$$

Equations (1-1) to (1-23) developed in sections (1.1) to (1.4) are used for relating $X-Y-P-T$ and mean molal activity coefficient data in a binary or a ternary mixture. However, in this work all the systems used are non-volatile, except for the $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ system where pressure is given as partial pressure of water.

1.5 Criteria for the Excess Gibbs Free Energy

In practical applications, where the liquid-phase composition and the temperature of the system are known, it is necessary to calculate the total pressure of the system and the vapor-phase composition or the mean molal activity coefficient of the electrolyte. In order to obtain this information the equations presented in sections (1.1) to (1.4) are applied, depending upon the type of system. For the above problem, the additional information needed are P_{i}^{O}, H_{l} (if electrolyte is volatile) and liquidphase activity coefficients (γ_{i} and $\gamma_{ \pm}$).

At a given temperature, the pure component vapor pressure can be estimated by equation (1-24) which expresses P_{i}^{O} as a $\mathrm{f}(\mathrm{T})$--

$$
\begin{equation*}
P_{i}^{O}=\operatorname{Exp}\left(\left(C_{1}+\frac{C_{2}}{C_{3}+T}+C_{4} T+C_{5} T^{2}+C_{6} \ln T\right)\right) 760 \tag{1-24}
\end{equation*}
$$

At low pressures, the Henry's constant for the electrolyte (volatile) is expressed as a quadratic function of temperature--

$$
\begin{equation*}
H_{1}=a_{1}^{1}+b_{1}^{1} T+C_{1}^{1} T^{2} \tag{1-25}
\end{equation*}
$$

For the activity coefficients, an expression is required in terms of the known variables i.e. liquid-phase composition and temperature of the system. In the liquid-phase the total excess Gibbs free energy can be developed as a function of known variables considering the different interaction forces in solution. The excess Gibbs free energy is then used to obtain expressions for the activity coefficients, as shown
below--

$$
\begin{gather*}
\frac{G^{E}}{R T}=f\left(T, N_{1}, N_{2} \ldots\right) \tag{1-26}\\
\left.\ln \gamma_{i}=\frac{\partial G^{E} / R T}{\partial N_{i}}\right] \tag{1-27}\\
\ln , P, N_{\ell \neq i}^{*}= \tag{1-28}\\
\left.\ln \gamma_{ \pm}=\frac{\partial G^{E} / R T}{\partial N_{1}}\right] \quad \mathrm{ln}, P, \gamma_{\ell \neq 1}^{*}-\ln \left(0.001 v m M_{W}+1\right)
\end{gather*}
$$

where

$$
\begin{aligned}
& \gamma_{ \pm}=\text {mean molal activity coefficient } \\
& \gamma_{ \pm}^{*}=\text { mean molar activity coefficient }
\end{aligned}
$$

In an electrolytic liquid solution, the total excess Gibbs free energy can be attributed to, mainly two type of molecular interactions. One interaction is due to the longrange electrostatic forces or ion-ion interactions. The other interaction takes into account the physical forces due to interactions of ion-solvent and solvent-solvent molecules. In Chapters 2 and 3, two different models have been considered for the excess Gibbs free energy. These models propose different forms of expressions to represent the non ideal behavior of a solution.

The equations developed in sections (1.1) to (1.5) are used first to fit experimental binary data with the activity coefficient expressions presented in Chapters 2 and 3. These are then extended to predict and/or correlate the ternary vapor-liquid equilibrium and mean molal activity coefficient data.

CHAPTER 2

CORRELATION AND PREDICTION OF VAPOR-LIQUID EQUILIBRIUM AND THE MEAN MOLAL ACTIVITY COEFFICIENT BY MODEL I
IN ELECTROLYTIC SOLUTIONS

ABSTRACT

Mean activity coefficient data and vapor pressure depression data of aqueous and nonaqueous electrolytic solutions are correlated successfully. The maximum molality applicable to model for aqueous-electrolytic and MeOH-electrolytic solutions can be approximated up to $I=6$. The binary parameters are considered temperature independent within a 30 to $40^{\circ} \mathrm{C}$ temperature range, presetting the ionsolvent nonrandom parameters $\alpha_{A i}$ and $\alpha_{B i}$ to 0.2 and 0.0 respectively. The prediction of ternary VLE and $\gamma \pm$ is of acceptable quality with an average error of 0.028 in ΔY and a 15\% average error in $\gamma_{ \pm}$up to $I=2$. Ternary data correlation of both isothermal and isobaric data are of good quality, In general, the prediction of binary data using the parameters obtained by ternary data regression is possible, with an average percent error in $D P$ and $Y \pm$ of 15%.

Model I: Combination of the Extended Debye-Hückel Equation and the NRTL Equation

2.1 Excess Gibbs Free Energy Function

A complete theoretical account of the thermodynamic properties of electrolyte solutions must deal with both long range interionic and short range interactions between ions and solvent molecules. In a dilute electrolytic solution, the magnitude of the long range electrostatic forces is dominant. Based on this fact, Debye and Huckel deveioped a limiting law to predict the properties of adilute solution by considering the electrical potential at a point in the solution in terms of the concentrations and charges of the ions and the properties of the solvent. Gronwall, Lamer and Sandved (1928) modified the Debye-Huckel equation by extending the potential functionswith additional higher order terms. However, in a solution of an electrolyte in mixed solvents, the solventsolvent interactions are of as much importance as those of ionion and ion-solvent interactions. Therefore, in Model I, an empirically extended form of the Debye-Huckel equation is combined with the non-random two liquid model (NRTL). The NRTL part of the equations not only accounts for solvent-solvent interactions, but describes unaccounted ion-solvent interactions also.

The equations for the excess Gibbs free energy, G^{E}, are as below

$$
\begin{align*}
& \left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {Total }}=\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {Ext.D.H. }}+\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {NRTL }} \tag{2-1}\\
& \left.\frac{G^{E}}{R T}\right|_{\text {Extended D.H. }}=2.303 v \frac{M_{w} N_{T}}{1000} \frac{m}{I}\left|Z_{+} Z_{-}\right|\left[-A_{\gamma} \frac{2}{\rho^{3}}\right. \\
& \left\{\left(1+\rho I^{1 / 2}\right)^{2}-2\left(1+\rho I^{1 / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right\} \\
& \left.+A_{\gamma}^{2}\left\{\frac{2(a I-2)}{3 a^{2}}(1+a I)^{I / 2}+\frac{4}{3} \frac{1}{a^{2}}\right\}\right] \\
& +\mathrm{N}_{\mathrm{T}}\left[\left(0.001 \nu \mathrm{mM}_{\mathrm{W}}+1\right) \ln \left(0.001 \nu \mathrm{mM}_{\mathrm{W}}+1\right)\right. \\
& \left.-0.001 \nu \mathrm{mM}_{\mathrm{w}}\right] \tag{2-2}
\end{align*}
$$

where,

$$
\begin{aligned}
\rho & =1.0 \\
\mathrm{a} & =1.5 /\left|\mathrm{z}_{+} \mathrm{Z}_{-}\right| \\
\mathrm{A}_{\gamma} & =\text { Debye-Hückel constant (see Appendix } D \text {) }
\end{aligned}
$$

$$
\begin{align*}
& \left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right]_{\mathrm{NRTL}}=\frac{1}{\mathrm{RT}}\left[\mathrm{~N}_{2} \frac{\mathrm{~N}_{\mathrm{A}} \mathrm{Z}^{2}+2+\mathrm{N}_{3} \mathrm{Z}_{32}}{\mathrm{~N}_{\mathrm{A}} \mathrm{G}_{ \pm 2}+\mathrm{N}_{3} \mathrm{G}_{32}+\mathrm{N}_{2}}\right. \\
& +N_{3} \frac{N_{A} Z^{2}+3+N_{2} Z_{23}}{N_{A} G_{ \pm 3}+N_{2} G_{23}+N_{3}} \\
& -N_{A} \frac{N_{2} Z_{ \pm 2}}{N_{3} G_{32}+N_{2}}+\frac{N_{3} Z_{ \pm 3}}{N_{2} G_{23}+N_{3}} \\
& \left.+N_{A} N_{2} N_{3} \frac{\mathrm{Z}_{32} \mathrm{G}_{ \pm 2}}{\left(\mathrm{~N}_{3} \mathrm{G}_{32}+\mathrm{N}_{2}\right)^{2}}+\frac{\mathrm{Z}_{23} \mathrm{G}_{ \pm 3}}{\left(\mathrm{~N}_{2} \mathrm{G}_{23}+\mathrm{N}_{3}\right)^{2}}\right] \tag{2-3}
\end{align*}
$$

where,

$$
\begin{gather*}
z_{i j}=\Delta g_{i j} G_{i j} \\
G_{i j}=\operatorname{EXP}\left[-\alpha_{i j} \frac{\Delta g_{i j}}{R T}\right] \tag{2-4}\\
\alpha_{i j}=\alpha_{j i} \\
\Delta g_{i j} \neq \Delta g_{j i} \\
Z_{ \pm i}=z_{A i}+\frac{\nu_{B}}{v_{A}} z_{B i} \\
G_{ \pm i}=G_{A i}+\frac{\nu_{B}}{v_{A}} G_{B i} \tag{2-5}\\
\Delta g_{A i} G_{A i} a n d z_{B i}=\Delta g_{B i} G_{B i} \\
G_{A i}=\operatorname{EXP}\left[-\alpha_{A i} \frac{\Delta g_{A i}}{R T}\right] \\
G_{B i}=\operatorname{EXP}\left[-\alpha_{B i} \frac{\Delta g_{B i}}{R T}\right] \tag{2-6}
\end{gather*}
$$

A stepwise procedure for the development of these expressions is given in Appendix B, sections B.I and B.2.

2.2 Procedure: Data Reduction and Prediction

In Model I, each of the three binaries have two adjustable parameters. In order to predict ternary behavior it is necessary to evaluate the binary parameters first. Also, the accuracy of the binary data correlation will justify the extension of Model I to ternary or multicomponent mixtures. A stepwise scheme for the data correlation and prediction is depicted in figure 2.1. A nonlinear subroutine LSQ2 is used in the binary or ternary data regression.

The detailed steps for binary and ternary correlation with different objective functions have been discussed separately, as below
A. Binary 2-3: Mixture of Solvent (2) - Solvent (3)

The activity coefficient expressions for these type of systems are obtained by substituting $m=0.0$ and $N_{A}=0.0$ in equations (2-2) and (2-3) and differentiating the resulting excess Gibbs free energy function. This results in the original NRTL equation of Renon and Prausnitz (1968)--

$$
\begin{equation*}
\ln \gamma_{i} \equiv \frac{x_{j}^{2}}{R T}\left[\frac{z_{j i} G_{j i}}{\left(x_{j} G_{j i}+x_{i}\right)^{2}}+\frac{z_{i j}}{\left(x_{i} G_{i j}+x_{j}\right)^{2}}\right] \tag{2-7}
\end{equation*}
$$

$G_{i j}$ and $Z_{i j}$ are given by equation (2-4).
The experimental $X-y-P-T$ data for these binaries are correlated for the two temperature independent parameters-- Δg_{23} and Δg_{32} by presetting α_{23} to -1.0 as recommended by Marina
Desired : Correlation and Prediction of

Figure 2.1 A Stepwise Scheme for Correlation and Prediction
of the VLE and Mean Molal Activity Coefficients with Model I
and Tassios (1972) or to $0.2,0.3,0.47$ as recommended by Renon and Prausnitz (1968). The objective function used in the regression for this type of binary system is

$$
\begin{align*}
& \text { o.f. }=\sum_{s=1}^{N P} \sum_{i=2}^{3}\left[\frac{\gamma_{S_{C a}}-\gamma_{S_{E}}}{\gamma_{S_{E}}}{ }_{i}^{2}\right. \tag{2-8}\\
& N P=\# \text { of points in a system }
\end{align*}
$$

$\gamma_{S_{E}}$ is calculated using experimental $X-y-P-T$ data with equations (1-11) and (1-12).
B. Binary 1-2 or 1-3: Mixture of an Electrolyte and a Solvent

The activity coefficient expressions are given by equations $(A-5),(A-10),(A-8),(A-12)$ and $(A-9)$. Experimental binary data can be correlated either through regression for $G_{ \pm i}$ and $Z_{ \pm i}$ or $\Delta g_{A i}$ and $\Delta g_{B i}$ in equations (2-5) and (2-6). However, the temperature independent form ($\Delta g_{A i}$ and $\Delta g_{B i}$) would require values of $\alpha_{A i}$ and $\alpha_{B i}$. These two forms of the parameters make Model I applicable to both isothermal and isobaric data. Two objective functions are used to evaluate the binary parameters.

0.f.\#2 $=\sum_{s=1}^{N P}\left[\frac{D P_{C a}-D P_{E}}{D P_{E}}\right]_{s}^{2}+\sum_{s=1}^{N P}\left[\frac{\gamma_{ \pm}-\gamma_{ \pm}}{\gamma_{ \pm}}\right]{ }^{2}$
where,

$$
\begin{equation*}
D P=P_{i}^{O}-P \tag{2-11}
\end{equation*}
$$

$\gamma_{i, E X P}$ and DP are calculated using equations (1-17) to (1-21). If experimental binary data are available only as vapor pressure vs molality, the second term in equations (2-9) and (2-10) is zero. In the case where the data are $\gamma_{ \pm}$vs molality only, the first term in equations (2-9) and (2-10) is zero.

$$
\text { C. Prediction of Ternary VLE }\left(y_{2}, y_{3}, P \text { and } \gamma_{ \pm}\right)
$$

The binary parameters obtained by individual binary data correlation with the best objective function [Equation (2-10)] are used to predict the activity coefficients γ_{2}, γ_{3} and $\gamma_{ \pm}$in a ternary mixture with equations (2-12) to (2-18) and (1-29).

$$
\begin{align*}
& \ln \gamma_{ \pm}^{*}=\ln \gamma_{ \pm \text {Ext.D.H. }}^{*}+\ln \gamma_{ \pm N R T L}^{*} \tag{2-12}\\
& \ln \gamma_{ \pm}^{*}=2.303\left[-A_{\gamma} \frac{I^{1 / 2}}{I+\rho I^{1 / 2}}+A_{\gamma}^{2} \frac{I}{(1+a I)^{2}}\right]\left|Z_{+} Z_{-}\right| \\
& +\ln \left(0.00 \operatorname{lvmM}_{w}+1\right) \tag{2-13}\\
& \ln \gamma_{ \pm N R T L}^{*}=\frac{\nu_{A}}{\nu} \frac{1}{R T}\left[\frac{x_{2}\left\{x_{3} G_{32} Z_{ \pm 2}+x_{2} Z_{ \pm 2}-x_{3} Z_{32} G_{ \pm 2}\right\}}{\left(X_{A} G_{ \pm 2}+x_{3} G_{32}+x_{2}\right)^{2}}\right. \\
& +\frac{x_{3}\left\{x_{2} G_{23} Z_{ \pm 3}+x_{3} Z_{ \pm 3}-x_{2} Z_{23} G_{ \pm 3}\right\}}{\left(X_{A} G_{ \pm 3}+x_{2} G_{23}+x_{3}\right)^{2}} \\
& -\frac{X_{2} Z_{ \pm 2}}{\left(X_{3} G_{32}+X_{2}\right)}-\frac{X_{3} Z_{ \pm 3}}{\left(X_{2} G_{23}+X_{3}\right)}+\frac{X_{2} X_{3} Z_{32} G_{ \pm 2}}{\left(X_{3} G_{32}+X_{2}\right)^{2}} \\
& \left.+\frac{X_{2} X_{3}{ }_{2}{ }_{23} G_{ \pm 3}}{\left(X_{2} G_{23}+X_{3}\right)^{2}}\right] \tag{2-14}
\end{align*}
$$

$$
\begin{align*}
& \left.\ln \gamma_{i(2} \text { or } 3\right)=\ln \gamma_{i, E x t . D . H .}+\ln \gamma_{i, N R T L} \tag{2-15}\\
& \ln \gamma_{\text {iExt.D.H. }}=2.303 \frac{\nu m}{1000}\left[M_{W i} \frac{A_{\gamma}}{3} I^{1 / 2} \sigma_{1}\left(\rho I^{1 / 2}\right)\right. \\
& -N_{T} M_{W} I^{I / 2} \sigma_{I}^{I}\left(\rho I^{I / 2}\right) \frac{\partial A_{\gamma}}{\partial N_{i}}+M_{W i} A_{\gamma}^{2} \frac{I}{2} \\
& \left.\psi_{1}(a I)+N_{T} M_{W} A_{\gamma} \frac{\partial A_{\gamma}}{\partial N_{i}} I \psi_{I}^{1}(a I)\right]\left|Z_{+} Z_{-}\right| \\
& +\ln \left(0.001 \nu \mathrm{mM}_{\mathrm{w}}+1\right)-0.001 \nu \mathrm{mM}_{\mathrm{w}} \tag{2-16}
\end{align*}
$$

where,

$$
\begin{align*}
& \sigma_{1}\left(\rho I^{1 / 2}\right), \psi_{1}(a I) \text { are defined in equations }(A-12) \text { and (A-13) } \\
& \sigma_{1}^{1}\left(\rho I^{1 / 2}\right), \psi_{1}^{l}(a I) \text { are given by equations }(B-35) \text { and (} B-36 \text {) } \\
& \ln \gamma_{i N R T L}=\frac{1}{R T}\left[\frac{x_{A} G_{ \pm i} Z_{ \pm i}+x_{A} x_{j} Z_{ \pm i} G_{j i}+x_{A} x_{j} Z_{j i} G_{ \pm i}+x_{j}^{2} Z_{j i} G_{j i}}{\left(x_{A} G_{ \pm i}+x_{j} G_{j i}+x_{i}\right)^{2}}\right. \\
& +\frac{x_{A} x_{j} Z_{i j} G_{ \pm j}-x_{A} x_{j} Z_{ \pm j} G_{i j}+x_{j}^{2} Z_{i j}}{\left(x_{A} G_{ \pm j}+x_{i} G_{i j}+x_{j}\right)^{2}} \\
& +X_{A} X_{j} \frac{Z_{j i} G_{ \pm i}-Z_{ \pm i} G_{j i}}{\left(X_{j} G_{j i}+X_{i}\right)^{2}}+\frac{Z_{i j} G_{ \pm j}+Z_{ \pm j} G_{i j}}{\left(X_{i} G_{i j}+X_{j}\right)^{2}} \\
& \left.-2 X_{A} X_{i} X_{j} \frac{Z_{j i} G_{ \pm i}}{\left(x_{j} G_{j i}+x_{i}\right)^{3}}+\frac{Z_{i j} G_{ \pm j} G_{i j}}{\left(x_{i} G_{i j}+x_{j}\right)^{3}}\right] \tag{2-17}
\end{align*}
$$

where,

$$
\begin{equation*}
x_{A}=v_{A} X_{l} \tag{2-18}
\end{equation*}
$$

$$
i=2 \text { and } j=3
$$

or

$$
i=3 \text { and } j=2
$$

In equations (2-13) and (2-16) the Debye Hückel constant and the slope of the Debye Hückel constant are calculated by a procedure given in Appendix D. Once the solvent activity coefficients are estimated, they are then used to predict y_{i} and p with equations (1-11) and (1-12).

D. Correlation of Ternary Data

The activity coefficient equations (2-12) to (2-18) with equations (1-29), (1-11) and (1-12) are used in ternary data correlation. Three objective functions are attempted

$$
\begin{align*}
& +\sum_{s=1}^{N P}\left[\frac{\gamma_{ \pm}-\gamma_{ \pm}}{\gamma_{ \pm}}\right]_{s}{ }_{s} \tag{2-20}\\
& \text { O.f.\#3 }=\sum_{s=1}^{N P} \sum_{j=2}^{N P}\left[\frac{\gamma_{j_{c a}}-\gamma_{j_{E}}{ }^{2}}{\gamma_{j_{E}}}\right]_{S}+\sum_{s=1}^{N P}\left[\left(Y_{3_{c a}}-Y_{3_{E}}\right) \times 10\right]_{S}^{2} \\
& +\sum_{s=1}^{N P}\left[\frac{\gamma_{ \pm \mathrm{Ca}}-\gamma_{ \pm_{E}}}{\gamma_{ \pm}}{ }^{2}{ }_{s}\right.
\end{align*}
$$

In equations (2-20) and (2-21), a weighing factor of ten is used for the deviation in the vapor-phase composition in order to make the magnitude of this term equal to that of the relative percent error in ΔP and $\gamma_{ \pm}$. In the case where the ternary data are in the form of $m-X-y-P-T$ only, the second term in equation (2-19) is zero and the third term in equations (2-20) and (2-21) is zero. If the data are m-X vs $\gamma_{ \pm}$only, the first term in equation (2-19), and the first and second terms in equations (2-20) and (2-21) are zero.

The activity coefficient expressions [(2-13) to (2-18)] have six adjustable parameters for a ternary mixture. However, in this work, data are regressed only for four parameters with preset values of Δg_{23} and Δg_{32} obtained by binary 2-3 data correlation, corresponding to $\alpha_{23}=-1.0$. If the experimental data are isothermal, the parameters evaluated are $\mathrm{G}_{ \pm 2} \mathbf{\prime}^{\prime} \mathrm{Z}_{ \pm 2}$ ' $\mathrm{G}_{ \pm 3}$ and $\mathrm{Z}_{ \pm} 3^{\text {. For }}$ isobaric data, the temperature independent parameters $\Delta g_{A 2}, \Delta g_{B 2}, \Delta g_{A 3}$ and $\Delta g_{B 3}$ are evaluated.

A stepwise procedure was used for the rapid convergence of the regression program for the four parameters. In the case of isothermal data, first $\mathrm{G}_{ \pm 2}$ and $\mathrm{Z}_{ \pm 2}$ were set to the values obtained by binary aqueous electrolyte data correlation and the ternary data were regressed for $G_{ \pm 3}$ and $Z_{ \pm}$. The second time $G_{ \pm 3}$ and $Z_{ \pm 3}$ were fixed at the regressed values obtained in the first step and $\mathrm{G}_{ \pm 2}$ and $\mathrm{Z}_{ \pm 2}$ were evaluated by ternary data correlation. The third time, the values of $\mathrm{G}_{ \pm}$ and $Z_{ \pm 3}$ obtained in the second trial were used and the step
one was repeated to obtain new values of $\mathrm{G}_{ \pm 3}$ and $\mathrm{Z}_{ \pm 3^{\prime}}$. This procedure is performed for four or five trials. Finally, the four parameters are evaluated together by ternary data reduction using the values of $\mathrm{G}_{ \pm 2}, \mathrm{Z}_{ \pm 2}, \mathrm{G}_{ \pm 3}$ and $\mathrm{Z}_{ \pm 3}$ obtained from the last step as starting values in the regression.
E. Binary Data Prediction Using the Parameters Evaluated by Ternary Data Reduction

The binary parameters [Section 2.2 D$]$ obtained in ternary data correlation are used to predict the activity coefficients for binaries $1-2$ and $1-3$, with equations (A-5), $(A-8),(A-10),(A-11)$ and $(A-9)$. These are then used to calculate vapor pressure depressions.

2.3 Results

A list of binary and ternary systems used in this study is presented in Tables G.1 and G.2.

A. Binary Data Reduction

The solvent-solvent binary data correlation was obtained with two values of α_{23}. Both the values result in the same order of $\Delta Y_{A V G}$ and $\Delta P_{A V G}$, Table G.3. The quantities $\Delta Y_{A V G}$ and $\Delta P_{\text {AVG }}$ are defined below

$$
\begin{align*}
\Delta \mathrm{Y}_{\mathrm{AVG}}= & \frac{\sum_{\mathrm{S}=1}^{\mathrm{NP}}|\Delta \mathrm{Y}|_{\mathrm{S}}}{\mathrm{NP}} \tag{2-22}\\
\Delta P_{\mathrm{AVG}} & =\frac{\sum_{\mathrm{S}=1}^{\mathrm{NP}}|\Delta \mathrm{P}|_{\mathrm{S}}}{\mathrm{NP}}
\end{align*}
$$

where

$$
\begin{gather*}
\Delta Y=Y_{3}-Y_{3_{E}} \tag{2-24}\\
\Delta P=P_{C a}-P_{3} \tag{2-25}
\end{gather*}
$$

The aqueous or nonaqueous electrolytic binary results are presented in Tables G. 4 to G.7. The quantities used to define the accuracy of the correlation are as below

Avg \% error in $\gamma_{ \pm}=$

$$
\begin{gather*}
\underset{s=1}{N P}\left|\frac{{ }^{D_{P_{C a}}}-{ }^{D_{P_{E}}}}{D_{P_{E}}}\right|_{s} \times 100 \tag{2-26}\\
\hline
\end{gather*}
$$

The objective function \#2, given in equation (2-10) gives a better fit of the data, Tables G.4 and G.5, specifically for the nonaqueous electrolytic binaries. In further studies, only objective function \#2 is used in the binary data correlation, except for the $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ binary at $25^{\circ} \mathrm{C}$. Since HCl is a volatile electrolyte, and the experimental data are in the form of partial pressure of water in the vapor phase, objective function \#l is used.
B. Temperature Dependency of the Binary Parameters

Next, the temperature dependency of the binary parameters was determined. The parameters $\Delta g_{A i}$ and $\Delta g_{B i}$ (equation 2$6)$ were evaluated by presetting $\alpha_{A i}$ and $\alpha_{B i}$. The meaningful values of $\alpha_{A i}$ and $\alpha_{B i}$ will be those which can interrelate two forms of the parameters: $G_{ \pm i} ; Z_{ \pm i}$ and $\Delta g_{A i} ; \Delta g_{B i}$. It was observed that one of the two $\alpha^{\prime} s\left(\alpha_{A i}\right.$ or $\left.\alpha_{B i}\right)$ should be set to zero in order to represent one form of the parameters in terms of the other form. In this work, $\alpha_{B i}$ is set to zero and the value of $\alpha_{A i}$ was selected arbitrarily and is set equal to 0.2. The results of data reduction obtained for aqueous/nonaqueous electrolytic binaries in the temperature independent form are given in Tables G. 6 and G.7. The accuracy of binary data correlation with $\Delta g_{A i}$ and $\Delta g_{B i}$ is of the same order as that obtained with $G_{ \pm i}$ and $Z_{ \pm i}$ (Tables G.4 and G.5). Typical results are given for the system $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ in Figure 2.2 and the system $\mathrm{LiBr}-\mathrm{MeOH}$ at $15^{\circ} \mathrm{C}$, Figure 2.3 . However, to test the validity of 0.2 and 0.0 for $\alpha_{A i}$ and $\alpha_{B i}$ respectively, different values of $\alpha_{A i}$ and $\alpha_{B i}$ were also tried, Tables G.8 and G.9. The

Figure 2．2 Comparison of Experimental Mean Molal Activity Coefficients and Vapor Pressure Depressions with those Predicted by Mode1 I for the System NaC1－ $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ ． Experimental，Robinson \＆Stokes （1955）； 0 Correlation Pair of Roots非（ $\alpha_{A 2}=0.2, ~ \alpha_{B 2}=0.0$ ）； \triangle Correlation，Pair of Roots $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ 2 ~\left(~ \alpha_{A 2}=0.2 ; ~ \alpha_{B 2}=0.0\right)$ ； \square Predicted Using Parameters of $60^{\circ} \mathrm{C}$（see Table 2.1 for the roots）．

TABLE 2.1 Multiplicity of Roots in Model \#l for Aqueous Electrolytic Solutions with Preset Values of

$$
\begin{gathered}
\alpha_{A 2}=0.2 \text { and } \alpha_{B 2}=0.0 \\
\text { Maximum } m=4.0
\end{gathered}
$$

System	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\Delta g_{\text {A } 2}$	$\Delta g_{\text {A3 }}$	$\begin{aligned} & \% \text { Error in } \\ & \text { Max }^{\gamma_{ \pm}} \text {Avg } \end{aligned}$		\% Er Max	
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	25	-32.396	444.79	3.4	1.2	3.3	1.0
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	60	-34.009	399.74	2.6	1.4	2.2	0.9
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	70	-29.051	227.36	4.1	2.4	4.0	1.6
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	80	-34.000	349.27	2.2	1.2	2.0	0.9
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	90	-36.82	427.07	1.0	0.6	0.6	0.4
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	100	-30.668	228.68	3.9	2.2	5.0	2.2
$\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$	25	-24.258	174.11	9.4	4.0	8.1	2.3
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	25	156.75	18.271	11.0	6.0	11.7	3.7
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	60	171.48	21.695	9.8	6.0	9.8	3.6
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	70	187.42	24.751	10.1	6.1	10.3	3.8
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	80	155.12	28.38	10.3	6.3	10.7	4.0
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	90	199.24	32.278	11.0	6.5	11.0	4.2
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	100	138.47	36.876	11.6	6.9	11.4	5.2
$\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$	25	163.29	12.545	12.8	6.0	11.6	3.3

results are of poor quality. This again reinforces the use of $\alpha_{A i}=0.2$ and $\alpha_{B i}=0.0$.

The parameters obtained with $\alpha_{A i=0.2}$ and $\alpha_{B i=0.0}$ were used to predict binary data from one temperature to another temperature (Table G.10). In general, for an aqueous electrolyte binary, the data are predicted with a 15 percent average error in $\gamma_{ \pm}$and a seven percent average error in DP within a $30-40^{\circ} \mathrm{C}$ temperature range. The prediction of binary data for the system $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ using the parameters obtained by the data correlation of the system $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ is depicted infigure 2.2. The availability of nonaqueous electrolytic binary data is limited,therefore it is not possible to establish a temperature range for such binary systems. However, for the two systems LiBr-MeOH and LiCl-MeOH (Table G.10), the results show that the data prediction is less reliable than aqueous electrolytic binaries. The typical result for the system $\mathrm{LiBr}-\mathrm{MeOH}$ at $15^{\circ} \mathrm{C}$ is shown in Figure 2.3.

Aqueous electrolytic binary data reduction also indicated a multiplicity of roots for binary parameters (Table 2.1). A binary has two pair of roots. It is interesting to note that the pair of roots with positive values of $\Delta g_{A 2}$ should be used to predict data from one temperature to the other temperature, though these sets of parameters are less accurate in correlating binary data than the other pair of roots (Tables 2.1 and 2.2).

TABLE 2.2 Prediction of Binary VLE Data by Model \#l at One Temperature Using Binary Parameters (2nd Pair of Roots) at Another Temperature with Preset Values of

$$
\alpha_{A 2}=0.2 \text { and } \alpha_{B 2}=0.0
$$

System	\# of Points	$\begin{aligned} & \text { Max } \\ & \text { 'm' } \end{aligned}$	$\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	of $T$$\left({ }^{\circ} \mathrm{C}\right)$	ameters$\Delta g_{\mathrm{A} 2}$	Used$\Delta g_{\mathrm{B} 2}$	$\begin{gathered} \text { \% Error in } \\ \gamma_{ \pm} \end{gathered}$		$\begin{gathered} \text { \% Error in } \\ \text { DP } \end{gathered}$	
							Max	Avg	Max	Avg
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	17	4.0	25	100	138.47	36.876	45.3	11.6	31.9	8.3
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	60	100	138.47	36.876	35.9	11.6	24.2	8.2
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	70	100	138.47	36.876	30.5	9.7	21.5.	7.1
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	80	100	138.47	36.876	24.4	7.8	18.3	6.1
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	90	100	134.47	36.876	17.7	6.8	15.1	5.1
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	60	25	156.75	18.271	13.2	7.6	6.6	3.2
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	70	25	156.76	18.271	16.4	10.9	5.8	3.4
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	80	25	156.75	18.271	21.2	14.9	7.0	4.0
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	90	25	156.75	18.271	27.3	19.3	8.5	5.3
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	100	25	156.275	18.271	35.4	24.6	10.7	8.0
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	25	60	171.48	21.695	18.6	5.7	15.4	4.0
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	70	60	171.48	21.695	12.7	7.4	7.5	3.5
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	80	60	171.48	21.695	16.8	11.0	5.9	3.5
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	90	60	171.48	21.695	22.3	15.3	7.3	4.1
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	11	4.0	100	60	171.48	21.695	29.3	20.4	9.3	6.5

TABLE 2.3 Performance of Model I in Correlating Binary VLE Data for Different Molality Ranges

System	$\begin{aligned} & \text { Max } \\ & \text { 'm' } \end{aligned}$	\# of Points	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\mathrm{G}_{ \pm i}$	$\mathrm{Z}_{ \pm i}$	$\begin{gathered} \text { \% Error in } \\ \gamma_{ \pm} \end{gathered}$		$\underset{\text { DP }}{\circ} \text { Error in }$	
						Max	Avg	Max	Avg
$\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$	2.0	15	25	24.1	17.026	3.4	1.3	2.2	1.3
	3.0	17	25	27.31	15.854	9.3	2.6	4.4	2.0
	4.0	19	25	31.499	14.72	1.6 .8	4.8	6.3	3.0
	5.0	21	25	37.755	13.545	24.2	7.6	7.7	4.3
	6.0	23	25	41.19	13.041	32.3	10.3	9.2	5.0
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$	4.0	6	60	0.0294	-77.911	-	-	4.6	2.4
	5.0	9	60	0.0316	-245.0	-	-	7.2	4.2
	6.0	11	60	0.0563	-180.44	-	-	8.3	4.7
	7.0	13	60	0.0213	-585.13	-	-	9.4	5.1
	8.0	14	60	0.029	-465.38	-	-	10.0	5.4
	9.0	16	60	0.054	-286.8	-	-	10.8	5.7
LiCl-MeOH	4.0	8	60	5.877	84.288	-	-	12.2	5.8
	5.0	10	60	5.3481	88.825	-	-	15.6	6.4
	6.0	11	60	5.086	91.269	-	-	17.5	7.3
	8.0	12	60	4.8525	93.557	-	-	21.7	8.6

No multiplicity of roots was observed for the nonaqueous electrolyte binaries.
C. Maximum Molality Applicability

Before this model was extended to ternary systems, its maximum molality applicability was investigated. Three typical systems were used for this: $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$, $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ and LiCl-MeOH at $60^{\circ} \mathrm{C}$ (Table 2.3). The data correlation for binaries $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ indicate that for aqueous electrolytic mixtures the correlation yields a good fit up to $I=9$, whereas for the system LiCl-MeOH, the data are fitted within an average fifteen percent error only up to $\mathrm{I}=6$. This molality limit will be different for different electrolytes, solvents and temperatures of the system. Based on the above study in water and MeOH solvents, the maximum concentration range of an electrolyte is considered $I=6$.
D. Ternary Data Prediction

The binary parameters obtained by the individual binary data reduction were used to predict isothermal $\gamma_{ \pm}$, vapor phase compositions and the total pressures in ternary solutions. For the solvent-solvent binary, both sets of parameters were used corresponding to two different values of α_{23}. The best results are tabulated in Tables 2.4 and 2.5.

Out of four ternary systems with m vs $\gamma_{ \pm}$data, only the two systems $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$

TABLE 2.5 Prediction of Vapor-Phase Composition and Total Pressure by Model \#l Using Binary
Parameters from Tables G. 4 (Binary 1-2); G. 5 (Binary 1-3); and G. 3 (Binary 2-3)

System	\# of Points	$\begin{gathered} \text { Max } \\ \text { 'm' } \end{gathered}$	$\begin{gathered} \text { Por } \\ \text { T } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	α_{23}	Δg_{23}	Δg_{32}	$\begin{gathered} \Delta g_{\mathrm{A} 2} \\ \text { or } \\ \mathrm{G}_{ \pm 2} \end{gathered}$	$\begin{gathered} \Delta \mathrm{g}_{\mathrm{B} 2} \\ \text { or } \\ \mathrm{Z}_{ \pm 2} \end{gathered}$	$\begin{gathered} \Delta \mathrm{g}_{\mathrm{A} 3} \\ \text { or } \\ \mathrm{G}_{ \pm 3} \end{gathered}$	$\begin{gathered} \Delta g_{\mathrm{B} 3} \\ \text { or } \\ \mathrm{Z}_{ \pm 3} \end{gathered}$	Max	Avg	$\triangle \mathrm{P}$ (m Max	$\mathrm{mHg})$ Avg
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$	20	1.0	25	0.3	894.5	-62.0	0.0557	-81.532	4.1	144.2	0.091	0.028	5.2	1.4
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$	20	1.0	25	-1.0	105.8	383.8	0.0557	-81.532	4.1	144.2	0.078	0.028	5.9	1.4
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	5	1.0	25	0.3	806.1	-321.4	0.0557	-81.532	6.1745	56.832	0.053	0.032	3.6	1.9
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	5	1.0	25	-1.0	-150.9	336.47	0.0557	-81.532	6.1745	56.382	0.054	0.033	3.5	1.9
$\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	6	1.9	25	0.3	806.1	-321.4	36.949	1.261	6.876	54.598	0.068	0.025	9.0	4.7
$\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	6	1.9	25	-1.0	-150.9	336.47	36.949	1.261	6.876	54.598	0.034	0.019	8.8	4.9
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	10	2.0	60	0.3	431.65	43.59	0.0353	-287.85	5.09	91.21	0.074	0.052	33.7	1.8 .0
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	10	2.0	60	-1.0	140.3	235.92	0.0353	-287.85	5.09	91.21	0.069	0.048	31.7	14.2
* $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	19	2.0	atm 1	-1.0	97.08	312.47	81.74	-11.59	19.5	170.9	0.075	0.023	52.5	17.4
** $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	19	2.0	atm	-1.0	97.08	312.50	163.3	12.55	-2I. 56	177.3	0.081	0.027	42.9	16.5
*Binary parameters are used corresponding to the values evaluated at $60^{\circ} \mathrm{C}$, Tables 6.6 and 6.7 **Binary parameters are used corresponding to the values evaluated at $25^{\circ} \mathrm{C}$, Tables 2.1 and 6.7														
NOTE: 1. a) b) 2. In are	Parame Parame genera predi	ters ters l, pr cted	$\Delta g_{A 2}$ $\mathrm{G}_{ \pm 2}$, edic using	$\begin{aligned} & \Delta g_{B 2} \\ & z_{ \pm 2}, ~ \\ & \text { tion i } \\ & g \alpha_{23} \end{aligned}$	$\begin{aligned} & \Delta g_{A 3} \text { ar } \\ & \pm 3 \text { and } z_{=} \\ & \text {s better } \\ & =-1.0 \text { ol } \end{aligned}$	nd $\Delta g_{B 3}$ ± 3 are u with pa nly.	re used ed for i ameters	for isoba othermal orrespon	ic data data ding to	with $\alpha_{A i}$	$=0.2 ;$	$\alpha_{B i}=$	0.0	

Figure 2.4 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$. Experimental , Akerlof $\left.(1930) ; Q_{\text {Predicted }}\left(\alpha_{23}=0.3\right) \quad{ }_{23}=-1.0\right) ; \triangle$ Predicted $\left(\alpha_{23}=-1.0\right)$;
and $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ gave acceptable results. The average errors for the $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ are 13.5 and 4.1 for two values of $\alpha_{23},-1.0$ and 0.3 , respectively [Figures 2.4, G. 4 and G.5]. The maximum error with $\alpha_{23}=0.3$ is 28%, which is of good quality. For the system $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$, again $\alpha_{23}=0.3$ gives slightly better results with an average percent error of 14 and a maximum percent error a maximum of 45\% (Figures G. 6 and G.7). However, prediction of $\gamma_{ \pm}$for the system $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ is possible only at low molalities and water concentration (HCl free) $\geq 95 \%$ [Figures G.l to G.3]. The prediction of $\gamma_{ \pm}$data for the system $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ was not of acceptable quality.

Prediction of the vapor-phase composition and the total pressure was attempted for four systems, depending upon the availability of binary data (Table 2.5 and Figures G.l to G.12). The average error in $\Delta \mathrm{Y}$, in general, is about 0.028 . Also, it is interesting to note that as the concentration of MeOH or EtOH increases, the prediction improves, Figures 2.4 and 2.5. However, prediction of the VLE for the system LiCl$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$ is not of presentable quality.
E. Ternary Data Correlation

All four isothermal ternary data for $\gamma_{ \pm}$were correlated alone, Table G.II and Figures G.l to G.9. In general, the ternary $\gamma_{ \pm}$data are correlated with an average percent error less than eight, except for the $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ where the maximum percent error in $\gamma_{ \pm}$is 27.0 . Typical results are

Figure 2.5 Comparison of Experimental VLE with that Predicted Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$. Experimental (LiCl free) Ciparis (1966); 〇Experimental with LiC1, Ciparis(1966) ; \triangle Predicted with LiC1 ($\alpha_{23}=0.3$) ; \square Predicted with $\operatorname{LiC1}\left(\alpha_{23}=-1.0\right)$

Figure 2.6 Comparison of Experimental VLE with that Predicted Using Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$. Experimental (LiC1 free), Ciparis(1966); O Experimental with LiCl, Ciparis(1966); \triangle Predicted $\left(\alpha_{23}=0.3\right) ; \square$ Predicted $\left(\alpha_{23}=-1.0\right)$
given for the $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ in Figure 2.4.
Five isothermal and four isobaric ternary VLE data are correlated with three objective functions. Objective function \#2, equation 2.20, yields the best results for both ΔY and ΔP (Tables G.l3 and G. 14 and Figures G.10 to G.19). In general, the average error in ΔY is about 0.015 . The correlation of ternary data for the $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ (Fiqures G.l3 and G.14) is good, even for molalities greater than six, although it was not possible to predict the data for $m>2$. For the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $60^{\circ} \mathrm{C}$ the prediction of ternary data was not possible, yet the data are correlated successfully up to $I=6$ with an average error in ΔY of 0.015 , Figure G.15. The data for the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ system at $25^{\circ} \mathrm{C}$ are fitted only up to $m=1.0$, Figures G.ll and G.11. The data available at $m=4.0$ for this system could not be fitted within acceptable quality, but this is expected since Licl is incompletely dissociated in EtOH at this molality. The overall ternary data correlation is of good quality. The parameters obtained with three objective functions are listed in Tables G. 13 and G.15.

F. Binary Data Prediction

Finally, aqueous/nonaqueous electrolyte binary data are predicted using the parameters obtained by ternary data reduction, Table 2.6. In general, aqueous electrolyte binary data are predicted with an average percent error of 15 in $\gamma_{ \pm}$
Data Using Parameters Obtained by
Ternary Data Correlation, Tables G.11 and G. 12

System	\# of Points	$\begin{gathered} \operatorname{Max} \\ \text { 'm' } \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\mathrm{G}_{ \pm i}$	$\mathrm{Z}_{ \pm \text {i }}$	$\begin{gathered} \text { \% Error in } \\ \gamma_{ \pm} \end{gathered}$		$\begin{gathered} \text { \% Error in } \\ \mathrm{DP} \end{gathered}$	
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$	19	4.0	25	12.666	0.1983	27.6	5.8	15.9	3.7
$\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$	15	2.0	25	19.677	1.7897	28.6	13.4	-	-
$\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$	11	6.0	60	15.463	5.126	-	-	28.8	22.1
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	10	1.0	25	38.981	4.216	29.2	21.9	12.0	9.8
$\mathrm{HCl}-\mathrm{EtOH}$	8	0.1	25	9.4608	84.647	20.0	16.2	-	-
$\mathrm{NaCl}-\mathrm{MeOH}$	7	0.1	25	44.11	14.638	13.1	5.8	-	-
$\mathrm{LiCl}-\mathrm{MeOH}$	7	3.67	25	75.82	-11.24	-	-	19.01	149.9
$\mathrm{NaBr}-\mathrm{MeOH}$	9	1.56	25	0.1382	601.16	-	-	114.9	104.5

Figure 2.7 Prediction of $\gamma_{\underline{ \pm}}$ and DP Data for the System LiC1- $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ Using the Parameters Obtained by Ternary Data Correlation with Mode1 I
and DP. However, the prediction of DP for nonaqueous electrolyte is not possible. Typical results for the $\mathrm{Li} \mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ system at $25^{\circ} \mathrm{C}$ are compared with the experimental data in Figure 2.7 .

