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ABSTRACT 

Title of Thesis:
	

Ternary Ion Exchange in Fixed Beds
- Equilibrium and Dynamics -

David W. H. Roth, Jr., Doctor of Engineering Science, 1985

Thesis directed by: 	 Professor Ching-Rong Huang

A model was developed to simulate ion exchange within fixed beds for

ternary systems. Models of the fluid phase material balance, phase

equilibria, and diffusion of ions through the film and within the resin

phase incorporated the latest advances in ion exchange theory. The

separate model elements were combined after testing into an overall

general model. Non-linear regression support programs were developed to

estimate equilibrium parameters and resin phase diffusion coefficients.

A computer program was developed to estimate axial dispersion

coefficients from experimental data. General correlations derived from

literature sources were tested, and axial dispersion terms were included

in the electrolyte phase material balance equations.

The rational thermodynamic equilibrium constant, utilizing resin phase

activity coefficients based on the 3 suffix Redlich-Kister equation and

the Bromley equation for electrolyte phase activity coefficients, was

selected. The Wilson and NRTL equations were tested but were not as

good. This model was used to correlate published data on 13 binary

systems and to predict ternary compositions for comparison to published

data on 4 ternary systems. Average root mean square of % normalized

difference was about 3% on the binary systems and 4-12% on data predicted

for the ternary systems.

The Nernst-Planck equation was used to model resin phase diffusion.

An integrated form of the Nernst-Hartley equation, based on the Bromley



equation, was developed and tested to predict the effect of concentration

on electrolyte phase diffusion coefficients. These coefficients were used

in a pseudo electric field model which was developed and tested to

approximate the electric field effect on diffusion of ions in the film.

The overall ternary system model resulted in four coupled non-linear

second order parabolic partial differential equations, with appropriate

boundary conditions. The equations were reduced to a set of algebraic

equations by finite difference approximations and solved by the implicit

Crank-Nicholson method. Non-linear terms were quasilinearized. The

resulting five diagonal coefficient matrix describing the fluid phase,

coupled with the 7 diagonal coefficient matrices describing the resin

phase, were inverted with algorithms developed in this work. An iterative

procedure resolved all non-linear terms at each time step. Comparison of

concentration histories generated by the model with experimental results

obtained by previous researchers showed that the ternary model could be

used in practice to optimize process design applications with a bed in a

condition of partial presaturation, and for favorable or unfavorable ion

exchange.

Resin phase activity coefficients developed in correlation of the

equilibrium data were used to test chemical potential as a driving force

in the systems simulated. Indication that use of chemical potential would

obviate the need for ion pair specific diffusion coefficients in the

Nernst-Planck model, or the use of ion pair corrector coefficients

(Stefan-Maxwell), is shown by comparison of results on seven binary

systems. Implications for industrial application and directions for

further research are discussed.
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CHAPTER I 

INTRODUCTION, BACKGROUND, AND REVIEW OF LITERATURE 

A. Introduction 

"But now it should be entirely in the realm of possibility to

develop computer programs to handle general (ion exchange) entry

conditions...and that the time is not far off when ion exchange

adsorption separations can be designed in the same way as

distillation separations are today." These words, printed in CEP

of October 1977, by Dr. Friedrich Helfferich, who is a world

leader in the science of ionic separations, clearly summarize the

objectives of this work. The computer based simulation model

developed in this work has moved Dr. Helfferich's predictions in

that direction, since the purpose of this research was to advance

the science of the engineering of ion exchange systems.

Specifically, the objective was to develop a simulation model

for ternary systems which would embody most of the currently

proven factors applying to prediction of phase equilibria, and to

the prediction of the dynamics of ion exchange in fixed beds. The

goal was to utilize as many parameters as could be derived from

reliable published correlations and to minimize the amount of

experimentation required to supply the requisite data for unknown

parameter estimation. The simulation objective, therefore, could

not be complete until computer based regression analysis support

programs, specific to estimation of typical ion exchange

parameters, were included as a codevelopment of the dynamic model.

1



2

1. 	 General Overview 

The use of ion exchange as a unit process in chemical

operations dates back more than half a century and, for a

large number of commercial ion exchange installations made

during that period, the major utility was to produce

deionized water for process or boiler feed water makeup. The

most important class of ion exchange resins are the gel type

beads formed by polymerization of styrene and crosslinked to

varying degrees by addition of divinyl benzene. The cation

exchange types commonly in use have (1) strongly acidic

functionality resulting from sulfonic acid groups attached to

the polymer, or (2) weakly acidic functionality due to

carboxylic acid groups being part of the polymer structure.

Bifunctionality, which may yield a particular cation

selectivity relationship, may be obtained by combining in one

resin both functionalities.

The anion exchange types of resins in common use involve

(1) quaterary ammonium functional groups to yield strongly

basic types, and (2) polyamine functional groups to yield

weakly basic anion characteristics.

Resin types can be created having both anionic and

cationic functionality and, for example, are used in the

production of high quality deionized water. Macroreticular

(macroporous) resins have been developed with the same

functional groups described above. These resins have large

discrete pores for use in recovery of high molecular weight



species, or in nonaqueous applications, and where resin

toughness and resistance to breakdown is required.

In recent years, interest in recovery of heavy metals in

hydrometallurgical applications or in waste water cleanup has

led to the development of resin with high selectivity towards

these ionic species. These are resins containing functional

groups, such as iminodiacetic acid, which have the ability to

chelate the desired species and can be designed to be highly

selective for say Cu 	 Cu++/Fe+++ mixtures (leach

dump solutions) at a given pH. Elution with strong acid at

low pH is then possible in order to recover the copper for

subsequent electro-winning.

The number of commercial applications for ion exchange

operations has grown rapidly since the 1950s, and the

following tabulation represents just a sampling of

applications other than water demineralization:

a) Isolation and recovery of metals (hydrometallurgy or

waste treatment.

b) Isolation and recovery of high molecular weight organic

acids or bases.

c) Separation and purification of amino acids.

d) Separation of rare earths.

e) Purification of sugars.

f) Uranium recovery.

g) Antibiotic recovery.

h) Catalysis such as inversion of sugar.

3
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i) Recovery of actinides.

j) Catalysis of organic reactions in non-aqueous solutions.

2. 	 Objectives 

2.1 General Objectives 

The objective of this work, as stated, was to

create a simulation model for the exchange of three

counterions between an aqueous electrolyte solution and

a monofunctional ion exchange resin performed within a

fixed bed. The type of ion exchange resin upon which

the model was premised was the gel type having either

cationic or anionic functional groups. Most

investigators seeking to develop mechanisms and models

for ion exchange equilibria and dynamics have

standardized on the cation exchange resin Dowex 50W X8

for their experiments. The extensive data available on

Dowex 50W X8 was used in this work for parameter

estimation and model verification. Dowex 50W X8 is a

strongly acidic cation exchange resin produced by Dow

Chemical Company with about 8% divinyl benzene cross

linkages.

Models dealing with the exchange of two ionic

species in such resins are available based upon varying

degrees of simplifying assumptions. However, in many of

the above-listed applications the selective exchange of

two ionic species is performed in the presence of a

third ionic species, and in many instances this ion is



H
+
. General models for fixed bed ion exchange

involving ternary systems do not exist, except for cases

involving major simplifying assumptions (22, 18).

The most definitive publication to date dealing

with all aspects of ion exchange (including ionic

separations by membranes) is the book, Ion Exchange, by

Friedrich Helfferich, McGraw Hill, New York, 1962. The

book is out of print but an authorized facsimile was

produced in 1978 by University Microfilms International,

Ann Arbor, Michigan, USA. Dr. Helfferich continues to

be a world leader in the science of ionic separation

and, in a complete quotation from the CEP issue of

October 1977 stated, "I have so often seen it in

practice that, when it comes to sizing or designing a

(ion exchange) column, just about anything that goes

beyond the equilibrium capacity is left to a strange

mixture of experience, intuition, folklore, and black

magic. But I believe a change here is imminent, and my

confidence is based on two factors. One is the advent

of multicomponent theory, which inherently is much

nearer to many of the practical problems, more ions

being involved than just two. The second is the

availability of faster and cheaper computers. What the

man in practice usually needs is to calculate a process

where an ion exchange bed is run to breakthrough and

then is incompletely regenerated. The solutions

5



tabulated and easily looked up in Perry's Handbook are

largely or exclusively for calculation of behavior of a

bed of uniform initial composition and receiving a

constant feed, and they are only of limited use. But

now it should be entirely in the realm of possibility to

develop computer programs to handle general entry

conditions. I believe that this will happen shortly and

that such programs will be used to a much greater extent

than we have been accustomed to, and that the time is

not far off when ion exchange adsorption separations can

be designed in the same way as distillation separations

are today."

2.2 Approach 

The "generalized approach" used in this research

project to develop a fixed bed ion exchange model for

binary and ternary systems is shown in Figure 1-1. In

this instance, the goal is to optimize, scale up, and

design controllable ion exchange processes. In many

instances, industrial applications of ion exchange can

prove to be more economic than other separation

process. The model development methodology depicted,

including experimentation to generate equilibrium data

and dynamic information plus model verification

techniques, are general to any process modeling effort.

A more detailed "road map" of modeling effort

specifically related to ion exchange processes is

6



Figure 1-1
ION EXCHANGE PROCESS OPTIMIZATION 

BINARY AND TERNARY SYSTEMS 



outlined in section C of Chapter VIII, Summary, in

Figure 8-1. The reader is invited to read section C of

Chapter VIII following Chapter I, since this

dissertation is prepared so that each subsequent chapter

deals with a major element of the overall model on a

stand-alone basis. The model development approach shown

in Figure 8-1 provides the unifying framework for all of

the elements as they are combined in an ion exchange

process modeling and design optimization procedure.

2.3 Specific objective 

The objective of this research work was to advance

the engineering of ion exchange systems. Specifically,

the goal was to create a general computer based

simulation model which would describe ion exchange in

fixed beds for ternary systems. The model was to be

based on the best currently held theories related to

phase equilibria, ionic transport through the film

phase, and ionic transport within gel type ion exchange

resins. Development of support programs which would

perform non-linear regression analytic estimation of

phase equilibria parameters and resin phase diffusion

coefficients from experimental data was a necessary

companion research objective. All other information

required to design and optimize fixed bed ion exchange

processes was to be derived from reliable published

correlations. These include (1) film coefficients in

8



packed beds, (2) ionic species diffusion coefficients in

aqueous solutions, (3) ionic species activity

coefficients in aqueous solutions, and (4) axial

dispersion coefficients in packed beds.

2.4 Experimental Data Utilized 

In order to test the model components, and

ultimately the overall simulation model, suitable

experimental data had to be found which described both

ion exchange equilibria and fixed bed dynamics in binary

and ternary systems. The following three major sources

of data were utilized in this work:

(1) K. L. Erickson - "Fixed Bed Ion Exchange with

Differing Ionic Mobilities and Nonlinear

Equilibria." PhD dissertation, University of

Texas, 1977.

System NH3 - Ethylene Diamine in H20.

Column operation using Dowex 50w X8 resin at

25° and 1.0 normal Cl- solutions.

Conditions 

Two favorable (Ethylene Diamine (ETDA) for

NH
3
) exchanges at two flow rates, 1.85

cm/sec and 0.94 cm/sec superficial velocity.

Reynolds No. 20 and 40.

One unfavorable (NH3 for ETDA) exchange at

1.85 cm/sec superficial velocity. Reynolds

No. 40.
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Equilibrium Data at 25 ° C for 1.0 normal and

0.1 normal Cl - solutions. (15 and 12 data

points respectively.)

(2) O. O. Omatete - "Column Dynamics of Ternary Ion

Exchange." PhD dissertation, University of

California at Berkeley, 1971.

System Ag+ , Nei+ , H+ in H2 0.

Column operation using Dowex 50w X8 resin at

25°C and NO
3 

solutions of 0.05 and

1.5 normality.

Conditions 

Binary runs for favorable exchange of all ion

pairs at 2 normalities ( 6 runs).

0.05 normal, superficial velocity -

0.18-0.2 cm/sec; Reynolds No. 4.-4.4.

1.5 normal, superficial velocity - 0.08

cm/sec; Reynolds No. 1.9.

Ternary runs for favorable exchange

1. Resin in H
+ 

form.

Feed comp. XAg=0.25, X Na=0.24, X H=0.51

(equivalent fraction) at 0.0533 normality

of NO
3 

ion.

Superficial velocity = 0.097 cm/sec,

Reynolds No. 1.94.

2. Resin in H+ form.

Feed comp. XAg=0.35, XNa=0.24, X H=0.41
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(equivalent fraction) at 1.51 normality of

NO3 	 ion.

Superficial velocity = 0.0346 cm/sec,

Reynolds No. 0.70.



Systems," Journal of Physical Chemistry, (Vol. 77,

No. 10) 1973, reprint.

Systems Sr

++

, Mn

++

, Cs

+

 in H 2O & Mn

++

,

Cs

+

, Na

+

 in aqueous solutions of Cl anion.

Single particle "batch operation" using Dowex 50W

X8 resin at 23°C in 0.1 normal Cl- solutions.

Binary runs; concentration vs. time curves

were generated for the systems SrMn, MnSr,

MnCs, SrCs, MnNa, NaMn, & NaCs, where the bar

refers to the species in the resin.

Superficial velocity - 25 cm/sec, Reynolds No.

700.

Ternary runs;

22 runs of various resin and electrolyte

compositions. Conditions were similar to

the binary runs. Since only one species

in three could be radioactively tagged,

only one concentration vs. time curve

could be generated; whereas for ternary

modeling, two curves or concentration

traces are desirable.

Equilibrium Data 

Experiments were performed using tagged ionic

species for all binary pairs, and various

ternary compositions for the ternary systems

Sr

++

 , Mn
++
,Cs

+ 
& Mn

++

, Cs
+
, Na

+
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(16 points for the first ternary system and 15

points for the second ternary system.)

The quality of the experimental procedures and

attention to detail was judged to be very good for the

Erickson column experiments on N}13-EDTA, as was the

work of Bajpai, Gupta, & Rao on single particle

techniques. There have been questions raised on the

general extendability of single particle experiments to

full column operation, but the investigators carried out

the experimentation carefully, and reproducibility on

the equilibrium experiments was ± 2%. Omatete's

experimental work appeared to be less carefully

controlled, and certainly did not yield a sufficient

number of data points to satisfy the equilibrium

correlation requirements.

B. Background 

1. 	 Equilibria 

1.1 Equilibrium Relationships 

A multitude of conventions are used to relate the

concentration of an ionic species in the electrolyte

phase with its concentration in the resin phase. The

concentration units used in the various conventions can

involve molar, molal, mole fraction, or equivalent

fraction for both phases, or different units for each

phase in all combinations. Helfferich (36) discusses

these conventions in his outstanding book on ion

13
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exchange. The exchanging ions have an electric charge

opposite in sign to the charge of the fixed functional

groups in the resin and are called counterions. The

ionic species in the electrolyte having an electric

charge of similar sign to the resin phase charge are

called coions. A favorable exchange involves

replacement of ions in the resin phase with ions from

the electrolyte phase which are preferred by the ion

exchange resin. The opposite is an unfavorable exchange.

The simplest equilibrium convention utilized is the

distribution coefficient which implies a linear

relationship:



Ternary systems were correlated by Rao and his

coworkers based on pseudo equivalent fractions, i.e.,

excluding the concentration of the ion not involved in

the binary distribution coefficient being calculated.

A more frequently used convention is the separation 

factor involving any of the concentration units

described above, and is given in equivalent fraction

units as:

where ion 1 is the favored species. This is similar to

the K factor used in distillation and contains no

provisions for non-ideality in either phase. Dmatete

(78) used this representation for ternary systems with

the convention:

The various mass action forms appear as is shown

for equivalent fraction units:

15



where z. = charge on ionic species i.

These forms can be altered by substitution of activity,

the substitution of activity-ii for the resin phase,

appear as thermodynamic equilibrium constants:

The molal form appears as

If the standard and reference states are chosen so

they are the same in the electrolyte and resin pore

the relationship is vested in the activity

coefficients. The rational form,

is often used and in this case the standard and

reference states of the resin phase and the electrolyte

phase are quite different. The selectivity shown by the

relationship is vested in the equilibrium constant,

16



up" to correct extreme non-linearity conditions.

Both thermodynamic forms are based on the

simplification assumptions that electrolyte and solvent

sorption and desorption are negligibly small. They are

normally used to describe binary systems, since

multicomponent models for activity coefficients in

either phase have not been extensively explored.

1.2 Electrolyte Phase Activity Coefficients 

Electrolyte phase activity coefficients of

individual ions in aqueous solutions of mixed salts are

required in the thermodynamic equilibrium

relationships. The familiar Debye-Huckel relationship

which predicts activity coefficients for single ions and

mean activity coefficients for pure salts dissolved in

water is based on the long range electrostatic

interaction of charged particles. It holds only for

dilute solutions in which short range (van der Waals)

interactions are minimal. At higher concentrations

these forces become significant, and second or third

terms which are functions of the solution ionic

strength, I, are added to the Debye-Huckel equation to

account for ion-ion short range interactions. These

equations constitute the extended forms of the

Debye-Huckel equation, one of which is given by Robinson

and Stokes (103) for single ions as follows:
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in which the a1 and b1 parameters are given by

Truesdell and Jones (128).

The relationship of activity coefficients of salts

in mixed electrolytes has been studied by Guggenheim and

Turgeon (31), Meissner and Kusik (67), and Pitzer (86),

Edwards, Newman and Prausnitz (24) and others. The

treatment introduced by Guggenheim involved the normal

Debye-Huckel long range interaction effect plus a

summation term which related the short range

interactions of specific cation-anion pairs. An ion

pair parameter was used in combination with the molal

concentration of the specific ion (cation or anion) to

represent the magnitude of the interaction. Bromley (9)

and Meissner and Kusik (67, 68) extended the predictive

ability of such models to concentrations as high as 6

molal by introduction of additional terms, but yet

requiring only one pair corrector constant for each salt

present. Bromley (9), with later evaluation and testing

by Zemaitis (139), correlated a large number of extended

coefficients for various salts. Based on a variation of

the Guggenheim model, Bromley (9) derived an activity

coefficient model for single ions in mixed electrolytes

with applicability up to the 6 molal range.



Measurement of the activity of a single ionic species is

not possible, so the criteria of predictive capability

of a model is limited to the mean activity coefficient

of a given salt in mixed electrolytes. Several of these

methods for prediction of activity coefficients for

salts in multicomponent aqueous solutions were evaluated

by Sangster and Lenzi (111). The overall efficacy of

prediction of single ion activity coefficients from

tabulated Debye-Huckel extension parameters in mixed

salts up to 6 molal concentrations can best be judged by

the results of simulations in which these parameters are

important. The success of the use of the Bromley type

relationship has been aptly demonstrated by the

predictive capability of the systems developed and

tested by Zemaitis (139) while at Chem Systems, Inc. to

predict complex ionic phase equilibria. Some of this

work (25) was done under sponsorship of the AIChE Design

Institute for Physical Property Data (DIPPR).

1.3 Resin Phase Activity Coefficients 

Models for resin phase activity coefficients have

not been studied extensively for multicomponent

systems. For binary systems, Rao and David (88) used

the observation that the activity coefficients of

species in the resin phase are lower but proportional to

the activity coefficients of the species in electrolyte

solutions having the same ionic strength as the solution
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in the resin phase. This correlation was successful in

predicting the binary data with a ± 10% maximum error;

however, it is noted that ionic strength in the resin

may exceed 13, well beyond the electrolyte phase

activity coefficient correlation capability. The method

has not had wide acceptance. Although several

predictive binary models have been proposed by various

investigators (40), these models as yet only give

qualitative information. The resin phase activity

coefficients must be correlated from experimental data

with thermodynamically consistent representations. One

such early model was developed by Kielland (53) and put

on a more sound theoretical footing by Barrer (5). The

model is in fact a one suffix Redlich-Kister type

equation, and led to trial of multisuffix Redlich-Kister

equations in this work. Salmon (110) has investigated a

statistical thermodynamic approach for correlation of

multivalent anion exchange equilibria in binary systems

with some success.

The most significant work on correlation of resin

phase activity coefficients in mmlticomponent systems

was performed by Smith and Woodburn (116) on the system

_
NO3-C1 -SO4 on Dowex 50W X8/Na

+ 	
The Wilson

equation (98) is used in correlation of activity coefficients

in liquid systems based on assumptions of non-randomness

of local compositions to express the excess Gibbs free



energy relationships. The equation has two adjustable

parameters per binary system. Smith and Woodburn showed

that the Wilson equation, utilizing fitted binary system

coefficients, could predict ternary system equilibrium

concentrations for the system investigated with a

standard deviation of % normalized difference of 4.3%.

This model, along with the 3 suffix Redlich-Kister and

NRTL equations, were evaluated in this work.

2. 	 Film Mass Transfer Coefficients 

2.1 Film Coefficient Correlations for Packed Beds 

Many investigators have studied the mass transfer

from fluids to particles in fixed beds. Carberry (11)

generated a boundary layer model of the form

where:

b 	 = 1.15

va = superficial velocity

E	 . bed void fraction

Re = Reynolds No. based on-22.
6

Sc = Schmidt No.

Data from numerous experimental studies for gases and

liquids was correlated well by this relationship down to

Reynolds No. of 1.0. 	 Wilson and Geankoplis (138)

showed for transfer from benzoic acid spheres to water

or propylene glycol that Re' raised to the -2/3 power
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correlated the data well (Re' based on superficial

velocity). Work by Snowdon and Turner (131) on

correlation of film coefficients for mass transfer to

ion exchange resins in fluidized beds found a

Carberry-type relationship fit the experimental data

well. Comparison of the two equations showed:

Carberry correlation for fixed beds 

where Re' is based on superficial velocity

Snowdon & Turner correlation for fluid beds 

where for fluid beds the coefficient b = 0.81 and 	 is

raised to the first power.

P. N. Rowe (109) also evaluated particle to liquid mass

transfer in fluidized beds based on work done by Nelson

and Galloway (73) at low Reynolds No.,%1-l0 . Koloini

and his coworkers (54, 55) studied mass transfer in

liquid fluidized beds at low Reynolds No. (l) and found

the following correlation,

represented data for ion exchange in dilute solutions of

HC1 and benzoic acid, as contrasted to the Snowdon and

Turner correlation which fit the data well in the region

of 5<Re<100.
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2.2 Effects of Electric Field in the Film 

Helfferich (43) describes the effect of exchange of

ions having differing mobilities as they pass through

the film surrounding an ion exchange resin. Since the

conditions of electroneutrality and no electric current

must exist in the film, the coion distributes itself in

the film in such a manner as to counterbalance the

electric field gradient in the film. The

interdiffusivity relationship is described by the

Nernst-Planck equation, which is given as:

23

The usual assumption is to assume a quasi-stationary

state for the coion in the film which presumes any coion

dynamics have occurred prior to the quasi-stationary

state condition. In addition to Helfferich, Snowdon and

Turner (131) have evaluated the effect for exchange of
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+ 	 +
and HNa 
	
on Zeo-Karb 225 in dilute Cl

solutions. Their measurements agree with the

Nernst-Planck model. They assumed a stagnant film

thickness based on the Reynolds No. and an effective

diffusion coefficient determined by the Nernst-Planck

model interdiffusivity constraints. Van Brocklin and

David (132) extended the Nernst-Planck concept to a

calculable ratio, Ri, of effective film coefficient

with electric field effects to the film coefficient

calculated from packed bed correlations, such as

Carberry's. They investigated three models, (1) a Film

Model similar to Turner and Snowdon, (2) a Penetration

Theory Model, and (3) a Boundary Layer Model. Tables of

R. values were calculated for various diffusivity

ratios of ions being exchanged and for a variety of

electrolyte concentrations at the film boundaries. No

experimental verification was offered. Van Brocklin and

David (133), in a later work, used data developed by

other investigators (single particle studies with

radioactively tagged ionic species) to test the various

models. The data were insufficiently accurate to select

the best mass transfer model, although the direction and

magnitude of correction given by the models gave better

agreement with the data than did uncorrected film

coefficients. Pan and David (83) computed the effect of

R. model on the design of a moving packed bed ion
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exchange process. No experimental data was available

for comparison but, in unfavorable exchange, more than

50% underdesign could be experienced if the electric

field effect was neglected. Kataoka and Yoshida (50)

developed rigorous equations to describe homovalent

exchange of ions through a film under the influence of

an electric field. A factor, , similar to the Ri

factor, related the film coefficient corrected for

electric field effects to the film coefficient without

the effects. Experimental effluent concentration

histories (ECH) were obtained for the favorable and

unfavorable exchange of Na+-H+ on DIAION SK1B resin

in fixed beds. Chloride solution normality of 0.005 was

maintained in order to operate in a film diffusion

controlling regime. In order to simplify the

mathematics, resistance to mass transport in the resin

was assumed to be negligible. The electric field model

gave the best representation of the ECH curves,

particularly during unfavorable exchange when the least

favored ion has the highest mobility. For favorable

exchange, particularly when the most favored ion has the

lowest mobility, use of the uncorrected diffusion

coefficient for the slower ion can be used to

approximate column behavior within an error of 30%.

3.

	

	 Diffusion in the Resin Phase and Various Representations in 

Fixed Bed Operations 

Early representations of rate laws governing diffusion



in the resin phase had more to do with the ability of the

resulting equations to be solved analytically then with

actual physical process phenomena. Thomas (127) in 1944

represented ion exchange rates in the resin as two opposing

second order reactions. Other "rate law" formats were solved

by Amundson (3) in 1949 and Vermeulen and Hiester (134) in

1952. Vermeulen and Hiester (136) also treated the dynamics

of ion exchange involving uniform partial presaturation of a

column utilizing dominant film theory. Dominant film theory

is based on the assumption that resistance to ionic transport

from the electrolyte phase to the resin phase is controlled

by diffusion through a stagnant film around the particle in

external diffusion control, or through a hypothetical

thickness of resin constituting a "film" in internal

diffusion control.

Rosen (107) in 1951 made the first analytical solution

of a fixed bed ion exchange process using Fick's Law for

diffusion in the resin phase, coupled with ionic diffusion

through an adjacent electrolyte film. The major simplifying

assumptions were that axial diffusion in the fluid phase was

negligible and that the equilibrium isotherm was linear. The

analytical solution contained an infinite integral which

converged slowly during computation. This was a milestone 

effort, however, since the solutions represented benchmarks

against which later investigators could test numerical

solutions. In 1954 Rosen (108) derived a general solution
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for solid diffusion in fixed beds by use of a partial

integrodifferential equation.

Dranoff and Lapidus (22) performed the solution of

ternary ion exchange in a fixed bed in 1957. They assumed

(1) mass action type equilibria for monovalent systems, (2)

Thomas type reaction rate laws, (3) no axial diffusion in the

fluid phase, and (4) that an asymptotic solution method could

be applied based on achievement of a stable concentration

configuration in the column (i.e., infinite column). The

method of characteristics was used to transform the partial

differential equations into ordinary differential equations,

and solutions were obtained by numerical approximation.

Typical results for column operation were generated for the

system Ag-Na-H
-I- 

on Dowex 50 using literature values

for parameters. No experimental comparison was made, since

the parameters had been derived in batch experiments. Tien

and Thodos (126) in 1959, assuming Fick's Law for diffusion

in the resin phase, essentially added the effects of a

non-linear Freundlich type equilibria isotherm relationship

to the case treated analytically by Rosen. Numerical methods

were used to solve the resulting integrodifferential

equation. Masamune and Smith (63, 64) in 1965 investigated

the case of adsorption into a porous media from a gas stream

using the following model features: (1) film resistance, (2)

Fick's Law diffusion in the pores, and (3) a reversible first

order adsorption rate equation with linear equilibria.
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Additionally, asymptotic conditions were assumed with no

axial diffusion term in the gas phase. The resulting

analytical solution contained an infinite integral which was

evaluated numerically.

In 1965 Cooney and Lightfoot (18) proved the existence

of asymptotic solutions to constant pattern operation of

fixed bed separations, including the case involving

non-linear equilibria with axial dispersion and finite mass

transfer resistance. Following this, Hall, Eagleton,

Acrivos, and Vermeulen (34) in 1966 studied constant pattern

behavior in fixed beds based on both pore and solid diffusion

mechanisms within the porous particle. The axial dispersion

term was assumed to be negligible, non-linear equilibrium of

the Langmuir type was assumed, and numerical solutions were

obtained for a wide range of dimensionless variables. These

solutions merged smoothly into the analytic solutions for

linear equilibrium cases. Rhee and Amundson (101) in 1971

extended the asymptotic type of nonequilibrium exchange to

include an axial dispersion term in the fluid phase by

applying shock layer theory. The mass transfer to the solid

phase was based on ionic diffusion through a fictitious

"solid film" utilizing an effective film coefficient; however

non-linear equilibria of the Langmuir type was assumed in one

example. Transient behavior of the column operation was

studied by numerical solution of the basic partial

differential equations and the profiles compared to those
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given by asymptotic shock theory solution. The concentration

profile shape and location in the column coincided with that

predicted by shock theory as steady state conditions were

approached in the "infinite" column. This approach led

ultimately to the more general case developed by Bradley and

Sweed (8) for multicomponent systems in 1975. All of these

asymptotic approaches are, in effect, equilibrium cases since

transient behavior cannot be portrayed. However, in systems

where constant concentration patterns are attained, they give

good representation of profile shape and location in the

column of each specie's concentration plateau with minimum

calculation effort.

