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ABSTRACT

Title of Thesis : A Feasible Direction Procedure for
General Multiple Objective Optimization 

Wen-Tsia Liu, Doctor of Engineering Science, 1988 
Thesis directed by : Dr. Michael Pappas

Professor
Department of Mechanical Engineering

The Feasible Direction Finding Problem (DFP) of 
Zoutendijk is adapted to create a general Mathematical 
Programming (MP) algorithm for treating optimization 
problems with multiple objective functions. Classically 
such problems are reduced to standard MP form by converting 
them to single objective function problems by the use of 
weighting functions. Unfortunately not all practical 
problems can be so reduced. Consider the problem of 
maximizing the strength of a structure. Typically there are 
several, or even many, failure modes. All active failure 
modes must be included in the optimal search in such a way 
that resistance to one active mode can not be increased at 
the expense of another. Thus this problem can not be 
treated by reduction. The search must seek to increase 
resistance to all active modes.

The DFP formulation seeks to improve the objective 
function by including said function as a constraint in the 
DFP Linear Programming problem. Multiple objective



functions can be treated by simply including each such 
function as a constraint in the DFP. Thus the solution to 
such a DFP improves all the objective functions considered. 
There is no need to resort to reduction to a single 
objective function. An algorithm based on the DFP is 
described. This procedure locates a variable set where , 
at least locally, no further improvement in all objective 
functions is available ( a Parato Optimum ). A general 
multiple objective formulation is developed defining a wide 
range of optimization problems. It is shown that this 
formulation also includes the problem of locating the 
feasible region, either from an infeasible starting point, 
or for feasibility restoration during the search. Thus the 
m e t h o d  is of val u e  in s i ngle o b j e c t i v e  f u n ction 
optimization.

The procedure is applied to a six variable problem with 
eleven constraints where the objective is to separate the 
two lowest natural frequencies of a stiffened thin shell. 
Four active frequencies are considered. Several two- 
variable, constrained and unconstrained, problems are also 
treated. The procedure was found to efficiently locate 
Parato Optima and was effective in feasible region location 
and restoration.
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CHAPTER I

INTRODUCTION

Engineering design optimization procedures generally 
minimize an objective function subject to a set of 
constraints [1-3]. For example, in optimal structural 
design one often seeks to minimize the weight of the 
structure subject to constraints on its behavior. In many 
design situations, however, a single design objective does 
not adequately define the critical design goals. To treat 
this situation one needs to consider the simultaneous 
o p t i m i z a t i o n  of m u l t i p l e  o b j e c t i v e  functions. 
Unfortunately, there is in general no unique solution to the 
multiple objective problem, even locally.

During the last decade, considerable attention has been 
given to multiple objective design optimization [4-13]. 
Osyczka [4] and Goicoechea et al [5] survey the application 
of operations research methods to engineering problems. 
Mechanical Engineering multiple objective problems have been 
studied by; Bartel and Marks [6] who describe the use of 
trade-off relationships to deal with conflicting objectives; 
Charmicheal [7] who studies multiobjective optimal design of 
a simple truss; Rao and Hati [8] who apply game theory to 
multicriteria optimization of machanisms; Yoshimura, et al 
[9] who derive the conditions for the Parato optimum
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solution (POS) set [10] for machine tool spindle design from 
the Kuhn-Tucker conditions; Metwalli, et al [11] who adopt 
an exponential weighting method to the multiobjective design 
of hydrodynamic bearings; Aldi [12] who uses a weighting 
method for multiobjective design of antisymetric, angle ply 
laminates; and Ito, et al [13] who adopt a weighting method 
for the development of multiobjective man-machine 
interactive optimal planning systems.

The general approach to multiple objective optimization 
is to transform the multiple objective functions into a 
single composite function. This implies a trade-off 
relationship among the objective functions. Usually this 
trade-off is defined by a set of weighting parameters and 
associated smooth, continuous functional relationship among 
the competing objective functions. Unfortunately such an 
approach is not applicable to the maximum performance 
problems often encountered in engineering [14-15] . 
P a p p a s  d e s c r i b e s  a p r o c e d u r e  for t r e a t i n g  this 
multiobjective maximum performance problem based on the 
Feasible Direction Finding Problem (DFP) of Zoutendijk [16].

This thesis expands on the earlier work of Pappas by 
defining a more efficient and general formulation of the 
multiple objective function problem capable of treating both 
the maximum performance problem as well as the problems that 
can be treated by reduction to a single objective form.
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Further, this formulation is sufficiently broad so as to 
also allow its use for location of the feasible region 
from an infeasible point. Equality constraints which 
severely restrict the feasible region, can be treated here 
in an explicit form. Because of their difficulty , these 
constraints are usually avoided in nonlinear problems or are 
eliminated by solving for one of the variables in terms of 
the others by reducing the constraint to implicit form. 
Unfortunately such a procedure usually increases the 
nonlinearity of the equations [1,17,18]. Furthermore, such 
an approach cannot treat complex equality constraints 
especially those with inexpressible functions. Therefore, 
this treatment is also valuable in general purpose 
optimization.
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CHAPTER II

REVIEW OF SINGLE OBJECTIVE DESIGN OPTIMIZATION

2.1 Importance of Optimization

The concept of optimization is intrinsically tied to 
humanity's desire to excel. Though one may not conciously 
recognize it, this concept appears everywhere in life. 
Optimization is of great interest and utility in many fields 
including engineering, operations research, science, 
mathematics, military, industrial operations, and economics. 
Designers can apply optimization methods to engineering 
design problems to achieve the best results in terms of 
material, efficiency, weight, cost, manufacturing 
reliability, marketing, or combination of all or part of 
these.

With existing optimization procedures, an ordered 
approach is used for design decisions in situations 
where previously one relied heavily on intuition and 
experience. Among the various approaches to optimization, 
Mathematical Programming (MP) procedures appear to have the 
broadest range of application. MP procedures such as 
linear, nonlinear, quadratic, dynamic, geometric, and 
interger programming are flexible and easy to adapt.
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Most optimization problems require use of iterative 
numerical procedures. A difficulty with these procedures is 
often that a vast amount of computation effort is needed to 
reach an optimum. Other difficulties include problem 
complexity, and existence of multiple or even numerous 
local optima. Still, recent dramatic improvements in 
computer computational speed and the development of 
efficient MP procedures have made the optimization methods 
quite pratical for many applications even in the face of 
these difficulties. In Mechanical Engineering, MP optimal 
design methods can be applied to all fields such as 
structural analysis, thermodynamics, fluid dynamics, heat 
transfer, biomechanics, and composite materials [1-3].

2.2 Problem Formulation

The MP o p t i m i z a t i o n  p r o b l e m  can be stated 
mathematically as follows :

Find those values x^ of the design variables x^ that 
minimize the objective function

f(Xi) = min f(x^) i = 1,2,...I (2.1)

subject to the inequality constraints

9j(xi) < 0 j = 1,2,...J (2.2)

and/or the equality constraints

5



hk (*i) = 0 k = 1,2,...K (2.3)

A " side or regional " constraint form of inequality 
constraints

x^1 < x^ < x^u (2.4)

are generally specified since these are simpler to treat 
than the general inequality constraints of Eq. (2.2). Here 
x ^  and Xj[U are lower and upper limits on the design 
variable x^ respectively.

These functions may be explicit or implicit in x^ and 
may be evaluated by analytical or numerical techniques. 
Except for special classes of optimization problems which 
use special solution techniques, it is important that these 
functions are continuous and have continuous first 
derivatives in Xj [1].

Though current digital computers offer rapid 
calculation for design analysis, the CPU time required to 
achieve an optimal design solution, as demonstrated by the 
example of Ref.[1], may vary from a few CPU seconds to 3200 
years or more. Therefore, a more rational approach to 
design automation is needed. Mathematical programming 
techniques offer a logical approach to design automation and 
many algorithms have been proposed in recent years.
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For those problems where Eq.(2.1) through (2.3) are all 
linear, highly effective linear programming methods can 
reliably locate the global optimum in a finite number of 
steps [20]. This situation unfortunately does not exist in 
the case of general nonlinear problems. None of the many 
nonlinear methods proposed can guarantee a solution except 
in certain relatively restricted problem forms [21].

Nonlinear MP methods are essentially optimal search 
strategies. The basic unconstrained nonlinear problem is, 
by comparison with the general constrained linear problem, 
quite difficult. The difficulty is greatly compounded when 
constraints are used. Equality constraints are particularly 
troublesome since they severely restrict the feasible 
region. Although in most situations t equality 
constraints can be eliminated by using the equality to 
remove an independent variable, for many highly complex 
and nonexpressible nonlinear equations, such an elimination 
can not be accomplished. Furthermore, in certain situations 
with large number of equality constraint equations, the 
elimination method may inrease the complexity and 
nonlinearity of the design problem [17]. In this thesis, a 
simple approach using the power of the Direction Finding 
Problem (DFP) of Zoutendijk [16] will be demonstrated to 
treat equality constraints effectively.

7



2.3 Methods of Solution

Most of optimization algorithms require that the 
initial design variables , x°, be specified. Beginning 
from this starting point, the design is updated iteratively 
until a termination criteria is satisfied. Probably the 
most common form of this iterative update is given by

xr = xr-l + a * sr (2.5)

where r is the iteration number, and S is a search 
direction vector in the design space. The scalar quantity 
tV defines the distance that one wishes to move m  
direction S. A variety of methods involving ordinary and 
variational calculus, mathematical programming and optimal 
criteria, etc are available to search along the vector and 
define the scalar Q; *. Among those methods, the MP 
procedures appear to have the broadest range of application 
[22]. Such methods are flexible, easy to adapt, and able 
to offer " automatic " optimal computer solutions [23].

Eason and Fenton [24] evaluated seventeen different 
optimization codes on ten constrained nonlinear problems. 
Later, Pappas [24,25] used this evaluation method for his 
CADOP5 series codes and the OPT code of Gabriele and 
Ragsdell [26]. These studies show CAD0P5 which is based 
on the DFP to be more efficient than any other code on

8



problems with nonlinear constraints. This thesis will 
expand the use of the DFP to treat the highly nonlinear 
constrained multiobjective design problems. A new code 
CAD0P8 based on the CAD0P5 is developed for this purpose.

2.4 Existence and Uniqueness of An Optimal Solution

In the application of optimization techniqes, it is 
seldom possible to ensure that the global solution will be 
found. This may be due to the existence of local optimum 
solutions, or simply because numerical ill-conditioning in 
setting up the problem results in extremely slow convergence 
of the optimization algorithm.

It is possible to use mathematical methods such as 
the Kuhn-Tucker conditions [27] to define the necessary 
conditions for an optimum, and therefore, identify a local 
optimum. However, it is seldom possible in practical 
applications to know whether the sufficiency conditions for 
an optimum are met. Also, it is not practical to identify 
a global minimum. Thus, from a practical standpoint, the 
best approach is usually to start the optimization process 
from several different initial vectors. Moreover, if the 
optimization results in essentially the same final design, 
one can reasonably assume that this is the true global 
optimum. However, it should be noted that typical design 
problems have several or even many local optima. Thus

9



positive identification of the true global optimum may not 
be feasible. Multiple starting points however, will, 
fortunately, usually identify either a local optimum nearly 
equal to the global, or find the global optimum itself.

10



CHAPTER III

REVIEW OF MULTIPLE OBJECTIVE DESIGN OPTIMIZATION

3.1 Introduction

The modern optimization methods for engineering design 
generally assume that a scalar objective function such as 
cost, efficiency or weight can be defined so that standard 
computational algorithms from mathematical programming can 
be applied. The usefulness of those methods is seriously 
limited by the fact that the quality of a complex 
engineering design generally depends on a number of 
different and often conflicting objectives which can not be 
combined into a single design objective. Hence, the 
consideration of multiple objectives becomes important in 
the optimization of engineering design.

During the last decade, considerable attention has been 
given in the literature to multiobjective design 
optimization problems [4-13]. Examples include problems in 
structures [7,12], thermal systems [13], hydrodynamic 
journal bearings [6,11], mechanisms [8], and machine-tool 
spindle design[9]. Many theories of multiple objective 
optimization were developed in operations research, and many 
methods of solutions were applied in engineering 
applications to make decisions in situations, in which

11



several conflicting objectives are sought. 
general, it is impossible to achieve the minima or maxima of 
all the objective functions in a single design. Hence, a 
compromise solution is usually chosen. Instead of using 
" minimize or maximize 11 , the word " optimize 11 will be 
used in multiple objective design optimization. Here 
" optimize " does not mean simply to find the minimum of 
the objective functions as it does for a single objective 
optimization problem. It means to find a " best 11 solution 
considering all the objective functions. The concept of 
Parato Optimal Solutions (POS) [10] is widely used to build 
up the sets of solution for decision making. In order to 
select the optimum design, a criterion is needed to rank the 
possible POS. This design criterion might result from a 
third design objective, experimental evidence, an expert's 
rating, or some other relationships among objectives [6]. 
Among many different decision making procedures, the class 
of Mathematical Programming methods have recently begun to 
receive much attention. In this class of problems, an 
optimization task is described by functions which refer to 
both constraints and objectives, and give a formal 
description of the task.

3.2 Problem Formulation

If possible, one would like to find those such that

fq(*i> = Smin fq(xi) = 1»2,...Q (3.1)

12



where Smin fg(x^) is the simultaneous minimum of the 
function fq (XjJ subject to appropriate constraints. 
Unfortunately, no such solution is generally possible since 
those values of xĵ  that minimize one function will not 
minimize another. Alternatively, one can define a Smin 
fq(Xi) where no function fg(x^) can be further reduced in 
value without increasing another function value. This, of 
course, is the Parato Optimum [10] and generally not a 
unique point. Different Parato Optima generally have 
different values of the fg(x^) ; the user is then faced 
with selecting one of these optima as " best " by involving 
some secondary consideration, usually some specified 
relationship among the variables. Thus, the multiple 
objective function problem is usually formulated as :

Find xjl such that

CtfqfXi)] = min C[fq (xi)] q = l , 2 , . . . Q  (3.2)

where C [ f q ( x ^ ) ]  is a compositive function of the fq(x^), and 
Q is the number of objective functions.

3.3 The Conflict between Competing Objectives

Where the minimization of one objective function 
results in an increase in another objective function, these

13



design objectives are said to be competing. The conflict 
often occurs in multiple objective design optimization and 
is the basic difficulty associated with multiple objective 
design decision making. It is impossible to obtain the 
minima for all functions in a single design. Hence, any 
solution must include some compromise among the minima of 
the competing objectives. This situation will generally be 
true for unconstrained problems.

From Fig. 1, one can see that a conflict condition 
exists between the minimum of f-̂  and the minimum of f2- 
Although in certain regions one can reduce both f^ and f2 
simultaneously, ultimately fj or f2 can be reduced only at 
the expense of one of the others, and thus, these functions 
compete. Constrained problems can, however, restrict the 
feasible region such that the functions do not compete.