2.4 Discussion

The main objective of this work is to be able to predict or correlate $\gamma_{ \pm}$and the salting out or salting in effect in ternary mixtures. The thermodynamic representation of ternary systems would serve as a guideline in the extension of this model to multicomponent mixtures. An additional term was required with the Debye-Hückel term to represent ternary mixture behavior. Therefore it would be important to analyze the contribution of different terms to understand the behavior of ternary mixtures physically.

In a ternary mixture the impact of the NRTL term, though shifted a little, follows the same trend as it does in a sol-vent-solvent binary, Figure G.20. However, the contribution of the Debye-Hückel term in a ternary mixture decreases as the dielectric constant of the solvent decreases, i.e.

$$
\ln \gamma_{\text {D.H.EtOH }}<\ln \gamma_{\text {D.H.MeOH }}<\ln \gamma_{\text {D.H. }} H_{2} \mathrm{O}
$$

So, in a ternary mixture of $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$, the Debye-Hückel term will always result in salting in for EtOH , Figure 2.8. This salting in effect is due to the Debye Hückel term and is not counterbalanced by the NRTL term. In reality, EtOH is salted out, which is contrary to the effect of the Debye-Hückel term. Therefore it was necessary to include a higher order term ($\ln \gamma_{\text {PHY }}$) with the Debye-Hückel equation to cancel the salting-in effect, Figure 2.8. The extended term (ln $\gamma_{P H Y}$)

Constant m $=1.0$

Figure 2.8 Contribution of Different Terms to $\ln \gamma_{i}$ for the System LiCl- $\mathrm{H}_{2} 0-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ in Model I
gives an opposite contribution to that of the Debye-Hückel term, i.e.

$$
\ln \gamma_{\mathrm{PHY}, \mathrm{EtOH}}>\ln \gamma_{\mathrm{PHY}, \mathrm{MeOH}}>\ln \gamma_{\mathrm{PHY}}, \mathrm{H}_{2} \mathrm{O}
$$

Next, it is important to justify the assumption of complete dissociation of the electrolyte for the applicability of this model. In general, dissociation of an electrolyte in a liquid solution depends upon the characteristics of the electrolyte, properties of the solvent and temperature of the system. As the dielectric constant of the solvent decreases, the ionization of electrolyte decreases also. If dissociation data are not available, it would be appropriate to accept Waddington's (1969) approximation as a guideline. According to Waddington, an electrolyte can be considered completely dissociated up to a moderate concentration range in a solvent with dielectric constant ≥ 30. To determine the moderate range, the correlation of three typical binary data have been studied, Table 2.3. As mentioned in section 2.3 , the maximum concentration range for water and MeOH solvents is accepted as $\mathrm{I}=6.0$. However, this is based on data at $25^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, where the dielectric constant of MeOH is closed to 30. But, if the temperature of the system increases, the dielectric constant decreases and the molality range applicability should be expected to be less than $I=6.0$. This is justified by the ternary VLE data correlation for the $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at one atm (temperature range $65-100^{\circ} \mathrm{C}$) and isothermal data

Figure 2.9 Thermodynamic Consistency Test for the System $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$
at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The average errors in ΔY are 0.017 and 0.012 at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, respectively where the data are correlated up to $I=7.1$ and $I=6.2$ for the two temperatures respectively, Table G.12. However, for isobaric data at one atm, the average error goes up to 0.021 , although data up to $I=4$ only are used.

In general, ternary $\gamma_{ \pm}$and VLE data prediction, as shown in Tables 2.4 and 2.5 , are of acceptable quality. These can be used as a guideline in preliminary design. Prediction of vapor phase composition and total pressure is better with $\alpha_{23}=-1.0$ than $\alpha_{23}=0.3$. It is interesting to note that prediction of y and P data for two isobaric systems using the temperature independent parameters $\left(\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}\right.$ and $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1$ atm, Table 2.5) is obtained with an average error in ΔY of 0.023 and 0.027 , respectively. VLE data for four systems out of six systems presented in Table 2.5 , are predicted with a $\Delta Y_{\text {AVG }}$ of less than 0.028. The average error in ΔY for the other two systems $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$ is larger than 0.028. However, it was found that the maximum concentration limits for reasonable prediction is I = 2. The large errors are observed at higher molality which are due to incomplete dissociation of an electrolyte in the solution.

As shown in Tables 2.4 and 2.5, large errors are obtained for some systems, e.g. especially for the prediction of $\gamma_{ \pm}$for the $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ system at $25^{\circ} \mathrm{C}$ and the $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ and y and P data for the systems $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$ and $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}^{-\mathrm{MeOH}}$ at $25^{\circ} \mathrm{C}$. It is important as a first step to
question the accuracy of binary or ternary data, because the performance of the model in the correlation or prediction of the data is equally dependent upon the quality of the data itself. A plot of $\ln \gamma_{2} / \gamma_{3}$ vs X_{2} (Figure 2.9) which enables the thermodynamic consistency of the data for the system $\mathrm{H}_{2} \mathrm{O}$ MeOH at $25^{\circ} \mathrm{C}$ shows a lot of scattering of the experimental data. This is the best set of data out of three sources which are definitely thermodynamically inconsistent. Hence, binary parameters evaluated for this binary will affect the prediction of $\gamma_{ \pm}$for the systems $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and y and P prediction for the systems $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$.

The solvent-solvent binary data can be tested for thermodynamic consistency, but there is no thermodynamic consistency test to check electrolyte-solvent binary or ternary data. In the literature, a great deal of aqueous electrolyte binary data are available and their quality and accuracy can be considered valid. However, the nonaqueous electrolyte binary or ternary data are not frequently available and those found in the literature can not be checked for accuracy. However, a comparison of isothermal and isobaric data prediction with the same binary parameters evaluated at $60^{\circ} \mathrm{C}$ indicate that isobaric data can be predicted with an average error in ΔY of less than 0.028 whereas the error is large for isothermal ternary data prediction. This shows a possible inconsistency in the VLE data of the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ MeOH system at $60^{\circ} \mathrm{C}$, though this can not be verified.

Another point to be examined in ternary prediction is the difference in the available molality range for binary and ternary systems. As in the case of the $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ system at $25^{\circ} \mathrm{C}$, ternary data are available up to $m=2.5$ for $X_{E t O H}^{\prime}=0.5$, whereas the corresponding HCl-EtOH binary data are available only up to 0.1 m . The data for $\mathrm{m} \geq 0.1$ for the $\mathrm{HCl}-\mathrm{EtOH}$ binary can not be used with this model because of the incomplete dissociation of HCl . The binary parameters obtained in the regression of the HCl -EtOH data up to 0.1 m can not be expected to perform well for higher molalities in a ternary mixture, especially when the concentration of EtOH increases, (Figures G.l to G.3). This is also observed with the system $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-$ MeOH at $25^{\circ} \mathrm{C}$. The prediction of this ternary is possible only up to $m=1.9$, because the binary $\mathrm{NaBr}-\mathrm{MeOH}$ data are available only up to $m=1.6$, Table 2.5.

The performance of this model in correlating ternary data as tested with four isothermal systems for $\gamma_{ \pm}$(Table G.ll) and nine systems for VLE (5 isothermal, Table G.l2 and 4 isobaric, Table G.14) is of good quality. The data correlated for the $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ are compared with the results of Chen et al. (1979) (Figure G.14). The results obtained by this model are definitely superior to their model.

Finally, the prediction of the binary data with the parameters obtained by ternary data correlation is generally of acceptable quality for aqueous electrolyte binaries, Table 2.6 and Figure 2.7. The average error in DP and $\gamma_{ \pm}$is about 15%.

But the prediction of $D P$ data for nonaqueous electrolytes is not possible, as shown for the systems LiCl-MeOH at $25^{\circ} \mathrm{C}$ and $\mathrm{NaBr}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ (Table 2.6).

2.5 Conclusions

The main objective of this work, which was to represent the thermodynamic behavior of strong electrolytic solutions, is achieved. Aqueous/nonaqueous binary data (DP and $\gamma_{ \pm} \mathrm{vs} m$) are correlated up to $I=6$ with an average percent error of 7.0. The prediction of $\gamma_{ \pm}$for ternary systems up to $I=2$ is possible with an average percent error of 15.0. The prediction of ternary VLE data as shown with six systems is possible with an average error in ΔY of 0.028 up to $I=2$, except for the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$, where error in $\Delta \mathrm{Y}$ is large even at $\mathrm{I}=$ 2. The prediction of VLE data above $I=2$ results in large errors. This sets the limitation of the model for ternary prediction. The correlation of ternary $\gamma_{ \pm}$and VLE data for systems containing water and MeOH is of good quality up to $\mathrm{I}=$ 6. Ternary system containing water and ethanol was correlated only up to $I=1$.

CORRELATION OF VAPOR-LIQUID EQUILIBRIUM AND MEAN MOLAL ACTIVITY COEFFICIENTS WITH MODEL II IN ELECTROLYTIC SOLUTIONS

ABSTRACT

Vapor pressure depression data (DP) of 53 aqueous electrolytes at 100° C were correlated with the one parameter (B_{12}) Bromley equation. These B_{12} constants can be used to calculate mean molal activity coefficients up to $I=6$. However, maximum molality applicability for MeOH-electrolyte solutions is only up to $\mathrm{I}=3$. In addition, these B_{12} values, along with those at $25^{\circ} \mathrm{C}$ reported by Bromley, can lead to reliable estimates of $D P$ and $\gamma_{ \pm}$in the temperature range $25-100^{\circ} \mathrm{C}$.

The extended form of the Bromley equation with the additional NRTL equation and the salting-out term give excellent correlation of the isothermal ternary VLE and $\gamma_{ \pm}$data in electrolytic solutions. This model requires two ternary adjustable parameters, therefore prediction of ternary data with binary data only is not possible.

Model II: Combination of the Bromley Equation, the Simplified NRTL Equation and the Salting Out Term

3.1 Gibbs Free Energy Expression

Bromley (1973) proposed a one parameter equation to correlate binary aqueous electrolytic mixtures. The same equation has been applied successfully to correlate nonaqueous binary data. This equation represents long-range electrostatic forces and ion-solvent interactions in a binary mixture. However, in a ternary mixture additional solvent-solvent molecular interactions must be considered. Therefore in Model II the Bromley equation has been extended to ternary mixtures and combined with a simplified form of the NRTL equation and an additional salting out term:

$$
\begin{equation*}
\left.\left.\left.\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right]_{\text {Total }}=\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right]_{\text {Bromley }}+\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right] \quad{ }_{\text {NRTL-S }}+\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right] \text { Salting out } \tag{3-1}
\end{equation*}
$$

A stepwise procedure to obtain the total Gibbs free energy expression is presented in Appendix-C (Sections C.1, C. 2 and C.3). The final forms of the equations are given below
$\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right]_{\text {Bromley }}=2.303 \nu \frac{\mathrm{~m}}{\mathrm{I}} \frac{\mathrm{N}_{\mathrm{T}} \mathrm{M}_{\mathrm{w}}}{1000}\left[-\mathrm{A}_{\gamma_{\rho^{3}}} \frac{2}{2}\left\{\left(1+\rho \mathrm{I}^{1 / 2}\right)^{2}\right.\right.$

$$
\begin{aligned}
& \left.-2\left(1+\rho I^{1 / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right\} \\
& +\frac{(0.06+0.6 B)}{a^{2}}\left\{\ln (1+a I)+\frac{1}{(1+a I)}-1\right\}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\frac{B}{2} I^{2}\right]+N_{T}\left[\left(0.001 \cup \mathrm{mM}_{W}+1\right)\right. \\
& \left.\ln \left(0.001 \cup \mathrm{mM}_{\mathrm{W}}+1\right)-0.001 \cup \mathrm{mM}_{\mathrm{W}}\right] \tag{3-2}
\end{align*}
$$

where,

$$
\begin{equation*}
B=B_{12} X_{2}^{\prime}+B_{13} X_{3}^{\prime}+B_{123} \frac{\left(X_{2}^{\prime} X_{3}^{\prime}\right)^{1 / 2} e^{-\alpha X_{3}^{\prime}}}{\left(1+n_{1}^{1 / 2}\right)^{3}} \tag{3-3}
\end{equation*}
$$

$$
\begin{align*}
& B_{123} \text { is ternary adjustable parameter } \\
& \left.\frac{G^{E}}{R T}\right] \quad=\frac{N_{T}}{R T}\left[\frac{X_{2} X_{3} Z_{32}}{\left(X_{A R L} \frac{\nu}{v_{A}}+X_{2}+X_{3} G_{32}\right)}+\frac{X_{2} X_{3} Z_{23}}{\left(X_{A} \frac{\nu}{\nu_{A}}+X_{3}+X_{2} G_{23}\right)}\right\} \\
& \left.+\frac{\nu}{v_{A}} X_{A} X_{2} X_{3}\left[\frac{Z_{32}}{\left(X_{3} G_{32}+X_{2}\right)^{2}}+\frac{Z_{23}}{\left(X_{2} G_{23}+x_{3}\right)^{2}}\right\}\right] \tag{3-4}
\end{align*}
$$

where, $G_{i j}$ and $Z_{i j}$ are the binary solvent-solvent parameters, equation (2-4).

where,

$$
\begin{align*}
& \delta^{\prime}=e^{\alpha X_{2}^{\prime}}\left(X_{2}^{\prime} B_{13}-X_{3}^{\prime} B_{12}\right) \tag{3-6}\\
& \alpha=2.0
\end{align*}
$$

δ_{123} is a ternary adjustable salting out parameter. A combination of equations (3-2) to (3-5) with equations (1-27) to (1-29) is used to derive activity coefficient expressions for solvents and the electrolyte. The detailed procedure is given in Appendix-C.

Figure 3.1 A Stepwise Scheme for Correlation
for the VLE and Mean Molal Activity Coeffici-
ents with Model II

3.2 Procedure--Data Reduction

Each binary set is correlated with the appropriate equations for the activity coefficients and the VLE relationships developed in Chapter 1. Binary parameters are then used in the ternary expressions and the ternary isothermal data are correlated. A stepwise scheme for the data correlation is shown in Figure 3.1. A detailed description of the data reduction is given in the following sections.
A. Solvent-Solvent Binary

The activity coefficient equations for these types of systems are derived by setting $m=0$ and $N_{A}=0$ in equations (3-2) to (3-5). The expressions are the same as equation (2-7). The binary data correlation is the same as discussed in Section 2.2-A.
B. Electrolyte-Solvent Binary

An aqueous/non-aqueous electrolytic binary is correlated with the one parameter Bromley equation given by equations ($\mathrm{C}-1$), ($\mathrm{C}-2$) and (C-9). A Fibonacci single variable regression program is used to find the best value of the binary adjustable parameter ' B_{12} ' or ' B_{13} '. Two objective functions, equations (2-9) and (2-10) (Section 2.2-B), with equations ($C-1),(C-2),(C-9),(1-19)$ to (1-21) are used to correlate the binary experimental data.

C. Electrolyte-Solvent-Solvent Ternary

A ternary mixture requires four binary parameters viz $\Delta g_{23}, \Delta g_{32}$ (preset α_{23}), B_{12} and B_{13} and two additional ternary parameters.

$$
\begin{equation*}
\ln \gamma_{ \pm}^{*}=\ln \gamma_{ \pm, \text {Bromley }}^{*}+\ln \gamma_{ \pm, \text {NRTL-S }}^{*}+\ln \gamma_{ \pm \text {Salt }}^{*} \text { Out } \tag{3-7}
\end{equation*}
$$

where,

$$
\begin{align*}
& \ln \gamma_{ \pm, \text {Bromley }}^{*}=2.303\left[-{\underset{\gamma}{A}}^{*}\left|\dot{Z}_{+} Z_{-}\right| \frac{I^{1 / 2}}{I+\rho I^{1 / 2}}\right. \\
& \left.+\frac{(0.06+0.6 B)\left|Z_{+} Z_{-}\right| I}{(I+a I)^{2}}+B I\right] \\
& +2.303 v \frac{N_{T} M_{w}}{1000} \frac{m}{I}\left[\frac{0.6}{a^{2}}\left|Z_{+} Z_{-}\right|\right. \\
& \left.\left\{\ln (1+a I)+\frac{1}{(1+a I)}-1\right\}+\frac{I^{2}}{2}\right] \frac{\partial B}{\partial N_{1}} \\
& +\ln \left(0.001 \cup \mathrm{VM}_{\mathrm{w}}+1\right) \tag{3-8}
\end{align*}
$$

where, $\frac{\partial \mathrm{B}}{\partial \mathrm{N}_{1}}$ is defined by equation ($\mathrm{C}-19$)

$$
\begin{gather*}
{\ln \gamma \stackrel{\star}{ \pm_{N R T L}-S}}=\frac{x_{2} x_{3}}{R T}\left[-\frac{z_{23}}{\left(x_{A} \frac{\nu}{\nu_{A}}+x_{3} G_{32}+x_{2}\right)^{2}}\right. \\
-\frac{Z_{23}}{\left(x_{A} \frac{\nu}{v_{A}}+x_{2} G_{23}+x_{3}\right)^{2}}+\frac{z_{32}}{\left(x_{3} G_{32}+x_{2}\right)^{2}} \\
\left.+\frac{Z_{23}}{\left(X_{2} G_{23}+x_{3}\right)^{2}}\right] \tag{3-9}
\end{gather*}
$$

$$
\begin{align*}
\ln \gamma_{ \pm, \text {Salt Out }}^{*} & =\delta_{123} \frac{\varepsilon^{2}}{\mathrm{KTD}} \sum_{\mathrm{k}} \frac{\nu_{k} Z_{k}}{b_{k}}\left(N_{2} N_{3}\right)^{1 / 2} \delta^{\prime} \\
& \left.\frac{N_{1}}{e^{\alpha N_{l}^{1 / 2}}\left[1-\frac{\alpha}{4}\right.} N_{l}^{1 / 2}\right] \tag{3-10}
\end{align*}
$$

For the solvents 2 and 3

$$
\ln \gamma_{i}=\ln \gamma_{i, \text { Bromley }}+\ln \gamma_{i, N R T L-S}+\ln \gamma_{i, \text { Salt out }}(3-11)
$$

where,

$$
\begin{align*}
\ln \gamma_{i, B r o m l e y} & =2.303 \frac{\nu \mathrm{~m}}{1000} M_{W_{i}}\left[A_{\gamma} \frac{I^{I / 2}}{3} \sigma_{2}\left(\rho I^{1 / 2}\right)\left|Z_{+} Z_{-}\right|\right. \\
& \left.-(0.06+0.6 B) \frac{I}{2} \psi_{2}(a I)\left|Z_{+} Z_{-}\right|+B \frac{I}{2}\right] \\
& +2.303 v m \frac{N_{T} M_{W}}{1000}\left[-I^{1 / 2} \sigma_{2}^{I}\left(\rho I^{1 / 2}\right)\left|Z_{+} Z_{-}\right| \frac{\partial A_{\gamma}}{\partial N_{i}}\right. \\
& \left.+0.6 \frac{I}{2} \psi_{2}^{I}(a I)\left|Z_{+} Z_{-}\right| \frac{\partial B}{\partial N_{i}}+I \frac{\partial B}{\partial N_{i}}\right] \\
& +\ln \left(0.001 \cup \mathrm{mM}_{W}+1\right)-0.001 \nu \mathrm{mM}_{W} \tag{3-12}
\end{align*}
$$

$$
\sigma_{2}\left(\rho I^{I / 2}\right), \psi_{2}(a I), \sigma_{2}^{l}\left(\rho I^{l / 2}\right), \psi_{2}^{l}(a I) \text { and } \frac{\partial B}{\partial N_{i}} \text { are defined }
$$

in equations ($\mathrm{C}-24$) to ($\mathrm{C}-29$). B is given by equation (3-3).

$$
\begin{aligned}
\ln \gamma_{i, N R T L-S} & =\frac{1}{R T}\left[\frac{x_{A} x_{j} \frac{\nu}{\nu_{A}} z_{j i}+x_{j}^{2} Z_{j i} G_{j i}}{\left(x_{A} \frac{\nu}{\nu_{A}}+x_{j} G_{j i}+x_{i}\right)^{2}}\right. \\
& +\frac{x_{A} x_{j} \frac{\nu}{\nu_{A}} z_{i j}+x_{j}^{2} z_{i j}}{\left.x_{A} \frac{\nu}{\nu_{A}}+x_{i} G_{i j}+x_{j}\right)^{2}}+x_{A} x_{j} \frac{\nu}{\nu_{A}}\left\{\frac{z_{j i}}{\left(x_{j} G_{j i}+x_{i}\right)^{2}}\right. \\
& \left.+\frac{Z_{i j}}{\left(x_{i} G_{i j}+G_{j}\right)^{2}}\right\}-2 x_{A} x_{i} x_{j} \frac{\nu}{\nu_{A}}\left\{\frac{Z_{j i}}{\left(x_{j} G_{j i}+x_{i}\right)^{3}}\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.+\frac{z_{i j} G_{i j}}{\left(x_{i} G_{i j}+x_{j}\right)^{3}}\right\}\right] \tag{3-13}
\end{equation*}
$$

Where,

$$
i=2 \text { and } j=3
$$

or

$$
\begin{align*}
i= & 3 \text { and } j=2 \\
\ln \gamma_{i, \text { Salt out }} & =\frac{\delta_{123}}{e^{\alpha N_{l}^{I / 2}} \frac{\varepsilon^{I}}{K T D}} \sum_{k}^{2} \frac{\nu_{k} Z_{k}^{2}}{b_{k}} \frac{N_{1}^{2}}{2} \\
& {\left[\frac{1}{2}\left(\frac{N_{j}}{N_{i}}\right)^{1 / 2} \delta^{\prime}-\left(N_{2} N_{3}\right)^{1 / 2} \frac{\delta^{\prime}}{D} \frac{\partial D}{\partial N_{i}}\right.} \\
& \left.+\left(N_{2} N_{3}\right)^{1 / 2} \frac{\partial \delta^{\prime}}{\partial N_{i}}\right] \tag{3-14}
\end{align*}
$$

Where, δ^{\prime} is given by equation $(3-6)$ and $\frac{\partial \delta^{\prime}}{\partial N_{i}}$ is defined in equations ($C-36$) and ($C-39$).

Note: For the development of equations (3-7) to (3-14), see Appendix-C (Section C.4).

The four binary parameters are obtained by individual binary data correlation. A ternary mixture is correlated for the two ternary parameters, B_{123} and δ_{123}, using the LSQ2 non-linear regression subroutine. Again, as in Model I, three objective function equations, (2-19) to (2-21), have been tried to correlate the experimental data. In all the ternary data reductions, Δg_{23} and Δg_{32} are preset to their respective values obtained by binary data correlation with $\alpha_{23}=-1.0$.

Equations (3-7) to (3-14) with equations (1-11), (1-12),
(1-22) and (1-24) are used to correlate the ternary VLE and $\gamma_{ \pm}$data.
TABLE 3.1 Data Sources*

System	T (${ }^{\circ} \mathrm{C}$)	m	Reference
$\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$	$25,50,75,100$	$0.1-6.0$	Gibbard et al. (1974)
	$25,60,70,80,90,100$	0.05-4.0	Robinson and Stokes (1955)
$\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}$	$25,40,50,60,70,80$	$0.1-4.0$	Snipes et al. (1975)
$\mathrm{KBr}-\mathrm{H}_{2} \mathrm{O}$	$25,60,70,80,90,100$	$0.1-4.0$	Robinson and Stokes (1955)
$\mathrm{MgSO}_{4}-\mathrm{H}_{2} \mathrm{O}$	$25,40,50,60,70,80$	$0.1-2.0$	Snipes et al. (1975)
$\mathrm{MgCl}_{2}-\mathrm{H}_{2} \mathrm{O}$	$25,40,50,60,70,80$	$0.1-2.0$	Snipes et al. (1975)
$\mathrm{Na}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}$	$25,40,50,60,70,80$	G.1-1.6	Snipes et al. (1975)

*In addition to the Weast compilation

3.3 Results

A list of aqueous electrolyte binary systems used with this model, in addition to the systems presented in Table G.l, are given in Table 3.1. The results of binary and ternary data correlation are discussed below.

A. Aqueous Electrolyte Binary

Maximum Molality Applicability--Bromley recommended

 the applicability of his equation [Equations ($\mathrm{C}-1$), ($\mathrm{C}-2$) and (C-9] up to $I=6$ for strong electrolytes in water, i.e. nearly completely ionized. This has been demonstrated by combining equations (C-9), (1-20) and (1-21) in the form$$
\begin{equation*}
\mathrm{Y}=\mathrm{B}_{1 i} \mathrm{X} \tag{3-15}
\end{equation*}
$$

where,

$$
\begin{align*}
& Y=(1-\phi)-2.303 A_{\gamma}\left|Z_{+} Z_{-}\right| \sigma_{2}\left(\rho I^{1 / 2}\right) I^{1 / 2} \\
&+2.303\left[0.06 \frac{\psi_{2}(a I)}{2}\right]\left|Z_{+} Z_{-}\right| I \tag{3-16}\\
& X=-2.303\left[0.6 I\left|Z_{+} Z_{-}\right| \frac{\psi_{2}(a I)}{2}+\frac{I}{2}\right] \tag{3-17}
\end{align*}
$$

Figures H.l and H. 2 indicate that reasonably good results are obtained for strong electrolytes up to $I=6$, i.e. $m=6$ for 1-I electrolytes (Figure H.1) and $m=2$ for 2-1 electrolytes (Figure H.2). On the other hand, very poor results are observed for MgSO_{4} (Figure H .3) which is incompletely ionized.

Results at $100^{\circ} \mathrm{C}-$-In the literature a good deal of data at $100^{\circ} \mathrm{C}$ are available as DP vs m , Weast (1969). Some typical systems are shown in Table H.l. Equation (C-9) with (1-2l) was used to calculate the values of B_{12} at $100^{\circ} \mathrm{C}$ and $\gamma_{ \pm}$values are obtained using equations ($\mathrm{C}-1$) and ($\mathrm{C}-2$). Values of m up to $I=6$ were used as above, even though the range of applicability may be somewhat lower here because of the higher temperature. Hence, for $1-1$ electrolyte data up to $m=6$ (7 points) were used; for $1-2$ and $2-1$ electrolytes, up to $m=2$ (3 points); for 2-2 electrolytes, up to $m=1.5$, and since at $\mathrm{m}=1.5$ is not given, data to $\mathrm{m}=2(\mathrm{I}=8)$ were used. Finally, for higher electrolytes (3-1, 3-2, etc.) only two points ($m=0.5$ and $m=1.0$) could be used.

This was considered too limited a data base and these electrolytes were not included in this study. The obtained values of B_{12}, along with those at $25^{\circ} \mathrm{C}$ from Bromley, are presented in Table H. 2.

In the case that data are correlated for the maximum m value ($m_{\max }$) reported by Weast, the resulting error in DP (DP ${ }_{\text {max }}^{\prime}$) is also included in Table H.2. The larger values of $D P_{\text {max }}^{\prime}$ as compared to those of $D P_{\max }$ further support Bromley's suggestion that this equation is applicable only up to $I=6$ for aqueous electrolytic mixtures.

The accuracy of the mean molal activity coefficients, calculated using these B_{12} values with equations ($\mathrm{C}-1$) and

Figure 3.2 Activity and Osmotic Coefficients for the System WaterSodium Ch1oride at $100^{\circ} \mathrm{C}$

- - - (Gibbard et al., 1974)
—— (Robinson and Stokes, 1955)
- From Weast's Data
- Calculated DP Values, eqn. (C-9), (1-21) and (1-22)

(C-2), is examined next. Figure 3.2 presents $\gamma_{ \pm}$values for aqueous NaCl calculated with this approach along with the data from Robinson and Stokes and those of Gibbard et al. (1974). The agreement can be considered reasonably good; maximum error is 6.7\%; average error is 5.4\%. The other system for which $\gamma_{ \pm}$data at $100^{\circ} \mathrm{C}$ are available is aqueous KBr (Robinson and Stokes, 1955). Since this system is not included in the Weast compilation, the ϕ values of Robinson and Stokes at $\mathrm{m}=$ $0.5,1,2,3$ and 4 were used. The results are presented in Figure H. 4 and they are of the same quality as those in the NaCl case; maximum error is 6.6\%; average error is 4.3\%. Since this is not the case for all electrolytes, especially for electrolytes other than 1-1, the effect of the number of data points used on the accuracy of the calculated $\gamma_{ \pm}$values is examined in Table 3.2. The results obtained by using only three data points (m up to 2) are comparable to those obtained by using all points available, up to $m=6$ for NaCl and up to $m=4$ for KBr .

Estimation of $D P$ and $\gamma_{ \pm}$Values in the Range $25-100^{\circ} \mathrm{C}-$ In the typical case, values of $D P$ and $\gamma_{ \pm}$are needed at temperatures other than 25 or $100^{\circ} \mathrm{C}$. Hence, it would be desirable if B_{12} values could be estimated within this temperature range. Bromley recommends two expressions for the temperature dependency of B_{12}.

$$
\begin{equation*}
\mathrm{B}_{12}=\mathrm{B}^{*} \ln \left(\frac{\mathrm{~T}-243}{\mathrm{~T}}\right)+\frac{\mathrm{B}_{1}^{1}}{\mathrm{~T}}+\mathrm{B}_{2}^{1}+\mathrm{B}_{3}^{1} \ln \mathrm{~T} \tag{3-18}
\end{equation*}
$$

| TABLE3.3 Values of B^{*} and B_{1}^{\prime} in Equation (3-20) for
 the Systems in Figures |
| :--- | :--- | :--- |
| Electrolyte and H.6 |

and

$$
\begin{equation*}
\mathrm{B}_{12}=\frac{\mathrm{C}^{*}}{\mathrm{~T}-230}+\frac{\mathrm{C}_{1}^{11}}{\mathrm{~T}}+\mathrm{C}_{2}^{11}+\mathrm{C}_{3}^{11} \ln \mathrm{~T} \tag{3-19}
\end{equation*}
$$

Since B_{12} values are available only at $25^{\circ} \mathrm{C}$ (Bromley) and $100^{\circ} \mathrm{C}$ (this study), equations (3-18) and (3-19) were tested in their two adjustable constants form by setting $B_{2}^{1}, B_{3}^{1}, C_{2}^{11}$ and $C_{3}^{1 l}$ equal to zero.

$$
\begin{equation*}
\mathrm{B}_{12} \mathrm{~T}=\mathrm{B}_{1}^{1}+\mathrm{B}^{*} \mathrm{~T} \ln \left(\frac{\mathrm{~T}-243}{\mathrm{~T}}\right) \tag{3-20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{12} \mathrm{~T}=\frac{\mathrm{C}^{*} \mathrm{~T}}{\mathrm{~T}-230}+\mathrm{C}_{1}^{I 1} \tag{3-21}
\end{equation*}
$$

The equations are written in this linear form so that they can be tested by plotting $B_{12} T$ vs $[T \ln ((T-243) / T)]$ in equations (3-20) and vs [T/(T-230)] for equation (3-21). Both expressions give reasonably good results as demonstrated in Figures H. 5 and H. 6 for equation (3-20). The straight lines were obtained by regressing all the points, excluding those from the Weast data. The values of the constants B^{*} and B_{1}^{1} are reported in Table 3.3.

Use of equation (3-20) for interpolation purposes is demonstrated in Table H.3. The B_{12} values at $70^{\circ} \mathrm{C}$ were obtained from equation (3-20) with B^{*} and B_{1}^{1} calculated using only the $\mathrm{B}_{12}\left(25^{\circ} \mathrm{C}\right)$ and the $\mathrm{B}_{12}\left(100^{\circ} \mathrm{C}\right)$ values. The large error for MgSO_{4} is due to incomplete dissociation figure H.3. Values of $\gamma_{ \pm}$at $70^{\circ} \mathrm{C}$ for the electrolytes of Table 3.3 are given in the references presented in Table 3.1. It should be
noted that the $\gamma_{ \pm}$data for $\mathrm{KCl}, \mathrm{MgCl}_{2}, \mathrm{MgSO}_{4}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (Snipes et al., 1975) were derived from heat of dilution data, and those for NaCl (Gibbard, 1974) are reported at rounded molalities and temperatures.
B. Nonaqueous Electrolyte Binary

Maximum Molality Applicability--As shown for the aqueous electrolyte binaries, the Bromley equation in the form of equation (3-15) is used to test the maximum molality range for MeOH electrolyte binaries. The results for the LiBr-MeOH system at $15^{\circ} \mathrm{C}$ and the $\mathrm{LiCl}-\mathrm{MeOH}$ system at $60^{\circ} \mathrm{C}$ (Figures H .7 and H.8) show that the applicability of the Bromley equation is good only up to $I=3$, for $1-1$ electrolytes. For the higher order electrolytes (1-2, 2-1, 2-2, etc.) data are not available. The only data available for higher order electrolytes is for the $\mathrm{CaCl}_{2}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$. Because of the scattering and unavailability of the experimental data at low molality (Figure H.9), it is not possible to conclude the maximum molality range for this system. Based on l-l electrolytes only the molality limit for MeOH system is set $\mathrm{I}=3$. Other nonaqueous binaries could not be tested since this type of data is not available in literature. It would be expected that the molality range would be even lower than $I=3$ for solvents with dielectric constants less than that of MeOH .

Accuracy of the Binary Data Correlation--The results of some nonaqueous electrolyte binary data correlation are
given in Table H.4. The accuracy of data correlation of such systems is less than the accuracy of the corresponding aqueous electrolytic binaries (Table H.5). In a typical case of the system $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$, the maximum percent error in DP is 2.0 and the average percent error is 1.0 (Table H.5) whereas for the system $\mathrm{LiCl}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$, the maximum percent error in DP is 15.6% and the average percent error is 7.3 (Table H.4). The correlation of the system $\mathrm{CaCl}_{2}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$, up to $\mathrm{m}=$ 2.6 is of poor quality (Table H.4). This is expected for l-2, 2-1 or higher order electrolytes in MeOH because of the maximum molality limitation.

C. Isothermal Ternary Data Correlation

The mean molal activity coefficient data of three isothermal ternary systems are correlated with this model (Table H.6), Figure H. 9 to H.l7. The systems $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ have average percent errors in $\gamma_{ \pm}$of 1.4 and 7.4, respectively (Figures H.13 to H.17). The correlation of the system $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ is good up to $m=2.0$ and EtOH concentration (HCl free) <9\% (Figures H. 10 and H.Il). The results are of poor quality for the same system at $X_{\text {EtOH }}^{\prime}=0.5$, especially when $m>0.5$.

The vapor-liquid equilibrium data of five isothermal ternary systems are correlated (Table H.7) with this model. Again, three objective functions [Equations (2-19), (2-20) and (2-21)] are applied for the data reduction. In general, objective
function \#2 gives the best results. In Table H. 7 results are given for the correlation up to $m=3$ and also for the higher molality range. The overall performance of the model in correlating the ternary VLE data is of good quality within the limited range of molality (Figures H .17 to H .22). The molality appiicability decreases to even less than $I=3$ with an increase in temperature, as in the case of the LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $60^{\circ} \mathrm{C}$, the fit is good only up to $\mathrm{m}=2.0$.

The ternary parameters δ_{123} and B_{123} obtained by the ternary correlation, indicates that these cannot be considered temperature independent. Therefore this model is not applied to isobaric ternary systems.

3.4
 Discussion

As already shown, only three $D P-m$ points were used in evaluating B_{12} for $1-2,2-1$ and 2-2 electrolytes. In addition, no experimental $\gamma_{ \pm}$data at $100^{\circ} \mathrm{C}$ are available for such electrolytes as in the case for l-l types, where good results are obtained from three points only (Table 3.2). Figures H.5 and H. 6 and Table H. 9 demonstrate, however, that the B_{12} values obtained from the Weast data are very close to those obtained by extrapolation of the data in the range from 25 to $80^{\circ} \mathrm{C}$. The closeness of the $\gamma_{ \pm}$values obtained from these two B_{12} $\left(100^{\circ} \mathrm{C}\right)$ values is depicted in Table H .10 for MgCl_{2} with a maximum difference of 5.8%. For the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ system, where the fractional difference between the two $\mathrm{B}_{12}\left(100^{\circ} \mathrm{C}\right)$ values is the largest, the maximum difference in $\gamma_{ \pm}$is 5.7\%. Therefore it is suggested that, in addition to the 1-1 electrolytes, reasonably accurate $\gamma_{ \pm}$values can be calculated for 1-2, 2-2, and 2-1 types from B_{12} values obtained using three data points from the Weast compilation.

Table H. 3 demonstrates that use of the B_{12} values at 25 and $100^{\circ} \mathrm{C}$, along with equation (3-20), can lead to reasonably accurate estimates of $\gamma_{ \pm}$and DP values at intermediate temperatures. However, when the same approach was used to evaluate the derivative $\left({ }^{\left(B_{12}\right.} / \mathrm{dT}\right)$, needed to calculate apparent relative molal enthalpies ($\phi \mathrm{L}$) and relative partial molal enthalpies $\left(\overline{\mathrm{L}}_{2}\right)$ for four individual salts, $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ and MgCl_{2}

Figure 3.3 Contribution of Different Terms to $\ln \gamma_{i}$ for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ in Model II
with water at $100^{\circ} \mathrm{C}$ the typical average error was about 50\%. This failure becomes apparent from Figures H. 5 and H. 6 while equation (3-20) is valid for interpolation purposes, it does not provide reliable values for the slope $\mathrm{dB}_{12} / \mathrm{dT}$. The calculated values for (ϕL) and (\bar{I}_{2}), however, were in the right direction, but lower than the experimental ones. The expressions used to calculate these quantities are given by Bromley (1973).

When the Bromley equation was applied to nonaqueous electrolytic binaries, the maximum molality range is ≤ 3, also the binary data reduction is less accurate for such binaries. This is expected since the empirical constants in the original Bromley equation (C-l) were obtained by applying aqueous electrolytic binary data only. However, considering the simplicity of this equation, the results for nonaqueous mixtures are of acceptable quality. The temperature dependency of such systems can also be established by equation (3-20), as shown by Tomasula and Tassios (1980) for the electrolyte-MeOH binaries.

The isothermal ternary data correlation of the VLE and $\gamma_{ \pm}$ is of good quality for $m \leq 3.0$. An investigation of the contribution of different terms in a ternary system indicates that the salting in effect of the Debye-Hückel term in the Bromley equation (Figure 3.3) is compensated by the additional salting out term at low EtOH concentration (Figure 3.4) and

Figure 3.4 Contribution of the Salting-Out Term to $\ln \gamma_{i}$ for the System LiCl-H20-EtOH at $25^{\circ} \mathrm{C}$ in Model II
by the additional part of the Bromley equation at higher EtOH concentration (Figure 3.3). It is important to note that for ternary data correlation both binary and ternary experimental data are used.

3.5 Conclusions

A method for the correlation of the DP-m data for 53 aqueous electrolytes at $100^{\circ} \mathrm{C}$ (Weast, 1969), and the evaluation of $\gamma_{ \pm}$values for these electrolytes, is presented. A procedure for the estimation of $\gamma_{ \pm}, \Delta \mathrm{P}, \phi \mathrm{L}$ and $\overline{\mathrm{L}}_{2}$ in the temperature range of $25-100^{\circ} \mathrm{C}$ for these electrolytes is also presented. While reasonably good results are obtained for $\gamma_{ \pm}$ and $\Delta \mathrm{P}, \phi \mathrm{L}$ and $\overline{\mathrm{L}}_{2}$ values are smaller than the experimental ones by about 50%.

The binary Bromley equation is applied to nonaqueous electrolytic binaries and also has been extended to ternary systems of electrolyte in mixed solvents. The correlation of isothermal nonaqueous binary and ternary data is of good quality; however, the maximum concentration range for such systems is less than the range for aqueous electrolytic binaries.

CHAPTER 4

A COMPARATIVE STUDY OF TWO MODELS IN CORRELATING AND PREDICTING BINARY/TERNARY $\gamma_{ \pm}$AND VLE DATA IN ELECTROLYTIC SOLUTIONS

ABSTRACT

Abstract

Model I is superior to Model II in correlating binary nonaqueous electrolytic and ternary electrolytic mixtures. However, Model II can be used to predict $\gamma_{ \pm}$using DP vs m data only in a binary mixture more accurately than Model I. Model II is limited only to isothermal ternary data correlation whereas Model I can be applied to predict and/or correlate isothermal or isobaric ternary data.

In principle, the two models presented in Chapters 2 and 3 are similar but consist of different forms of the expressions to represent various interactive forces in the liquid solution. Both the models have the Debye-Hückel equation and an intermediate term also called the transition term represents the change of magnitude of electrostatic forces from the dilute solution to the concentrated solution. The NRTL term has been included in both models, but it represents different molecular interactions in the two models. In Model I the NRTL term describes ion-solvent and solvent-solvent molecular interactions [Equation (2-3)], whereas in Model II ion-solvent interactions are represented by a term: $B \frac{I^{2}}{2}$ [Equation (3-2)] and the solvent-solvent molecular interactions are by the NRTL-S [Equation (3-4)]. Also, in Model II an additional salting out term is used [Equation (3-5)], which is not needed with Model I.

A. Binary Data Correlation

Both models simplify to the original NRTL expression [Equation (2-7)] for a solvent-solvent binary. Electrolytesolvent binary data reduction require two parameters in Model I, i.e. $G_{ \pm i} ; Z_{ \pm i}$ or $\Delta g_{A i} ; \Delta g_{B i}$ and one parameter ${ }^{\prime} B_{l i}$ ' with Model II. In general, the fit of aqueous electrolyte binaries is better with Model II than Model I, Tables G.4 and H.5. But the correlation of nonaqueous electrolyte binaries shows the reverse trend, Tables G. 5 and H.4. However, on the overall
analysis of binary data evaluation, it is concluded that both models can be applied successfully. Model I can be used up to $I=6$ for electrolyte MeOH binaries and up to even higher molality ranges for aqueous electrolyte binaries, Table 2.3, whereas Model II is limited to $I=3$ for MeOH-electrolyte binaries and $I=6$ for aqueous electrolyte mixtures. The binary parameters in Model I are considered temperature independent within a 30 to $40^{\circ} \mathrm{C}$ temperature range, but in Model II, the temperature dependency of the binary parameter ' $\mathrm{B}_{1 i}$ ' is represented by a two parameter expression, Equation (3-20). This indicates the applicability of Model I to isothermal and isobaric systems without any alterations in the Model itself. The biggest advantage of Model II is that it requires only three data points (DP vs m) to find the optimum value of a single parameter $\left(B_{1 i}\right)$ in a binary mixture which can lead to reliable prediction of $\gamma_{ \pm}$data for the whole concentration range. The use of three typical data points (DP vs m) with Model I is too small for the evaluation of two parameters in a binary mixture and also the parameters obtained with three points only, cannot be expected to predict $\gamma_{ \pm}$with reasonable accuracy.

B. Ternary Data Prediction and Correlation

Model I requires only binary parameters for the ternary VLE and $\gamma_{ \pm}$data prediction. The binary parameters are obtained by three respective binary data correlation, Tables
2.4 and 2.5. Model II is good only for binary/ternary data correlation. Prediction of a ternary mixture is not possible, because of two ternary parameters ${ }^{\prime} B_{123}$ and δ_{123} ' which should be obtained by ternary data reduction. Also, in Model II binary and ternary parameters $\left(\mathrm{B}_{1 i}, \mathrm{~B}_{123}, \delta_{123}\right)$ are temperature dependent, hence its applicability is limited to only isothermal data. Model I can be used to correlate binary or ternary data individually whereas with Model II both binary and ternary data are used for ternary data correlation.
Finally, Model I has the possibility of extension to multicomponent systems containing more than two solvents and one electrolyte. In a multicomponent mixture, only binary parameters are required with Model I. The extension of Model II to multicomponent mixtures will be a tedious task.