4. 	 Nernst-Planck Representation of Diffusion in the Resin Phase 

4.1 Concentration Driving Force 

Helfferich and Plesset in 1958 proposed application

of the Nernst-Planck equation (42) to describe the

interdiffusivity relationship between counterions in

binary exchange. By assuming (1) no coion intrusion

into the resin, (2) a condition of electroneutrality at

all points in the resin, and (3) that no electric

currents are present, the following equation results:

Hering and Bliss (46) measured the diffusion rates of

various ions in Dowex 50W resins having varying degrees



of crossl inking. The batch type experiments were run

under conditions which would minimize film resistance

effects (high stirrer speed and high (0.2 - 1.0 normal)

solution strength). The Nernst-Planck model was

compared to Fick's Law for its ability to represent the

experimental data. Hering and Bliss state that there

was no observable better fit of the data by the

Nernst-Planck model; however, the Nernst-Planck model

was theoretically superior in that the same ionic

species "self diffusion" coefficients fit both favorable

and unfavorable exchange of a given ion pair. Utilizing

Fick ' s Law, di fferent coefficient values are required to

fit each exchange direction. The Nernst-Planck "self

diffusion" coefficient for a given ionic species was

different, however, depending on the nature of the

counterion species for which it was being exchanged.

Rao and David (87) investigated the efficacy of the

Nernst-Planck model vs. Fick's Law in single particle

studies on the system Cu++-Na+ on Dowex 50W X8

resin. Their model included the effect of film

resistance (without electric field), and the

Nernst-Planck model fit the data reasonably well in the

regions where the film diffusion resistance was clearly

not a factor; whereas the Fick's Law model did not.

Kuo and David (56) in 1963 showed with single

particle studies on the system Ba
++

-Na
+ 

on
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Dowex 50W X8 that a numerical model, which included

coupled film resistance with Nernst-Planck

representation of resin phase diffusion, simulated the

experimental curves well.

Morig and Rao (89) in 1965, using a similar

procedure for the system Sr-14-Na+ on Dowex 50W X8

resin, found that single "self diffusion" coefficients

for each ionic species would not fit both the favorable

and unfavorable exchange curves satisfactorily.

However, they had used the Helfferich-Plesset (42) model

which was based on isotopic exchange (i.e., no

selectivity) and did not include film resistance, so the

discrepancy is not surprising.

Turner, Church, Johnson and Snowdon (129) in 1965

measured the interdiffusion coefficients for the

exchange of H+ and Na+ ions on Zeo-Karb 225-8%,

using batch experiments. Progress of the exchange was

monitored by solution conductivity. They found good

agreement of the Nernst-Planck equation, based on the

Helfferich-Plesset model (42) with the experimental

data. More recently, as indicated in section A, part 2

of this chapter, the experimental work of Bajpai, Gupta

and Rao was cited. Their batch model included a film

resistance to mass transport as well as the

Nernst-Planck model for ion exchange in binary and

ternary systems. They derived the flux equations for
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ternary ion exchange based on the Nernst-Planck

equations, and these are given in Chapter V of this

work. In a later paper, Rao and his coworkers (94)

derived the ternary system flux equations from

principles of irreversible thermodynamics. The

resulting final equations are identical since they

assumed conditions of ideal solution in the resin phase,

binary simulations showed that the Nernst-Planck model

was effective in representing the concentration

histories for a variety of ions tested. The agreement

with the ternary system data was just fair, so only

qualitative conclusions could be drawn. The Fick's Law

model was not used in the comparisons, since the

investigators felt that the superiority of the

Nernst-Planck model had been adequately demonstrated by

others. However, in a later study Gupta and Rao (95)

used isotopic exchange techniques, in which tagged

+
Mn+ ion was exchanged in the presence of

the effective diffusivity of Mn++ changed as a

++ 	
ifunction of the concentration of Mn 	 ion n the

resin. Their explanation was that as the water takeup

of the resin increased as a function of ionic

composition, the effective diffusivity of the exchanging

isotopes increased as well. As will be developed in
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this work, use of activity driving force versus

concentration driving force should minimize the

dependency of effective ionic diffusivity on the resin

water content, since the equilibrium resin water content

is a function of system excess free energy.

Kataoka, Yoshida, and Ozasa (52) in 1977 conducted

experiments in shallow beds on the system

resins with differing degrees of crosslinking. Because

of the neutralization reaction, the R-H/NaOH system has

an infinite equilibrium constant. Their Nernst-Planck

based model did not consider axial diffusion in the

electrolyte phase, nor was film mass transport

resistance considered. The agreement of the simulated

results with the experimental curves was excellent.

The work of Erickson (26) is outlined in part

section A, part 2 of this chapter, as is the work of

Omatete (78). Since their data was utilized along with

that of Rao and his coworkers, the detailed analysis of

their work is contained in the body of this dissertation.

4.2 Chemical Potential Driving Force 

Helfferich (45) derived the Nernst-Planck
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exchangers using irreversible thermodynamics. They

showed that when the cross-phenomenoligical coefficients

are set equal to zero, the equation reduces to the

Helfferich form for diffusion in membranes. The

additional terms to be added to the Nernst-Planck

equation for a binary system are:

The derivation for this term is given in Chapter V,

along with the derivation in this work of the

Nernst-Planck ternary system model in terms of chemical

potential utilizing the activity coefficients of ionic

species 1, 2, and 3. In order to use this extended

Nernst-Planck model, the molar activity coefficients

must be known as a function of resin phase composition

throughout the binary or ternary system phase diagram.

No literature was found dealing with the use of this

model to simulate the dynamics of ion exchange.

5. 	 Other Model Considerations Not Included in this Work 

5.1 Resin phase mass transfer in ion exchange accompanied by 

a substantial change in resin volume was studied by

Kataoka and Yoshida (49). Four factors come into

consideration: (1) the diffusion length changes, (2)

specific ion diffusion coefficient values change, (3)

the fixed ionic groups in the resin move, and (4) the
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activity gradient is altered. The investigators ignored

the fourth effect since they did not have an activity

driving force model. The expansion or shrinkage of the

particular resin must be measured as a function of the

concentration of one of the ions, gi, and the volume

ratio fitted to a polynomial in gi. The equations are

given which represent the standard Nernst-Planck

continuity equation plus a term for resin volume change

as a function of composition. Systems exhibiting up to

exchange on DIAION SK1B X8 resin were measured for

exchange kinetics using single particle tracer

techniques. The revised Nernst-Planck model fit the

experimental concentration history curves significantly

better than the Nernst-Planck model without volume

correction.

5.2 Effects of Sorbent Shrinking and Swelling on Fixed-Bed 

Sorption Operations 

Marra and Cooney (17) studied this effect and found

that due to effects related to resin shrinkage or

swelling as discussed above, the physical bed volume may

change by up to 40%. Experimental relationships must be

developed for resin diameter change and bed void volume

change as a function of composition in the resin. Using

the simplifying assumptions of no axial dispersion in

the fluid phase, and a "film model" for mass transport
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in the resin, the fluid phase continuity equation was

developed and solved numerically. The experimentally

measured column behavior for the physical adsorption of

NaC1 into a solute free bed is predicted accurately by

the dynamic model.

5.3 Prediction of Effects of Coion Intrusion and Formation 

of a Stable Complex with the Displaced Counterion 

Chmutov, Kalinachev, and Semenovskaya (15) have

developed a model in which the Nernst-Planck includes

coion diffusion into the resin under conditions of

electric neutrality, and the displaced ion, say Ni++

for Na
+
, forms a stable NiC12 complex. This leads

to the movement of a sharp Ni
++

-Na
+ 

boundary which

moves toward the resin core, in a shrinking core model

manner. The model fit the experimental data and, since

coion intrusion is a factor, the exchange rate increased

as solution concentration was increased.

5.4 Intraparticle Ion Exchange Accompanied by Instantaneous 

Irreversible Reaction 

Kataoka, Yoshida, and Ozasa (51) have investigated

ion exchange within a resin particle in which the ion

exchanged reacts immediately and irreversibly with

electrolyte phase coion which has intruded into the ion

exchange resin. In this case the diffusion of the coion

must be considered, along with the usual considerations

of el ectroneutral ity and no electric current. In
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experiments involving H+ form of resin exchanging with

Na
+ 

in the presence of OH, water forms to give a

stable reaction product. Similarly, CH3CO0- forms

of resin exchanging with HC1 formed a stable reaction

product in acetic acid. This model fit the experimental

data better than the Nernst-Planck model which assumed

no coion intrusion. Of course, this somewhat special

circumstance of condition limits the models widespread

application, but builds on the validity of the

Nernst-Planck model and conditions of utility.

5.5 Prediction of Resin Phase Diffusion When Accompanied by 

Irreversible Exchange and Finite Rates of Reaction 

Rao, Gupta, Williams, and Aguwa (96) found that

chelating resins coordinate metals irreversibly at a

given electrolyte pH, and that, in many cases, the rate

of reaction is a significant factor in the exchange

process. Using Levenspiel's (60) shrinking core model

they successfully simulated exchange of Pb and Cd on

Dowex A-1.

5.6 Use of Multi-Suffix Diffusion Coefficients in the 

Nernst-Planck Model 

Graham and Dranoff (3O) have applied the

Stefan-Maxwell equations to ion exchange involving

binary systems. The resulting equations are given in

Chapter V. By use of these equations with the

Nernst-Planck model the authors satisfactorily fit the
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experimental concentration history curves for Na+

displacing Cs+ and e displacing Na+ on

Dowex 5OW X8 resin. The "effective" Nernst-Planck

diffusion coefficients are each determined as functions

of three parameters, as shown in Chapter V.

C. Other Relevant Literature 

1. 	 Literature Search Methodology 

The author was assisted in compiling an extensive

bibliography on ion exchange and related phenomena by

technical information specialists at Allied Corporation.

Working with these specialists, a search strategy based on

key word and reference-to-reference traceback techniques was

worked out to obtain the most pertinent information. Allied

searches on-line via the DIALOG INFORMATION SERVICES on the

following data bases:

Chemical Abstracts 1967-date

Compendex 1970-date (the machine-readable version of the

Engineering Index)

Abstracts of relevant article were provided to the

investigator based on key word search. Circled abstracts

were then obtained from the Allied collection or via outside

resources provided by the Allied library. References from

the full article many times lead to other relevant articles,

also provided by the library.
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CHAPTER II

MULTICOMPONENT ION EXCHANGE EQUILIBRIA 

A. General Background 

1. 	 Ion Exchange Equilibrium Conventions 

The simulation of fixed bed ion exchange operations

requires knowledge of the equilibrium relationship between ionic

species contained in the electrolyte phase and those contained

in the ion exchange resin. Helfferich (36) has reviewed

extensively the many ion exchange equilibria representations,

primarily for binary systems. The equilibrium conventions given

by Helfferich are as follows:

for the following general binary exchange,

in which
z
i 
= absolute charge of i

th 
species (1)

A = favored counterion;bar represents the
resin phase

a) 	 separation factor 

molal 	 molar 	 ionic equivalent fraction

(1 
Although charge on an ionic species is not always the

treatise the commonly used and misapplied term valence

will be used as "shorthand" for charge on the defined species.
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mass action forms

40

c) corrected mass action forms 

The example given is for the molal selectivity coefficient,

but the format applies to all three of the above

coefficients:

where Yi 	 molal activity coefficient of species i in

the electrolyte phase

d) thermodynamic equilibrium constant 

molal form



and the molal scale is used for both the resin and

electrolyte phases.

Referring to the diagram below:
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Infinite Dilution Standard State Relationships 

f4 represents the fugacity of component i, with the bar

dilution standard state reference fugacity.

The infinite dilution standard state reference

fugacity is determined by the intersection of the tangent

to the f. or T. curve, as m. or Tn. approaches zero

concentration, with the ordinate of molality = 1. For the

resin phase, this concentration would represent a

fictitious "pore" fluid.

Then:
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resulting in 	 yi = 1 	 and yi = 1

The activities, a. and a. are zero for values m. and

also zero. If the standard and reference states for the

electrolyte and the resin phase are chosen so that they are

the same, then:

since Ta = fa and Th = fb
Therefore with this convention, the ion exchange

selectivity is vested in the activity coefficients 	 and yi

Rational form

where x. is the ionic equivalent fraction of species i in

the exchanger phase, and the resin is treated as a solid

solution of the swollen resinates AR and BR. Both the

standard and reference states of AR and BR are taken to be



the respective monoionic forms of the ion exchanger in

equilibrium with water. Referring to the diagram which

follows:

Illustration 2.2
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The rational form of the thermodynamic equilibrium

constant is then given as:

Since the standard and reference states of the

electrolyte and resin phases are different, the ion

exchanger selectivity is vested in the equilibrium

constant. The activity coefficients mainly trim up

compositional variations.

Complete definition of the Thermodynamic Equilibrium 

Relationship 

The above expressions for the thermodynamic

equilibrium constant were based on the assumption that

electrolyte and solvent sorption and desorption were small

and could be neglected.

The full expression (39) is:

where:

w is solvent, ay is salt AY, and by is salt BY, with

h,g, & f representing 6, moles of each species between

the solvent and exchanger phase.
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Chain Rule Relationship 

The thermodynamic equilibrium constants, both the

molal and the rational form, satisfy the Gibbs free energy

equilibrium constraints in that the activity relationship

of each species, in both phases (resin and electrolyte),

are related by a constant at a given temperature. This

leads to the chain rule convention in which:

represents valence of species i.

2. 	 Ion Exchange Equilibrium Models 

2.1 Pressure and Temperature Considerations 

In terms of the swelling pressure of the resin and the

partial molar volume of each species, the electric double

layer or Donnan potential created by electrolyte sorption

is defined by Helfferich (35) as:
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where:



For binary exchange this leads to (38):

This equation and (2-18) lead to the following expression

when the water and coion effects are included (39):

which shows the effect of swelling pressure and partial

molar volume on the thermodynamic molal equilibrium

constant. Barrer and Rees (6) point out that in a binary

exchange of ions in zeolites, the Gibbs-Duhem relationship

is:
(2-23)

where

Barrer and Rees (6) did not include coion sorption

since in zeolites this tendency is very small.

Barrer and Rees point out that in zeolites, -nsites

is constant and water change during ion exchange is small

and can be said to be constant. For univalent exchange,
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the right side of equation (2-23) must be zero. This

assumption is implicit in most ion exchange models, even

for gel exchangers where osmotic pressure and volume

changes may be significant during the exchange, and indeed,

equation (2-22) shows that if the thermodynamic equilibrium

constant is to remain constant throughout a complete

exchange of one species for another, then the volume and

pressure changes must be relatively mall.

Helfferich (37) points out that in the free energy

expression:

that the enthalpy term, LH , is usually small. Most of the

free energy changes in ion exchange are due to entropic

effects, primarily mixing effects but to some extent due to

configurational changes in the resin matrix and the adding

or losing of solvation shells by the ionic species. The

temperature dependence of ion exchange is similar to that
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describing chemical reactions, so:

exchange are only on the order of 2 kcal/mole, so ion

exchange equilibria is not affected greatly by temperature

changes.

A number of models for ion exchange equilibrium are

discussed by Helfferich (41).

2.2 Resin Phase Activity Coefficient Models 

The development of a model which can represent the

activity coefficients of ionic species in an ion exchange

resin depends on the assumptions made in developing the

Gibbs-Duhem equation. As Soldatov (119) points out, the

Gibbs-Duhem equation for the resin phase has the general

form:

This of course assumes, as discussed above, that the

pressure volume effects are negligible, and all references

found in this work have included that assumption as

inherent in their various model derivations for equilibrium

in ion exchanges.

Soldatov (119) made one very good observation
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pertaining to ion exchange thermodynamics, and that has to

do with the use of mole fractions or equivalent fractions

as surrogates for molal or molar concentrations in the

Gibbs-Duhem equation. In systems where the total numbers

of moles is a constant, i.e., physical systems with no

reactions, the Gibbs-Duhem for a binary system would be:
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Soldatov's equation for ion exchange was given as:

where Qr = equivalent sites in ion exchanger

In homovalent systems for which z1 equals z2, the total



zero. Most investigators of ion exchange equilibria models

either limit the model to homovalent exchange, or ignore

the discrepancy. The residual values dEtotal get

"buried" in the equilibrium constant or "absorbed" by the

activity coefficient correlation--as was the case in this

research. As will be discussed later, this works out very

well in correlating binary heterovalent system equilibrium

relationships, but may be responsible for the just fair

ability of the correlation methods to predict ternary

equilibrium concentrations from binary system parameters in

such circumstances.

Two resin phase activity coefficient models will be

discussed here since they led to the approach taken in this

work. These are:

a. 	 Kielland's Equation 

Kielland's equation (53) for zeolites for

homovalent exchange, neglecting water and electrolyte

sorption as discussed, and assuming constant

temperature and pressure:

The relationship of excess free energy to activity

coefficients for a binary system is:
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is Kielland's approach and he defined:

By use of equation (2-36) and (2-37) he arrived at the

truncated Redlich-Kister form of:

to correlate resin phase activity coefficients in the

resin phase. This approach was put on a more sound

theoretical footing by Barrer (5).

b. 	 Smith and Woodburn Model 

Smith and Woodburn (116) were concerned with

multicomponent ion exchange equilibria, and developed

an approach to model the anionic exchange of NOB,

resin. Although Danes and Danes (19) had investigated

approaches where the excess free energy of mixing in

polyionic systems was expressed as a polynomial,

(Redlich-Kister type representations), Smith and

Woodburn felt that this confined the relationship to

regular solutions, and binary constants could not

readily be utilized to predict multicomponent system

activity coefficients. They noted that some features
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of the ion exchange system lent themselves to the

approach used by Wilson (98) in development of his

equation based on non-randomness of local mole

fractions in liquid mixtures for athermal solutions.

As discussed above, ion exchange systems exhibit low

heats of mixing and analogy can be made to non-random

clustering of ion species in the exchanger phase. The

Wilson equation in general form is:
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The Wilson equation was used by Smith and Woodburn to

describe the resin phase interactions involved in the

made from the binary pair correlations. Smith and

Woodburn based the electrolyte phase ionic species

activity coefficients on the extended Debye-Huckel

equation given by Robinson and Stokes (103);



where I = ionic strength

and used the Truesdell and Jones (128) parameters for

ai and bi. The binary pair data was regressed

using the least square of normalized error criteria

and they represented the system with the rational

equation (2-12) above.

The combinatorial rules are straight forward for

multicomponent mixtures utilizing binary pair G..

fitted parameters, and is not subject to possible

ambiguity, as is the combining of polynomial

expressions derived for binary pairs into ternary

representations. The results of the application of

this model to predict the ternary compositions versus

actual experimental results was quite good, with a

standard deviation of ±4.26%.

One complication in considering the
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and was considered as an additional reaction in the

electrolyte phase. Since total SO 4 in the resin



phase was assayed, it was not possible to determine

the NaSO4- source without a Na+ analysis. In

any event, a ternary system was modeled, not a

quaternary system, and the simplest approach was to

treat NaSO 4 as a non-exchanged species.
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They felt this was an indication of data consistency.

3. 	 Tabulation of Thermodynamic Models 

Table 2-1 shows a compilation of various thermodynamic

representations used by other investigators in modeling either

the equilibria or the dynamics of ion exchange. Dranoff and

Lapidus (21, 22), Rao and his coworkers (91, 92, 93), and

Omatete (78, 79, 8O) are the only investigators cited here who

modeled dynamic ternary exchange, and therefore required ternary

equilibrium representation; however, others such as Smith and

Woodburn (116), Soldatov and Bychkova (121, 122, 123), and

Pieroni and Dranoff (85) have investigated ternary equilibria

representation with a variety of approaches.



Table 2-1 

ION EXCHANGE EQUILIBRIA - VARIOUS INVESTIGATORS

Investigator(s) 	 System 	 Equilibrium Convention 	 Activity Coefficients 
Electrolyte 	 Resin Phase 

Binary 

(1)David & Kuo (56) 	 Ba

++

-Na

+

	Mass action-	 ideal 	 ideal
for equilibrium fit 	 Rational Selectivity

(2)David & Rao (88) 	 Cu

++

-Na

+

	Mass action-	 literature 	 see below*
for equilibrium fit 	 Molal Selectivity 	 Harped & Owen (33)

used version of Harned's Rule:

_ 	 i.e., activity
/1 	 /1 coefficients in resin
— ' — are proportional to
If 2

	

	 12 to activity coefficients
in the electrolyte

(3)Erickson (26) 	 Ethylene++ 	 total empirical equation (see Chapter VII)

	

for dynamic simulation 	 diamine

++

-NH

+

4

(4)Kataoka & Yoshida (49) 	 Nee 	 Mass action- 	 ideal 	 ideal

	

for dynamic simulation 	 Molal Selectivity

(5)Pan (84) 	 Nee 	 Mass action- 	 ideal 	 ideal

	

for dynamic simulation 	 Rational Selectivity

(6)Selke & Bliss (113) 	 Cu

++

H

+

	Mass action-	 ideal 	 ideal
for dynamic simulation 	 Cu

++

Mg+ 	Rational Selectivity



System

Table 2-1 (continued)

Investigator(s) 

Ternary 

(1) Smith & Woodburn (116)
for equilibrium fit

Equilibrium Convention 

Mass action-
Rational Thermodynamic

Activity Coefficients
Electrolyte 	 Resin Phase

extended Debye-
Huckel, Stokes
& Robinson
(Truesdell & Jones)

Wilson
Equation



Table 2-1 (continued)

Investigator(s) 

(3) Bajpai, Gupta, Rao (91)
for equilibrium fit (cont.)

(4) Bajpai, Gupta, Rao (93)
for ternary dynamic
simulation

System 	 Equilibrium Convention 	Activity Coefficients 
Electrolyte 	 Resin Phase 

and for ternary



Table 2-1 (continued)

System 	 Equilibrium Convention 	 Activity Coefficients 
Electrolyte 	 Resin Phase 

(6) Pieroni & Dranoff (85) 	 Ce+-Na+414" 	 Mass action- 	 ideal 	 ideal
for equilibrium fit 	 Rational Selectivity



Table 2-1 (continued)

Investigator(s) 	 System 	 Equilibrium Convention 	 Activity Coefficients 
Electrolyte 	 Resin Phase



B. Equilibria Models Tested - This Report 

1. 	 General 

Review of the literature and background provided by other

investigators led to the conclusions that ternary equilibrium

correlating relationships for this work should be based on:

a. 	 The Rational Thermodynamic Selectivity relationship as

demonstrated by Smith and Woodburn (116), since equivalent or

mole fraction of each species in the resin phase could be

directly calculated as opposed to using pseudo binary

relationships. This was particularly important, since with the

proposed solution method for ternary dynamic modeling the

quasilinearization procedure required clear definition of the

In addition, if the activity coefficients of species in the

resin phase could be expressed as functions of xi, then the

activity driving force could be investigated as an alternative

to concentration driving force.

Use of the Rational Thermodynamic Selectivity allowed

basis for consistency between three binary pairs without

ambiguity.

Finally, as discussed for heterovalent systems, some

"burying" of the residual dctotal term has to be absorbed by
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the activity coefficients. Putting most of the selectivity

effects into the equilibrium constant would relieve the function

of the activity correlation method chosen to that of primarily

representing the excess free energy relationships related to

mixing and resin configurational changes.

b. 	 Use of generalized correlations such as the Redlich-Kister

three suffix equation, the Wilson equation, and the NRTL

equation to relate the excess properties of the resin phase to

the concentration of ionic species. Each of these correlations

has combinatorial rules for the parameters so that constants

derived for the three binary pairs can be combined to yield

prediction of ternary system behavior. It would have been

desirable to:

o 	 be able to predict the equilibrium constant of the least

favored binary pair by application of the chain rule using

values of the equilibrium constants for the two most

favored binary pairs;

o 	 be able to predict ternary system behavior directly from

the binary pair equilibrium constants and activity

coefficient correlation parameters utilizing the mixing

conventions of the method.

This would minimize the requirement to obtain experimentally

many ternary data points and, in the case of the Redlich-Kister

equation, obviate the need to fit parameters for ternary

systems. If the predictions for ternary systems could be shown

to be dependable, then preliminary computer mapping of ternary
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regions of maximum interest could be accomplished from the

binary parameters--with experimentation on ternary systems

limited in scope to check these regions.

c. 	 Use of a correlation package for activity coefficient

prediction in the electrolyte phase for single ions in binary

and ternary systems. The predictive method would have the

ability to:

o predict single ion activities in multicomponent mixtures

containing other cationic and anionic species;

o provide a reliable range of accuracy up to about 6 molal

concentration of electrolyte salts;

o have extended Debye Huckel relationships for which

constants were available for many ubiquitous salts.

The Bromley (9) equation was selected as the prediction method

for the electrolyte phase, and is discussed in Chapter III.

2. 	 Derivation of Equilibrium Relationships 

2.1 Equilibrium Equations 

Derivation of the binary equilibrium relationships for the

three binary pairs in a ternary system is straightforward, given

the Helfferich conventions. From this point on, the shorthand

symbol for the rational thermodynamic equilibrium constant will

be given as Rij in this report; and will be given as 7i.
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continued:



where:

Equation (2-51) was transformed so that mole fraction or

equivalent fraction could be used in the electrolyte phase as

well as the resin phase to simplify representation. Equivalent

fraction in the electrolyte phase is given as:



where norm = normality of coions in the electrolyte phase.

Substitution of equation (2-52) in equation (2-51) gives:
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Bromley equation.

Equation (2-53) shows that if mole or equivalent fractions

are used for electrolyte phase compositions, then in

heterovalent systems the normality of the electrolyte has a

strong influence on the ion exchanger selectivity.

2.2 Resin Phase Activity Coefficient Relationships 

a. The generalized form of the Wilson equation was given above

in the Smith and Woodburn discussion.

b. The NRTL equation or non-random, two liquid model developed

by Renon and Prausnitz (98) is given by those investigators

as:



The constants for ternary systems are also given in

this literature source, but the relationships are not
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listed. Later in this chapter the discussion will include

reference to regression fits of data from ternary systems

made early in this research which included a fourth suffix

term, E, and the three ternary constants. Along with the

equilibrium constants, this required fitting 17 parameters

to the experimental data. Since there were only 30 or so

data points, the "principle of parsimony" was being

encroached upon, and Occam's razor prevailed. This

principle of the "simplest explanation which explains

phenomena is probably the correct one" (paraphrased) led to

working with only a three suffix expression without ternary

constants.

2.3 Mole Fractions versus Equivalent Fraction 

All of the systems involving heterovalent exchange

were tested utilizing both mole fraction and equivalent

fraction concentration to determine which system would give

better prediction of ternary system behavior. One

difference of convention which was introduced during the

equilibrium phase of the project was that for equivalent
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Since valence i for the heterovalent systems investigated

During the regression of the heterovalent systems, when the

binary system parameters were used to predict ternary

system equilibrium data points, the equivalent fraction

convention had a slight edge in standard deviation over use

of mole fractions, as will be discussed later. It also was

felt that it would be an advantage to use the equivalent

fraction concentration units, since the dynamic models were

designed to utilize equivalent fraction units. The

combining of the valence relationship into the equilibrium

constant caused no harm, in that in heterovalent systems

the additional factor canceled with the chain rule
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In comparison of equilibrium constants between the two

systems, one other major difference was apparent. In

heterovalent ion exchange the total number of moles in the



resin phase is a variable, whereas the number of

equivalents is a constant. Mole fraction is defined as:

whereas equivalent fraction is given by

Qr = resin equivalent monoionic sites/volume of resin.

The relationship between mole fraction and equivalent

fraction can be shown to be:
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for a 2-1 heterovalent system, this relationship reduces to:



after the substitution of equation (2-68) in equation (2-69)

the following ratio results:

Since the entire range of concentration values must be examined
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Due to the effect of the change in total moles occurring within

the resin during heterovalent exchange it could be expected

the valence ratio adjustment (equation (2-62)) had been

about 1.4.