3.4 The Concept of Parato Optimality

The concept of Parato optimality was formulated by V. 
Parato [10]. It is still the most important part of 
multiple objective design optimization. Its physical 
meaning is easily understood. One defines a Parato Optimal 
Solution (POS) as follows : If the set (x^) is a POS, then 
for any other (x̂ ) in the neighborhood at least one function 
increases compared to its value at (x^). The Parato optimum 
defines a set of solutions called non-inferior or non-

14



e A= o
min 1a " /+r_

min f = 2 objective function 
Parato Optimal Solutions

Fig. 1 Conflict condition between two objective functions
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dominated solutions. All possible compromise solutions 
of competing objectives are defined in the POS set. On the 
basis of Parato optimum, many methods have been developed to 
search the POS set which supplies the possible choice for 
multiple objective optimal design [4-13]. In Fig. 1, the 
heavy phantom between the minima of ^  and f2 is the POS set 
for two objectives. On that POS line, nothing can be done 
to improve both f-̂  and f2 simultaneously since Vf^ and 
V^2 are *n °PPosite direction.

3.5 Methods of Solution

Before final decision making, the POS set must be 
obtained. Many methods have been developed and applied in 
engineering design problem [4-13] for the determination of 
this set. The methods based on function scalarization are 
most common [4]. Some of these approaches are briefly 
outlined below :

(1) Arithmetic Weighting Methods

An objective is constructed as a linear combination of 
the original objectives as in [4-6]. Here

Q
C[f«(Xj^)] = 2 Wg fQ (xi) i =1,2, ....I (3.3)

M q=l M M
g = 1,2,....Q

where Wg are positive weighting factors denoting the
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relative importances of the various objective functions for 
minimization. It is usually assumed that

If one wishes w q to reflect closely the importance of 
the objectives, all functions should have approximately the 
same numerical values [4],

(2) Exponential Weighting Method

In this method, the composite objective is constructed
as :

where w q are exponential weighting factors, fq are to be 
minimized for q = l,2,...n, and to be maximized for q = n+1, 
n+2,...Q [11].

(3) Constraint Method

One can generate the trade-off curves by the 
constrained method of Ref.[5] which states :

Q2 w = 1 
q=l

(3.4)

(f1)wl(f2)w2........... (fn>Wn
(fn+1)wn+l(fn+2)wn+2...(fQ)WQ

(3.5)
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minimize i = 1,2, I (3.6)

where the constraints

fq(x^) *3 1»2, . . .Q
or

are added to the constraint set.

Here f^{x^) is chosen from fg(x^), ag and bg assume a range 
of values.

Most of above methods are solved by numerical 
optimization methods. An analytical method using the 
Kuhn-Tucker conditions is described by Yoshimura [9] to 
solve the optimization of Eq. (3.3) and to define the range 
of Wg that will yield a POS.
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CHAPTER IV

THE FUNDAMENTAL LEVEL OBJECTIVE PROBLEM

4.1 Multiple Active Modes

The fundamental level objective problem arises 
frequently in the maximum performance problem such as 
described in Refs. [14,28] where it is desired to maximize 
the minimum natural frequency or buckling resistance of a 
structure. In general structural design, this situation may 
also occur from design requirements limiting maximum stress.

The design objective in a maxi m u m  performance 
structural problem is typically associated with behavior 
modes, such as natural frequency, buckling, stress etc. 
Consider a case where it is desired to maximize the buckling 
resistance of a structure. If, as is usual, only the most 
critical mode is considered in formulating the redesign 
problem then after redesign a new mode which was not 
previously critical may become critcal. This can lead to a 
redesign with a lower rather than higher critical buckling 
load value since the new critical constraint is ignored.
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Thus the redesign attempt to improve performance may fail 
causing algorithm failure. One needs to consider and 
maximize simultaneously all potentially active buckling 
modes. Thus one must solve a multiple objective problem to 
treat this case.

The minimum natural frequency problem of [14] seeks to 
maximize the lowest natural frequency fg» = min fq(x^) , 
which is the minimum among all of the natural frequencies 
fq. To solve this problem, all potentially active fg must 
be simultaneously maximized. This problem can be stated as 
follows :

Find those x^ such that

fq(Xi) = max [ min f g ^ )  ] q e QA (4.1)

where the max [ min fg(xj;)] is the maximum of the smallest 
of the set QA of active behavior modes q , and the fg is 
the frequency associated with the q*"*1 mode.

This will be called the fundamental level objective 
problem. The problem may be put into the form of Eq. (3.2) 
by noting that

c [fq (Xi)] = - min fq (Xi) (4.2)
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This problem is a multiple objective problem. 
Unfortunately, conventional formulation of multiple 
objective problems as discussed in chapter 3 and associated 
solution methologies are not suitable for this problem form.

4.2 Formulation Generalization

One can write Eq.(4.1) in light of Eq.(4.2) as :

Find those such that

Now for this to be the case in a region with conflicting 
objective functions then

fq(Xi) = min [-min f g ^ ) ] (4.3)

fq '(xi) “ fq(xi) < 0 for a11 9 ^ q' (4.4)

Where q 1 is associated with the min fg(x^)

Consider the case where Q = 2 Where f-̂  is the
smallest of and f2 then

Where this is not true then f2 must be the smallest and thus
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Since one or the other must be true one can combine 
equations and state that

|fl “ f2| ^ 0 '

But this is only true if

fl - f2 - 0

This argument can be generalized and thus one can 
replace Eq. (4.4) with

fqi fq — 0 q 2,3,...Q . (4.5)

Now Eq.(4.1) can also be written as ;

Find such that

fq(Xi) = min fq ,(xA) (4.6)

subject to q-1 equality " leveling " constraints

^q-l = fq' ~ fq = 0 3 * ' (4'7)

To avoid notation confusion, one can replace Eq.(4.7) for 
convenience as :

e m = |fl - fl+m| “ 0 » =■ l,2,...Qa-l (4.8)
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Here the functions are renumbered and replaces fg, .
Due to the existance of the absolute notation of Eq. (4.8), 
one can choose f-̂  from fg arbitrary without affecting the 
result.

4.3 Application to Other Multiple Objective Problems

The solution methology developed for the solution 
of Eqs. (4.1-4.2) may be applied to locate POS of a 
conventional multiple objective optimization problem by 
reformulating the fundamental level objective problem of 
Eqs. (4.1) and (4.2) simply by defining

C[fq '(x'i)] = min ( Aq fq ' (xA) ] q = 1,2, ...Q (4.9)

By substituting Aqfg' for fg(x^) of Eq. (4.1) through (4.2) 
where fq' are the functions to be simultaneously minimized 
and where Aq is a weighting parameter.

Thus using the argument of section 4.2, the POS for a 
problem with Q objective functions can be found from the 
problem ;

Find X£ such that

fq(*i) = min f q ^ )  (4.10)
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subject to the constraints

€ m = If1(xi) - (Aq/Ai) fq (xA) | = o m =1,2,..Q-l (4.11)

The minimization of Eq.(4.9) in a region where 
objective functions conflict means a POS set is obtained. A 
range of POS sets can be generated by solving Eq. (4.9) 
through a suitable range of Aq. Equation (4.9) is therefore 
a new weighting method which may be used to generate the POS 
sets.

4.4 Application of the Fundamental Level Objective
Formulation to Feasibility Restoration (FR)

If the design initial point is in the infeasible region 
of a constrained problem, one can attempt to eliminate all 
constraint violations by decreasing the value of all 
violated gj without causing some new violation or by 
reducing the magnitude of all [h^ to zero. Hence, one has a 
version of the maximum performance with critical constraint 
elimination as the goal.

Thus the FR problem can be formulated by equation of 
the form Eq. (4.1) where fq (x^) = - gj(x^) or fq = - (x)|-
The FR problem can then be stated as :

Find those such that
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9j(x±) = min C max 9j(xi> ] 

hk (Xj_) = min [ max hk (x^) ]

j 6  J v (4.12)

(4.13)

The search for a solution to Eqs. (4.12) and (4.13) 
proceeds until gj < 0 and all ĥ . = 0. A MP procedure 
designed to solve Eq. (4.1) can likewise treat the multiple 
objective and feasibility restoration problem both in single 
and multiple objective optimization.
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CHAPTER V

GENERAL OPTIMIZATION PROCEDURE

5.1 Introduction

There are many ways to approach the problem of 
Eqs. (4.6-4.7) by use of the DFP. Four methods are 
illustrated in Fig. 2.

The first method is to first reduce all 6m until all 
= 0 and then to reduce all fg along these equality 

constraints. In the first stage, all are minimized
simultaneously. During these moves the fg may be increased 
if necessary to reduce €.m .

The second method is to reduce all £ m and fq 
simultaneously until reaching a POS of the fq, and then to 
proceed as in the the first method.

The third method is to first reduce all fq on one move 
then to reduce all £ m on the next. The process is repeated 
until all fq and all £ m are minimized to the POS.

The fourth m e t h o d  is to first m i n i m i z e  all fSI
simultaneously until reaching a POS of the fq , then to 
reduce all simultaneously until £ m = 0. The process
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Fig 2. Parato optimum search of four different procedures
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is repeated until no further minimization of the fg is 
possible. In this procedure, if the fg are minimized, the 
£ m may be increased if necessary to reduce the fg.
Preliminary experimental studies of these four approaches 
undertaken as part of this research show the first to be the 
most effective and reliable method for problems where the 
active or competing objective can be identified. It is 
therefore adopted here for such problems.

For the general constrained problem, there are two 
tasks tobe accomplished in solving Eqs. (4.6-4.7). First, 
the feasible region must be found, preferably without 
increasing, or with a minimum increase in, objective 
function values. Secondly, the objective function values 
must be minimized simultaneously along the feasible region 
boundary.

The idea presented in [14,16] is adapted to the 
procedure proposed here to treat the Multiple Objective 
Problem. The modification to the DFP suggested in [29] so 
as to greatly improve its convergence power is also used. 
The symmetric penalty method of [30,31] is utilized for the 
purpose of comparing feasible and infeasible points in the 
move strategy.
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5.2 Determination of Active Objective Functions

The constraints of Eq. (4.7) can be imposed only for 
competing objectives. For unconstrained problems with Q 
objective functions there will be Q-l such constraints. 
Thus there will be Q active objective functions. However, 
where the problem is constrained the feasible region may be 
limited such that not all Q functions are competing. For 
many maximum performance problems there may be many more 
possible objective functions than variables and no need to 
include all the possible functions in the problem 
formulation. Thus one has the problem of determining which, 
and how many, of the possible objective functions should be 
included (considered or active ).

Consider two approaches. In the first approach one 
includes all possible functions in the problem formulation. 
In the second approach one includes only those functions 
that are competing at the point under evaluation.

An attempt to find a solution to the problem based on 
the first approach will overconstrain the problem since there 
is no need to specify a leveling constraint (5̂  associated 
with functions which do not conflict in the region of search 
termination. One could, therefore, remove the noncompeting 
functions and restart the search. It is not clear however
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that this procedure would converge to a POS if there is one. 
In the second approach leveling function constraints would 
be added as additional competing functions are identified or 
deleted as objecitves become noncompeting. Objective 
competition can be established from a comparison of 
functions and from the derivative information generally 
computed in the formulation of the DFP.

Clearly the second approach is superior and is adopted 
here as the generalized procedure. Where, however, one 
knows beforehand which objectives are competing at the POS 
then search efficiency can be improved by immediately 
including these objectives rather than waiting for them to 
compete. This later method is therefore used where 
possible.

5.3 Parato Optimality Search

The purpose of this procedure is to seek the POS along 
the leveling constraint Eq. (4.8). The procedure follows
the method described by Pappas’-[ 14,19] and is given by the 
following steps :
1. For a near feasible base point , evaluate the
composite objective function value Cg(Xpr)

where Cn (x) = fa(x) + pa(x) 3 = 1»2,....Q (5.1)VI /\y VI /v Vi
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pq(x) = max Aqj <9j(x )> or /Iqm < € m (x) >| (5.2)

X- A 3 II '2 |Vfq 2 /  vem. Vfq  ̂m < eml (5.3)

.K1  ̂m > eml

Aqj “ 2 lV f q 2 / V9j - V fq gj < ejl (5.4)

. K1 gj > ejl

A -e- V = 0 (j) < 0 (5.5)
< <j) > = <t> -©• V o

Here f_,(x) is the objective function, C_,(x) is the SI Si
compositive function for design comparison, Pq(x,) is the 
penalty function, which is defined by Eq. (5.2) and will be 
described more clearly later, |A| is the magnitude of vector 
.A, is the gradient of the scalar function <J), is an
arbitrary large positive number, eml and ej-̂  are band width 
parameter defining excessive constraint violation of 
equality constraint and inequality constraint gj
respectively [19].

3. At point xRr find O  and Si so as to V q 1

Maximize v OJ  uq
q=l

CTq >0 (5.6)

subject to the conditions

( S ^ V f q U i )  + aq < 0
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(Sj^TyejnUi) + £m(xi) = 0  m = 1,2, Q-i (5.8)

(SiJ^VgjCxj^) + g-j^) < 0  j = 1,2,...Ja (5.9)
,gj(Xi) > -ej2

(Si)1 < Si < (Si)u (5.10)

Si1

Siu -

Xi1 - Xi if Xi - Xi1 <OCif (5.11)
-6Vif , otherwise

xiU ~ xi if xiU “ xi <0:i (5.12)
^ - £Vi*̂  , otherwise

where (fq is a slack variable, is the maximum step size in
the direction of Xi, is the leveling function as defined 
by Eq. (4.8). The problem defined by Eqs. (5.6-5.12) is 
called the Direction Finding Problem (DFP). Based on the 
local linearization, equations (5.6-5.10) constitute a linear 
programming problem with the variables and S^. The
solution S^ can be obtained reliably and efficiently using 
any suitable linear programming method such as simplex 
procedure [20].

4. If S^r is sufficiently small i.e. if

l£r | < e3 (5.13)

where e 3 is an arbitrary small variable convergence 
parameter. Then the design is considered Parato optimum and
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the procedure is terminated. Otherwise define a comparison 
base

xPr = xRr + Sr (5.14)
r~J~ r P  r*j

5. If any cq(£cr) > Cq ^ r> (5.15)

call xBr+1 = xBr, then increase r by 1 and repeat step 1 to
f4 with CV^ halved.

6. Otherwise call
xBr+1 = xcr (5.16)rvy

Now if for all objective functions

|t cq(^Br+1)- Cq(^Br) 1 / Cq ^ B r> ]|1 (5.17)
or j> < e4

l ° q ^ r+1) '  Cq(̂ |

where e4 is an arbitrary small objective function 
convergence parameter , then the design is considered 
a Parato optimum and the procedure is terminated. 
Otherwise, index r by one and repeat steps 1 to 6 . The 
procedure will be terminated by step 4 , or 6, or by a 
minimum step size criteria which terminate the procedure 
when CX.^ is smaller than a minimum value e5.