APPENDIX A

EXPRESSIONS FOR THE ACTIVITY COEFFICIENT OF THE SOLVENT AND THE MEAN ACTIVITY COEFPICIENT OF AN ELECTROLYTE IN A BINARY MIXTURE FOR MODEL I

In a binary mixture, the activity coefficients are a combination of an extended form of the Debye-Hückel equation and the modified NRTL equation proposed by Cruz and Renon (1978).

$$
\begin{align*}
& \ln \gamma_{ \pm}=\ln \gamma_{ \pm}, \text {Ext. D.H. }+\ln \gamma_{ \pm}^{*} \text { NRTL } \tag{A-1}\\
& \ln \gamma_{i}=\ln \gamma_{i}, \text { Ext. D.H. }+\ln \gamma_{i}, \text { NRTL } \tag{A-2}
\end{align*}
$$

Gronwall, LaMer and Sandved (1928) extended the DebyeHückel equation to higher order terms for symmetrical valence type electrolytes

$$
\begin{equation*}
\ln \gamma_{ \pm}^{*}=-\frac{(\varepsilon Z)^{2}}{2 D k T} \frac{\kappa}{1+k a}+\sum_{m=1}^{\infty}\left(\frac{\varepsilon^{2} z^{2}}{D k T a}\right)^{2 m+1}\left[\frac{1}{2} X_{2 m+1}(\kappa a)-2 m Y_{2 m}(\kappa a)\right] \tag{A-3}
\end{equation*}
$$

where X and Y are functions of ($k a$) and

$$
\begin{equation*}
k=\sqrt{ } \frac{8 \pi N \varepsilon^{2} z^{2} C}{1000 D k T} \tag{A-4}
\end{equation*}
$$

The additional higher order terms in equation (A-3) take into account long-range electrostatic forces in the concentrated solution. Further, Gronwall, LaMer and Grieff (1931) extended the above theory to unsymmetrical electrolytes. A semi-empirical extended form of the Debye-Hückel equation is proposed in this work which is analogous to those proposed by Gronwall et al. An additional term with the original D.H. term represents electrostatic forces in concentrated electrolytic solutions.

$$
\begin{equation*}
\ln \gamma_{ \pm} \text {Ext.D.H. }=2.303\left[-A_{\gamma} \frac{I^{1 / 2}}{I+\rho I^{I / 2}}+A_{\gamma}^{2} \frac{I}{(I+a I)^{n}}\right]\left|Z_{+} Z_{-}\right| \tag{A-5}
\end{equation*}
$$

where $\rho, ~ a$ and n are adjustable parameters.

The expression for the activity coefficient of the solvent is obtained through the excess Gibbs free energy function, as shown below

$$
\left.\begin{array}{c}
\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}{ }_{\text {Ext. D.H. }}=\nu \int_{0}^{\mathrm{N}_{1}} \ln \gamma_{ \pm}^{*} \mathrm{dN}_{1} \\
\ln \gamma_{ \pm}^{*}=\ln \gamma_{ \pm}+\ln (0.001 \vee \mathrm{mM} \\
\mathrm{w} \tag{A-7A}
\end{array}+1\right) .
$$

The NRTL part in equations (A-1) and (A-2) for the activity coefficients are the same as given by Cruz-Renon (1978)

$$
\begin{equation*}
\ln \gamma_{ \pm N R T L}^{*}=\frac{1}{R T} \frac{v_{A}}{v}\left[\frac{x_{i}^{2} Z_{ \pm i}}{\left(X_{A} G_{ \pm i}+x_{i}\right)^{2}}-z_{ \pm i}\right] \tag{A-8}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \gamma_{i N R T L}=\frac{1}{R T} x_{A}^{2} \frac{G_{ \pm i} Z_{ \pm i}}{\left(x_{A} G_{ \pm i}+x_{i}\right)^{2}} \tag{A-9}
\end{equation*}
$$

Equations (A-5) and (A-7A) have three known adjustable parameters, ρ, a and n. Equations ($A-5$) and ($A-7 A$), when combined with the NRTL equations $(A-8)$ and $(A-9)$, have five parameters, $\rho, a, n, G_{ \pm i}$ and $Z_{ \pm i}$ for a binary mixture. Also, it should be noted that the final form of the $\ln \gamma_{i}$ Ext.D. H . equation will depend upon the integration of the $\ln \gamma_{ \pm}^{*}$ term. The integration is accomplished by fixing a value of n, which can be an integer or a noninteger. So the first five parameters were reduced to the two NRTL parameters, $G_{ \pm i}$ and $Z_{ \pm i}$, by presetting
the values of ρ, a and n. Secondly, the $\ln \gamma_{i}$, Ext. D.H. expression is derived by equations $(A-6)$ to (A-7A). Equation (A-5) and the final form of equation ($A-7 A$), when combined with equations ($A-8$) and ($A-9$), were used to correlate both binary aqueous electrolyte and nonaqueous electrolyte data. It was found that the best results are obtained (Tables G. 4 and G.5) by setting the three adjustable parameters in the extended Debye-Hückel equation to

$$
\begin{gather*}
\rho=1.0 \\
a=1.5 /\left|z_{+} z_{-}\right| \tag{A-10}\\
n=1 / 2
\end{gather*}
$$

When the parameters of equation ($A-10$) are substituted in equation (A-5) the following form of the expression for the solvent activity coefficient is obtained

$$
\begin{aligned}
& \ln \gamma_{i} \text {, Ext. D.H. }=\frac{2.303 \nu \mathrm{mM}_{W}}{1000}\left[\frac{A_{\gamma}}{3} I^{1 / 2} \sigma_{1}\left(\rho I^{1 / 2}\right)+A_{\gamma}^{2} \frac{I}{2} \psi_{1}(a I)\right] \\
& \left|z_{+}{ }^{Z_{-}}\right|+\ln \left(0.001 \nu \mathrm{mM}_{\mathrm{w}}+1\right)-0.001 \nu \mathrm{mM}_{\mathrm{W}} \quad(\mathrm{~A}-11)
\end{aligned}
$$

where
$\sigma_{1}\left(\rho I^{1 / 2}\right)=\frac{3}{\left(\rho I^{1 / 2}\right)^{3}}\left[\left(1+\rho I^{1 / 2}\right)-2 \ln \left(1+\rho I^{I / 2}\right)-\frac{1}{\left(I+\rho I^{1 / 2}\right)}\right]$
and

$$
\psi_{I}(a I)=\frac{2}{3 a I}\left[\frac{2(a I-2)}{a I}(1+a I)^{1 / 2}+\frac{4}{a I}-\frac{(a I-2)}{(I+a I)^{1 / 2}}-2(1+a I)^{1 / 2}\right]
$$

APPENDIX B

A STEPWISE PROCEDURE FOR THE DEVELOPMENT OF TERNARY ACTIVITY COEFFICIENTS
 FOR MODEL I

MODEL I:
Combination of the Extended Debye-Hückel Equation and the Modified NRTL Equation
B.1--Development of the $\frac{\mathrm{G}^{E}(\text { ternary })}{\left.R_{T}\right]}$ Ext. D.H. expression

The extended Debye-Hückel part of the mean molal activity coefficient developed in Appendix A for a binary mixture has been extended to a ternary mixture containing one electrolyte and two solvents. This is obtained by modifying the DebyeHückel constant for the solvent mixture. For a ternary mixture, in equation ($\mathrm{A}-5$), the Debye-Hückel constant is

$$
\begin{equation*}
A_{\gamma}=1.8246 \times 10^{6} d^{1 / 2}\left[\frac{1}{D T}\right] 3 / 2 \tag{B-1}
\end{equation*}
$$

where
D and $\mathrm{d}=$ Dielectric constant and density of a solvent mixture (electrolyte-free) (Appendix D)

The excess Gibbs free energy function for a ternary mixture can be derived by integrating the expression for $\ln \gamma_{ \pm}$for a ternary system. Combination of equations ($A-6$), ($A-7$), ($A-5$) and ($B-1$) yields
$\left.\frac{\mathrm{G}^{\mathrm{E}}(\text { ternary })}{\mathrm{RT}}\right]$ Ext. D.H. $=\underset{\mathrm{D}}{\mathrm{D}}{ }^{\mathrm{N}} \mathrm{I}\left[2.303\left\{-\mathrm{A}_{\gamma} \frac{\mathrm{I}^{\mathrm{I} / 2}}{\left(1+\rho I^{1 / 2}\right)}+\mathrm{A}_{\gamma}^{2} \frac{I}{(1+a I)^{1 / 2}}\right\}\right.$

$$
\begin{equation*}
\left.\left|Z_{+} Z_{-}\right|\right] d N_{1}+v \int_{o}^{N_{1}} \ln \left(0.001 v \mathrm{mN}_{w}+1\right) d N_{1} \tag{B-2}
\end{equation*}
$$

Equation ($\mathrm{B}-2$) can be integrated, term by term, with the following additional equations

$$
\begin{gather*}
m=\frac{1000 N_{1}}{N_{T} M_{W}} \\
N_{T}=N_{2}+N_{3} \\
I=\frac{1}{2} m \sum_{k} \nu_{k} z_{k}^{2}=\frac{1}{2} m \xi \\
\xi=a \text { constant } \\
M_{W}=\frac{N_{2}}{N_{T}} M_{W}{ }_{W}+\frac{N_{3}}{N_{T}} M_{w 3} \tag{B-6}\\
\frac{\partial m}{\partial N_{1}}=\frac{1000}{N_{T} M_{W}} \tag{B-7}\\
\frac{\partial I}{\partial m}=\frac{1}{2} \xi \tag{B-8}
\end{gather*}
$$

$$
\begin{aligned}
& \text { Integration of different terms is as below }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{V N_{T} M_{W}}{1000}\left[\frac { 1 0 0 0 } { \nu M _ { W } } \left\{\left(0.001 \operatorname{VmM}_{W}+1\right)\right.\right. \\
& \left.\left.\ln \left(0.001 \operatorname{VmM}_{w}+1\right)-0.001 \operatorname{VmM}_{w}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.-0.001 \mathrm{VmM}_{\mathrm{w}}\right] \tag{B-9}
\end{align*}
$$

$$
\begin{align*}
& \nu \int_{0}^{N_{1}} A_{\gamma} \frac{\left|Z_{+}+Z_{-}\right| I^{I / 2}}{I+\rho I^{1 / 2}} \partial N_{1}=V A_{\gamma}\left|Z_{+} Z-\right| \int_{0}^{I} \frac{I^{1 / 2}}{I+I^{I / 2}} \frac{\partial N_{1}}{\partial m} \frac{\partial m}{\partial I} \cdot \partial I \\
& =V A_{\gamma} \frac{N_{T} M_{W}}{1000}\left|Z_{+} Z_{-}\right| \quad \frac{2}{\xi} \int_{0}^{I} \frac{I^{l / 2}}{I+\rho I^{I / 2}} \partial I \\
& V \int_{0}^{N_{1}} A_{\gamma} \frac{\left|Z_{+} Z_{-}\right| I^{1 / 2}}{1+\rho I^{1 / 2}} \partial N_{1}=V A_{\gamma} \frac{N_{T} M_{W}}{1000}\left|Z_{+} Z_{-}\right| \frac{2}{\xi}\left[\frac { 2 } { \rho 3 } \left\{\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}\right.\right. \\
& \left.\left.-2\left(I+\rho I^{1 / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right\}\right] \\
& \nu \int_{0}^{N_{1}} A_{A_{\gamma}}{ }^{2}\left|Z_{+} Z_{-}\right| \frac{I}{(1+a I)^{1 / 2}} \quad \partial N_{1} \\
& =v A_{\gamma}{ }^{2}\left|Z_{+} Z_{-}\right|_{0}^{I} \frac{I}{(I+a I)^{I / 2}} \frac{\partial N_{I}}{\partial m} \frac{\partial m}{\partial I} \partial I \\
& =v A_{Y}{ }^{2}\left|Z_{+} Z_{-}\right| \frac{N_{T} M_{W}}{1000} \quad \frac{2}{\xi} \int_{0}^{I} \frac{I}{(I+a I)^{1 / 2}} \partial I \\
& \nu \int_{0}^{N_{1}} A_{\gamma}{ }^{2}\left|Z_{+} Z_{-}\right| \frac{I}{(1+a I)^{1 / 2}} \partial N_{1}=\nu A_{\gamma} \cdot{ }^{2}\left|Z_{+} Z_{-}\right| \frac{N_{T T} M_{W}}{1000} \frac{2}{\xi}\left[\frac{2(a I-2)}{3 a^{2}}(1+a I)^{1 / 2}\right. \\
& \left.+\frac{4}{3 a^{2}}\right] \tag{B-11}
\end{align*}
$$

Utilizing the change of variables $m / I=2 / \xi$,
and combining equations ($B-9$ to ($B-11$), results in the excess Gibbs free energy expression, equation (2-2).
B.2--Development of the $\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right]_{\text {NRTL }}$ (ternary) expression Note: Equations are derived taking into accound that $\gamma_{ \pm}^{*} \rightarrow 1.0$ as $\mathrm{x}_{1} \rightarrow 0.0$ (Assymmetric Convention).

Renon and Prausnitz (1968) proposed an expression for the excess Gibbs free energy in a multicomponent mixture based on the Non-Random Two Liquid Theory. Since the original NRTL equation applies to mixtures following the symmetric convention, it is converted for ternary mixtures utilizing the assymetric convention as indicated below

$$
\begin{equation*}
\mathrm{g}_{\mathrm{NRTL}}^{\mathrm{E}^{\prime}}=\sum_{\ell}^{\sum \mathrm{x}_{\ell} \frac{\mathrm{m}_{\mathrm{m}} \mathrm{~m}_{\mathrm{m} \ell}}{\sum_{\mathrm{n}} \mathrm{X}_{\mathrm{n} \ell}}} \tag{B-12}
\end{equation*}
$$

where,

$$
\begin{gather*}
Z_{m \ell}=\Delta g_{m \ell} G_{m \ell} \\
G_{m \ell}=\operatorname{Exp}\left[-\alpha_{m \ell} \frac{\Delta g_{m \ell}}{R T}\right] \tag{B-12a}\\
\Delta g_{m \ell}=g_{m \ell}-g_{\ell \ell} \\
\alpha_{m \ell}=\alpha_{\ell m} \text { and } \Delta g_{m \ell} \neq \Delta g_{\ell m}
\end{gather*}
$$

Equation (B-12) can be expanded for a mixture containing electrolyte molecules - 1, cation - A, anion - B, and solvents 2 and 3

$$
\begin{aligned}
g_{N R T L}^{E} & =x_{A}\left[\frac{x_{A} Z_{A A}+x_{B} z_{B A}+x_{1} z_{1 A}+x_{2} z_{2 A}+x_{3} z_{3 A}}{x_{A} G_{A A}+x_{B} G_{B A}+x_{1} G_{1 A}+x_{2} G_{2 A}+x_{3} G_{3 A}}\right] \\
& +x_{B}\left[\frac{x_{A} Z_{A B}+x_{B} z_{B B}+x_{1} z_{1 B}+x_{2} z_{2 B}+x_{3} z_{3 B}}{x_{A} G_{A B}+x_{B} G_{B B}+x_{1} G_{1 B}+x_{2} G_{2 B}+x_{3} G_{3 B}}\right] \\
& +x_{1}\left[\frac{x_{A} z_{A 1}+x_{B} z_{B 1}+x_{1} z_{11}+x_{2} z_{21}+x_{3} z_{31}}{x_{A} G_{A 1}+x_{B} G_{B 1}+x_{1} G_{11}+x_{2} G_{21}+x_{3} G_{31}}\right]
\end{aligned}
$$

$$
\begin{align*}
& +x_{2}\left[\frac{x_{A} Z_{A 2}+x_{B} Z_{B 2}+x_{1} z_{12}+x_{2} Z_{22}+x_{3} Z_{32}}{x_{A} G_{Z 2}+x_{B} G_{B 2}+x_{1} G_{12}+x_{2} G_{22}+x_{3} G_{32}}\right] \\
& +x_{3}\left[\frac{x_{A} Z_{A 3}+x_{B} Z_{B 3}+x_{1} z_{13}+x_{2} z_{23}+x_{3} Z_{33}}{x_{A} G_{A 3}+x_{B} G_{B 3}+x_{1} G_{13}+x_{2} G_{23}+x_{3} G_{33}}\right] \tag{B-13}
\end{align*}
$$

Equation $(B-13)$ is simplified by setting $Z_{\ell \ell}=0.0$ and $G_{\ell \ell}=$ 1.0 based on the original development of the equation ($B-12$). Cruz and Renon (1972) proposed the following additional assumptions for an electrolytic mixture considering that the energy parameter $g_{m \ell}$ increases from low to large numerical values in the following order:
(solvent-ion) < (solvent or electrolyte)-(solvent or electrolyte) < (electrolyte - ion) or (ion - ion of opposite signs) < (ion-ion of the same signs). On the right sign <<, very large values of $g_{m \ell}$ are found, and true local mole fractions are taken equal to zero. Thus

$$
\begin{align*}
& \mathrm{Z}_{1 \mathrm{~A}}=\mathrm{z}_{1 \mathrm{~B}}=\mathrm{z}_{\mathrm{Al}}=\mathrm{z}_{\mathrm{Bl}}=\mathrm{z}_{\mathrm{AB}}=\mathrm{z}_{\mathrm{BA}}=0.0 \\
& \mathrm{G}_{1 \mathrm{~A}}=\mathrm{G}_{1 \mathrm{~B}}=\mathrm{G}_{\mathrm{Al}}=\mathrm{G}_{\mathrm{BI}}=\mathrm{G}_{\mathrm{AB}}=\mathrm{G}_{\mathrm{BA}}=0.0 \tag{B-14}
\end{align*}
$$

For specific ion interaction limitation--

$$
\mathrm{G}_{\mathrm{AA}}=\mathrm{G}_{\mathrm{BB}}=\mathrm{z}_{\mathrm{AA}}=\mathrm{z}_{\mathrm{BB}}=0.0
$$

And, also

$$
\begin{align*}
& x_{2 A}=x_{2 B}=x_{3 A}=x_{3 B}=1.0 \\
& G_{2 A}=G_{2 B}=G_{2 A}=G_{3 B}=1.0 \tag{B-15}
\end{align*}
$$

where

$$
\begin{align*}
x_{\ell m} & =\frac{x_{\ell} G_{\ell m}}{\sum x_{n} G_{n m}} \tag{B-16}\\
z_{\ell m} & =\Delta g_{\ell m} G_{\ell m} \tag{B-17}
\end{align*}
$$

Substitution of equations $(B-15)$ to ($B-17$) into equation (B-13) yields

$$
\begin{align*}
g_{N R T L}^{E} & =x_{A}\left[\frac{x_{2} \Delta g_{2 A}+x_{3} \Delta g_{3 A}}{x_{2}+x_{3}}\right]+x_{B}\left[\frac{x_{2} \Delta g_{2 B}+x_{3} \Delta g_{3 B}}{x_{2}+x_{3}}\right] \\
& +x_{1}\left[\frac{x_{2} Z_{21}+x_{3} Z_{31}}{x_{1}+x_{2} G_{21}+x_{3} G_{31}}\right] \\
& +x_{2}\left[\frac{x_{A} Z_{A 2}+x_{B} Z_{B 2}+x_{1} Z_{12}+x_{3} Z_{A 3}+x_{B} G_{B 2}+x_{1} G_{12}+x_{3} G_{32}+x_{2}}{x_{A}}\right] \\
& +x_{3}\left[\frac{x_{A} Z_{A 3}+x_{B} Z_{B 3}+x_{1} z_{13}+x_{2} Z_{23}+x_{B} G_{B 3}+x_{1} G_{13}+x_{2} G_{23}+x_{3}}{}\right] \tag{B-18}
\end{align*}
$$

$$
\begin{align*}
G_{N R T L}^{E} & =\left(N_{T} g_{N R T L}^{E^{\prime}}\right)=N_{A}\left[\frac{N_{2} \Delta g_{2 A}+N_{3} \Delta g_{3 A}}{N_{2}+N_{3}}\right] \\
& +N_{B}\left[\frac{N_{2} \Delta g_{2 B}+N_{3} \Delta g_{3 B}}{N_{2}+N_{3}}\right] \\
& +N_{1}\left[\frac{N_{2} Z_{21}}{N_{1}+N_{2} G_{21}+N_{3} G_{31}}\right] \\
& +N_{2}\left[\frac{N_{A} Z_{31} Z_{A 2}+N_{B} Z_{B 2}+N_{1} Z_{12}+N_{3} Z_{32}}{G_{A 2}+N_{B} G_{B 2}+N_{1} G_{12}+N_{3} G_{32}+N_{2}}\right] \\
& +N_{3}\left[\frac{N_{A} Z_{A 3}+N_{B} Z_{B 3}+N_{1} Z_{13}+N_{2} Z_{23}}{G_{A 3}+N_{B} G_{B 3}+N_{1} G_{13}+N_{2} G_{23}+N_{3}}\right] \tag{B-19}
\end{align*}
$$

$R T \ln \gamma_{A}^{\prime}=\left.\frac{\partial G^{E}}{\partial G N_{A}}\right|_{T, P, N_{l} \neq A}$

$$
=\left[\frac{N_{2} \Delta g_{2 A}+N_{3} \Delta g_{3 A}}{N_{2}+N_{3}}\right]
$$

$$
+N_{2}\left[\frac{z_{A 2}}{N_{A} G_{A 2}+N_{B} G_{B 2}+N_{1} G_{12}+N_{3} G_{32}+N_{2}}\right.
$$

$$
-\frac{\left(N_{A} Z_{A 2}+N_{B} Z_{B 2}+N_{1} Z_{12}+N_{3} Z_{32}\right) G_{A 2}}{\left.\left(N_{A} G_{A 2}+N_{B} G_{B 2}+N_{1} G_{12}+N_{3} G_{32}+N_{2}\right)^{2}\right]}
$$

$$
+N_{3}\left[\frac{\mathrm{~N}_{\mathrm{Al} 3}}{\mathrm{~N}_{\mathrm{A}} \mathrm{G}_{\mathrm{Al3}}+\mathrm{N}_{\mathrm{B}} \mathrm{G}_{\mathrm{B} 3}+\mathrm{N}_{1} \mathrm{G}_{13}+\mathrm{N}_{2} \mathrm{G}_{23}+\mathrm{N}_{3}}\right.
$$

$$
\begin{equation*}
-\frac{\left(N_{A} Z_{A 3}+N_{B} Z_{B 3}+N_{1} Z_{13}+N_{2} Z_{23}\right) G_{A 3}}{\left.\left(N_{A} G_{A 3}+N_{B} G_{B 3}+N_{1} G_{13}+N_{2} G_{23}+N_{3}\right)^{2}\right]} \tag{B-20}
\end{equation*}
$$

$N_{A} \operatorname{Lim}_{N_{A} \rightarrow 0} R T \ln \gamma_{A}^{\prime}=N_{A}\left[\frac{N_{2} \Delta g_{2 A}+N_{3} \Delta g_{3 A}}{N_{2}+N_{3}}\right]+\frac{N_{A} N_{2} Z_{A 2}}{N_{3} G_{32}+N_{2}}$

$$
\mathrm{N}_{\mathrm{B}} \rightarrow 0
$$

$$
N_{1} \rightarrow 0
$$

$$
\begin{align*}
& -\frac{N_{A} N_{2} N_{3} Z_{32} G_{A 2}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{N_{A} N_{3} Z_{A 3}}{\left(N_{2} G_{23}+N_{3}\right)} \\
& -\frac{N_{A} N_{2} N_{3} G_{A 3} Z_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}} \tag{B-2I}
\end{align*}
$$

Similarly

$$
\begin{align*}
& N_{B} \begin{array}{ll}
\operatorname{Lim}_{N_{B}} \rightarrow 0 & R T \ln \gamma_{B}^{\prime}
\end{array}=N_{B}\left[\frac{N_{2} \Delta g_{2 B}+N_{3} \Delta g_{3 B}}{N_{2}+N_{3}}\right]+\frac{N_{B} N_{2} Z_{B 2}}{N_{3} G_{32}+N_{2}} \\
& N_{A} \rightarrow 0-\frac{N_{B} N_{2} N_{3} Z_{32} G_{B 2}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{N_{B} N_{3} Z_{B 3}}{N_{2} G_{23}+N_{3}} \\
&-\frac{N_{B} N_{2} N_{3} G_{B 3} Z_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}
\end{align*}
$$

$$
\begin{equation*}
G_{N R T L}^{E(\text { ternary })}=G_{N R T L}^{E}-N_{A}^{\prime} \operatorname{Lim}_{N_{A} \rightarrow 0}^{\prime} R T \ln \gamma_{A}^{\prime}-N_{B} \operatorname{Lim}_{N_{B} \rightarrow 0} R T \ln \gamma_{B}^{\prime} \tag{B-23}
\end{equation*}
$$

Substituting equations $(B-19),(B-21)$ and $(B-22)$ in equation ($\mathrm{B}-23$) results in the following expression for

$$
\begin{align*}
\mathrm{G}_{\mathrm{NRTL}}^{\mathrm{E}(\text { ternary })} & =\mathrm{N}_{1}\left[\frac{\mathrm{~N}_{2} Z_{21}+N_{3} Z_{31}}{\mathrm{~N}_{1}+\mathrm{N}_{2} G_{21}+N_{3} G_{31}}\right] \\
& +N_{2}\left[\frac{N_{A} Z_{A 2}+N_{B} Z_{B 2}+N_{1} Z_{12}+N_{3} Z_{32}}{N_{A} G_{A 2}+N_{B} G_{B 2}+N_{1} G_{12}+N_{3} G_{32}+N_{2}}\right] \\
& +N_{3}\left[\frac{N_{A} Z_{A 3}+N_{B} Z_{B 3}+N_{1} Z_{13}+N_{2} Z_{23}}{N_{A 3}+N_{B} G_{B 3}+N_{1} G_{13}+N_{2} G_{23}+N_{3}}\right] \\
& -N_{2}\left[\frac{N_{A} Z_{A 2}+N_{B} Z_{B 2}}{N_{3} G_{32}+N_{2}}\right]-N_{3}\left[\frac{N_{A} Z_{A 3}+N_{B} Z_{B 3}}{N_{2} G_{23}+N_{3}}\right] \\
& +N_{2} N_{3} Z_{32}\left[\frac{N_{A} G_{A 2}+N_{B} G_{B 2}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}\right] \\
& +N_{2} N_{3} Z_{23}\left[\frac{N_{A} G_{A 3}+N_{B} G_{B 3}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right] \tag{B-24}
\end{align*}
$$

Considering macroscopic electrical neutrality

$$
\begin{equation*}
N_{A} \nu_{B}=N_{B} \nu_{A} \tag{B-25}
\end{equation*}
$$

Substituting equation ($B-25$) into equation ($B-24$) gives
$G_{N R T L}^{E(t e r n a r y)}=N_{1}\left[\frac{N_{2} Z_{21}+N_{3} Z_{31}}{N_{1}+N_{2} G_{21}+N_{3} G_{31}}\right]$
$+N_{2}\left[\frac{N_{A}\left(Z_{A 2}+\frac{v_{B}}{v_{A}} Z_{B 2}\right)+N_{1} Z_{12}+N_{3} Z_{32}}{N_{A}\left(G_{A 2}+\frac{\nu B}{v_{A}} G_{B 2}\right)+N_{1} G_{12}+N_{3} G_{32}+N_{2}}\right]$

$$
+N_{3}\left[\frac{N_{A}\left(Z_{A 3}+\frac{\nu_{B}}{v_{A}} z_{B 3}\right)+N_{1} Z_{13}+N_{2} Z_{23}}{N_{A}\left(G_{A 3}+\frac{\nu_{B}}{v_{A}} G_{B 3}\right)+N_{1} G_{13}+N_{2} G_{23}+N_{3}}\right]
$$

$$
\begin{align*}
& -N_{2}\left[\frac{N_{A}\left(Z_{A 2}+\frac{v_{B}}{v_{A}} Z_{B 2}\right)}{N_{3} G_{32}+N_{2}}\right]-N_{3}\left[\frac{N_{A}\left(Z_{A 3}+\frac{v_{B}}{v_{A}} Z_{B 3}\right.}{N_{2} G_{23}+N_{3}}\right] \\
& +N_{2} N_{3} Z_{32}\left[\frac{N_{A}\left(G_{A 2}+\frac{v_{B}}{v_{A}} G_{B 2}\right)}{\left(N_{3} G_{32}+N_{2}\right)^{2}}\right] \\
& +N_{2} N_{3} Z_{23}\left[\frac{N_{A}\left(G_{A 3}+\frac{\nu_{B}}{v_{A}} G_{B 3}\right)}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right] \tag{B-26}
\end{align*}
$$

Let

$$
\begin{align*}
& G_{ \pm 2}=G_{A 2}+\frac{\nu_{B}}{\nu_{A}} G_{B 2} \\
& G_{ \pm 3}=G_{A}+\frac{\nu_{B}}{\nu_{A}} G_{B 3} \\
& Z_{ \pm 2}=Z_{A 2}+\frac{\nu_{B}}{\nu_{A}} Z_{B 2} \\
& Z_{ \pm 3}=Z_{A 3}+\frac{\nu_{B}}{\nu_{A}} Z_{B 3} \tag{B-27}
\end{align*}
$$

Combining equations $(B-25)$ and ($B-27$) and setting $N_{1}=0.0$ for the case of complete dissociation, leads to equation (2-3) which is the final expression for $\left.\frac{G^{E}}{R T}\right|_{N R T L}$ (ternary) used in this study.
B.3--Development of the ternary $\ln \gamma_{ \pm}, \ln \gamma_{2}$ and $\ln \gamma_{3}$ expressions The total excess Gibbs free energy function in this model
is obtained by combining equations (2-2) and (2-3). The activity coefficient expressions are obtained by the appropriate differentiation of the total excess Gibbs free energy expression, equations (1-27) to (1-29). The differentiation of the DebyeHückel and NRTL terms of the expression have been performed separately as shown below
B.3-I--Debye-Hückel equation--

$$
\begin{equation*}
v \ln \gamma_{ \pm \text {Ext.D.H. }}^{*}-\frac{\partial}{\partial \mathrm{N}_{1}}\left[\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {Ext.D.H. }} ^{\text {(ternary })}{ }_{\mathrm{T}, \mathrm{P}, \mathrm{~N}_{2}, \mathrm{~N}_{3}}\right. \tag{B-28}
\end{equation*}
$$

Since, $\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {Ext. D. }}$. was obtained by the integration of
 function gives the same expression for $\ln \gamma_{ \pm E x t . D . H .}^{*}, ~ e q u a t i o n$ (2-13).

For solvents (2) and (3)

$$
\ln \gamma_{2 \text { Ext.D.H. }}=\frac{\partial}{\partial \mathrm{N}_{2}}\left[\frac{\mathrm{G}^{E}}{R T} \text { Ext.D.H. }\right] \text { T,P, } N_{1}, N_{3}
$$

Equation (2-2) is differentiated term by term by utilizing the change of variables, i.e. $\frac{m}{\bar{I}}-\frac{2}{\xi}$

I term $=\frac{\partial}{\partial N_{2}}=\left[-2.303 v\left|Z_{+} Z_{-}\right| \frac{2}{\xi} \frac{N_{T} M_{W}}{1000} A_{\gamma} \frac{2}{\rho_{3}}\left\{\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}\right.\right.$
$\left.\left.-2\left(1+\rho I^{1 / 2}\right)+\ln \left(I+\rho I^{I / 2}\right)+\frac{3}{2}\right\}\right]$
I term $=-2303 \frac{\nu\left|Z_{+}{ }^{Z}-\right|}{1000} \frac{2}{\xi}\left[N_{T} M_{W} \frac{2}{\rho^{3}}\left[\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}-2\left(1+\rho I^{1 / 2}\right)\right.\right.$
$\left.+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right\} \frac{\partial A_{\gamma}}{\partial N_{2}}+A_{\gamma} \frac{2}{\rho^{3}}\left(\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}\right.$

$$
\begin{align*}
& \left.-2\left(I+\rho I^{1 / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right\} \frac{\partial}{\partial N_{2}}\left(N_{T^{M}}^{M_{W}}\right) \\
& +N_{T} M_{W} A_{\gamma} \frac{2}{\rho 3} \frac{\partial}{\partial I}\left\{\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}-2\left(1+\rho I^{1 / 2}\right)\right. \\
& \left.\left.+\ln \left(1+\rho I^{l / 2}\right)+\frac{3}{2}\right\} \frac{\partial I}{\partial m} \frac{\partial m}{\partial N_{2}}\right] \tag{B-29}
\end{align*}
$$

from equations ($B-3$) and ($B-6$)

$$
\begin{align*}
& \frac{\partial m}{\partial N_{2}}=\frac{m M_{w 2}}{\mathbb{N}_{T} M_{W}} \tag{B-30}\\
& \frac{\partial\left(N_{T} M_{W}\right)}{\partial N_{2}}=M_{w 2} \tag{B-31}
\end{align*}
$$

Simplifying equation ($\mathrm{B}-29$) and substituting equations $(B-30)$ and $(B-31)$ results in the following expression for term I

$$
I \text { term }=2.303 \frac{v m}{1000}\left|Z_{+} Z_{-}\right|\left[A _ { \gamma } I ^ { 1 / 2 } \frac { I } { (\rho I ^ { l / 2 }) ^ { 3 } } \left\{\left(1+\rho I^{l / 2}\right)\right.\right.
$$

$$
\left.-2 \ln \left(1+\rho I^{1 / 2}\right)-\frac{1}{\left(1+\rho I^{1 / 2}\right)}\right\}-N_{T^{M}} \mathrm{M}_{\mathrm{W}} I^{1 / 2}
$$

$$
\frac{I}{\left(\rho I^{1 / 2}\right)^{3}}\left\{\frac{1}{2}\left(I+\rho I^{1 / 2}\right)^{2}-2\left(I+\rho I^{I / 2}\right)+\ln \left(I+\rho I^{I / 2}\right)\right.
$$

$$
\begin{equation*}
\left.\left.+\frac{3}{2}\right\} \frac{\partial A_{\gamma}}{\partial \mathbb{N}_{2}}\right] \tag{B-32}
\end{equation*}
$$

II term $=\frac{\partial}{\partial N_{2}}\left[2.303 \frac{\nu\left|Z_{+} Z_{-}\right|}{1000} \frac{2}{\xi} N_{T} M_{W} A_{\gamma}^{2}\left\{\frac{2(a I-2)}{3 a^{2}}+\right.\right.$

$$
\left.\left.(1+a I)^{1 / 2}+\frac{4}{3 a^{2}}\right\}\right]
$$

$$
\begin{align*}
& =2.303 \frac{\nu\left|Z_{+} Z_{-}\right|}{1000} \frac{2}{\xi}\left[\left\{\frac{2(a I-2)}{3 a^{2}}+(1+a I)^{1 / 2}+\frac{4}{3 a^{2}} N_{T} M_{W}\right.\right. \\
& \frac{\partial A_{\gamma}^{2}}{\partial N_{2}}+A_{\gamma}^{2}\left\{\frac{2(a I-2)}{3 a^{2}}+(I+a I)^{1 / 2}+\frac{4}{3 a^{2}}\right\} \frac{\partial\left(N_{T} M_{W}\right)}{\partial N_{2}} \\
& \left.+A_{\gamma}^{2} N_{T} M_{W} \frac{\partial}{\partial I}\left\{\frac{2(a I-2)}{3 a^{2}}+(I+a I)^{1 / 2}+\frac{4}{3 a^{2}}\right\} \frac{\partial I}{\partial m} \frac{\partial m}{\partial N_{2}}\right\} \\
& \text { II term }=2.303 \frac{\nu m}{1000}\left|Z_{+} Z_{-}\right|\left[M _ { W 2 } A _ { \gamma } ^ { 2 } \frac { I } { 2 } \frac { 2 } { 3 a I } \left\{\frac{2(a I-2)(1+a I)^{1 / 2}}{a I}\right.\right. \\
& \left.+\frac{4}{a I}-\frac{(a I-2)}{(I+a I)^{I / 2}}-2(1+a I)^{1 / 2}\right\} \\
& \left.+N_{T} M_{W} \frac{2}{3 a I}\left\{\frac{2(a I-2)(1+a I)^{1 / 2}}{a I}+\frac{4}{a I}\right\} I A_{\gamma} \frac{\partial A_{\gamma}}{\partial N_{2}}\right] \tag{B-33}
\end{align*}
$$

III term $=\frac{\partial}{\partial N_{2}}\left[\mathrm{~N}_{\mathrm{T}}\left\{\left(0.001 \mathrm{VmM}_{\mathrm{w}}+1\right) \ln \left(0.001 \nu \mathrm{VM}_{\mathrm{W}}+1\right)\right.\right.$ $\left.\left.-0.001 \mathrm{vmM}_{\mathrm{w}}\right\}\right]$

III term $=\left\{\left(0.001 \mathrm{VmM}_{\mathrm{w}}+1\right) \ln \left(0.001 \mathrm{VmM}_{\mathrm{W}}+1\right)-0.001 \mathrm{VmM}_{\mathrm{w}} \frac{\partial N_{T}}{\partial N_{2}}\right.$

$$
\begin{aligned}
& +\mathrm{N}_{\mathrm{T}}\left\{\ln \left(0.001 v \mathrm{mM} \mathrm{~W}_{\mathrm{W}}+1\right) \frac{\partial}{\partial \mathrm{N}_{2}}\left(0.001 v \mathrm{mM}_{\mathrm{W}}+1\right)\right. \\
& \left.+\left(0.001 v \mathrm{mM}_{\mathrm{w}}+1\right) \frac{\partial}{\partial \mathrm{N}_{2}} \ln \left(0.001 v \mathrm{mM}_{\mathrm{w}}+1\right)-0.001 v \frac{\partial}{\partial \mathrm{~N}_{2}}\left(\mathrm{mM}_{\mathrm{W}}\right)\right\}
\end{aligned}
$$

III term $=\ln \left(0.001 \nu \mathrm{mM}_{\mathrm{w}}+1\right)-0.001 \mathrm{vmM}_{\mathrm{w}}$

The combination of equations ($B-32$), ($B-33$) and ($B-34$) yields equation (2-16). A similar approach leads to the expression for $\ln \gamma_{3 \text { Ext. }} . H$.

In equation (2-16) $\sigma_{1}^{1}\left(\rho I^{1 / 2}\right)$ and $\psi_{1}^{1}(a I)$ are given by

$$
\begin{align*}
\sigma_{1}^{1}\left(\rho I^{1 / 2}\right)=\frac{2}{\left(\rho I^{1 / 2}\right)^{3}}\left[\frac{1}{2}(1\right. & \left.+\rho I^{1 / 2}\right)^{2}-2\left(1+\rho I^{1 / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right) \\
& \left.+\frac{3}{2}\right] \tag{B-35}
\end{align*}
$$

$\psi_{I}^{I}(a I)=\frac{2}{3 a I}\left[\frac{2(a I-2)}{a I}(I+a I)^{1 / 2}+\frac{4}{a I}\right]$
B.3.II--NRTL equation

$$
\begin{align*}
& \nu \ln \gamma_{ \pm}^{*}=\frac{\partial}{\partial N_{1}}\left[\left.\frac{G^{E}(\operatorname{ternary})}{R T}\right|_{N R T L}\right]_{T, P, N_{2}, N_{3}} \\
& \left.v \ln \gamma_{ \pm}^{*}=\frac{\partial}{\partial N_{A}}\left[\frac{G^{E}(\text { ternary })}{R T}\right]_{N R T L}\right]_{T, P, N_{2}, N_{3} \frac{\partial N_{A}}{\partial N_{1}}}^{l} \tag{B-37}
\end{align*}
$$

Assuming complete dissociation of the electrolyte

$$
\begin{align*}
& \mathrm{N}_{\mathrm{A}}=v_{\mathrm{A}} \mathrm{~N}_{1} \tag{B-38}\\
& \frac{\partial \mathrm{~N}_{\mathrm{A}}}{\partial \mathrm{~N}_{1}}=v_{\mathrm{A}} \tag{B-39}
\end{align*}
$$

Combining equations $(B-37)$ and ($B-39$) yields

$$
\begin{equation*}
\nu \ln \gamma_{ \pm}^{*}=\nu_{A} \ln \gamma_{A, N R T L} \tag{B-40}
\end{equation*}
$$

$\ln \gamma_{ \pm}^{*}$ can be obtained by differentiating equation ($B-28$) with respect to N_{A}

$$
\begin{aligned}
\ln \gamma_{A} & =\frac{1}{R T}\left[\frac{N_{2}\left(N_{A} G_{ \pm 2} Z_{ \pm 2}+N_{3} G_{32} Z_{ \pm 2}+N_{2} Z_{ \pm 2}-N_{A} G_{ \pm 2} Z_{ \pm 2}-N_{3} Z_{32} G_{ \pm 2}\right)}{\left(N_{A} G_{ \pm 2}+N_{3} G_{32}+N_{2}\right)^{2}}\right. \\
& +\frac{N_{3}\left(N_{A} G_{ \pm 3} Z_{ \pm 3}+N_{2} G_{23} Z_{ \pm 3}+N_{3} Z_{ \pm 3}-N_{A} G_{ \pm 3} Z_{ \pm 3}-N_{2} Z_{23} G_{ \pm 3}\right)}{\left.N_{A} G_{ \pm 3}+N_{2} G_{23}+N_{3}\right)^{2}} \\
& -\left\{\frac{N_{2} Z_{ \pm 2}}{\left(N_{3} G_{32}+N_{2}\right)}+\frac{N_{3} Z_{ \pm 3}}{\left(N_{2} G_{23}+N_{3}\right)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\left.+N_{2} N_{3}\left\{\frac{Z_{32} G_{ \pm 2}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{Z_{23} G_{ \pm 3}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\}\right] \tag{B-41}
\end{equation*}
$$

Combining equations $(B-37)$ and $(B-41)$ and converting moles to the mole fraction leads to equation (2-14).

The activity coefficient of the solvent is obtained by differentiating $\left.\frac{G^{E}}{\operatorname{RT}}\right|_{\text {NRTL }}$ with respect to N_{2}
$\ln \gamma_{2, N R T L}=\frac{\partial}{\partial N_{2}}\left[\left.\frac{G^{E}(\text { ternary })}{R T}\right|_{N R T L}\right]_{T, P, N_{A}, N_{B}, N_{3}}$

$$
\begin{align*}
& =\frac{1}{R T}\left[\frac{N_{A} Z_{ \pm 2}+N_{3} Z_{32}}{\left(N_{A} G_{ \pm 2}+N_{3} G_{32}+N_{2}\right)}-\frac{N_{2}\left(N_{A} Z_{ \pm 2}+N_{3} Z_{32}\right)}{\left(N_{A} G_{ \pm 2}+N_{3} G_{32}+N_{2}\right)^{2}}\right. \\
& +\frac{N_{3} Z_{23}}{\left(N_{A} G_{ \pm 3}+N_{2} G_{23}+N_{3}\right)}-\frac{N_{A}\left(N_{A} Z \pm 3+N_{2} Z_{23}\right) G_{23}}{\left(N_{A} G_{ \pm 3}+N_{2} G_{23}+N_{3}\right)^{2}} \\
& -N_{A}\left\{\frac{Z_{ \pm 2}}{N_{3} G_{32}+N_{2}}-\frac{N_{2} Z_{ \pm 2}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}-\frac{N_{3} Z_{ \pm 3} G_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\} \\
& +N_{A} N_{3}\left\{\frac{Z_{32} G_{ \pm 2}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{Z_{23} G_{ \pm 3}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\} \\
& \left.-N_{A} N_{2} N_{3}\left\{\frac{2 Z_{32} G_{ \pm 2}}{\left(N_{3} G_{32}+N_{2}\right)^{3}}+\frac{2 Z_{23} G_{ \pm 3} G_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{3}}\right\}\right] \tag{B-42}
\end{align*}
$$

Equation (B-42) can be simplified in the form of equation (2-17). Utilizing a similar approach an expression for $\ln \gamma_{3, N R T L}$ is obtained.