A relationship similar to equation (2-71) can be derived



which upon integration yields:

gives the average for the three cationic heterovalent systems as

1.5475, with the difference from 1.4 of about 10% being absorbed

, 1
In the anionic exchange, the average ratio is 0.2915 vs. 0.375,

with an almost 3O% difference being absorbed by the activity

coefficient ratios.

C. Experimental Data for Ternary Systems 

1. General 

Experimental data was available for five systems, and

regression analysis of the binary pair data was utilized to

generate equilibrium constants and the resin phase activity

coefficient parameters based on the Redlich-Kister, Wilson, and

only fitted with Redlich-Kister). These parameters were used to

simulate the ternary data points and the results compared to the

actual points, with standard deviations computed for each system

and correlation method.

2. The systems investigated are shown in Table 2-2. The

ternary system experimental data was accompanied with the

experimental binary system data given either in tabular or

graphical format.
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Table 2-2 

TERNARY EQUILIBRIUM DATA SOURCES 

Investigator(s) System Experimental Method No. of Ternary
Data Points 

Omatete (78) Ag

+

-Na

+

-H

+

/NO3
on Dowex 50W X8
0.1 normal 	 solution at 23° C.

Column displacement technique.
Ag' by Volhard titration, (±0.2%)
H" by titration with NaOH (±0.2%),
Na" by flamespectroscopy, (±7%).
spectroscopy, 	 (±7%).

2 points + 3 by material
balance on rate runs -
this project

Rao et al 	 (91) Sr

++

, Mn

++

, Cs

+

/Cl -
on Dowex 50W X8.

Radioactive tracer technique.
Reproducibility was ±2%.

16 points

Mn

++

, Cs

+

, Na+/Cl-
on Dowex 50W X8
0.1 	 normal 	 solution at 23 ° C.

15 points

Smith A Woodburn (116) NO 3 -Cl - -SO4/Na

+

on Rohm & Haas Amberlite
IRA 400
0.2 normal solution at
25 t3 ° C.

Column displacement technique 
Cl- by potentiometric
titration with AgNO3 solution
(±1%), SO4 gravimetrically
(±2%) N01 by difference.

16 points with 2
additional replication
runs.

Soldatov 81 Bychkova
(121)

NH4

+

-Na

+

-e/Cl-
on Dowex 50B X12
0.1 normal solution at 25 °C.

Equilibrium method not stated,
but believed to be Column 
displacement. 	 H" by alkalimetry,
NHA-by formaldehyde method.

45 points distributed
along NH* ion
isotherms of 0.05, 0.10,
0.20, 0.30, 0.40, 0.50,
0.60, 0.70 in the
electrolyte phase.



D. Correlation Model - Ion Exchange Equilibrium 

1. 	 General Background 

A powerful general purpose non-linear regression program

based on a variation of the Gauss-Newton method was developed by

Dr. A. K. S. Murthy at Allied Corporation, and a general

description is given in Appendix B. In fitting the equilibrium

constants and activity coefficient parameters for the species in

the resin phase, obviously one equlibrium relationship is

required per binary pair, and the number of equilibrium

equations required for the ternary systems is three.

The equilibrium relationship for, say the 1-2 pair, is

divided into terms containing the known parameters, and terms

constituting the unknown side contain the parameters to be

where:
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and



Bromley equation for the electrolyte phase activity

coefficients.

The Y(1) exp terms represent the experimental knowns.

The regression program then finds the numerical derivatives of

Y(1) calc with respect to each parameter, i.e.:
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searches for global minima for all data points in each set. If

some parameters are used to describe the calculation of

variables in other data sets, then these sets are also included

in the global minima search for that parameter. When

convergence criteria have been met in terms of residual error

for all parameters, the regression program prints out values for

each fitted parameter along with standard deviation and cross

correlation coefficients.

2. 	 Ion Exchange Equilibrium Regression Program, RIONFT, for Ternary 

Systems 

The general purpose ion exchange correlation program

developed as part of this research was called RIONFT (Resin

phase Ion exchange FiTting program). Dr. A. K. S. Murthy's

generalized regression program (Appendix B) is the heart of a



program developed specifically for fitting resin phase ion

exchange parameters to experimental binary and ternary

equilibrium data. It step-wise performs 26 sequential

correlation combinations to arrive at a best portrayal of the

three binary systems and the ternary points. Using the

Redlich-Kister equation for resin phase activity coefficients
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o 	 Binary pair 1-3 

17 	 using parameters fitted in 2, 5, and 10, calculates

ternary resin phase compositions using those

parameters and computes standard deviation of the

calculated points from the experimental data points

18 	 repeats 17 using parameters fitted in 3, 6, and 11

19 	 repeats 17 using parameters fitted in 2, 8, and 12

2O 	 repeats 17 using parameters fitted in 3, 9, and 13

21 	 repeats 17 using parameters fitted in 5, 8, and 14

22 	 repeats 17 using parameters fitted in 6, 9, and 15
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o 	 Binary sets fit together 

23 	 all three binary sets then are submitted by the

o 	 Total data sets fit, 3 binaries and ternary data 

25 	 similar to 23 except ternary data set is included

26 	 similar to 24 except ternary data set is included

The optional correlation methods for fitting the resin

phase activity coefficients are the one, two or three parameter

One additional feature was built into RIONFT in order to

regress the data of Smith and Woodburn involving the stable

intermediate, NaSO4. The program has a subroutine which

computes the equilibrium concentration of one of the stable

complexes formed by one of the three ionic species, providing

the stability constant is available for that complexation

reaction. The use of this type of relationship is questionable

in a ternary system, since it assumes that the complex is either

(1) not involved in the ion exchange process or (2) has the same

ion exchange equilibrium relationship as the uncomplexed ion.

It most likely is involved in the ion exchange process, and the



complexity now introduced is that a quaternary non-stoiciometric

exchange process is involved, with the attendant experimental

complications of measuring the amount of counterion in the

exchanger due to the uncomplexed and the complexed form. As

will be discussed below, the Smith Woodburn ternary system of

NO--C1--SO= was equally well fit to experimental
3 	 4

data without considering the complexation reaction to yield

NaSO-
4'

3. 	 Features of RIONFT 

The operational features of the ion exchange equilibrium

regression program, RIONFT, for ternary systems is given in

Appendix C.

E. Correlation Results - Ternary and Binary Systems 

1. Comparison of Correlation Models 

The results of data regression on four ternary systems

utilizing RIONFT is given in Table 2-3. If the judgment of

method used were made solely on the predicted ternary results,

the Wilson equation would be preferred; however, in terms of

total ability to correlate binary pairs (with Rij being a

function of Rik and Rjk) and predict ternary systems, the

Redlich-Kister three suffix equation was selected. The Omatete

(78) Ag+, 	 H+ system was not included in this

comparison because of the paucity of data.

2. Ternary Phase

Utilizing the Redlich-Kister model for the prediction of

resin phase activity coefficients, resin compositions were
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Table 2-3

Ternary Ion Exchange Equilibrium Data Regression

- Based on Ionic Equivalent Fraction -

Resin Phase Activity Coefficient Model 

Redlich-Kister 	 - three suffix

Wilson 	 - p.. - molar volume i
	 1.0

jij 	 molar volume 

NRTL 	 - a.. = 0.3
1,3

Standard Deviation - % Normalized Difference 

System Pair 1-2 Pair 1-3 Pair 2-3 Ternary
Calculated
from Binary
Parameters

1. Mn

++

-Cs+-Na+
R-K
Wilson
NRTL

1.70
6.9
7.5

8.8
17.7
18.5

3.8
5.1
5.2

11.6
12.6
13.2

2. Sr

++

-Mn

++

-Cs+
R-K
Wilson
NRTL

1.4
1.4
1.5

2.0
1.7
2.9

1.7
7.2
5.5

11.8
10.5
10.9

3. NH

+

-Na+-H

+

R-K
Wilson
NRTL

1.1
1.05
1.1

1.05
3.3
3.3

7.8
9.5
9.4

4.6
3.7
3.7

4. NO
3
--Cl--SO4
R-K
Wilson

Roth
Smith &
Woodburn

NRTL

1.34

1.9

3.5
2.3

1.44

1.8

5.8
3.0

3,4

3.3

2.7
3.3

4.1

2.7

4.3
5.9



calculated at regular electrolyte composition isotherms and

plotted on triangular coordinate graphs. Figures 2-1 through

2-6 show the calculated position for the ternary resin

compositions at the intersections of isotherms, and the

experimental data points are superimposed. Two graphs are

included for the Omatete data at normalities of 0.10 and 1.5

solution concentrations.

3. Binary Phase Diagrams 

Figure 2-7 for two normalities, O.1 and 1 solution

concentrations. The percent normalized standard deviations are

5.5 and 1.3% respectively, based on a two suffix Redlich-Kister

equation. A plot of the activity coefficients is shown on

Figures 2-8 showing that the system exhibits positive deviation

and is almost symmetrical.

and Snowdon's (129, 13O) data which was required to fill out the

lower region is also plotted on Figures 2-11.

4. Discussion and Conclusions 

Smith and Woodburn's (116) model for prediction of ternary

ion exchange equilibria utilizing the Wilson equation has been

extended to include the Redlich-Kister and NRTL activity

coefficient models. The three models have been tested against

the original system investigated by Smith and Woodburn, plus
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Ternary Equilibrium Diagram
Resin Phase, Equivalent Fraction
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Ternary Equilibrium Diagram
Resin Phase, Equivalent Fraction

Figure 2-4
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Ternary Equilibrium Diagram
Resin Phase, Equivalent Fraction



System Ethylene Diamine/NH 3 - Dowex 50W x 8 Resin
Figure 2-7

Temp. 25°C



Figure 2-8

System Ethylene Diamine/NH3 - Dowex 50W x 8 Resin -CI-
Resin Phase Activity Coefficients



System Ag+/H+/NO3/Dowex 50W x 8 Resin 	 Figure 2-9

Temp. 25°C



System Ag ± /Na ± /NO;/Dowex 50W x 8 Resin 	 Figure 2-10

Temp. 25°C



System Na ±/H ±/NO3-/Dowex 50W x 8 Resin 	 Figure 2-11

Temp. 25°C



three other systems. The results are encouraging and suggest

that the Redlich-Kister model gives better overall results. The

fact that the activity coefficient, whether correlated with mole

fractions or equivalent fraction concentration units, must

"correct" for the changing number of moles in the ion exchanger

during heterovalent exchange, i.e., 4ctotal' accounts for the

poorer results obtained with heterovalent cationic exchange as

compared to homovalent cationic exchange. The extra suffix term,

or "knob," on the Redlich-Kister equation allows for more

non-linear compensation than the two "suffix" Wilson and NRTL

equations. In terms of extending the system to more than three

ionic species, if such data were available, the Wilson equation

would be more straightforward in its general application to

multicomponent systems.

It should be noted that runs were made on the No

heterovalent cationic systems in which pij in the Wilson equation

and a
ij 

in the NRTL equation were also fit with the regression

model. The results were improved on some binary systems, and

made worse in others, with a general degradation in the ability

to predict ternary data points. In addition, physically absurd

values of parameters such as pij were obtained. Since pij

represents the molar volume ratios of the two solvated ions, some

order of magnitude check against literature observations would

have been encouraging. In any event, the values of p 	 1.0

and a.. = O.3 gave overall best results for the Wilson and NRTL
ij

equations respectively.
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Mole fraction and equivalent fraction concentration units

were utilized in fitting the heterovalent ternary systems

(obviously in the homovalent systems mol. fr . = equiv. fr .).

Table 2-4 shows that overall, the equivalent fraction units

yielded somewhat better results than the mole fraction system

based on standard deviation of normalized difference. The same

Table, 2-4, shows the mole fraction based equilibrium constants

for the three binary pairs and the Redlich-Kister parameters for

those systems.

The use of a four suffix Redlich-Kister equation

(E
ij 

term) plus three ternary constants was evaluated initially

as perhaps a more powerful activity coefficient model for both

binary and ternary systems. In the case of the binary systems,

experimental data for each binary pair was fit with five

parameters (including k
ij
). Since in some instances the number

of data points may have been between 8 and 10, this was clearly a

case of "overkill." In fact, in the binary systems, more of the

equilibrium selectivity for a given pair became vested in the

activity coefficients than in the equilibrium constant. Although

the fits were slightly improved over the three suffix system,

attempts to correlate the activity coefficients for a third pair

based on the chain rule deriving R'
ij 

as a function of i
ik 

and

K
jk 

led to poor results. This was so because the values of

ik 
and i

jk 
were beginning to lose their identities as

equilibrium constants when they should have represented the

strongest correlatable parameter in the equilibrium
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Table 2-4

Comparison of Mole Fraction vs. Equivalent Fraction 

- Resin Phase Equilibria Correlation -

Heterovalent Exchange 

Redlich-Kister three suffix equation
utilized for resin phase activity coefficients



Table 2-4,cont.



relationship. The standard deviations for ternary systems

predicted from the binaries correlated with the four suffix

Redlich-Kister equation were generally poorer than obtained with

the three suffix model.

Fitting the ternary data with a four suffix Redlich-Kister

model including three ternary system constants, or 17 independent

parameters, for 15 ternary data points (30 independent variables)

showed no important improvement over use of the three suffix

model without the ternary system constants. In any case, a

requirement for ternary system constants would have negated any

possibility of predicting ternary equilibrium system behavior

from the binary correlation constants. The four suffix

Redlich-Kister model and the ternary system constants were ruled

out in subsequent correlation studies in this research.

It was concluded that the three suffix Redlich-Kister

equation for resin phase activity coefficients based on

equivalent fraction concentration units, and coupled with the

Bromley equation to predict electrolyte phase activity

coefficients, generally gave excellent fits of binary systems,

even in heterovalent exchange, and gave fair representation of

predicted ternary equilibrium points. This system for

representation of binary and ternary equilibria was selected for

use in the dynamic ion exchange model.

F. Relationship of Activity Coefficients Utilized in Deriving Diffusion 

Coefficients - Activity Driving Force 

1. 	 Binary  Systems 
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1.1 Background 

The dynamics of ions exchanging within an ion exchange

resin is discussed in Chapter V. As in all mass transport

processes, the rate of transfer of a molecular or ionic

species through a given media is governed by a factor which

is proportional to the ease with which the species moves

through the media (diffusion coefficient), and the chemical

potential gradient of the species in the media (driving

force). In the case of ion exchange it is the

electrochemical potential gradient that is operational,

since the movement of charged ions or molecules is

influenced by electrical gradients as well as chemical

concentration gradients. In Chapter V, the molar flux for

binary ion exchange is given as:
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Manipulation of variables during subsequent derivations

and computations can be performed more readily if the

diffusional flux relationship is expressed in equivalent

fractions by recognizing that:



so that in equivalent fractions equation (5-23) becomes:

The expression for effective diffusivity becomes:
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The current chapter on equilibrium involves methods for

correlating binary and ternary ion exchange systems with

models involving equivalent fraction, or alternatively mole

fraction, of each species in the ion exchange resin. These

models are consistent in that the standard states chosen

allow prediction of the equilibrium relationships.

the correct concentration units are employed. As an

example, if the system of interest was correlated in mole

fraction resin phase concentration units then, in employing

the equivalent flux equation (5-6O) at the boundary

condition,
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phase equilibrium value, x*:, 	 by use of equation (2-53).
int

1.2 Change of Standard States for Activity Drivina_Force 

- Conversion of Molar to Equivalent Fraction Concentrations 

Equation (5-21) describes the effective diffusivity

for interchange of ionic species 1 and 2 in the resin. If

the system can be considered to be ideal, then the term

directly in terms of resin phase equivalent fraction

concentration units. If the chemical potential, 1-J. , is to

be used as the driving force then, in deriving the effective

diffusivity for interchange of species 1 and 2, the activity

computed from a model relating molar activity coefficients

to molar concentration units in the resin. The models

discussed in this chapter have been correlated in mole

fraction or equivalent fraction concentration units, and a

conversion in standard states to reflect molar concentration

units must be made in order to utilize the molar flux

equation correctly for non-ideal systems.

As derived in Appendix A, it was shown that the activity

coefficients based on equivalent fraction concentration units
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are identical to those based on molar concentration units.

The limiting values are:

With molar concentration units, the limiting values are:

Q

Models of activity coefficients based on molar versus

equivalent fraction concentration units can be illustrated

by using a truncated Redlich-Kister equation. In molar

If equivalent fraction units are used,

Consequently, in utilizing the non-ideal version of the

equation for effective diffusion coefficients, (5-14),
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activing coefficients correlated in equivalent fraction

concentration units can be used directly, or:

1.3 Change of Standard States for Activity Driving Force 

- Conversion of Molar to Mole Fraction Concentrations 

The change of standard states involved with conversion

of activity coefficients correlated in molar concentration

terms to activity coefficients correlated in mole fraction

terms is more complicated. The values of activity

coefficients correlated in mole fractions, (y4 	 ) are
Im.f.

not equal to the values for activity coefficients correlated

in molar or equivalent fraction concentration units

or 	 as is shown in Appendix A.
molar

As indicated in Appendix A, the limiting values of

activity coefficients correlated in mole fraction

concentration units is as follows:
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The relationship between activity coefficients based on

molar versus mole fraction concentration units is given in

equation (A—18) as:

The following procedure is followed to make the

standard state correction. The equilibrium relationship in

molar concentration units for components 1 and 2 is:

or simplifying:

where:

The equilibrium relationship in mole fraction concentration

units for components 1 and 2 is:
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where:

The molar activity coefficient relationship can be given as

Combining equations (2-92) and (2-94) yields:

and in view of equations (2-93) and (2-95), equation (2-97

can be expanded to give the relationship:



The ratio expressed by the following relationship,
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can be transformed to an expression based on equivalent

fraction concentration units by use of the relationships:

and:

The expression for R becomes:

where:



In view of equations (2-96) and (2-98), and (2-102), the

following relationship obtains:
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By carrying out the differentiation of the last two terms in

equation (2-103), the final conversion equation is obtained,:

The substitution of the right side of equation (2-104) in

(5-21) corrects the activity coefficient relationship from molar

second right hand term is zero, and the activity coefficient

relationship is the same whether molar, mole fraction or

equivalent fraction concentration units are utilized.

Since it would be more conveniuent to take the partial
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units rather than equivalent fraction concentration units,

the following can be arranged:

and since,

plus equation (2-100) can be arranged to give,

then,

and finally.

The resulting transformation from molar activity

coefficients to mole fraction activity coefficients is then;
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It is obvious from the above that computations involving

determination of the effective diffusion coefficients in

non-ideal systems are greatly simplified if the activity

coefficients have been correlated in equivalent fraction units.

2. 	 Ternary Systems 

The use of chemical potential as a driving force, if of

value in describing binary systems, must be extended to ternary

dynamic models if the concept is to be proved efficacious in this

research. Again, the effective diffusion coefficients derived

from equations (5-27) and (5-28) involve the terms,

in which the molar activity coefficients are employed. Since

all of the ternary dynamic batch simulation runs were made with

activity coefficients derived in equivalent fraction

concentrations, there was no activity coefficient standard state

correction required to satisfy equations (2-111) expressions.

Equations (5-27) and (5-28) were solved by direct utilization of

the equivalent fraction activity coefficients.



CHAPTER III

ELECTROLYTE PHASE - ACTIVITY COEFFICIENTS OF IONIC SPECIES 

& EFFECT ON DIFFUSION COEFFICIENTS 

A. Activity Coefficients - Electrolyte Phase 

1. 	 General 

The various methods for describing ion exchange equilibria

the thermodynamic equilibrium constant, whether it be based on

molalities or equivalent fractions (see chapter on Equilibrium),

require knowledge of the activity coefficients of ionic species

in the electrolyte. Most investigators have dealt with binary

systems, and have either assumed ideality, or invoked Harned's

Rule for the electrolyte phase. Harned's Rule (105) states that

at constant ionic strength, I, the ratio of activity coefficients

in an electrolyte mixture is constant, and equal to the ratio for

the pure electrolyte solutions of the various ionic species at

the same ionic strength.
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Presumably this treatment could be extended to ternary

systems, but the literature search for this project did not find

any reference to such extension of Harned's Rule.

In any event, during exchange of ions of differing valences,

the ionic strength, I, of the electrolyte phase will change. For

example, during the exchange of a valence 1 cation species for a

cation species having a valence of 2, at 1 normal electrolyte

solution strength and with anion valence of 1:

So conditions for application of Harned's Rule during

multivalent exchange will not hold. Reference is made to

Robinson and Stokes (105) who state that Harned's Rule is valid

for systems such as HC1-BaC1 2 provided the total ionic strength

is kept constant, as contrasted to constant molality.
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2. Treatment of Electrolyte Activity Coefficients - This Research 

Smith and Woodburn (116), in their treatment of ternary

activity coefficients for the electrolyte phase based on the

extended Debye-Huckel equation given by Robinson and Stokes

(1O3), and interaction parameters by Truesdell and Jones (128).

For this work, the Bromley version of the extended Debye-Huckel

equation (9) was selected. Bromley has published (9) values of

his short range interaction parameters, B, for 175 salts in

aqueous solution. Parameter B can also be estimated by combining

contributions of individual cations (36) with those of individual

anions (4O). The predictive range of the Bromley equation

extends to 6 molal concentration, and is available in a form

which permits the approximation of the activity coefficients of

individual ionic species in mixtures of both cations and anions.

The tables in Appendix C are for runs made in this research

project to test this correlation against data for a variety of

salts (total of 17) with molality ranging from O.1 to 6.O, as

given in Robinson and Stokes (106). The averaged root mean

square of % relative difference, actual to predicted, was 2.7%

for the combined total of all 17 salts.

3. The L.A. Bromley equation is:

For salt in aqueous solution, where 	 is the molal activity

coefficient for the salt at a given solution ionic strength,



where:
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Single Ionic Species 
(3-6)

Since:
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B. Diffusion Coefficients - Electrolyte Phase 

1. General 

Development of a pseudo electric field model for ionic

diffusion through the boundary separating the electrolyte

solution and the ion exchange is covered in Chapter IV. However,

most other investigators have utilized ionic diffusion

coefficients given in the literature as limiting values (infinite

dilution of the electrolyte). This work includes correction to

the limiting diffusivities of ionic species by utilizing the

Nernst-Hartley equation (1O4) in an integrated form.

2. Nernst-Hartley Equation 

The Nernst-Hartley equation (104) for dilute solutions is

given as:

Two correction versions were tested, the differential form

as given, and an integrated form, both utilizing the Bromley

equation to provide the relationship between concentration of

ionic species and its activity coefficient. The derivations are

given in Appendix D.

3. 	 Treatment of Electrolyte Diffusion Coefficients - This Research 

The integrated version of the Nernst-Hartley equation was

chosen since, in many electrolytes, the activity coefficient

first decreases, then increases with concentration. The

differential form would hold during the initial decrease, but

would not represent the relationship during and after the

reversal point. The results for both methods tested on data for



17 salts, as given in Robinson & Stokes (106), are included in

Appendix C.

The ability of the two models to predict the experimental

values of diffusivities is given as:

Diffusion Coefficients - Nernst-Hartley Correction 

Averaged Root Mean Square

of % Relative Difference 

differential 	 26.6%

integral 	 13.2%

The integral version was adopted for inclusion in this

modeling effort.
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CHAPTER IV 

TREATMENT OF ELECTROLYTE PHASE FILM COEFFICIENTS 

A. General Background 

1. Diffusion Coefficients of Ionic Species in the Film 

Most investigators of ion exchange in binary systems

calculate the ionic flux through the film surrounding the resin

by using the infinite dilution diffusion coefficient of a single

counterion, or the average of both ionic species. As was

discussed in Chapter III, the diffusion coefficients of ionic

species vary considerably with increasing electrolyte

concentration. This chapter deals with development of a model for

diffusion of up to three ionic species through the boundary layer

separating the bulk fluid from the resin outer surface. The resin

surface is assumed to be in equilibrium with the boundary layer

fluid in contact with it. In all cases in this research,

diffusion coefficients of ionic species are corrected from their

values at infinite dilution to estimated values at the average

film concentration for the species in the film, based on an

integrated form of the Nernst-Hartley equation as described in

Chapter III.

2. Film Coefficient Correlations for Packed Beds 

Film coefficients for diffusion through the boundary layer

surrounding resin beads are adequately computed by equations of

the form:
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Pan and David (83) and this investigation found Carberry's

relationship (11) satisfactory for Re >1 based on superficial

velocity, or Re 	 3 based on actual velocity, s

Carberry's equation for fixed beds is given as:
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For ion exchange in fluidized beds, Turner & Snowdon (131)

found the coefficient should be about 0.81 vs. 1.15 used by

Carberry for packed beds. For Re < 1, the correlation by Koloini

and is coworkers (54,55) was found satisfactory in this

investigation.
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Plots of the Carberry and Koloini & Zumer correlations intercept

at Re=1.0, and choice of preferred correlation would be made at

that Re number.

Postulating a "film" of some thickness across which ionic

species migrate as a function of concentration driving force, then

A problem which other investigators have researched has been

to determine an effective diffusion coefficient that can be used

to compute a film coefficient which properly simulates ion

exchange when the film represents the major resistance to mass

transfer.

3. 	 Nernst-Planck Models for Ionic Migration in the Film - Other 

Investigators 

3.1 Description of Nernst-Planck Model 

Investigators such as Turner & Snowdon (131), Van

Brocklin & David (132), Pan & David (83), and Kataoka &

Yoshida (50) have examined the effect of the concentration

gradient of the coion in the "stagnant film" during binary

ion exchange--caused by the electric field generated in the

film to satisfy (1) condition of electroneutrality and (2)

that no electric current flow through the film as a result of

diffusion of counterions. As will be shown, this effect
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causes the effective diffusion coefficient of a species to

vary across a "film," although the flux of that species does

not vary across the film at any time (t). The mathematical

treatment of the physics of ionic movement through

electrolytes by W. Nernst and M. Planck resulted in a

relation known as the Nernst-Planck equation (42), which for

dilute solutions is given as:

Equations for Film with Electric Field - Nernst-Planck 

Relationship 

Assumptions

o Film has thickness 6eff as described above

o All velocity components in the film are zero

o Fluid beyond the film is well mixed at composition

Ci bulk

o Mass transfer is in the radial direction of the resin

"sphere." Since the film dimension is small compared to

the resin radius, the film can be treated as a slab with
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The assumption of no electric current flow,  and postulating a
*

quasi-stationary state for the coion, or Na = 0, results

in:



Initial Condition:
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These equations have been integrated by various

investigators, and the results of three of these

investigators will be discussed in detail.

3.2. Model of Kataoka and Yoshida (50)

Kataoka & Yoshida for equal valence exchange of two

species, developed the following equations:
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Equilibrium is based on a mass action type relationship:

subscript int is the interface between resin/film

superscript bar is the resin phase

superscript star is the electrolyte film phase

Substitution and subsequent integration across the film

yielded;

Later in the chapter this treatment will be compared

against a pseudo electric field treatment derived in this
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research project for the extreme case of unfavorable exchange

Kataoka and Yoshida point out that in favorable

industrially important cases, the breakthrough curve based on

kL calculated using the diffusion coefficient of the slower

ion gives rise to errors of less than 30% in prediction of

breakthrough curve, breakthrough time, and column utilization.

3.3 Model of Van Brocklin and David (132)

Van Brocklin & David for multivalent exchange of two

species, developed the following equations.

The following factor was defined:



The film model was solved analytically by integration

across the film. The other two models were solved by

numerical methods on a computer--and use of the model

involves table look up based on D i */Di * and film boundary

1 22
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concentrations to obtain the R. factor. This model was

used in carrying out ion exchange computations for a moving

bed column (Pan & David (83)). Figures (4-1) through (4-6)

from their work are shown depicting the effect on coion and

counterion concentration, as well as electric field gradient,

(1), for the various models. Pan & David (83) computed the

height of a moving bed ion exchange column based on the

Fick's Law model in the film and compared that to the height

of a bed calculated with electric field effects, (H/He).

They conclude that "only for H+ ion-multivalent ion

exchange systems in dilute solution do highly unfavorable

equilibrium and large effects of Ri correction occur

simultaneously." Normally these types of ion exchanges have

no practical application, so it can be anticipated that for

most simulations the R. correction factor will be small.

Pan and David (83) continue, "In practical ion exchange

applications, this exchange operation is rather unusual. For

exchanges with highly unfavorable equilibrium, but without

H
+
, the effect is expected to be small because of the small

diffusivity ratio of the exchanging ion pair."

3.4 Model of Turner and Snowden (131) 

Turner & Snowdon integrated the basic Nernst-Planck film

equations for two species interchanging, using the usual

assumption of the coion in a quasistationary condition.