The above is a general purpose procedure for Parato

33



optimal search. A simplified approach can be used by 
considering only one of the fq in Eq. (5.7). The 
restrictions of Eq.(4.8) force the minimization of all fq 
automatically while only one of fq is used in Eq. (5.7).

The (Jq value of equation (5.6) is to be maximized. 
This means the values of S^T * V f q in equation (54) are to be 
reduced to the maximum amount - Oq simultaneously. Then 

is the direction which minimizes all fq simultaneously.

The Eqs. (5.8-5.9) differ from that of Zoutendijk [16] 
in that the former tend to drive the design as necessary to 
a location estimated to be on the constraint boundary, 
rather than tending to move parallel to, or deflected away, 
from this boundary [19].

The penalty function of Eq. (5.2) is needed to allow 
the comparison in Eq. (5.15) of the desirability of an 
infeasible point for the purpose to determine if it is 
necessary to reduce step size GJj. so as to avoid 
excessively large moves or to prevent oscillation [19]. For 
example, a fully constrained problem as illustrated in Fig.
3 where the number of active constraints equals the number

Oof design variables the initial Q!^ would produce 
convergence without any need for step size reduction and 
without needs for design comparisons. For a problem such
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ô >̂ e

36

Aii



as that illustrated in Fig. 4, however, oscillation about 
the optimum will result unless is reduced. The penalty 
form is used in preference to the objective function alone 
for design comparison since a move which produces 
substantial constraint violation reduction with some 
increase in objective function value is generally more 
desirable than a move that produces the reverse situation. 
Furthermore, constraint violation must be considered in 
design comparison in methods which admit infeasible points 
if convergence to a feasible design is to be achieved.
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CHAPTER VI

SATISFACTION OF CONSTRAINTS

The selection of a feasible starting point in 
inequality constrained problems, although often quite easy, 
can on occasion also be quite difficult and require much 
trial and error. Determining a near feasible starting 
point for problems with equality constraints is always 
difficult and can occasionally be essentially impossible. 
Thus an automatic procedure for the location of feasible 
points is of great utility, not only during the search 
process, but also for search initiation. The formulation 
of Chapter V can be utilized for such a procedure.

6.1 Satisfaction of Leveling and Other Equality Constraints

Satisfaction of the leveling constraints from a point 
that is near feasible with respect to the Behavior 
Constraints can be accomplished by solving a DFP where the 
cm are eliminated from Eq. (5.2) and replace the fg of 

Eq. (5.1). To insure satisfaction of Eqs. (5.8) where the 
step size is insufficient to reduce the to zero,
slack variables (Jm are added. These slack variables must 
be minimized and ultimately vanish. The minimization of 
these variables must take procedence over any reduction in
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the fg as provided by Eq. (5.7) and thus a large weighting 
parameter W-̂  is used with these slack variables so that 
their reduction dominates the DFP.

The search path of Chapter V can then be used to solve
the resulting DFP. This solution will yield a point
satisfying the Leveling Constraint equations.

The procedure is thus as follows :

1. For an infeasible base point Xjgr r evaluate the composite 
objective function value where

pm ®  = l/2f...«Q—1 (6.1)in hi ^
max I < Amj <9j(x)> } | (6.2)

cm (x.)r«j

pm<x)111 rJ

X m3 2 lv 6 m| 2/vgj*V€m
K,

\

9j < ej! 
gj > e ^

(6.3)

all variables and bracket functions have the same definition 
as stated in section 5.3.

2. At point Xpr find 0^, CJm and so as to

Q Q - lmaximize y  - Wf y  CTm (6.4)
q=l m=l
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subject to the conditions

(Si)^ Vfq(Xi) + Oq < 0 q = 1,2,----Q (6.5)

(Si) ^ V 6 m (xi) ~ am + €m (Xi) = 0 m = 1,2,.. Q-l (6.6)

( S i ) ^ v g j ( x i ) + gjtXjL) < 0  j  £ j a , ( 6 . 7 )

gj (xi) > -ej2

( 7 q  >  0  o r  O q  <  0  ( 6 . 8 )

o < am < em (6.9)

(Si)1 < Si < (Si)u (6.10)

Here Qq anc* (Jm are slack variables, W-̂  is a weighting 
factor, and the other variables are defined as chapter V. 
The set J a contains the active constraints for all 
inequality constraints which are greater than " Near 
Constraint Band Width " ~ej2* T^e concept in [29] so as 
to greatly improve the converge power is used to choose ej2* 
The Sj^ and S^u are lower and upper limits on S^r which are 
given by

£
S.;1 = f - x^ if x^ - x.£* < (Xi (6.11)i

” (Xi » otherwise
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, otherwise

where 01 ̂  is the step size for the reduction of ĵ,. It is a 
specified maximum limit on the change in variables S^.

3. Define a comparison base

xPr = xRr + Sr (6.12)
r\>* ro  /v

if t cm ^ c r) Jmax > t cm^^B ) ^max (6.13)

call Xgr+1 = Xjgr and increase r by 1 and repeat step 2 to 4 
with (X^ halved.

5. Otherwise call x Rr+1 = x rr , (6.14)

Increase r by one and repeat step 2-5. Continue the process 
until all €m < e6 are satisfied.

The DFP procedure of Eqs. (6.4-6.11) is formulated to 
reduce to zero. During this procedure, the fg may be
also reduced, or may be increased with minimum amounts. In 
Eq. (6.6) of the DFP, the value of -(Si)T. V 6 m (xA) is the 
estimated amount reduction in 6m after a move in 
direction. The smaller the value of (Jm , the greater the



value of the reduction in Thus, (Jm must be minimized
for a maximum reduction of 6m . The second term of 
Eq.(6.4) is used for this purpose. The same principle 
can also be applied to explain the function of the (Jq in 
Eqs. (6.4-6.5). Here, the maximization of (Jq will 
maximize the reduction of fg ( if Oq > 0 ) , or minimize 
any increase of fg ( if Oq < 0 ).

The Eq. (6.4) is used to m i n i m i z e  all 6ra 
simultaneously. A move with a large step size, however, 
may cause search failure since the assumption of local 
linearity may not be suff iciently valid. The step size 
reduction strategy can overcome this problem but at the 
expense of substantially increasing the number of 
iterations. One can avoid this difficulty by choosing the 
largest to make design comparison [19]. Thus, the
Eq.(6.13) is using this approach.

The same procedure can, of course, be used for any 
equality constraint by simply replacing the £m and (Jm with 
the hĵ  and with the 0ĵ.

6.2 Satisfaction of Inequality Constraints

A similar approach can be used for locating near
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feasible point ( gj < ej7 ) from points with substantial 
( gj > ej7 ) violation of the inequality constraints. Here 
one simply replaces the fg with those gj > ej7 and introduce 
the DFP. The procedure of section 6.1 can now be used. 
The procedure however can be terminated as soon as all 
constraints are within the excessive constraint violation 
band width, that is all

< ej 7

since such a point is sufficiently near the Feasible- 
Infeasible Boundary to be considered a near feasible point.

6.3 General Procedure for Constraint Satisfaction

The procedure of Section 6.1 and 6.2 can be combined to 
locate a near feasible point satisfying the equality 
constraints. This is accomplished by including each 
substantially violated inequality constraint and all 
equality constraints in the constraint reduciton DFP. The 
search procedure of section 6.1 is then invoked until 
cnvergence is achieved with respect to the equality 
constraints and all the inequality constraints are within 
the excessive constraint violation band width.
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CHAPTER VII

ALGORITHM CONTROL PARAMETER SELECTION

The performance of the previous procedure depends on 
the selection of the parameters e ^ ,  ej2 r e 3 / e4 * e5 » e6' 
ej7' Kl' ^ i f» and ̂ i* Some parameters, are designated by 
the user, are fixed, or are computed in the procedure. 
The successful experience of CADOP5 [19] in the selection of 
these parameter warrants their adoption.

(1) Step size and reduction attempt

Step sizeQf^ is a specified maximum limit on the change in
evariable x^. In this procedure, the initial step size 

for boundary restoration search and the initial step size 
for Parato optimality search are given by

C |max< ̂ m*,i)|/|V6m*| 2 3 C7-1)
a i =  f q * ( ^ B ) [ h a x ( f q * / i ) | /  | V f q * | 2 ] ( 7 . 2 )

where 6 m * is associated with the m producing max 6m , fq* 
is associated with q producing max fq , and is arbitrary 
selected. Here 1] is the estimated fraction change in 6 m *
or fq* if a move where made the V € m * or Vfq* direction
with components limited to or « i f respectively. Thus
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may be thought of as attempted objective function 
reduction where J'J = 0.5 would be an attempt at a 50 % 
reduction. The actual reduction would usually be 
substantially less than estimated since the actual move 
would be deflected away from the function gradient direction 
by the active constraints. A value of 0.5 for is 
recommended.

(2) Convergence parameters

In the boundary restoration search, all equal or 
near zero are assumed convergence. An abitrary small number 
e6 is used to define this convergence. Experience shows 
that e g = 0.001 is small enough to allow the Parato 
optimality search to reach the POS at a level of all 6m < 
0.001. In Parato optimality search, if the magnitute of S , 
the step size , or the objective reduction between step 
size reduction is sufficiently small, convergence to the 
optimum is assumed. An arbitrary small number e3 is used to 
define the convergence for S, an arbitrary small number e4 
is used to define the convergence for the objectives, and 
another arbitrary small number e5 is used to define the 
convergence for the minimum step size.
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(3) Constraint linearity band width parameter

As penalty function, P(x^), is based on the assumption 
of local linearity [31], thus a limit ( e ^  ) must be set, 
depending on the nonlinearity of gj or 6m , on applying the 
symmetric penalty function P(x^). A small number for ej-̂  
( or em ) = 0.1 has been found satisfactory after years of 
use code CADOP5 [19] where the constraints are given in a 
non-dimensional form,

gj(Xi) = ( Bj - Uj )/ Uj Uj N 0 (7.3)

where Bj represents the controlled behavior and Uj the upper 
limit on behavior, even for highly nonlinear functions. For 
6m constraints in Parato optimality search, the value of 
e6 as mentioned in section 7.2 defines the constraint 
violation.

(4) Penalty function constant

The K-l parameter is used to assign penalty that is 
proportional to the degree of constraint violation to points 
outside the Near Satisfaction Band Width. The penalty must 
be large enough so that a move which reduces constraint 
violation will always produce a lower value of the composite 
objective function even where such a move increases the fg. 
Thus is made arbitrarily large. A value of 104 has been
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found to be satisfactory for almost all problems during 
extensive use of CAD0P5. A larger value may be necessary 
if the value of any objective function begins to approach 
the value of K^. This parameter should be at least an 
order of magnitude larger than the largest magnitude of the 
objective functions.

(5) Constraint band width parameter

A band parameter width ej2 is required to reduce the 
DFP computational effort by excluding obviously inactive 
constraints. The ej2 can be defined by

ej2 = N min ( (X±r/gjfi(*i) ) 9j 2 (7.4)
3 £  J p

This band width, based on the assumption of local 
linearity, is defined such that all constraints which could 
be violated by a move in the V 9 j  direction are included in 
the DFP. All constraints not in the potentially active set 
Jp are ignored with respect to the DFP. N > 1 can be used 
to help account for nonlinearity. The potentially active 
constraints are all those within a band width double the 
largest band width of the constraints in the previous DFP. 
Initially the potentially active band width is arbitrarily 
selected with a value equal to 2 where the gj are given in 
the form of Eq. (7.3) and is as defined above. A value for
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N=1 has been found to be satisfactory and is recommended 
since the band width will usually avoid violation of 
inactive constraints and since infeasible design s are 
admissible.

The value of ej7 determines the condition of the 
excessive constraint violation. The FR procedure for 
inequality constraint should be started for a point outside 
this range. The value of ej7 can be established similarily 
as ej2 except that here a value of N = 1/NV where Nv is the 
number of constraints violated is recommended [19].

(6) Weighting parameter

It has been suggested in Ref. [1] that a value of W-̂  
> 105 will be satisfactory to define the relative importance 
between Qq and CTm . This large value cuases the <jq term 
in Eq. (6.4) to be ignored due to the round off error and 
causes programming inefficiency. Because the search 
direction is unpredictable, one cannot estimate this value 
exactly. This thesis adopts a initial calculation and then 
adaptively modifies it from experience. Further 
investigation is need to better define user parameter. The 
value of W 2 is computed from Eq. (7.5). Examining this 
equation it may be seen that W-̂  is M times the estimated
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ratio of the greatest possible reduction of the 6m to the 
greatest possible reduction of the fg. The constant M is 
used to adjust this calculation if needed. Experience 
shows that M = 2, or 3 works well. An inadequate weighting 
factor will fail to locate the feasible region and a larger 
magnification factor M will be needed.

wi = » < 2 ,2bi fq,i| >/<! .2 |«i em,i| °r 2em)min <7.5) q=l i=l M m=l i=l1 H m=l
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CHAPTER VIII

EXAMPLES

8.1 Mathematical Test Problem

(a) Unconstrained problem with two objective functions

This example shows how Eq. (4.9) can generate the same 
POS as the arithmetic weighting method of section 3.5 and 
how the leveling constraint of Eq. (4.11) is used. The 
objective functions are

fl(Xi) = (9/25 X22 + X22 )0*5 + 2 (8.1)

f2 (xi) = (Xx - 8 )2/ 9 + ( X 2 - 8 )2 / 16 + 4 (8.2)

The weighting factors for the arithmetic weighting method
are chosen as w-ĵ = 1.0 and w 2 = 2.0 . Thus the composite 
function is :

CtfgfXi)] = min [ f± + 2.0 f2 ] (8.3)

From the POS of Eq. (8.3), one finds fi/f2 = 1-8347. 
Therefore, the corresponding weighting factors of the 
the level function formulation of Eq. (4.9) are chosen as 
A^ = 1.0 and A2 = 1.8347 to illustrate the procedure of this 
thesis and to compare it with the arithmetic weighting 
method. Thus the composite function is :

C[fq (xi)] = min [ f2 , 1.8347 f2 ] (8.4)
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Equation (8.3) will be solved by CADOP5 as a single 
unconstrained function and Eq. (8.4) by the new computer 
code CAD0P8, based on the procedure presented in this 
thesis.

(b) Example problem with two objective and one constraint 
functions

In this example , the two objectives fĵ  and f2 of 
example 8.1 (a) are used , but a constraint equation

gi(Xi) = ( x ^ 2 + (x2 - 10 )2 - 49 < 0 (8.5)

is added. The equation to be minimized is the same as
Eq. (8.3) .