APPENDIX C

A STEPWISE PROCEDURE FOR THE DEVELOPMENT OF TERNARY ACTIVITY COEFFICIENT EXPRESSIONS FOR MODEL II

MODEL II: Combination of the Bromley Equation; The Simplified NRTL Equation and the Salting Out Term

Bromley (1973) presented a generalized analytic correlation for mean activity coefficients of electrolytes in binary aqueous electrolytic solutions.
$\ln \gamma_{ \pm}=2.303\left[-A_{\gamma}\left|Z_{+} Z_{-}\right| \frac{I^{I / 2}}{1+\rho I^{I / 2}}+\frac{\left(B_{O}-B_{1 i}\right)^{I}}{(1+a I)^{\eta}}+B_{1 i} I+C I^{2}\right]$
where

$$
\begin{align*}
& A_{\gamma}=\text { Debye-Hückel constant } \\
& \qquad I=\frac{1}{2} \Sigma m_{k} Z_{k}^{2} \\
& (C-1-A) \tag{C-1-A}
\end{align*}
$$

$\eta, \rho, a, B_{o}, B_{1 i}$ and $c: ~ a d j u s t a b l e ~ p a r a m e t e r s$
On the basis of a comprehensive study using data for $\gamma_{ \pm}$, but also osmotic coefficients and other related thermodynamic properties at $25^{\circ} \mathrm{C}$, as well as at other temperatures up to $200^{\circ} \mathrm{C}$, Bromley concluded that reasonable agreement is obtained by using

$$
\begin{align*}
& \eta=2 \\
& a=1.5 /\left|z_{+} z_{-}\right| \\
& c=0.0 \\
& \rho=1.0 \\
& \left(B_{0}-B_{l i}\right)=\left(0.06+0.6 B_{1 i}\right)\left|Z_{+} Z_{-}\right| \tag{C-2}
\end{align*}
$$

in equation ($\mathrm{C}-1$).
Substitution of (C-2) into (C-1) simplifies this equation in terms of only one adjustable parameter ' B_{li} ' per binary. When the above equation was applied to correlate non-aqueous
electrolytic binary with the same constants, the fit was good. Considering the simplicity and success of the above equation in correlating binary systems and the success of the NRTL equation in correlating solvent-solvent binaries, Model II proposes to combine them with an additional ternary salting out term for the correlation of electrolyte (1) - solvent (2) solvent (3) ternary systems. The following procedure is followed in developing Model II:
C.1: Development of the $\left.\frac{G^{E}}{R T}\right|_{\text {Bromley }}$ ternary) expression

Equation ($\mathrm{C}-1$) with ($\mathrm{C}-2$) is first integrated to derive $\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT} \text { (binary) }}\right|_{\text {Bromley }}$, which is then extended to ternary mixtures.
$\left.\frac{\mathrm{G}^{\mathrm{E}}(\text { binary })}{\mathrm{RT}}\right|_{\text {Bromley }}=2.303 \nu\left[\int_{0}^{\left.\mathrm{N}_{\{ }{ }_{\left\{-A_{\gamma}\right.}\left|Z_{+} Z_{-}\right| \frac{I^{1 / 2}}{1+\rho I^{1 / 2}}\right\} d N_{1}, ~}\right.$ $+\int_{0}^{\mathrm{N}_{1}}\left\{\frac{\left(0.06+0.6 \mathrm{~B}_{1 \mathrm{i}}\right)^{I}}{(I+\mathrm{aI})^{2}}\right\} \mathrm{N}_{1}$ $\left.+\int_{0}^{N_{1}} \mathrm{~B}_{1 i} \quad \mathrm{I} \mathrm{dN}_{1}\right]$

$$
\begin{equation*}
+\underset{0}{\nu \delta_{1}} \ln \left(0.001 \nu \mathrm{mM}_{\mathrm{w}}+1\right) d N_{1} \tag{C-3}
\end{equation*}
$$

Equation ($C-3$) can be integrated term by term with equations $(B-3)$ to ($B-8$)
I term $=2.303 \nu \int_{0}^{I}-A_{\gamma}\left|Z_{+} Z_{-}\right| \frac{I^{I / 2}}{1+\rho I^{I / 2}} \frac{\partial N_{1}}{\partial m} \frac{\partial m}{\partial I} \partial I$
I term $=-2.303 \nu A_{Y} \frac{N_{T} M_{W}}{1000} \frac{m}{I}\left[\frac{2}{\rho}\left[\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}\right.\right.$

$$
\begin{equation*}
\left.\left.-2\left(1+\rho I^{1 / 2}\right)+\ln \left(I+\rho I^{1 / 2}\right)+\frac{3}{2}\right\}\right]\left|Z_{+} Z_{-}\right| \tag{c-4}
\end{equation*}
$$

II term $=2.303 \nu \int_{0}^{I} \frac{\left(0.06+0.06 B_{1 i}\right)^{I}}{(I+a I)^{2}} \frac{\partial N_{1}}{\partial m} \frac{\partial m}{\partial I} \partial I$
II term $=2.303 v \frac{N_{T} M_{w}}{1000}\left|z_{+} z_{-}\right| \frac{\left(0.06+0.6 B_{1 i}\right)}{a^{2}} \frac{m}{\bar{I}}\left[\ln (1+a I)+\frac{1}{(1+a I)}-1\right]$

III term $=2.303 \nu \int_{0}^{I} B_{1 i} I \frac{\partial N_{1}}{\partial m} \frac{\partial m}{\partial I} \partial I$
III term $=2.303 v \frac{N_{T}{ }^{M}{ }_{w}}{1000} \frac{m}{I} B_{1 i} \frac{I^{2}}{2}$
$I V \operatorname{term}=\nu \int_{0}^{N_{1}} \ln \left(0.001 \nu M_{w}+1\right) \frac{d N_{l}}{\partial m} \partial m$

$$
\begin{align*}
& =N_{i}\left[\left(0.001 v \mathrm{mM}_{\mathrm{w}}+1\right) \ln \left(0.001 \mathrm{mM}_{\mathrm{w}}+1\right)\right. \\
& \left.-0.001 \mathrm{vm}_{\mathrm{w}}\right] \tag{C-7}
\end{align*}
$$

Combining equations ($\mathrm{C}-4$) to ($\mathrm{C}-7$) leads to the following expression for
$\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}(\text { binary })}\right|_{\text {Bromley }}=2.303 v \frac{\mathrm{~N}_{\mathrm{i}} \mathrm{M}_{\mathrm{W}}}{1000} \frac{m}{\mathrm{I}}\left[-\mathrm{A}_{\gamma}\left|\mathrm{z}_{+} \mathrm{Z}_{-}\right| \frac{2}{\rho}{ }_{\rho}^{3}\right.$

$$
\begin{aligned}
& \left\{\frac{1}{2}\left(1+\rho I^{l / 2}\right)^{2}-2\left(1+\rho I^{I / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)\right. \\
& \left.+\frac{3}{2}\right\}+\frac{\left(0.06+0.6 B_{1 i}\right)}{a^{2}}\left|Z_{+} Z_{-}\right| \\
& \left.\left\{\ln (1+a I)+\frac{1}{(1+a I)}-1\right\}+\frac{B_{1 i} I^{2}}{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& +N_{i}\left[\left(0.001 v \mathrm{mM}_{\mathrm{w}}+1\right) \ln \left(0.001 \vee \mathrm{mM}_{\mathrm{w}}+1\right)\right. \\
& \left.-0.001 \mathrm{mM}_{\mathrm{w}}\right] \tag{C-8}
\end{align*}
$$

In a binary aqueous/nonaqueous electrolyte solution, equation ($\mathrm{C}-8$) can be used to derive the expression for the activity coefficient of the solvent, by equation (1-27)

$$
\begin{align*}
\ln \gamma_{i}^{(\text {binary })} & =2.303 \frac{v m}{1000} M_{w_{i}}\left[A_{\gamma} \frac{I^{1 / 2}}{3} \sigma\left(\rho I^{1 / 2}\right)\left|Z_{+} Z_{-}\right|\right. \\
& \left.-\left(0.06+0.6 B_{1 i}\right) \frac{I}{2} \psi(a I)\left|Z_{+} Z_{-}\right|-B \frac{I}{2}\right] \\
& +\ln \left(0.001 \cup \mathrm{mM}_{W}+1\right)-0.001 \nu \mathrm{ZM}_{W} \tag{C-9}
\end{align*}
$$

Equation ($\mathrm{C}-8$) is modified for a ternary system by the appropriate substitution of B for $B_{1 i}$ and the Debye-Hückel constant for mixture. The most important conditions to be satisfied are

```
\(\left.\operatorname{Lim} \quad \overline{\mathrm{RT}}\right|_{\text {Bromley }} \quad=\left.\quad \overline{\mathrm{RT}}\right|_{\text {Bromley }}\)
\(\mathrm{N}_{2} \rightarrow 0\)
or
\(\mathrm{N}_{3} \rightarrow 0\)
```

This requires--
$\operatorname{Lim}_{\mathrm{N}_{2} \rightarrow 0} \mathrm{~B}=\mathrm{B}_{12}$
$\operatorname{Lim}_{N_{2} \rightarrow 0} A_{\gamma}\left(N_{2}, N_{3}, d_{2}, d_{3}, D_{2}, D_{3}, T\right)=A_{\gamma}\left(d_{2}, D_{2}, T\right)$
or

$$
\begin{align*}
& \operatorname{Lim}_{N_{3} \rightarrow 0} B=B_{13} \\
& \operatorname{Lim}_{N_{3} \rightarrow 0} A_{\gamma}\left(N_{2}, N_{3}, d_{2}, d_{3}, D_{2}, D_{3}, T\right)=A_{\gamma}\left(d_{3}, D_{3}, T\right) \tag{C-11}
\end{align*}
$$

The above constraintslead equation ($C-8$) to

$$
\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {Bromley }} \text {, equation (3-2) }
$$

Note: equation (3-2) involves no solvent-solvent interaction parameters.
C.2--Development of the $\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {NRTL-S }}$ Expression

The NRTL equation developed in model I, equation (2-3) is simplified further by considering that the NRTL equation in Model II accounts only for solvent-solvent interactions. Hence, assuming that

$$
\begin{equation*}
\mathrm{x}_{\mathrm{A} 2}=\mathrm{x}_{\mathrm{B} 2}=\mathrm{x}_{\mathrm{A} 3}=\mathrm{x}_{\mathrm{B} 3}=1.0 \tag{C-12}
\end{equation*}
$$

in equation (2-3) then,

$$
\begin{gather*}
\Delta g_{A 2}=\Delta g_{A 3}=\Delta g_{B 2}=\Delta g_{B}=0.0 \\
G_{A 2}=G_{B 2}=G_{A 3}=G_{B 3}=1.0 \\
G_{ \pm 2}=G_{ \pm 3}=\frac{\nu}{v_{A}} \tag{C-13}\\
\mathrm{Z}_{\mathrm{A} 2}=\mathrm{Z}_{\mathrm{B} 2}=\mathrm{Z}_{\mathrm{A} 3}=\mathrm{Z}_{\mathrm{B} 3}=0.0 \\
\mathrm{Z}_{ \pm 2}=\mathrm{Z}_{ \pm 3}=0.0 \tag{C-14}
\end{gather*}
$$

$$
\begin{align*}
\left.\frac{G^{E}(\text { ternary })}{R T}\right] & \frac{1}{R T R T-S}\left[\frac{N_{2} N_{3} Z_{32}}{\left(N_{A} \frac{\nu}{\nu_{A}}+N_{2}+N_{3} G_{32}\right)}+\frac{N_{2} N_{3} Z_{23}}{\left(N_{A} \frac{\nu}{\nu_{A}}+N_{3}+N_{2} G_{23}\right)}\right. \\
& \left.+\frac{\nu}{v_{A}} N_{A} N_{2} N_{3}\left\{\frac{Z_{32}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{Z_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\}\right] \tag{C-15}
\end{align*}
$$

Equation (C-15) can be converted in terms of mole fractions, equation (3-4).
C.3--Development of the Salting-Out Term for a Ternary Mixture

It is well known that the addition of an electrolyte in mixed solvents, causes salting-out of one of the solvents. Combination of the Bromley equation and the simplified NRTL equation alone is not enough to account for the salting-out effect, therefore an additional salting-out term was sought. Different theories have been proposed specifically by DebyeMcAulay (1925), Butler (1929) and Born (1932), to account for salting-out. In this work, an expression based on the above theories, has been proposed, which requires one ternary saltingout parameter ' $\delta_{123 \text { ' and is shown below }}$
$\left.\frac{g^{E}(\text { ternary })}{R T}\right|_{\text {salt-out }}=\frac{D^{\prime}-D}{D^{2}} \frac{\varepsilon^{2}}{K^{T}} \sum_{k} \frac{\nu_{k_{k} z_{k}}^{2}}{b k} \frac{l}{2}$
where,

$$
\begin{gather*}
D^{\prime}=D\left[1-\frac{\delta_{123}}{e^{\alpha N_{1}^{1 / 2}}}\left(X_{2}^{\prime} X_{3}^{\prime}\right)^{1 / 2} N_{1}\left(X_{2}^{\prime} B_{13}-x_{3}^{\prime} B_{12}\right) e^{\left.\alpha X_{2}^{\prime}\right]}\right. \tag{C-17}\\
\alpha=2.0
\end{gather*}
$$

Combining equations $(C-16)$ and ($C-17$) leads to the form--

$$
\left.\frac{\mathrm{G}^{\mathrm{E}}}{\mathrm{RT}}\right|_{\text {salt-out }}=\left.\mathrm{N}_{\mathrm{T}} \frac{\mathrm{~g}^{\mathrm{E}}(\text { ternary } \mathrm{T}}{}\right|_{\text {salt-out }}
$$

equation (3-5).
C.4--Development of the Ternary $\ln \gamma_{ \pm}, \ln \gamma_{2}$ and $\ln \gamma_{3}$ Expressions

The total excess Gibbs free energy function is obtained by combining equations (3-2) to (3-5). The activity coefficient expressions are obtained by the appropriate differentiation of the total Gibbs free energy function. Since the activity coefficients are a combination of three different terms, the differentiation of each term is performed separately, as below
C.4-I--The Bromley Equation

Combining equations (1-26) (3-2) and (3-3) results in--

$$
\begin{gather*}
v \ln \gamma_{ \pm}^{*}(\text { ternary }) \\
-2\left(1+\rho I^{l / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)+\frac{\partial}{\partial N_{1}}\left[2 . 3 0 3 v \frac { m } { I } \frac { N _ { T } M _ { W } } { 1 0 0 0 } \left\{\frac{1}{2}\left(1+\rho I^{I / 2}\right)^{2}\right.\right. \\
\left.\quad\left\{\ln (1+a I)+\frac{1}{1+a I}-1\right\}+\frac{B}{2} I^{2}\right]+ \\
a^{2} \\
\frac{\partial}{\partial N_{1}}\left[N _ { T } \left\{\left(0.001 v \mathrm{mM}_{W}+1\right) \ln \left(0.001 v \mathrm{mM}_{\mathrm{W}}+1\right)\right.\right. \tag{C-18}\\
\left.\left.-0.001 \nu \mathrm{mM}_{\mathrm{W}}\right\}\right]
\end{gather*}
$$

Equation (C-18) simplifies to the original ln $\gamma_{ \pm, \text {Bromley }}^{*}$ equation with an additional term, equation (3-8), where

$$
\begin{equation*}
\frac{\partial \mathrm{B}}{\partial \mathrm{~N}_{1}}=-\frac{3}{2} \alpha \mathrm{~B}_{123} \frac{1}{\mathrm{~N}_{1}^{1 / 2}} \frac{1}{\left(1+\alpha N_{1}^{1 / 2}\right)^{4}} e^{-\alpha X_{3}^{\prime}}\left(\mathrm{X}_{2}^{\prime} \mathrm{X}_{3}^{\prime}\right)^{1 / 4} \tag{C-19}
\end{equation*}
$$

For solvent 2, equation (3-2) with (3-3) is differentiated term by term

$$
\begin{align*}
& I \text { term }=\frac{\partial}{\partial \mathrm{N}_{2}}\left[-2.303 \nu \frac{\mathrm{~m}}{\overline{\mathrm{I}}} \frac{\mathrm{~N}_{\mathrm{T}} \mathrm{M}_{\mathrm{w}}}{1000} A_{\gamma} \frac{2}{\rho^{3}}\left\{\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}\right.\right. \\
& \left.\left.-2\left(I+\rho I^{1 / 2}\right)+\ln \left(I+\rho I^{1 / 2}\right)+\frac{3}{2}\right\}\right] \\
& I \text { term }=2.303 \frac{\nu m}{1000}\left[M _ { W _ { 2 } } A _ { Y } I ^ { I / 2 } \frac { 1 } { (\rho I ^ { I / 2 }) ^ { 3 } } \left\{\left(1+\rho I^{I / 2}\right)\right.\right. \\
& \left.-2 \ln \left(1+\rho I^{l / 2}\right)-\frac{1}{\left(I+\rho I^{1 / 2}\right)}\right\}-N_{T} M_{w} \\
& I^{1 / 2} \frac{2}{\left(\rho I^{1 / 2}\right)^{3}}\left\{\frac{1}{2}\left(1+\rho I^{1 / 2}\right)^{2}-2\left(1+\rho I^{1 / 2}\right)\right. \\
& \left.\left.+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right\} \frac{\partial A_{\gamma}}{\partial N_{2}}\right] \tag{C-20}
\end{align*}
$$

II term $=\frac{\partial}{\partial N_{2}}\left[2.303 \nu \frac{\mathrm{~m}}{\overline{\mathrm{I}}} \frac{\mathrm{N}_{T} M_{W}}{1000} \frac{(0.06+0.06 B)}{a^{2}}\right.$

$$
\begin{gather*}
\left.\left\{\ln (I+a I)+\frac{1}{(1+a I)}-1\right\}\right] \\
\text { II term }=+2.303 \frac{v \mathrm{~m}}{1000}\left[-\mathrm{M}_{\mathrm{w}_{2}}(0.06+0.6 \mathrm{~B}) \frac{\mathrm{I}}{2} \frac{2}{\mathrm{aI}}\right. \\
\left\{\frac{(1+2 \mathrm{aI})}{(1+a I)^{2}}-\frac{\ln (1+a I)}{a I}\right\}+0.6 \mathrm{~N}_{T} M_{W} \frac{I}{2} \frac{2}{\mathrm{aI}} \\
\left.\left\{\frac{\ln (1+a I)}{a I}-\frac{1}{(1+a I)}\right\} \frac{\partial B}{\partial N_{2}}\right] \tag{C-21}
\end{gather*}
$$

III term $=\frac{\partial}{\partial N_{2}}\left[2.303 \cup \frac{m}{\bar{I}} \frac{N_{T} M_{w}}{1000} \frac{B}{2} \mathrm{I}^{2}\right]$

III term $=+2.303 \frac{V m}{1000}\left[-M_{W_{2}} B \frac{I}{2}+N_{T} M_{W}\right.$ I $\left.\frac{\partial B}{\partial N_{2}}\right]$

IV term $=\frac{\partial}{\partial N_{2}}\left[\left(0.001 \nu \mathrm{mM}_{\mathrm{w}}+1\right) \ln \left(0.001 \nu \mathrm{mM}_{\mathrm{W}}+1\right)-0.001 \nu \mathrm{mM}_{\mathrm{W}}\right]$

IV term $=\ln \left(0.001 \nu \mathrm{mM}_{\mathrm{w}}+1\right)-0.001 \operatorname{vmM}_{\mathrm{w}}$

Combining equations ($\mathrm{C}-20$) to ($\mathrm{C}-23$) results in
$\ln \gamma_{2}$ (ternary) expromley pression for $\ln \gamma_{3}^{\text {(ternary) }}$ Bromley can be obtained.

The different terms of equation (3-12) are defined below $\sigma_{2}\left(\rho I^{I / 2}\right)=\frac{3}{\left(\rho I^{l / 2}\right)^{3}}\left[\left(I+\rho I^{I / 2}\right)-2 \ln \left(I+\rho I^{1 / 2}\right)-\frac{1}{\left(1+\rho I^{1 / 2}\right)}\right]$
$\sigma_{2}^{I}\left(\rho I^{I / 2}\right)=\frac{2}{\left(\rho I^{l / 2}\right)^{3}\left[\frac{1}{2}\left(I+\rho I^{I / 2}\right)-2\left(1+\rho I^{1 / 2}\right)+\ln \left(1+\rho I^{1 / 2}\right)+\frac{3}{2}\right]}$
$\psi_{2}(a I)=\frac{2}{a I}\left[\frac{(1+2 a I)}{(1+a I)^{2}}-\frac{\ln (1+a I)}{a I}\right]$
$\psi_{2}^{I}(a I)=\frac{2}{a \bar{I}}\left[\frac{\ln (1+a I)}{a I}-\frac{1}{(1+a I)}\right]$
$\frac{\partial B}{\partial N_{2}}=\left(B_{12}-B_{13}\right) \frac{X_{2}^{\prime}}{N_{T}}+\frac{B_{123}}{\left(1+\alpha N_{1}^{1 / 2}\right)^{3}}\left[\left\{\frac{1}{2}\left(\frac{X_{3}^{\prime}}{X_{2}^{\prime}}\right)^{1 / 2} \frac{1}{X_{2}^{\prime} 1 / 2}-\left(X_{2}^{\prime} X_{3}^{\prime}\right)^{1 / 4}\right\}\right.$
$\left.\frac{1}{2} \frac{1}{N_{T}} e^{-\alpha X_{3}^{\prime}}+\alpha \frac{X_{3}^{\prime}}{N_{T}} e^{-\alpha X_{3}^{\prime}}\left(X_{2}^{\prime} X_{3}^{\prime}\right)^{1 / 4}\right]$
$\frac{\partial B}{\partial N_{3}}=\left(B_{13}-B_{12}\right) \frac{X_{3}^{\prime}}{N_{T}}+\frac{B_{123}}{\left(1+\alpha N_{1}^{1 / 2}\right)^{3}}\left[\left\{\frac{1}{2}\left(\frac{X_{2}^{\prime}}{X_{3}^{\prime}}\right)^{1 / 2} \frac{1}{X_{3}^{\prime 1 / 2}}-\left(X_{2}^{\prime} X_{3}^{\prime}\right)^{1 / 4}\right\}\right.$

$$
\begin{equation*}
\left.\frac{1}{2} \frac{1}{\mathrm{~N}_{T}} e^{-\alpha X_{3}^{\prime}}-\alpha \frac{X_{2}^{\prime}}{N_{T}} e^{-\alpha X_{3}^{\prime}}\left(X_{2}^{\prime} X_{3}^{\prime}\right)^{1 / 4}\right] \tag{C-29}
\end{equation*}
$$

C.4-II--The NRTL-S equation

Equation (C-15) can be differentiated appropriately to obtain the activity coefficient expression for electrolyte and solvents. Utilizing equations ($B-35$) to ($B-38$) with equation (C-l5) leads to

$$
\begin{align*}
\ln \gamma_{ \pm}^{*}(\text { ternary }) & =\frac{N_{2} N_{3}}{R T}\left[-\frac{Z_{32}}{\left(N_{A} \frac{\nu}{v_{A}}+N_{2}+N_{3} G_{32}\right)^{2}}\right. \\
& -\frac{Z_{23}}{\left(N \frac{\nu}{v_{A}}+N_{3}+N_{2} G_{23}\right)^{2}}+\frac{Z_{32}}{\left(N_{3} G_{32}+N_{2}\right)^{2}} \\
& \left.+\frac{Z_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right] \tag{c-30}
\end{align*}
$$

Equation ($C-30$) can be converted in terms of mole fraction, equation (3-8).

$$
\ln \gamma_{2, \text { NRTL-S }}^{(\text {ternary })}=\frac{\partial}{\partial N_{2}}\left[\left.\frac{G^{E}}{\mathrm{RT}} \right\rvert\,{ }_{\text {NRTL }-S}\right]
$$

$\ln \gamma_{2}^{(\text {ternar } y)}=\frac{1}{R T}\left[\frac{N_{3} Z_{32}\left(N_{A T L} \frac{\nu}{\nu_{A}}+N_{2}+N_{3} G_{32}\right)-N_{2} N_{3} Z_{32}}{\left(N_{A} \frac{\nu}{v_{A}}+N_{2}+N_{3} G_{32}\right)^{2}}\right.$

$$
+\frac{N_{3} Z_{23}\left(N_{A} \frac{\nu}{\nu_{A}}+N_{3}+N_{2} G_{23}\right)-N_{2} N_{3} G_{23} Z_{23}}{\left.N_{A} \frac{\nu}{\nu_{A}}+N_{3}+N_{2} G_{23}\right)^{2}}
$$

$$
+\frac{\nu}{v_{A}} N_{A} N_{3}\left\{\frac{Z_{32}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{Z_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\}
$$

$$
\begin{align*}
& \left.+\frac{\nu}{v_{A}} N_{A} N_{2} N_{3}-\left\{\frac{2 Z_{32}}{\left(N_{3} G_{32}+N_{2}\right)^{3}}-\frac{2 Z_{23} G_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\}\right] \\
& \ln \gamma_{2, \text { NRTL-S }}^{(\text {ternary })}=\frac{1}{R T}\left[\frac{\nu}{\nu_{A}} N_{A} N_{3\{ } \frac{Z_{32}}{\left(N_{A} \frac{\nu}{\nu_{A}}+N_{2} N_{3} G_{32}\right)^{2}}\right. \\
& +\frac{Z_{23}}{\left(N_{A} \frac{\nu}{\nu_{A}}+N_{3}+N_{2} G_{23}\right)^{2}}+N_{3}^{2}\left\{\frac{G_{32} Z_{32}}{\left(N_{A} \frac{\nu}{\nu_{A}}+N_{2}+N_{3} G_{32}\right)^{2}}\right. \\
& \left.+\frac{Z_{23}}{\left(N_{A} \frac{V}{\nu_{A}}+N_{3}+N_{2} G_{23}\right)^{2}}\right\}+ \\
& \frac{v}{v_{A}} N_{A} N_{3}\left\{\frac{Z_{32}}{\left(N_{3} G_{32}+N_{2}\right)^{2}}+\frac{Z_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{2}}\right\} \\
& \left.-2 \frac{\nu}{v_{A}} N_{A} N_{2} N_{3}\left[\frac{Z_{32}}{\left(N_{3} G_{32}+N_{2}\right)^{3}}+\frac{Z_{23} G_{23}}{\left(N_{2} G_{23}+N_{3}\right)^{3}}\right\}\right] \tag{C-31}
\end{align*}
$$

Using the above approach, an expression for $\ln \gamma_{3}$ (ternary) can be obtained. These expressions can be rearranged in terms of mole fractions, equation (3-13).
C.3-III--The Salting-Out Term

Equation (3-5) with equation (3-6) is differentiated to obtain the salting-out contribution for the activity coefficients.
$\ln \gamma_{ \pm, \text {salt-out }}^{*(\text { ternary })}=\delta_{123} \frac{\varepsilon^{2}}{k T D} \sum_{k} \frac{\nu_{k} Z_{k}^{2}}{b_{k}}\left(N_{2} N_{3}\right)^{l / 2} \delta^{\prime} \frac{\partial}{\partial N_{l}}\left[\frac{N_{l}^{2}}{2} \frac{1}{\left.e^{\alpha N_{l}^{1 / 2}}\right]}\right.$

$$
\begin{equation*}
\frac{\partial}{\partial N_{1}}\left[\frac{1}{2} \frac{1}{e^{\alpha N_{1}^{1 / 2}}}\right]=\frac{1}{e^{\alpha N_{1}^{1 / 2}}}\left[N_{1}-\frac{1}{2} \alpha \frac{1}{N_{1}^{1 / 2}} \frac{N_{1}^{2}}{2}\right] \tag{C-32}
\end{equation*}
$$

Combining equations $(C-32)$ and ($C-33$) leads to equation (3-1). And

$$
\begin{align*}
\ln \gamma_{2 \text { salt-out }}^{\text {(ternary })} & =\delta_{123} \frac{\varepsilon^{2}}{\mathrm{kT}} \sum_{\mathrm{k}} \frac{\nu_{\mathrm{k}} \mathrm{z}_{\mathrm{k}}^{2}}{\mathrm{~b}_{\mathrm{k}}} \frac{\mathrm{~N}_{1}^{2}}{2} \frac{1}{e^{\alpha N_{1}^{1 / 2}}\left[\frac{\delta^{\prime}}{\mathrm{D}}\right.} \frac{\partial}{\partial \mathrm{N}_{2}}\left\{\left(\mathrm{~N}_{2} \mathrm{~N}_{3}\right)^{1 / 2}\right\} \\
& \left.+\left(\mathrm{N}_{2} \mathrm{~N}_{3}\right)^{1 / 2} \frac{\partial}{\partial \mathrm{~N}_{2}} \delta^{\prime}+\delta^{\prime}\left(\mathrm{N}_{2} \mathrm{~N}_{3}\right)^{1 / 2} \frac{\partial}{\partial \mathrm{~N}_{2}}\left(\frac{1}{\mathrm{D}}\right)\right] \tag{c-34}
\end{align*}
$$

where,

$$
\begin{gather*}
\frac{\partial}{\partial N_{2}}\left\{\left(N_{2} N_{3}\right)^{1 / 2}\right\}=\frac{1}{2}\left(\frac{N_{3}}{N_{2}}\right)^{1 / 2} \tag{C-35}\\
\frac{\partial \delta^{\prime}}{\partial N_{2}}=\frac{\partial}{\partial N_{2}}\left[e^{\alpha X_{2}^{\prime}}\left(X_{2}^{\prime} B_{13}-X_{3}^{\prime} B_{12}\right)\right] \\
=e^{\alpha X_{2}^{\prime}}\left(X_{2}^{\prime} B_{13}-X_{3}^{\prime} B_{12}\right) \frac{\partial X_{2}^{\prime}}{\partial N_{2}}+e^{\alpha X_{2}^{\prime}} \frac{\partial}{\partial N_{2}}\left(X_{2}^{\prime} B_{13}-X_{3}^{\prime} B_{12}\right) \\
\frac{\partial \delta^{\prime}}{\partial N_{2}}=\alpha e^{\alpha X_{2}^{\prime}}\left(X_{2}^{\prime} B_{13}-X_{3}^{\prime} B_{12}\right) \frac{X_{3}^{\prime}}{N_{T}}+\left(B_{12}+B_{13}\right) e^{\alpha X_{2}^{\prime}} \frac{X_{3}^{\prime}}{N_{T}} \tag{C-36}\\
\frac{\partial}{\partial N_{2}}\left[\frac{1}{D}\right]=-\frac{1}{D^{2}} \frac{\partial D}{\partial N_{2}} \tag{C-37}
\end{gather*}
$$

A combination of equations $(C-34)$ to ($C-37$) results in equation (3-14).

Similarly an expression for $\ln \gamma_{3 \text { rsalt-out }}^{\text {(ternary) }}$ can be
obtained with the following additional relationships

$$
\begin{gather*}
\frac{\partial}{\partial N_{3}}\left[\left(N_{2} N_{3}\right)^{1 / 2}\right]=\frac{1}{2}\left(\frac{N_{2}}{N_{3}}\right)^{1 / 2} \tag{C-38}\\
\frac{\partial \delta^{\prime}}{\partial N_{3}}=-e^{\alpha X_{2}^{\prime}} \frac{X_{2}^{\prime}}{N_{T}}\left[\alpha\left(X_{2}^{\prime} B_{13}-X_{3}^{\prime} B_{12}\right)+\left(B_{12}+B_{13}\right)\right] \tag{C-39}\\
\frac{\partial}{\partial N_{3}}\left[\frac{1}{D}\right]=-\frac{1}{D^{2}} \frac{\partial D}{\partial N_{3}} \tag{C-40}
\end{gather*}
$$

APPENDIX D

DEBYE-HÜCKEL CONSTANTS, DIELECTRIC CONSTANTS AND DENSITIES OF PURE SOLVENTS AND MIXED SOLVENTS; VAPOR PRESSURE CONSTANTS OF PURE SOLVENTS

The Debye-Hückel constant at the system temperature and pressure is given by

$$
\begin{equation*}
\left.A_{\gamma}=\left[\frac{2 \pi \mathrm{Nd}}{1000}\right]_{\left[\frac{\varepsilon^{2}}{\mathrm{DkT}}\right]}\right]^{3 / 2} \tag{D-1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.A_{\gamma}=1.8246 \times 10^{6} d^{1 / 2}\left[\frac{1}{D T}\right]\right]^{3 / 2} \tag{D-2}
\end{equation*}
$$

where,
d - density of the solvent
D - dielectric constant of the solvent

The values of the above two properties for the pure solvent or the mixed solvent mixture are presented below
A. Electrolyte-solvent binary (binary 1-2 or 1-3)
$d=d_{i}$ - pure solvent (2 or 3) liquid density at the system temperature and pressure.

The density data are estimated if experimental data are not available by the following relationship

$$
\begin{equation*}
\mathrm{d}=\frac{\mathrm{M}_{\mathrm{w}}}{\mathrm{~V}_{\mathrm{T}}^{\mathrm{L}}} \tag{D-3}
\end{equation*}
$$

$M_{w}=M_{w_{i}}-$ molecular weight of the solvent i
$V_{T}^{L}=v_{i}^{\circ}$ - pure solvent liquid molar volume.
A quadratic equation is used to calculate the pure solvent liquid molar volume, as given in the monograph by Prausnitz et al. (1967)

$$
\begin{equation*}
v_{i}^{o_{i}^{L}}=a^{\prime}+b^{\prime} T+c^{\prime} T^{2} \tag{D-4}
\end{equation*}
$$

The constants a^{\prime}, b^{\prime} and c^{\prime} are obtained, using experimental liquid volume data at three temperatures, by a method used in the monograph. In Table $D-1, ~ l i q u i d ~ v o l u m e ~ d a t a ~ a r e ~ l i s t e d ~$ for the solvents used in this work.

D - D_{i} - pure component dielectric constant at the system temperature and pressure.
B. Electrolyte (1) - solvent (2) - solvent (3) ternary d - solvent mixture (electrolyte free) density at the system temperature and pressure.

I - if the experimental solvent mixture data are available, a six-constant polynomial is fitted to get the concentration dependency of the density. The polynomial expression is then used to calculate the density at different temperatures.

$$
\begin{equation*}
d=a_{1}+a_{2} x_{3}^{\prime}+a_{3} x_{3}^{\prime 2}+a_{4} x_{3}^{\prime 3}+a_{5} x_{3}^{\prime 4}+a_{6} x_{3}^{\prime 5} \tag{D-5}
\end{equation*}
$$

In tables $\mathrm{D}-2$ and $\mathrm{D}-3$, liquid density data for $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$, used in this work are tabulated.

II - if the experimental mixture density data are not available, the solution density is approximated using a linear relationship for the volume equation (D-3). Where,

$$
\begin{align*}
& v_{T}^{L_{1}}=x_{2}^{\prime} v_{2}^{\circ L_{2}}+x_{3}^{\prime} v_{3}^{\circ L_{1}} \tag{D-6}\\
& M_{w}=x_{2}^{\prime} M_{w_{2}}+x_{3}^{\prime} M_{w_{3}} \tag{D-7}
\end{align*}
$$

Figure D. 2 Comparison of Experimental and Estimated Densities for the System $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$
$\mathrm{v}_{2}^{\mathrm{L}}$ and $\mathrm{v}_{3}^{\mathrm{o}_{3}^{\mathrm{L}}}$ are calculated, using equation ($\mathrm{D}-4$) for the pure solvents. Alternatively,

$$
\begin{equation*}
\mathrm{d}=\mathrm{x}_{2}^{\prime} \mathrm{d}_{2}^{\circ}+\mathrm{x}_{3}^{\prime} \mathrm{d}_{3}^{\circ} \tag{D-8}
\end{equation*}
$$

The validity of equations (D-3) and (D-8) for the mixture is shown in the figures $D .1$ and $D .2$ for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ and the $\mathrm{H}_{2} \mathrm{O}$-EtOH system at $25^{\circ} \mathrm{C}$ respectively.
$D=$ Dielectric constant of the liquid solvent mixture (electrolyte-free)

III-if the experimental solvent mixture dielectric constant data are available, a six-constant polynomial is fitted to get the concentration dependency of the dielectric constant. The polynomial expression is then used to calculate the dielectric constantat a different concentrations.

$$
D=A_{1}+A_{2} X_{3}^{\prime}+A_{3} X_{3}^{\prime 2}+A_{4} x_{3}^{\prime 3}+A_{5} x_{3}^{\prime 4}+A_{6} x_{3}^{\prime 5}(D-9)
$$

The data given by Akerlöf (1932) for the mixture dielectric constant have been used in this work. The data at a constant composition has been represented as a function of temperature by

$$
\begin{equation*}
\ln D=2.303 A D_{1}+A D_{2} \ln (T-293.15) \tag{D-10}
\end{equation*}
$$

The constants $A D_{1}$ and $A D_{2}$ are listed in the Tables D. 4 and D. 5 for the mixtures considered in this study.

IV - if the experimental data are not available, the dielectric constant of the solution is approximated using either equation ($D-11$) or ($D-12$)

Figure D. 3 Comparison of Experimental and Estimated Dielectric Constants of the Mixture $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$

Figure D. 4 Comparison of Experimental and Estimated Dielectric Constants of the Mixture $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$

$$
\begin{equation*}
D=D_{2} \operatorname{Exp}\left[A X_{3}^{\prime}\right] \tag{D-11}
\end{equation*}
$$

where,

$$
A=\ln \left[\frac{D_{3}}{D_{2}}\right] \quad\left[\text { Note }: \quad D_{3}<D_{2}\right]
$$

or

$$
\begin{equation*}
D=D_{2} x_{2}^{\prime}+D_{3} x_{3}^{\prime} \tag{D-12}
\end{equation*}
$$

The experimental dielectric constant data are compared with the expressions (D-11) and (D-12) in figures (D.3) and (D.4) for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system at $25^{\circ} \mathrm{C}$ and the $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ system at $25^{\circ} \mathrm{C}$ respectively.

Effect of Temperature on A_{γ}
The Debye-Hückel constant ' A_{γ} ' is $\alpha \frac{1}{T^{3 / 2}}$ (equation $D-2$). Also, the dielectric constant and the density of the solvent are functions of temperature. Therefore A_{γ} is a strong function of temperature.

Effect of Pressure on A_{γ}
This work is limited only to low pressures. At low pressures, the liquid density and the dielectric constant can be considered to be pressure independent. Therefore A_{γ} has no effect of pressure.

Vapor-Pressure of the Pure Solvent
A six-parameter equation given in the monograph of Prausnitz et al. (1967) has been used to estimate the vapor pressures of the pure components, equation (1-24). Constants $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ and C_{6} are listed in Table D. 6.

TABLE D.I

Liquid Molar Volume Data at Three Temperatures

Solvent	itz et	$\mathrm{v}^{\mathrm{ol}^{\text {L }}, \mathrm{cc} / \mathrm{gmole}}$
	T ${ }^{\circ} \mathrm{K}$)	
EtOH	273.15	57.141
	323.15	60.356
	373.15	64.361
MeOH	273.15	39.556
	373.15	44.874
	473.15	57.939
Water	277.15	18.06
	323.15	18.278
	373.15	18.844

TABLE D. 2

Liquid Density Data for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ System @ $25^{\circ} \mathrm{C}$

Ref: McGlashan (1976)	
$\mathrm{X}_{\mathrm{MeOH}}^{\prime}$ 0.0	$\mathrm{~d}, \mathrm{cc} / \mathrm{gmole}$
0.04085	0.99707
0.06168	0.98472
0.11445	0.97919
0.19739	0.96649
0.24867	0.94796
0.34382	0.93658
0.49446	0.91534
0.61267	0.88242
0.69241	0.8421
0.78454	0.82458
0.89229	0.8051
1.0	0.78663

TABLE D. 3

Liquid Density Data for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ System @ $25^{\circ} \mathrm{C}$
Ref: Perry and Chilton (1973)

$X_{E t O H}^{\prime}$	d, cc/gmole
0.0	0.99708
0.0417	0.98043
0.0891	0.96639
0.1436	0.95067
0.2069	0.93148
0.2813	0.90985
0.3699	0.88699
0.4773	0.86340
0.6102	0.83911
0.7788	0.81362
1.00	0.78506

TABLE D. 4
Constants for Calculating the Dielectric Constants of Water-EtOH Mixtures at Various Temperatures,

Equation (D-10)
Ref: Akerlöf (1932)
$\mathrm{X}_{\mathrm{EtOH}}^{\prime}$
${ }^{\mathrm{A}} \mathrm{D} 1$
${ }^{A_{D 2}}$
0.0
1.9051
-0.00205
0.0417
1.8727
-0.00209
0.0891
1.8367
-0.00214
0.1436
1.7968
-0.00221
0.2069
1.752
-0.0023
0.2813
1.7024
-0.0024
0.3699
1.6500
-0.0025
0.4773
1.5926
-0.00262
0.6102
1.530
-0.00272
0.7788
1.4625
-0.00268
1.00
1.3979
-0.00264

TABLE D. 5

Constants for Calculating the Dielectric Constants of Water-MeOH Mixtures at Various Temperatures,

Equation (D-10)
Ref: Akerlöf (1932)

$\mathrm{X}_{\mathrm{MeOH}}^{\prime}$	$\mathrm{A}_{\mathrm{D} 1}$ 0.0	$\mathrm{A}_{\mathrm{D} 2}$ 0.0588
0.19051	-0.00205	
0.1233	1.8505	-0.00208
0.1942	1.8190	-0.00212
0.2727	1.7865	-0.00225
0.3600	1.7513	-0.00234
0.4576	1.7120	-0.00244
0.5676	1.6658	-0.00252
0.6923	1.616	-0.00248
0.8351	1.5648	-0.00242
1.00	1.5099	-0.00234

TABLE D. 6

Constants for the Vapor Pressure, Equation (D-12)							
Solvent	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	${ }^{\mathrm{C}_{6}}$	Ref
EtOH	123.9120350	-8754.0896	0.0	0.020198435	0.0	-18.1	$\begin{gathered} \text { Prausnitz } \\ \text { et al. } \\ (1966) \end{gathered}$
MeOH	12.3858228	-3880.50203	0.0	-24.355	0.0	0.0	Hala (1969)
Water	70.4346943	-7362.6981	0.0	0.006952085	-	-9.0	```Prausnitz et al. (1966)```

APPENDIX E

CALCUIAATION OF FUGACITY COEFFICIENTS AND POYNTING EFFECT

The following two data points are used for the calculation of $\phi_{i}^{O}, \hat{\phi}_{i}^{V}, P . E$. and $\mathrm{F}_{\mathrm{i}}{ }^{--}$
[Ref: Hala (1968)]

Point \#	System	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	X_{3}^{\prime}	Y_{3}	${ }^{\mathrm{P}}(\mathrm{mmHg})$
1	$\mathrm{H}_{2} \mathrm{O}(2)-\mathrm{MeOH}(3)$	60	0.0343	0.2106	183.64
2	$\mathrm{H}_{2} \mathrm{O}(2)-\mathrm{MeOH}(3)$	60	0.7582	0.901	538.64

Pure component second virial coefficients for $\mathrm{H}_{2} \mathrm{O}$ and MeOH and the cross-virial coefficient for $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ mixture are estimated by Pitzer's correlations, [Smith and VanNess (1973)]

$$
\begin{align*}
B^{\circ} & =0.083-\frac{0.422}{T_{r}^{1.6}} \tag{E-1}\\
B^{1} & =0.139-\frac{0.172}{T_{r}^{4.2}} \tag{E-2}\\
B_{i j} & =\left(B^{0}+\omega B^{1}\right) \frac{R T_{C}}{P_{C}} \tag{E-3}
\end{align*}
$$

Pure component liquid molar volumes and pure component vapor pressures are calculated as shown in Appendix D.