Fluid bed experiments on resin with H+ and Na+ ions

exchanging was the basis for a correlation which, though

specific to this system, show agreement with the N.P. model.
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Figure 4-1

Calculated R 1 Factors
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Figure 4-2

Moving Ion Exchange Bed Height Correction
Factor - Nernst Planck Effect vs. No Correction

He - N.P. in Resin & Film
Hc N.P. in Resin - Ordinary Film Diffusion
Hb - Ordinary Diffusion in Resin & Film



Figure 4-3

Calculated Concentration Profiles - Boundary Layer Model
Na±---H± Exchange



Figure 4-4

Calculated Concentration Profiles - Boundary Layer Model
Na +— H ± Exchange
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Figure 4-5

Calculated Concentration Profiles
Film Model

Na +—H 4- Exchange
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Figure 4-6

Calculated Concentration Profiles
Film Model

H +—Na 4- Exchange

Van Brocklin & David



Their equations were:
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Good correlation was shown for the system investigated

with the plot on Figure 4-7.

3.5 Summary of Film Models by Previous Investigators 

In summary, previous investigators have demonstrated

that in highly unfavorable exchange, particular with e

because of its relatively high ionic mobility, breakthrough

curve computations could be seriously in error if the

electric field gradient in the film was not accounted for.

They show that integrated solutions of the Nernst-Planck
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Figure 4-7

Liquid Film Mass Transfer Coefficients In Ion Exchange
Fluid Bed For H±—Na± System On Zeo-Karb 225

Nernst - Planck Relationship In Resin & Film
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equation for the film can correct film coefficients obtained

from published correlations to better simulate "film

controlled" ion exchange. The treatments have the following

disadvantages:

a. The three investigators cited used ionic diffusivities

measured at infinite dilution. This could be corrected

using the treatment derived in this work.

b. The treatments are mainly limited to binary ion exchange

and in two models the exchanging species have the same

valence as the coion.

c. 	 Numerical solution for R. factor by David and his

coworkers (83, 132) has the disadvantage that Ri

factors must be generated off line. Modeling of ion

exchange processes with this method depends on stored

table look up with interpolation at each AY and at At

increment, based on boundary condition concentrations,

bulkand xiint.

B. Pseudo Treatment for Electric Field Used in This Research Project 

1. 	 Assumptions 

o 	 Diffusivities of individuals ions are corrected based on bulk

solution normality, and as predicted by the integral form of

the Nernst-Hartley equation (see Appendix D).

o 	 The normality of the colon remains constant throughout the

coion would be analogous to the fixed charges in the resin.
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o 	 All other equations in Nernst-Planck treatment of film remain

as previously outlined.

o 	 The film effective boundary layer "thickness," 6eff, can be

predicted from existing film coefficient correlations such as

those of Carberry or Koloini and Zumer using an effective

diffusivity Deff for computing the Schmidt No., Sc.

2. 	 Binary System - Linear Gradient 

Converting the molar flux equation to equivalent flux by:



Model for film 

— linear gradient —
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Illustration 4-1



An effective diffusion coefficient, D pff can be derived if

equation (4-51). This is shown in Chapter V in the derivation of

an effective diffusion coefficient for two species exchanging in

the resin phase. The "pseudo electric field" then is premised on

a level distribution of coion in the film providing "fixed"

opposite charges in the film analagous to the resin model.

Then:
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"effective boundary layer film thickness"

It is noted that Gopala Rao and his coworkers (92, 93) used a

very similar treatment in modeling the ternary batch experiments

they performed using radioactive tracer techniques. The major

difference is that they calculated a fixed "hydraulic film

thickness" which remained constant throughout the simulation. The

derivation used in this work utilizes the "effective boundary

layer thickness," which is updated for average species

concentration in the film at each time step of the simulation.

This treatment is closer to the previously discussed rigorous

treatments.
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3. 	 Binary System - Non-Linear Gradient 

Starting with the equation (4-60):
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4. 	 Comparison of Binary Models - Linear versus Non-Linear Gradients 

Table 4-1 lists data from a comparison of the linear/versus

the non-linear model in terms of ion flux (equivalents/cm2/sec

per cm of "film thickness") at various film concentration

favorable exchange to determine the percent difference between

models in predicted flux as the driving force was increased. As

could be anticipated in univalent exchange, the Ag+-e system,

with the largest ratio of diffusivities, gave higher differences

+ +than the Ag+-Na+ system. Multivalent exchange, represented by



Table 4-1
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Comparison - Linear vs Non-Linear Film Models



actual "batch mode" simulation of unfavorable exchange between

Cs+ and Sr++ in which both models were tested, the maximum %

difference in flux between models was nil. This was true because

the maximum drivina force difference attained in the runs was

could not get very high during the exchange. Non-linearity

favorable exchange, and this condition tends to be minimized due

to the coupling of resin phase resistance to overall diffusion

resistance. In many cases the species most favored by an ion

exchanger tend to diffuse slower in the resin, so the resin phase

resistance is a major factor in favorable exchange. The linear 

model was utilized in development of the column model since it

could be extended readily to the ternary system.

5. 	 Ternary Systems - Linear Gradients 

5.1 General Development of Equations 

Utilizing the assumptions made for the binary film

model, the equations are:
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electroneutrality conditions require: 
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condition of no electric current plus J: = 0 (coion flux) 

requires:

and based on equation (4-70):

done in development of the effective diffusion coefficients

for the resin phase in Chapter V, (2) component 3 is

eliminated in terms of components 1 and 2, and (3)

concentration corrected diffusivities of the individual ionic

species, Di, i = 1,2,3, are utilized, the following

equations result:

5.2 Model with Different Boundary Layer Thickness, Each Ionic 

Species 

The coefficients Dil are calculated as with the

resin derivation, and are given below in equations (4-96 to

99).
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o 	 At this point, assume a linear driving force for each

component across the "effective boundary layer" film

in this work.

o 	 Writing the equations as follows;
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o 	 With this equality, the film coefficients could be computed:

Resolution of the value of Ayi was required at this

step. As shown with the binary case, boundary layer theory

given in equations (4-62) and (4-61) leads to:
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In the ternary system case, there are two species moving

in one direction, and the other species is moving in the

opposite direction at a flux equal to the sum of the first

two species:

by solution of a cubic equation which arises due to the 1/3

power in equation 4-8O to 83. The film coefficient for ionic

species 3 is:

to avoid quasilinearization complications, keeping At

intervals small to avoid large systematic bias.

Computational problems occured when the JI flux was the

largest flux, since the procedure called for computation of

the film coefficients and compositions of the two most

favored species. Species 3 film coefficient and composition
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were calculated by difference. This difficulty was caused

when one of the preferred two species was at a very low

concentration. Extraction of the cube root of very low

values would result in arithmetic overflows or truncated

computed values. Species 3 flux, calculated by difference,

then gave rise to a poor flux balance thru the film. In

effect three boundary layer film thicknesses were computed

depending on concentration, effective diffusion coefficient

and gradient of each species, and is shown in the following

diagram.

Model for Film - Ternary System 

5.3 Use of Single Film Thickness - Maximum Flux 

The following procedure was adopted to eliminate the

computational difficulties caused by the procedure described



•above. The maximum flux was determined at the j th time

The species having the maximum flux was chosen to compute the

film thickness, (Seff max , at the jth time step by the

following derivation:
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The equations used to calculate D
ii 

and D
ij 

were

based on the assumption that since the "film thickness" was

fixed at each time step and linear driving forces were

assumed, the average film compositions could be calculated

for each species as follows:
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The effective film diffusion coefficients based on species

average film concentrations are:

149

where i= major flux and, k= smallest flux

diffusion coefficients for each ionic species in the film

based on its average concentration, and corrected for

electrolyte concentration by the Nernst-Hartley equation.

step with minimum systematic bias as a result of the use of

small time increments. Maximum dimensionless time (maximum



dimensionless time is the number of empty column volumes

filled by the column volumetric feed during the run) was

normally divided by 0.01 to 0.05 for computations.

0.1 to 0.2% on runs carried out on ternary systems.

6. Pseudo Electric Field Treatment Model Comparison to the Electric Field 

Gradient Model for Binary Systems 

Comparison of results of the "pseudo electric" field

treatment vs. Kataoka & Yoshida (50) rigorous treatment was

performed for the most "difficult" system of Ag+ & H+, both

for batch type experiments and column experiments. This is shown

in Table 4-2 which lists the results of unfavorable and favorable

exchange in the batch mode with the system Ag+/11+, both at

1.525 normal and 0.05 normal electrolyte concentrations. The

concentration vs. time, film coefficients, as well as equivalent

flux at the resin/electrolyte interface are practically identical

for both models. Unfavorable exchanges at 0.05 normal (film

control) showed the greatest differences between models after 315

sec, but these differences were only 1.5-2%.

Simulations of the favorable exchange of Ag+ for e in

column experiments performed by Omatete (78) are shown in Figures

7-6 and 7-9 for C1- normalities of 0.05 and 1.525. The

simulation was performed using the pseudo electric field 

treatment; however, two other "S" curves are shown for which the

rigorous Kataoka et al electric field model was used in the
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Table 4-2

DIFFUSION THROUGH FILM - BINARY ION EXCHANGE 
BATCH SIMULATION RESULTS

Calculated Comparison of Models - Electric Field Gradient (e.f.g.)
by Kataoka et al, and Pseudo Electric Field Model (p.e.f.), this work

System Ag+-H

+

/NO3 	0.05 normal on Dowex 50W X8 resin
superficial velocity = 0.2 cm/sec
Favorable Exchange Ag+ H+

Time
-sec

e.f.g. p.e.f. e.f.g. p.e.f. e.f.g. p.e.f. e.f.g. p.e.f.

15 0.05 0.05 0.89 0.89 -0.0158 -0.0158 0.00644 0.00644

45 0.05 0.05 0.69 0.69 -0.0147 -0.0147 0.00682 0.00682

75 0.05 0.05 0.50 0.50 -0.0135 -0.0135 0.00726 0.00726

105 0.05 0.05 0.34 0.34 -0.0114 -0.0114 0.00806 0.00806

135 0.025 0.05 0.20 0.21 -0.0092 -0.0087 0.0104 0.0092

165 0.033 0.05 0.10 0.11 -0.0059 -0.0059 0.0117 0.0105

Unfavorable Exchange H + A4+-0.05 normal

IIV
concave.

15 0.0636 0.05 0.94 0.934 -0.00735 -0.00769 0.00462 0.00510

75 0.0570 0.05 0.806 0.797 -0.00385 -0.00389 0.00447 0.00469

135 0.055 0.05 0.718 0.709 -0.00291 -0.00293 0.00443 0.00459

195 0.054 0.05 0.648 0.638 -0.0024 -0.00243 0.0044 0.00454

255 0.0537 0.05 0.589 0.0579 -0.00209 -0.00208 0.00439 0.0045

315 0.05325 0.05 1	 0.538 0.528 -0.00181 -0.00179 0.00438 0.00447



Table 4-2 continued

System Ag+-e/NO3 	 1.525 normal  on Dowex 50W X8 resin
superficial velocity = 0.08 cm/sec
Favorable Exchange AO' N+ 

Time
-sec

e.f.g. p.e.f.  e.f.g. p.e.f. e.f.g. p.e.f. e.f.g. p.e.f.

15 1.388 1.525 0.49 0.49 -0.0355 -0.0355 0.007 0.0068

45 1.472 1.525 0.205 0.2056 -0.0135 -0.0135 0.0071 0.00705

75 1.499 1.525 0.077 0.077 -0.0065 -0.00655 0.0072 0.00714

105 1.516 1.525 0.018 0.018 -0.00239 -0.00239 0.0072 0.0072

135 1.523 1.525 0.0024 0.0024 -0.00039 -0.00039 0.0072 0.0072

Unfavorable Exchange H+ Ag

+

15 1.609 1.525 0.719 0.717 -0.0235 -0.0233 0.0023 0.00236

75 1.548 1.525 0.414 0.413 -0.0065 -0.00645 0.0023 0.0023

135 1.537 1.525 0.290 0.290 -0.0034 -0.0034 0.0023 0.00229

195 1.532 1.525 0.219 0.218 -0.00214 -0.00214 0.00227 0.00228

255 1.530 1.525 0.172 0.172 -0.00146 -0.00145 0.00227 0.00228

315 1.529 1.525 0.140 0.139 -0.00104 -0.00104 0.00227 0.00228



simulation. The "S" curves generated for the two models are

identical for all practical purposes.

It was concluded that if the pseudo electric field treatment 

model for worst case conditions, i.e.,

gave results essentially identical to the electric field model,

the error in extending its use to other less demanding systems

would be minimal--and its simplicity permitted ready extension to

ternary systems, as derived above.
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CHAPTER V

DIFFUSION IN THE RESIN PHASE

A. Diffusion Resin Phase Coefficients and Electrochemical Potential 

1. 	 General Background 

This section deals with the effective rate of diffusion

of ionic species within the ion exchanger, and development of

the Nernst-Planck relationship which relates the effects of

field potential within the resin to predict the effective

interdiffusivity of migrating species. Additionally, the

Nernst-Planck relationship will be derived with activities as

potential, as compared to concentrations of the ionic

species. The derivation of the Nernst-Planck model for use

in predicting an effective diffusivity for two species

migrating within an ion exchanger, given the "self" diffusion

coefficients for both species, was first put forth by F.

Helfferich and M. S. Plesset (42). As contrasted to Fick's

first law, several underlying assumptions should be

understood. First, that the electrochemical mobility of a

species, ui, can be related to the species "self" diffusion

coefficient 5. by the Nernst-Einstein relationship (75),
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J. Newman (75) points out that the equation is strictly

applicable only at infinite dilution. Helfferich (42)

states, however, that experience has shown the applicability

of the Nernst-Einstein equation to ion exchangers as a good

approximation even at higher concentrations.

The second important assumption is that the presence of

coions in the exchanger is neglected. Helfferich (42) points

out that this assumption is valid if the Donnan exclusion of

coions is strong. The Donnan potential, EpoN is defined (35) as:

The effect of this potential is to exlude coions from

the exchanger, since migration of just a few ions of the same

charge as the exchanger sites into the ion exchanger will

quickly cause the electric field to build up, thereby



restricting further migration. This assumption tends to be

invalid when electrolyte phase concentration is high, or the

ion exchanger contains weakly dissociated active sites.

Implicit in almost all treatments of resin phase

diffusion is that the resin acts as a solid solution through

which the ions migrate.

2. 	 Development of the General Diffusion Equations — Ternary 

System 

In developing the general equations for ternary ion

exchange in an ion exchanger, the use of irreversible

thermodynamics to formulate the process will be followed, as

was carried out by Barrer and Rees (6) in application to

Ca
++ 

and Sr
++ 

exchange in chabazite, and by Rao and his

coworkers (94) in their study of ternary ion exchange for the

system Ba++, Sr
++

, Na
+ 

on Dowex 50w x8 resin.

The general treatment of ternary systems can readily be

reduced to use of concentration driving forces versus

activities, and to a binary model if desired. The general

equation describing ternary ion exchange in the resin phase

is:
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J. Newman (76), commenting on ideas put forth by

E. A. Guggenheim, states that the splitting of the

electrochemical potential into a chemical potential and an

electrical potential is purely a mathematical device and is

arbitrary, having no physical significance. Newman (76)

points out that the treatment will not produce difficulties

in application to equilibrium models. In the case of ion

exchange with fixed ionic sites, it appears to simplify model

development. The Nernst-Planck model for transport of ionic

species in dilute electrolytes is given as:

The detailed derivation of the equations describing diffusion

in the resin phase is given in Appendix G, and leads to the

following expression:
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in which:
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which represent the derivations of Rao and his coworkers (92)

for an ideal ternary system.

so by making the appropriate substitutions in equation

(5-10), and clearing fractions the following equation results:

which is the Helfferich, Plesset (42) derivation for an ideal

binary system.

If the System is Binary and Non-ideal, then by making the

appropriate substitutions in equation (5-7) and clearing

fractions there results:



To simplify, equivalent fractions will be introduced, and

total equivalents in the ion exchange resin is given by:

160

then by converting equation (5-14) to equivalent fraction

units the following equation is obtained:

By virtue of equation (5-19) and the properties of

logarithms, the following arrangements can be made:
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and this is the Helfferich (45) derivation for the effective

diffusion coefficient in non-ideal binary systems.

However, in using the equation in the convenient form of

equivalent fractions, the flux equation can also be shown as,

It is important to note that the activity coefficient, 	 is a

molar activity coefficient which is the same as the equivalent 

fraction activity coefficient. If the activity coefficient is

based on mole fraction concentration units, a correction factor 

must be introduced to be used in the partials taken with respect

to equivalent fraction concentration units. This is covered in

Chapter II, part F.

Converting equations (5-7) and (5-8), which are the activity 

driving force effective diffusion coefficients for ternary

systems, to equivalent fraction units results in:
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where the 7ii's have the molar reference state

These equations were derived utilizing the same relationships

as were used to derive the equivalent fraction version of the

non-ideal binary relationship. Again, rik or 	 are molar 

activity coefficients which are the same as the equivalent 

fraction activity coefficients by definition of the standard

states. Corrections must be applied to partials taken with

respect to mole fraction concentration units, if the activity

coefficients have been correlated in those units.



The Flux Equations for Ternary Systems are: 

163

The Continuity equations for the resin phase in a ternary

system are:
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3. 	 Dimensionless Form and Preparation of Equations for Numerical 

Solutions 

In setting up the diffusion and continuity equations for

use in a coupled mode with the fluid phase in a column, it is

useful to put the terms in dimensionless form.

Defining:
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Svedberg (125), in his development of a numerical method

for simulation of fixed-bed processes has investigated the

use of a different grid spacing for intraparticle diffusion.

A more accurate approximation of the derivatives would be to

have a more dense grid near the particle surface where

concentration gradients are greatest. Michelsen (72) and

others have used the transformation p=R2 to accomplish this

alteration of particle grid density. The differential

expressions with respect to R become:
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Svedberg (125) checked this grid spacing for asymptotic

constant pattern profiles which had previously been solved by

Hall and his coworkers (34) which included both numerical and

analytic solutions for constant pattern, self sharpening

profile, ion exchange problems. Svedberg (125) showed that

the results obtained with the p transformation compared more

favorably to the analytical solutions than the R grid

spacings for a variety of Peclet & Biot number variations,

column grid spacings, time increments, and resin grid

increments, particularly for the solid diffusion model as

opposed to a pore diffusion model.

The Continuity Equations Transformed become:

substitution of equation (5-34) and (5-35) in equation (5-46)

and (5-47) yields:
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Boundary Conditions 

flux across resin boundary where p = 1 
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gradient at resin center:

Initial Conditions

Reduction of Ternary System to Binary System 

Equation (5-48) is used and terms involving D 12 and

X2 are eliminated.

Boundary Conditions 

flux across resin boundary where p = 1:

169

gradient at resin center: 

Initial Conditions
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B. Solution of the Resin Phase Equations, Numerical Methods 

1. 	 General Background 

The coupled non-linear parabolic partial differential

equations describing intraparticle diffusion of three species

have been solved in this work by use of an implicit finite

difference method of the Crank—Nicholson type (125). The

following discussion will involve the resin phase only, and

the solution of the equations described can be used to

simulate the type of time varying concentration curves

generated by Rao and his coworkers (92, 93) on several binary

and ternary systems using the radioactive single particle

tracer technique. Later, the two resin phase equations will

be coupled with the two parabolic fluid phase equations to

simulate fixed bed operations. In treating the "batch" case,

it is assumed that bulk fluid phase concentrations of the

species do not change (i.e., infinite reservoir); however,

the concentration of each ionic species at the resin/fluid

interface is in thermodynamic equilibrium. The actual

thermodynamic treatment of ternary ion exchange equilibria is

discussed in the Chapter II on Equilibrium. The equilibrium

relationships can be treated here as:
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Svedberg (125) linearized non-linear equilibrium

expressions in his work by using a quasilinearization

technique described by Lee (59), but applied it to a binary

system only. The equilibrium functions for a ternary system

would be iteratively solved as follows:

algebraic equations is solved iteratively at each time step

until convergence is attained. As Svedberg (125) points out,

quasilinearization is basically a Newton method and has

second order convergence. A serious limitation for Newton

methods is that convergence is guaranteed only if the

starting point lies close to the solution point. In the
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technique used here, with sufficiently small time steps, the

solution at time step j is an excellent first guess when

searching for a solution at time step j+1. Even with the

most extreme non-linear conditions experienced in the

simulations performed in this research, convergence has

normally been reached in 3 to 5 iterations--except at the

start of the simulation at j=1. If the concentration

distribution and flux balances set up as initial conditions

are too far from the j=1 solution points, convergence will

not occur.

2. 	 Differentiation of Implicit Functions 

The thermodynamic equilibrium functions described above

are implicit functions of the type:

are obtained by the procedure described in Mickley, Sherwood

& Reed (70) for differentiation of implicit functions.

3. 	 Quasilinearization of Other Non-Linear Terms 

Besides the equilibrium relationship, several other
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terms in equation (5-48) and equation (5-50) are non linear,

since multiplication of the finite difference equations

approximating those terms result in algebraic variables which

cannot be separated. These are given in Appendix H.

4. 	 Treatment of the Diffusivity Functions 

calculated at time step j for use in time step j+1. Since

the Crank-Nicholson method uses values of variables at time

step j +1/2by averaging the jth & j+lth values, the

computations carried out using this technique were subject to

systematic bias. However, the algebraic complications in

quasilinearizing the four diffusivities and the eight

derivatives, particularly if they involved activity driving

rationalized on the basis that if the time steps were

reasonably small, total absolute systematic bias would be

small. Table 5-1 gives the results of simulation of the

seven binary system "batch" runs made by Rao and his

coworkers (92, 93). The results are given in terms of total

absolute systematic bias in percent, for all diffusivities

grouped together, and all partials of the diffusivities

grouped together, summed for all time and resin increments.

At the end of the simulation, the sums were then divided by

the number of resin and time increments used in the
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simulation. Special attention was paid to the outermost

resin increment since this increment represents the boundary

condition and should have the greatest impact on solution

vectors in the electrolyte phase during column simulation.

The systematic bias for this increment was calculated

separately. Comparison was made for two time increments, AT,

at values of 0.5 and 0.05. The time increment AT in the

batch simulation runs is the increment into which actual

time, in seconds, is divided. Most simulations were run at

T=0.01 to 0.05. Although the systematic bias increased

dramatically for AT=0.5 in the system Na
+
-Mn

++
, the time

varying concentrations for this system simulated at the two

ATs differed by only 1-1.5% as shown in Table 5-2.

The model versatility in terms of its ability to handle

ternary systems concentration dependent diffusivities and

film coefficients, as well as use of activity driving forces,

would justify the method used in view of the small bias

introduced when the number of simulation time increments are

10-2O times the actual experimental time for the "batch" runs

of Gopala Rao and his coworkers (92, 93).

C. Solution of System of Linear Equations - Seven Diagonal Array 

1. 	 Binary System 

1.1 Tridiagonal Systems of Equations 

The finite difference equations resulting from use

of the Crank Nicholson method are based on breaking the

geometry domains into grids to designate values of given



SYSTEMATIC BIAS ON BINARY ION EXCHANGE SIMULATION 
Table 5-1

Simulation Runs for experiments of Rao et al 

-Activity Driving Force-

AT 	 total actual time for experimental run 
no. of time steps used in simulation

% Systematic Bias 

System

bar indicates
species 	 in
resin phase

0.50 0.05 0.50 0.05 0.50 0.05 0.50 0.05 0.50 0.05

WI ++Cs + 0.09 0.009 0.1 0.01 0.134 0.013 0.08 0.008 0.013 0.0013

WI

++

Sr++ 0.016 0.0016 0.01 0.001 -0.095 -0.01 -0.006 '-0.0006 0.001 0.0001

Si++Mn++

0.02 0.002 0.01 0.001 0.05 0.005 0.07 0.007 0.001 0.0001

Mn ++

Cs + 0.105 0.0105 0.08 0.008 0.18 0.018 0.11 0.011 0.01 0.001

Na

+

Cs+ 0.083 0.008 0.08 0.008 0.120 0.046 0.72 0.004 0.02 0.002

Wn

+

Na+ 0.09 0.009 0.08 0.008 0.88 0.006 0.3 -0.22 0.006 0.0006

Na

+

Mn

++

0.32 0.020 2.7 0.013 -1.31 -0.04 -1.4 -0.014 0.70 0.003



Table 5-2

SYSTEMATIC BIAS ON BINARY ION EXCHANGE SIMULATION 

Comparison of Simulation Results for Rao et al 

Experiment onNa+-Mn++ System

AT Effect 

Time — sec
xNa+ave

	at ΔT = 0.50 xNa+ave at ΔT = 0.05 % Difference

15 0.802 0.788 1.8

30 0.689 0.681 1.2

45 0.611 0.603 1.3

60 0.550 0.542 1.5

75 0.498 0.492 1.2

90 0.454 0.449 1.1

105 0.415 0.411 1.0

120 0.381 0.377 1.0

135 0.350 0.346 1.1

150 0.322 0.319 1.0

165 0.297 0.294 1.0

180 0.274 0.270 1.5
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variables which can then be used to approximate

derivatives at each time step. For example:

If the p dimension is broken into M grid points,

177

In the implicit Crank Nicholson method, the time
.steps j and j + I are averaged, so that j +1th

equivalent versions of the above partials approximations

.are averaged with the j th values to represent the

partial derivative approximations as a function of time.

The linear algebraic equations developed, including

terms from the quasilinearization of non-linear

expressions, result in a coefficient matrix for the

variables which is tridiagonal since, as seen, m+1,m,

and m-1 terms are involved. Representation of the



system of equations which result from the finite

difference approximation of the partial differential

equation describing binary ion exchange for the resin

phase would be:
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at column increment i.

This system of resin phase equations would be

coupled with a similar system of equations describing
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the solution phase concentration at each column length

node, i, for .1=1 to I. This development is treated in

Chapter VII in which the column models are derived. In

Dein. It is noted that the vector D in contains terms

from the previous time step, j, as well as the terms

resulting from the quasilinearization of non-linear

functions at the n
th 

iteration. The Thomas method

(13, 125) involves an algorithm for solving systems of

equations having tridiagonal coefficient matrices, and

is very efficient. It was used by Svedberg (125) with

satisfactory results, and is used in this research

project to solve the binary systems.

1.2 Treatment of Boundary Conditions by Numerical 

Approximation 

Two resin phase boundary conditions were

approximated by finite difference equations and coupled

to the general resin phase equation. The first, at the 

center of the resin particle is the boundary condition

that was given in equation (5-61)

To solve this B.C., advantage is taken of the general

equation (5-59), where P is set equal to zero, or:
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and in difference terms, using a forward difference for

The finite difference equation can be separated

into x1(1,i,j + 1)
n+1 

terms to give the coefficients

and solution vector for the resin at node 1 in terms of

node 2. In effect, this treatment is analogous to

treating the spherical volume of radius ro•AT, at the

center of the resin, as a well mixed accumulation

(depletion) volume. Through this defined spherical

surface a diffusion flux passes between node 2 and the

node 1 spherical volume, with the gradient being equal

to:

This treatment was used by Svedberg (125), and no

problems were noted with this treatment either in his

work or in the simulations carried out in this project.

The second boundary condition to be coupled to the

general equation was at the resin film interface. Here,

a derivative at the boundary must be replaced by a



finite difference representation. In at least one

reference of many, V. G. Jenson & G. V. Jeffreys (47)

suggest using a fictitious point beyond that boundary,

which is eliminated by combination with the general

equation. Svedberg (125) used this procedure in his

work. Boundary condition equation (5-60), in finite

difference representation would be:
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where M = maximum m node, and M+1 is a
fictitious point outside the resin boundary

By setting up the general equation in a central

difference notation, all M + 1 terms can be eliminated

by cross multiplying coefficients and adding the B.C.

equation to the general equation. The coefficients for

the M and M-1 nodes are then obtained together with the

solution vector for the M
th 

node which contains M and

M-1 resin node elements, plus column fluid phase

composition elements at the i column node. These resin
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phase boundary condition treatments were used with the

Ternary Column Model development as well, though the

derivations were obviously more complicated algebraically

because of equations for two species versus one.

2. 	 Ternary System 

When the partial differential equations describing ternary

ion exchange are put into matrix notation, there results:
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terms resulting from time step j or iteration n of non-linear term

components resulting from quasilinearization.

Simi larly 
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terms resulting from the time step j or iteration n of non-linear

term components resulting from quasilinearization.

The system of equations for the ternary case, as was shown in

the binary case, is set up for coupling to two systems of

When the system of equations described in matrix notation as

equation (5-81) and equation (5-82) are combined, a 7 diagonal

array results. This is illustrated in Figure 5-1 for a resin

phase divided into four p segments, or M=5 nodes. An algorithm,

analogous to the Thomas method (13, 125) for tri-diagonal arrays,

was derived as part of this research to solve systems consisting

of 7 diagonal coefficient matrices. The algorithm is given in

Appendix E, along with an algorithm derived for a 5 diagonal



Figure 5-1

Seven Diagonal Array for Combined Ternary

Resin Phase Equation Matrices 
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coefficient matrix, which is needed to solve the combined fluid

phase equation matrices. These algorithms were tested in a

program designed in this project to generate a system of equations

with coefficients created by a random number generator

subroutine. The solution vector terms were calculated for

sequences of numbers representing values of the unknown, xi.