For unconstrained problem, the POS is located at a 
point whereobjectives compete. In constrained problem, 
however, the POS is frequently on an active constraint [6]. 
This example illustrates the latter case

(c) Unconstrained problem with three objective functions

In addition f  ̂and f2 above, a third objective function

f3(Xi) = t(*i - 8)2 + x22)]0*5 + 4 (8.6)

is added. This example shows how the Eq. (4.3) can be
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solved with an arbitrary weighting factor set A-̂  = 1. , A2 = 
1.8347, and A3 = 1.0052. These weighting factors are chosen 
from a range of values that will produce a POS as described 
in chapter 9. The compositive form will be :

C[fq (xi)] = min [ f± , 1.8347 f2 , 1.0052 f3 ] (8.7)

The purpose of this example is to show how the 
feasibility of the equality constraint 6^ and £ 2 is 
established by the procedure developed herein.

8.2 Design Example - Optimal Frequency Separation Problem
of " T " Ring Stiffened Cylindrical Shells

BronowicJci et al [32] pose a frequency separation 
problem which maximimizes the separation between the lowest 
two natural frequencies of vibration for a " T " ring 
stiffened cylindrical shell under hydrostatic pressure. The 
coalesence of vibration modes as the optimum is approached 
requires simultaneous separation of several frequencies 
[14]. Thus this problem is a typical maximum performance 
type of level function problem.

This problem is of the form of Eq. (4.1) or Eq. (4.2) 
and can be stated as :
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Maximize C[gf(xi)] = ( - COi ) q = 1,2,....Q (8.8)

subject to the behavior constraints of [14,32].

This problem is the type A problem of Ref. [14], which 
has the same equations as the type (II) problem of Ref. [32]. 
The structure of this cylindrical shell is shown as Fig. 5 . 
The objective function here is given by equation (8.8). The 
constraints used are : g  ̂= gross (general) buckling, g2 = 
shell (internal) buckling, g 3 = shell yielding, g 4 = 
stiffener yielding, g5 = stiffener flange buckling, g6 = 
maximum flange thickness, g7 = minimum flange width, g8 = 
minimum internal or maximum external radius, gg = minimum 
natural frequency, g 10 = maximum weight, and g31 = web 
buckling. The constraint equations used are the same as 
reference [14,32]. The six design variables are shown in 
Fig. 5 .

The behavior subroutines of SBSHL7 program used in 
Ref. [14] are called by the computer code CAD0P8 to compute 
the frequency and constraint values. Based on the 
experience of Ref. [14] , four frequencies ( three objectives 
) are nearly active. Thus, one can test this example with 
Q = 3.
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CHAPTER IX
DISCUSSION OF RESULTS

A new computer program CADOP8 is used to test the 
algorithms presented here on the two types of test problems 
of chapter VIII. The first problem type consists of two 
variable mathematical functions. For these examples, one 
can search and map the functions in two dimensional space 
and thus readily observe algorithm performance. The second 
problem type is a six variable engineering design problem 
[14] using complex equations subjected to many complex 
constraints. The complex multiple active objective 
functions and constraints of this problem present a 
rigorous test for the algorithm described herein.

9.1 Two Variable Mathematical Test Problem

The search path for the unconstrained two variable 
problem generated by CAD0P8 and CADOP5 is given in Table 1 
and plotted in Fig.6 and Fig. 7 respectively . In 
comparing the search paths it may be seen that in both 
instances convergence to a point where the objective 
function or functions are within 1% of the optimum occurs 
rapidly. Most of the search effort is associated with 
oscillation about the optimum. Oscillation is less 
pronounced with the level function method due to the use of 
the leveling constraint. This constraint tends to restrict 
movement to an one dimensional search along the 6-̂  =0 line
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CO O n o o G rH‘O CM CM rH O NOCO O CO O- •O 'O.• • • • • •
>n VO G G' G- G

O- CM VO CO O n t—i
vo rH CO 'O O VONO rH ix VO VCH VO• • • ■ • >ON O n CO CO IO CO

G CM CO G o vo
CM CO CO G VO rH

tH
*

-O NO VO Vf̂ o tN- tH
IX CM NO VO o- nO nOi-H CO O n O n O  N ON O n• • « • « • • •

NO G G G G G G

CM CM CO CO G CM o On
CM i—l O n VO ON rH CM 1—1vO G CM o 1—I tH rH tH

O- NO cx (X lN- CN- o- CX

NO NO vo G co CM co co
O- NO CO tx CN- O- Cn- CN-
O o CO CO CO vrj OJ CO
CO CO IX [N- o- C-- Cn- c-rH tH tH rH rH rH tH rH

G VO CO CM G o CM OJ
CO G VO O- CO o 1—1 CMrH tH rHrt * * * !« a.

CO G VO vO CN- CO ON O
tH

P
o

•H
P
cdd

rH
cd>d)
P
o

►rH
p
o
Gd
0)>

• H 
P  O 
CU 

•r-3 ,Q O
'H0
P<U
,a1

cuCtH •rH
CO
Pr»H cud) •p,a to% ’CJ0)o

a> p
w XJcd cu
PQ K
.. • •

x:CJ
pcdcuto
TJox:
p
cu
S E5

cu
P rHo XI

•rH o
P po Pi
p
p •d

CH cu
P

*—1 •H
CU cd
> P
<u P

rH to
PXJ o

P ocd p
d

'd
o cux: rH
P X)
cu cd
S • Ht.
W) a!
P >

•rH
P o
G ?
bO p

•rH
CU cu•C X!

p
o

■rH p
p o
CU <H
6x: (0

p •P
•H p

cd
<d Pc

,o
G *

0)H,Q
cd9H

56



min f~ =

m m  f \  = 2  .

fn/f« = 0.132^
objective function f{ 
POS sets

level function 
Design search

Fig. 6 CAD0P8 search path for the unconstrained 
two objective function problem
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thus producing a more direct search path. The total 
computational effort associated with both methods is 
essentially the same as indicated by the number of objective 
function evaluations required for convergence. The 
level function method requires fewer steps but more 
computational effort at each step.

The large initial oscillation associated with the 
arithmetic weighting method is the result of an excessively 
large initial step size selected by CAD0P5. This code 
selects a step size essentially inversely proportional to 
the magnitute of the objective function gradient. The 
relative flatness of the composite objective function of the 
arithmetic weighting problem form produces the large initial 
step size.

At the optimum of the arithmetic weighting function 
problem fi/^2 = i*8347* Thus A-̂  = 1* and A 2 = 1.8347 
were chosen as the weighting parameters of the level 
objective problem so that the optimal points are the same 
for both problems. Thus a more direct comparison is 
possible and to demonstrate the ability of the level 
objective function formulation and CAD0P8 to locate a POS.

It may be seen from Fig. 6 that the POS runs from a 
point where f-̂  is a minimum (min f3) to a point where f2 is 
a minimum (min f2)* At min f  ̂ the ratio of f-̂  to f2 is

59



0.1324 and at min f2 this ratio is 2.83. Thus one can 
search for POS sets using the level function method by 
selecting A 2/ A 2 in the range from 0.1324 to 2.83. 
Unfortunately one must know this range if one is to locate a 
POS. Values of A-̂  and A2 selected outside this range will 
not produce a POS. This property is a limitation of the 
level function formulation in solving conventional multiple 
objective function problems. Where one wishes to map the 
POS region this limitation is not serious since the POS 
region end points and thus appropriate A re are easily 
determined. The primary consideration with respect to this 
property is that the solution of a level function problem is 
not in general a POS.

The search paths for the level function formulation of 
the constrained, two objective function problem and the 
unconstrained three objective function problem are given in 
Table 2 and illustrated in Figs. 8 and 9 respectively. The 
initial path of constrained, two objective problem is 
essentially the same as the unconstrained form of this 
problem. The presence of the additional constraint however 
results in a fully constrained problem and thus rapid 
convergence without oscillation. The three objective problem 
is also fully constrained by virtue of the two function 
leveling constraints and thus similar rapid convergence to 
the optimum occurs. This convergence is much faster than 
the arithmetic weighting form on these problems where
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min f
fl/f2 = °*132^
______ objective function f

behavior constraint g.j

level function 

Design search

Fig. 8 CAD0P8 search path for the constrained 
two objective function problem
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  objective lunation f ___ _ ___ level function

_   area boundary of POS „ design search
sets

9 CAD0P8 search path for the unconstrained 
three objective function problem



oscillation about the optimum occurs.

9.2 The Six Variable Design Problem

Table 3 compares the results of optimization runs of 
the type A six variable problem discussed in chapter VIII 
using the SUBSHL7 program of Ref. [14] and CADOP8. The 
CADOP8 program for this trial utilizes the behavior 
subroutines of SUBSHL7 to compute the frequency and 
constraint values . Since SUBSHL7 only considers the 
four lowest frequencies, the level objecitve function 
formulation of this problem employees three frequency 
separation objective functions involving the separation of 
the first and the second, first and third, and first and 
fourth frequencies.

Although SUSHL7 locates a design with a greater 
frequency separation CAD0P8 has greatly superior convergence 
properties. The CAD0P8 code requires in exess of an order 
of magnitude less computational effort in achieving 
convergence superior to SUBSHL7. At the termination of 
the CADOP8 run, the second, third, and fourth frequencies 
are identical while using SUBSHL7 the fourth frequency is 
slightly higher than the second and third. Furthermore, at 
termination of the CAD0P8 run there are four active 
behavioral constraints and two active objective function 
leveling constraints indicating a fully constrained solution
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Table 3 . SUBSHL7 and CAD0P8 search paths from
the starting point of Ref. (34]
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and therefore complete convergence to a local optimum. 
Unfortunately, this local optimum is inferior in frequency 
separation to that located by the earlier code. At SUBSHL7 
termination there are only two active behavioral constraints 
indicating incomplete convergence.

To further demonstrate the superior convergence of the 
level function approach on this problem additional runs were 
made with SUBSHL7 and CAD0P8 from two points near the best 
located by the initial SUSHL7 run. The results of these 
runs are shown in table 4 and 5. SUBSHL7 terminated without 
significant improvement in convergence. CAD0P8 on the 
otherhand quickly generated designs with improved 
convergence.

The failure of CADOP8 to move to a fully constrained 
design in these latter runs is the result of the failure to 
consider a fifth natural frequency (jJ{2,2) which is also 
active. This leads to the search failure due to switching 
of critical modes as discussed in chapter IV. The SUSHL7 
behavior subroutines must be modified to consider all active 
frequencies in order to fully solve this problem.

9.3 General Observations

In observing the behavior of CAD0P8 on all the test 
problems it should be noted that the procedure for boundary
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x1
x2

3
x1*5x6I1§2
g 3

s5
7I®9§10
§11
* M nimi>
^2 n2in2 ' (6>3̂ n3m31
O ^ i + ' V
f l
f2f

3

2
n .i
nfn

g
n i

g
n
in

I n i t i a l  
D e s i g n

S B S H L7 
T e r m i n a l i o n

1 . 5 1 8 1 . 5 1 8 2
0 . 5 3 9 0 . 5 1 + 5 9
1 . 331 1 .5 1 2 5
1 + . 8 2 6 3 . 9 5 3 3

5 5 . 01+0 5 5 .0 2 3 3
3 1 . 6 9 0 3 2 . 0 5 2 2

- 0 . 7 9 0 / + - 0 . 7 9 0 6
- 0 . 3 0 7 0 - 0 . 3 0 7 6
- 0 . 1 1 6 3 - 0 . 1 1 6 5
- 0 . 1+661+ - 0 . 1 + 6 6 1
- 0  . 99I+I - 0.9971
- 0 . 1 2 3 2 - 0 . 0 0 3 7
-1+.  8 2 6 0 - 3 -9 5 3 3
- 0 . 5 1 + 3 3 - 0 . 5 / + I 8
- 0 . 7 1 7 2 - 0 . 7 1 7 3
- 0 . 0 0 0 7 - 0 . 0 0 0 7
- 0 . 0 0 0 8 - 0 . 0 0 3 2

1+2. /+3 8 7  ( 2 , 1 ) 1+2 . /+/+/+/+ ( 2  , 1 )
7 2 . 8 9 9 6 ( 1 , 1 ) 7 2 . 9 1 0 3 ( 3 , 1 )
7 2 . 9 0 0 2 ( 3 , 1 ) 7 2 . 9 1 0 / +(1 , 1 )
7 3 . 201+1 ( 1 3 , 1 ) * 7 3 . 2 8 2 4 ( 1 3 , 1 )

3 0  .1+610 3 0 . 1 + 6 5 8
3 0 . 1 + 6 1 5 3 0 . 1 + 6 6 0
3 0  . 7651+ 3 0 . 8 3 8 0

0 . 0 0 0 5 5 2 0 . 0 0 0 1 6
0.301+1+1+1+ 0 . 3 7 2 0 2

0 1+84
1 8 8 0 3

1 1 19167

CAU0P8 
T e r m i n a l  i o n

numb
numb
numb

numb
numb
m o d e

1.52 08 
0.51+7*+
1 . 5 2 0 8  
3 • 86**6 

5 5 . 2 6 5 0  
3 2 .2157
- 0 . 7 9 1 3
- 0 . 3 0 6 7
- O . I I 7 6
- 0 . 1 + 6 7 0  
- 0 . 9 9 7 3  0 .00000000 
- 3  • 86*+6 
- 0 . 5 / 1 1 3  
- 0 . 7 1 7 / +  

0 . 0 0 0 0 0 1 0 5  
- 0 . 0 0 0 0 0 1 1 + 9

/ |2 . /+68O ( 2 , 1  )
7 2 . 9 1 + 6 ! + ( 3 . 1 ) 
7 2 . 9 1 + 6 9 ( 1 , 1 )  
7 2 . 9 1 + 7 0 ( 1 3 , 1 ) *

30.1+78!+
3 0 . 1 + 7 8 9
30.1+790

0 . 0 0 0 5 1 0
0 . 0 0 0 5 7 5
12
79 

5 0 0

e r  o f  d e s i g n  i t e r a t i o n s
e r  o f  o b j e c t i v e  f u n c t i o n  e v a l u a t i o n s
e r  o f  c o n s t r a i n t  f u n c t i o n  e v a l u a t i o n s

e r  o f  c i r c u m f e r e n t i a l  f u l l  w a v e s  
e r  o f  a x i a l  h a l f  w a v e s  

a s s o c i a t e d  w i t h  s h e l l  ( i n t e r - r i n g  ) v i b r a t i o n

Table 5 . SUBSHL7 and CAD0P8 search paths from the starting
point nearby the optimum of Ref. (3-1+} , second set
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restoration worked well in all cases. From Figs. 6, 8 
and 9, for example, one can see that the procedure moves 
quickly near the = 0. line(s), the feasible region, and
then essentially along that line, or lines, to the optimum. 
The same performance can be observed from Table 6 where

4" Kmovement to the £ m = 0. constraint occurs by the 68T'n 
iteration (base No. 66 ). Thus the procedure seems 
effective in locating the feasible region from an infeasible 
starting point even where difficult nonlinear equality 
constraints are used.
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Base
IS! _ Object ive Func tion Lev el r’unction
N O.