The mixture properties necessary to estimate the crossvirial coefficient of the mixtures are calculated by

$$
\begin{align*}
& T_{\mathrm{Cij}}=\sum_{\mathrm{l}=2}^{3} \mathrm{Y}_{\mathrm{i}} T_{\mathrm{Ci}} \tag{E-4}\\
& \mathrm{P}_{\mathrm{Cij}}=\sum_{\mathrm{l}=2}^{3} \mathrm{Y}_{\mathrm{i}} P_{\mathrm{Ci}} \tag{E-5}
\end{align*}
$$

$$
\begin{gather*}
\omega_{i j}=\sum_{1=2}^{3} y_{i} \omega_{i} \tag{E-6}\\
\delta_{23}=2 B_{23}-B_{22}-B_{33} \tag{E-7}
\end{gather*}
$$

Applying equations ($E-4$) to ($E-7$) with equations ($E-1$) to (E-3) the cross-properties for the two data points are listed in Table E. 2.

The pure component properties listed in Table E.l and the mixture properties presented in Table E. 2 are used in equations (1-5), (1-6), (1-8) and (1-l0) to calculate ϕ_{i}^{O} (P.E.) $i^{\prime} \hat{\phi}_{i}^{V}$ and F_{i} (see Tables E. 3 and E. 4 for the two data points).

The values of F_{i} in Tables E. 3 and E. 4 for $\mathrm{H}_{2} \mathrm{O}$ and MeOH justifies the assumption that, at low pressures, $\mathrm{F}_{\mathrm{i}} \simeq 1.0$.

TABLE E.l
Pure Component Properties

Component	$\mathrm{V}_{\mathrm{i}}^{\mathrm{OL}}$ $(\mathrm{cc} / \mathrm{gmole})$	$\mathrm{P}_{1}^{\mathrm{O}}$ (mmHg)	$\mathrm{B}_{\mathrm{i}}^{\mathrm{O}}$	$\mathrm{B}_{\mathrm{i}}^{\mathrm{I}}$	ω_{i}	B_{ii} $(\mathrm{cc} / \mathrm{gmole})$
$\mathrm{H}_{2} \mathrm{O}$	18.364	149.383	-1.13793	-2.6577	0.348	-503.4
MeOH	41.8187	634.315	-0.75793	-0.91993	0.556	-665.9

TABLE E. 2
Mixture Properties

Point \#l

1

2
0.3912
0.5354
ω_{23}
B_{23}
(cc/gmole)
(cc/gmole)
-513.0
-622.3
143.3
-75.3

TABLE E. 3
ϕ_{i}^{O}, P.E., $\hat{\phi}_{i}^{V}$ and F_{i} for Data Point \#1
$\begin{array}{ccccc}\text { Component } & \phi_{i}^{O} & (P . E .)_{i} & \hat{\phi}_{i}^{V} & F_{i}\end{array}$

$\mathrm{H}_{2} \mathrm{O}$	0.99556	1.00003	0.99562	1.0009
MeOH	0.99413	0.99909	0.99492	1.0075

TABLE E. 4
ϕ_{i}°, P.E., $\hat{\phi}_{i}^{V}$ and F_{i} for Data Point \#2
Component
$\mathrm{H}_{2} \mathrm{O}$
0.98703
1.00034
0.98548
0.9981

MeOH
0.98288
0.9998
0.98288
1.0002

APPENDIX F

COMPUTER PROGRAMS
CORRELATION AND PREDICTION OF ACTIVITY COEFFICIENTS: TOTAL PRESSURE AND VAPOR PHASE COMPOSITIONS
This appendix contains the following programs:

F.l Main Program

Calls subroutines INPDAT, LSQ2, FIBN, TITLE. The main program reads the different indicating markers to perform correlation or prediction of binary or ternary VLE. The comment cards included in this section explain the different options used in this program.

F. 2 INPDAT

Subroutine reads the input data.
F. 3 FITIT [calls POLIFI]
Subroutine fits a polynomial of degree 5.
F. 4 POLIFI
Subroutine makes a least-square fit for FITIT [calls subroutine DETERM].
F. 5 DETERM
Subroutine performs the error analysis for POLIFI.
F. 6 VAPPRE
Subroutine calculates the pure component vapor pressures at the system temperature [Equation (1-24)].

F. 7 TEMPD

Subroutine calculates pure component liquid molar volumes at the system temperature. This also calculates the dielectricconstant of the mixtures. This calls subroutine FITIT to obtain the polynomial constants for the concentration dependence of the dielectric constants at the system temperature.

The following equations are used for the temperature dependence.

For the liquid molar volume

$$
V=A+B T+C T * * 2
$$

Where A, B, C - constants. T - temperature of the system.
For the dielectric constant

$$
\mathrm{DS}=\operatorname{EXP}[2.303(\operatorname{ADT} 1+\operatorname{ADT} 2(T-293.15))]
$$

Where ADT1, ADT2 - Constants for the temperature dependency of a solvent mixture. T - temperature of the system. DS - dielectric constant of the mixture (see Appendix-D).
F. 8 LSQ2

Subroutine applies a search technique to find the best unknown variables that will result in the minimum value of an objective function [number of variables should be greater or equal to 2]. Calls subroutine FN.

F. 9 FN

Subroutine calls different subroutines to calculate the different contributions for the activity coefficients in two models. Finally it calls subroutine MINFUN to set up the objective function. Calls subroutines NRTLI, BROML, ADITON, NRTL2, DEBHUC, VAPPRE, MINFUN.
F. 10 FIBN

Subroutine applies the Fibonacci method to find the one unknown variable that will minimize the non-linear objective function.

F. 11 FUNCT

Subroutine calls different subroutines as in subroutine FN.
F. 12 NRTLI

Subroutine calculates solvent-solvent interaction contributions of the activity coefficients in a ternary mixture using the simplified and the modified form of the NRTL equation in Model \#2 [see Chapter 3; Equation (2-4)].

F. 13 BROML

Subroutine calculates ion-ion and ion-solvent interaction contributions of the activity coefficients in a binary or ternary mixture using the Bromley equation in Model \#2 [see Chapter 3; Equations (3-8), (3-12) and (C-9)].

F. 14 ADITON

Subroutine calculates salting-out contribution for the activity coefficients in a ternary mixture in Model \#2 [see Chapter 3; Equations (3-10) and (3-14)].
F. 15 FUNCB

Subroutine for mixing rule for the Bromley parameter in a ternary mixture [see Chapter 3; Equation (3-3)].
F. 16 FUNCT

Subroutine calculates the Debye-Huckel constant of mixtures and derivatives of the Debye-Huckel constant with respect to the number of moles of solvents [see Appendix-D].
F. 17 NRTL2

Subroutine calculates ion-solvent and solvent-solvent interaction contributions of the activity coefficient in a binary or ternary mixture using the modified NRTL equation in Model \#l [see Chapter 2; Equations (2-7), (2-14) and (2-17)]. F. 18 DEBHUC

Subroutine calculates ion-ion interaction contributions for the activity coefficients in a binary or ternary mixture in Model \#l [see Chapter 2; Equations (2-13) and (2-16)].

F. 19 MINFUN

Subroutine sets up the objective function.

F. 20 TITLE

Subroutine makes tables for output results.

The comment cards included in the programs are assumed to make this program self-explanatory.

	c	***
?	c	
	c	Main frogram -
	c	
	c	THIS FFROGRAM IS TO COFFELATE OR FREIICT EITHER EINARY
6	C	
	C	Of tefinary ule ilata of ginafy \& ternary ule data
	C	
(C	TOGETHER. THE FROGRAM CAN GE USED EITHER FOR ISOBARIC
	C	
	c	OR ISOTHERMAL IAATA.
r	C	***
	c	
	C	A EINAFY IN THIS WORK IS DEFINED AS A MIXTURE OF
(C	
	c	EITHER TWO SOLVENTS OR ONE ELECTROLYTE AND ONE SOLUENT.
	c	
(c	A TERNARY MIXTURE IS LEFINED AS A MIXTURE OF ONE
	c	
	c	electiolyte and two solvents.
(C	
	c	**
	c	
C	c	THIS FROGFAM IS WRITTEN EY ANIL K. RAStogi at the
	C	
	c	NEW JERSEY INSTITUTE OF TECHNOLOGY AS A PART OF
!	c	
	C	IIOCTOFAL IIISSERTATION, YEAR 1981.
	c	
(C	**
	c	
	c	
C	c	NSET - \% OF SYSTEM IIATA TO EE USED
	c	Ll - total of trial to be usen in lsqz
	c	EE - TOLERENCE ERFOR FOR THE LSQ2
(c	
	c	NAME (J) - INFOFMATION ABOUT THE SYSTEM ; $j=10$; 20 CARDS
	c	XLIM - (MAXIMUM MOLALITY - 1) FANGE OF THE ELECTROLYTE
$!$	C	XLLIM - MINImUn MOLALITY finge of the electrolyte
	C	NAMEI, ETC- NAME OF THE SYSTEM TO EE USEI
	c	
(c	INDF - \# OF INCREMENTS TO EE GIVEN FOR THE MAXIMUM
	c	MOLALITY RANGE
	c	KP - = 1 EQUATIONS USED ARE GROOMLEYYSIMFLIFIED NFTLI;
C	c	ANI SALTINGOUT. (MODEL \# 2 IN THE THESIS)
	c	
	c	
(.	c	
	c	NEIN - (WHEN KF=1)
	C	= 1 PARAMETER E012 REGRESSED


```
                ERUNTION
    [Gg23,NGS2- NON-ELECTFOLYTE GINARY FARGBIETEFS IN THE NFTL
        EQUATION
    ALFAZ,ALFE2- IONIC ALFAS FOF 1-2 & 1-3 EINAFIES (EQ. 2-6 )
    ALFAS,ALFBS
```



```
    LGAZrLGEZ NETL EQUATION,FOF THE IONS (EQ. 2-6 )MONEL#1
    GFN2,ZFN2, - IONIC FAFAAMETERS IN THE MODIFIED NFITL EQUATIDN
    GFHS,ZFN3 MOLEL # 1 (EQ. 2-5 )
    EO12,E112, - EROMLEY EINARY TEMFEFGTURE INDEFENDENT FARAMETRES
    EO13,E113 MODEL # 2 (CHAFTEF 3)
    gi23 - tefirafy amjustagle fafimetef for the mixing fule in
        THE EROMLEY EQUATION
    nELTA - TEFNAFY Galting out fakAmETEF FOR THE MOLEL 非 2
    ALFHA1 - TOLERGNCE LIMIT FOF THE FIEBNAUCHI SURROUTINE
    AXTI,EXT1 - FAFGMOETEF LIMITS FOR THE FIBENAUCHI SUEROUTINE
    M - INTEGEF TO SFECIFY # OF FAFGMETER TO EE FEGFESSEM
    = 1 ONE FARGMETER (EO12 OR EO13 OF E123 OR, IELTA)
    = 2 MORE THAN 1 FARAMETER
    XTX - INITIAL valuES OF THE FARAMETERS FOR THE LSQ2
    INXX - INCREMENT FOF THE FARAMETERS IN THE LSQ2
```



```
    COMMON XXMOL(99),XX(3,99),XXF(3.99),GG(3,99),FF(99),YY(3,99),
    % GNFT(3,99),GEL(3,99),GCAL(3,99),AMW(3),ERFROF(3,99)
    % sGIH(3,99),GFHY(3,99),TTT(99), EM(09),GAIII(3,99)
    % ,YCAL(3,90),AIII(6),FTC(99)
    COMION NF,INLIF,FNF,FNM,FZF,FZN,FK,ALFA,NG23,DG32,GFN2,
    % GFN3,ZFN2,ZFN3.KF,ingNBIN,NFIONsNNION,IELTA
    COMiION NDEN,NNFTL,ALFA2,ALFE2,ALFAZ,ALFG3,DGA2,IGGE,
    IG23, LIG32,Z2J,Z32 - CAL/sMOLE-K
```



```
% IGGAS,IIGEZ,NBROM,NFEG,NTYFE,NMIN
    COMMON E012,E112,E013,E113,CF2(6),CF3(6),CU2(3),CUS(3),
% F123,ALIT(2,20)sNXD,XL(20)
```

$$
2300
$$

IIIMENEION YV(3, 99$), X L(3,99), F(99), X M O L(99), X F(3,99)$,

FEAL *8 NAME (10)
REAL *S NAME1:NAMEZ,NAME3

IIMENSION XT(5), $\operatorname{IXX}(6), Y(7), X(7,10), X T X(6), \operatorname{IXX}(6)$ REALI (5.9001)NSET,LLSEE
FOFirat (2I3,F10.1)
WRITE(6,9002)NSET,LL,EE
FORMAT('1'g10X,' \# DF IGTA SET TO EE USEI =',IJ,'TRIAI
\% I3,'E=',F10.8)
DO 9110 JAN=19NSET
[10 $4100 \quad \mathrm{I}=1,20$
FEGII $(5,2100)(\operatorname{NAME}(J), J=1,10)$
WFITE $(6,2100)(\operatorname{NAHE}(J), J=1,10)$
CONTINUE
FORIGAT(10AG)
FEAII (5:2200)XLIM,XLLIM
WFITE(6, 2200) XLIM, XLLIM
FOFíat (2F10.5)
FEALIS, 6080)NAME1, NAMEZ, NAME3
FOFifiat (3AB)
FEALI (5, 2300)INLIF, KF, NEIN,NFIDN,NNION,NFEG,NDEN,NNFTL,
1 NTYFEgNMIN

1 gNTYFE,NMIN
\% G,NFT,YU,F,NCOMF,ALID,CU2,CU3,CF2,CF3,AIIT,NXD,XII) FORIMAT (EF10.5)
FEAII (5,2400)ALFA:IG23, IG 32,ALFA2,ALFB2;ALFA3;ALFB3 WFITE(6,2400)ALFA, IGG23:IGG3, ALFA2,ALFE2,ALFA3,ALFE3 FEAII (5,2400)GFN2,2FN2,GFN3, ZFN3, DGA2, LIGE2, IIGA3, IIGE3 WFITE (6,2400) GFN2, ZFN2,GFNZ, ZFNJ, LIGA2, IGGE2, IIGA3, LGE3 REALI(5,2400) E012,E112,E013,E113,E123,IELTA
WFITE (6,2400)E012,E112,H013,E113,B123, DELTA
FEAII (5,9141) ALFHA1, AXT1,EXT1
WFITE $(6,9141)$ ALFHA1:AXT1, EXT1
FOFMAT (F10.7,2F10.4)
FEAL (5,2300) M9 M M
WFITE $(6,2300)$ Kír MM
[10 $4400 \quad \mathrm{I}=1 \mathrm{~F}$ 的
FEALI(5,2600)XTX(I), IIXX(I)
WFITE(6,2600$) \times T X(I), \operatorname{IXX}(I)$
CONTINUE
FORHAT (2F10.4)
IMITIALIzATION FOR THE LSQ2
C
C
C

$$
\text { IIO } 4200 \quad \mathrm{JJ}=1,7
$$

$$
110 \quad 4200 \mathrm{JI}=1,10
$$

$$
X(J J r J I)=0.0
$$

$$
\text { IIO } 4300 \text { k゙J=1, INLF }
$$

CONTINUE
10 4401 IK =19, Kin
$X T(I K)=X T X(I K)$
IX (IN゙) $=\mathrm{IXX}(\mathrm{IK})$
CONTITNUE
ALFHA =ALFHA1
$A \times T=A X T 1$
$E \times T=E X T 1$
C
ᄃ
C
C
C
c
C
THIS FAFT OF THE HAIN FROGFAM SFECIFIES THE TYFE OF
IIATA TO EE USEI, ALSO IIATA AFE CDNVEFTEII INTO IIFFEFENT
SYMEOLS FOF MINIMUM ANI KAXIMUM HOLALITY LIMITS.
$X L I M=X L I M+1.0$
$J=0$
WFITE (G:2A10) XLIM

IO $4310 \mathrm{I}=1$, NF T
GO TO (9901,9902,9003,9004,9005:9006,9007,9009,9000) , NTYFE
9901
IF (XL (3,I), EQ. 0.0) GO TO 9000
GO TO 4310
9902 IF (XL (2gI).EQ.0.0)G0 TO 9000 GO 704310
9003 IF (XirDL (I).ER. O.0)GOTO 9000
GO TO 4310
9004 IF (XHOL (I) .EQ. O.0)GO TO 4310
IF (XL(2,I), EQ.0.0)GO TO 4310
$\operatorname{IF}(X L(3, I)+E Q+0.0) G 0$ TO 4310
GO TO 9000
9005 IF (XriOL (I) .EQ. 0.0)GO TO 4310 $\operatorname{IF}\left(X L(3, I)+E Q^{*}+0.0\right) G 0$ TO 4310 G0 TO 9000
9006 IF (XIOL (I).EQ.0.0)G0 TO 4310
IF (XL (I,I), EQ. O, O)GO TO $4 \Xi 10$
GO TO 9000
9007
$\operatorname{IF}(X L(\Omega, I), E Q .0 .0) G 0$ TO 4310 IF (XL ($3, I), E Q .0,0) G 0$ TO 4310 GO TO 9000

```
9008 IF(XMOL(I).EQ.O.0)GO T0 4310
5000 IF(XMOL(I).LT.XLLIM)GO TO 4310
    IF(XHOL(I),LE.XLIM)GO TO 3100
    GO TO 4310
3100 J=J+1
    iNF=J
    YY(2,J)=YU(2,I)
    YY(Z:J)=YU(Z,I)
    FF'(J)=F'(I)
    TTT(J)=T(I)
    XXMOL(J)= XMOL(I)
    XX(1;J)=XL(1,I)
    XX(2,J)=XL(2,I)
    XX(3,J)=XL(3,I)
    XXF(2,J)=XF(2,I)
    XXF(3,J)=XF(3,I)
    GG(1,J)=G(1,I)
    GG(2,J)=G(2,I)
    GG(3,J)=G(3;I)
    CONTINUE
    IF(KF,LE,1)MO=2
    IF(K゙F,GT,1)H0=1
C
C
C
C
C
    IF(NFEG.GT.1)EO'TO 110
    WRITE(E,160)MO
150 FOFHAT(//, EX,' ULE IATA AFE F'REIIICTEN USING MOIEL #', IS)
        LIC=1
    CALL FN(YYIIgXTgLIC)
    GO TO 3300
C
C
C . FROGFFIAM FOF THE COFFELATION
C
110 WFITE(G,170)KF
170 FOFHAGT//,5X,' ULE IATA ARE COFFEELATEI USING HODEL *',IJ)
    IF\H%GT.1)G0 T0 3200
    CALL FIEN(ALFHA,AXT,EXT)
    G0 TO(240,250,260),NEIN
210 WFIITE(6,270)EO12
270 FOFIMAT(//F10X,' EO12 =',G12.5)
    GO TO \Xi300
250 WFITE(6,280)EQ13
200 FOFMAT(//,10X,'EO13=',G12.5)
    GO TO 3300
    GO TO(210,220),NEFOM
```

```
210
290
220
3 0 0
3200
2800 FOFMMAT(///,5X,'FINAL VALUES OF XT(',I2,')=',E15.8)
2900 FOKMAT(///,5X,'Y(',12,')=',E15.8)
c
C
FFOM HEFE MAIN FFDGFAM AFFANGES THE OUTFUT
gCAL(J,I) - CALCULATEI ACTIUITY COEFFICIENT
    GG(J,I) - EXFERIMENTAL ACTIUITY COEFFICIENT
ERFOR(J.I) - % ERFOF IN ACTIUITY COEFFICIENT
all the sefafite farts ligteg eelow are in the lN form..
GIH(J,I) - DEEYE-HUCKEL FAFT OF THE ACTUITY COEFFICIENT
GFHY(J,I) - EXTENDED II.H. FART DF THE COULOMEIC TEFMS
                                BESIDES II.H. FART IN THE ACTUITY COEFICIENT
GAIIM(J,I) - SALTING OUT CONTFIEUTIDN TO THE ACTUITY COEFFICI
GNFT(J,I) - NFTL CONTRIEUTION TO THE ACTIUITY COEFFICIENT
WFITE(6,290)E123
FORMAT(//,10X,'E123 =',G12.5)
GO TO 3300
WFITE (6,300)DELTA
FDFMAT(//,10X,'HELTA =',G12.5)
GO TO 3300
L=LL
E=EE
M1=n+1
MB=H+3
CALL LSR2(XT,X,[IX,Y,M,M1,M3,L,E)
WFITE(6,2800)(I,XT(I),I=1,M)
WFITE(0,2900)(I,Y(I),I=1,H1)
[
C
```

GO TO 3 A15.

GO TO 3415

GO TO 3415

GO TO 3415

GO TO 3415
$N U F=N U F+1$
$N V=N V+1$

WFITE (6,2110)

CONTINUE
WFITE (6,2120)

GG(3,I)=1.0 E 58
$\operatorname{ERROR}(3, I)=1.0$ E 58
IF (GG(2,I).EQ.1.0)G0 TO 3403
IF (GG(1, I).EQ.1.0) GO TO 3400
$\mathrm{GG}\langle 2, I\rangle=1.0 \mathrm{E} 58$
EFFOF(2,I)=1.0 E 58
$\mathrm{GG}(2, I)=1.0 \mathrm{E} 58$
EFFOF(2,I)=1,0 E 58
$\operatorname{IF}(G G(3, I), E R, 1,0) G 0 T 03404$
IF (GG(1,I).EQ.1.0) GO TO 3400
$\mathrm{GG}(3, \mathrm{I})=1.0 \mathrm{E} 58$
EFROR(3,I)=1.0 E 58
$\mathrm{GG}(1, \mathrm{I})=1.0 \mathrm{E} 58$
EFFOF(1.I)=1.0 E 58
IF (XX(2,I),EQ.0.0)GO TO 3415
IF (XX(3,I).EQ.0.0)GO TO 3415
$\mathrm{DF}(I)=\mathrm{FTC}(I)-\mathrm{FF}^{\prime}(I)$
FSUMA=FSUH+AES(DF(I))
$\operatorname{IIY}(I)=Y C A L(3, I)-Y Y(3, I)$
YSUIT=YSUHItAES (IIY (I))

\% YCAL ', 10X,'YCAL-YEXP', $7 X$,'FCAL-FEXF')
FOFHAT (8X,I2,5(5X,F12.5))
[10 $4520 \mathrm{~J}=2$, NCOMF
WFITE(6,2115)J,XX(J,I),YY(J,I):YCAL(J,I), IIY(I):IFF(I)
 2X,' LOG COULOMEIC ',IX,' LOG FHYSICAL ', IX,' LOG AIDITION ',

IIO $4530 J=1$, NCOMF
WFITE(6,2125)J,XXMOL(I),GNRT(J,I),GLH(J,I),GFHY(J,I),GALII(J,I),
\% GCAL (JyI) gGG(JyI), EFROR(J,I)
FOFMAT(8X,I2,8X,G10.3,3X,G10.3,5X,G10.3,4X,G10.3,5X,G10.3,4X,
\% G10.3, $3 \mathrm{X}, \mathrm{G10.3,4X,G10.3)}$
table for the mean molal activity coefficient

CALL TITLE (NAME1,NAME2, MAMEZ,ALFA, IGG2, IGG32,GFN2,GFN3,ZFN2,

```
    % ZPN3,B012,H013,B112,B113,E123,DELTA,K゙F,NTYFE,XX(2,1)%
    % XXMOL(1),NNRTL, IGA2,DGA3,[IGE2,LIGH3,ALFA?,ALFB2,ALFA3,
% ALFB3)
    WFITE(6,7165)
7 1 6 5
    FORMAT(//,GX,'AUG %EFFROR IN MEAN MOLAL ACTIUITY COEFFICIENTS
    % ',G12.5)
    WRITE(6,71B1)NS
7181
C
C
C
C
C
    % ZPN3,FO12,H013,B112,H113,B123,IELTA,KP,NTYPE,XX(2,1),
    % XXMOL(1);NNRTL,IIGA2,IIGA3,DGE2,DGB3,ALFA2,ALFE2,ALFA3,
    % ALFB3)
    WFITE(6,7190)
7190 FOFMAT(//, 2X,'MOLALITY', 3X,'X2',10X,'X3',8X,'Y3EXF', 8X,'Y3CAL'
    % ,5X,'DY',9X,'nP')
    10 8220 I =1,NP
    IF(XX(2.I),EQ.0.0) GO TO 8220
    IF(XX(3,I).EQ.0.0) G0 TO 8220
    WRITE(6,7195)XXMOL(I) , XX(2,I) ; XX{3,I),YY(3,I),YCAL(3,I)
    % , пY(I), DP(I)
    FOFMAT(G10.3,4G12.5y2G10.3)
8220 CONTINUE
    IF(NU.LE +O)NV=1
    IF(NUP.LE.O)NUP=1
    IYAVG=YSUM/NU
    IPAVG=PSUM/NUP
    WRITE(G,7200) HYAVG
7200 FDFMAT(////10X,'AVERAGE DY(YCAL-YEXP)=',G12.5)
?
```

WKITE (6.7201jNV

FOFiMAT (9X, EASEII ON \# OF FOINTS FOF Y =',IS) WFITE (6,7210$)$ IIFAUG
FOFiMAT (////,10X,'AVEFAGE IIF (FCAL-FEXF')=',G12.5) WFITE (6,7221) NUF
FOFIMAT (OX,'EASEI DN \#. OF FOINTS FOF IIF =',I3)

TABLE FOF THE EINAFiY IIELTA F

\% ALFE3)
$N H F=0$
XIFFSUFI=0.0
WFITE (6.8290)

\% 2X, ' $\%$ EFF゙OF IN IF' $)$
H0 $8230 \mathrm{I}=1$, NF
CALL VAFFFiE (CF2,CFB,FSH,TTT(I))
IF (XX (2,I),EQ.0.0) GO TO 8235
IF (XX(3,I), EQ.0.0) GO TO 8240
G0 TO 8245
IF (GG(3,I), EQ, 1.0)GO TO 8245

$F[1 F=(I F C A L-D F E X F) / I F E X F * 100.0$
$X I F=X X(3, I)$
GO TO 8250
IF (GG(2,I).EG.1.0)G0 TO 8245
LIFEXF=FSM(2)-XX(2,I)*GG(2,I)*FSM(2)
IFFCAL $=$ FSM (2) $-X X(2, I) * G C A L\{2, I) * F S M(2)$
$F^{\prime} I F^{\prime}=(I F \cdot C A L-I I F E X F) / I F E X F \cdot \$ 100.0$
$X I F=X X(2, I)$
WFITE (6,8255) XXMOL (I), XIF, IIFEXF, IIFCAL,FFIF-
FOFIMAT (2X,G10.3,2G12,5,G10,3,G12,5)
NLIF:NNF: +1
XIFFSUAT=XIFSUM+ABS (FILF')
GO TO 8230
$N I F=1$
CONTINUE
FLIFAUG=XLFSUM/NLIP
WFITE (GP8265)FIFFUG
FOFMAT (///, $6 X$, 'AVG $\%$ EFFOR IN IF' =',G12,5)
WFITE (G.8270)NLF
FOFHAT (フX,'EASED ON \# OF FOINTS =', I 3)
IF (KF.GT.I)GO TO 4300
WFITE(Gy9220)


``` WFITE ( 6,9230 ) (XXMOL (I) , XXF \(3, ~(3), E M(I), I=1, N F)\)
9230 FOFMAT (//, 4X, G10.3.2G12.5)
4300 CONTINUE WFITE (6,7202) FOFMAT('1')
7202
9110
CONTINUE STOF
ENII
```

C

C
r
(

SUBFDUTIIRE IRFDAT

THIS SUEFOUTINE REAIS ALL INFUT ULE IATA AND FURE COMFONEIVT matA

 COFFONENTS $2 \% 3$ RESFECTIUELY.
AMW(I) - MOLECULAF WEIGHT OF THE COMFONENT I
U21, V22, V23- FUFE COMFONENT LIQUII VOLUMES AT IIFFERENT V31,U32.V33 TEMFERATURES
CU2(I), - TEMFEFATURE IEFENIENT LIQUII VOLUME CONSTANTS
CU3(I) FOF THE COMFONENT 2 \& 3 FESFECTIUELY.
ADT(1,I) - IIIELECTFIC CONSTANTS FOF A TEMFEFATUFE OF THE
AIIT(2,I) SOLUTION.
XII(I) - MOLE-FFACTION OF THE SOLUENT(3) IN THE SOLUTION FOF THE IIELECTRIC CONSTANTS(ELECTROLYTE FREE)
FK - TOTAL \# OF IONS OF THE ELECTFOLYTE
FNF - OF FOSITIUE IONS IN THE ELECTFOLYTE
FNM - OF NEGATIUE IONS IN THE ELECTROLYTE
FZF - FOSITIVE ION VALENCY(ABSOLUTE UNITS)
FZN - NEGATIUE ION VALENCY(ABSOLUTE UNITS)
DENS(I) - LENSITY OF THE SOLUTION(ELECTROLYTE FREE)
XIII(I) - MOLE-FFACTION OF THE SOLUENT(3) IN A SOLUTION FOR THE IENSITY IIENS(I).

Y MOL (I) - MOLALITY OF THE I TH FOINT
X(J.I) - LIQUII MOLE FFACTION; J IENOTES COMFONENT
I DEIVOTES I TH FOINT
Y(J.I) - UAFDF FHASE MDLE FFACTION
G(J,I) - EXFEFIMENTAL VALUES OF THE ACTIUITY COEFFICIENT
F(I) - TOTAL FRESSURE OF THE SYSTEM
T(I) - TEM̈FERATURE OF THE SYSTEM
XF(J,I) - SOLUENT MOLE FFACTIONS(ELECTROLYTE FREE)
FEM(J) - FURE COMFONENT UAFOR FRESSURE OF THE COMFONENT J AT THE SYSTEM TEMFRATURE.

[^0]```
C
C
 IIMENSION X(3,99),XF(3,99),AMW(3)yG(3,99),Y(3,99),P(99),
 % ADII(6),T(99),PSM(3), XMOL(99), IENS(20), XDD(20)
 DIMENSION CU2(3),CUZ(3),CFF2(6),CF3(6),ALT(2,20),XD(20)
C
C
C
1000
2 0 0 0
C
C
C
C
C
C
5000 FORMAT(//,5X,' LIQUID MOLAR UOLUME CONSTANTS')
 WRITE(6,5010)CU2(1),CU2(2),CU2(3)
 WRITE(6,5010)CU3(1), CU3(2),CU3(3)
5010 FORMAT (5X,3(G12.5,3X))
5020 FDFIMAT (5X,GG12,5)
 ID 10 I=1,NXD
 READ(5,2800)ADT(1,I),AITT(2,I),XD(I)
 WRITE(6,2800)AIIT(1,I),ALT(2,I), XIN(I)
 FDRMAT (3F10.5)
2800
 CDNTINUE
?
```

```
2300 FORMAT (6F10.5)
 FEAL(5,2400)FK,FNP,FNM,FZF,FZN
 WFITE(G,2400)FK,FNP,FNM,FZP,FZN
 FORMAT(5F10.5)
 DO 50 I=1,NXDD
 READ(5,2300) IIENS (I), XILI(I)
 WFITE (6,2300) LENS (I), XHD(I)
 CONTINUE
 CALL FITIT(NXII,XD[I,IENS,AMD)
 WFITE(6,5020)(ADI(II),II=1,6)
 EXFERIMENTAL M-F-T-X-Y-MEAN MOLAL ACTUITY COEFFICIENT IAATA
 FOLLOWING INSTRUCTIONS ARE IMPORTANT
 1. IF DATA ARE MOLALITY US MEAN MOLALITY ACTIUITY
 COEFFICIENT DNLY, READ P(I)=1,0
 2. IF IIATA ARE MOLALITY US UAFOF PRESSURE ONLY, READ
 G(I,I)=1.0
 3. IF A BINARY IIATA AFE USED, READ X AND Y UALUES OF THE
 OTHER SOLUENT (WHICH IS NOT F'RESENT) =0.0
 IIO 4100 I=1,NP
 REAL(5,2500)XMOL(I);(X(JyI),Y(JyI),J=2,NCOMP),G(1,I),F(I),T(I)
 WFITE(6,2500)XMOL(I),(X(J,I),Y(J,I),J=2,NCOMP),G(1;I),P(I),T(I
 FORMAT(8F10.6)
 CALL VAFFRE(CPI,CP3,FSM,T(I))
 WRITE(6,2501)F'SM(2) %PSM(3)
 FOFMAT(1X,G10.3,3X,G10.3)
C
C
C
C
C
C
C
 SUM=1.0
 IO 4200 K=2,NCOMP
 SUM=SUM-X(K,I)
CALCULATION OF THE EXPEFIMENTAL ACTIUITY COEFFICIENT
 OF SOLVENTS. ASSUMING FOYNTING EFFECT = 1.0 &
 FUGACITY COEFFICIENT = 1.0.
 CONTINUE
 X(I,I)=SUM/FK
 XSUM=0.0
 DO 4300 K゙=2 yNCOMP
 XSUM=XSUM+X(K,I)
 IF(P(I),EQ.1.0)GO TO 3100
 IF(X(K,I),EQ,O.0)GO TO 3100
```

```
 G(K,I)=Y(K,I)灰F(I)/X(K,I)/FGS隹(K)
 g0 T0 4300.
 3100 G(K,I)=1.0
 4300 CONTINUE
 10 4.400 k==2,NCOMF
 XF(K,I)=X(K,I)/XSUM
 CONTINUE
 CONTIMUE
 WFITE(6,2601)
 2601 FOFYAT('-'s18X,' X1 ',10X,' X2 ',12X,' X3 ',9X''GAMA1 ',8X,
 % 'Gamaz ',8X,' Gama3')
 L口 4500 I=1,NF
 WFITE(5,2600)X(1,I),X(2,I),X(3,I),G(1,I),G(2,I),G(3,I)
 2600 FOFifAT (10X,0F15.6)
 4500 CONTINUE
 FEETUFIN
 ENI
```


## SUBROUTINE FITIT(NFOINT,X1,AGAMA,A)

C

FETURN
END
?
CONTINUE NCODE $=0$
MAXORII=5

NNK=1
K1 $=$ K゙+1

SUM=A (1)

CONTINUE

CONTINUE

THIS FROGRAM FITS A FOLYNDMIAL OF IIEGREE 5
IIMENSION SIGMAY(20),X1(20),AGAMA(20),A(6),DELTAY(20),YCAL(20) IF (NFOINT.LE.3) GO TO 99

IIO 2 I=1,NFOINT
$\operatorname{SIGMAY}(I)=0$.

IF (NFOINT.LE.4) MAXORI=2
IF (MAXORD.GT,6) MAXORI=6
nio 3 K=5ッNNK

CALL FOLIFI(X1,AGAMA,SIGMAY,NFOINT,K1,OPA,CHISQR)
$E F R O R=0.0$
DO $4 \mathrm{~J}=1$,NFOINT
DO $5 \mathrm{I}=2, \mathrm{~K} 1$
SLMM=SUM+A(I)*X1(J)**(I-1)
YCAL(J)=SUM
IELTAY (J) =YCAL (J)-AGAMA (J)
ERRDR=ERROR+IELTAY(J)**2
ERRDF=ERROR/NFOINT


EXTEACTEL FROM: EEUINGTON,F. F., 'IAATA REDUCTION ANL EFROR ANALYSIS FOF THE FHYSICAL SCIENCES", MCGRAW HILL.1969

SUEFOUTINE FOLIFIT FURFOSE
MAKE A LEAST-SQUAFES FIT TO IATA WITH G FOLYNOMIAL CUFVE $Y=A(1)+A(2) * X+A(3) * X * * 2+A(4) * X * 3+\ldots$

IESCEIFTION OF FAFAMETERS
$X$-AFFiAY OF IATA POINTS FOF INIEFENDENT VAFIGELE
Y -AFFiAY OF IIATA FOINTS FGF IEFENDENT VARIABLE
SIGMAY - AFFAY OF STANLARII IEUIATIONS FOR Y DATA FOINTS
NFTS -NUMEEF OF FAIRS OF IIATA FUINTS
NTEFMS -NUMEEF OF COEFFICIENTS(DEGREE OF FOLYNOMIAL +1 )
MODE - DETERMINANTS METHOD OF WEIGHTING LEAST-SQUAFES FIT
+1 (INSTFUMENTAL) WEIGHT (I)=1,/SIGMAY(I) **2
0 (NO WEIGHTING) WEIGHT =1.
-1 (STATISTICAL) WEIGHT(I) $=1, / Y(I)$
A - afRay of coefficients of folynomial CHISQR - FEEUCEI CHI SQUAFE FQR FIT

```
 SUEFROUTINES AND FUNCTION SUEFROGGAMS REQUIFEII '
 HELTEFM (ARFRYYMDRIDER)
 EUALUATES THE DETEFIMINANTS OF A SYMMETEIC TWO-DIMENSIONAL
 MATFIX OF NORIDEF
```

DOURLE FRECISION SUHX, SUMY, XTERM, YTERKY AFREAY,CHISQ
IIHENSION X(20), Y(20), SIGMAY(20), A(6)
IIICNSION SUMX(20), SUMY (20), AFIFAY ( 8,8 )
aCCUnULATE WEIGHTING SUHS
NHAX $=2$ *NTERMS - 1
Ho $13 \mathrm{~N}=1$, NîAX
$\operatorname{SUM} X(N)=0$.
no $15 \mathrm{~J}=1$, NTERMS
$\operatorname{sUMY}(J)=0$.
CHISQ $=0$.
no $50 \mathrm{I}=1$, NFTS
$X I=X(I)$
$Y I=Y(I)$
IF (MOLE) $32,37,39$
IF (YI) 35,37.33
WEIGHT $=1, / \mathrm{YI}$
GO TO 41
WEIGHT = 1./(-YI)
GO TO 41
WEIGHT $=1$.