Values of x. calculated by the algorithms, using the

predetermined coefficients and calculated solution vectors, were

compared to the original values of the variables for matrices up

to 500 by 5O0. Absolute precision of around 1 part in 101O is

maintained for the largest matrix; however, most simulations were

run with 11 or 21 resin nodes--generating 22 x 22 or 42 x 42

matrices. Absolute precision for a 50 x 5O matrix was about 1

part in 10
12

. These tests were conducted in double precision on

a DEC VAX 11/78O computer.

D. Programs for Simulation of Binary & Ternary Batch Systems 

Two simulation programs were developed for so-called batch

experiments--one for binary systems called BMAVDM (Batch Mass Action

(Equilibrium) Variable Diffusivity Mole Fraction) and one for ternary

systems called TRYBCH (Ternary Batch). BMAVDM can be run with mass

action equilibrium constants and Redlich-Kister activity coefficient

parameters correlated in equivalent fractions or mole fractions--hence

the designation mole fraction. It can be run with or without activity

driving force, and with fixed film coefficients. It also can be run

with the model developed in this work for concentration dependent film

coefficients, or with the Kataoka-Yoshida model (50) with electric
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field in the film (equal valence exchange only). The program was

designed for use in a diffusion coefficient correlation package and,

therefore, has minimum output options. The initial conditions are set

up by matching the diffusion flux at the resin boundary using equation

(5-60):

representation between resin layer M and M-1. This "conditions" the

program to begin at the first time step. At each time step, a

subroutine computes the diffusivity, the film coefficient, the

that option is chosen, plus other components of the solution vector

D 	 based on concentration values at time step j. Another subroutine

computes the equilibrium quasilinearization derivatives at each

iteration during time step j+1, and yet another subroutine computes the

electrolyte phase equilibrium after convergence criteria have been met

at j+1. The equilibrium subroutines are supported by subroutines which

compute resin and fluid phase activity coefficients. The key

subroutine solves the system of equations representing the resin

concentration profile at time step j+1. It is called by the main

program in successive iterations as the coefficient matrix is updated,

and the solution vector is recomputed for n
th 

values of terms

resulting from quasilinearization at each iteration. The Thomas

algorithm (13, 125) for tridiagonal arrays is utilized. The main
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program continues to iterate at each time step until convergence

criteria are met, then proceeds to the next time step. Criterion for

convergence normally employed was:

Iterations averaged 2-3 per time step.

TRYBCH is obviously more complex, since it deals with

are the same. The major difference is that a "scratch" seven diagonal

array subroutine is used into which updated coefficient values are

loaded at each time step and iteration; then the variables which have

two "scratch" arrays are used--one which loads 	 as the first

it was found in the algorithm simulation that precision was improved if

this condition was maintained. TRYBCH contains a significant number of

output options, including printout of concentrations and flux balances

at the resin/fluid interface. In both BMAVDM and TRYBCH average resin

concentration is computed at each time step by summing the particle

increments, since experimental data would represent particle average

concentration.

E. Correlation of Diffusivities for Systems Studies by Rao, and his 

Coworkers 

I. 	 Experimental Background 

Rao and his coworkers (92, 93) used single particle
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radioactive tracer techniques to study the binary and ternary

exchange of cations in Dowex 50w x8 resin, in addition to

measuring the binary and ternary equilibrium for those ionic

at 28°C. Several resin beads about 0.1 cm. diameter were put

into a column filled with glass beads of about the same diameter.

Circulation from a large reservoir through the column at a high

superficial velocity of 25 cm/sec insured that the bulk solution

concentration was unchanged during the runs, and that film

diffusion "control" was minimized. A scintillation detector, with

output suitably corrected for background noise, was calibrated to

read out the concentration change of the tagged species in the

resin beads. Favorable and unfavorable exchanges were studied for

binary & ternary compositions of the two cation systems. The

equilibrium data were reproducible to ± 2%. In the rate studies,

the radioactive 137Cs was evidently of poor purity, and runs in

which 
137

Cs was exchanged were discarded.

2. 	 Model Comparison - Rao and his Coworkers and Those Developed in 

This Research 

Rao and his coworkers (92, 93) used the Nernst-Planck resin

diffusion model to simulate the runs, in combination with a film

diffusion model somewhat analogous to the model developed for this

research project. Major model differences between Rao and his

coworkers and this work involve:
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o 	 Film Coefficient 

Rao and his coworkers used a fixed "hydrodynamic film

thickness" and ionic species diffusivities derived from

limiting (infinite dilution) ionic mobilities. This research

project used a similar interdiffusivity relationship between

ionic species in the film, but corrected the film "thickness"

based on boundary layer treatment of the species having the

highest flux, and corrected limiting diffusivities for

concentration efforts.

o 	 Equilibrium 

Rao and his coworkers (92, 93) used polynomial

expressions for the equilibrium distribution coefficients

For prediction of ternary behavior, the binary coefficients

were combined by use of pseudo equivalent fractions obtained

by elimination of one or the other of the minor concentration

components in the resin. Harned's Rule (Chapter III) was

invoked for the solution phase, so activity coefficients were

not used in either the resin phase or solution phase in

establishing equilibrium constants. The equilibrium

treatment utilized by Rao and his coworkers is described in

more detail in Chapter II on Equilibrium.

This work used the Bromley equation for liquid phase

activity coefficients, and binary and ternary resin phase
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activity coefficients were correlated with the Redlich-Kister

relationship (actually the Wilson and NRTL equations were

also used in the thermodynamic correlation but found inferior

to the R-K equations for ion exchange). By being able to

calculate activity coefficients for the resin phase as

functions of composition, activity driving forces could be

tested versus concentration driving forces. As will be

discussed, the use of activities gave some surprisingly

positive results.

o 	 Method of Solving Partial Differential Equation 

Rao and his coworkers used an integro differential

equation in that:

was used to describe particle concentration history in

combination with the basic partial differential equations

describing fluxes ji & j 	 equations (5-34), (5-35),

together with (5-1O) and (5-11). A finite difference

approximation with forward differencing was utilized to solve

the equations.

3. 	 Correlation Model 

3.1 General Background 

A powerful general purpose non-linear regression program

was developed by Dr. A. K. S. Murthy at Allied Corporation

several years ago.
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A general description of the technique is given in

Appendix B; however, Dr. Murthy developed the program in two

forms. Both versions are variations of the Gauss-Newton

method and are identical in all respects except for the

sequence in which the elements of the matrices, B
T
B and

B
T
e, defining the normal equation are generated. In both

cases, the objective function is eTe (least square

criterion). The method allows weighting of data points or

data sets appropriate to the users view of the "goodness" of

one set of data versus others being correlated in the same

regression analysis (default weight is unity). In the

generation of the matrix elements, this weighting factor is

appropriately built into the error definition, the e vector.

In both versions, each parameter to be fit is perturbed by an

appropriate fraction and numerical derivatives of the

functions being described are generated with respect to each

variable, and other associated calculations are performed.

In neither version is the full B matrix ever generated, and

this significantly reduces memory requirements. The first

version is used to fit parameters in non-linear algebraic

equations, such as those describing ion exchanger equilibria

in this work, by operating on each point sequentially to

generate matrix elements. The second version deals with

differential equations such as those describing time varying

systems, and in this work were the binary "batch" ion

exchange experiments to which diffusion coefficients were

fitted. In the latter case it is more efficient to
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"simultaneously" generate the elements of the BTB and BTe

matrices from all of the points varying with time in a given

set, and in this version the sets are then treated

sequentially. In both cases

for all points (sets) are minimized until convergence

criteria have been met, and best values for the fitted

parameters are obtained. Standard deviations for all

parameters and cross correlation values are printed out at

the end of a run. BMAVDM was appended to this second

non-linear regression program, and the Rao and his coworkers

data sets for seven binary systems were fitted using this

regression program--called DFUSFT (DiFfUSion Coefficient

FiTting Program) to yield diffusion coefficients correlated_ _

3.2 Simulations Performed on Rao and his Coworkers' (92, 93)

Experiments 

a. 	 Data Sets 

Several sets of conditions were used to obtain the

best total fit of the seven binary pairs of ionic

species. The pairs for which data was available were:
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If the 137Cs runs had been useful, 3 more sets

runs because of purity problems.

b. 	 Experiments Conducted 

The conditions which were tested included:

(i) Concentration driving force for all seven sets

(ii) Activity driving force for all seven sets

(iii) Activity driving force for the four diffusion

coefficients, and a fifth parameter, FLAMDJ, which

fractionally modified the constant in the Carberry

film correlation from its stated value of 1.15 (as

applied to all sets--not individually adjusted for

each set).

(iv) Fitting of six sets which excluded what appears to

be a "maverick" data set, Sr+4-Mn++ for both

activities and concentration driving force.

conditions, and to compare total seven system error

with other runs listed above.

(vii) A correlation of five data sets with a "binary"
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diffusion model using concentration driving force

to compare coefficients and total error with the

same five data sets correlated using single 

diffusion coefficients with activities as the

driving force. The "binary" diffusion model

introduced the concept of an additional diffusion 

coefficient pair corrector parameter as an

emulation of some recent work by E. E. Graham and

J. S. Dranoff (30) on ion exchange in which the

Stefan-Maxwell equations were applied to diffusion

kinetics in the resin. The five additional pair

Five sets were selected to minimize computer

time, since the fitting of nine parameters for

five data sets containing a total of 136 data

points was lengthy (6 hours in CPU time on a

DEC VAX 11/780).

4. 	 Discussion of Results 

4.1 General Observations 

A summary of these results is given in Table 5-3,

and sample variance, is given as an indicator of

goodness of fit, where



Table 5-3

SUMMARY — FITTED DIFFUSION COEFFICIENTS
EXPERIMENTAL DATA OF G. RAO et al 
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Figures 5-2 and 5-3 show the best fit of seven sets

using activity drivin9 force and the diffusion

coefficients derived from that correlation, plotted

against lines representing the Rao et al experimental

data for the binary systems. The calculated curves in

general match the experimental data very well, except

experimental curves very well. The film correlation

constant "adjuster," FLMADJ, was kept at 1.0 for the

final selected set of parameters utilized in generating

the plots. 	 A FLMADJ of 0.86 ± O.04, derived from the

parameter study which included FLMADJ, would indicate

the Carberry coefficient of 1.15 is reasonable, and

since the Re no. was not varied in the Rao and his

coworkers' experiments (92, 93) no other conclusion

could be drawn.

4.2 Significance of the Batch Experiment Results 

The recent work of E. E. Graham and J. S. Dranoff

(3O) on application of the Stefan-Maxwell equations to

diffusion of ionic species in ion exchange resins was

undertaken because previous investigators, using the

Nernst-Planck model, were unable to define so-called

"self diffusion" coefficients for a given ionic species

which would have the same value regardless of the other

ionic species present during the exchange. Studies by



Figure 5-2

Binary Exchange for Pairs in System Sr++ Mn+ — Cs, Dowex 50W x8, Cr
Binary Model — Nernst Planck/ Variable Film Coefficient

Activities are Driving Force

0.10 Normal



Figure 5-3

Binary Exchange for Pairs in System Mn++ — Cs + — Nat, Dowex 50W x89 C1
Binary Model — Nernst Planck/Variable Film Coefficient

Activities are Driving Force

0.10 Normal
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Hering and Bliss (46) on various cation pairs using

Dowex 5Ow x8 resin at 25 °C for an ion electrolyte

concentration of 1.O normal showed the following results

(correlated for exchange in both directions):

Diffusion Coefficient x 10
6 

cm
2
/sec

As Hering and Bliss (46) point out, the N-P model

is preferable to Fick's Law in that a single "effective"

diffusivity allows prediction of both favorable and

unfavorable exchange; whereas with Fick's Law, the

diffusion coefficients are different depending on

direction of exchange, with the coefficient invariably

higher when the faster ion is in the exchanger. Rao and



his coworkers (92) pointed out in their studies that

variation of "self" diffusion coefficients of the ionic

species with ionic composition of the resin was not

taken into account in their analysis, adding that cross

phenomenological coefficients and activity coefficients

in the resin phase were neglected in development of

their model. Graham and Dranoff (30), although

2O1

They point out that the Helfferich definition (42) of

interdiffusion coefficient for binary exchange (equation

5-13) fits limiting tracer ion data (limiting diffusion

values of species 1 migrating in resin essentially

loaded with species 2) if the term
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is included but treated as a constant, K, as in Harned's

Rule. They suggest that further investigation be made

into the use of Gibbs-Duhem relationship so as to

include the pressure gradient for water flux in the

resin. This is tantamount to saying look at activity

driving forces in the resin, since resin pressure volume

relationships are functions of total system chemical

potential for all species--including water. The final

equation derived by Graham and Dranoff (3O) defines

"effective" Nernst-Planck diffusion coefficients as:



This suggested to the investigator in this work

that a "simple" version of d1(2) and d2(1) might

only require a single pair corrector coefficient for a

This was tried in fitting the set of five ion

species exchange curves and was very successful.

However, an equally good fit to the set of five was

obtained with only four parameters, the "effective self"

diffusion coefficient for each species, and correcting

for non-ideality by use of the activity driving force.

Although the two parameter model effectively fit the

data for binaries, it is not obvious how ternary systems

could be modeled. Later discussion on the Rao and his

coworkers' ternary experiments will include some

simulations of ternary systems with the two parameter

model in which:

The modeling of all of the ternary data was

performed with the activity driving force model since

this model is sound theoretically, and the two parameter

model discussed above is not. Although Table 5-3 shows

that use of concentration driving force gave a fit on

the set of seven with only a somewhat increased total

203



error, the diffusion coefficient for Cs+ at a value of

10.0E-O6 cm
2
/sec was unreasonably high in view of

literature values around 2.0E-06 cm
2
/sec. This was

true in comparisons made in correlation of the set of 

six as well. In the two parameter model, if the pair

correctors are added to the effective diffusion

coefficient, the following values are obtained:
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correction requirement, compared to the activity model;

however, most values are not "too different" from the

single coefficient activity model values.

Since the activity model was derived on a

theoretically sound basis and the parameter regressions

yielded diffusion coefficient values not far from

previously observed experimental values, it can be said



that the activity model performed "best" in all

simulations of the Rao and his coworkers' experimental

data.

Finally, Rao and his coworkers simulated their

experimental binary data for the set of five using the

Nernst-Planck model which they derived, and which was

described in previous sections of this chapter. The

sample variance for 48 calculated points was O.O083

versus 0.00014 on 136 calculated points obtained with

the activity driving force model developed in this work

(standard deviation approximately ± 0.09 vs.± 0.012

on variable range between O.2 and 1.0).

F. Simulation of Rao and his Coworkers' Ternary Experimental Data 

1. 	 General Discussion 

Table 5-4 gives a listing of initial concentration

conditions for 22 ternary rate runs made by Rao and his

best, 1 worst) for the runs simulated. The quality ratings

are compared for simulation runs made using the activity 

driving force model with diffusion coefficients derived from

the set of seven, set of six, plus a few runs based on the

two parameter model (pair correctors). Quality ratings are

given for the simulation results of Rao and his coworkers as

well so that a qualitative comparison of model performance

can be made. Using data from the set of seven fit, an

average quality rating of 7 is somewhat better than the
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Table 5-4

BATCH TERNARY ION EXCHANGE EXPERIMENTS
Gopala Rao et al
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average rating of 6 for the Rao and his coworkers' simulation

results. The results of the simulation runs are shown in

Figures 5-4 through 5-8 for diffusion coefficients derived

from the fit of seven, since the average quality rating was

slightly better than the fit of six.

2. 	 Comparison of Simulated Results with Experimental Data 

Rao and his coworkers published the results (94) of

simulated "batch" experiments for the system

limited to two basic types of exchange: (1) two ions

initially in the resin and the third at the surface, (2) one

ion in the resin and the other two at the surface. Plots

were generated by simulation which showed the depletion rate

trends for the "tagged" ion in the resin. Some actual

experimental results had been obtained by Rao and his

coworkers in earlier work (90) which corroborated the general

computed trends. Based on those results, the following

observations can be made on the simulation results obtained

a. 	 For cases such as exp. 35 and 36, where the

least favored ion, Na+, is in the resin and has a

diffusion coefficient higher than Mn++ but lower

than Cs, the expected trend would be for the

Na Mn binary to represent the upper boundary, and

--*
the Na Cs binary to represent the lower boundary

of ternary depletion curves, with the Na

depletion curves having greater slopes than the



Figure 5-4

Ternary Exchange in System Mn++ — Cs+ — Na+, Dowex 50W x
Ternary Model - Nernst Planck/Variable Film Coefficients

- Activities As Driving Force -



Figure 5-5

Ternary Exchange in System Sr"— Mn" —Cs+, Dowex 50W x 8, C1
Ternary Model - Nernst Planck/Variable Film Coefficients

- Activities As Driving Force -



Figure 5-6

Ternary Exchange in System Sr + + —Mn+ +-ce and Mn+ + — Cs + — Na +
on Dowex 50W x 8/Cr

Ternary Model - Nernst Planck/Variable Film Coefficients
- Activities As Driving Force -



Figure 5-7

Ternary Exchange in System Mn+÷ — Cs+ — Nat, Dowex 50W x 8, Cr
Ternary Model - Nernst Planck/Variable Film Coefficients

- Activities As Driving Force -



Figure 5-8

Ternary Exchange in System Sr + + —Mn + +- Cs + and Mn+ —Cs — Na +
on Dowex 50W x sicr

Ternary Model - Nernst Planck/Variable Film Coefficients
- Activities As Driving Force -
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upper Na Mn binary boundary as Cs
+

concentratio increases in the electrolyte phase.

This was observed both experimentally and in the

simulation.

b. For cases such as 44B and 45B, Sr MnCs,

where the most favored ion is in the resin, the

selectivity is Sr>Mn>>Cs and diffusion coefficients

values are Cs»Mn>Sr, the upper envelope boundary

should be the binary Sr Mn, and the lower

*
boundary the binary system Sr Cs. The trend in

Sr* depletion curves should be to have greater

slopes as Cs+ concentration increases in the

electrolyte. This was the case experimentally, and

was the trend in the simulated results; however,

the simulation run with higher Cs + (45B) was

slightly under the lower boundary.

The system Mn CsNa, runs 43 and 70, where

selectivity is Mn>>Cs>Na and diffusion coefficients

are Cs>Na>>Mn, should have an upper boundary binary

of Mn Na, with the lower envelope boundary being

__*
Mn Cs. The trend in Mn depletion curves

should be to have greater slopes as Cs+

concentration in the electrolyte increases, and

this was the case experimentally and in the

simulated results.

c. For cases where the most favored ion is in the

electrolyte and the other two in the resin, runs
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31B and 40B for Mn CsSr, and runs 28 and 29 for

CsNa Mn illustrate behavior of this type of

exchange. In the Mn CsSr system, the upper

boundary should be Mn Sr, and the lower binary

system bounding the envelope, Cs Sr. Due to the

bad batch of Cs
137

, no experimental curves were

generated by Cs in the resin. In this system,

as the faster and least selective ion, Cs + , is

increased in the resin concentration--it exchanges

with the Sr
++ 

at a faster rate than the Mn * ,

and has a retarding effect on the diffusion rate of

the Mn . This behavior was shown experimentally,

and the simulation curves show this trend, although

not laying on the experimental curves. In the case

	
of CsNa Mn system, the lower bound should be

Cs Mn (again no Cs data) and the upper binary

Na Mn. Increasing amounts of the more preferred

ion, Cs+ , should accelerate the diffusion rate of

Na* ion in the direction of the lower boundary.

This was observed experimentally, although the

simulated runs gave results not much different from

the Na Mn binary system.

d. 	 Runs 35B and 41B for Sr CsMn, and runs 30,

31, 33, 34, and 66 for Mn NaCs and MnNa Cs

illustrated system behavior where the resin

contained both the most preferred and the least

preferred ions, with the other ion consituting the
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electrolyte composition. In the Sr*CsMn system,

it would be expected that the displacement of the

Cs+ ion 	
++

on by the slower and more favored Mn ion

would slow the rate of diffusion of Sr below

*
that observed in the Sr Mn binary, as Cs

+

concentration is increased. This was not observed

experimentally since run 41B, having the larger

Cs+ oncentration, should have had a depletion

curve above run 35B. In fact, the simulation of

run 35B coincided quite well with the experimental

values, and simulation of run 41B gave a depletion

curve higher than run 35B, as expected.

The Mn NaCs and the MnNa Cs systems should

have exhibited a decrease in slope of the depletion

curves for Mn up and away from the Mn Cs

binary as the more preferred ion Cs + is exchanged

preferentially with Na t . The Na ion should

have shown a trend for its depletion curves to

decrease in slope down and away from the Na Cs

binary. This was observed experimentally with two

Naceptions; run 34 was slightly above the a Cs

binary and run 30 was slightly below the Mn Cs

binary. The simulated runs behaved as expected;

however, the cases in which the ion Mn was

diffusing yielded simulation results quite a bit

higher than the experimental values.



216

e. 	 Behavior of systems in which the two most

preferred ions were in the exchanger and the least

preferred ion constituted the electrolyte phase

were exemplified by runs 33B and 43B for the system

SrMn*Cs and runs 37, 38 and 49 for the system

Mn*CsNa. In these cases it would be anticipated

that the unfavorable exchange of Mn for Na
+

ion and Sr for Cs+ ion would result in slower

diffusion rates for Mn and Sr as Cs + and
+

Mn
+

 ion concentrations increased respectively.

It should be easier for the least preferred ion to

displace the second most preferred ion than the

most preferred ion, resulting in retention of the

most preferred species. The diffusion rate for

Mn* and Sr should be lower than in the respective

binary systems NaeNa and SF *Cs. In the

SrMn Cs system, it was the Mn which was

tagged. In this case, the diffusion rate of Mn *

should have been higher than that of Mn* in the

binary system Mn*Cs. Experiments validated these

hypotheses for the Mn*CsNa system, but not for

the SrMn*Cs system where run 33B lay on the

Mn Cs binary curve, and run 43B was higher. The

simulation of run 33B was good, and the simulation

of run 43B gave a depletion curve lower than both

the Mn Cs and the run 33R curve. as hypothesized.
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3. 	 Conclusions 

The results of the ternary simulation runs were not

nearly as good as the binary simulation results, and this was

true of the Rao and his coworkers' (92, 93) ternary

simulation studies as well. One problem which is quite

obvious is that in a ternary rate run, two compositions

should be followed experimentally in order to define the

total system dynamics. Using radioactive tracer techniques,

this would be difficult to carry out experimentally within

any single run; however, replicate runs in which first one

ion in the exchanger is tagged, then the other, would be one

way to accomplish this requirement. In fact runs 34 and 66,

Mn NaCs and MnNa Cs, at Mn of 0.488 and Na of 0.512

equivalent fraction, were carried out in this way. Based on

the regression results from the fit of six and the fit of 

seven, the diffusion coefficient for Cs+ was determined as

0.34 x10
-5 

and 0.396 x10
-5 

cm
2
/sec respectively;

whereas, the Mn++ and Na+ values did not change appreciably.

Run 34 was reasonably well simulated at both Cs+diffusion

coefficient values; however, the depletion curve for run 66

was simulated above the experimental curve, and was worse

+
with the lower Cs diffusion coefficient value (higher

curve). The Cs+ ion concentration in the resin has been

calculated by material balance and is compared below for the

experimental and the simulated data points.
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Cs+ Concentration Calculated

Time 	 (Sec.) Experimental Simulated

0 0 0

15 0.2336 0.2024

30 0.3202 0.3162

60 0.4390 0.4450

90 0.5216 0.5204

120 0.5694 0.5806

—*
This shows reasonable agreement. There is no Cs Na curve

to compare it to, as discussed before.

One problem encountered with the ternary program TRYBCH

when running with activity driving force was that the flux

balances, i.e., transfer across the film flux and resin

accumulation (loss) flux, often did not balance well. This

was not observed with the binary model BMAVD or RFMAVD, nor

was it observed with TRYBCH when running with concentration

driving force. In some cases, better flux balance could be

obtained by juxtaposition of species, i.e., Sr ++-Cs+ -Mn++

versus Sr
++

 -Mn
++

 -Cs
+
 in terms of the species 1 and 2 for

which the calculations are performed. In simulations of SrCsMn

type systems this was helpful; however the equilibrium constants

Redlich-Kister constants, and diffusion coefficients have to be

readjusted accordingly, and read in correctly.

Basically, it is believed that the calculation of D ij

+2th
and D 	

, 
at the j th versus j 	 step caused the

flux imbalance at time step j
12
 as a result of adding the

extremely non-linear activity terms,
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to the diffusion coefficient expressions. Quasilinearization

of all of these terms would solve the problem, since at each

time step the iterative process would be carried out until

convergence was attained, and the fluxes would balance. The

difficulty in the derivation of matrix coefficients and

solution vectors resulting from the additional terms would

make this an unwarranted approach. Some other solution

methods might be examined, but only if additional reliable

ternary data, for which two concentrations are measured, are

made available to test a revised model. In any event, the

applicability of activity driving force in ion exchange

should be tested further on binary systems before applying

the model to additional ternary systems.



CHAPTER VI 

AXIAL DIFFUSION IN PACKED BEDS 

A. General Background

Axial diffusion or longitudinal dispersion of a species dissolved

in a flowing fluid, or one gas mixed with another, is an important

fluid mixing effect which must be accounted for in packed bed

operations involving catalytic reactions or ion exchange processes,

since it adversely affects concentration driving forces in the bed.

In a streaming fluid, the following partial differential equation is

commonly used to describe this phenomenon:

where:

c 	 = concentration of species in bed

z 	 = bed length dimension

U 	 = interstitial velocity

t 	 = time

E
d 

= axial dispersion coefficient or axial
eddy diffusivity

Correlation of the axial dispersion coefficient are usually

displayed as Reynold No. vs. Peclet No. where:
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where:

dp = particle diameter

c 	 = bed voidage

U 	 = superficial velocity

U 	 = interstitial velocity = E 	 (6-4)

Figure 6-1 is a graph on which the work of various investigators

has been plotted (12, 23, 26, 27, 32, 61, 78, 115, 124), including

coefficients developed in this research effort. The various

investigators have used either concentration pulse analysis or

frequency response analysis to characterize the axial eddy diffusivity

in a variety of liquids and gases, over a range of flow rates and

particle sizes. The two experimental points by Farkas & Byleveld (27)

were carried out at low flow rates on Amberlite IR-120-plus ion

exchange resin which was being eluted by a pulse of deionized water

injected behind a flow of "city water." Conductivity measurements

were used to characterize the effluent pulse dispersion.

B. Correlation of Axial Dispersion Coefficients - This Research 

1. 	 Experiments of Omatete and his Coworkers 

The results obtained in this research project during the

fitting of the resin loading curves for Omatete's data (78) on

Ag+ , Na+ , e are in the generally expected "range." This

was not fortuitous, since values were chosen from this "range"

when the resin phase ion diffusion coefficients were fit. It was

found that the use of these eddy diffusion coefficients taken

from the generalized plot, coupled with literature values for

film coefficient parameters, resulted in close matching of the



Figure 6-1

Axial Dispersion in Packed Beds - Peclet No. vs. Reynolds No.
- Approximate Representation of Published Data -
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experimental data solely by adjustment of resin phase diffusion

coefficients. The fact that the values of the fitted resin phase

diffusion coefficients were close to literature values, and that

this single set of fitted diffusion coefficients for Ng,

Na & DH gave excellent simulations for 6 runs on binary

systems and 3 runs on ternary systems--at minimum, suggested that

the eddy diffusion coefficients taken from the generalized plot

were "correct."

2. 	 Erickson Experiments 

2.1 Experimental Results 

Erickson (26), on the other hand, actually ran

dispersion tests in his experimental column by immersing the

resin bed in 0.05 normal NH+ solution, then followed4

with a step introduction of 0.1 normal NH4 	 two flow

rates--and traced the effluent concentration by measuring

conductivity. Plots of data at these two flow rates are

given in Figures 6-2 and 6-3. The curves for various eddy

diffusion coefficients are the result of an axial dispersion

model derived in this research project. Erickson fitted the

experimental data by solving equation 6-1 given above

numerically; however, dispersion curves generated by

Erickson could not account for the "tailing off" effect

after the plug flow time (defined as total column

voidage/volumetric flow rate). Erickson ascribed this

tailing effect to holdup of 0.05 normal solution in the

boundary layer around the resin beads, and chose "best"



modeled "S" curves at E
d
=O

'
75 and E

d
-12cm/sec for the

two flow rates.