f l 2 i 3 e €2

oa 7- 279 18. 531 31. 242 1 1 . 2 52 2 3 . 963
1 8 . 747 19. 619 31. 333 1 0 . 871 2 2 . 587
2 1 0 . 311 2 0 . 414 30. 617 1 0 . 102 2 0 . 3 0 6
3 1 1 . 855 2 1 . 2 5 4 29. 929 9 . 399 18. 0 7 4
4 13. 385 22. 116 29. 220 8. 731 15. 835
5 14. 902 22 . 999 28. 494 8. 0 97 13. 592
6 16.4o 6 23. 901 27. 753 7- 4 9 4 11. 347
7 17. 8 9 6 24. 818 26. 997 6. 922 9. 101
8* 19- 373 25. 750 26. 2 2 9 6. 377 6. 8 5 6
9 19- 736 25. 978 26. 0 2 5 6. 242 6. 2 8 9

10 19. 999 25. 888 26. 151 5. 889 6. 1 5 3
11 20. 24 7 25. 759 26. 318 5; 511 6. 0 7 0
12 20. 494 2 5 . 631 26. 483 5- 137 5- 989
13 20. 738 25. 5 0 3 26. 649 4. 7 65 5. 9 10
14 20. 981 25. 377 2 6 . 803 4. 396 5. 822
15 21. 221 25. 2 52 26. 642 4. 0 3 0 5. 421
16 21. 459 25. 126 26. 482 3- 667 5. 022
17 21. 695 25. 002 26. 322 3- 397 4. 627
18 21 . 928 24. 880 26. 163 2. 952 4. 234
19 22. 159 24. 758 26. 004 2. 599 3- 845
20 22. 388 24. 6 38 25. 846 2. 2 50 3. 459
21 22 . 614 24. 5 1 9 25. 689 1. 905 3- 0 7 6
22 22. 837 24. 400 25. 533 1. 564 2. 697
2 3 23. 057 24. 284 25. 378 1.226 2. 321
24 23- 275 24. 168 25. 2 2 3 0. 893 1. 949
25 23- 491 24. 054 25. 071 0. 563 1. 5 80
26 23. 7 0 3 23. 941 24. 919 0. 2 3 8 1. 216
27 23. 918 23. 920 24. 8 5 6 0. 002 0. 938
28 24. 047 24. 0 5 0 24. 948 0. 002 0. 901
2 9 24. 174 24. 1 7 6 25. 037 0. 002 0. 864
30 24. 297 24. 299 25. 124 0. 002 0. 827
31 24. 417 24. 419 25. 208 0. 002 0.791
32 24. 534 24. 536 25. 289 0. 002 0. 755
33 24. 648 24. 650 25. 3 6 8 0. 002 0 .7 20
34 24. 7 6 0 24. 7 62 25. 446 0. 002 0. 6 85
35 24. 870 24. 871 25. 5 20 0. 002 0. 651
36 24. 976 24. 978 25. 593 0. 002 0. 617
37 25. 080 25. 082 25. 664 0. 002 0. 584
38 25. 182 25. 184 25. 733 0. 002 0. 551
39 25. 282 25. 284 25. 780 0. 002 0. 518
40 25. 380 25. 381 25. 8 6 5 0. 002 0. 486
a s Initial step size is 0.446
* : Reduced step size____

Table 6. Objective and level function values 
run from starting point of Ref.[1*0

Active
Constraint
Number

3,6,10

3 .6,10,11

10,11

of CAD0P8
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Base Objec tive Function Level Punct ion
No.

f l f 2 f 3 €•1 6 2
41 25. 474 25.476 2 5 . 929 0. 002 0. 454
42 25- 567 25.569 2 5 . 990 0. 002 0. 423
43 25. 659 25.661 26. 050 0. 002 0. 392
44 25. 7 48 25.750 26. 109 0. 002 0. 361
4 5 25. 835 25.837 26. 166 0. 002 0. 331
46 25. 920 25.922 26. 222 0. 002 0. 301
47 26. 004 26.006 26. 276 0. 002 0. 272
48 26. 086 26.088 26. 328 0. 002 0. 243
49 26. 166 26.168 26. 380 0. 002 0. 214
50 26. 244 26.246 26. 430 0. 002 0. 186
51 26. 521 2 6 . 3 2 3 26. 479 0. 002 0. 158
52 26. 396 2 6 . 3 9 8 26. 526 0. 002 0. 130
53 26. 470 26.472 26. 573 0. 002 0. 1 03
54 26. 542 2 6.544 26. 618 0. 002 0. 0 7 6
55 2 6 . 612 26. 614 26. 662 0. 002 0. 050
56 2 6. 682 26.684 26. 705 0. 002 0. 024
57 26. 742 26.743 26. 744 0. 002 0. 002
58 2 6 . 777 2 6 . 7 78 26. 779 0. 001 0. 001
59 2 6 . 812 26.813 26. 814 0. 001 0. 001
60 26. 844 2 6.845 26. 846 0. 001 0. 001
61 26. 8 7 4 2 6 . 8 7 5 26. 875 0. 001 0. 001
62 26. 901 2 6 . 9 0 2 2 6 . 902 0. 001 0. 001
63 26. 9 0 6 26.907 26. 907 0. 001 0. 001
64 26. 932 26.933 26. 933 0. 001 0. 001
65 26. 943 2 6 . 9 4 4 2 6 . 944 0. 001 0. 001
66. 26. 958 2 6 . 9 5 8 26. 958 0. 000 0. 000
67 26. 975 2 6 . 9 7 7 26. 977 0. 002 0. 002
68 26. 993 2 6 . 9 9 5 26. 995 0. 002 0. 002
69 2 7 . 010 2 7 . 0 1 2 2 7 . 012 0. 002 0. 002
70 27. 0 2 6 2 7 . 0 2 8 2 7 . 028 0. 002 0. 002
71 27. 042 2 7 . 0 4 3 27. 043 0. 002 0. 002
72 27. 0 5 6 2 7 . 0 5 8 27. 058 0. 002 0. 002
73 2 7 . 071 2 7 . 0 7 2 2 7 . 072 0. 002 0. 002
7 4 27. 084 2 7 . 0 8 6 2 7 . 086 0. 001 0. 002
75 2 7 . 097 2 7 . 0 9 8 2 7 . 099 0. 001 0. 002
76 27. 109 2 7 . 1 1 1 2 7 . 111 0. 001 0. 002
77 27. 121 2 7 . 1 2 2 2 7 . 123 0. 001 0. 001
7 8 2 7 . 132 2 7 . 1 3 4 2 7 . 134 0. 001 0. 001
79 27. 143 2 7 . 1 4 4 2 7 . 144 0. 001 0. 001
80 27. 153 2 7 . 1 5 4 27. 155 0. 001 0. 001

Active
Constraint
Number

10,11

11

3.11

3.6.11

b : Step s ize  switched to 0.2268 for optimality search
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Base objective Function 
No.

81 27.163
82 27.172
83  2 7 . 1 8 1
84 27.189
85 27.197
86  2 7 . 2 0 5
87 2 7 . 2 1 2
88 27.219
89 27.225
90  2 7 . 2 3 1
91 2 7 . 2 3 7
92 27  • 2*4-2
93  2 7 . 24-7
94- 2 7 . 2 5 2
95 2 7 . 2 5 7
9 6  2 7 . 2 6 1
97 27.265
98  2 7 . 2 6 8
99  2 7 . 2 7 2

1 00  2 7 . 2 7 5
101 2 7 . 2 7 8
102 27.280 
1 0 3  27.283 
104- 2 7 . 2 8 5
1 0 5  2 7 . 2 8 7
1 0 6  2 7 . 2 8 9
107  2 7 . 2 9 1
108 27.294-
109 27.295
1 10  2 7 . 2 9 6
111 27.296
112 27.297
113 27.298
114- 2 7 . 2 9 8

Level Function
'2

27 .164 27 .164 0. 001 0. 001
27 .173 27 • 173 0. 001 0. 001
27 . 1 8 2 27 .182 0. 001 0. 001
27 .190 27 .191 0. 001 0. 001
27 .198 27 .198 0. 001 0. 001
27 . 2 0 6 27 . 2 0 6 0. 001 0. 001
27 . 2 1 3 27 .213 0. 001 0. 001
27 .220 27 .220 0. 001 0. 001
27 .226 27 . 2 2 6 0. 001 0. 001
27 . 2 3 2 27 . 2 3 2 0. 001 0. 001
27 . 2 3 8 27 . 2 3 8 0. 001 0. 001
27 .243 27 .243 0. 001 0. 001
27 .248 27 .248 0. 001 0. 001
27 .253 27 .253 0. 001 0. 001
27 .257 27 .257 0. 001 0. 001
27 .262 27 .262 0. 001 0. 001
27 .265 27 .266 0. 001 0. 001
27 .269 27 .269 0. 001 0. 001
27 . 2 7 2 27 .273 0. 001 0. 001
27 . 2 7 6 27 . 2 7 6 0. 001 0. 001
27 . 2 7 8 27 .279 0. 001 0. 001
27 .281 27 .281 0. 001 0. 001
27 .284 27 .284 0. 001 0. 001
27 .286 27 .286 0. 001 0. 001
27 .288 27 .288 0. 001 0. 001
27 . 2 9 0 27 .290 0. 001 0. 001
27 .291 27 .291 0. 001 0. 001
27 .294 27 .294 0. 001 0. 001
27 .295 27 • 295 0. 001 0. 001
27 .296 27 .296 0. 001 0. 001
27 .297 27 .297 0. 001 0. 001
27 .298 27 .298 0. 000 0. 001
27 .298 27 .298 0. 000 0. 001
27 . 2 9 8 27 . 2 9 8 0. 00021 0. 0 0 0 2 3

Active 
Cons fcraint 
Number
3 » 6,11

3.6,10,11
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CHAPTER X

CONCLUSION

The level objective function formulation and associated 
solution methodology provides a basis for effectively 
treating multiple objective function problems that cannot be 
reduced to a single objective problem through the use of 
weighting function as well as those that can. The approach 
is thus significantly more flexible than earlier methods. 
It is a new tool for the treatment of multiple objective 
problems. The new procedure is of importance primarily in 
the maximum performance problem. It however also provides 
an alternative approach to conventional multiple objective 
problems providing a new way of comparing objectives and 
locating POS.

The evaluation of the new procedure shows that it can 
be, and should be, much more efficient than the procedure of 
Pappas [14] on maximum performance problems. However the 
ability to adapt to an arbitrary, initially unknown, number 
of objective functions such as demonstrated by Nashanian and 
Pappas [28] has yet to be fully developed and tested. Thus 
the new procedure needs further development before its 
potential for the treatment of the general max i m u m  
performance problem can be exploited.

73



The new procedure appears to possess characteristics 
which make it quite useful in treating conventional multiple 
objective problems. The use of leveling constraints tends 
to reduce problem dimensionality but adds computational 
effort associated with constraint management. The effect is 
that the number of iterations needed for convergence is 
decreased but the computational effort per iteration is 
increased. On the two objective unconstrained test problem 
the total effort required for the new procedure was about 
the same as required for the solution of the problem 
formulated by conventional arithmetic weighting using a 
reasonably efficient single objective function optimizer. 
For more highly constrained problems with greater number of 
objective functions the benefits of iteration reduction 
should increase faster than the added computational effort 
per iteration. Thus the new procedure should be 
particularly effective for constrained problems and/or 
problems with a large number of objective functions. 
Further work is needed to more fully understand how this 
procedure compares in effectiveness to existing methods of 
treating conventional multiple objective problems. It 
should be noted however that no comparison of multiple 
procedures has been yet published and such a comparison is a 
major undertaking.

The major contribution of this new procedure to the 
treating of conventional multiple objective problems is

74



however not its efficiency potential but rather the 
additional formulation option it provides. Since there is 
no unique solution to the fundamental multiple objective 
function problem one seeks to examine available solutions 
(POS) and to select from them by the use of auxiliary 
conditions, which are often subjective. The new level 
function formulation provides an additional way of examining 
and locating POS thus allowing greater options for 
selection.

The difficulties associated with determining if a 
solution is a POS are not unique to the procedure presented 
here. The difficulty is also present in conventional 
methods. Similarly the methods for identifying a POS by use 
of Kuhn-Tucker concepts can likewise be applied to the new 
procedure. The conditions for identifying a POS for the 
level objective formulation have, however, yet to be 
formulated and tested.

The limited testing indicates that the procedure is 
quite effective in locating the feasible region from an 
infeasible point even where difficult nonlinear equality 
constraints are used. Thus the procedure also seems to be a 
useful tool for single objective function optimization.

In summary the procedures presented here appear to be a 
an effective tool for the treatment of an expanded range of
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multiple objective optimization, as well as single objective 
function problems. Further work is needed to develop its 
potential, particularly the treatment of an arbitrary number 
of initially unknown objectives to allow its use for maximum 
performance problems.
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APPENDIX A

USER INSTRUCTION FOR CADOP8

1. Introduction

The computer code CADOP8 treats the multiple objective 
program by means of a gradient based mathematical 
programming method. The method starts from a user specified 
starting or initial point and generates a sequence of better 
points until, hopefully, an POS, or near POS, point is 
reached. Because of the possibility of multiple local POS, 
numerical difficulties, or algorithm failure, nonlinear 
mathematical programming methods generally can not quarantee 
an optimal solution. It is desirable therefore to use 
repeated runs starting with different, widely separated 
starting point to confirm the achievement of a global 
optimum to determine the presence of local optima.

This instruction shows user how to plug in all 
equations for conventional multiple objective optimization. 
For maximum performance problem, the Q value may be unknown 
initially thus user must choose some strategies as described 
in section 5.2 to define the Q value. A separate 
subroutine to define the Q value must be prepared by the 
user to link with CAD0P8. All equations can be likewise 
plug in without further description herein.
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This code is composed of six subroutine and one 
function subprogram. The follows are the description of 
these subroutines.

(1) Main program

To input data of design variables (starting, lower, and 
upper), parameters, and etc., To print the results.

(2) CONVRG

This subroutine computes the convergence of objective 
function values. The termination criteria for convergence 
of algorithm are coded in this subroutines.

(3) LINPRO

This is used to solve the linear programming problem 
set up in SOLVE.

(4) SOLVE

This subroutine sets up the DFP and computes the move 
size. It decides whether the move size satisfies the 
termination criteria or not.
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(5) OPTSRH

This is the optimization subroutine. It calls FIND, 
SOLVE, and CONVRG. Most of the optimization procedures are 
coded and thus computed herein. It prints most of the 
computation process and the results.

(6) FIND

This computes the value of objective functions, penalty 
functions by calling function subroutine (OBJ), and 
composite objective functions. It decides the activity and 
linearity of constraint and computes the initial value of 
step size in the automated process.

(7) DERIVE

This numerically differentiates the objective and 
constraint functions using a forward difference procedure.