```
 GO TO 41
 39 WEIGHT = 1./ SIGMAY(I)**2
 41 XTEFMOWEIGHT
 IO 44 N=1,NMAX
 SUHX(N) = SUMX(N) + XTEFM
 XTEFM = XTEFM * XI
 YTEFMM = WEIGHT*YI.
 IIO AB N=1, NTEFIOS
 SUKY(N)=SUMYY(N) + YTEFRM
 YTEFMM = YTEFiM *XI
 48
 5 0
 CHISQ = CHISQ + WEIGHT*YIN*2
 CONTINUE
 C
 C CONSTFUCT MATFICES ANII CALCULATE COEFFICIENTS
 C
 5 1
 54
 5 \%
 5%
 61
 6 2
 65
 66
 7 0
 C
 C CALCULATES CHI SOUAFE
 C
 71
 75
 76
 77
 80
```

```
 NO 5A J=1, NTEFMS
 HO 54 K゙=1, NTEFMS
 N=J+K-1
 AFFiAY(J,K゙) = SUMX(N)
 IIELTA = METEFIM (AFRAY,NTEFIMS)
 IF(IIELTA) 61,57,61
 CHISQF = 0.
 [IO 5% J=1, NTEFMS
 A(J) = 0.
 GO TO 80
 In 70 L=1, NTEFMO
 IO &G J=1, NTEFMS
 HO 65 K゙=1,NTEFMS
 N=J+K-1
 AFFIAY(J,N゙)=SUMX(N)
 AFFFAY (J,L)=SUSYY(J)
 A(L)=IIETEFIM(AFFFAY,NTEFMC)/IELTA
 IN 75 J=1, ìTEFHifS
 CHISQ = CHISQ - 2.*A(J)*SUMY(J)
 IO 75 K゙=1, NTEFMM
 N=J+K-1
 CHISQ==CHISR+A(J)*AくK゙)*SUMX(N)
 FFEEE:NNFTS-NTEFIMS
 CHISQF=CHISQ/FFEE
 FETUFN
 ENL
```



| C |  |
| :---: | :---: |
| C | EXTFACTEII FFOM：EEUINGTON，F．F．，＂IATA FEIUCTION ANII |
| C | EFFOF ANALYSIS FOF THE FHYSICAL SCIEINCES＂，ICGFAW HILL， 1969 |
| C |  |
| C | FUNCTION IETEFM |
| C |  |
| C | FURFOSE |
| C | CALCULATES THE IIETEFPIINANT OF A SQUAFE MATFIX |
| C |  |
| C | USAGE |
| C | IIET＝IIETEFiV＇（AFFAY＇NDFIEF） |
| C |  |
| C | LESCFIFTIUN OF FAFAMETEFS |
| C | AFFAY－MATFIX |
| C | NOFIER－OFDEF OF IIETEFITINANT（IEGREE OF MATRIX） |
| C |  |
| C | SUBFIUTINE ANII FUNCTION SUBFROGFAAMS FEQUIFEI |
| C | ISONE |
| C |  |
| C | COHMENTS |
| C | THIE SUEFFOGFAM L LESTEOYS THE INFUT HATFIX AFFAY |
| C |  |
|  | IOUELE FFRECISION ARFAY，SAVE DIMENSION AFFAY（B，8） |
|  |  |
| 10 | IETEFiríl $=1$ ． |
| 11 | IO $50 \mathrm{~K}=1$ ，NOFIDEF |
| C |  |
| C | INTEFCHANGE COLUMNS IF IIAGNOL ELEMENT IS ZEFO |
| C |  |
|  | IF（AFiRAY（K゙ッド）${ }^{\text {a }}$ 41，21．41 |
| 21 | IO 23 J J K゙，NOFLDEF |
|  | IF（AFFiAY（K゙，J）${ }^{\text {a }}$ 31，23，31 |
| 23 | CONTITVE |
|  | IETEFM $=0$. |
|  | G0 TO ¢0 |
| 31 | LIO $34 \mathrm{I}=$ K゙，NFOMER |
|  | SAUE＝AFEAY（IfJ） |
|  | AFiFAY（I，J）＝AFiFify（I，K） |
| 34 | AFFAY（I，- ）＝SAUE |
|  | IIETEFiH＝－IETEFM |
| C |  |
| C | SUETFACT FIOW K FFORi LOWER FIOWS TO GET IIAGONAL MATFIX |
| C |  |
| 41 | IEETEFiM＝IETEFI的家AFFiAY（K゙ッド） |
|  | IF（K－NQRLEF）43，50950 |
| 43 | K゙ı $=$ K゙ト1 |
|  | IU $46 \mathrm{I}=$ K゙1\％NOFIER |
|  | IO $46 \quad J=K ゙ 1$ ，NOFIIER |
| 46 |  |
| 50 | coistinue |
| 60 | FETUFiN |
|  | ENII |

```
 SUEFOUTINE UAFFRE(CP2,CF`,FGM,T)
```

DIMENSION CP2(6),CF3(6),PSM(3) FSM(2) $=\left(\operatorname{EXF}^{\prime}(\right.$ CF2 $2(1)+$ CF'2(2)/(CF2(3)+T)+CF2(4)*T+
\% CP2(5)*T**2.+CF2(6)*ALOG(T)))*760.
$\operatorname{PSM}(3)=(\operatorname{EXP}(C P 3(1)+C F 3(2) /(C P 3(3)+T)+C F 3(4) * T+$
\% CP3(5)*T**2.+CP3(6)*ALOG(T) ) )*760.
RETUFN
END
SUBFOUTINE TEMFD(CU2,CUZ,NXI,XI,ADT,AD,VO,T)

C

CALLS SUBROUTINE FITIT FOF CONCENTRATION IEPENDENCE OF IIELECTRIC CONSTANT.
this subroutine calculates the temperiature riefeniency of
the liquid molar volume ani iifelectric constant.
***************************************************************

IIIMENSION CU2(3),CU3(3), XII(20), ADT(2,20), AD(6), VO(3), ISXD(20) VO(2) $=\operatorname{CU2(1)+CV2(2)*T+CV2(3)*T**2.0~}$
$V 0(3)=\operatorname{CV} 3(1)+C V 3(2) * T+C V 3(3) * T * * 2.0$
IO $10 \mathrm{I}=1$, NXII
$\operatorname{ISXI}(I)=\operatorname{EXF}(2,303 *(\operatorname{AIT}(1, I)+A D T(2, I) *(T-293.15)))$
CONTINUE
CALL FITIT(NXD,XII,IISXI,AD)
FETUFN
ENI
*************************************************************
SUBFOUTINE TEMFD of IIELECTRIC CONGTANT.

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

SUEFOUTINE LSQ2 (XT,XIIXXY,MPMI,M3,L,E)

C

C
C
c
C
C
C
C
C
C
C
C
C
c

YL=1.0E38
$Y H=-Y L$
$Y 2=Y H$

```
 YZ=YL
 IIO 110 J=1, Yí
 IF(Y(J).LT.YH)GO TO 1091
 Y2=YH
 I2=IH
 YH=Y(J)
 IH=J
 GO TO 108
1091 IF(Y(J).LT.Y2)G0 TO 100.
 Y2=Y(J)
 I2=J
 109 IF(Y(J),GT,YL)GO TO 1101
 YZ=YL
 IZ=IL
 IL=J
 YL=Y(J)
 GO TO 110
 1101 IF(Y(J).GT,YZ)GO TO 110
 Y}=Y(J
 IZ=J
110 CONTINUE
 L2C=L2C+1
 IF(L2C,LT.L2)GO TO 111
 L2C=0
 JJ(1)=IL
 JJ(2)=I2
 JJ(3)=I3
 In 60 k゙1=1,バ3
 J1= JJ(k゙1)
 Iロ 60 K゙コ=K゙1gドア
 」こ=JJ(k゙2)
 5=0.0
 10 55 I=1,N
 S=S+(X(I,J1)-X(I;IH))*(X(I;J2)-X(I;IH))
 A(K1,K2)=S
 I=A(1,1)*A(2, 2)-A(1,2)本*2
 G0 TO (G2,61),K゙4
 I|1=A(1,1)*A(2,5)-A(1,2)*A(1,3)
 IF(A(1,1),EQ,0,0)A(1,1)=1,OE-5
 I=((A(1,1)*A(3,3)-A(1,3)**2)*[1-I1*上1)/(A(1,1)*.9.0)
 IF(II,EQ.0.0)GO TO 65
 IF(II,LE,0,O)I=ABS(I)
 II=(II/4,0)**G
 IF(II,LT,E)GO TO &S
 FLG=1.0
 GO TO 111
 IF(FLG*LT.0.0)GO TO 400
 FLG=-1.0
 m0 115 I=1.M
 XT(I)=0.0
```

［10 112 J＝1，M1
$I F(J, M E, I H) X T(I)=X T(I)+X(I, J)$
CONTINUE
$X T(I)=(3,0 * X T(I)+X(I, I 2)-X(I, I L)) / E N-X(I, I H)$
CALL FN（YT，XT，LIC）
IF（YT．GE．Y2）GO TO 167
IHC＝int 1
$I F(Y T, G E+Y L) G O T O 140$
$Y T T=Y T$
IIO $135 \mathrm{I}=1$ ， H
$X T(I)=1.5 * X T(I)-0.5 * X(I, I H)$
CALL FN（YT，XT，LIC）
IF（YT．LE．YL）GO TO 140
以10 $138 \mathrm{I}=1 \mathrm{M}$
$X(I, I H)=(2,0 * X T(I)+X(I, I H)) / 3.0$
$Y(I H)=Y T T$
GO T0 108
［10 $142 \mathrm{I}=1$ ，M
$X(I, I H)=X T(I)$
$Y(I H)=Y T$
GO TO 108
$I H C=I H C-1$
IF（IHC．EQ．O）GO TO 300
IF（YT．GE，YH）GO TO 173.
I口 $168 \mathrm{I}=1 \mathrm{~g}$ ल
$X 5=X T(I)$
$X T(I)=X(I, I H)$
$X(I, I H)=X S$
IIO $174 \mathrm{I}=1$ ， H
$X T(I)=0.75 * X(I y I H)+0.25 * X T(I)$
CALL FN（YTyXTsLIC）
IF（YT．GT，YH）GO TO 180
$Y(I H)=Y T$
IIO $175 \mathrm{I}=1$ ． K
$X(I, I H)=X T(I)$
GO TO 108
180 ［10 185 $J=1 \mathrm{~g}$ 保 1
IF（J．EQ．IL）GO TO 185
［10 182 I＝1，M
$X T(I)=(X(I, J)+X(I, I L)) / 2.0$
$X(I ; J)=X T(I)$
CALL FN（Y（J），XTYLIC）
185
300
CONTINUE
GO TO 108
IHC＝2出H1
IF（K．GE，3）GOTO 350
$S=0.0$
100 $302 \quad I=1, \mathrm{M}$
$X(I, M+2)=X(I, I H)-X(I, I L)$
$X(I, M+3)=X(I, I H)-X(I, I 3)$

```
```

$302 \quad S=5+X(I, M+2) * * 2$
ZO3 S=SQFT (S)
$I F(S, E Q, 0,0) S=1, O E-5$
$304 \quad U=-X(2, M+2) / 5$
$X(2, i f+2)=X(1, i j+2) / 5$
$X(1, M+2)=U$
$5=x(1, M+2) * x(1, M+3)+x(2 g M+2) * x(2 y M+3)$
$10305 \mathrm{I}=1 \mathrm{~m}$
305
306
$X T(I)=X(I, I H)-X(I, i+2)$
CALL FN(YTT,XT,LIC)
IF (YTT.LE.YT)GO TO 320
[10 $311 \mathrm{I}=1$; M
$311 \quad \mathrm{XT}(\mathrm{I})=\mathrm{X}(\mathrm{I}, \mathrm{IH})+\mathrm{X}(\mathrm{I}, \mathrm{rita})$
$Y T T=Y T$
$Y(I H)=Y T T$
以 $321 \mathrm{I}=1 \mathrm{gM}$
$X(I, I H)=X T(I)$
GO TO 108
350 [10 $352 \mathrm{I}=1 \mathrm{~m}$
$X T(I)=X(I, I H)-X(I, I L)$
$X(I, i+2)=X(I, I H)-X(I, I 2)$
$X(I, M+3)=X(I, I H)-X(I, I 3)$
$\mathrm{S}=0.0$
$51=0.0$
[10 $355 \quad I=1$ m
$5=S+X T(I) * * 2$
$355 \quad \mathrm{~S} 1=\mathrm{S} 1+\mathrm{X}(\mathrm{I}+\mathrm{il}+3) * * 2$
S=SQRT (S)
SI=SQRT(S1)
$52=0.0$
[10 $357 \mathrm{I}=1$, M
IF (S.EQ.0.0) S=1.0E-5
$X T(I)=X T(I) / S$
S2=S2+XT (I)*XiInit2)
IF (S1.ER.0.0)S1=1.0E-5
$357 \quad X(I, i+3)=X(I, i+3) / 51$
IO $360 \mathrm{I}=1, \mathrm{M}$
360

```
```

    X(I,M+2)=X(I,M+2)*S
    ```
 X(I,M+2)=X(I,M+2)*S
 [10 \(307 \mathrm{I}=1\), M
 \(X T(I)=X(I, I H)+X(I, I+2)\)
 CALL FN(YT,XT,LIC)
 [10 \(309 \mathrm{I}=1\), M
 \(X(I, H+2)=X(I, M+2)-X T(I) * S 2\)
 \(51=0.0\)
 110 \(362 \quad \mathrm{I}=1\) g M
 \(\mathrm{S} 1=\mathrm{S} 1+\mathrm{X}(\mathrm{I}, \mathrm{i}+\mathrm{t} 2) * * 2\)
 S1=SQRT(S1)
 no \(365 \mathrm{I}=1\), 社
 \(\operatorname{IF}(S 1, E Q \cdot 0.0) S 1=1,0 E-5\)
 \(x(I, \dot{H}+2)=x(I, H+2) / S 1\)
```

```
 S1=0.0
 52=0.0
 I10 367 I=1, %
 S1=S1+XT(I)*X(I;M+3)
```



```
 110 370 I=1, if
370 X(I,M+2)=S*(SI*XT(I)+52*X(I,Hit?)-X(I,if+3))
 GO TO 306
 S=Y(1)
 Y(I)=Y(IL)
 Y(IL)==S
 II口 402 I=1gm
 XT(I)=X(I,IL)
 X(I,IL)=X(I;I)
402
772 FOFMAT('_','LIC=',IS)
FETUFIN
ENII
```


# SUBROUTINE FN(YY,XT,LIC) 



```
 GFN2=XT(1)
 ZF'2=XT(2)
 GO TO 1070
 GO TO(30,AO)sNNFITL
 1050
 IIGE3=XT(2)
 GO TD 1070
 40 IF (XT(1).LT.0.0)XT(2)=0.0
 GFN3=XT(1)
 ZF'3=XT(2)
 G0 TO 1070
 1060 HELTA=XT(2)
 E123=XT(1)
 G0 TO 1070
 1080 LIG23=XT(1)
 IG32=XT(2)
 G0 T0 1070
 G0 T0 (50,60),NNFTTL
 LIGA2=XT(1)
 LGET= XT (2)
 IGA3=XT(3)
 IIGES=XT(4)
 GOTO 1070
 60 IF(XT(1).LT.0.0)XT(1)=0.0
 IF}(XT(3)+LT,0.0)XT(Z)=0.
 GFN2=XT(1)
 ZFN2=XT(2)
 GF'N3=XT(3)
 ZF\cdotN3=XT(4)
 1070 IF(K゙F.GT.1) G0 TO 3100
 CALL NFTLI(X,T,GNFT,FKgFNF,NF,gALFAgIIG23,HG32)
 CALL EFOML (XMOL,XF,AMW,FINF,FN许,FK,FZF,FZN,T,GEL,
 % NF,E123gGDH,GFHY, EMt{,A[II,NLEN,CU2,CUZ,NXI,XI,AIT,EO12,H112
 % ,EO13,E113)
```



```
 % IIELTA,NFIONgNNIONgNF,AII,NDEN,CU2,CU3,NXI,XI,AIIT,
 % EO12,H112,EO13,E113)
 GO TO 3200
```



```
 % IIG32,FNHyNNFTL,ALFA2,ALFE2,ALFA3,ALFEJ`yIGA2,IIGE2,
 % IIGAB,IIGES)
 CALL IIEEHUC(XMOL,XF;XgFK゙gFNF;FNN;FZFgFZN,GEL,AİW,
 % T,NF:GIIH,GFHY,AIII,NIEN,CU2,CUSgNXI,XII,AIT)
 IO 8010 IJ=1g NF
 GAMLI (1,IJ)=0.0
 GAIM(2,IJ)=0.0
 GAIH(3,IJ)=0.0.
 8010 CONTINUE
 32C0 Y Y = 0.0
 IID 4000 I=1 yNP
```

```
 IF(XF(2,I),EQ,0,0)GO TO 1000
 IF(XF(3,I).EQ.0.0)GO TO 1010
 gO TO 1020
 XBOL(1)+1.0))
 GCAL(2,I)=EXF(GNRT(2,I)+GEL(2,I)+GADII(2,I))
 GCAL(3,I)=EXF(GNFT(3,I)+GEL(3,I)+GAIIM(3,I))
 FTC{I)=X(2,I)*GCAL(2,I)*FSM(2)+X(3,I)*GCAL(3,I)*FSM(3)
 YCAL(2,I)=X(2,I)*GCAL(2,I)*FSM(2)/FTC(I)
 YCAL(3,I)=X(3,I)*GCAL(3,I)%FSM(3)/FTC(I)
 EFFOR(1,I)=(GG(1,I)-GCAL(1,I))/GG(1,I)*100.
 EFFOR(2,I)=(GG(2,I)-GCAL(2,I))/GG(2,I)*100.
 EFFOF(3,I)={GG(3,I)-GCAL(3,I))/GG(3,I)*100.
 IF(XMOL(I), EQ,0,0)EFROR(1,I)=0.0
 IF (X(2,I),EQ,0.0)EFFOF}(2,I)=0.
 IF(X(3,I),EQ,0.0)EFFOR(3,I)=0.0
 IF(GG(1,I),EQ,1,0)ERFOR(1,I)=0.0
 IF(GG(2,I),EQ.1.0)EFROR(2,I)=0.0
 IF(GG(3,I),EQ,1.0)ERFROR(3,I)=0.0
 IIF1=AES(EFROR(1,I)/100.)
 IIF2=AES(EFFOR(2,I)/100.)
 IIF3=AES(EFFOR(3,I)/100.)
 IIFA=AES(YCAL (3,I)-YU(3,I))
 IIFS=AES((FTC(I)-F(I))/F(I))
 IF(NMIN,GT.3)GO TO 2000
 GO TO 2010
 IF(X(2,I),EQ.0.0)G0 TO 2020
 IF(X(3,I).EQ.0.0)GO TO 2030
2020 [IIFS=ABS((FF(I)-FTC(I))/(FGM(3)-F(I)))
 IF (F'(I),EQ,1,0)IIF 3=0.0
 GO TO 2010
 IIF2=ABS((F'(I)-FTC(I))/(FSin(2)-F(I)))
 IF(F(I),ER.1.0)IIF2=0.0
2010 CALL MINFUN\NTYFE,NMIN,IIF1,IIIF2,IIIF3,IIFA,IIFF,Y,X(2,I),
 % X(3,I))
 YE=YS+Y
 CONTINUE
 YY=YS
 IF(LIC/2O*20.NE.LIC)GO TO 301
```

```
WFITE (\(6,30 \underset{2}{2}) L I C\)
302 FOFHAT (10X, TFIIAL USEI = 'I4)
WFITE (Ey 303) YY, (XT (I) y \(I=1, \mathrm{M})\)
303 FOFHAT (///,5X,'YY= 'F15.7,5X,'XT UALUES ', \(6 F 15.6\)) 301 FETUFN
ENI
```


## SUEROUTINE FIEN(ALFHA,A,E)

$\mathrm{FIBO}=1.0$

```
\[
\operatorname{FIF}(1)=1.0
\]
\[
\operatorname{FIB}(2)=2.0
\]
 BB=1.0/ALFHA
 IF(EB-2.)10,10,11
 GO TO 14
 CONTINUE
 JJ=2
 JJ=JJ+1
 FIE(JJ)=FIB(JJ-1)+FIB(JJ-2)
 CC=FIE(JJ)
 IF(CC-EE) 13,15,15
 GO TO 12
 WRITE(6,002)
 FORMAT(///,10X,' ACCURACY SFECIFIED IN FUNC NOT SUFFICIENT.',
 % //,10X,' FROGRAM RESET ALFHA,ALPHA=0.01')
 ALFHA=0.01
 GO TO 5
C
c FIRST STEP IN THE TABLEAU
15 I=0
 KK=\J-2
 IK=JJJ-2
 EL=E-A

\section*{31 CONTINUE}

WRITE(6,004)II, \(\mathrm{EL}, \mathrm{A}, \mathrm{E}, \mathrm{ALL}, \mathrm{U}\) U WRITE (6.006)W,T

\section*{GO TO 70}
\[
70
\]

FETURN
ENI

\section*{SUBROUTINE FUNC(XT,YY)}

\title{
** \(w^{*} *\)
}

\section*{SURROUTINE FUNC}
************************"***************************************
THIS SUBROUTINE ESTABLISHES THE OBJECTIUE FUNCTION
SIMILAR TO SUBROUTINE FN. THIS IS CALLED BY
SUGROUTINE FIBN. ALL SYMEOLS ARE SAME AS IN
SUBROUTINE FN.

COMMON XKOL(99),X(3,99),XF(3,99),GG(3,99),F(99),YU(3,99),GNRT(
\% 3,99\()\), \(\operatorname{GEL}(3,99), \operatorname{GCAL}(3,99)\), \(\operatorname{AMW}(3)\), \(\operatorname{ERFROR}(3,99), \operatorname{GNH}(3,99)\)
\% , GFHY(3,99),T(99), \(\operatorname{BMM}(99), \operatorname{GALI}(3,79), \operatorname{YCAL}(3 ; 99), \operatorname{ADI}(6)\)
\(\%\), PTC(99)
COMMON NF,INDF,FNP,FNM,FZP,FZN,FK,ALFA,DG23,DG32,
\% GPN2,GFN3,ZPN2,ZPN3,KF,M,NEIN,NFION,NNION,DELTA
COMMON NDEN, NNRTL, ALFA2, ALFB2,ALFA3,ALFB3, IIGA2,IIGB2,
\% IGA3, DGB3,NBRDM,NREG,NTYPE,NIMN
COMMON EO12,B112,ED13,B113,CP2(6),CP3(6),CV2(3),CU3(3),
\% E123,ADT(2,20),NXD,XI(20)
DIMENSIDN PSM(3)
GO TO (1040,1050,1060),NEIN
1040 B012=XT
UELTA \(=0.0\)
\(\mathrm{B} 112=0.0\)
\(\mathrm{B} 123=0.0\)
GO TO 1070
1050 E013=XT
IIELTA \(=0.0\)
\(\mathrm{B} 113=0.0\)
\(\mathrm{E} 123=0.0\)
GO TO 1070
GO TO(10,20), NBROM
\(\mathrm{B} 123=\mathrm{XT}\)
GO TO 1070
20 DELTA=XT
1070 IF(KP.GT.1) GO'TO 3100
CALL NRTL1 (X,T,GNRT,FK,FNP,NP,ALFA, LG23,DG32)
CALL EROML (XMOL,XF,AMW,FNP,FNM,FK,FZF,FZN,T,GEL,
```

% NF,E123,GIH,GFHYyEMM,AII,NDEN,CU2,CU3,NXI,XI,AIT,ED12,E112
% ,B013,E113)
CALL AIITGN(XF,T,AMW, XHOL,FK゙,FZF,FZN,FNF,FNM,GAMI,
% IIELTA,INFION,NNION,NF,AIII,NIEN,CU2,CUZ,NXII,XI,AIIT,
% EO12,E112,EO13,E113)
GO TO 3200
1000 GNFT(2,I)=0.0
\# IIG32,FNH,NNFTL,ALFAS,ALFE2,ALFAS,ALFEZ,IIGA2,IIGEZ,IIGAZIIGGZ)
CALL IIEEHUC(XMOL,XF,X,FK,FNF,FNH,FZF,FZN,GEL,ANW,
% T,NF,GIH,GFHY,AIIINDEN,CUS,CUZ,NXI,XI,AITS
IO 8010 IJ=1.,NF
GAIII(1,IJ)=0.0
GA[IM(2,IJ)=0.0
GA[III(3,IJ)=0.0
CONTINUE
YS=0.0
IIO 4000 I=1.NF
IF(XF(2,I),EQ,0,0)GO TO 1000
IF(XF(3,I),EQ.0.0)GOTO 1010
GO TO 1020
GEL(2,I)=0.0
GNFT(1, I)=0.0
GAII\(2,I)=0.0
GAMII(1,I)=0.0
GO TO 1020
GNFT(3,I)=0.0
GEL(3,I)=0.0
GNFT(1,I)=0.0
GAIID(3,I)=0.0
GADII(1,I)=0.0
AMS = XF (2,I)*ANW(2)+XF(3,I)*AMW(3)
GCAL(1,I)=EXF(GNFT(1,I)+GEL(1,I)+GAMI(1,I)-ALDG(0,001*FK゙%AMS*
% XHOL(I)+1.O))
GCAL (2,I)=EXF(GNFT(2,I)+GEL(2,I)+GAMI(2,I))
GCAL(Z,I)=EXF'(GNFT{3,I)+GEL(3,I)+GAMI(3,I))
CALL UAFFFEE(CFI,CFG;FGifyT(I))
FTC(I)=X(2,I)*FSH(2)*GCAL(2,I)+X(3,I)*FSM(3)*GCAL(3,I)
YCAL(2,I)=X(2,I)*FSM(2)*GCAL(2,I)/PTC(I)
YCAL(ZgI)=X(3,I)*PS斻(3)*GCAL(3,I)/FTC(I)
EFROR(1,I)=(GG(1,I)-GCAL(1,I))/GE(1,I)*100.
EFFiOF(2,I)=(GG(2,I)-GCAL(2,I))/GG(2,I)*100.
EFFIOF(3,I)=(GG(3,I)-GCAL(3,I))/GG(3,I)*100.
TF(XMOL(I),EQ.0.0)EFFFOR(1,I)=0.0
IF (X(2,I),EQ.0.0)EFROR(2,I)=0.0
IF (X(3,I), EQ,0,0)EFROFT}(3,I)=0,0
IF{GG(1,I),EQ.1,0)EFFROR(1,I:=0.0
IF(GG(2,I),EQ.1,N`EFFOR(2;I)=0.0
IF(GG(3,I):En,1,0)ERROR(3,I)=0.0
TITE1=AES(ERROR(1,I)/100.)

```
3100
-
1010
1020
C
```

    IIF2=AES(EFFOR(2,I)/100.)
    IIF3=AES(EFFOF(3,I)/100.)
    IIF4=ABS(YCAL(3,I)-YU(3,I))
    IIIFS=AES((FTC(I)-F(I))/E}I)
    IF(NMIN.GT.3)GO TO manO
    GO TO 2010
    2000 IF(X(2,I),EQ.0.0)GO TM ."m0
IF(X(3,I),EQ.0.0)GO TO 20-n
IIFS=AES((F(I)-FTC(I))/(FSM(7- -(I)))
IF(F'I),EQ.1.0)[IF 3=0.0
GO TO 2010
IIF2=ABS((F(I)-FTC(I))/(FSM(2)-F(I)))
IF(F(I).EQ.1.0)IIIF2=0.0
CALL MINFUN(NTYFE,NMIN,IIF1,IIF2,IIF3,IIFA,DIF5,Y.``?,I)
% ,X(3,I))
YS=YS+Y
CONTINUE
YY=YS
FETHTM,
ENTM

```

SUBFOUTINE NRTL1(X,T,GNRT,FK,FNP,NP,ALFA,IIG23,DG32)

\title{

}

SUBFDUTINE NFTLI
this sueroutine calculates solvent-soluent interaction
FOR A TERNAFY MIXTURE IN MOLIEL \(\# 2\).
* \(* *\)

IIIMENSION XA(99), X(3,99), GNRT(3,99),T(99)
\(R=1.987\)
DO \(4001 \mathrm{I}=1, \mathrm{NP}\)
G32=EXP (-ALFA*DG32/R/T(I))
Z32=IG32*G32
G23=EXP (-ALFA*IG23/R/T(I))
Z23=IGG23*G23
\(X A(I)=F N F * X(1, I)\)
FNT1 = (FK*XA(I)/FNP+X(2,I)+X(3,I)*G32)**2.
FNT2=(FK*XA(I)/FNP+X(3,I)+X(2,I)*G23)**2.
FNT3 \(=\mathrm{X}(2, I)+X(3, I) * G 32\)
FNT4 \(=\mathrm{X}(3, \mathrm{I})+\mathrm{X}(2, \mathrm{I})\) *G23
GNFT(1,I)=(-Z32/FNT1-Z23/FNT2+Z32/(FNT3**2.)+Z23/(FNT4**2.))*
\(\% \mathrm{X}(2, I) * X(3, I) / \mathrm{F} / \mathrm{T}(\mathrm{I})\)
AT2=XA(I)*X(3,I)*FK*(Z32/FNT1+Z23/FNT2+Z32/(FNT3**2.) +
\% Z23/(FNT4**2.))/(FNP*R*T(I))
AT3=XA(I)*X(2,I)*FK*(Z32/FNT1+Z23/FNT2+Z32/(FNT3**2.)+Z23
\% /(FNT4**2.))/(FNF*F*T(I))
BT3=X(2,I)**2.*(Z32/FNT1+Z23*G23/FNT2)/(R*T(I))
BT2=X(3,I)**2.*(G32*Z32/FNT1+Z23/FNT2)/(R*T(I))
CT2=-2.*FK*X(2,I)*X(3,I)*XA(I)*(Z32/(FNT3**3.)+G23*Z23
\% /(FNT4**3.))/(FNF*R*T(I))
CT3=-2.*FK*X(2,I)*X(3,I)*XA(I)*(Z32*G32/(FNT3**3.)+
\% Z23/(FNT4**3.))/(FNP*R*T(I))
\(\operatorname{GNRT}(2, I)=A T 2+B T 2+C T 2\)
\(\operatorname{GNRT}(3, I)=A T 3+B T 3+C T 3\)
CONTINUE
RETURN
END
```

SUEROUTINE EROML (XMOL, XF, AMW,FNP,FNM,FK,FZP,FZN,T,GBM, \% NP, B123,GDH,GFHY, BM, ADL,NDEN,CU2,CU3,NXI,XD,ALT,EO12, \% B112,ED13,B113)

```

\title{

}
SUBROUTINE EROML
THIS SUBROUTINE CALCULATES ION-ION INTERACTION \&
ION-SOLUENT INTERACTION ACCORDING TO THE BFOMLEY
EQUATION, IN MODEL * 2.

GDH(J.I) - CONTRIBUTION OF THE DEBYE-HUCKEL TERM GPHY(J.I) - CONTRIEUTION OF THE B TERMS IN THE EQUATION (i.e. ION-SOLNENT INTEFACTION)
```

    GBM(J,I) - COMBINATION OF THE AEOVE TWO TERMS
    ```
THIS SUBTOUTINE CALLS SUBROUTINES FUNCT \& FUNCB.'

```

    IIMENSIDN XMOL(99),XF(3,99),AMW(3),T(99)
    IIMENSION SIG(99),SAI(99),SIG1(99),SAII(99),GBM(3,99),
    % AI(99),F2(99),F3(99),BM(99),V口(3),AD(6)
% ,GIH(3,99),GPHY(3.99)
IIMENSION ADD(6),CU2(3),CU3(3),XD(20),ADT(2,20)
ROW=1.0
nO 4001 I=1gNP
IF(XMOL(I).EQ.O.O)GO TO 2010
B12=\&012*ALOG((T(I)-243.)/T(I))+B112/T(I)
B13=E013*ALOG((T(I)-243.)/T(I))+E113/T(I)
CALL TEMFI(CU2,CU3;NXI;XII,ADT,AD,VO,T(I))
AA=1.5/(FZP*FZN)
AI(I)=(FNP*FZF**2.+FNM*FZN**2.)*XMOL(I)/2.
XT1=1.+FOW*AI(I)**0.5
XT2=AA*AI(I)
XTZ=1.+XT2
XT4=1.+2.*XT2
AMS=XF(2,I)*AMW(2)+XF(3,I)*AMW(3)
TNS=1000./AMS
XT5={ROW*AI(I)**0. 5)**3.
XT6=0.001*FK*XMDL(I)
XT7=XT6*AHS+1.

```
```

    IF(XF(2,I).,EQ.0.0)GO TO 1000
    IF(XF(3,I),EQ.0.0)GO TO 1010
    CALL FUNCT(XF(2,I),XF(3,I):T(I);TNS,F2(I),F3(I),
    % ALE,FDI,F[IB,AD,DIS,ALI,NO,NIEN,AMW)
    CALL FUNCE(XF(2,I),YF(3,I),E12,B13,EM(I)
    % ,FE2,FE3,TNS,E123,AI(I),FHF,FFN,FZF,FZN,AMS,AMW(2),AMW(3)
    % ,FE1,XMOL(I))
    GO TO 1020
    % tAL\(5)*XF(3,I)**4, +AD(G)*XF(3,I)**5.
    DO3=AMW(3)/VO(3)
    ALEES=1.8246*10.**(6.0)*(DO3**0.5)*((1130*T(I))**(-1.5))
    FEI=0.0
    FET=0.0
    FES=0.0
    F2(I)=0.0
    F3(I) =0.0
    FI2=0.0
    FIIS=0.0
    AILE=ANES
    gO TO 1020
    EM(I)=E12
    ```

```

    % +AII(5)*XF(3,I)**4.+AI(6)*XF(3,I)**5.
    HO2=AMW(2)/VO(2)
    AILE=1.8245*10.**(6.0)*(1102**0.5)*((I20*T(I))**(-1.5))
    FEI=0.0
    FE2=0.0
    FE3=0.0
    F2(I) =0.0
    F3(I)=0.0
    FLI2=0.0
    F[13=0.0
    ALIB=ALEE2
    1020 SIG(I)=3.*(XT1-1./XT1-2.*ALOG(XT1))/XT5
SAI(I)=2.*(-ALOG(XT3)/XT2+XT4/(XT3**2.))/XT2
SIG1(I)=2.*(XT1**2./2.-2.*XT1+ALOG(XT1)+1.5)/XT5
SAI1(I)=0.6*2.0*FZF*FZN*(ALOG(XT3)/XT2-1./XT3)/XT2+1.0
YET1=XT6*2.303*AIE*SIG(I)*AI(I)**(0.5)/3.*(FZF*FZN)
YET2=2.303*FZF*FZN*XT6*(0.06+0.6*E:M(I))*SAI(I)*AI(I)/2.
YET3=2.303*XT6*EBr(I)*AI(I)/2.
YET4=2.303*XTG*TNS*AMS*SIG1(I)*AI(I)**(0.5)*(FZF*FZN)
YET5=FE3
YET7=FE2
YETG=2.303*XT6*AMS*TNS*AI(I)/2.0
FT1=-YET2-YET3
FTS=XTG*AITS
FTG=ALOG(XT7)
FT7=FT6-FT5

```


```

```
 GIH(2,I)=YET1*AMW(2)-YETA*F2(I)
```

```
 GIH(2,I)=YET1*AMW(2)-YETA*F2(I)
 GLH(3,I)=YETIXA䏚(3)-YETANF3(I)
 GLH(3,I)=YETIXA䏚(3)-YETANF3(I)
 GFHY(1,I)=((0.0ot 0.G*EM(I))*AI(I)/(XTZ**2.)
 GFHY(1,I)=((0.0ot 0.G*EM(I))*AI(I)/(XTZ**2.)
 % *FZF*FZN+EM(I)*AI(I))*2.303+2.303*XMOL(I)*AI(I)*TNS*AMS*SAII(I)
 % *FZF*FZN+EM(I)*AI(I))*2.303+2.303*XMOL(I)*AI(I)*TNS*AMS*SAII(I)
 % *FE1/2.0/1000.0
 % *FE1/2.0/1000.0
 GFHY(2,I)=FT1*AHib(2.+YET7*YBTG*SAII(I)
 GFHY(2,I)=FT1*AHib(2.+YET7*YBTG*SAII(I)
 GFHY(3,I)=FT1*AMil(3)+YETS*YBTG*SAII(I)
 GFHY(3,I)=FT1*AMil(3)+YETS*YBTG*SAII(I)
 GBM(1;I)=GIH:1,I)+GFHY(1;I)+ALOG(XT7)
 GBM(1;I)=GIH:1,I)+GFHY(1;I)+ALOG(XT7)
 GEM(2,I)=G[H(2,I)+GFHY(2,I)+FT7
 GEM(2,I)=G[H(2,I)+GFHY(2,I)+FT7
 GEM(3,I)=GLHH(3,I)+GFHY(3,I)+FT7
 GEM(3,I)=GLHH(3,I)+GFHY(3,I)+FT7
 GO TO 4001
 GO TO 4001
2010
2010
.
.
4 0 0 1
```

```
4 0 0 1
```

```
```

    GEM(1,I)=0.0
    ```
 GEM(1,I)=0.0
 GEM(2,I)=0.0
 GEM(2,I)=0.0
 GEM(3,I)=0.0
 GEM(3,I)=0.0
 GIH(1, I;=0.0
 GIH(1, I;=0.0
 GIIH(2,I)=0.0
 GIIH(2,I)=0.0
 GIH(3,I)=0,0
 GIH(3,I)=0,0
 GFHY(1,I)=0.0
 GFHY(1,I)=0.0
 GFHY(2,I)=0.0
 GFHY(2,I)=0.0
 GFHY(3,I)=0.0
 GFHY(3,I)=0.0
 COINTINUE
 COINTINUE
 FEETUFiN
 FEETUFiN
 EMIN
```

    EMIN
    ```

SUERDUTINE ADITON(XF,T,AMWgXMOL,FK,FZF,FZN,FNP,FNM,

\section*{SUBFDUTINE ADITON}
this subroutine calculates the salting out contribution in a a TEFNARY MIXTURE IN MOIEL * 2. IELTA IS THE SALTING OUT PARAMETER.
**

\% , B112, BO13.E113)
DIMENSION XMOL (99), XF (3.99), T(99), AMW(3),AD(6),GADD(3,99)
IIMENSION FP(6), FN(6), VO(3), AIIT 2,20 , \(\mathrm{CV} 2(3), \mathrm{CU}(3), A D D(6)\)
IIMENSION XII(20)
\(\mathrm{FP}(1)=\mathrm{HIDN}\)
FP (2) \(=\) LI ION
\(R P(3)=N A I D N\)
\(\operatorname{FiF}(4)=C A I O N\)
RN(1) \(=\) ER ION
FiN(2) = CL ION
fF' \((1)=2.08 * 10 . * *(-8,0)\)
RP (2) \(=0.60 * 10 . * *(-8.0)\)
\(\mathrm{RP}(3)=0.95 * 10 . * *(-8.0)\)
\(R P(4)=0.99 * 10 . * *(-8.0)\)
\(\operatorname{RN}(1)=1,95 * 10 . * *(-8,0)\)
FiN(2) \(=1,81 * 10 . * *(-8,0)\)
CONST \(=1,6710383 * 10, * *(-3,0)\)
10 \(10 \quad \mathrm{I}=1\), NP
ALFA=2.0
ANI = XMOL (I)
IF (XF (2,I), EQ. 0.0) GO TO 20
IF (XF \((3, I), E Q .0 .0) G D\) TO 20
AMS \(=X F(2, I) * A M W(2)+X F(3, I) * A K W(3)\)
TNS \(=1000\). \(/\) AMS
CALL TEMFII(CU2,CUB,NXD,XD,ADTYAD,VO,T(I))
B12=BD12*ALDG((T(I)-243.)/T(I))+B112/T(I)
E13=E013*ALOG((T (I)-243.)/T(I)) +B113/T (I)
CONST1=FNF*FZF**2./RP(NFION)+FNM*FZN**2./RN(NNION)
CALL FUNCT (XF (2,I), XF (3,I); T (I), TNS,F2,F3,
\% ADE,FD2,FI3,AD,DS,ALI,VD,NIEN,AMW)
TN3 \(=X F(3, I) * T N S\)
TN2=XF(2,I)*TNS
```

    II=EXF'(-ALFANANI**0.5)
    A=(TN2*TNJ)**0.5
    E=XF(2,I)*B13-XF(3;I)*E12
    C=EXF(2,0*XF(2,I))
    AX=(1.0-ALFA*XMOL(I)/(4.0*AN1**0.5 ))
    GAIII(1,I)= IELTA*I*CONST*CONST1*A*E*C*XMOL(I)*AX/(FK゙*T(I)*IS)
    GA[II(2,I)=IELTA*口*CONST*CONSTI*(XMOL(I)**2.0)*((TN3/TN2)**0.5
    % *F*C/2.O-A*E*C*F[2/IS+(H12+E13)*XF(3,I)*A*C/TNS+A*E*C*2.0*
% XF(\Xi,I)/TNS)/(IS*T'(I)*2,0)
GAIII(3,I)=[IELTA*IWCONST*CONSTI*(XHOL(I)**2,0)*((TN2/TN3)**0.5
%*E*C/2.0-A*E*C*FIJ/IS-(B12+E1J)*XF(2gI)*A*C/TNS-A*B*C*2.O*
% XF(2,I)/TNS)/(IS*T(I)*2.0)
GO TO 10
20 GAMLI(1,I)=0.0
GADIT(I,I)=0.0
G\hat{ALIL}(3,I)=0.0
CONTINUE
FETUFN
ENI

```
```

            SUFFOUTINE: FUNCE{XI,X3,E12,E13,EM,FE2,FE3,TNS,E123,
                % AI,FNF,FNH{FZF,FZN,AHS,AHW2:AHIN3,FE1,XHOL,
    ```


\section*{SUEFOUTINE FUNCE}

THIS SUEFOUTINE CALCULATES THE MIXTUFE TEFNAFY BFOMLEY COKSTANT "EM" EHZ3 IS THE TEFNAFY AIIJUSTAELE FAFAMETEF.
```

AN1=XMOL
D23=E123
A=( }\times2**3)**0.2
ALFA=2.0
II=(1.0+ALFANAN1**0.5) ww3.0
II=((1.0+ALFA*AN1**0.5)**4.0)*(AN1**0.5)
E=EXF'(-ALFA*<3)
F[EN2=ALFA*X3*E/TNS
FIEN3=-ALFA*X2*E/TNS
FLAN2=(((X3/X2)㤫0.25/(X2**0.5);/2.0-A)/TNS/2.0
FLANS=(((X2/X3)**0.25/(X3**0.5))/2.0-A)/TNS/2.0

```

```

FE2=(E12-E13)*X3/TNS+I23*(A*FIEN2+E*FIGN2)/L
FEJ=(E13-E12)*X2/TNS+I23*(A*FIENJ+E*FIAN3)/I
FEI=-3.0%ALFA*I23*A*E/(2.0*I1)
FETURN
ENI

```

SUEROUTINE FUNCT (XF2,XF3,T,TNS,F2,F3,ADE \% ,FDI,FD3,AD,DS,ADD,VD,NDEN:AMW)

\title{

}

SUBROUTINE FUNCT
THIS SUBFOUTINE CALCULATES THE IIEBYE-HUCKEL CONSTANT
AND THE SLDFE OF D.H. CONSTANT WITH FESPECT TO OF
MOLES OF SOLUENTS IN A TERNARY MIXTURE.
IF NDEN = 1 EXFERIMENTAL CONCENTRATION IIEFENDENT DATA ARE USED FOR IENSITIES.