2.2 Simulation of Erickson Data  - This Research 

The following model was developed in this work to test

Erickson's boundary layer hypothesis.
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Assumptions:

o No radial gradients in column

o Uniform spherical particles, r o

o Uniform bed void space,

o Existence of a stagnant film around each
particle with thickness, 6 f , constant
down column

o Resin at r
o 

is saturated with preferred

ion and is impenetrable to further ionic
migration

o Diffusion coefficient in the stagnant film

is D. , constant through film and constant

down column

o Axial dispersion coefficient, E
d' 

is constant
down the column



226

where:
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Gradient at Resin-Film Interface

228

The equations were solved based on the implicit

Crank-Nicholson finite difference technique. Since there

are no non-linear terms, quasilinearization is not required,

and solution of the coupled matrices for the fluid phase and

the stagnant film phase is performed readily through use of

the tridiagonal array algorithm developed by Thomas (13,

125). The simulation program developed in this work is

called DISPRS, and was used to compute the concentration of
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species 1 (O.1Ne4) exiting the column vs. time for

various axial diffusion coefficients and "film thicknesses,"

as shown on Figures 6-2 & 6-3. Since the "film thickness"

based on calculation of ki by Carberry's correlation

O.001 to O.0O2 cm, the stagnant boundary layer could not

account for more than 2.5-5% of the void volume. The model

results showed this in that the calculated curves showed

almost negligible differences with "film thickness"

variations of from 0.0O1-0.004 cm. It becomes obvious in

looking at the experimental points with reference to the

plug flow time that the material balance on input vs. output

did not reconcile.

The area under the "S" curve on the left side of the

plug flow time should equal the area above the curve on the

right side for proper reconciliation of material in versus

out. The obvious answer was that the resin beads can absorb

+
more 0.1 normal NH4 ion than 0.05 normal NH4ion'

and the assumption of impenetrable resin was incorrect

In choosing an axial diffusion coefficient to best fit

the experimental data it was therefore more important to

match the concentration profile on the left side of plug

flow time, representing first appearance due to dispersive

effects. Axial dispersion coefficients of 3 to 7 cm
2
/sec

gave rise to Peclet No.s about an order of magnitude lower



Figure 6-2

Residence Time Distribution - Axial Dispersion
System NH 4CI and Dowex 50W x 8 Resin

- Stagnant Film, Impenetrable Sphere Model -



Figure 6-3

Residence Time Distribution - Axial Dispersion
System NH4CI and Dowex 50W x 8 Resin

- Stagnant Film, Impenetrable Sphere Model -
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than other correlations on the generalized plot (Figure

6-1). A value of E
d
=4.O cm

2
/sec was used in subsequent

ion exchange simulations with the Erickson experimental

exchange data (26). Values in the range of previous

correlations shown on the generalized plot were used in the

Omatete simulations, as stated above.



CHAPTER VII

DEVELOPMENT OF TERNARY ION EXCHANGE MODEL FOR COLUMN OPERATION 

A. Development of General Ternary Model 

The development of a ternary diffusion model for the resin

phase was described in Chapter V; moreover, the treatment was

general so that activity driving force could be used as opposed to

concentration driving force. A program, TRYBCH, was developed to

simulate radioactive tracer "batch" experiments on ternary

systems. Likewise a binary version, BMAVDM, was developed to be

used in conjunction with a general purpose non-linear regression

program, DFUSFT, which was used to correlate diffusion

coefficients and film coefficients utilizing "batch" data obtained

from radioactive tracer experiments. Chapter IV on treatment of

diffusion of ionic species through the boundary layer film for

binary and ternary exchange included the development of a "pseudo

electric field" model for use in the TRYBCH and BMAVDM simulation

programs.

Additionally, development of a general purpose non-linear

regression program, RIONFT, was described in the chapter on

Equilibrium. This program was utilized to correlate the

equilibrium constants relating the mass action between ionic

species in electrolytes in equilibrium with ion exchangers, and

the activity coefficient parameters for ionic species in the resin

phase for both binary and ternary systems. Based on correlation

of data on four ternary systems, the Redlich-Kister equation was

chosen versus the Wilson and NRTL equations as having greater

233
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ability to portray resin phase activity coefficient relationships

in ion exchange systems, and yielded better predictions of

equilibrium data on ternary systems based on equilibrium constants

derived from binary systems and activity coefficient parameters.

All of these previous chapters have dealt with the data

gathering phase which precedes any modeling effort. As was

discussed in the preceding chapters, some of the data can be

obtained from existing correlations, such as those describing film

coefficients, electrolyte ionic species activity and diffusion

coefficients, with appropriate correction for effects of

electrolyte concentration. Correlations for axial dispersive

effects are less well developed, and the treatment in this work

compares the existing correlations, along with results derived

from a simulation program, DISPRS, which can be used to simulate

suitably designed experiments in columns. The results from two

such axial diffusion simulations were discussed in Chapter VI.

Experimental data are required to correlate resin phase

equilibrium parameters for the 3 binary pairs in a ternary system

since literature background is sparse in this area. It has been

shown in this work that binary correlation parameters can be

combined to estimate ternary equilibrium data with fair

reliability, although it is desirable to have experimental data

points on ternary systems in the region of interest so that

material balance requirements of column operation can be satisfied.

Similarly, shallow bed experiments using radioactive tracers

are desirable to establish the effective diffusion coefficients
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for ionic species in the particular resin grade which will be

utilized in column operation. As demonstrated in this work, it is

possible to correlate single value effective diffusivities for

multicomponent systems by using activity driving forces. As will

be shown subsequently in this chapter, the effective diffusion

coefficients can be derived from column effluent concentration

histories (ECH), but the fitting of diffusion parameters involves

a trial and error procedure through simulation of column

experiments. A starting point is to use best available literature

values of the resin phase diffusion coefficients for the species

involved, and then "tuning" the values to get a best fit.

The development of the general "batch" equations for both

ternary and binary ion exchange in the resin phase included a

column dimension, i, which implied varying bulk fluid ion species

concentration as a function of time and column position. The i

dimension was dropped out for the less complicated case developed

for "infinite reservoir" type batch simulations. The fluid phase

equations describing column operation will be developed in this

chapter, and then coupled to the resin phase equations developed

in Chapter V to yield two simulation models. RFMAVD (Revised

Final Mass Action (Equilibrium) Variable (Solid Phase) Diffusivity)

is the model for binary ion exchange column simulation, and is

utilized to fit diffusion coefficients from the experimental column

effluent concentration history (ECH). These coefficients can be used

in the ternary simulation model. TERNEX (Ternary Ion Exchange) is

the ternary column simulation model for ternary ion exchange. Both
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have extensive diagnostics and write out options which will be

described later.

B. Fluid Phase - Ternary Ion Exchange, Column 0 eration

1. 	 Development of Fluid Phase Equations 

The general ternary ion exchange model for column operation

will be developed first, since the binary ion exchange model for

column operation is a simplified subset of the ternary equations.

Volumetric Flow = v(velocity)x empty column area

Assumptions:

o No radial concentration gradients in column

o Uniform spherical resin particles

o Uniform bed voidage

o No swelling of resin, i.e., no bed volume change with

time
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o Isothermal behavior throughout column

o Stoichiometric exchange, i.e., no adsorption of

undissociated salts

o No electric field gradients in column streaming fluid

o Axial dispersion coefficient, Ed, is constant down

the column

where from Chapter IV, Treatment of Electrolyte Phase Film

Coefficients, equation (4-90) is given in molar units as:
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E
D 	 axial diffusion coefficient (all species) -

cm
2
/sec

superficial velocity of fluid in column,

cm/sec

norm 	 = 	 normality of coion, equiv/cc

z. 	 = 	 valence of species i (i = 1,2,3,Y;

where Y = coion)

t 	 = 	 time, sec

3/r
0 	=	 area/volume ratio for a sphere

Qr 	 = 	 equivalents of active sites in resin/cc

resin
*

D 	 &Dij = 	 effective diffusion coefficients in the film

as defined by equations (4-96), (4-97),

(4-98), and (4-99)

"effective boundary layer thickness" aseffmax
defined by equation (4-88)

Putting the terms into dimensionless form.



InFia'sLawtreatmentwhereD.=constant (i = 1,2,3)
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Using the transformation p 	 R
2 

as discussed in Chapter V,

Diffusion in the Resin Phase, the column equations are

derived below.

Setting up the equations for the two most favored species, 1

and 2:
(7-13)

9



Boundary Conditions 

note: this B.C. gave rise to instability and will be

discussed in a subsequent section of this Chapter.
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Chapter V, Diffusion in the Resin Phase, contains

equations (5-65) and (5-66) which deal with the

quasilinearization of x* fint 	as an implicit function of

(x*lint, x)
l int

, and differentiation of implicit

functions is discussed as a method to obtain the partial

derivatives required for quasilinearization.

As with the treatment of the non-linear parabolic

partial differential equations describing diffusion of ionic

species in the resin phase, the non-linear parabolic partial

differential equations describing the fluid phase in column

operation were solved using the Crank-Nicholson implicit

method (125) with quasilinearization of non-linear terms

(59). It is the addition of the axial dispersion terms to

the hyperbolic equations describing the concentration changes

in the fluid phase which convert them to parabolic partial

differential equations. As such, they cannot be decoupled

from the resin phase equations in a straightforward

manner--since finite difference representations in both

phases involve nodes n, n+1, & n-1. The solution of the

system of finite difference equations, including the resin

phase equations, will be covered below.

Matrix Equations - Fluid Phase 

The setting up of finite difference equations for the

two ionic species, where column length Y (=1) is divided into

I nodes, or I-1 increments ( AY=1/(I-1)), involves a matrix

representation, since the terms in the partial differential

equations are approximated as:



In the Crank-Nicholson method, the time steps j and j+1

are averaged so that the j+lth equivalent versions of the

.
above partials are averaged with the j th versions to give

the partial derivative approximations as a function of time.

Matrix equations to be solved at iteration n+1 and time

step j+1 are:

242

where equation solution vectors Uln and U2n contain terms

from time step j, as well as the values of resulting terms

qualilinearization of non-linear terms at the previous

iteration, n.



When the matrices and vectors are expanded:
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2. 	 Coupling of Resin Phase Equations to Fluid Phase Equations 

The coupled set of two resin phase matrix equations

(equations (5-81) and (5-82)) with the two fluid phase matrix

equations can be solved through use of algorithms developed

in this project for inverting seven diagonal and five

diagonal arrays (Appendices E&F) following the Thomas method

(13, 125) for tridiagonal arrays. In order to solve the

fluid phase matrix equations, values of x i (M,i,j+1) n+1

and x2(M'i'j+1)n+1 derived from the solution of the resin

phase algorithm are expressed as functions of x 1 (i,j+i)
n+1

bulk
and x2 (ij+1)ni-1' 

since the fluid phase concentrations of
bulk

species 1 and 2 appear in the resin phase equations (5-81)

and (5-82) at the resin-fluid interface.

Equations (7-27) and (7-28) then have the following

matrix notation when the substitution is made:
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The equations can then be depicted in terms of a five

diagonal array as shown in Figure 7-1, for a simple five node

example. The values of xl (i,j+l) n+1 and x 2 (i,j+l) nil
bulk 	 bulk

are calculated through use of the five diagonal array algorithm,

then these values are used to compute values of ii (M,i,j+l) rol

and 
i2(M''j+1)n+1 

which represent the concentration of



Figure 7-1

Five Diagonal Array — Fluid Phase Equations 

Matrix combining 2 fluid equations
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and x2 at the resin-film interface at each column length

node. The remaining values of Tym,i,j+l) n+1 and

x
2
(m

'
i

'
i+1)

n+1' 
m=1 to M-1, are solved with the seven

diagonal array algorithm, and the process continues at each

time step j+l until the iterative process brings all values

of x. and x
i bulk 

to within the solution tolerance

limits--then proceeds to the next time step. As with the

seven diagonal array, a scratch five diagonal array is used

to load n
th 

iteration values of coefficients and solution

vectors for both x
1 bulk 

and x2 bulk 
at each time step

j+l, solves for values of x, and sorts them alternately into

1 bulk and x2 bulk
 values for the n+1

th 
iteration.

Appendix I covers the detailed development of the coupling of

the resin phase matrix equations with those of the fluid

phase for the Ternary Model.

C. Solution for Column Ion Exchange Operation - Binary Systems 

1. 	 Finite Difference Equations and General Solution 

Treatment of the development of the binary column model

are covered in some detail in Appendix J, since it is quite

easy to see how the solution of the resin phase equation is

coupled to the fluid phase equation, in that both result in

tridiagonal arrays. The ternary column model, although more

complex, is solved using the same general procedure. In

addition, treatment of the boundary conditions by finite

difference equations in both the resin phase and fluid phase

are also discussed in Appendix J.
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2. Initialization Procedures 

The proper "conditioning" of the column is essentially

the same as described by eq 5-60 in the chapter V, Diffusion

in the Resin Phase. That is, the initial conditions in the

resin are set up by matching the diffusion flux at the resin

numerical representation between resin node M and M-1. In

the "batch case," a trial and error procedure (false

positioning) is used to solve the flux balance equations,

since the equilibrium expression relating the resin surface

concentration x 1 	, and the fluid phase concentration,
int

x l 	, is non-linear. However, the relationship is
int

monotonic and this procedure works very quickly. In the

column model, some distribution of the bulk fluid

concentration down the column is required at time equal 0 (j

= 0), since a step input at j = 1 generally will not result

in convergence for the solution to the coupled resin and

fluid phase equations. Svedberg (125) suggested an

exponential decay type of relationship of the form:
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In this work, three revisions were made to the Svedberg

approach:

o 	 A constant, diskon, was multiplied times disfac to

allow a read-in input adjustment to the initial

distribution. This was required, since under

certain combinations of the elements of disfac the

column, including the resin phase, could be

"preloaded" up to 8% by the initialization

procedure. In almost all runs made in this work, a

diskon factor could be used such that only 0.1 to

O.5% column "preloading" occurred, consistent with

a smooth start. The amount of "preloading" is

calculated and printed out by RFMAVD before

starting the simulation so that without much

difficulty the appropriate diskon factor can be

used for each case.

o 	 Since most of the column capacity is in the resin

phase, it required fewer adjustments to minimize

column "preloading" if the resin phase was treated

according to:
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o 	 As a further refinement for column operation„) (M,1,0)

was defined as the composition of resin surface in

equilibrium with x l (1,0), node 1 or Y = 0. As noted
bulk

by B.C. eq 21, x l (1,0) is not x l (feed) but the
bulk 	 bulk

resultant of the amount of species 1 moving into the

column by convection minus the amount moving away due to

the axial dispersion flux.

These refinements are included in RFMAVD, and invariably lead

to a smooth start with minimum column "preloading" due to

initiation. The trial and error procedure (false positioning) is

used to solve for xl (M,1,0), from which all other column

compositions at xl(M,i3O) are calculated, (i=2 to I) by equation

(7-48). Finally, x*1(i,O) values are computed, (i=1 to I), and
int

x
1
 (i 3 O) values are given by equation (7-45), (i=1 to I).
bulk

3. Treatment of Boundary Conditions by Numerical Approximation 

Two fluid phase boundary conditions were approximated by finite

difference equations, and coupled to the general fluid phase

equation. The first, at the column inlet, transforms eq 7-21 into a

central difference approximation using a "fictitious" point outside

the column inlet.

The numerical approximation of the general equation for the fluid

phase is also set up around i nodes 0, 1, 2, and through cross
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are eliminated. This gives the coefficients and solution

vector for node i = 1 in terms of column nodes i = 1 and 2.

This representation of the column inlet boundary condition

presented no problems in the binary model for the simulations

performed in conjunction with this research. Svedberg notes

(125) however that in his studies of the numerical simulation

of fixed bed processes that if the concentration profile is too

steep as caused by a low Peclet No. (high axial dispersion),

and the column length grid is too "coarse," the composition at

the bed inlet will oscillate. He found that the oscillations

are local and not transferred into the bed. This problem was

not observed with RFMAVD on binary simulations; however in the

ternary model, TERNEX, this problem was severe and was

corrected with an initializing procedure to be discussed later.

The second boundary condition, at the column outlet, was

represented initially in this work as the method Svedberg (125)

had used, i.e.:

Svedberg represented this with a forward difference

approximation instead of a central difference, since he found

the latter approximation gave incorrect solutions for high

Peclet Numbers. He stated that the central difference gave



too much weight to the concentration value at the boundary.

The forward difference, using a "fictitious" point outside of

the column could represent equation (7-5O) as:

The "fictitious" point, I+1, is eliminated in the usual

way by combination with a central differenced general

equation for node i = I. The coefficients and solution

vector for this node are then obtained. Even so, Svedberg

noted that for high Peclet no. values, oscillations in

concentration occurred at the column exit as the mass

transfer zone passed through this boundary. He noted that

this was probably due to the "stiff" component introduced

into the solution by the boundary condition, and that more

column length nodes (smaller increments) decreased the

oscillations. In this work, these oscillations were not

observed, probably because (I) liquid Peclet numbers are an

order of magnitude lower than Peclet Nos. for gases, and

Svedberg was investigating both gas adsorption as well as

liquid ion exchange type processes; and (2) dimensionless bed

length increments were small (O.01). Use of RFMAVD for

simulation of binary ion exchange gave no problem in this

regard; however TERNEX, in ternary ion exchange modeling gave

rise to a "piling up" of concentration at the column exit.

The following treatment was used to minimize this effect in

TERNEX, and was therefore adopted for RFMAVD, and will be
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discussed for the binary system since it is easy to draw

comparisons.

Assume the bottom column increment, AY, is a CFSTR,

then a material balance on that section gives:

253

convection (out-in) + transfer to resin + in

from diffusion = accumulation

in finite difference terms:

This leads to coefficients and solution vector for the I
th

node, where oc i is the x l (I) coefficient and y i is
bulk

the x (I-1) coefficient. Comparison of these coefficients1 bulk
for the various methods are:
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o	 Forward difference

Inspection would suggest that increase in the Pe no. term

is moderated in the CSFTR case by giving more weight to the

convective term. It also suggests why the central difference at

this B.C. gave trouble, since neither coefficient, a, or y i ,

contained a convective term. A high Pe no. would reduce the

coefficients in this case, which for a given value of x l (I-l),

bulk
would tend to have a pronounced upward leveraging effect on the

value of x
I
(I) 	 In any event, the CSFTR model applied to
bulk

TERNEX ameliorated the concentration "pile up" for particular

species at the column exit. The CSFTR model also is, in effect,

the treatment for the center spherical node of the resin, as

discussed before.
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4. 	 Convergence and Stability of the Simulation Model 

It would be useful at this point to discuss the

convergence and stability performance of the implicit

Crank-Nicholson method for approximating solutions to

parabolic partial differential equations. Sherwood, Mickley

& Reed (71) indicate that the accuracy of the results

obtained by numerical solution methods is difficult to

estimate; however, it is known that if the method used is

both "convergent" and "stable" for the equations being solved

then the accuracy is determined by the number of increments

used in the grids. Estimate of accuracy for a given solution

can be tested by rerunning solutions with finer grid spacings

until the difference between results is within limits

tolerable to the user. The convergence criterion deals with

the approach of the approximation solution to the exact

solution in the limit as number of grid nodes approaches

infinity. Stability deals with the growth of error in the

numerical approximation as the solution proceeds. Error is

due to the fact that numerical representation is an

approximation and, in a practical sense, a finite number of

increments must be used, and in any arithmetic computation

roundoff error is present. If the errors do not increase in

magnitude as the solution proceeds, the method is said to be

stable. Jenson and Jeffreys, (48) in discussing stability

and convergence criteria recommend the Crank-Nicholson

methods for solution of initial value equations such as the



They state the Crank-Nicholson method for this type of

equation is stable for all values of M, and recommend it for

initial value problems with a modulus M <1. R. E. Carlile

and B. E. Gillett, (14) in discussing numerical methods for

solution of both initial value and boundary value (hyperbolic

equations) problems, recommend implicit methods such as

Crank-Nicholson because of their stability and improved

accuracy over explicit methods.

Choi, Fan, and Hsu (16), in developing a simulation

model for a diabatic absorbtion, used the Crank-Nicol son

implicit finite difference method to solve their system of

parabolic partial differential equations. They had chosen

this method after reviewing the collocation method and the

method of characteristics. Specifically, Choi, Fan, and Hsu

cite the less stringent stability and convergence

restrictions offered by the Crank-Nicolson method than the

explicit methods, and less computing time than the method of

characteristics, and particular applicability of the method

to solution of parabolic partial differential equations.

In a study of fixed bed adsorption modeling with

non-linear equilibria, Brown, Mullins and Melsheimer (10)

investigated solution of equations identical to those

describing the fluid phase in this research. In their

investigation the equation was:

256



deleted, the equation is of hyperbolic form, and they cite

commentary by Von Rosenberg (137) on the nonapplicability of

the Crank-Nicholson method to solution of hyperbolic forms of

partial differential equations. Brown and his coworkers

state that when the dispersive term is small relative to the

characteristics of hyperbolic systems, and difficulty may be

encountered in applying the Crank-Nicholson method.

McCracken and his coworkers (65) in one paper; and Meyer and

Weber (69) in another study, indicate that in these cases,

rather stringent restrictions on size of grid increments must

be observed to avoid instability and to obtain convergence

with the exact solution. Brown and his coworkers compared

results of simulation of adsorption experiments they

performed using the Crank-Nicholson methods with various At

and ,o2 increments, to results obtained by using the State

Variable method of McCrackin et al (65). In the State

thereby reducing a second order equation to a pair of first

order equations. The result of the study by Brown and his
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coworkers indicated that at the same Az and At, if the

increments were sufficiently small, both models converged to

the same numerical solution. However, as the grid increments

were "coarsened," the Crank-Nicholson method did not converge

and the ECH curves smeared" out around the experimental curves

in a lazy "S", whereas the State Variable method continued to

converge and simulate the experimental points. Obtaining

convergent solutions with a coarser grid spacing using the

State Variable method used 67.5% less computation time than

that required by the Crank-Nicholson method when utilizing

"finer" convergent grid increments.

Future work on ternary ion exchange modeling should

examine the State Variable method as an alternate solution

method--mainly to shorten computation time, since in all of the

simulations performed in this research the grid spacing and

time intervals were decreased until the calculated values were

essentially identical, as suggested in Sherwood, Mickley & Reed

(71). Examples of this can be seen in the ECH curve for Ag+

exchange for 1-14. at 1.5 normal solution concentration, Figure

7-1O, where the number of column and resin increments were

systematically increased. As the number of column nodes were

increased from 101 to 2O1, no further change in ECH was

observed and, indeed, this curve closely fits the experimental

data 	 utilizing the resin phase diffusion coefficients fitted

in runs on other Ag
+
-Na

+
-H
+ 

systems. The effect on the

general shape of the ECH curves in the ternary run P-15, is
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shown in Figure 7-13, as the column nodes are increased from 51

to 101 and the number of time steps is increased from 800 to

21O0. The initial simulated ECH curve showing appearance of

+ 	 +
and disappearance of NaH 

	
versus the experimental data is

definitely improved by finer grid spacings, although the

appearance of Ag+ is 250 sec late. However this difference

represents less than a 1% effect on the total material balance

for the run.

5. 	 Activity Effects - Resin Phase 

A few column runs were made using activity driving force

to simulate the ECH curves of Erickson (26) and Omatete (78)

experiments. As discussed in Chapter V on Diffusion in the

Resin Phase, using activity driving force vs. concentration

driving force is more elegant because a single value of an

ionic specie's diffusion coefficient can be used in describing

interchange with many other ionic species. This precludes the

need for multi-parameter or multi-value methods such as the

Stefan-Maxwell model or ion-species "pair corrector"

coefficients. It was observed in making these runs that use of

activity driving force did not alter the shape of the ECH

curves appreciably in column operation unless the system was

highly non-ideal, and even then the effect was not dramatic.

The "batch" type of experiment is clearly best able to

discriminate between activity and concentration models. The

starting points for ECH fitting in this research were

literature values for resin phase diffusion coefficients, when



available, which had been derived by the various investigators

using concentration driving force analysis. It was decided,

therefore, to perform all column simulations in this research

project using concentration driving force--and to test a few

extreme cases for effect of activity driving force.

It is interesting to analyze how the activity correction

would alter the ECH curve. As discussed, the activity

correction for effective diffusion coefficient, 5 i involves

the addition of the following term to the equation for

calculating the effective diffusion coefficient for an ideal

binary pair (equation 5-13):

where Y
1 

and y
2 
have the molar reference state

For a positive deviation system, asi l increases from zero

concentration, the following term is negative:

and the effective diffusion coefficient is decreated. Therefore

as 
xlbulk 

displaces x2 	, the ECH curve will show appearance
'bulk

of 
xlbulk 

earlier than the concentration model since it cannot

penetrate the resin as quickly, and this was observed with the
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Figure 7-3. With negative deviation systems such as

Ag+-Na+ the reverse is true, and the effective diffusivity

is increased, leading to a delayed appearance of Ag + in the

ECH compared with the concentration model. This was observed,

as is shown in Figure 7-9.

One other way of examining this effect is to look at a

limiting case where 5-i) is departing from zero concentration

to higher values. The equivalent fluxes can be shown as:

However, as x2 approaches 1.0, the activity, -62 , approaches

x,, and the following relationship obtains:

2
	@x

1
Electroneutrality in the resin requires that Bp = - Bp

so that the following relationship results from expansion of

equation (7-65):

The following equality can be derived from equation (7-66):
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The relationship defining the effective diffusion coefficient as

—
x2 approaches 1, or as xl is departing from zero concentration is:

diffusion coefficient D eff defined for use in ideal

systems. This is derived from equation (7-68) where as 7(1

term 7,6 is greater than one and increasing. Exactly the

opposite occurs with negative deviation systems. In these

systems, the term beff is greater than the ideal effective

is approaching zero and the activity coefficient, --)1 , is less

than one and decreasing.

6. 	 RFMAVO-A Modeling Program for Binary Ion Exchange in Fixed 

Beds, Including Activity Driving Force 

The discussion above led to development of a model which

utilizes the implicit Crank-Nicholson method to approximate

the coupled equations describing the operation of a fixed bed

binary ion exchange process. Chapter V on Diffusion in the



Resin Phase dealt with development of the Nernst-Planck

(N.P.) diffusion model including use of activity driving

force, and Chapter IV on Diffusion Through the Film treated

the development of a pseudo electric field model which

provided film coefficients based on N.P. type

interdiffusivity relationships between migrating ionic

species. This chapter has provided the development of the

features of coupling the resin phase equations to those

describing the fluid phase, with quasilinearization of

non-linear terms using the quasilinearization technique

developed by Lee (59). The reduction of the ternary general

case to the simpler binary case illustrated the use of the

Thomas algorithm (13, 125) to invert tridiagonal matrices,

and showed how the two matrix equations were coupled at the

resin-fluid interface. An iterative process at each time

step resolved non-linear terms. The treatment of boundary

conditions was discussed, as well as the initialization

procedure. The details of other features built into program

RFMAVD are given in Appendix K, Features of RFMAVD.

D. Binary Simulation of Column Operation

1. 	 General 

Nine binary simulations were performed using

experimental effluent concentration histories (ECH) from the

work of K. L. Erickson (26) on NH4-Ethylene

Diamine+4-(ETDA++) and O. O. Omatete (78) on the systems

comprised by Ag
+
-Na

+
-H. The equilibrium constants and
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Redlich-Kister activity coefficient parameters for these

systems were correlated with RIONFT, and this is covered in

Chapter II on equilibrium. In general, the binary model was

able to provide a close match to the experimental ECH curves

by making only modest adjustments to previously observed

resin phase ionic diffusion coefficients. The modeling

effort was based on (a) previously fitted equilibrium

parameters, (b) the pseudo electric field film coefficients

based on the Carberry (11) and the Koloini et al (54, 55)

film coefficient correlations for packed beds, (c)

electrolyte phase activity coefficients based on the Bromley

equation (9), and (d) the use of generalized correlations for

axial diffusion coefficients (Fig. 6-1). Normally, 10

increments or 11 nodes were used for resin grid spacing, and

10O increments or 101 nodes were used for column

gridspacing--although the program is dimensioned for a

21 x 3O1 grid spacing. Maximum dimensionless time is defined

as the number of empty column displacements (based on

superficial velocity) to completion of the run. Normally,

this maximum dimensionless time was divided into 100 to 5O0

increments to establish j-max, or the total number of time

steps increments used in the computation. The number of

increments used was based on the shape of the ECH curve, and

for a very steep curve, such as that of Ag+-H+ in

favorable exchange, more time increments were required to

provide adequate solution stability. This was tested by
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trying a series of different time increments until no change

was observed (figure 7-10).