(8) FUNCTION OBJ

The designer-defined program of design problem is 
attached herein. It transfers the value ofobjective and 
constraint function to FIND. This function subroutine 
counts the number of objective function evaluations and the 
number of constraint function evaluations.
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2. Problem Formulation

Find the optimal design values x^ of the design
variables x^ , i = 1,2, IP, and the parameters Pk , k =
1,2,....KP which result in the minimization of the objective 
functions fq(xi* Pfc) subject to specified constraints. 
That is to find

CCfgfXi)] = min Aqfq (Pk , x ^  g = 1,2,...Q (Al)

while also satisfying the behavior constraints

gj (Pk' xi) 0 D = 1,2,....JP (A2)

and the regional constraints

xi1 < x^ < Xiu (A3)

where Aq are weighting factors, q = 1,2,....Q

The CAD0P8 program treats problems with 2 < IP < 10, 
0 < JP < 10, 0 < KP < 100 and 1 < Q < 5. Further expansion 
is possible by changing the arrays in Main and all 
subroutines as stated in section A.5 .

3. Program Coding of Problem

The subroutine FUNCTION OBJ(J) is essentially a dummy
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subprogram created to accept the user’s FORTRAN program 
statement defining the objective and behavior constraints. 
Behavior constraints are expressed as a normal form of

Bj (Xf, Pk) < Ujtxj^Pfc) i = 1,2,...IP (A4)
j = 1,2,... JP 
k = 1,2,...KP

where Bj can be thought of as the behavior and Uj the upper 
limit of behavior. The objective and constraint functions 
are defined immediately after the end of FUNCTION OBJ as 
follows

GO TO (11,12,__ IQ), j * [ * : here j = q ]
lj OBJ = expression defining fg using P(k), X(I)

GO TO 201

201 IF = IF + 1
RETURN

1000 GO TO (1,2,..., JP) , j
j B = expression defining Bj

U = expression defining Uj
GO TO 101

101 OBJ = B - U
IF ( (B.NE.0) .AND. (U.NE.0)) OBJ = OBJ/DABS(U)

85



IG = IG + 1
RETURN
END

If no constraint is used, statements after first RETURN 
arenot required. The last objective group statements and 
the last constraint statements need no use the final GO TO 
statement. An three objectives and three constraints 
problem can be written as follows

GO TO (11, 12, 13), j
11 OBJ = (9/25 x x 2 + x2 2 )0,5 + 2 

GO TO 201
12 OBJ = (Xx - 8 )2/ 9 + (X 2 -8 )2 / 16 + 4 

GO TO 201
13 OBJ = [ (Xj - 8 ) 2 + x 22)]0 -5 + 4
201 IF = IF +1

RETURN
10000 GO TO (1, 2, 3) , j
1 B = ( X x )2 + (x2 - 10 )2

U = 49
GO TO 101

2 B = X  

U = 1.
GO TO 101

3 B = x2 
U = x
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101 B = B- U
IG = IG +1
IF ( (B.NE.O) .AND. (U.NE.O) ) OBJ = OBJ/DABS(U)
RETURN
END

The constraint values at the optimum are printed in the form 
as

(Bj - Uj)/ Uj Uj 0 and Bj ^ 0 (A5)

(Bj - Uj ) Uj = 0 or B-s = 0\ J J J J

thus a negative value of gj indicates “the constraint is 
satisfied.

4. Data Input

The first data set is to input , in order, the number 
of parameters (KP), variables (IP), behavior constraints 
(JP), linear functions (NLIN), and objective functions (Q). 
The data is entered on 5110 format.

If and only if , linear functions are used (NLIN > 0) , 
a second data set is entered. If the objective functions is 
linear, a digit 1 is entered in the q***1 column of the card. 
If the constraint gj is linear, a digit 1 is entered in 
column j+Q.
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The third data set is entered in the data control card 
and is used to specified whether : 1) new parameters are to
be used (ICNTR2), 2)a new initial point is to be used 
(ICNTR3), and 3) regional limits or new regional limits are 
to be used (ICNTR4). The entries are made in 3110 format. 
If regional limits are used, an entry of any none zero digit 
is made in the third field ( col 21-30).

If, and only if, the number of parameters specified is 
greater than zero (KP > 0) a fourth data set is used to 
enter the problem parameters P^. The entries are made 5 to 
a card in F15.8 format in order.

The fifth data set is to input initial variables x^. 
The entries is made 8 to a card in F15.5 format.

The sixth data set is to input the weighting factors 
Ag. The entries are made 5 to a card in F15.8 format.

If and only if, an entry is made in the third field of 
the data control card (ICNTR4) = 0 ) ,  a seventh data set 
defining the lower limits is entered, 8 to a card, in F15.5 
format followed by an upper limit set with similar format.

For every additional run, an additional data control 
card is added followed by parameter and /or initial point

88



and/or regional limit sets. The need for a new set is 
indicated by an appropriate entry (ICNTR2 = 0) on the data 
control card.

5.Change of Problem Size

To change the maximun number of variable to (IP), or 
the maximum number of constraints to (JP), or maximum number 
of objectives (Q) the program can treat, the arrays in Main 
and all subroutines must be changed as follows :

(1) Change all D, X, DL, DU, and SS arrays in COMMON/REAL to 
D (IP)

(2) Change the G (R in SOLVE), and B(C in SOLVE and OPSRH, F 
in FIND) and BL arrays in COMMON/REAL and IA, IC arrays 
in COMMON/INT to G(JP) etc, as they occur.

(3) Change the F, CQ, EO, EO20, TO, SB, SUMF in COMMON/REAL 
to F(Q) etc, and change the ST, STE, SUME, TDIF(5), 
EOBASE, in DIMENSION of each subroutine to ST(Q) etc.

(4) Change A(32,78) arrays as they occur to A(M,L) and 
SSS(L) in COMMON/REAL, where

M = JP + 3N + IP + 1 
L = 2JP + 9N + 2IP + 3
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(5) Change the LIN and ABASE arrays in COMMON/REAL as they 
occur to LIN (JP+Q) and ABASE(JP+Q, IP).

(6) Change all DUMMY arrays such as DUM, IDUM etc., to 
equalize COMMON/REAL and COMMON/INT sizes and to 
property place all arrays in these common statements.

(7) In the SOLVE subprogram DIMENSION statement, change AT 
to A T (L) etc, [L as defined in (4)], DELTA, DELTAU to 
DELTA(IP) etc.

(8)In the OPTSRH subprogram DIMENSION statement, change 
XTEMP, XB, IAB, to XTEMP(IP), XB(IP) and IAB(JP).

(9) In the FIND subroutine DIMENSION statement, change HTEMP 
and SUMG to HTEMP (JP) and SUMG(JP).

(10) In the DERIV subprogram DIMENSION statement, change 
SUMG to SUMG(JP).
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APPENDIX B

C *********** CAD0P8 ************************
C
C This program is modified from CAD0P5 [19] by Wen-Tsia Liu 
C

IMPLICIT REAL*8 (A-H, 0-Z)
COMMON/REAL/D(10),P(100),X (10),G (10),T (10),B (10),DL(10 

),DU(10),E4,
IV,VMIN,F(5),DUM(2796),CQ(5),EO(4),WE 
COMMON/INT/IP,JP,LP,KL,IKF,IKG,IDUM(13),LIN(19),IDUMM(21) 

& ,KQ,IEMOVE
1 FORMAT(5FI5.8)

2 FORMAT(5110)
25 FORMAT(3I10, 3FI0.5)

3 FORMAT (2 FI 0.5)
101 FORM AT (8 FI 0.5)

READ2,KP,IP,JP,NLIN,LP
IF(LP.EQ.0)LP=1
IF (NLIN.EQ.O) GO TO 45
K=J P+ LP+ LP-1
READ 14, (LIN(J) ,J=1,K)

14 FORMAT (8 Oil)
45 DO 21 1 = 1,IP

DL(I)=-1.E+40 
21 DU (I) =l.E+40

READ25,ICNTR2,ICNTR3,ICNTR4,E4,V ,VMIN 
IF(KP.EQ.0) GO TO 12 
READ1,(P (I),1=1,KP)

12 READ101, (D(I) ,1=1, IP)
18 FORMAT(1H0, ' STARTING DESIGN VARIABLE VALUES' )

READ1,(CQ(I),1=1,LP)
GO TO 23

2 4 READ (5,25, END=3 3) ICNTR2, ICNTR3 , ICNTR4 , E4, V, VMIN 
IF(ICNTR2+ICNTR3+ICNTR4.EQ.0)STOP 
IF(ICNTR2.NE.0)READ1,(P(I),I=1,KP)

IF(ICNTR3.NE.0)READ101,(D(I),1=1,IP)
23 IF(ICNTR4.EQ.0) GO TO 22 

READ 101, (DL(I) ,1=1,IP)
17 FORMAT(1H0, ' LOWER LIMITS OF DESIGN VARIABLES')

READ 101, (DU(I) ,1=1,IP)
19 FORMAT (1H0, ' UPPER LIMITS OF DESIGN VARIABLES')

22 IF(KP.LE. 0) GO TO 104
PRINT 6
PRINT7,(K,P(K),K=1,KP)

104 PRINT 18
PRINT101,(D (I),1=1,IP)
PRINT 17 

PRINT101,(DL(I),1=1,IP)
PRINT 19 

PRINT101,(DU(I),1=1,IP)
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IF(V.EQ.0.)V=.5
IF(E4.EQ.0.)E4=l.E-06
IF(VMIN.EQ.0.)VMIN=E4/10.
PRINT 20, V, VMIN, E4 

20 FORMAT(1 REDUCTION ATTEMPT^',F10.7,'MINIMUM ATTEMPT=', 
1F10.7, ' CONVERGENCE SPEC=',E16.8/)
CALL OPTSRH 
PRINT 4 , KL, IKF, IKG

4 FORMAT('lNO.OF REDESIGN CYCLES=' , I 5 , * NO.OF OBJ 
EVAL=',

115,' NO.OF CONSRT EVAL=',I5/)
D013L=1,LP 

13 F (L) =0BJ (L, 0)
PRINT3 05,(CQ(I),I=1,KQ)

305 FORMAT (' OBJECTIVE FUNCTION RATIOS=', 5F15.8)
PRINT5,(F(L),L=1,LP)

5 FORMAT(' OPTIMUM OBJECTIVE FUNCTION VALUE (S) = ', 5E16.8)
LPE=LP-1
WRITE(6,905)(EO(L),L=1,LPE)

905 FORMAT ( 1 EO(L)= ',5F15.8)
6 FORMAT( ' DESIGN PARAMETERS'/)
7 FORMAT ( ' P ’,I2, ' = ',F14.4)

PRINT8
8 FORMAT( ' DESIGN VARIABLE VALUES'/)

PRINT9,(K,X(K),K=1,IP)
9 FORMAT ( ' X',I1,' = ',F15.8)

IF(JP.EQ.0) GO TO 24 
PRINT10

10 FORMAT( ' NEARNESS TO CONSTRAINTS'/)
PRINT11,(K,T(K),K=1,JP)

11 FORMAT ( ' G',I1,' = ',F13.8)
100 GO TO 24

3 3 STOP
END
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SUBROUTINE CONVRG(ICODE, CONLMT, I, LP, F, FLAST,TDIF) 
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION DIF(5) ,F(5) ,FLAST(5) ,TDIF(5)
DO 3 L=1,LP

3 DIF (L) =DABS ((FLAST (L) -F(L) )/F(L))
DO 5 L=1,LP
IF(DIF(L) .GT.CONLMTJGO TO 1

5 CONTINUE 
1= 1+1
I F (I.LT.2 ) G O TO 2 
DO 6 L=1,LP
IF {DIF (L) .GE.TDIF(L)) GO TO 1

6 CONTINUE 
ICODE=0 
RETURN

1 1=0 
2 DO 4 L=1, LP 

FLAST(L)=F(L)
4 TDIF(L) =DIF(L)

ICODE=l
RETURN
END
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SUBROUTINE LINPRO(K2)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/REAL/DUM(477),A (32,78),Q,CQ(5),EO(4),WE 
COMMON/INT/IDUM(49),Z,E,G,BB,W,B,H,N,M,L,KQ,IEMOVE 
INTEGER Z,E,G,BB,W,B,H,R,C 
M=M-1 
NN=6 

560 LL=M+2
DO 580 K=2,LL 

570 A(K-l,N+G+K-1)=1 
580 A(K-l, BB)=K+N+G-1 
600 IF (G.NE.O) GO TO 620
610 IF(E.EQ.O) GO TO 780
611 GO TO 650 

62 0 KK=L+E+2
LL=M+2
DO 63 0 K=KK,LL 

630 A (K-l,K+N-L-E-l)=-1 
650 W=W+1
660 Q=0

670 LL=N+G
DO 760 J=1,LL 

680 S=0
690 LLl=M-G-E+2 

KK1=M+1
DO 700 I=LL1,KK1 

700 S=S+A(I, J)
720 A(W+1,J)=-S
730 IF(A(W+1, J) .GT.Q) GO TO 760
740 Q=A(W+1,J)
750 C=J 

760 CONTINUE 
761 S=0

762 LL=M-G—E+2
KK=M+1
DO 7 63 J=LL,KK 

763 S=S+A(J,B)
765 A(W+1,B)=-S
790 IF(G.EQ.O) GO TO 810 

LL=N+1 
KK=N+G

810 IF(L.EQ.O) GO TO 830 
LL=N+G+1 
KK=N+G+L 
IQ=1830 IF (G+E. EQ. 0) GO TO 2000 

831 LL=N+G+L+1 
KK=B-1 
IQ=1 860 GO TO 2000

895 IF(Q.EQ.99999) GO TO 1230
900 IF(Q.EQ.O) GO TO 1330 
910 GO TO 1400 
920 H=H+1
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930 Q=.1E39
940 R=-l

LL=M+1
950 DO 1000 1=1,LL
960 IF(A(I,C).LE.O) GO TO 1000
970 IF(A(I,B)/A(I,C).GT.Q) GO TO 1000
980 Q=A(I,B)/A(I,C)
990 R=I

1000 CONTINUE
1010 IF (FLOAT (R) .GE.-.5) GO TO 1050
1020 CONTINUE

IQ=3
1030 GO TO 2000
1050 P=A(R,C)
1060 A (R, BB) =C
1070 DO 1080 J=1,B
1080 A(R, J)=A(R,J)/P 

LL=W+1
1100 DO 1180 1=1,LL
1110 IF(I.EQ.R) GO TO 1180
1120 DO 1170 J=1,B
1130 IF(J.EQ.C) GO TO 1170
1140 A (I, J)=A(I, J) -A(R, J)*A(I,C)
1150 IF(ABS (A (I,J) ) .GT..1E-4) GO TO 1170
1160 A(I,J)=0
1170 CONTINUE
1180 CONTINUE

LL=W+1
1190 DO 1200 1=1,LL
1200 A(I,C)=0
1210 CONTINUE
1220 A (R, C) =1
1230 Q=0
1240 LL=N+G+L 

DO 1280 J=1,LL
1250 IF(A(W + 1,J) .GT.Q)GO TO 1280
1260 Q=A(W+l,J)
1270 C=J
1280 CONTINUE
1290 GO TO 900
1330 IF(W.EQ.M+1) GO TO 1360
1340 W=W-1
1350 IF(A(W+2,B) .LT..1E-5) GO TO 1353 