IF NIEN = 2 AFFFOXIMATE RELATIONSHIF IS USED FOR IIENSITIES

IIIMENSION AD(6), ADII(6), VO(3), AMW(3)
DS \(=A D(1)+A D(2) * X F 3+A D(3) * X F 3 * * 2+\operatorname{AD}(4) * X F 3 * * 3 \cdot+A D^{\prime}(5) * X F 3 * * 4\).
\(\%\) +AD(6)*XF3**5.
FT1=AD(2)+2.*AD(3)*XF3+3.*AD(4)*XF3**2.+4.*AD(5)*XF3**3.
\(\%+5 . * \mathrm{AD}(6) * X F 3 * * 4.0\)
FD2 \(=-\) FT \(1 * \times\) F3/TNS
FD3=FT1*XF2/TNS
GO TO(10,20),NDEN
HSS \(=\operatorname{ADD}(1)+\operatorname{ADN}(2) * X F 3+\operatorname{ADD}(3) * X F 3 * * 2 .+A D I(4) * X F 3 * * 3 .+\)
\% AIII(5)*XF3**4. +ADD(6)*XF3**5.0
FDT1 \(=\operatorname{ADD}(2)+2.0 * \operatorname{ALD}(3) * X F 3+3.0 * \operatorname{AID(4)*XF3**2.+4.0*ADD(5)*~}\)
\% XF3**3.+5.*ADD(6)*XF3**4.
UIIS2=-FDT1*XF3/TNS
IIIS3=FDT1*XF2/TNS
GO TO 30
AMWW \(=\operatorname{AMW}(2) * X F 2+A M W(3) * X F 3\)
\(\mathrm{US}=\mathrm{VO}(2) * \mathrm{XF} 2+\mathrm{VO}(3) * X F 3\)
USS=AMWW/US

DISS = ((AMW (3)-AMW (2))-AMWW* (VO (3)-VO(2))/US)*XF2/TNS/VS
\(\mathrm{ADE}=1.8246 * 10 . * *(6.0) *(\mathrm{DSS} * * 0.5) *((\mathrm{II} * \mathrm{~T}) * *(-1,5))\)
F2=AllB*(DNS2/DSS/2.-3.*FI2/2./IS)
F3=ADE* (LINS3/DSS/2.-3.0*FI13/2./DS)
RETURN
END
```

    SUBRQUTINE NRTL2(X,T,GNRT,FK,FNP,NP,GFN2,GPN3,ZP2,ZF3,ALFA,
    % nG23, NG32,FNM,NNFTL,yALFA2, ALFB2,ALFA3,ALFB3%
    % IIGAT,LIGB2,DGA3, LGB3)
    ```
w**
SUEFOUTINE NRTL2
THIS SUBROUTINE CALCULATES ION-SOLVENT AND SOLVENT-
SOLUENT INTERACTIONS DF THE ACTIUTY COEFFICIENTS IN
MODEL \(\# 1\).
THIS SURROUTINE IS USED FOR BOTH BINARY \& TEFNARY MIXTURES

[1G23, IG 32,223,232 - CAL/SMOLE-K
ZP2,ZF3 - K Joules/ sMOLE

IIMMENSION X(3,99),XA(99),GNFT(3,99),T(99)
\(\mathrm{F}=1.987\)
\(R 1=8,3143 * 10 * * *(-3,0)\)
IIO \(4001 \mathrm{I}=1, \mathrm{NP}\)
GO TO (10,20),NNRTL
GFN2=EXP(-ALFA2*LGA2/R1/T(I)) +FNM*EXP(-ALFE2*DGB2
\% /Fil/T(I))/FNP
ZF2 \(=\operatorname{IIGA} 2 * E X P(-A L F A 2 * \operatorname{LGA} / R 1 / T(I))+F N K * \operatorname{IGE} 2 * E X P(-A L F B 2 * D G B 2\)
\% /R1/T(I))/FNP
GPN3=EXP (-ALFA3*DGA3/R1/T(I)) +FNM*EXP(-ALFB3*DGB3
\% /Fi/T(I))/FNP
ZF3 \(=\mathrm{DGA} 3 * E X P(-A L F A 3 * D G A 3 / R 1 / T(I))+F N H * D G B 3 * E X P(-A L F E 3 * D G E 3 /\)
\% R1/T(I))/FNP
ZPN2=2P2*238.862
ZFN3 \(=2 F 3\) *238. 862
G32=EXF (-ALFA*IG32/R/T (I))
Z32 \(=\) IIG32*G32
G23=EXP(-ALFA*DG23/R/T(I))
Z23 \(=\) DG23 3 G23
\(X A(I)=X(1, I)\) *FNF
ITT1=(XA(I)*GFN3+X(2,I)*G23+X(3,I))**2.0
ITT2 \(=(X f(I) * G F N 2+X(3, I) * G 32+X(2, I)) * * 2.0\)
IIT \(3=X(3, I) * G 32+X(2, I)\)
IIT \(4=X(2, I) * G 23+X(3, I)\)

\% *Z32*GFN2+Z32*G32*X(3,I)**2.
TT2=天A(I) *X(3.I)*Z23*GFN3+Z23*X(3,I)**2.
\% -XA(I) ※X(3,I) *ZFN3*G23
TTB=X(2,I)*(X(3,I)*G32*ZFN2+X(2,I)*ZFN2-X(3,I)*Z32*GFN2).
TTA=X(3,I)*(X(2,I)*G23*ZF'N3+X(3,I)*ZF'N3-X(2,I)*Z23*GFN3)
TT5=ZFN3*GFN3*XA(I) **2. +XA(I) *ZFNZ*G23*X(2,I)+XA(I)

\(\mathrm{TT} 6=\mathrm{XA}(\mathrm{I}) * X(2, I) * Z 32 * G F N 2+232 * X(2, I) * * 2,-\mathrm{YA}(\mathrm{I}) *\)
\% X(2,I)*ZFN2\%G32
GNFT \((1, I)=(T T 3 / I T 2+T T 4 / L T 1-X(2, I) * Z F N 2 / I T B-X(3, I) * Z F N 3 / D T 4\)
\(\%+X(2, I) * X(3, I) * Z 32 * G F N 2 /(I T 3 * * 2)+.X(2,1) * X(3, I) * Z 23 * G F N 3 /\)
\% (IIT4**2.)) *FNF/R/T(I)/FK
TT7 \(=(Z 32 * G F N 2-Z F N 2 * G 32) /(I T T 3 * 2)+.(223 * G F N 3+Z F N 3 * G 23)\)
\% /(IT4**2.)
TT8:2.*XA(I)*X(2,I)*X(3,I)*(Z32*GFN2/(DT3**3.)+Z23*GFN3*G23/
\% (IIT4**3.))

\% /(DTA**3.))
TT10=(Z32*GFN2+ZFN2*G32)/(1TT3**2.) \(+(Z 23 * G F N 3-G 23\)
\% * ZFNJ)/(HT4**2.)

\(\operatorname{GNFT}(3, I)=(T T 5 / D T 1+T T 6 / \operatorname{IT} 2+X A(I) * X(2, I) * T T 10-T T 9) / R / T(I)\)

SUEROUTINE DEEHUC (XMOL,XF,X,FK,FNP,FNM,FZF,FZN,GEL,
\% AMW,T,NP,GDH,GFHY,AIID,NDEN,CU2,CU3,NXD,XD,ADT)
**

\section*{SUEROUTINE DEEHUC}

THIS SUEROUTINE GALCULATES ION-ION INTERACTION USING
THE EXTENDED IIEBYE-HUCKEL EQUATION, IN MODEL * 1.

GDH(J,I) - D.H CONTRIRUTION IN EQUATION GFHY(J.I) - EXTENDEI FAET OF THE D.H EQUATION GEL(J,I) - COMEINATION DF ARDVE TWO TERMS
**
```

    IIMENSION UO(3),XF(3,99),X(3,99),XMOL(99),GEL(3,99),GDH(3,99),
    % GFHY(3,99),AI(99),AMW(3),T(99),AD(6)
    DIMENSION F2(99),F3(99)
    IIMENSION SIG(99),SIG1(99),SAI(99),SAI1(99)
    IIMENSION ADI(6),CU2(3),CU3(3),XI(20),ADT(2,20)
    AA=1.5/(FZP*FZN)
    DO 4001 I=1,NP
    IF(XMOL(I).EQ.0.0)GO TO 2010
    AMS=XF(2,I)*AMW(2)+XF(3,I)*AMW(3)
    TNS=1000./AMS
    CALL TEMFD(CU2,CU3,NXD,XD,ADT,AD,VO,T(I))
    IF(XF(2,I).EQ.0.0)GO TO 1000
    IF(XF(3,I).EQ.0.0)GO TO 1010
    CALL FUNCT(XF(2,I),XF(3,I),T(I),TNS,F2(I),F3(I),.
    % ADB,FD2,FII,AD,IIS,AII,NO,NDEN,AMW)
    GO TO 1020
    F2(I)=0.0
    F3(I) =0.0
    1130=AD(1)+AD(2)*XF(3,I)+AD(3)*XF(3,I)**2.+AD(4)*XF(3,I)
    1 **3.+AIM(5)*XF(3,I)**4.+AD(6)*XF(3,I)**5.
    GO TO (10,20),NDEN
    LOOS=ADD(1)+ADD(2)+ADD(3)+ADD(4)+ADD(5)+ADD(6)
    GO TO 30
    [NOS=AMW(3)/VO(3)
    FD2=0.0
    FD3=0.0
    ALIB=1.8246*10.**(6.0)*(003**0.5)*((D30*T(I))**(-1.5))
    GO TO 1020
    F2(I)=0.0
    ```
\(\operatorname{IOD}=A \operatorname{IIN}(1)\)
GO TO 60
```



```
\(F \mathrm{H}=0.0\)
\(F I I 3=0.0\)
```




```
XT1＝0．001 2 FK ＊XMOL（I）＊fifs
XT2＝ALDG（XT1＋1．）
\(F O W=1,0\)
FTI＝FOW＊AI（I）＊ 20.5
FT2＝1＋1FT1
FTB＝AAWAI（I）
FT4＝1．＋FT3
```





```
\％（（1．＋FT3）＊＊0．5）－2．＊（（1．＋FT3）＊＊O．5））／3．／FT3
```




```
\(\%\) ※FZF＊FZN＊AIE＊＊2．0／（FTA＊＊0．5）+ ※T2
```




```
TT3＝2． \(303 * F K ゙ * X M O L(I) * A I(I) * S A I(I) * A I B * * 2 . / 2+/ 1000\).
```




```
\％XT，2－XT1
```



```
\％XT2ーメT1
```



```
GIH（2，I）＝（TT1＊AMW（2）－TT2＊F2（I））＊FZF＊FZN
```



```
GFHY（1，Ij＝2． \(303 * A I(I) * F Z F * F Z N * A I E * * 2, /(F T A * * 0+5)\)
```




```
GOTO 4001
GEL \((1, I)=0,0\)
GEL \(\{2, I\rangle=0.0\)
GEL \(\langle 3, I\rangle=0.0\)
\(G I H(1, I)=0.0\)
\(G \operatorname{GH}(2, I)=0+0\)
\(G[H(3, I)=0.0\)
GFHY（1，I）\(=0.0\)
GF＇HY（2，I）\(=0.0\)
GF＇HY（ \(3, I)=0.0\)
CONTINUE
```

$F 3(I)=0.0$
$I 20=A L I(1)+A I(2) * X F(3, I)+A I(3) * X F(3, I) * * 2+$＋AII $(4) * X F(3, I)$

GO TO（40，50）PNIEN

FETUFN
ENE

SUERDUTINE MINFUN(NTYFE, NMIN,DIF1,DIF2,DIF3,DIF4,DIFS, \% Y,X2,X3)

## *************************************************************

 SUEROUTINE MINFUNTHIS SUEFOUTINE SETS UP [IFFERENT OEJECTIVE FUNCTIONS USING A SYMBOL "NMIN". THE EXPLANATION HAS EEEN GIUEN IN MAIN FROGRAM.
**************************************************************

GO TO (10, 10, 10, 20,20,20,20,20,20,20),NTYPE
UIF $4=0.0$
IIFS $=0.0$
GO TO 60
GO TO $30,40,50,40)$,NMIN
$\operatorname{IIF} 4=0.0$
IIF $5=0.0$
GO TO 60
IF (X2.ER.0.0)GO TO 70
$\operatorname{IF}(X 3 . E Q .0 .0) G O T 070$
IIF1 $=0.0$
IIF2 $=0.0$
$\operatorname{IIF} 3=0.0$
IIIF4=DIF4*10.0
GO TO 60
$\operatorname{IIF} 4=0.0$
DIFS $=0.0$
GO TO 60
IF (X2.EQ.0.0) GO TO 80
IF (X3.EQ.0.0)GO TO 80
DIFS $=0.0$
IIF4=DIF4*10.0
GO TO 60
UIF $4=0.0$
DIFS $=0.0$
$\mathrm{Y}=\mathrm{DIF} 1 * * 2 .+\mathrm{DIF} 2 * * 2 .+\mathrm{DIF} 3 * * 2 .+\mathrm{DIF} 4 * * 2 .+\mathrm{DIF} 5 * 2$ 。
RETURN
END

SUERDUTINE TITLE(NAME1,NAME2,NAME3,ALFA, DG23,DG32,GPN2,
\% GFN3,ZFN2,ZFN3,EO12,ED13,B112,E113,E123,IIELTA,KP,NTYFE, \% XX2,XMOL,NNRTL, IIGA2, IIGA3,DGE2, [GGB3,ALFA2,ALFE2,ALFA3, \% ALFE3)

WRITE (6,7100)
FORMAT ('1',30X,'TAELE\#')
WRITE (6,7110)NAME1,NAME2,NAME3 ;
**************************************************************
subfoutine title
this subroutine makes titles for final tabular fesults
***************************************************************

FORMAT(//.15X,'SYSTEM:', उA8)
WRITE (6,7130)
FQRMAT(/,25X:' ** Values of the farameteks **')
GO TO(9041,9041,9061,9061,9061,9061,9061,9061,9061) \%NTYFE

WRITE (6.120)
IF (XX2.EQ.0.0) GD TO 9070
WRITE (6,9082) H012,E112
FORMAT(/,10X,'BO12= 'rG12.5,' B112= ',G12.5)
GO TO 9052
WRITE(6,9081)E013.E113
FORMAT(/,10X' 'EO13 = ',G12.5,' E113 =', G12.5)
FORMAT (/,10X, 'EXTENDED DEBYE-HUCKEL + MODIFIED NRTL')
FORMAT(/,10X:'EROMLEY - EINARY - EXFRESSION')
FORMAT(/,5X,'EROMLEY \& SIMPLIFIED MODIFIED NRTL \&',
\% " SALTING-DUT EQUATIONS')
GO TO 9052
WFITE (6,110)
IF (XX.2.EQ.0.0)GO TO 9075
GO TO(10,20),NNRTL
WFITE(6.9084)GFN2, ZFN2
FORMAT(/,10X.' GFN2 =',G12.5,3X,'ZFN2=',G12.5)
GO TO 9052
WRITE (6,100)ALFA2, ALFB2,IIGA2, IIGE2
FORMAT(/,3X,'ALFA2=',G12.5,'ALFE2=',G12.5,'IGA2=',
\% G12.5.'DGE2=‘,G12.5)
G0 T0 9052
GO TO $(30,40)$,NNRTL
WFITE(6,150)ALFA3,ALFB3, DGA3,DGB3

```
150 FOFHMAT/y3X,'ALFA3=',G12.5,'ALFE3=',G12,5,'NGA3=',
 % G12.5,'IGGEZ=',G12.5)
 G0 TO 9052
40 WFITE(6.9086)GFN3.2FN3
9086
9061 WFITE(6,7140)ALFA,IIG23,IIG32
7140 FOFMAT(/,3X,'NONELECTFOLYTE EINGFIY:% ALFA=',G12.5%
 % 'IG23=',G12.5,'[IG32=',G12.5)
 IF(XMOL,EQ,O.O)GO TO 9052
 IF(NF.GT.1)G0 T0 9051
 WFIITE(6,130)
 WFITE(6,7150)EO12,B112,EO13,B113
7150 FOFMAT(/,5X,'HO12=',G10,3,'E112=',G10.3,'RO13=',G10.3
 % ,'E113=',G10.3)
 WFITE(6,200)E12Z,IELTA
200 FOFMAT(/,15X,' B123=',G12.5,'HELTA =',G12.5)
 G0 T0 9052
9051 WFITE(6,110)
 GO TO(70,80) yNNतTL
 WFITE(6.100) ALFA2,ALFET,IGGAyIIGE2
 WFITE(6.150)ALFA3,ALFE3,DGA3, IGES
 GO TO 9052
80 WFITE(6.7160)GFN2,ZFN2gGFN3,ZFN3
7160 FOFMAT(/,6X,'GFN2=',G12.5,'ZFN2=',G12.5,'GFN3=', ,
 % G12.5,'ZFN3=',G12.5)
O052 FETUFIN
 ENII
```

INPUT DATA SEQUENCE

| Card \# | Variables | Format |
| :---: | :---: | :---: |
| 1 | NSET, LI, EE | 2I3,F10.1 |
| 2-21 | INFORMATION | 8 Al 0 |
| 22 | XLIM, XLLIM | 2F10.5 |
| 23 | NAME1,NAME2, NAME3 (name of the system) | 3A8 |
| 24 | INDF, KP, NBIN,NPION,NNION,NREG,NDEN, NNRTL, NBROM,NTYPE,NMIN | 1112 |
| 25 | NCOMP , NP, NXD , NXDD | 4 I 2 |
| 26 | CP2 (I), $\quad 1=1,6$ |  |
| 27 | ```CP3(I), I=1,6 (pure component vapor pressure con- stants)``` | $\begin{aligned} & \text { Fl2.7,Fll.5,F8.3, } \\ & \text { F3.1,Fl0.5 } \end{aligned}$ |
| 28 | AMW (I), $I=1,3$ | 6F10. 5 |
| 29 | V21,T21,V22,T22,V23,T23 |  |
| 30 | V31,T31,V32,T32,V33, T3 | 6F10.6 |
| $31-(30+N X D)$ | ADT (1, I), ADT (2,I),XD(I) (total \# of data are nxd) (if NXD = ll, card \#31-41) | 3F10.5 |
| 42 | FK, FNP, FNM, FZP, FZN | 5F10.5 |
| $43-(42+N X D D$ | DENS (I), XDD (I) (only two data on a card,total \# NXDD) (if NXDD=13, card \#43-55) | 6F10.5 |
| $56-(55+N P)$ |  P(I),T(I) (8 data on a card, total card $=N P)(I F N P=34$, card \#56-89) | 8F10.6 |
| 90 | ALFA, DG23, DG32, ALFA2, ALFB2, ALFA3, ALFB3 | 8Fl0.5 |
| 91 | GPN2, ZPN2, GPN3, ZPN3,DGA2,DGB2,DGA3, DGB3 | 8 F 10.5 |
| 92 | BO12,B112,BO13, B113, B123, DELTA | 8F10. 5 |
| 93 | ALPHAl, AXT1, BXT1 | F10.7,2F10.4 |

```
94 M,MM 2I2
95-(94+MM) XTX(I),BXX(I)(two data on a card, 2Flo.4
 total cards = MM)(if MM=4 cards 95-98)
```

| 1. | 0014000.0000010 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. |  |  |  |  |  |  |
| 3. | * FILE NAME - LICLH20.MEOHAT25.COMBINED |  |  |  |  |  |
| 4. | * |  |  |  |  |  |
| 5. | * |  |  |  |  |  |
| 6. | * |  |  |  |  |  |
| 7. | * |  |  |  |  |  |
| 8. | * BINARY 1-3: SKABICHUESKKI |  |  |  |  |  |
| 9. | * |  |  |  |  |  |
| 10. | * TERNARY 1-2-3: CIPARIS |  |  |  |  |  |
| 11. | * |  |  |  |  |  |
| 12. | * |  |  |  |  |  |
| 13. | * |  |  |  |  |  |
| 14. | * |  |  |  |  |  |
| 15. | * |  |  |  |  |  |
| 16. | * |  |  |  |  |  |
| 17. | * |  |  |  |  |  |
| 18. | * |  |  |  |  |  |
| 19. |  |  |  |  |  |  |
| 20. |  |  |  |  |  |  |
| 21. |  |  |  |  |  |  |
| 22. | 3.000000000 .0 |  |  |  |  |  |
| 23. | LICL - H 2 O - MEOH |  |  |  |  |  |
| 24. | $\begin{array}{lllllllllllll}1 & 2 & 5 & 2 & 2 & 1 & 1 & 2 & 1 & 4 & 2\end{array}$ |  |  |  |  |  |
| 25. | 3341113 |  |  |  |  |  |
| 26. | 0070.4346943-7362.698100000.000000.0069520850.0 -9.0 |  |  |  |  |  |
| 27. | $0012.3858228-3880.50203-24.355000 .0000000000 .000 .000$ |  |  |  |  |  |
| 28. | 42.4 | 18.0 | 32.0 |  |  |  |
| 29. | 18.06 | 277.13 | 18.278 | 323.15 | 18.844 | 373.15 |
| 30. | 39.556 | 273.15 | 44.874 | 373.15 | 57.939 | 473.15 |
| 31. | 1.9051 | -0.00205 | 0.0 |  |  |  |
| 32. | 1.8799 | -0.00208 | 0.0588 |  |  |  |
| 33. | 1.8505 | -0.00212 | 0.1233 |  |  |  |
| 34. | 1.8190 | -0.00218 | 0.1942 |  |  |  |
| 35. | 1.7865 | -0.00225 | 0.2727 |  |  |  |
| 36. | 1.7513 | $-0.00234$ | 0.3600 |  |  |  |
| 37. | 1.7120 | -0.00244 | 0.4576 |  |  |  |
| 38. | 1.6658 | -0.00252 | 0.5676 |  |  |  |
| 39. | 1.6160 | -0.00248 | 0.6923 |  |  |  |
| 40. | 1.5648 | -0.00242 | 0.8351 |  |  |  |
| 41. | 1.5089 | -0.00234 | 1.0 |  |  |  |
| 42. | 2.000 | 1.000 | 1.000 | 1.00 | 1.0 |  |
| 43. | 0.99707 | 00.0 |  |  |  |  |
| 44. | 0.98472 | 00.04085 |  |  |  |  |
| 45. | 0.97919 | 00.06168 |  |  |  |  |
| 46. | 0.96649 | 00.11445 |  |  |  |  |


| 47. | 0.94796 | 00.19739 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48. | 0.93658 | 00.24867 |  |  |  |  |  |  |
| 49. | 0.91534 | 00.34382 |  |  |  |  |  |  |
| 50. | 0.88242 | 00.49446 |  |  |  |  |  |  |
| 51. | 0.85790 | 00.61267 | - |  |  |  |  |  |
| 52. | 0.84210 | 00.69241 |  |  |  |  |  |  |
| 53. | 0.82458 | 00.78454 |  |  |  |  |  |  |
| 54. | 0.80510 | 00.89229 |  |  |  |  |  |  |
| 55. | 0.78663 | 01.0 |  |  |  |  |  |  |
| 56. | 1.0 | 0.815184 | 0.395 | 0.146118 | 0.605 | 1.0 | $47 \cdot 3$ | 298.15 |
| 57. | 1.0 | 0.672192 | 0.235 | 0.285347 | 0.765 | 1.0 | 65.3 | 298.15 |
| 58. | 1.0 | 0.505166 | 0.14 | 0.447977 | 0.86 | 1.0 | 80.0 | 298.15 |
| 59. | 1.0 | 0.284199 | 0.07 | 0.66313 | 0.93 | 1.0 | 96.3 | 298.15 |
| 60. | 1.0 | 0.039517 | 0.007 | 0.901372 | 0.993 | 1.0 | 115.3 | 298.15 |
| 61. | 0.328 | 0.0 | 0.0 | 0.979440 | 1.0 | 1.0 | 125.0818 | 298.15 |
| 62. | 1.340 | 0.0 | 0.0 | 0.921014 | 1.0 | 1.0 | 116.4291 | 298.15 |
| 63. | 1.933 | 0.0 | 0.0 | 0.889908 | 1.0 | 1.0 | 109.5579 | 298.15 |
| 64. | 2.560 | 0.0 | 0.0 | 0.859225 | 1.0 | 1.0 | 101.9232 | 298.15 |
| 65. | 2.971 | 0.0 | 0.0 | 0.840234 | 1.0 | 1.0 | 96.1972 | 298.15 |
| 66. | 3.667 | 0.0 | 0.0 | 0.809921 | 1.0 | 1.0 | 85.3814 | 298.15 |
| 67. | 0.100000 | 0.996413 | 1.000000 | 0.000000 | 0.000000 | 0.790000 | 23.67582 | 0298.149900 |
| 68. | 0.200000 | 0.992852 | 1.000000 | 0.000000 | 0.000000 | 0.757000 | 23.59591 | 0298.149900 |
| 69. | 0.300000 | 0.989316 | 1.000000 | 0.000000 | 0.000000 | 0.744000 | 23.51477 | 029日.149900 |
| 70. | 0.400000 | 0.985805 | 1.000000 | 0.000000 | 0.000000 | 0.740000 | 23.43186 | 2298.149900 |
| 71. | 0.500000 | 0.982318 | 1.000000 | 0.000000 | 0.000000 | 0.739000 | 23.34774 | 0298.149900 |
| 72. | 0.600000 | 0.978857 | 1.000000 | 0.000000 | 0.000000 | 0.743000 | 23.26191 | 2298.149900 |
| 73. | 0.700000 | 0.975420 | 1.000000 | 0.000000 | 0.000000 | 0.748000 | 23.17416 | 0298.149900 |
| 74. | 0.800000 | 0.972006 | 1.000000 | 0.000000 | 0.000000 | 0.755000 | 23.08489 | 2298.149900 |
| 75. | 0.900000 | 0.968617 | 1.000000 | 0.000000 | 0.000000 | 0.764000 | 22.99415 | 2298.149900 |
| 76. | 1.000000 | 0.965251 | 1.000000 | 0.000000 | 0.000000 | 0.774000 | 22.90113 | 0298.149900 |
| 77. | 1.2 | 0.958589 | 1.0 | 0.0 | 0.0 | 0.796 | 22.711330 | 0298.15 |
| 78. | 1.4 | 0.952018 | 1.0 | 0.0 | 0.0 | 0.823 | 22.51335 | 6298.15 |
| 79. | 1.6 | 0.945537 | 1.0 | 0.0 | 0.0 | 0.853 | 22.30908 | 2298.15 |
| 80. | 1.8 | 0.939144 | 1.0 | 0.0 | 0.0 | 0.885 | 22.098690 | 0298.15 |
| 81. | 2.0 | 0.932836 | 1.0 | 0.0 | 0.0 | 0.921 | 21.88082 | 8298.15 |
| 82. | 2.5 | 0.917431 | 1.0 | 0.0 | 0.0 | 1.026 | 21.301025 | 5298.15 |
| 83. | 3.0 | 0.902527 | 1.0 | 0.0 | 0.0 | 1.156 | 20.67544 | 5298.15 |
| 84. | 3.5 | 0.888099 | 1.0 | 0.0 | 0.0 | 1.317 | 19.99973 | 7298.15 |
| 85. | 4.0 | 0.874126 | 1.0 | 0.0 | 0.0 | 1.510 | 19.28213 | 7298.15 |
| 86. | 4.5 | 0.860585 | 1.0 | 0.0 | 0.0 | 1.741 | 18.531818 | 8298.15 |
| 87. | 5.0 | 0.847457 | 1.0 | 0.0 | 0.0 | 2.02 | 17.75052 | 6298.15 |
| 88. | 5.5 | 0.834724 | 1.0 | 0.0 | 0.0 | 2.34 | 16.94961 | 5298.15 |
| 89. | -1.00000-150.9000003 |  | 1.0 | 0.0 | 0.0 | 2.72 | $\begin{aligned} & 16.134811298 .15 \\ & 00.0 \end{aligned}$ |  |
| 90. |  |  | 0336.470000000.20000 |  | 00.000000000.20000 |  |  |  |
| 91. | 12.66600 | 068.1660 | $075.8180-11.2390001$-0.170760000 .00000 |  | 35.11000 | -4.12000 | -17.800000134.9 |  |
| 92. | -0.07341 | 0.00000 |  |  | $-18.800000$ | 0000.016 |  |  |

```
93. 00.0000005 -1.0000001.0
94.
95.
96.
97.
98. -11.239000000.1
```

* DF DATA SET TO RE USED $=1$ TRIAL $400 \mathrm{E}=0.00000100$ ********************************************* * FILE NAME - LICLH2D.MEOHAT25.cOMBINED *****************************************

$$
1.81900 \quad-0.00218 \quad 0.19420
$$

$$
1.78650-0.00225 \quad 0.27270
$$