2. 	 Research of K. L. Erickson (26) System NH 	 ETDA/C1

on DOWEX 5OWx8 Resin

2.1 Discussion - Erickson Experiments 

Erickson conducted two batch experiments by very

quickly dropping a 1 normal solution of ETDA (500 cc)

into a well stirred flask of resin (33 cc) suspended in

1 normal NH4 solution (20 cc), then quickly withdrawing

samples at timed intervals. Total solution volume due

to sampling dropped to 7O% of the initial volume, and

the total resin capacity in equivalents was about 25% of

the total initial solution equivalents. Erickson set up

material balance equations, including the following
—

equation for the resin, to fit the D + and D ETDA
++

values which best represented the data:
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This equation was integrated by utilizing Simpson's

Rule.

In order to define Tyr,t) in the above equation,

the following expression was solved:

where j is defined by the Nernst-Planck model
1

described in Chapter V, equations 5-24 and 5-13.

Erickson used the Crank-Nicholson method to solve

for the resin phase concentration profile, then used

that profile in conjunction with equation (7-69). The

batch material balance equation was given as:

It was assumed because of high agitation speed that the

film resistance was low, so the B.C. utilized was:

relating equilibrium between the bulk solution and the

outer surface of the resin.

Erickson felt the data from one experiment was

somewhat more reliable than the other, and the following

pairs of coefficients were found to fit the 6 data
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points with excellent accuracy for the experimental run:

D
ETDA

++ D 	 +
NH4

Sample variance -s
2

cm
2
/sec cm

2
/sec

1.2 x 10
-6

4.0 x 10
-6

0.00016

1.3 x 10
-6

3.9 x 10
-6

0.00018

2.0 x 10
6 - 6

2.9 x 10 0.00023

1.8 x 10
-6

2.9 x 10
-6

0.00045

Erickson, in simulating the ECH of his column

experiments found little difference in goodness of fit using

versus 2.0/2.9.

In order to define the equilibrium relationship between

the resin and the electrolyte, Erickson derived the

following empirical expression for the 1 normal system (he

did not attempt to fit the 0.1 normal data):
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Whereas the expression represented the experimental data

extremely well, the relationship has no theoretical

merit,and cannot be extended to other concentrations such as

the 0.1 normal data for same system. Other parameters

measured by Erickson included the axial dispersion effects,

and these experimental results were discussed in Chapter

VI. Additionally, Erickson found the uptake of coion Cl -

by the resin to be only 0.023 mequiv/mequiv of total

capacity. This indicated that the Donnan potential was

strong enough to minimize coion intrusion for this system.

Resin volume change in the transition from the NH4 form to

the ETDA ++ form was minus 8%. The average bed void

volume, E, was measured as 0.352.

The column effluent histories (ECH) for six runs were

included in Erickson's report. These were:

Runs 13 and 15 for favorable exchange of ETDA
*I- 

for

+
NH4 

at 0.94 cm/sec superficial

velocity

Runs 17 and 18 for favorable exchange of ETDA++ of

NH
4 

at 1.85 cm/sec superficial

velocity

Runs 14 and 16 for unfavorable exchange of NH 4 for

ETDA
-14 

at 1.85 cm/sec superficial

velocity

The ECH data points for experiments 17-18 (1.85 cm/sec,

favorable) were so close at each time interval so that they
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are represented together in Figure 7-2 of this report as

averaged data points. The ECH data points for experiments 13

and 15 were sufficiently different that they are both plotted

in Figure 7-3. The two unfavorable exchanges, experiments 14

and 16, had somewhat different velocities, 1.75 cm/sec and

1.85 cm/sec and could not be combined. Consequently only

experiment 16 was used in this current work, primarily

because it had Reynolds no. criteria (41.0) identical to

favorable exchange experiments 13 and 15, and could be

compared directly with those runs.

2.2 Erickson Simulation Model Development & Simulation Results 

Erickson's Column Model was premised on the equations

for the resin phase given above. The diffusion across the

stagnant layer from the bulk fluid to the resin was modeled

by using the conventional equation:

The film thickness, 6, was a parameter modeled by

Erickson to fit the initial portion of the ECH curve. He

found 6 = 0.0065 cm for Re = 41, and 6 = 0.0035 cm for

Re = 2O, gave the best fit to his data.

The Column equations utilized were:



27O

However, the finite difference method employed was explicit

in character, since the partials were expressed as forward

differences in both the time and column dimension domain.

The method by which the difference equations were solved was

to guess forward values at t+ At and t+ Ai, then use those

values to resolve the equations at length step t+ Atand time

step t+ At until a reasonable tolerance criterion was met.

The process then proceeded to the next time increment.

Quasilinearization of non-linear terms was not performed, and

as discussed earlier, explicit methods tend to instability if

the moduli are not carefully chosen. Indeed, in order to fit

the experimental data, Erickson had to include At, the

finite difference time increment, as one of the "variables."

Higher or lower values of time increment would not fit the

experimental ECH curves. With this stipulation, and the film

"thickness" values previously cited, Erickson obtained

reasonable fits to the experimental data.

Erickson's experimental work was carefully performed,

and the batch experimental technique he utilized to measure

resin phase diffusion coefficients is an alternative to

radioactive tracer experiments. The latter tend to be more

costly in terms of equipment and materials and require higher

experimental skill levels. The experimental work on axial

diffusion gave rise to values an order of magnitude higher
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than general correlations (figure 6-1) would predict for Re

numbers between 20-4O. One observation by the researcher on

this current work is that within the time constraints of a

doctoral research program for a process of this kind, it is

difficult to be thorough on both the experimental side as

well as the modeling component of the work.

2.3 Simulation of Erickson Experiments - This Research Project 

The results of simulation of Erickson's column

experiments are shown in Figures 7-2, 7-3, & 7-4. Two

favorable exchange runs in which ETDA++ displaced NH4

at two flow rates-1.85 cm/sec and 0.94 cm/sec, and one

unfavorable exchange in which NH4 displaced ETDA++ at

a velocity of 1.85 cm/sec, have been simulated and the

results closely match the experimental data. The parameters

used in the simulation were (1) equilibrium constant and

Redlich-Kister parameters for resin phase activity

coefficients correlated with RIONFT, plus the Bromley

equation for electrolyte species activity coefficients to

predict equilibrium between the resin surface and the fluid

film, (2) film coefficients based on the Carberry

correlation--using the pseudo electric field model with

electrolyte species diffusivity corrected for concentration,

(3) axial diffusion coefficients obtained by simulating

Erickson's axial dispersion experiments, and (4) resin phase

diffusion coefficient values of:



Ethylene Diamine Exchange with NH 3 on Dowex 50W x 8-
Binary Model - Nernst Planck Relationship

For Resin Diffusivities
- Favorable Equilibrium -

Figure 7-2



Ethylene Diamine Exchange with NH 3 on Dowex 50W x 8- Cr Figure 7-3
Binary Model - Nernst Planck Relationship

For Resin Diffusivities
- Favorable Equilibrium -



Ethylene Diamine Exchange with NH3 on Dowex 50W x 8 - C1- 
Figure 7-4

Binary Model - Nernst Planck Relationship
For Resin Diffusivities

- Unfavorable Equilibrium -
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Other diffusion coefficients were tried in trial and error

parameter searches but they did not give as satisfactory a

total fit to the effluent concentration histories (ECH) of

the three experimental runs. Admittedly, this was an

"eyeball" judgment; however the diffusion pair selected

was one of the pairs which Erickson had fitted in his

batch experiments.

In fitting the predicted ECH curve to the

experimental curve, the experimentally determined resin

capacity of 3.24 milliequiv./cc of resin had to be

adjusted downward by 5 to 8% to "center" the plug flow

time for the favorable exchange runs, and upward by 9% for

the unfavorable exchange run. This "centering" made the

area under the ECH curve before plug flow time equal to

that above the ECH curve after plug flow time, thereby

insuring reconciliation of the material balance. Of all

of the quantities measured in ion exchange experiments,

the least reliable is resin capacity/volume of resin "in

use"--since the capacity will be somewhat different for

each of the species involved. The resin swells to

different degrees depending on the various ion species

concentrations in the resin, and the resin volume changes

during the course of a run. Flow rate, time, and

electrolyte phase ionic species concentration measurements

are normally quite accurate. It is not unreasonable,
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therefore, to adjust the resin capacity within reasonable

limits from that measured to insure reconciliation of the

material balance. This was done in the other systems

simulated as well.

The Carberry film coefficient correlation for packed

beds has the form,

so the film coefficient values should differ by about 40% if

the Re numbers differ by a factor of two. Reynolds'numbers

differed by a factor of two in Erickson's favorable exchange

experiments, run at velocities of 0.94 and 1.85 cm/sec. If

the value of "b" were chosen to obtain a good simulation of

the experimental ECH at one velocity, the fit was poor at the

other velocity. Two values of "b", different from Carberry's

recommended value of 1.15, were used in early simulations to

obtain satisfactory mataching of the experimental results at

the two velocities. Use of the pseudo electric field model 

brought the simulated ECH curves for both velocities into

remarkable agreement with the experimental data, using the

Carberry film correlation (b=1.15) to estimate "boundary

layer effective film thickness" as a function of the average

concentration of ionic species in the film. At the lower

velocity, gradients are steeper, and the effect is to

increase the average concentration of the slower ion,
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ETDA++, in the film—thereby reducing flux. The "apparent"

film coefficient is lower than would be predicted by Re
2

adjustment alone, since now the effective diffusion

coefficient is also lower.

In the unfavorable exchange, the initial appearance and

early steep slope of the ECH was "insensitive" to all

parametric variations, with the initial appearance time being

equal to the column length divided by the interstitial

velocity, or 9 seconds, i.e., the inlet concentration of the

least favored species runs at convection velocity directly to

the column bottom without interchange with the resin. The

fit from two "column displacement times" (18 sec) onward was

good using the same parameters used to fit the experimental

data for the two favorable exchange systems.

The simulation model allows fractional adjustment (FLMADJ) of

the constant "b" in either the Carberry (11) or the Koloini

et al (54, 55) correlations to test the effect on simulated

ECH profile (Appendix K). As discussed in Chapter V,

Diffusion in the Resin Phase, the Rao and coworkers' binary

batch run results (92, 93) were regressed in one set with

FLMADJ as a parameter, yielding a value of 0.86 ±0.04. The

parametric study of FLMADJ was made in all of the nine sets

of binary ECH curves fit (Erickson and Omatete), using values

used of 0.7, 1.O and 1.2. Overall, the most consistent

results were obtained when FLMADJ was unity, as portrayed in

the original correlations.
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The Erickson equilibrium data were regressed with the

Redlich-Kister activity coefficient correlation using both

mole fraction and equivalent fraction concentration units,

with equally good results (discussed in Chapter II on

equilibrium). Experiments 13 and 15 were simulated with

RFMAVD utilizing equilibrium constants and activity

coefficient parameters both derived for mole fraction and

equivalent fraction concentration units, and the results were

identical to within ±0.5%.

3. 	 Research of O. O. Omatete - Ag+-Na+-114- (78)

3.1 Discussion - Omatete Experiments 

Omatete carried out favorable exchange experiments for

the system Ag+,Na+,H+/NO3 on Dowex 50W x8 resin

having an average particle diameter of 0.71 mm. The columns

used were 1" 1.d. glass with lengths ranging from one to four

feet. Ag+ and e concentrations were determined by

titration to ± 0.2% accuracy and Na+ concentration was

determined by material balance, with check by flame

spectroscopy (±7%). Flow rates varied from 3 to 60 ml/min,

and equal effluent volumes were collected with an automatic

fraction collector. Feed rate and column length were

selected to insure that the concentration profiles in the

favorable exchange runs had reached a stable configuration,

or constant pattern breakthrough ECHs. A total of eighteen

runs were made to determine the binary equilibrium

relationships for the three binary pairs at O.1 normal



concentration, with ten runs out of the eighteen for the

Na
+
-H
+ 

system alone. Six additional points were

measured at 1.5 normal concentrations, one each for the

+ +
Ag-Na and AgtH

+ 
systems, and four for the

Na
+
-H
+ 

system. Only two ternary equilibrium points

were measured. In order to simulate the three ternary

column experiments, the closing of a satisfactory

material balance in this research effort resulted in the

addition of three additional ternary equilibrium points

which were consistent with the equilibrium parameters

correlated from the experimental data. Needless to say,

this represented far too few data points since, as will

be shown, the equilibrium relationships in "azeotrope"

type (selectivity reversal) systems, such as that of

Na
+
-H

+
, largely determine the shape of the ECH

curves. Indeed, additional literature data had to be

utilized in the Na+H+ system to better define the

"azeotrope" cross over point versus concentration, since

at O.1 normal the upper region "pinches" in a "pseudo

azeotrope" manner and at 1.5 normal the system

"azeotropes." In addition, the lower part of the "x-y"

curve for the Na
+
-H
+ 

system tends to a lower "pinch"

region.

Experimental rate runs were made for favorable

exchange of each binary system at normalities of 0.05

and 1.5 to demonstrate film diffusion control at the low
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normality, and resin phase diffusion control at the

higher concentration. Actually, this was done since

Omatete's model was a single resistance model (it could

simulate film or resin phase transport resistance, but

not both). In addition, two favorable ternary runs were

made, one at each normality (0.05 and 1.5), and one

unfavorable ternary run was made at 1.5 normal solution

concentration. In a paper presenting Omatete's work by

Omatete, Clazie and Vermeulen (79, 80), only one ternary

(0.05 normal) was presented--stating that the "other"

rate run did not have fully developed concentration

plateaus. Omatete's dissertation work performed six

years earlier contained three ternary system runs as

described above. All three were simulated in this

research project with good results by TERNEX program,

utilizing equilibrium parameters correlated from the

experimental data with RIONFT for the binary and ternary

systems.

3.2 Omatete Simulation Model Development 

The Omatete model of fixed bed ion exchange

involving binary and ternary systems had the following

features which, in effect, represent considerable

simplification and "bending" of theory.

a. Equilibrium 

(i) Binary equilibrium was based on a separation

factor which is similar to the K value in

distillation,
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As with non-ideal vapor-liquid system equilibrium,

ija..1,1 (equivalent to K id ).) values are not constant

over the composition range.

(ii) Ternary equilibrium was represented by the

following general multicomponent relationship;

b. Dynamics - Binary and Ternary Systems 

(i) Diffusion between the bulk fluid and the resin

was based on a "film" in one phase or the other.
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o resin phase control 

assumes an "effective constant solid

282

(ii) Film Coefficient Representation - Fick's 

Law Solution Phase 

o Simple Fick's Law 

o An improved Fick's Law was also evaluated

in which:



(iii)Film Coefficient Representation -Fick's Law 

Resin Phase 

o Fick's Law applied to the resin phase 

"film"

The equations describing diffusion in the

resin phase "film" are similar to (7-85)

and (7-86), except that Vij is a

function of:

(iv) Film Coefficient Representation-Nernst-Planck,

Solution Phase 

o Simple Nernst Planck representation 
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o Improved Nernst-Planck representation 
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(v) Film Coefficient Representation - Nernst Planck, 

Resin Phase 

o 	 k.. has the same functional representation

as (7-88) and (7-89) but is a function of the

variables.

c. Material Balance equations 

Using a dimensionless throughput parameter, T

and T is the reciprocal of the dimensionless velocity

at which the center of the "S" curve moves, the

following can be shown:

Since a constant concentration profile was assumed to

be traveling through the column, all concentrations

travel together and are time independent functions of

the column volume coordinate. This leads to:

For a binary system with column presaturation entirely by

one component, and feed containing only the more favored

component, T = 1. Integration of equation (7-93) yields,
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Using the method of characteristics, equation (7-92)

is uncoupled into two independent variables yielding

ordinary differential equations in each variable i.e.,

Following a constant characteristic, Ri, the

equations are numerically integrated to solve for

species concentration profiles versus dimensionless

time, T.

d. 	 Determining rate constants from experimental data.

For a binary system which meets the criteria that

allows T  = 1, equation (7-94) can be approximated as:
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so by selecting points on the "S" curve kL
Lij

be approximated as a function of x
i 	

(or L
bulk

ave

as a function of 5-(..1	), and fit to a polynomial
ave

for Fick's Law. The same procedure is used to

obtain k
L 	

or
ij
for N.P. treatment.

3.3 Simulation Results - Omatete 

In general, the six binary column effluent

concentration histories (ECHs) were fitted well with the

polynomial version of Fick's Law, using a common set of

nine parameters ((b 
oij'

) 	
(b1ij'

) 	
(b2ij

) 	 )' for i,j,k = 1,2,3,.

Unfortunately, correlated values of neither these nor

the twelve N.P. parameters 	
, 	 j((k.).1 	(k.)' (k.)-	 (k.)) j

for i,j,k = 1,2,3,bear any relationship to the film

coefficients or diffusion coefficients measured by other

investigators. The model should be considered

semi-empirical due to the simplifications made in both

the equilibrium relationship and the diffusion

mechanism. The "transportability"of the parameters to

other ion exchange systems should be regarded as low.

In the three binary cases in which fluid film

control was assumed, the fits using the Improved Fick's

Law were by far the best--and this should be no surprise

since a polynomial fit was specific to the ECH curves.

In general, all models gave reasonable representation in

the 0.05 normal runs, except Simple Fick's Law in the

/kg
+
-Na run, and Simple Nernst Planck in the Na

+
-H

4- 
run.
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The three resin "film" control runs were more

difficult to simulate, with only the polynomial version

of Fick's Law fitting all three runs well, as could be

anticipated. The Simple Nernst Planck Model, followed

by the Improved Nernst Planck Model, gave the poorest

fits to the "resin file controlled binary rate run ECH

curves. This was due to the attempt to represent the

complex dynamics of resin diffusion, having space and

time varying compositions, with a simple film

representation. Ternary simulation of the two favorable

exchanges was good, but the ternary simulation of the

unfavorable exchange was only fair, and will be

discussed below.

One complication which has to be taken into account in

any simulation of the Ag+ systems is the high degree of

association of Ag+ to form AgNO3, particularly at high

normalities. The resin then adsorbs the AgNO3, taking up

NO3' which makes the exchange non-stoichiometric
during the uptake period. This effect can be offset to a

large degree by adjusting the resin equivalent ion exchange

site concentration upward to include the adsorbed AgNO3

as Ag
+ 
equivalents as well as the ion exchanged Ag

+ 
in

any exchange process involving Ag
+
. Omatete's throughput

parameter T, at a value of one, is essentially the plug

flow time used in this research. That is, all of the

equivalents of counterion in the solution fed into the

column up to the plug flow time (tp.f.), displaces
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all of the equivalents of the other counterions in the column

resin plus solution in the voids. Omatete adjusted his

throughput parameter upward by including the adsorbed Ail. in

the column equivalent capacity. This approach works provided

the adsorption process is faster than the ion exchange process,

and all of the material balance transactions occur before the

ECH curve leaves the column, with its pattern established 

primarily due to the ion exchange process.

3.4 Simulation of Omatete's Binary Experiments - This Research 

Project 

a. 	 General 

The results of the simulation of the six favorable

binary exchanges are shown in Figures 7-5 through 7-10.

These runs are in contrast to the Erickson experiments in

that the superficial velocities were much lower, with Re

numbers of 2 to 4 compared to values of 20 to 4O in

Erickson's work. This is an important distinction in that

the axial diffusion flux in the region of maximum mass

transfer for Omatete's work was about 1-2 orders of

magnitude lower than that observed in simulating

Erickson's experiments (values of 0.5 x 10-4

versus O.1 x 10
-2 

equiv/cm
2
/sec). In the very favorable

exchange of Ag+ for H+, gradients were steep

and, as discussed earlier, if the grid increments

chosen were too "coarse," the Crank-Nicholson method

would not converge to the exact solutions. As

discussed, Figure 7-10 for the depicts 1.5 normal



Figure 7-5
Na + Exchange with H + on Dowex 50W x 8 Resin - NO3

Binary Model - Nernst Planck
- Favorable Equilibrium -

0.055 Normal



Figure 7-6
Ag + Exchange with Na+ on Dowex 50W x 8 Resin - NO3—

Binary Model - Nernst Planck
- Favorable Equilibrium -

0.053 Normal



Ag + Exchange with H +  on Dowex 50W x 8 Resin - NO3- Figure 7-7
Binary Model - Nernst Planck

- Favorable Equilibrium -
0.05 Normal



Na + Exchange with H + on Dowex 50W x 8 Resin - NO 	 Figure 7-8

Binary Model - Nernst Planck Relationship
- Favorable Equilibrium -

1.54 Normal



Figure 7-9

Ag + Exchange with Na + on Dowex 50W x 8 Resin - NO3
Binary Model - Nernst Planck

- Favorable Equilibrium -
1 .5  Normal



Figure 7-10Ag+ Exchange with H ± on Dowex 50W x 8 Resin - NO3-
Binary Model - Nernst Planck

- Favorable Equilibrium - 1.525 Normal



exchange of Ag+ for H+ and shows the effect of

decreasing resin and column grid spacing on

solution convergence. Utilizing 11 resin nodes and

101 column nodes provided a convergent solution,

since no further improvement was made by increasing

column nodes to 201. In general, increasing resin

nodes from 11 to 21 had little effect on

improvement in convergence. This intuitively makes

sense since the ratio of actual column dimension to

resin dimension was 500-1500 to 1.

b. 	 Literature Values of Diffusion Coefficient -

Resin Phase 

The simulation program RFMAVD was used with

(1) equilibrium parameters derived from the program

RIONFT, (2) the pseudo electric field film

coefficient derived using the Carberry correlation

for "effective boundary layer film thickness," (3)

axial diffusion coefficients derived from Figure

6-1, and (4) starting values of resin phase

diffusion coefficients derived from literature

sources. These literature sources gave the

following experimental values:

Hering & Bliss, (46) using Dowex 50w x8 resin

found the N.P. effective resin diffusion

coefficients for Na +-Ag+ to be

Na
+ = 2.05 x 10 -6 cm

2
/sec

D
Ag

+ = 0.68 x 10
-6 

cm
2
/sec
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Graham & Dranoff (30) in studying the exchange

of Na
+
-Cs

+
 on Dowex 50w x8 found the effective

diffusion coefficient of Na
+ 

to be D
Na 

= 2.04 x

10
-6 

cm
2
/sec

Boyd & Soldano (7) studied isotopic exchange

of ions to obtain self diffusion coefficients, and

for Dowex 50w x8 resin obtained:

DNa+	 = 0.944 x 10
-6 

cm
2
/sec

DAg+ 	 = 0.642 x 10
-6 

cm
2
/sec

Reichenberg, (97) using Dowex 50w x5, found

the effective Fick's Law diffusion coefficient for

Na
+ 

displacing H
+ 

to be

DNa+H+
	 7.3 x 10

-6

Although the value of D H+ is "buried" in the

effective overall coefficient, a value of 10.0 x

-6
10 	 cm2/sec for DH+ relative to D

Na
+ of

2.0-2.5 cm
2
/sec would not seem unreasonable. No

other value for 	 waswas found in the literature

for the Dowex 50w X8 resin system. In electrolytes

at infinite dilution, the diffusion coefficient

ratio, DH+/DNa+ is about 7.

Gopala Rao and his coworkers (92, 93) measured

D
Na
+ to be 2.04 x 10

-6 
cm

2
/sec in their

tracer experiments on Dowex 50w x8 resin. The

research in this work on Rao et al data yielded a

correlated value of DNa+ to be 2.11 x 10
-6

cm
2
/sec
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using concentration driving force, and 2.88 x 10 -6 cm
2
/sec

using activity driving force.

c. 	 Diffusion Coefficients - Resin Phase 

Diffusion coefficient values were obtained

through repeated simulation of the experimental ECH

curves in order to obtain a single set of values

for DAg+, DNa+, & D H+. This single set of

values had to reproduce the three binary systems at

two concentration levels, and give good

representation of the three ternary systems as well.

The following ranges of diffusion coefficients

were investigated:

cm
2
/sec x 10

6

Dag

- 

+ 	 0.7 - 1.1

DNa

- 

+ 	 1.0 - 3.5

DH

- 

+ 	 5.0 - 15.0

The set of values finally selected to fit the

9 systems were

DAg

- 

+ 	 0.9 x 10
6 

cm
2
/sec

DNa

- 

+ 	 2.5 x 10
-6 

cm
2
/sec

DH+ 	 10.0 x 10
-6 

cm
2
/sec

As can be noted, the value for D Ag+ was not

greatly different from the Hering & Bliss value of

0.68 x 10
-6 

cm
2
/sec or the Boyd & Soldano value

of 0.64 x 10
-6 

cm
2
/sec. The value of DNa+ at

2.5 cm
2
/sec was higher than the measurements of



most investigators who found DNa+ to be about

2.05 x 10
-6 

cm
2
/sec. Dranoff & Graham found-pNa+

to be 2.4 x 1O
-6 

cm
2
/sec with the Stefan-Maxwell

model, and this current work found a value of Dila+ to

be 2.87 x 10
-6 

cm
2
/sec using activity driving

force. No comment can be made on the value of

10.0 x 10
-6 

cm
2
/sec for DH+, since no literature

values were found for exchange in Dowex 50w X8 ion

exchange resin. Turner and his coworkers (129) found

the effective diffusion coefficient for 	 to be

5.7 x 10
-6

cm
2 
in Zeokarb 225-x8 resin based on the

Nernst Planck Model. The other ion exchanged was Na+

in a O.1N Cl- solution and the value obtained for

DNa+ was 1.21 x 10
-6
cm

2
/sec. On a straight ratio

basis, using bNa+ as the key, -5H+ would be about

11.4 x 10
-6 

cm
2
/sec.

d. 	 Axial Dispersion Coefficients 

Although the values of axial diffusion

coefficients were taken from Figure 6-1, several

runs were made in which axial diffusion coefficient

values ten times larger than those given in Figure

6-1 were tried. Considerable uslewing" of the

simulated ECHs resulted, with obviously poorer

fit. The effective resin diffusion coefficients

would have had to be adjusted upward considerably

to match the ECH curves in the Agi"-H+ and
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Ag+-Na+ systems, utilizing the exaggerated

axial diffusion coefficients. This was

particularly true at a normality of 1.5 where resin

phase flux rate tends to control the overall

transport of ions. The effect in the more dilute

systems, where the film tends to control the

diffusion rate, is that smaller film "thicknesses",

, would have had to be employed. These filmOFeff
coefficients would have been higher than and

outside of the range of coefficients predicted by

the Carberry correlation. It was for this reason

that the values of ED (axial diffusion coefficients)

from Figure 6-1 were judged to be about the correct

order of magnitude.

e. 	 Equilibrium Effects 

Considerable effort was expended in attempting

+ +
to fit the Na -H binary systems by utilizing

various combinations of diffusion coefficients with

little initial success. While a given Nat/be

ratio might provide a better fit, the ratio

selected invariably "ruined" the fit on the other

four binary systems. Examination of Figure 7-5

showing the ECH curve for Na+-H+ exchange at

0.05 normality shows a "lazy S" shape. Using

equilibrium parameters correlated from the

experimental data developed by Omatete, fits of

this system tended to be late in first appearance
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of the Na+ ion, and would tend to undershoot the

experimental points at the end of the run. This

suggested that the driving force was too high at

low values of Na
+ 

ion, and too low at the high

concentration end. This same problem was

encountered with the 1.5 normal Nate run as

well, shown on Figure 7-8. Indeed, the equilibrium

data of Omatete gave correlation parameters which,

when used to predict the full binary equilibrium

curves, showed upper "azeotropes" for both

normalities, and no "pinch point" at the lower

Na
+ 

concentrations. Turner and his coworkers

(129) had developed Nate system data at 0.1

normality in their work on ion exchange mass

transfer mechanisms. Use of eleven additional

points from their work, particularly in the upper

and lower regions, allowed refitting of the NatH

equilibrium data. The equilibrium curves

calculated from the new correlation parameters

showed pronounced "pinching" in the region of 0 to

O.1 equivalent fraction Na+ for both

normalities. The O.1 normal curve now "pinched" at

the 0.9 to 1.0 region but did not show a reversal

of selectivity. The "azeotrope" point for the 1.5

normal system was pushed up from around 0.7 to O.82

Na
+ 

equivalent fraction, with the selectivity

reversal being not so pronounced.
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Upon resimulating the ion exchange dynamics

for the Na-H systems, satisfactory fits could now

be obtained using reasonable values (by literature

standards) of D Na+ and DH+ without disturbing

the fits on the other four systems. The lower

"pinch" point reduced driving force in the transfer

region where Na+ concentration was low, so the

+ .
Na ion appeared early, matching the experimental

points. The driving force at both normalities was

increased in the region where Na+ predominated,

and the previously observed undershoot of the

experimental ECH curves by the simulation model was

no longer evident, since the driving forces had

been increased.