K2=0
1352 RETURN
1353 LL=M+1

DO 1358 1=1,LL
1354 IF (I NT (A (I, BB) ) . LE.N+G+L) GO TO 135£
1355 DO 1356 J=1,B
1356 A (1, J) =0
1358 CONTINUE
1359 GO TO 1230
1360 CONTINUE
1400 IF(Q.EQ.O) GO TO 1420
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142 0 CONTINUE 
LL=M+1 

1430 DO 1460 1=1,LL
1440 IF(INT(A(I,BB) ) .EQ.O) GO TO 1460 
1460 CONTINUE 
1470 IF(Q.NE.O) GO TO 920 

XJJ=-Z*A(W+1,B)
LL=H-1
IQ=3

1550 GO TO 2000 
2000 LL=H-1 

LL=W+1 
2030 DO 5000 1=1,LL 
5000 CONTINUE 
2 091 CONTINUE

GO T O (895,1050,999) , IQ 
999 RETURN 

END
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SUBROUTINE SOLVE (SUM, K2 ,JK, KF)
IMPLICIT REAL* 8 (A-H,0-Z)
COMMON/REAL/D(10),P(100),X(10),R(10),T(10),C(10),DL(10 

),DU(10),E4,
IV,VMIN,TO(5),BL(10),ALP,SB(5),SUMF(5),SS(10),SSS(78),
2ABASE(19,10),A (32,78),Q,CQ(5),EO(4),WE 
COMMON/INT/IP,JP,LP,KL,IKF,IKG,NACT,NACL,IA(10),KX,IDM(30), 

1Z,E,G,BB,W,B,H,N,M,L,KQ,IEMOVE 
INTEGER Z , E, G,BB, W,B,H,BT
D I M E N S I O N  A T ( 7 8 ) , DE L T A  ( 1 0 ) , D E L T U ( 1 0 ) ,

ATT(32,78),SIGMAE(4)
JK=1
K2=l
LPE=LP-1
MM=NACT+ LP+LPE+LPE+1P 
IF(KX.EQ.1.OR.IEMOVE.EQ.0)MM=MM-LPE 
B=MM+IP+2*LP+LPE+1 
IF(IEMOVE.EQ.0)B=MM+IP+1+1 
IF(KX.EQ.1)B=MM+1P+2 * LPE+NACT+1 
BB=B+MM+1-IP 
DO 103 1=1,BB 

103 SSS(I)=0.
H=1
Z=-l
E=0
G=0
Q=99999 

3 DO 4 K=l,IP
DELTA(K)=(D(K)-DL(K))
DELTU(K) = (DU(K)—D(K))
IF(DELTU(K).GT.ALP)DELTU(K)=ALP 
IF(DELTA(K).GT.ALP)DELTA(K)=ALP 

4 CONTINUE 
LX=MM+2
ML=NACT+LP+1+LPE 
IPP=IP+1 
DO 350 I=ML,LX 
DO 350 J=l,BB 

350 A (I,J)=0.
ML=ML-1 
DO 360 1=1,ML 
DO 360 J=IPP,BB 

360 A (I,J)=0.
IF (KX.EQ.0) GO TO 5370 
DO 5360 1=1,LP 
DO 5360 J=1,IP 

5360 A (I,J)=0.
5370 CONTINUE

J=LP+NACT+ LPE+LPE
IF(KX.EQ.1.OR.IEMOVE.EQ.0)J=J-LPE
W=J+IP
N=IP+1
IF (KX.EQ. 1) GO TO 6400 
IF(IEMOVE.EQ.O) GO TO 6200
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DO 692 8 L=l,LPE 
SIGMAE(L)=0.
DO 6948 1=1,IP 

694 8 SIGMAE(L) =SIGMAE (L)+DABS (A(LP+NACT+L, I) ) *ALP 
SIGMAE(L)=EO(L)-0.5*SIGMAE(L)
IF(EO(L)*0.8 .GT.SIGMAE(L))SIGMAE(L)=EO(L)*0.8 

6928 CONTINUE
DO 6028 1=1,LP 
A(I,N )= 1 .
A(W+l,N)=1.
N=N+1 
A (I,N)=-1.
A(W+l,N)=-1.

6028 N=N+1 
LX=LP+NACT+1 
LY=J-LPE
DO 6029 I=LX,LY 
A (I,N)=—1 .
A (I+LPE,N)=1.
A (W+1,N)=-WE

6029 N=N+1
GO TO 6500 

6200 DO 6228 1=1,LP 
6228 A(I,N)= 1 .

A(W+l,N)=1.
N=N+1
GO TO 6500 

6400 III=LP+1
NNN=LP+NACT 
DO 6428 I =111,NNN 
A (I,N)=—1.
A(W+l,N)=-1.

6428 N=N+1 
III=LP+NACT+1 
NNN=LP+NACT+ 2 * LPE 
DO 6429 I=III,NNN 
A(I,N)= 1 .
A(W+l,N)=1.
A (I,N+l)=—1 .
A(W+1,N+1)=-1.

6429 N=N+1 
6500 CONTINUE

N=N-1
IF (KX. EQ. 1 .OR. IEMOVE .EQ. 0) GO TO 8730 
LY=LY+1
DO 8720 I=LY,J 

87 2 0 A (I,B)=SIGMAE(LY-LP-NACT-LPE)
87 30 CONTINUE

DO 27 1=1,IP
J=J+1
A(J,I)=1.

27 A ( J, B) = DELTA (I) +DELTU(I)
W=J
MM=LP+NACT+LPE
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1090
9

3400

550
540
570
580

5599
585
595
520

530
510

DO 9 1 = 1,MM 
DO 20 K=l,IP
A (I,B)=A(I,B)+DELTA(K)*A(I,K)
CONTINUE
IF(I.LE.LP)GO TO 9
IF (I .GT.LP+NACT) GO TO 1090
K3=IA(I-LP)
A (I, B)=A(I,B)-T(K3)
IF(I.LE.LP+NACT)GO TO 9 
IF (KX. EQ. 1) GO TO 9 
A (I, B) =A (I, B) -EO(I-LP—NACT)
CONTINUE
IG=W
G=0
MX=W+1
L=0
E=LPE
DO 3400 1=1,W
IF (I.GT. LP+NACT. AND. I. LE.LP+NACT+LPE) GO TO 3400
IF(A (I,B).GE.0.)L=L+1
IF(A (I,B).LT.0.)G=G+1
CONTINUE
LT=0
GT=0
ET=0
DO 520 1=1,W
IF(I.GT. LP+NACT. AND. I. LE. LP+NACT+LPE) GO TO 580
IF(A(I,B).GE.0.) GO TO 540
GT=GT+1
DO 550 K=l, B
ATT (L+E+GT, K) =-A(I, K)
GO TO 520 
LT=LT+1 
DO 570 K=1,B 
ATT ( LT, K) =A (I, K)
GO TO 520 
ET=ET+1
IF (A (I, B) . LT. 0.) GO TO 585 
DO 5599 K=l,B 
ATT (L+ET, K) =A( I, K)
GO TO 520
DO 595 K=l,B
ATT ( L+ET, K) =-A( I, K)
CONTINUE 
DO 530 1=1,W 
DO 530 K=l,B 
A(I,K)=ATT(I,K)
DO 510 1=1,N 
A(W+1,I)=Z*A(W+1,1)
M=W
BT=B
B=B+G
BB=B+1
IF (G.EQ. 0) GO TO 26
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590
26

1460

19

13
113

115

DO 590 1=1,M 
ATEMP=A(I,BT)
A (I,BT)=0.
A(I, B) =ATEMP 
JK=1
CALL LINPRO(K2)
LL=M+1
DO 1460 1=1,LL 
J=A(I,BB)
SSS(J)=A(I,B)

CONTINUE 
DO 19 1=1,IP 
SS(I)=SSS(I)
CONTINUE 

DO 13 1=1,IP 
SS(I)=SS(I)-DELTA(I)

CONTINUE 
SUM=0.0 
DO 1151=1,IP 
SUM=SUM+SS(I) *SS(I)
SUM=DSQRT(SUM)

IF(SUM.LT.E4.AND.SUM.LT.ALP)JK=0
RETURN
END
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SUBROUTINE OPTSRH 
IMPLICIT REAL*8 (A-H, O-Z)
COMMON/REAL/D(10),P(100),X(10),G(10),T(10),C(10),DL(10 

),DU(10),E4,
IV,VMIN,TO(5),BL(10),ALP,SB(5),SUMF(5),SS(10),SSS(78), 
2ABASE(19,10),A (32,78),Q ,CQ(5),EO(4),WE 
COMMON/INT/IP,JP,LP,KL,IKF,IKG,NACT,NACL,IA(10),KX,LIN 

(19),IC(10),
1IL,IDUM(10),KQ,IEMOVE 
DIMENSION

ST(5),TDIF(5),XTEMP(10),XB(10),SBLST(10),IAB(IO)
1 , XACT (10) , TT (10), BLB(IO) ,STE(4) ,EOBASE(4)
KL=0
KF=0
NACTB=0
NACLB=0
IKF=0
IKG=0
ICO=0
IEMOVE=l
INT=1
VF=.125
NOPTN=0
MV=0
ED=0.1
LPE=LP-1
ALP=1.
DO 44 J=1,JP 

44 BL(J)=2.*V
46 DO 37 L=l,LPE 

SBLST(L)=1.E+4 0 
SB(L)=SBLST(L)

37 TDIF(L) =SB(L)
MOVE=0 

1 DO 47 I=1,IP
IF(D (I).LT.DL(I))D(I)=DL(I)
IF(D(I).GT.DU(I))D(I)=DU(I)

47 CONTINUE
IF(IEMOVE.EQ.0)VF=V 
IF(IEMOVE.EQ.0)ALPF=ALP 
IF(IEMOVE.EQ.1)VE=V 
IF(IEMOVE.EQ.1)ALPE=ALP
CALL FIND (ST, KD, STE, INT, MV, NOPTN, ALPF, KF, ED)
IF (IEMOVE. EQ. 1 .AND. INT.EQ. 0) GO TO 405 
IF (I EMOVE. EQ. 1 .AND. INT.EQ. 1) GO TO 3405 
IF (I EMOVE. EQ. 0 .AND. INT.EQ. 0) GO TO 405 
DO 437 L=l,LP 
SBLST(L)=l.E+40 

437 TDIF(L)=SBLST(L)
GO TO 4 05

3405 DO 3406 L=1,LPE 
SBLST(L)=l.E+40

3406 TDIF(L) =SBLST(L)
405 CONTINUE
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IF(KL.EQ.0)ALPE=ALP 
KL=KL+1
IF(KD.NE.O.AND.MOVE.NE.2)GO TO 9
IF(KD.NE.O) GO TO 48
KXBASE=KX
WEBASE=WE
KF=0
LPFE=LP
IF (IEMOVE. EQ. 0) GO TO 440
LPFE=LP-1
DO 4 34 L=l,LPFE
SB(L)=STE(L)
IF (INT.EQ. 0) GO TO 412
ALP=ALPE
V=VE
GO TO 412 
DO 34 L=l,LPFE 
SB (L) =ST(L)
IF (INT.EQ. 0) GO TO 412 
ALP=ALPF 
V=VF 
CONTINUE 
DO 634 L=l,LPE 
EOBASE(L) =EO (L)
CALL CONVRG (ICONDE, E4, ICO, LPFE, SB, SBLST, TDIF) 
IF (ICONDE.EQ.O)GO TO 24 
IF(JP.EQ.O) GO TO 6 
DO 7 J=1,JP 
T (J)=G(J)
DO 53 K=l,NACT 
J=IA(K)
BLB(J)=BL(J)
IAB(K)=IA(K)
NACTB=NACT
NACLB=NACL
MM=NACT B+LP
IF (MOVE.EQ.2) GO TO 55
DO 56 1=1,IP
XB(I)=D(I)
DO 8 1=1,IP 
X (I) =D(I)
DO 65 L=l,LP 
DO 65 1=1,IP 
ABASE (L, I) =A(L, I)

NN=LP+1
IF (NACT. EQ. 0) GO TO 67 
DO 66 K=NN,MM 
J=IA(K-LP)+LP 
DO 66 1=1,IP 
ABASE (J, I)=A(K, I)
DO 366 L=l,LPE 
DO 366 1=1,IP
ABASE (LP+JP+L, I) =A(LP+NACT+L, I)
IF(MOVE.EQ.2) GO TO 48



51

4

48
50

3

3770
3760

45

25

18

74

9
19

719

54

22

IF((NACT.NE.O.AND.KX.EQ.0).OR.MOVE.NE.1.OR.IEMOVE.EQ.0 
& .OR.NOPTN.EQ.1)GO TO 48 
MV=0 
SUMT=0.
KF=1
DO 4 1 = 1,IP
D(I)=2.*D(I)-XTEMP(I)
SUMT=SUMT+ (D(I) -XTEMP(I)) **2 
SUMT=DSQRT(SUMT)
MOVE=3
IF(SUMT.LT.SUM/2.)GO TO 9
MOVE=2
GO TO 1
DO 50 1=1,IP
XTEMP(I) =XB(I)
CONTINUE
IF (KF.NE. 1 .OR. JP. EQ. 0) GO TO 3760 
DO 3770 J=1,JP 
TT(J)=T(J)
T(J)=G(J)
CONTINUE
WRITE(6,15) (SB(L),L=1,LPFE)
WRITE(6,315) (EO(L) ,L=1,LPE)
WRITE ( 6 , 38) ALP, V , IEMOVE 
WRITE(6,13)(D (I),1=1,IP)
IF(JP.EQ.0) GO TO 45 
WRITE(6,14)(G(J),J=1,JP)
CALL SOLVE (SUM, K2,JK,KF)
IF (K2.EQ.0) GO TO 9 
IF ( JK. EQ. 0) GO TO 23 
AMULT=1.
TEST=0.
DO 18 1=1,IP
IF(DABS(SS(I)).GT.TEST)TEST=DABS(SS(I))
D(I) =D(I)+SS (I) *AMULT 
SUMT=0.
DO 74 1=1,IP 
SUMT=SUMT+(D(I) -XTEMP(I)) **2 

SUMT=DSQRT(SUMT)
MOVE=3
IF(SUMT.LT.SUM/2.) GO TO 9
MOVE=l
GO TO 1
DO 19 I=1,IP
D(I)=X(I)
DO 719 L=l,LPE 
EO (L) =EOBASE(L)
IF(NACTB.EQ. 0) GO TO 20 
DO 54 K=1,NACTB 
IA(K)=IAB(K)
DO 22 K=NN,MM 
J=IA(K—LP)+LP 
DO 22 1=1,IP 
A (K, I) =ABASE(J, I)
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20
68