```
 3.00000 0.0
1252211421442
 INPUT DATA
```

3341113

| $70.4346924-7362.69531$ | 0.0 | 0.0069520850 .0 | -9.00000 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $12.3858223-3880.50195$ | -24.355 | 0.0 | 0.0 | 0.0 |  |
| 42.39999 | 18.00000 | 32.00000 |  |  |  |
| 18.06000 | 277.12988 | 18.27800 | 323.14990 | 18.84399 | 373.14990 |
| 39.55600 | 273.14990 | 44.87399 | 373.14990 | 57.93900 | 473.14990 |

LIQUID MOLAR VOLUME CONSTANTS

$$
\begin{array}{lll}
22.887 & -0.36416 E-01 & 0.68557 E-04 \\
64.510 & -0.19716 & 0.38735 E-03
\end{array}
$$

$$
1.90510 \quad-0.00205 \quad 0.0
$$

$$
1.87990-0.00208 \quad 0.05880
$$

$$
1.85050 \quad-0.00212 \quad 0.12330
$$

$$
1.75130 \quad-0.00234 \quad 0.36000
$$

$$
1.71200 \quad-0.00244 \quad 0.45760
$$

$$
1.66580 \quad-0.00252 \quad 0.56760
$$

$$
1.61600-0.00248 \quad 0.69230
$$

$$
1.56480 \quad-0.00242 \quad 0.83510
$$

$$
1.50990-0.00234 \quad 1.00000
$$

| 0.996 | -0.2 |  | 0.37569 | -0.84751 | 0.88645 | -0.32857 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.000000 | 0.815184 | 0.395000 | 0.146118 | 0.605000 | 1.000000 | 47.299988298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 1.000000 | 0.672192 | 0.235000 | 0.285347 | 0.765000 | 1.000000. | 65.299988298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 1.000000 | 0.505166 | 0.140000 | 0.447977 | 0.860000 | 1.000000 | 80.000000298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 1.000000 | 0.284199 | 0.070000 | 0.663130 | 0.930000 | 1.000000 | 96.299988298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 1.000000 | 0.039517 | 0.607000 | 0.901372 | 0.993000 | 1.0000001 | 15.299988298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 0.328000 | 0.0 | 0.0 | 0.979440 | 1.000000 | 1.0000001 | 25.081787298,149902 |
| 23.8 | 127. |  |  |  |  |  |
| 1.339999 | 0.0 | 0.0 | 0.921014 | 1.000000 | 1.0000001 | 16.429092298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 1.933000 | 0.0 | 0.0 | 0.889908 | 1.000000 | 1.000000 | 09.557892298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 2.559999 | 0.0 | 0.0 | 0.859225 | 1.000000 | 1.000000 | 01.923187298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 2.971000 | 0.0 | 0.0 | 0.840234 | 1.000000 | 1.000000 | 96.197189298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 3.667000 | 0.0 | 0.0 | 0.809921 | 1.000000 | 1.000000 | 85.381393298.149902 |
| 23.8 | 127. |  |  |  |  |  |
| 0.100000 | 0.996413 | 1.000000 | 0.0 | 0.0 | 0.790000 | 23.675812298.149658 |
| 23.8 | 127. |  |  |  |  |  |
| 0.200000 | 0.992852 | 1.000000 | 0.0 | 0.0 | 0.757000 | 23.595901298.149658 |
| 23.8 | 127. |  |  |  |  |  |
| 0.300000 | 0.989316 | 1.000000 | 0.0 | 0.0 | 0.744000 | 23.514755298.149658 |
| 23.8 | 127. |  |  |  |  |  |
| 0.400000 | 0.985805 | 1.000000 | 0.0 | 0.0 | 0.740000 | 23.431854298.149658 |
| 23.8 | 127. |  |  |  |  |  |
| 0.500000 | 0.982318 | 1.000000 | 0.0 | 0.0 | 0.739000 | 23.347733298.149658 |





TABLE

SYSTEM: LICL - H2O - MEOH
** UALUES OF THE PARAMETERS **
NONELECTROLYTE BINARY: ALFA $=-1.0000 \quad D G 23=-150.90 \quad$ DG32 $=336.4$ EXTENDED DEEYE-HUCKEL f•MODIFIED NRTL

GPN2 $=12.666 \quad$ ZPN2 $=68.166 \quad$ GPN3 $=75.818 \quad$ ZPN3 $=-11.239$

| MOLALITY | X2 | X3 | Y3EXP | Y3CAL | DY | DP |
| :--- | :---: | :---: | :--- | :---: | ---: | ---: |
| 1.00 | 0.81518 | 0.14612 | 0.60500 | 0.60791 | $0.291 E-02$ | 6.01 |
| 1.00 | 0.67219 | 0.28535 | 0.76500 | 0.75551 | $-0.949 E-02$ | 5.63 |
| 1.00 | 0.50517 | 0.44798 | 0.86000 | 0.85397 | $-0.603 E-02$ | 7.17 |
| 1.00 | 0.28420 | 0.66313 | 0.93000 | 0.93827 | $0.827 E-02$ | 6.09 |
| 1.00 | $0.39517 E-01$ | 0.90137 | 0.99300 | 0.99378 | $0.779 E-03$ | -9.29 |

AUERAGE DY(YCAL-YEXP) $=0.54953 E-02$ BASED ON 4 OF POINTS FOR $Y=5$

AUERAGE DP(PCAL-PEXP) $=6.8366$ BASED ON + OF POINTS FDR DP $=5$

APPENDIX G

TABLES AND FIGURES FOR MODEL I
TABLE G. 1 Binary Data Sources

| \# | System | $\begin{gathered} \mathrm{T}\left({ }^{\circ} \mathrm{C}\right) \\ \text { or } \\ \mathrm{P}(\mathrm{~atm}) \end{gathered}$ | $\begin{gathered} \text { 'm' } \\ \text { Range } \end{gathered}$ | Type of Data | \# of Data Points | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ | 25 | 0.1-6.0 | $m$ vs $\gamma_{ \pm}$and $P$ | 23 | Robinson \& Stokes (1955) |
| 2 | $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ | 25 | 0.1-2.0 | m vs $\gamma_{ \pm}{ }^{\&} \gamma_{\text {solvent }}$ | 15 | Robinson \& Stokes (1955) |
| 3 | $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 25 | 0.1-6.0 | $m$ vs $\gamma_{ \pm}$and $P$ | 27 | Robinson \& Stokes (1955) |
| 4 | $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 60 | 0.88-9.0 | $m$ vs $P$ | 17 | Hala (1969) |
| 5 | $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 25 | 0.1-4.0 | $m$ vs $\gamma_{ \pm}$and $P$ | 19 | Robinson \& Stokes (1955) |
| 6 | $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 40 | 4.0 | $m$ vs $P$ | 4 | Ciparis (1966) |
| 7 | $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ | $\begin{aligned} & 25,60,70 \\ & 80,90,100 \end{aligned}$ | 0.1-4.0 | $m$ vs $\gamma_{ \pm}$and $P$ | 11 | Robinson \& Stokes (1955) |
| 8 | $\mathrm{CaCl}_{2}-\mathrm{MeOH}$ | 25 | 0.3-2.6 | $m$ vs $P$ | 7 | Eric (1979) |
| 9 | $\mathrm{HCl}-\mathrm{MeOH}$ | 25 | 0.002-0.56 | m vs $\gamma_{ \pm}$ | 22 | Harned \& Owen (1958) |
| 10 | HC1-EtOH | 25 | 0.005-0.1 | $m$ vs $\gamma_{ \pm}$ | 8 | Janz \& Taniguichi (1957) |
| 11 | $\mathrm{LiBr}-\mathrm{MeOH}$ | 15,25 | 0.3-6.6 | $m$ vs $P$ |  | Skabichevskii (1969) |
| 12 | LiCl-MeOH | 25 | 0.33-3.67 | $m$ vs $P$ | 6 | Skabichevskii (1969) |
| 13 | LiCl-MeOH | 60 | 0.33-7.4 | $m$ vs $P$ | 12 | Hala (1969) |
| 14 | $\mathrm{NaBr}-\mathrm{MeOH}$ | 25 | 0.56-1.56 | $m$ vs $P$ | 9 | Eric (1979) |
| 15 | $\mathrm{NaCl}-\mathrm{MeOH}$ | 25 | 0.0001-0.1 | $m$ vs $\gamma_{ \pm}$ | 7 | Convington (1973) |

TABLE G.l Binary Data Sources (Cont'd.)

| \# | System | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ <br> or <br> $\mathrm{P}(\mathrm{atm})$ | 'm' <br> Range | Type of Data | \# of <br> Data <br> Points | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 25 | 0.0 | $\mathrm{X}-\mathrm{Y}-\mathrm{P}-\mathrm{T}$ | 8 | Ciparis (1966) |
| 17 | $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 40 | 0.0 | $\mathrm{X}-\mathrm{Y}-\mathrm{P}-\mathrm{T}$ | 6 | Ciparis (1966) |
| 18 | $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 25 | 0.0 | $\mathrm{X}-\mathrm{Y}-\mathrm{P}-\mathrm{T}$ | 10 | Ciparis (1966) |
| 19 | $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1 atm | 0.0 | $\mathrm{X}-\mathrm{Y}-\mathrm{P}-\mathrm{T}$ | 34 | Rebolleda (1958) |

TABLE G. 2 Ternary Data Sources

| \# | System | T <br> Or <br> P | 'm' <br> Range | Type of <br> Data | \# of <br> Data <br> Points | Reference |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE G. 3 Solvent-Solvent Binary Data Correlation

| System | \# of Points | $\begin{gathered} \mathrm{T} \\ \text { or } \\ \mathrm{P} \end{gathered}$ | $\alpha_{23}$ | $\Delta g_{23}$ | $\Delta g_{32}$ | $\Delta \mathrm{Y}$ |  | $\triangle \mathrm{P}$ (mmHg) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Max | Avg | Max | Avg |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 8 | $25^{\circ} \mathrm{C}$ | 0.3 | 806.03 | -321.46 | 0.013 | 0.004 | 2.0 | 1.4 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 8 | $25^{\circ} \mathrm{C}$ | -1.0 | -150.9 | 836.76 | 0.012 | 0.0038 | 2.1 | 1.4 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6 | $40^{\circ} \mathrm{C}$ | 0.3 | 1453.1 | -498.7 | 0.0146 | 0.0066 | 7.8 | 3.4 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6 | $40^{\circ} \mathrm{C}$ | $-1.0$ | -364.7 | 493.7 | 0.0226 | 0.0086 | 3.5 | 2.2 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 12 | $60^{\circ} \mathrm{C}$ | 0.3 | 431.65 | 43.59 | 0.01 | 0.0057 | - | 4.1 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 12 | $60^{\circ} \mathrm{C}$ | -1.0 | 140.3 | 235.9 | 0.011 | 0.0057 | - | 4.2 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 10 | $25^{\circ} \mathrm{C}$ | 0.3 | 894.5 | -62.9 | 0.049 | 0.012 | 2.2 | 0.7 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 10 | $25^{\circ} \mathrm{C}$ | -1.0 | 105.7 | 383.87 | 0.054 | 0.013 | 2.6 | 0.8 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 34 | 1 atm | 0.3 | 627.6 | -54.5 | 0.0086 | 0.003 | 13.1 | 5.6 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 34 | 1 atm | -1.0 | 97.077 | 312.5 | 0.007 | 0.0026 | 13.0 | 5.4 |

TABLE G. 4 Aqueous Electrolytic Binary Data Correlation with Two Objective Functions, Equations (2-9) \& (2-10)

TABLE G. 5 Nonaqueous Electrolytic Binary Data with Two Objective Functions, Equations (2-9) and (2-10)

TABLE G. 6 Aqueous Electrolytic Binary Data Correlation with Temperature Independent Parameters Using Objective Function \#2, Equation (2-10) and Presetting

| System | \# of Points | $\underset{\substack{\operatorname{Max} \\ \text { ' }}}{ }$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\Delta g_{\text {A } 2}$ | $\Delta g_{B 2}$ | $\begin{gathered} \% \text { Errc } \\ \text { Max } \end{gathered}$ | in $\gamma_{ \pm}$ Avg | $\begin{gathered} \text { \% Err } \\ \text { Max } \end{gathered}$ | in DP Avg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ | 17 | 3.0 | 25 | -42.589 | 668.8 | 7.1 | 4.2 | 5.0 | 2.8 |
| $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ * | 15 | 2.0 | 25 | 77.553 | -3.3056 | 5.5 | 2.4 | - | - |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 4.0 | 25 | 61.958 | -5.0817 | 15.8 | 6.6 | 11.6 | 3.3 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 11 | 6.0 | 60 | 81.743 | -11.592 | - | - | 8.6 | 5.0 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 4 | 10.3 | 40 | 98.318 | -3.2249 | - | - | 7.8 | 4.9 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 4.0 | 25 | -24.258 | 174.11 | 9.4 | 4.0 | 8.1 | 2.3 |
| $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ | 17 | 4.0 | 25 | -32.396 | 444.79 | 3.4 | 1.2 | 3.3 | 1.0 |


| System | \# of Points | $\underset{\prime}{\operatorname{Max}}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\Delta \mathrm{G}_{\text {A3 }}$ | $\triangle \mathrm{G}_{\mathrm{B} 3}$ | \% Error in $\gamma_{ \pm}$ \% Error in DP  <br> Max Avg Max Avg |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaCl}_{2}-\mathrm{MeOH}$ | 7 | 3.0 | 25 | -16.156 | 289.16 | - | - | 16.3 | 9.3 |
| HCl-EtOH | 8 | 0.1 | 25 | -58.994 | 6897.7 | 8.7 | 6.0 | - | - |
| $\mathrm{HCl}-\mathrm{MeOH}$ | 22 | 0.56 | 25 | -28.306 | 317.33 | 0.66 | 0.4 | - | - |
| LiCl-EtOH | 3 | 4.0 | 25 | -14.056 | 187.82 | - | - | 15.3 | 12.3 |
| LiCl-MeOH | 6 | 4.0 | 25 | -20.384 | 161.93 | - | - | 7.0 | 3.4 |
| LiCl-MeOH | 11 | 6.0 | 60 | -19.497 | 170.92 | - | - | 17.5 | 7.3 |
| $\mathrm{NaBr}-\mathrm{MeOH}$ | 9 | 1.6 | 25 | -21.556 | 177.28 | - | - | 4.1 | 1.9 |
| $\mathrm{NaCl}-\mathrm{MeOH}$ | 7 | 0.1 | 25 | -10.262 | 210.86 | 11.3 | 6.6 | - | - |
| LiBr-MeOH | 8 | 6.64 | 15 | -20.198 | 158.28 | - | - | 2.9 | 1.5 |
| $\mathrm{LiBr}-\mathrm{MeOH}$ | 8 | 6.64 | 30 | -23.999 | 216.56 | - | - | 14.0 | 5.7 |


|  | Functi <br> \# of points | $\neq 2, \mathrm{Ec}$ | ion | $0)$ and | etting | $=0.2$ | $i=$ | $.0$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System |  | $\underset{\text { Max }}{\substack{\text { m' }}}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\Delta g_{\text {Ai }}$ | $\Delta g_{B i}$ | $\begin{gathered} \text { \% Err } \\ \text { Max } \end{gathered}$ | n $\gamma$ Avg | $\begin{gathered} \% \operatorname{Err} \\ \text { Max } \end{gathered}$ | in $D P$ <br> Avg |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 4.0 | 25 | -2.8668 | -12.27 | 16.1 | 6.6 | 11.6 | 3.4 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 4 | 10.3 | 40 | -2.1801 | -13.616 | - | - | 7.7 | 5.0 |
| LiCl-EtOH | 2 | 1.0 | 25 | 20.872 | 6.102 | - | - | 26.6 | 22.5 |
| LiCl-MeOH | 6 | 3.7 | 25 | 20.285 | 5.32 | - | - | 16.6 | 9.7 |
| $\mathrm{NaBr}-\mathrm{MeOH}$ | 9 | 1.6 | 25 | 19.938 | 5.2467 | - | - | 6.9 | 5.7 |
| LiCl-MeOH | 11 | 6.0 | 60 | 23.133 | 6.3664 | - | - | 42.7 | 27.4 |

TABLE G. 9 Binary Data Correlation with Temperature Independent Parameters Using Objective

| System | \# of Points | $\underset{\prime}{\operatorname{Max}}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\Delta g_{\text {Ai }}$ | $\Delta g_{B i}$ | $\begin{array}{ll} \text { \% Error in } \mathrm{DP} \\ \text { Max } & \text { Avg } \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LiCl-EtOH | 2 | 1.0 | 25 | 6.1822 | -27.801 | 27.5 | 25.3 |
| LiCl-MeOH | 6 | 3.7 | 25 | 5.4454 | -32.375 | 17.7 | 10.5 |
| $\mathrm{NaBr}-\mathrm{MeOH}$ | 9 | 1.6 | 25 | 5.3709 | -32.753 | 7.3 | 3.9 |
| LiCl-MeOH | 11 | 6.0 | 60 | 6.479 | -51.103 | 43.6 | 28.3 |
| $\mathrm{CaCl}_{2}{ }^{-\mathrm{MeOH}}$ | 7 | 2.6 | 25 | -50.83 | 7.1956 | 275.7 | 205.0 |


| System | \# of Points | $\underset{\text { 'm' }}{\text { Max }}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{aligned} & \text { of } \\ & \mathrm{T} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | Paramete $\Delta g_{A i}$ | Used <br> $\Delta g_{B i}$ | $\begin{gathered} \text { \% Errc } \\ \text { Max } \end{gathered}$ | $\begin{aligned} & \operatorname{in} \gamma_{ \pm} \\ & \operatorname{Avg} \end{aligned}$ | \% Erro <br> Max | $\begin{aligned} & \text { in DP } \\ & \text { Avg } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 6.0 | 25 | 60 | 81.743 | -11.592 | 24.3 | 11.2 | 14.3 | 5.2 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 11 | 6.0 | 60 | 25 | 61.958 | -5.0817 | - | - | 13.0 | 5.8 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 4.0 | 25 | 40 | 98.318 | -3.2249 | 33.5 | 20.5 | 9.4 | 6.8 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 4 | 10.3 | 40 | 25 | 163.29 | 12.545 | - | - | 25.1 | 11.6 |
| LiBr-MeOH | 8 | 6.6 | 15 | 30 | -23.999 | 216.56 | - | - | 23.4 | 13.8 |
| Li $\mathrm{Br}-\mathrm{MeOH}$ | 8 | 6.6 | 30 | 15 | -20.198 | 158.28 | - | - | 30.4 | 9.4 |
| LiCl-MeOH | 9 | 6.0 | 25 | 60 | -19.497 | 170.9 | - | - | 62.0 | 42.0 |
| LiCl-MeOH | 11 | 6.0 | 60 | 25 | -20.384 | 161.8 | - | - | 39.6 | 35.1 |

TABLE G.ll Isothermal Ternary $\gamma_{ \pm}$Data Correlation for the Four Parameters: $G_{ \pm 2}, Z_{ \pm 2}, G_{ \pm 3}$ and $z_{ \pm 3^{\prime}}$

| System | \# of Points | $\begin{aligned} & \text { Max } \\ & \text { 'm' } \end{aligned}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\alpha_{23}$ | $\Delta g_{23}$ | $\Delta g_{32}$ | $\mathrm{G}_{ \pm 2}$ | $\mathrm{Z}_{ \pm 2}$ | $G_{ \pm 3}$ | $Z_{ \pm 3}$ | $\begin{aligned} & \text { \% Er } \\ & \text { Max } \end{aligned}$ | in <br> Avg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 44 | 2.5 | 25 | $-1.0$ | 105.8 | 383.8 | 19.677 | 1.789 | 9.460 | 84.647 | 10.0 | 2.0 |
| $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 48 | 2.0 | 25 | $-1.0$ | $-150.9$ | 336.5 | 19.677 | 1.789 | 7.63 | 40.14 | 18.4 | 2.2 |
| $\mathrm{IiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 45 | 1.0 | 25 | -1.0 | -150.9 | 336.5 | 28.32 | 3.141 | 21.875 | 24.882 | 22.8 | 7.7 |
| $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 35 | 1.0 | 25 | -1.0 | $-150.9$ | 336.5 | 38.981 | 4.216 | 44.11 | 14.638 | 27.0 | 6.1 |

TABLE G.l2 A Comparative Study of the Three Objective Functions [Equations (2-19), (2-20), (2-21)] in Correlating Ternary Isothermal VLE Data with the Four Parameters $\left[G_{ \pm 2}, Z_{ \pm 2}, G_{ \pm 3}, Z_{ \pm 3}\right]$, Presetting $\Delta g_{23}$ and $\Delta g_{32}$ from Table G. 3 Corresponding to $\alpha_{23}=-1.0$

| System | $\operatorname{Max}_{\prime \mathrm{m}}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\Delta Y$ |  | $\underset{(\mathrm{mmHg})}{\Delta \mathrm{P}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Avg | Max | Avg |

Objective Function \#1

| LiCl-H2 $\mathrm{O}-\mathrm{EtOH}$ | 1.0 | 25 | 0.035 | 0.011 | 5.6 | 2.2 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 25 | 0.022 | 0.012 | 8.0 | 4.8 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6.2 | 40 | 0.023 | 0.012 | 11.5 | 5.1 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 7.1 | 25 | 0.047 | 0.017 | 15.0 | 8.8 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6.0 | 60 | 0.04 | 0.015 | 33.2 | 13.8 |

Objective Function \#2

| LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 | 25 | 0.034 | 0.009 | 3.1 | 1.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 25 | 0.009 | 0.0055 | 9.3 | 6.8 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6.2 | 40 | 0.022 | 0.01 | 17.7 | 5.6 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 7.1 | 25 | 0.02 | 0.0088 | 11.4 | 4.8 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6.0 | 60 | 0.023 | 0.009 | 54.3 | 11.7 |

Objective Function \#3

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 | 25 | 0.035 | 0.01 | 6.1 | 2.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 25 | 0.011 | 0.0066 | 10.2 | 5.6 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6.2 | 40 | 0.022 | 0.011 | 15.2 | 5.4 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 7.1 | 25 | 0.021 | 0.0092 | 11.3 | 5.0 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 6.0 | 60 | 0.025 | 0.0097 | 50.3 | 11.6 |

TABLE G. 13 Values of the Parameters Obtained with the Three Objective Functions for Isothermal Ternary VLE Data

| System | $\left.{ }^{\circ} \mathrm{C}\right)$ | $\mathrm{G}_{ \pm 2}$ | $\mathrm{Z}_{ \pm 2}$ | $\mathrm{G}_{ \pm 3}$ | $\mathrm{Z}_{ \pm 3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Objective Function \#1

| LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 25 | 6.3977 | 76.681 | 0.1946 | 1346.3 |
| :--- | :--- | :---: | :---: | :--- | :---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 25 | 5.4754 | 124.08 | 0.0 | 930.92 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 40 | 23.21 | 20.24 | 3.653 | 52.82 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 25 | 22.76 | 1.56 | 0.2243 | 316.1 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 60 | 22.32 | 0.025 | 1.5917 | 131.0 |

Objective Function \#2

| LiCl-H2O-EtOH | 25 | 12.666 | 68.166 | 0.1983 | 2076.1 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| LiCl-H2O-MeOH | 25 | 12.666 | 68.166 | 75.818 | -11.239 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 40 | 20.762 | 21.419 | 3.4156 | 55.672 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 25 | 13.657 | 13.023 | 0.1382 | 601.16 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 60 | 15.463 | 5.1261 | 0.2639 | 531.88 |

Objective Function \#3

| LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 25 | 13.644 | 53.324 | 0.1282 | 2122.4 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 25 | 13.644 | 53.324 | 59.022 | -11.455 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 40 | 21.205 | 20.357 | 3.364 | 53.684 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 25 | 14.979 | 11.67 | 0.1367 | 604.9 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 60 | 17.929 | 4.017 | 0.2525 | 634.78 |

TABLE G.l4 A Comparative Study of the Three Objective Functions [Equations (2-19), (2-20), (2-21)] in Correlating Ternary Isobaric

VLE Data with the Four Parameters $\left[\Delta g_{A 2}, \Delta g_{B 2}, \Delta g_{A 3} \& \Delta g_{B 3}\right]$ Presetting $\Delta g_{23}$ and $\Delta g_{32}$ Corresponding to $\alpha_{23}=-1.0$ [Table G.3] and $\alpha_{A 2}=0.2 ; \alpha_{B 2}=0.0 ; \alpha_{A 3}=0.2 ; \alpha_{B 3}=0.0$

| System | $\operatorname{Max}_{\prime \prime}$ | $\begin{gathered} \mathrm{P} \\ (\mathrm{mmHg}) \end{gathered}$ | $\Delta Y$ |  | $\begin{gathered} \Delta \mathrm{P} \\ (\mathrm{mmHg}) \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Avg | Max | Avg |

Objective Function \#1

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.8 | 760.0 | 0.04 | 0.0135 | 39.0 | 15.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.8 | 760.0 | 0.053 | 0.021 | 35.1 | 14.9 |
| $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 | 760.0 | 0.055 | 0.016 | 34.3 | 14.4 |
| $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 760.0 | 0.051 | 0.01 | 35.6 | 13.9 |

Objective Function \#2

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.8 | 760.0 | 0.036 | 0.0136 | 39.7 | 16.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.8 | 760.0 | 0.052 | 0.02 | 35.1 | 13.1 |
| $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 | 760.0 | 0.056 | 0.0155 | 38.9 | 15.7 |
| $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 760.0 | 0.051 | 0.01 | 35.5 | 15.6 |

Objective Function \#3

| LiCl $-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.8 | 760.0 | 0.036 | 0.0136 | 40.0 | 16.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.8 | 760.0 | 0.051 | 0.02 | 53.3 | 19.1 |
| $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 | 760.0 | 0.056 | 0.0155 | 35.3 | 14.9 |
| $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 760.0 | 0.051 | 0.01 | 34.4 | 15.0 |

TABLE G. 15 Values of the Parameters Obtained with the Three Objective Functions for Isobaric VLE Data

| System | $P$ <br> $(m m H g)$ | $\Delta g_{A 2}$ | $\Delta g_{B 2}$ | $\Delta g_{A 3}$ | $\Delta g_{B 3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Objective Function \#1

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 142.84 | -19.8 | -35.0 | 319.10 |
| :--- | :---: | :---: | :---: | :---: | ---: |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 0.0506 | 12.009 | 99.65 | -303.26 |
| $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 105.8 | -44.06 | -40.16 | 340.5 |
| $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | -11.81 | 40.08 | 4916.8 | -2559.8 |

Objective Function \#2

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 125.35 | -26.6 | -33.52 | 334.05 |
| :--- | :---: | :---: | :---: | :---: | ---: |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | -5.695 | 23.0 | 111.3 | -320.36 |
| $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 124.21 | -79.67 | -41.151 | 446.55 |
| $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 104.95 | -176.71 | 12394.0 | -2932.0 |

Objective Function \#3

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 153.03 | -24.3 | -35.571 | 336.4 |
| :--- | :---: | :---: | :--- | :---: | :---: |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 65.9 | -21.77 | 89.295 | -454.8 |
| $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 50.72 | -50.618 | -40.88 | 432.38 |
| $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 760 | 21.952 | -79.58 | 3674.4 | -2767.1 |







Figure G.3A Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I up to $\mathrm{m}=0.2$ for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $X_{\mathrm{EtOH}}^{\prime}=0.5$



Figure G. 5 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{MeOH}}$ $=0.1233$


Figure G. 6 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$


Figure G. 7 Comparison of Experimental Mean Molal Activity Coefficients with those Predicted and Correlated by Model I for the System LiCl- $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.5$, 1.0. Experimental, Akerlof (1930) ; O Correlated ( $\alpha_{23}=$ $-1.0)$; $\triangle$ Predicted ( $\alpha_{23}=-1.0$ ) ; $\square$ Predicted ( $\alpha_{23}=0.3^{3}$ )


Figure G. 8 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated for the System NaCl $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.02,0.05$
__. Experimental, Akerlof (1930); O Correlated ( $\alpha_{23}=-1.0$ )


Figure G. 9 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated for the System NaCl$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.2$, 0.5 .
__ Experimental , Akerlof (1930) ; O Correlated ( $\alpha_{23}=-1.0$ )

Figure G. 10 Comparison of Experimental Vapor Phase Compositions with those Predicted and Correlated by Model I for the System LiCl-H2 $\mathrm{H}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.5$


Figure G. 11 Comparison of Experimental with Predicted and Correlated Vapor-Phase Compositions Using Model I for the System LiC1-H2 $0-E t O H$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=1.0$


Figure G. 12 Comparison of Experimental with Predicted and Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=1.0$


$$
\bigcirc \mathrm{m}=1.0 \quad ; \quad \Delta \mathrm{m}=2 ; \square \mathrm{m}=4 ; 0 \mathrm{~m}=6.2
$$



Figure G. 13 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $40^{\circ} \mathrm{C}$


Figure G. 15 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$

$$
\mathrm{m}=0.58=-5.6
$$



$$
\alpha_{23}=-1.0
$$



Figure G. 16 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1 \mathrm{~atm}$

$$
\alpha_{23}=-1.0
$$



Figure G. 17 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1$ atm


Figure G. 18 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $\mathrm{P}=1 \mathrm{~atm}$


Figure G. 19 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model I for the System $\mathrm{NaF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeoH}$ at $\mathrm{P}=1 \mathrm{~atm}$

Figure G. 20 Contribution of the NRTL Term to $\ln \gamma_{i}$ for the System LiC1- $\mathrm{H}_{2} \mathrm{O}$-EtOH at 25 C in Model I


APPENDIX H

TABLES AND FIGURES FOR MODEL II

TABLE H.2 Values of $\mathrm{B}_{12}$ and Quality of Correlation of the Weast Data

| Electrolyte | $\max \mathrm{m}$ | $\overline{\mathrm{DP}}$ | ${ }_{\mathrm{D}} \mathrm{P}_{\text {max }}$ | ${ }_{D} P_{\text {max }}^{\prime}$ | $\mathrm{B}_{12}\left(100^{\circ} \mathrm{C}\right)$ | $\mathrm{B}_{12}\left(25^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{KBr} *$ | 4.0 | 0.6 | 1.0 | 1.0 | 0.0442 | 0.0296 |
| KC1 | 6.0 | 1.1 | 2.1 | 2.1 | 0.0311 | 0.0240 |
| KI | 10.0 | 1.7 | 3.6 | 9.3 | 0.0537 | 0.0428 |
| $\mathrm{KNO}_{3}$ | 10.0 | 0.8 | 1.2 | 2.7 | -0.0256 | -0.0862 |
| KOH | 10.0 | 3.6 | 6.0 | 9.8 | 0.1176 | 0.1131 |
| LiBr | 10.0 | 1.6 | 2.9 | 3.8 | 0.1325 | 0.1527 |
| LiC1 | 10.0 | 0.7 | 2.3 | 3.6 | 0.1089 | 0.1283 |
| LiI | 10.0 | 1.0 | 1.3 | 15.4 | 0.1645 | 0.1815 |
| $\mathrm{LiNO}_{3}$ | 10.0 | 2.5 | 4.8 | 11.2 | 0.0742 | 0.0938 |
| LiOH | 2.0 | 2.6 | 5.1 | 5.1 | 0.3064 | -0.0097 |
| NaBr | 8.0 | 1.5 | 3.0 | 5.2 | 0.0832 | 0.0749 |
| NaCl | 6.0 | 0.4 | 1.1 | 1.1 | 0.0567 | 0.0574 |
| NaI | 10.0 | 2.2 | 5.8 | 12.5 | 0.1129 | 0.0994 |
| $\mathrm{NaNO}_{3}$ | 10.0 | 0.9 | 1.2 | 6.2 | 0.0074 | -0.0128 |
| NaOH | 10.0 | 1.0 | 2.1 | 2.5 | 0.0508 | 0.0747 |
| $\mathrm{NH}_{4} \mathrm{Br}$ | 10.0 | 1.4 | 3.1 | 6.7 | 0.0235 | -0.0066 |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | 10.0 | 1.0 | 2.1 | 6.8 | 0.0154 | 0.0200 |

TABLE H. 2 (Cont ${ }^{\text { }}$ d.)

| Electrolyte | max m | $\overline{\mathrm{DP}}$ | $\mathrm{DP}_{\max }$ | $D P_{\max }^{\prime}$ | $\left.\mathrm{B}_{12} 100^{\circ} \mathrm{C}\right)$ | $\mathrm{B}_{2}\left(25^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{4}{ }^{\mathrm{I}}$ | 10.0 | 1.8 | 2.8 | 10.9 | 0.0361 | 0.0210 |
| $\mathrm{NH}_{4} \mathrm{NO}_{3}$ | 10.0 | 1.0 | 1.6 | 2.9 | -0.0051 | -0.0358 |
| $\mathrm{BaBr}_{2}$ | 4.0 | 0.6 | 1. 2 | 8.3 | 0.0773 | 0.0852 |
| $\mathrm{BaCl}_{2}$ | 2.0 | 1.3 | 2.8 | 2.8 | 0.0501 | 0.0638 |
| $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ | 1.0 | 0.4 | 0.6 | 0.6 | -0.0021 | $-0.0545$ |
| $\mathrm{Ba}(\mathrm{OH})_{2}$ | 2.0 | 0.6 | 0.9 | 0.9 | -0.0275 | -0.024 |
| $\mathrm{CaBr}_{2}$ | 5.0 | 2.2 | 3.4 | 4.4 | 0.1083 | 0.1179 |
| $\mathrm{CaCl}_{2}$ | 5.0 | 0.6 | 1.1 | 4.9 | 0.0853 | 0.0948 |
| $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ | 5.0 | 0.9 | 1.8 | 26.3 | 0.0436 | 0.0461 |
| $\mathrm{CdBr}_{2}$ | 4.0 | 3.4 | 4.7 | 8.3 | -0.0341 | $-0.1701$ |
| $\mathrm{CdCl}_{2}$ | 5.0 | 2.7 | 3.7 | 9.7 | $-0.0336$ | -0.1448 |
| $\mathrm{CdI}_{2}$ | 3.0 | 4.5 | 6.7 | 8.7 | -0.0411 | -0.2497 |
| $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ | 2.0 | 0.9 | 2.1 | 2.1 | 0.0505 | 0.0719 |
| $\mathrm{CoCl}_{2}$ | 4.0 | 0.7 | 1.4 | 5.9 | 0.0593 | 0.1016 |
| $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ | 6.0 | 1.0 | 2.2 | 13.7 | 0.0730 | 0.0912 |
| $\mathrm{MgBr}_{2}$ | 4.0 | 0.4 | 1.1 | 3.8 | 0.1260 | 0.1419 |
| $\mathrm{MgCl}_{2}$ | 5.0 | 0.8 | 1.0 | 5.0 | 0.0951 | 0.1129 |


| $T \angle \mathcal{L} 0^{\circ} 0^{-}$ | $6200^{\circ} 0$ | $0^{*} 7$ | $0^{* 2}$ | $8^{*} 0$ | $0^{-7}$ | Vospy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\angle 870^{\circ} 0-$ | $S \Sigma T 0^{\circ} 0-$ | $L \cdot \nabla$ | $9^{\circ} 2$ | $G^{\prime \prime} L$ | $0^{\circ} 9$ | $\nabla_{O S}{ }^{7}\left(\nabla_{H N}\right)$ |
| $\nabla 020{ }^{\circ} 0$ | $9800^{\circ} 0-$ | 5 | $7^{\circ} \mathrm{I}$ | 8＊0 | $0^{\circ} \mathrm{E}$ | $\nabla^{7} \mathrm{OS}^{7} \mathrm{PN}$ |
| $5970^{\circ} 0-$ | $0020^{\circ} 0$ | $0^{\circ} 8$ | $\mathcal{L}$ L | $8^{\circ} 0$ | $0^{\bullet} 9$ | ${ }^{7} \mathrm{OdH}$ |
| $6800^{\circ} 0$ | $9800^{*} 0$ | $L^{\bullet} \mathrm{G}$ | Z ${ }^{\text {c }}$ | $8^{\circ} 0$ | $0^{*} \downarrow$ | ${ }^{\varepsilon_{00}}{ }^{2} e_{N}$ |
| $\angle 070^{\circ} 0$ | $7 \angle 00^{\circ} 0$ | $\chi^{*}$ I | I＇I | $\nabla^{*} 0$ | $0^{\circ} \mathrm{L}$ | $\nabla_{0 S}{ }^{2}$ ！ |
| $2000^{\circ} 0-$ | $\mathrm{L}+\mathrm{T} 0^{\circ} 0$ | $S^{*} I$ | $S^{*} L$ | $L \cdot 0$ | $0^{*} 7$ | $\nabla_{0 I D^{2}}$ |
| $7 \angle E 0 \cdot 0$ | $8620^{\circ} 0$ | $\Sigma \cdot G$ | $6^{*} 0$ | $7^{\bullet} 0$ | $0^{\circ} 8$ | ${ }^{\varepsilon_{O D}}{ }^{2}$ |
| 20050 | $\nabla\left[80^{\circ} 0\right.$ | $\mathcal{L} 5$ | $6^{*} 0$ | $9^{\circ} 0$ | $0^{\circ} \dagger$ | $7\left({ }^{2} 0 N\right) 山 Z$ |
| $\nabla 920{ }^{\circ} 0$ | $\angle 910^{\circ} 0-$ | $6 \cdot 2[$ | $7 \cdot 9$ | $L \bullet \downarrow$ | $0^{\circ} 9$ | ${ }^{\text {Z }}$ ¢ ${ }^{\text {\％}}$ |
| 8ST0 0 | $1720^{\circ} 0$ | $\nabla^{*} \varepsilon$ | $6^{*} 0$ | $L \cdot 0$ | $0^{*} \downarrow$ | ${ }^{Z}\left({ }^{\mathcal{Z}} \mathrm{ON}\right) \mathrm{IS}$ |
| $\angle \nabla 80^{\circ} 0$ | $\Sigma L L 0^{\circ} 0$ | $G^{\circ} 0[$ | $7^{\cdot 1}$ | $9^{\circ} 0$ | $0^{\circ} \mathrm{S}$ | ${ }^{7} \mathrm{LD} 5$ |
| 8 COT 0 | $\angle L 60^{\circ} 0$ | $8^{\circ} \mathrm{I}$ | $L^{*} \mathrm{I}$ | $L \cdot 0$ | $0^{\bullet} \downarrow$ | ${ }^{7} \mathrm{IgIS}$ |
| $9090^{\circ} 0$ | $\Sigma 9\left[0^{\circ} 0-\right.$ | $9^{*} T$ | $\nabla^{*} I$ | $0^{\circ} \mathrm{T}$ | $0^{\circ} \mathrm{E}$ | ${ }^{2}\left({ }^{\text {ONN }}\right.$ ） qd |
| $6 \sum 0 L^{\circ} 0$ | $\dagger \angle 90^{\circ} 0$ | S＊ 7 | $L \cdot 0$ | $S \cdot 0$ | $0 \cdot \square$ | ${ }^{7}$ LDTN |
| $6980^{\circ} 0$ | $\angle S \nabla 0^{\circ} 0$ | $0 \cdot 6$ | $6^{\circ} 0$ | $9^{\circ} 0$ | $0^{\circ} \mathrm{G}$ | ${ }^{2}$ TJUW |
| VIOT＊0 | $S \angle 60^{\circ} 0$ | $\nabla^{*} 7$ | $L^{*} \mathrm{I}$ | $8^{\circ} 0$ | $0^{\circ} \mathrm{E}$ | $2\left({ }^{2} \mathrm{ON}\right) 8 \mathrm{~N}$ |
| $(0,9 Z)^{2 I_{g}}$ | $(0,00 L)^{Z} \mathbb{L}$ | $\mathrm{XeW}_{1} \mathrm{dU}$ | xew dU | dIt | W XEU | ข7КTO．7つコT马 |


| TABLE H .2 | (Cont'd.) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Electrolyte | max $m$ | IP | $\mathrm{DP}_{\text {max }}$ | $\mathrm{DP}_{\max }^{\prime}$ | $\mathrm{B}_{12}\left(100^{\circ} \mathrm{C}\right)$ | $\mathrm{B}_{12}\left(25^{\circ} \mathrm{C}\right)$ |
| $\mathrm{MgSO}_{4}$ | 3.0 | 0.2 | 0.3 | 2.8 | 0.0107 | -0.0153 |
| $\mathrm{NiSO}_{4}$ | 2.0 | 1.5 | 2.3 | 2.3 | 0.0029 | -0.0298 |
| $\mathrm{ZnSO}_{4}$ | 4.0 | 0.9 | 1.4 | 4.4 | 0.0037 | -0.0240 |

[^1]
TABLE H. 4 Nonaqueous Electrolytic Binary Data Correlation with the Bromley Equation

| System | \# of Points | $\operatorname{Max}_{\prime \prime}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\mathrm{B}_{13}$ | $\begin{aligned} & \% \text { Error in } \gamma_{ \pm} \\ & \text {Max } \quad \text { Avg } \end{aligned}$ |  | $\begin{aligned} & \text { \% Er } \\ & \text { Max } \end{aligned}$ | $\begin{gathered} \text { in } D P \\ \text { Avg } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaCl}_{2}-\mathrm{MeOH}$ | 7 | 2.6 | 25 | 0.15541 | - | -- | 75.2 | 27.4 |
| HCl-EtOH | 8 | 0.1 | 25 | -0.44655 | 16.0 | 10.8 | - | - |
| $\mathrm{HCl}-\mathrm{MeOH}$ | 22 | 0.56 | 25 | 0.40686 | 1.7 | 0.6 | - | - |
| LiCl-EtOH | 3 | 4.0 | 25 | 0.41205 | - | - | 13.5 | 7.8 |
| LiCl-MeOH | 6 | 4.0 | 25 | 0.28811 | - | - | 8.8 | 3.6 |
| $\mathrm{LiCl}-\mathrm{MeOH}$ | 11 | 6.0 | 60 | 0.25195 | - | - | 15.6 | 7.3 |
| $\mathrm{NaBr}-\mathrm{MeOH}$ | 9 | 1.6 | 25 | 0.30629 | - | - | 9.9 | 4.1 |
| $\mathrm{NaCl}-\mathrm{MeOH}$ | 7 | 0.1 | 25 | -0.3223 | 10.7 | 6.2 | - | - |

TABLE H. 5 Aqueous Electrolytic Binary Data Correlation with the Bromley Equation

| System | \# of Points | $\begin{gathered} \text { Max } \\ \text { 'm' } \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\mathrm{B}_{12}$ | $\begin{aligned} & \% \text { Error in } \\ & \operatorname{Max} \gamma_{ \pm} \end{aligned}$ |  | $\begin{aligned} & \text { \% Error in } \\ & \text { DP } \\ & \text { Max Avg } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ | 21 | 5.0 | 25 | 0.1000 | 11.0 | 5.5 | 3.6 | 2.10 |
| $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ | 15 | 2.0 | 25 | 0.13963 | 0.9 | 0.6 | - | - |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 4.0 | 25 | 0.12366 | 2.5 | 0.9 | 2.0 | 0.5 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ | 11 | 6.0 | 60 | 0.12049 | - | - | 1.9 | 0.9 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 4 | 10.3 | 40 | 0.06607 | - | - | 13.0 | 5.5 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}$ | 19 | 4.0 | 25 | 0.07376 | 0.5 | 0.1 | 1.1 | 0.2 |
| $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ | 10 | 1.0 | 25 | 0.05586 | 0.1 | 0.04 | 1.0 | 0.3 |

TABLE H. 6 Isothermal Ternary $\gamma_{ \pm}$Data Correlation with Model II

| System | \# of <br> Points | Max <br> 'm' | T <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{B}_{123}$ | $\delta_{123}$ | Max$\gamma_{ \pm}$ <br> Avg |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 25 | 0.1 | 25 | -4.283 | -0.0245 | 13.8 | 2.4 |
| $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 48 | 2.0 | 25 | 0.57215 | -0.0498 | 11.6 | 1.4 |
| $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 35 | 0.5 | 25 | -11.967 | -0.0286 | 28.0 | 7.4 |

TABLE H. 7 A Comparative Study of the Three Objective Functions [Equations (2-19), (2-20), (2-21)] in Correlating Ternary Isothermal VLE Data with Model II

| System | $\underset{\prime}{\operatorname{Max}}$ | $\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\Delta \mathrm{Y}$ |  | $\underset{(\mathrm{mmHg})}{\Delta \mathrm{P}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Avg | Max | Avg |


| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 | 25 | 0.034 | 0.0145 | 4.7 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 25 | 0.015 | 0.0087 | 11.7 | 9.0 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 | 40 | 0.035 | 0.0165 | 9.0 | 3.6 |
|  | 6.2 | 40 | 0.026 | 0.014 | 8.0 | 4.4 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 | 25 | 0.028 | 0.01 | 4.9 | 1.9 |
|  | 7.1 | 25 | 0.066 | 0.015 | 3.9 | 1.5 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 | 60 | 0.054 | 0.026 | 16.8 | 7.4 |
|  | 3.0 | 60 | 0.05 | 0.028 | 12.6 | 6.6 |

Objective Function \#2

| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 | 25 | 0.023 | 0.009 | 8.9 | 3.3 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 25 | 0.011 | 0.007 | 4.4 | 3.1 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 | 40 | 0.021 | 0.012 | 11.4 | 3.9 |
|  | 6.2 | 40 | 0.021 | 0.011 | 11.4 | 4.6 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 | 25 | 0.013 | 0.0064 | 5.0 | 2.0 |
|  | 7.1 | 25 | 0.042 | 0.0096 | 12.7 | 4.5 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 | 60 | 0.038 | 0.018 | 40.0 | 27.7 |
|  | 3.0 | 60 | 0.036 | 0.02 | 46.4 | 30.2 |

Objective Function \#3

| LiCl-H $\mathrm{O}-\mathrm{EtOH}$ | 1.0 | 25 | 0.025 | 0.01 | 8.0 | 3.0 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | 25 | 0.011 | 0.008 | 10.2 | 8.0 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 | 40 | 0.02 | 0.012 | 13.2 | 3.8 |
|  | 6.2 | 40 | 0.02 | 0.011 | 12.1 | 4.8 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 | 25 | 0.014 | 0.007 | 5.1 | 2.0 |
|  | 7.1 | 25 | 0.048 | 0.011 | 10.5 | 3.4 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 | 60 | 0.042 | 0.019 | 31.0 | 19.6 |
|  | 3.0 | 60 | 0.036 | 0.02 | 46.4 | 30.2 |

TABLE H. 8 Values of the Parameters Obtained with Three Objective Functions for Model II

| System | $\operatorname{Max}_{\prime}^{\prime m}$ |  | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{aligned} & \text { Ternary } \\ & \mathrm{B}_{123} \end{aligned}$ | meters $\delta_{123}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Objective Function \#l |  |  |  |  |  |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 |  | 25 | -117.68 | 0.0604 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 |  | 25 | -145.85 | -0.0612 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 |  | 40 | -60.53 | -0.182 |
|  | 6.2 |  | 40 | -68.105 | -0.1582 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 |  | 25 | -93.462 | -0.1135 |
|  | 7.1 |  | 25 | -81.45 | -0.11248 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 |  | 60 | -21.409 | 0.0282 |
|  | 3.0 |  | 60 | -32.164 | 0.03745 |
| Objective Function \#2 |  |  |  |  |  |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 |  | 25 | -152.94 | 0.0899 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 | ; | 25 | -64.026 | -0.1587 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 |  | 40 | -59.76 | -0.1246 |
|  | 6.2 | , | 40 | -64.96 | -0.113 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 |  | 25 | -93.2 | -0.0235 |
|  | 7.1 |  | 25 | -99.38 | -0.0102 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 |  | 60 | -72.477 | 0.0759 |
|  | 3.0 |  | 60 | -80.63 | 0.0847 |
| Objective Function \#3 |  |  |  |  |  |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ | 1.0 |  | 25 | -145.91 | 0.08379 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 1.0 |  | 25 | -133.37 | -0.0573 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 |  | 40 | -51.02 | -0.1674 |
|  | 6.2 |  | 40 | -62.74 | -0.1292 |
| $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 3.0 |  | 25 | -93.997 | -0.0507 |
|  | 7.1 |  | 25 | -95.00 | -0.0483 |
| $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ | 2.0 |  | 60 | -59.4 | 0.0639 |
|  | 3.0 |  | 60 | -68.70 | 0.0724 |

\[

\]

(20.4


Figure H. 2 Test of the Bromley Equation System: $\mathrm{CaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$

- Robinson and Stokes ( $25^{\circ} \mathrm{C}$ )
$x \quad$ Weast $\left(100^{\circ} \mathrm{C}\right)$
$\mathrm{Y}, \mathrm{X}$ are defined in equation (3.15)


Figure H. 3 Test of the Bromley Equation
System: $\mathrm{MgSO}_{4}$
(0) Robinson and Stokes $\left(25^{\circ} \mathrm{C}\right)$
$\Delta$ Weast $\left(100^{\circ} \mathrm{C}\right)$
$Y, X \quad$ are defined in equation (3-15)


Figure F .4 Activity Coefficients as a function of concentration for the System KBr -Water at $100^{\circ} \mathrm{C}$

Robinson and Stokes


Figuren. 5 Test of Temperature Dependency of $\mathrm{B}_{12}$ Equation (3-20)

- KCI (Snipes et al., 1975)

O KCl (Heast, 1969)

- . KBT (Robinson and Stokes, 1955)
$+\mathrm{MgSO}_{4}$ (Snipes, et al., 1975)
(-) $\mathrm{MgSO}_{4}$ (Weast, 1969)
$\times \quad \mathrm{NaCl}$ (Robinson and Stokes, 1955)
(8) Weast (1969)


Figure H .6 Test of Temperature Dependency of $\mathrm{B}_{12}$ Equation (3-20)

- $\quad \mathrm{MgCl}_{2}$ (Snipes et al., 1975)
- $\quad \mathrm{MgCl}_{2}$ (Weast, 1969)
- $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$ (Snipes et al., 1975)
(A) Na, SO^ (Weast, 1969)


Figure H. 8 Test of the Bromley Equation, System : LiClMeOH at $60^{\circ} \mathrm{C}$
$Y, x$ are defined in equation (3-15)

 $Y, x$ are defined in equation (3-15)




Figure H. 13 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the
System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{X}_{\mathrm{MeOH}}=0.0584$



Figure H. 15 Comparison of Experimental Mean Molal Activity Coefficients with Those Correlated by Model II for the System $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant m $=0.02,0.05,0.5$


Figure H. 16 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the System $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant m $=0.02$ and 0.05


Figure H. 17 Comparison of Experimental Mean Molal Activity Coefficients with those Correlated by Model II for the System $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant m $=0.2,0.5$


Figure H. 18 Comparison of Experimental and Correlated Vapor-Phase Compositions Using Model II for the System LiC1- $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=0.5$


Figure H. 19 Comparison of Experimental and Correlated Vapor-Phase Compositions Using Model II for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=1.0$


Figure H. 20 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model II for the System LiCl $-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$ and Constant $\mathrm{m}=1.0$


Figure H. 21 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model II for the System $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $60^{\circ} \mathrm{C}$


Figure H. 22 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model II for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $25^{\circ} \mathrm{C}$


Figure H. 23 Comparison of Experimental with Correlated Vapor-Phase Compositions Using Model II for the System $\mathrm{NaBr}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $40^{\circ} \mathrm{C}$

## NOMENCLATURE



- activity of solvent i
- Debye-Hückel constant, ( $\mathrm{Kg} / \mathrm{g}$ mole) ${ }^{1 / 2}$, Appendix-D
- a constant used in equation (D-11)
- constants defined in equation (D-5)
- constants defined in equation (D-9)
- constants defined in equation (D-10)
- pure component liquid molar volume constants, equation (D-4)
- constants used in equation (1-25)
- binary 1-2 or 1-3 parameter in the Bromley Equation
- second virial coefficient of component i, $\mathrm{cm}^{3} / \mathrm{g}$ mole
- cross second virial coefficient, $\mathrm{cm}^{3} / \mathrm{g}$ mole
- constants defined in equation (3-18)
- ternary adjustable parameter in the Bromley Equation
- molar concentration of the electrolyte, g mole $/ \mathrm{cm}^{3}$ equation ( $\mathrm{A}-4$ )
- pure component vapor pressure constants, equation (1-24)
- constants defined in equation (3-19)
- density of the solvent/solvent mixture (electrolyte free), gm/cc
- dielectric constant of the solvent/solvent mixture (electrolyte free)
- fugacity of the component i, in the mixture
- a factor used in equation (1-10)

| $\mathrm{g}^{\text {E }}$ | - molar excess Gibbs free energy, cal/g mole |
| :---: | :---: |
| $\mathrm{G}^{\mathrm{E}}$ | - total excess Gibbs free energy, cal |
| $\mathrm{G}_{\mathrm{ij}}$ | - binary 2-3 adjustable parameter, in equation (2-4) |
| $\Delta g_{i j}$ | - temperature independent parameter in equation (2-4), cal/g mole |
| $\mathrm{G}_{\text {Ai }}$ and $\mathrm{G}_{\mathrm{Bi}}$ | - binary adjustable parameter, defined in equation (2-6) |
| $\Delta g_{\text {Ai }}$ and $\Delta g_{B i}$ | - binary adjustable temperature independent parameters, defined in equation (2-6), K joules/g mole |
| $\mathrm{G}_{ \pm i}$ | - adjustable parameters for binary 1-2 or $1-3$, in equation (2-5) |
| $\mathrm{H}_{1}$ | - Henry's constant, mmHg-Kg solvent/g mole |
| I | - ionic strength $=\frac{1}{2} \sum_{k} m_{k} z_{k}^{2}, g$ mole/kg of solvent |
| k | - Boltzman constant, $1.38054 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ (molecules) |
| NP | - total \# of points in a system |
| $\mathrm{N}_{\mathrm{T}}$ | - total \# of moles of the solvent or solvent mixture (electrolyte free) |
| m | - molality of an electrolyte, g mole/Kg of solvent |
| $M_{w}$ | - molecular weight of the solvent/solvent mixture, gm/g mole |
| P | - total pressure of the system, mmHg |
| $\mathrm{P}_{\mathrm{i}}^{\mathrm{O}}$ | - vapor pressure of the pure component i, mmHg |
| P.E. | - poynting effect defined in equation (1-15) |
| R | - gas constant, $1.987 \mathrm{cal} / \mathrm{g}$ mole ${ }^{\circ} \mathrm{K}$ |
| $\mathrm{R}^{1}$ | - gas constant, $8.314 \times 10^{-3} \mathrm{KJ} / \mathrm{K}-\mathrm{g}$ mole |
| T | - temperature, ${ }^{\circ} \mathrm{K}$ |


| V | - molar volume, cc/g mole |
| :---: | :---: |
| $\mathrm{X}_{\mathrm{m}}$ | - Iiquid-phase mole fraction of component $m$, defined in equations (1-22) and (1-23) |
| $x_{i}^{\prime}$ | - liquid-phase mole fraction of solvent i, electrolyte free |
| $Y_{m}$ | - vapor-phase mole fraction of component m |
| X, Y | - defined in equation (3-15) |
| $\mathrm{Z}_{+} \mathrm{Z}_{-}$ | - valency of cation and anion, respectively |
| $\mathrm{Z}_{\text {ij }}$ | - binary 2-3 constant, defined in equation (2-4) |
| $\mathrm{Z}_{ \pm \mathrm{i}}, \mathrm{Z}_{\mathrm{Ai}}$ and $\mathrm{Z}_{\mathrm{Bi}}$ | -binary parameters defined in equations (2-5) and (2-6), K Joules/g mole |


|  | GREEK LETTERS |
| :---: | :---: |
| $\alpha_{23}$ | - a constant used in equation (2-4) (= -1.0 or $0.2,0.3,0.47$ ) |
| ${ }^{\alpha}{ }_{\text {Ai }}{ }^{\prime} \alpha_{\text {Bi }}$ | - constants defined in equation (2-6) |
| $\gamma_{i}$ | - activity coefficient of solvent i |
| $\gamma_{ \pm}$ | - mean molal activity coefficient |
| $\gamma_{ \pm}$ | - mean molar activity coefficient |
| $\phi_{i}$ | - fugacity coefficient of the solvent i, in the mixture |
| $\phi_{i}{ }_{i}$ | - fugacity coefficient of the pure component i |
| $\phi$ | - osmotic coefficient in a binary (1-2 or 1-3) mixture, as defined in equation (1-20) |
| $\sigma_{1}\left(\rho I^{1 / 2}\right)$ | - defined in equation (A-12) |
| $\psi_{1}(\mathrm{aI})$ | - defined in equation (A-13) |
| $\sigma_{1}^{1}\left(\rho I^{1 / 2}\right)$ | - defined in equation ( $\mathrm{B}-35$ ) |
| $\psi_{1}^{1}$ (aI) | - defined in equation (B-36) |
| $\sigma_{2}\left(\rho I^{l / 2}\right), \psi_{2}(\mathrm{aI})$, |  |
| $\sigma_{2}^{1}\left(\rho I^{1 / 2}\right) \& \psi_{2}^{1}(a I)$ | ```- defined in equations (C-24) to (C-27), respectively``` |
| $\nu_{A}, \nu_{B}$ | - number of cations and anions, respectively |
| $v$ | - total number of ions ( $=\nu_{A}+\nu_{B}$ ) |
| $\varepsilon$ | - charge of an electron |
| $\delta_{123}$ | - salting out ternary parameter, in equation (3-5) |
| $\delta_{23}$ | - a constant in equation (E-7) |
| $\delta^{\prime}$ | - defined in equation (3-6) |
| $\omega$ | - acentric factor |

## SUPERSCRIPTS

```
O - pure component
L - liquid-phase
v - vapor-phase
```


## SUBSCRIPTS

```
1,2,3 - electrolyte, solvent 2 and solvent 3, respectively
A,B - cation and anion, respectively
C - critical property
Ca - calculated property
E - experimental
i,j - solvent 2 or 3
k - cation or anion
li - binary l-2 or l-3
ij - solvent-solvent binary
123 - ternary 1-2-3
\ell,m,n - ions or electrolyte or solvent 2 or 3
```

Akerlöf, G., J. Am. Chem. Soc., 52, 2353 (1930).
Akerlöf, G., The Journal of the American Chemical Society, 54 (13), Nov. (1932).

Bakerman, E. and D. Tassios, American Chemical Society, National Meeting, Chicago, (1973).

Beutier, D. and H. Renon, Ind. Eng. Chem. Process Des. Dev., 17, 220, (1978).

Bixon, E. Raymond Gurrey, and Dimitrios Tassios, J. Chem. Eng. Data, 1, 24, (1979).

Bromley, L.A., J. Chem. Thermodynamics, 4, 669, (1972).
Bromley, L.A., AIChE Journal, vol. 19, No. 2, 313, March (1973).
Bromley, L.A., et al., AIChE Journal, vol. 20, No. 2, 326, March (1974).

Ciparis, J.N., Data of salt effects in vapor liquid equilibrium, Edition of Lithuanian Agricultural Academy, USSR, Kaunas, (1966).

Covington, A.K. and T. Dickinson, Physical Chemistry of Organic Solvent Systems, Plenum Press, London and New York (1973).

Cruz, L.I., and H. Renon; AIChE Journal, vol. 24, No. 5, Sept. (1978).

Davies, C.W., Ion Association, Butterworths, Washington (1962).
Debye, P. and E. Huckel; Physik. Z., 24, 185, 334 (1923); 25,97, (1924).

Edwards, T.J., J. Newman and J.M. Prausnitz, AIChE Journal, vol. 21, No. 2, 248, (1975).

Edwards, T.J., G. Maurer, and J. Newman, AIChE Journal, 24,966, (1978).

Evans, L.B., et al., Symposium on the Thermodynamics of Aqueous systems with Industrial Applications, Washington, D.C., Oct. 22, (1979); AIChE Journal (1979).

Gibbard, F.H., G. Scatchhard, Journal of Chemical and Engineering Data, vol. 19, No. 3, 281 (1974).

Gronwall, T.H., V.K. Lamer and K. Sandved, Physic Z., 29, 358 (1928).

Gronwall, T.H., V.K. Lamer and L.J. Greiff, J. Physical Chemistry, 35, 2245 (1931).

Guggenheim, E.A. and J.C. Turgeon, Phil. Mag. 7, 11, 585, (1935).

Hala, E., Ind. Chem. E. Symposium Series, 32, 5, (1969).
Harned, H.S. and B.B. Owen, "The Physical Chemistry of Electrolytic Solutions," ACS Monograph Series No. 137, Third ed., Reinhold, New York (1958).

Janz, G.J., R.P.T. Tomkins, "Non-Aqueous Electrolytes Handbook Vol. II, Academic Press, N.Y. 1972.

Lewis, G.N., M. Randall, revised by Pitzer, K.S., L. Brewer, "Thermodynamics," 2nd edition, McGraw-Hill, N.Y. (1961).

Marina, J.M. and D.P. Tassios, Ind. Eng. Chem., Process Des. Dev. 12, 67, (1973).

McGlashan, M.L. and A.G. Williamson, Journal of Chemical and Engineering Data, vol. 21, No. 2, (1976).

Mason, D.M. and R. Kao, Symposium on Thermodynamics of Aqueous Systems with Industrial Applications, Washington, D.C., Oct. 22, (1979).

Meissner, H.P. and C.L. Kusik, AIChE Journal, vol. 18, No. 2, 294, March (1972).

Meissner, H.P., C.L. Kusik and J.W. Tester, AIChE Journal, vol. 18, No. 3, 661. May (1972).

Ocon, J. and F. Rebolleda, An. Real. Soc. Espan. defis. Y Quim, 548 (7-8), 525 (1958).

Perry, R.H. and C.H. Chilton, "Chemical Engineer's Handbook," 5th ed., McGraw Hill Book Company, N.Y. (1973).

Pitzer, K.S., The Journal of Physical Chemistry, vol. 77, No. 2, 268 (1973).

Pitzer, K.S. and G. Mayorga, The Journal of Physical Chemistry, vol. 77, No. 19, 2300 (1973).

Pitzer, K.S. and G. Mayorga, Journal of Solution Chemistry, vol. 3, No. 7, 539 (1974).

Pitzer, K.S. and J.J. Kim, Journal of American Chemical Society, 96:18, 5701 Sept. (1974).

Pitzer, K.S., Accounts of Chemical Research, vol. 10, 371 (1977).
Pitzer, K.S., The conference on thermodynamics of Aqueous Systems with Industrial Applications, Washington, D.C., Oct. 22 (1979).

Prausnitz, et al., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," Monograph, Prentice-Hall, Inc., N.J. (1967).

Rastogi, A. and D. Tassios, Ind. Eng. Chem. Process Des. Dev., 19 (3), 477, July (1980).

Renon, H. and J.M. Prausnitz, AIChE Journal, 14, No. 1, 135, (1968).

Robinson, R.A. and R.H. Stokes, "Electrolyte Solutions," Butterworths, London, England (1955).

Rousseau, R.A., et al., AIChE Journal, vol. 18, No. 4, 825, July (1972).

Rousseau, R.A., et al., American Chemical Society, National Meeting, Chicago (1975).

Rousseau, R.A., et al., AIChE Journal, vol. 24 , No. 4, 718, July (1978).

Skabichevskii, P.A., Russian Journal of Physical Chemistry, 43 (10), 1432, (1969).

Smith, J.M. and H.C. Vanness, "Introduction to Chemical Engineering Thermodynamics," Third ed., McGraw-Hill Book Company, N.Y., (1975).

Snipes, H.P., C. Manly, D.D. Ensor, Journal of Chemical and Engineering Data, vol. 20, No. 3, 287 (1975).

Taniguchi, H. and G.J. Janz, J. Phys. Chem., 61, 688, (1957).

Tomasula, P., "Osmotic and Mean Activity Coefficients of LiBr and LiCl in MeOH at 25,35 and $45^{\circ} \mathrm{C}, " \mathrm{M} . \mathrm{S}$. Thesis, New Jersey Institute of Technology, New Jersey (1980).

Van Krevelen, D.W. and P.J. Hoftizer, Proc. of the 21 st Cong., Inter. de chimie Industrielle, 21, 168, March (1948).

Van Krevelen, D.W., P.J. Hoftizer and F.J. Huntzens, Rec. Trav. Chim., Pays-Bas, 68, 191, (1949).

Waddington, T.C., "Non-Aqueous Solutions," Appleton-CenturyCrafts, (1969).

Weast, R.C., Ed., "Handbook of Chemistry and Physics," The Chemical Rubber Co., Cleveland, Ohio (1969).


[^0]:    *出出*********************************************************

[^1]:    *Data for KBr are from Robinson and Stokes (1955) because they are not
    reported by Weast.