422

49
3750

33

3820
3800

3840

35

28
29

24
13
14

DO 68 K=l,LP 
DO 68 1=1,IP 
A (K, I) =ABASE(K, I)
DO 422 L=l,LPE 
DO 422 1=1,IP
A ( LP+NACTB+L, I) =ABASE (LP+JP+L, I)
NACL=NACLB 
NACT=NACTB 
IF (KF.NE. 1) GO TO 33 
KF=0
DO 49 1=1,IP 
XB (I) =X(I)
DO 3750 J=1,JP 
T (J)=TT(J)
GO TO 48 
V=V/2.
ALP=ALP/2.
KX=KXBASE
WE=WEBASE
IF (NACT. EQ. 0) GO TO 3800 
NACT=0
DO 3800 K=1,NACTB 
J=IA(K)
BL( J)=BLB(J)*0.5 
BLB(J)=BL(J)
IF(T(J) .LT.-BL(J) )GO TO 3800
NACT=NACT+1
IA(NACT)=J
IF(NACT.EQ.K) GO TO 3800 
DO 3820 M=l,IP 
A (NACT+LP, M) =A(K+LP, M)
CONTINUE 
DO 3840 L=l,LPE 
DO 3840 1=1,IP
A (LP+NACT+L, I) =A(LP+NACTB+L, I)
IF(V.LT.VMIN) GO TO 28
IF(MOVE.EQ.0.OR.KF.GE. 1) GO TO 35
IF(MOVE.EQ.3)GO TO 3
CALL CONVRG (ICONDE, E4, ICO, LPFE, SB, SBLST,TDIF)
IF (ICONDE. EQ. 0) GO TO 24
MOVE=0
KF=2
IF (TEST. LT.ALP) GO TO 33
IF (NACT.NE. 0 .OR.NACL.NE. 0. OR. IEMOVE. EQ. 1) GO TO 3 
AMULT=AMULT/2.
SUM=SUM/2.
GO TO 25 
WRITE(6,29)
FORMAT(' TERMINATION BY MINIMUM STEP SIZE CRITERIA') 
RETURN 
WRITE (6, 27)
FORMAT (' BASE VARIABLES=', 5E16.8)
RETURN
FORMAT(' BASE CONSTRAINT VALUES=',5E16.8)
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15 FORMAT(1 BASE OBJECTIVE FUNCTION VALUE(S) = ', 5E16.8)
315 FORMAT (' EO (L) = ', 5F16.8)
38 FORMAT ( 1 STEP SIZ E= ', E 1 6 . 8 , ' RED ATTEMP=', FI 0. 7 , '
IEMOVE=',13)
26 FORMAT(' TERMINATION BY SATISFACTION OF OPTIMALITY 
CRITERIA')
27 FORMAT(' TERMINATION BY SATISFACTION OF CONVERGENCE 
CRITERIA')

23 WRITE(6,26)
RETURN
END
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SUBROUTINE FIND (ST, KODE, STE, INT, MV, NOPTN, ALPF, KF, ED)
IMPLICIT REAL*8 (A-H, O-Z)
COMMON/REAL/D(10),P(100),X (10),G (10),T (10),F (10),DL(10 

),DU(10),E4,
IV,VMIN,TO(5),BL(10),ALP,SB(5),SUMF(5),SS(10),SSS(78),
2ABASE(19,10),A (32,78),Q ,CQ(5),EO(4),WE 
COMMON/INT/IP,JP,LP,KL,IKF,IKG,NACT,NACL,IA(10),KX,LIN 

(19),IC(10),
1IL,IDUM(10),KQ,IEMOVE 
DIMENSION HTEMP (10) , SUMG(IO) ,ST(10) ,STE(4) ,SUME(4)
IEMOV=IEMOVE 
KODE=2 
LPE=LP-1 
DO 11 L=1,LP 
TO(L)=OBJ(L,0)
IF(L.GT.1)EO(L-l)=DABS(TO(1)-TO(L)*CQ(L))
IF(TO(L) . GT. SB ( L) .AND.KX.EQ.0.AND.IEMOVE.EQ.0.AND.KF.NE.1)RETU 

IF(L.EQ.1)GO TO 11 
IF(EO(L-l).GT.SB(L- 

1).AND.KX.EQ.0.AND.IEMOVE.EQ.1.AND.KF.NE.1 
& .AND. EO (L-l) .GT.ED) RETURN 
STE(L-l)=EO(L-l)

11 ST (L) =TO (L)
IF(IEMOVE.EQ.O) GO TO 1200 

2080 DO 1080 L=l,LPE
IF (EO(L) .GT.ED) GO TO 1200 

1080 CONTINUE 
ED=ED*0.1 
GO TO 2080 
IF(IEMOV.EQ.1)ED1=ED 

1200 CONTINUE 
INT=0 
ME=0
DO 211 L=l,LPE 
IF(EO(L) . LT.0.1)NOPTN=l 

211 IF (EO (L) .GE. 0.001) ME=1
IF((IEMOVE.EQ.O.AND.ME.EQ.l).OR.(IEMOVE.EQ.1.AND.ME.EQ.0))INT=1 
IEMOVE=ME
IF(IEMOVE.EQ.0)ED=0.1
IV=0
KX=0
IL=0
NACT=0
KODE=0
IF (JP.EQ. 0) GO TO 1 
DO 2 J=1,JP 
G(J)=OBJ(J,1)
IF(G(J). LT. - 2. *BL( J) ) GO TO 2 
IL=IL+1 
IC(IL)=J 

2 CONTINUE
1 CALL DERIV(SUMG,ALP, SUME)

IF(KF.NE.l) GO TO 1060 
KODE=l
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DO 1050 L=l,LPE 
1050 IF (EO (L) .GT.SB(L) ) RETURN 

KODE=0 
1060 CONTINUE 

MX=LP+IL
IF (KL.EQ. 0) GO TO 300
IF (IEMOVE. EQ. 0 .AND. MV.EQ. 0)GO TO 30 

32 NACL=0
DO 20 K=l,IP
IF(D (K)-DL(K).LE.ALP)NACL=NACL+1 
IF(DU(K)-D (K).LT.ALP)NACL=NACL+1 

20 CONTINUE
IF(IL.EQ.0)RETURN 
LPFE=LP-1
IF(IEMOV.EQ.0)LPFE=LP 
DO 15 L=l,LPFE 
HTEMP(L)=0.
DO 15 K=l,IL 
SUM=0.
J=IC(K)
IF ( G ( J) . LE. 0.) GO TO 15 
IV=IV+1
IF (G ( J) . LT.. 1) GO TO 17 

19 E=100 00. *G (J)
GO TO 18 

17 IF(IEMOV.EQ.l)GO TO 317
DO 7 M=l,IP 

7 SUM=SUM+A(L,M) *A(K+LP,M)
IF (DABS (SUM) .LT. l.E-15)GO TO 19 
E=DABS(G(J)*SUMF(L)/SUM*2.)
GO TO 18 

317 DO 307 M=l,IP
307 SUM=SUM+A(LP+IL+L,M) *A(K+LP,M)

IF (DABS (SUM) .LT. l.E-15)GO TO 19 
E=DABS(G(J)*SUMF(L)/SUM*2.)

18 IF(E.GT.HTEMP(L)) HTEMP (L) =E 
15 CONTINUE 

KODE=l 
DO 5 K=1, IL 
J=IC(K)

6 TEMP=l.E+48 
DO 9 M=l,IP 
QUAN=DABS(A(K+LP,M))
IF (QUAN. LT. 1. E-0 6) GO TO 9 
CHECK=1./QUAN
IF ( CHECK.LT.TEMP)TEMP=CHECK 

9 CONTINUE
XIV=IV+1.E-10 
DSUM=S UMG(J )**0.5
IF(DSUM.LT.0.000001)DSUM=0.000001 
IF(G(J)/DSUM.GT. ALP/XIV)KX=1 
BL(J)=TEMP*SUMG(J)*ALP 

55 IF(G(J).LT.-BL(J))GO TO 5 
NACT=NACT+1
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IA(NACT)=J
IF(NACT.EQ. K)GO TO 5 
DO 10 M=l,IP 

10 A(NACT+LP,M)=A(K+LP,M)
5 CONTINUE

DO 410 L=1,LPE 
DO 410 1=1,IP 

410 A (LP+NACT+L, I) =A(LP+IL+L, I)
MX=LP+NACT
IF(IEMOV.EQ.O) GO TO 316
DO 314 L=1,LPFE
STE(L)=EO(L)+HTEMP(L)
IF (STE (L) . LT.ED) GO TO 314 
IF(STE(L).GT.SB(L))IEMOVE=IEMOV 
IF(IEMOVE.EQ.1)ED=ED1 
IF(IEMOVE.EQ.1)INT=0 
IF(STE(L).GT.SB(L))RETURN 

314 CONTINUE 
GO TO 318 

316 DO 14 L=1,LP
ST(L)=TO(L)+HTEMP(L)
IF(ST(L).GT.SB(L))IEMOVE=IEMOV 
IF(IEMOVE.EQ.0)INT=0 
IF(ST(L).GT.SB(L))RETURN 

14 CONTINUE 
318 CONTINUE

IF (KX. EQ. 1. AND.KL. EQ. 0) GO TO 35 
36 CONTINUE 

KODE=0 
RETURN 

3 00 TEMP=0.
CHECK=1.E+40 
DO 343 L=l,LPE
IF(SUME(L) .GE.CHECK)GO TO 343 
IQ=L
CHECK=SUME(L)

343 CONTINUE
DO 331 1=1,IP
IF(DABS(A (IQ+LP+IL,I)).GT.TEMP)TEMP=DABS(A(IQ+LP+IL,I)) 

331 CONTINUE
ALP=V* DABS(EO(IQ))*TEMP/SUME(IQ)
GO TO 350 

30 TEMP=0.
CHECK=1.E+4 0 
DO 43 L=l,LP
IF(SUMF(L) .GE.CHECK)GO TO 43 
IQ =LCHECK =SUMF(L)

43 CONTINUE
DO 31 1=1,IP
IF(DABS(A(IQ,I)).GT.TEMP)TEMP=DABS(A(IQ,I))

31 CONTINUE
V=.125
ALPF=V*DABS(TO(IQ))*TEMP/SUMF(IQ)
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MV=1
GO TO 32 

350 CONTINUE
DO 50 1=1,IP 

50 X (I) =D(I)
IF (JP.EQ.O) GO TO 32 
DO 49 J=1,JP 

49 T(J)=G(J)
GO TO 32 

35 TEMP=0.
CHECK=1.E+40 
DO 34 L=1,NACT 
J=IA(L)
IF (G (J) .GE.CHECK) GO TO 34
IQ =L
CHECK=G(J)

34 CONTINUE
DO 37 1=1,IPIF(DABS(A(IQ+LP,I)).GT.TEMP)TEMP=DABS(A(IQ+LP,I)) 

37 CONTINUE
J=IA(IQ)
ALPT=2*V*G(J)*TEMP/SUMG(J)
IF (ALPT. LE. ALP) GO TO 36 
DO 38 J=1,JP 

3 8 BL(J) =BL( J) *ALPT/ALP
ALP=ALPT 
GO TO 36 
END
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SUBROUTINE DERIV(SUMG,ALP, SUME)
IMPLICIT REAL*8 (A-H,O-Z)

COMMON/REAL/D(10) ,DUM1(110),G(10) ,DUM2(43),TO(5) ,DUM3(16), 
1SUMF(5),DUM4(88),ABASE(19,10),A(32,78),DUM5,CQ(5),EO(4),WE 
COMMON/INT/IP,JP,LP,KL,IKF,IKG,NACT,NACL,IA(10),KX,LIN 

(19),IC(10),
1IL,IDUM(10),KQ,IEMOVE 
DIMENSION SUMG(IO) ,EODEL(4) ,TODEL(5) ,SUME(4)
DEL=.0001 
LPE=LP-1 
DO 1001 Ir=l, LPE 

1001 IF (EO (L) .LT. 0.05) DEL=0.0000001 
IF(DEL.GT.ALP/10.)DEL=ALP/10.

1 DO 12 L=l,LP
12 SUMF(L) =0.

DO 13 J=1,JP
13 SUMG (J) =0.

DO 14 L=l,LPE 
14 SUME (L) =0.

DO 3 K=1,IP 
DT=D(K)
D(K)=D(K)+DEL 
DO 8 L=1,LP 
TODEL(L)=OBJ(L,0)
IF(LIN(L).LE.1)A(L,K)= (TODEL(L)-TO(L))/DEL 
IF(LIN(L).GT.1)A(L,K)=ABASE(L,K)
IF(LIN(L).EQ.1)ABASE(L,K)=A(L,K)

8 SUMF(L)=SUMF(L)+A(L,K)**2.
IF (IL. EQ. 0) GO TO 33 
DO 4 L=1,IL 
J=IC(L)
IF(LIN(J+LP).LE.1)A (LP+L,K)= (OBJ(J ,1)-G(J))/DEL 
IF(LIN(J+LP).GT.1)A (L+LP,K)=ABASE(J+LP,K)
IF(LIN(J+LP).EQ.1)ABASE(J+LP,K)=A(L+LP,K)

4 SUMG (J) =SUMG(J) +A(LP+L,K) **2
3 3 CONTINUE

DO 18 L=l,LPE
EODEL(L)=DABS(TODEL(1)-TODEL(1+L)*CQ(1+L))
IF(LIN(LP+JP+L).LE.1)A (LP+IL+L,K)=(EODEL(L)-EO(L))/DEL 
IF (LI N (LP+J P+ L) . GT. 1) A ( LP+1L+ L , K ) = ABAS E ( LP+J P+ L , K)
IF(LIN(LP+JP+L).EQ.1)ABASE(LP+JP+L,K)=A(LP+IL+L,K)

18 SUME (L) =SUME(L) +A(LP+IL+L,K) **2.
3 D(K)=DT

AF=0.
DO 918 L=l,LP 
DO 918 K=l,IP

918 AF=AF+DABS(A(L,K))
AE=0.
DO 919 L=l,LPE 
DO 919 K=l,IP

919 AE=AE+DABS(A(LP+IL+L, K))
WE=(AF/AE)*0.5
IF(LPE.GT.1)WE=100./WE 
DO 5 L=1,LP
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IF(LIN(L).EQ.1)LIN(L)=2
CONTINUE
DO 7 L=l,LPE
IF(LIN(LP+JP+L).EQ.1)LIN(LP+JP+L) 
CONTINUE 
DO 6 L=1,IL 
J=IC(L)
IF(LIN(J+LP).EQ.1)LIN(J+LP)=2
CONTINUE
RETURN
END



REAL FUNCTION OBJ*8 (J,KODE) 
IMPLICIT REAL*8 (A-H, O-Z)

COMMON/REAL/X(10),P(100),DUM(2874) 
COMMON/INT/IDUM(4),IF,IG,IDUMM(55) 
IF(KODE.NE.0)GO TO 1000
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