This merely illustrates the obvious point that

before dynamic processes can be modeled, the

equilibrium values representing driving force

potential should be experimentally measured and

correlated or estimated as precisely as possible,

particularly when any physical-chemical process

exhibits dramatic selectivity changes as a function

of composition.

4. 	 Conclusions - Binary Ion Exchange Simulation - Column Operation 

The binary model developed based on the features discussed

in this chapter gave excellent simulated representation of the

experimental effluent concentration histories for nine systems,

with literature correlations for all important parameters except



3O2

for resin phase diffusion coefficients and equilibrium data. The

equilibrium parameters used to provide equilibrium driving force

potential were obtained by correlating the experimental data of

Erickson and Omatete using the program RIONFT, except as

supplemented from other literature sources as cited above. The

values of the fitted resin phase diffusion coefficients were

close to previously cited values where such information was

available in the literature.

D. Ternary Solution for Column Ion Exchange Operation 

1. 	 General 

Section B of this chapter covered the development of the

fluid phase equations describing the diffusional processes and

material balance for ternary ion exchange. The two resulting

fluid phase non-linear partial differential equations were

approximated by finite difference equations using the

Crank-Nicholson approach, and these finite difference equations

were expressed in matrix notation in eq (7-27) & (7-28). Section

B also described how the two fluid phase matrix equations were

coupled to the two resin phase matrix equations which were

developed in Chapter V, Section C, describing the diffusional

processes and material balance for ternary ion exchange.

The detailed development of the solution of the four coupled

matrix equations is given in Appendix G, and involves the use of

seven and five diagonal array algorithms developed in this

research to solve the coupled sets of equations. The resulting

solution of the finite difference equations at each time step,

with resolution of non-linear terms through the
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quasilinearization procedure, leads to an approximation of the

concentration profiles in both the resin phase and the fluid

phase, along with diffusional fluxes if desired. Appropriate

adjustment of standard parameters such as film coefficients,

axial diffusion coefficients, and resin phase diffusion

coefficients should result in profiles which match the

experimental effluent concentration histories (ECH) for column

operation.

The binary solution for column ion exchange operations was

covered in Section C of this chapter, since it provided a simpler

treatment of initialization procedures and approximation by

finite difference equations of the relevant boundary conditions,

along with attendant model operating problems and their

solutions. The performance of the binary model in simulating

nine experimental column ion exchange effluent concentration

histories, under widely varying conditions, was judged to be

good. This section will deal with the same initialization

procedures and representation of boundary conditions as they

apply to the ternary exchange. The essential features of the

ternary simulation program, TERNEX, will be described in this

section, as well as the results of simulation of the three

Omatete experimental ternary runs using TERNEX.

2. 	 Initialization Procedures 

The initialization procedure for the binary model was

described in Section C, para. 2. In the ternary model, a similar

"conditioning" of the column is essential to obtain a smooth

start to the solution of the finite difference equations. In the
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ternary model, the procedure is also based on balancing the ionic

species flux at the fluid/resin interface, using a backward

difference numerical representation of

The equations describing flux at the interface where p 	 1 are:

The equations are approximated in finite difference terms for

column length node 1 (column inlet) as:

Note x i (M-1,1 )1 and x .
3
(M —1,1) equal x

i
 (initial) and x

J
.(initial)

respectively.
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Since the equations are non-linear, i.e., equilibrium

relationship and diffusion coefficients are functions of

xi(M,l) and xj(M,l), the Newton-Raphson procedure is used

to solve for x.(M,l) and x.(M,l).

Having determined xi(M,1) and x1 (M,1), the

distribution of concentrations of x.(M,l) and x(M,l) are

determined using the exponential decay function described in

Section C, para. 2. In the ternary case, however, there are

four potential starting distributions:

1.x1(M,1 ) and x
2
(M,1) are > xI(initial) and x 2 (initial)

2. X
1 
(M

,
1) and )(

2
(M

, 1) are < I
(initial) and x 2 (initial)

3.x1(M,1) > xl(itial) and x2 ( M,1) < x2(initial)

4.xi(M,1) < x1 (initial) and ( 2 (M,1) > X2 (initial)

The initial value of ionic species concentration in the bed

is model input data, selected by the user to represent the

case to be simulated. In the three Omatete experiments, two

were based on the resin bed completely in the H + form, or

case 1, and one was based on the resin bed completely in the

Na
+ 

form, or case 3 (since Ag
+ 

= 1, Na
+ 

= 2, H
+ 

= 3

in order of selectivity). Once the program tests for type of

distribution, the appropriate exponential decrease or

increase is made for each component, starting with x i(M,1)

and 	 9xj(M 1) down the length of the column at each columnj 

node.

The concentration of electrolyte ionic species in equilibrium

with xi or J
j(M,l), (l=1,I) or x

i 	
(SO, (2.= 1,1), is

int
calculated next. Then, using the flux balance equations
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described above, equation (7-101), the fluid phase

concentrations are calculated for x
iorjbulk

(l), (l= 1,I).

This technique was used to provide starting compositions

prior to time step j = 1, which would "condition" the column

for a smooth start with minimum "presaturation" due to

initialization, and indeed only 0.5-1.0% initial preloading

was experienced.

In discussing the finite difference representation of

the Boundary condition at the column inlet for the binary

case, Section C, para. 3, it was noted that the

representation given in equation (7-49) worked well for the

binary model RFMAVD. It was further noted that Svedberg

(125) had found in cases where the concentration gradients

were too steep that the composition at the bed inlet tended

to oscillate, but that the oscillations were not transferred

into the bed. In simulating ternary ion exchange under the

experimental conditions used by Omatete, i.e., very low electrolyte

convection flux relative to resin takeup flux, it was found that

the concentration gradients were steep 	 Even using a fine grid

spacing (ΔY = 0.01), in the simulation, oscillations in electrolyte

concentration, x 4ibulk (l), and xjbulk(2) would pass down the column in a

"ripple" effect. A revised initialization procedure corrected this

problem, so it will be described here under Initialization rather

than under the section on Boundary Conditions.

The revised procedure was to allow the solution to the

equations describing the ternary ion exchange to proceed



through the first ten dimensionless time steps, but at each

step

for m = 1,M and 1 = 1,I

It was found that a "wgt" (weight) of about 0.50 minimized

the perturbations after running the calculations through j =

10. The "clock" is then set back to j = 1, and the solution

restarted using the distribution of concentrations in the

resin and solution phases resulting from the solution at j =

10 (start). After the new start, the weighting relationship

described above is "turned off" for the remainder of the

computation. Invariably this procedure led to a smooth

initial second start, and although some bed "presaturation"

was a natural consequence of the procedure, the "preloading"

rarely exceeded 2-3%. This initialization procedure is used

in TERNEX, the ternary ion exchange simulation program.

3. 	 Treatment of Boundary Conditions by Numerical Approximation 

The numerical approximation of Boundary Condition (B.C.)

at the column inlet was described in Section C, para. 3, for

the binary model, along with a discussion of potential

instability problems. The revised initialization procedure

ameliorated the problem of composition oscillation at this

B.C. for the ternary model.

The approximation of the second boundary condition, at
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the column exit, was described in Section C, pars 3, for the

binary model. As discussed, the column increment between

column nodes i = I-1, and I was approximated by a CFSTR

model, and this was based on experience gained from results

of early simulation trials with the ternary model. Use of

the CFSTR model reduced the "stiff" condition at the column

exit, and allowed the "S" curve to pass through in a normal

manner. Prior to the new initialization procedure described

above, the ripple caused by the inlet oscillation would reach

the column exit and the concentration "pile up" was even more

severe. The combination of smoothing the initial operation

enhanced the effect of using the CFSTR model at the column

exit in terms of producing reasonable ECHs for the three

ternary cases simulated.

4. 	 Features of Ternary Modeling Program - TERNEX 

4.1 	 The ternary model is based on the coupled matrix

equations describing the Nernst-Planck diffusion model

for three ionic species in the resin phase, along with

the coupling of the ternary fluid phase matrix equations

to the resin phase matrix equations to describe the

effluent concentration history of fixed bed ion exchange

operation. Diffusion through the "film," or stagnant

layer separating the resin phase from the fluid phase,

is based on a pseudo electric field model, which again

utilizes the Nernst-Planck relationship describing

interdiffusivity under the influence of an electric
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field--in this case assumed constant through the "film,"

as is coion concentration. Axial dispersion for all

species is accounted for by a single value for the axial

diffusion coefficient, and the ternary equilibrium is

described by mass action type of relationships, using

the Redlich-Kister activity coefficient model to predict

resin phase activity coefficients for each ionic species.

Discussion in Sections A and B of this chapter

described the use of the quasilinearization technique to

"linearize" non-linear terms and, through use of seven

and five diagonal algorithms, the four coupled matrix

equations are solved at each time step.

4.2 	 The ternary model, TERNEX, unlike the two binary

models, BMAVD AND RFMAVD, or the batch ternary model,

TRYBCH, does not have an option to use activity driving

force instead of concentration driving force. The case

for use of activities versus concentrations in ion

exchange processes is best tested by simulating batch

type experiments based on, for example, radioactive

tracer techniques. Unless the deviation from ideality

is large, the activity effect on column effluent history

is difficult to discriminate. As was shown in the

discussion of the simulation of Erickson's experiments

on the system ETDA-NH 3 , use of equilibrium parameters

correlated in terms of either mole fraction or

equivalent fraction give identical results for all
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practical purposes. Consequently the ternary model,

TERNEX, utilizes equilibrium parameters correlated in

equivalent fraction only.

4.3 	 The detailed features of TERNEX are given in

Appendix L.

E. Ternary Simulation of Column Operations 

1. 	 Discussion - Omatete Experiments and Simulation Results 

1.1 Experimental Results and Model Development 

The experimental technique used by Omatete in both

the binary and ternary runs is described in Section D,

para. 3.1 of this chapter. In developing experimental

ECH data on the film controlled ternary systems (0.05

normal), Omatete performed two runs, S-17 and S-18, but

only S-17 was used. The plateau concentration in run

S-18 was not fully developed due either to a flow rate

which was too high, or the column (2 ft.) was too short

for the conditions imposed (feed x
Ag 

= 0.75
,
x
Na 	

0.25;

column preloading xAg = 0.250, Na = 0.240, xH - 0.510).

Experiments in the region where resin diffusion rates

were controlling (1.5 normal) were performed using four

different combinations of feed and column conditions, labeled

runs P-7, P-8, P-15 and P-16. Of these, only runs P-8 and

P-15 had fully developed concentration plateaus and so were

simulated. The two runs not used were for conditions in which

the column was presaturated with all three species, rather

than a single species as in runs P-8 and P-15. No explanation
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was given for the lack of development of the concentration

plateaus in the two rejected experiments; however, in

retrospect, the rejected experiments may have been more useful

if only one species, say 11+ , was in the elution feed thereby

simulating column regeneration (unfavorable exchange).

Omatete's model development is covered in detail in

Section D, para. 3.2 and, as discussed, was based on constant

separation factors to describe equilibrium, and rate laws in

which either a fluid interface film controlled at low

normalities, or a pseudo resin "film" controlled at high

concentrations of electrolyte. Four models were described:

(1) Simple Fick's Law, (2) Improved Fick's Law, (3) Nernst

Planck, and (4) Improved Nernst Planck. The Improved Fick's

Law, with polynomial fitted constants, gave the best all

around representation of the six binary runs. The same binary

models were extended to the ternary case by use of the

combinatorial rules given in Section D, para. 3.2.

1.2 	 The ternary ECH curves were fit equally well by all four

models. Two ECH curves, S-17 (0.05 normal) and P-8 (1.5

normal), were fit quite well, and P-15 (1.5 normal -

unfavorable) would have been reasonably good if an adjustment

had been made in the thruput parameter (resin equivalents) to

account for less adsorption of AgNO 3 than had been allowed

for by Omatete in this run. As will be discussed below,

equilibrium considerations and material balance are extremely

important in ternary ion exchange in defining the height and
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length of plateaus, so even if the dynamic considerations are

not correctly predicted, the general shape of the ternary ECH

curves will appear to be satisfactory. It is likely that

these considerations made model discrimination difficult in

the ternary cases, and therefore the binary rate runs are more

useful in determining ion exchange parameters from simulation

of experimental data.

2.0 Simulation of Omatete's Ternary Experiments - This Research Project 

2.1 General 

The results of simulation of the three ternary runs,

S-17, P-8, and P-15, are shown on Figures 7-11, 7-12, and

7-13. TERNEX was used to perform the computations leading to

the simulated ECH curves for the ternary cases. In all cases,

the ternary equilibrium concentrations were calculated from

the fitted equilibrium constants, and resin phase activity

coefficients derived from the correlated experimental binary

data including the two ternary data points. The electrolyte

phase activity coefficients were calculated from the Bromley

Equation. The film coefficients were derived based on

corrected single ion diffusion coefficients plus the Carberry

film coefficient correlation using the pseudo electric field 

film model. The axial diffusion coefficients were obtained

from the generalized correlations, Figure 6-1. The resin

phase "self" diffusion coefficients were derived from "best"

fits of the six binary rate runs, and used in program TERNEX

with concentration driving forces (vs. activities). 	 The

literature values of the "self" diffusion coefficients were



Figure 7-11

Ag + and Na + Displacing H + on Dowex 50W x 8 Resin - NO3-
Ternary Model - Nernst Planck

- Favorable Equilibrium -
0.0533 Normal



Figure 7-12

Ag+ and Na + Displacing H + on Dowex 50W x 8 Resin - NO 3-
Ternary Model - Nernst Planck

- Favorable Equilibrium -
1.51 Normal



Figure 7-13

Ag + and H + Displacing Na + on Dowex 50W x 8 Resin - NO3
Ternary Model - Nernst Planck

- Unfavorable Equilibrium -
1.5 Normal
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cited in Section D, para. 3.0, subsection 3.4, and the values

utilized in the simulation of 6 binary systems and 3 ternary

systems were not far different from those values. The

results, as seen in the plots, are reasonably good,

particularly since all of the information used provided good

simulations of the six binary cases as well.

2.2 Equilibrium and Material Balance Considerations 

This section will deal with the problems encountered in

representing the period of "dwell" for plateaus in the ternary

simulations. As can be seen, in a favorable exchange of a

feed consisting of Ag+ and Na+ with a column containing

resin presaturated with the least favored species, H + , the

first breakthru is Na
+ 

ion at a concentration level which

exceeds the Na
+ 

ion inlet concentration. H
+ 

ion level

decreases, but to a plateau level higher than its feed

concentration. The total exchange is completed when the Ag +

breakthru is observed, and all concentrations reach their feed

values.

This phenomena can be best visualized by assuming

instantaneous ion exchange of Ag+ for H+ , allowing Na+

and H
+ 

released by the ion exchanger to proceed ahead in a

"binary" mode. The resin ahead of the Ag + front soaks up

Na
+ 

ion, in effect storing it, until the Ag
+
 ion rich feed

front gets to that point. The excess Na + is then "chased"

and lends its concentration to the forward front--thereby

building Na+ concentration to a higher level than the Na

+concentration in the feed. The Na + in the fluid phase has
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concentration gradients allowing it to attempt to diffuse up

and down the column away from the plateau. In the down column

direction, the gradient is gradual as some Na + is ion

exchanged with H+ in the resin. Up column, the gradient is

steep, since there is no place for Na+ to go except to

satisfy the ternary equilibrium requirements of the feed with

the resin. Keep in mind, when looking at an ECH curve, that

as an observer in the column you would view the concentration

history as occuring in the reverse direction from the time

plot. First Na+ arrives displacing H+ , then the Na+

concentration drops as it is exchanged to satisfy the feed

equilibrium, and Ail' ion appears in the electrolyte phase

for the first time as the resin is saturated.

The concentration height of the Na + ion above inlet

value can be approximated simply by material balance as

follows:

assume:

o wave fronts are square

o the most preferred ion displaces all species 2

and 3 ions ahead of it

o the concentration of species 2 and 3 ions

represents a pseudo binary in equilibrium with

the resin in their end of the column

o in the diagram below, excess species 2 in area

B = deficit of species 3 in area A.



Checking this approximate method 

bulk concentrations

calc. obs. calc. obs.

X 11in
x
2.
in

x
3.
in

x
2

.
x
2

,

x3 x3

S-17 0.25 0.24 0.51 0.365 0.365 0.635 0.635

P-8 0.350 0.24 0.41 0.415 0.39 0.585 0.61

P-15* 0.187 0.133 0.680 0.22 0.175 0.78 0.83

*unfavorable non-sharpening "S" curve so area A = area B

The next question is, what determines the approximate

"dwell" for the species 2 and 3 plateaus? Again, a

material balance gives the approximation, but this time it

involves the ternary resin composition in equilibrium with

the feed composition. Time T depicted in Figure 7-14 can

be computed based on favored species 1 by balancing

equivalents into the column against the holdup of species

1 in the column up to time T, i.e.:
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where:_*
x
1 
= resin concentration of species 1 in equilibrium

with the ternary system feed composition

In the case of run S-17 time T works out to 46,700 seconds

versus about 46,600 seconds observed. It is by this mechanism

that the resin equivalents were adjusted in this work to account

for adsorption of complexed AgNO 3 (Omatete adjusted his

Thruput Parameter in an analogous manner). Time T is thereby

anchored to the observed value by material balance. In the case

of the two Ail- binary systems, this correction was about 15%.

In the case of the ternary systems, the AgNO 3 adjustments

would be less because the Ag + feed compositions were lower

(between 0.187-0.350 equivalent ionic fraction), and the

adjustment represented approximately 7% for the worst case, P-8

(100 milliequiv/1500 milliequiv).

Similarly, the initial plateau time for Nil", or

species 2, can be approximated by a material balance on

species 2 and knowledge of the ternary phase equilibrium

diagram.
(7-105)

Species 2 balance 

where:_*
x
2 
= resin concentration of species 2 in equilibrium

with the ternary system feed composition
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This simple approach, using values from S-17, gave a t

from Figure 7-14 equal to 23,860 seconds vs. 24,000 observed.

In this case, the equilibrium concentration value of Na +

taken from Figure 2-5 was 0.16, and represented one of the

ternary data points resulting from closing the material

balance on the three ternary runs. The initial correlation of

Omatete equilibrium data using program RIONFT, not including

the material balance points, gave x Na+ for S-17 as

0.185--resulting in a simulation result with t = 25,100

seconds, or 5% less dwell time. Run P-15 would have had an 8%

shorter dwell for the H
+ 

plateau based on correlation of the

Omatete initial equilibrium data. The ternary equilibrium

point correlated for P-8 conditions was close to the material

balance requirement for that run, and no change was observed

during recorrelation with the material balance points.

The previous discussion was detailed, not so much to

provide a simple method of predicting ternary ECH curves, but

to show the rationale for engaging in the somewhat time

consuming procedure required to reconcile material balance and

equilibrium data by a procedure consisting of:

(a) approximating the ternary equilibrium points from the

correlation of the original data without the material

balance points

(b) simulating the ternary runs and observing from material

balance considerations, based on the plateau dwell, what

the ternary equilibria concentrations should be to give a

better fit
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(c) refitting the binary and ternary equilibrium data with

program RIONFT, using the new material balance

equilibrium points in addition to the original data

(d) resimulating the six binary rate runs to make sure that

the influence of the new material balance points on total

data regression to obtain new equilibrium parameters did

not alter those ECH curves significantly

(e) resimulating the three ternary systems to check out the

effect of the new equilibrium parameters on the general

material balances and Na + and H+ plateau "dwells"

(f) repeating above, to "fine tune" the equilibrium

correlation. This procedure was time consuming, and

future investigators are encouraged to add a few more

measured equilibrium data points in order to reduce

correlation effort. The first ternary phase diagrams

generated with the ternary phase diagram regression

program, RIONFT, would have provided an excellent

first "map" to select regions for additional

experimental equilibrium data points.

2.3 Stability and Convergence of TERNEX 

The general considerations of convergence and

stability of the Crank-Nicholson method were discussed in

Section C, para. 4, for binary model simulation results.

The solution time for TERNEX, with resin mode grid spacings

of 11, and column nodes of 50, with maximum dimensionless

time (number of empty columns full displaced by the feed
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solution during the run) divided by 800 required about

2.5-3.0 CPU hours. Therefore the number of tests at

varying increment spacings during the ternary modeling was

limited, in view of the iterations required to resolve the

equilibrium and material balance tolerance as described

above. In the case of experiment S-17, runs of M = 7, I =

51, T = 1200 were identical with M = 11, I = 101, T = 1200

(resin nodes = M, column nodes = I, time increments = T)

and convergence and stability were assumed. In experiment

P-8, runs of M = 7, I = 51, T =1850 were identical to M =

11, I = 101, T = 1850, and convergence and stability were

assumed.

Run P-15, Figure 7-13, an unfavorable exchange was

fitted at M = 11, I = 51, and T = 800 with good results

except for the initial appearance of Na+ and H -1. ions.

A final check at M = 11, I = 101, and T = 2100 (7 CPU hours

on a DEC VAX 11/780) showed some tightening up of ECH

profile for this unfavorable (nonsharpening "S" curve

profile) exchange. However, the final appearance of the

Ag+ ion in the electrolyte phase was delayed by 250

seconds (less than 1% of the total material balance), and

it was deemed proper not to "retune" the H + equilibrium

point to compensate for this difference. It would suggest

that in ever spreading elution ECH curves, where

unfavorable exchange exists, that a "fine" grid should be

utilized with the Crank-Nicholson method to maintain
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stability and convergence. Whether the State Variable

method (65) or Collocation method (29) would be better

(less computer time) than Crank-Nicholson remains to be

tested.

3. 	 Conclusions 

The ability of the binary model, RFMAVD, and its ternary

version, program TERNEX, to simulate ion exchange in columns

under wide ranging conditions has been demonstrated, as verified

against experimental data on actual column runs. The use of

literature information on all input parameters, except

equilibrium data and ionic species "self" diffusion coefficients

makes the models "powerful." The non-linear regression packages

accompanying the dynamic models has improved the overall model

capability, since with minimum experimental data if necessary,

thermodynamically sound equilibrium parameters can be

determined. Additionally, "self" diffusion coefficients found

in literature sources for ubiquitous ions in the more common ion

exchange resins (Dowex 50w) can provide a starting point for

diffusion coefficient parameter estimation utilizing

experimental ECH curves. Future studies should be concentrated

on use of activity driving force versus concentration driving

force, but this can best be explored with "batch" type

experimentation on a variety of ion pair combinations. Finally,

other numerical methods should be investigated for inherent

convergence, stability and potential for reduction in

computation time. Industrially, CPU solution times of 6 hours
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are acceptable given the fact that the numbers of VAX 11/780

type systems are growing in industry at an accelerated pace.

Even with existing installations, CPU utilization is normally

limited to 6 out of 21 shifts/week, so access for longer running

programs is not a problem. The major advantage of faster

running methods which are both convergent and stable would be to

couple the binary column ion exchange model based on those

methods to a non-linear regression package. This was done with

program BMAVD, the batch binary model, to develop program DFUSFT,

the non-linear regression model designed to fit diffusion

coefficients based on data generated in batch type ion exchange

experiments. It should be possible to use experimental ECH data

for a variety of binary ionic pairs as input to a regression

routine from which diffusion and film coefficients could be

derived. Using program RFMAVD as a subroutine, solution times of

20 minutes/ECH curve would be needed to yield a practical

regression model of this type. This would require a 4-5 fold

reduction from current solution times on a DEC VAX 11/780. This

next step is a logical refinement of the currently described ion

exchange modeling package.



CHAPTER VIII 

SUMMARY 

A. Background 

The development of a model to simulate the exchange of two or

three counterions in an ion exchange resin selective for a desired

ionic species has wide application in hydrometallurgical processes,

waste treatment operations, winning of precious metals, and by

analogous mechanism, to future biotechnology applications. Past

treatments of ion exchange models have been concerned primarily with

binary systems. These models represent phase equilibria with simple

linear isotherms and the dynamics have been simulated using dominant

film theory. The dominant film models are based on treatment of

ionic diffusion in the resin phase as through a fictitious solid

"film" surrounding the resin particle.

In all cases, in order to arrive at analytical solutions to the

system of equations describing binary ion exchange in a fixed bed,

the axial diffusion term has been neglected, linear equilibrium

isotherms have been assumed, and diffusion parameters have been

assumed to be constant. Numerical methods treating binary ion

exchange kinetics have been a natural evolution in ion exchange

theory over the past ten years. It was recognized that the axial

dispersive effects cannot be ignored and that the equilibrium

relationships are non-linear, so that numerical methods must be

employed in order to obtain solutions.

The Nernst-Planck model has been shown to be effective in

describing interdiffusivity of ions within the resin phase and also

325
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in the film surrounding the resin particle, and these additional

nonlinear effects mandate numerical solution methods. Investigators

have examined separately the application of the Nernst-Planck model

to the resin phase and to the film around the resin in order to

determine the applicability of the model in each domain. Models of

ion exchange dynamics in binary systems inclusive of both effects

have been investigated by Turner and Snowdon in shallow fluidized

beds (131) and Rao and his coworkers (92, 93) in batch type single

particle experiments. Pan and David (83) developed a model inclusive

of both effects for moving beds, but without axial diffusion terms.

Ternary ion exchange systems are more important in industrial

applications than binary systems. For example, in selectively

separating one cation from another, the mixed cations may be

dissolved in dilute acid, or the selectively recovered cation may be

eluted with strong acid, so e ion normally is involved with the

two cations being separated. Two recent models were developed for

simulating ternary ion exchange systems. Rao and his coworkers (92,

93) incorporated the Nernst-Planck diffusion model in the resin phase

together with a pseudo Nernst-Planck treatment in the film to

simulate batch experiments, and Omatete (78) developed a single film

kinetic approach to fixed bed simulation. Neither model utilized

thermodynamic equilibrium relationships to describe the distribution

of ionic species between the electrolyte phase and the resin phase,

and consequently neither characterizes phase equilibria adequately.

The present status of ion exchange in industrial process

applications is similar to that of distillation technology twenty

years ago. Distillation theory then treated the equilibrium stages
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required, with dynamics of tray efficiency left to experiments in

standard laboratory devices such as Oldershaw columns, plus

generalized correlations which could be used to estimate the tray

efficiencies as first approximations. Predictive methods for phase

equilibria have advanced enormously during the period including the

development of the NRTL and UNIFAC equations for prediction and/or

correlation of liquid phase activity coefficients. Through the

efforts of Fractionation Research Institute (FRI) and other similar

agencies, tray efficiencies now can be predicted with good

confidence. Systems for component separation by distillation can now

be designed reliably without resort to experimental confirmation in

many instances.

B. Objective 

The objective of this research work was to likewise advance the

engineering of ion exchange systems. Specifically, the objective was

to develop a simulation model for ion exchange in ternary systems

which would embody all of the currently proven factors applying to

prediction of phase equilibria and the dynamics of ion exchange in

fixed beds. A further objective was to develop a model requiring a

minimum of experimentation for parameter estimation. A ternary

system simulation model has been developed and, together with

parameter estimation support programs, computer based optimization of

the design and scale up of ion exchange systems can be carried out

with reasonable confidence. The time and cost required to optimize

and develop scale-up parameters through laboratory and pilot plant

investigations should be reduced considerably.
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C. General Approach to Development of Model and Parameter Estimation

Programs 

1. Overview 

Figure 8-1 provides a "road map" of the development of the

general purpose Ion Exchange Model for binary and ternary

systems, along with the support regression analysis programs for

parameter estimation. Along with Figure 1-1, which depicts the

summary approach to model development and application discussed

in the introduction, Figure 8-1 can be utilized to describe the

necessary steps required to develop a model of any physical

process. The discussion to follow will highlight only those

activities considered to be the key advancements or improvements

in the present work over other ion exchange models. The general

approach utilized in the model development was to treat (1) the

Fluid Phase Material Balance, (2) the Phase Equilibrium 

connecting the electrolyte phase to the ion exchange phase, and

(3) Transport Resistance to ionic diffusion through the film and

within the resin phase, all as separate phenomena to be

researched and developed before combining them into the

framework of an overall ion exchange model. The Figure 8-1

"roadmap" should be referred to as each major model element is

discussed in the subsequent Part C paragraphs.

2. Fluid Phase Material Balance 

The major consideration in the development of the

electrolyte phase material balance equations was the addition of

an axial dispersion term to the basic equations describing the

concentration dependence of each ionic species as it moves



FIG. 8-i
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through a fixed ion exchange bed. This feature is obviously not

a new concept and has been examined by most investigators of

fixed bed operation involving adsorption or ion exchange. Due

to the mathematical complications involved, it has been assumed

to be negligible in most analytical solutions. Binary system

models based on numerical solution methods which have been

developed by other investigators normally have included the

axial diffusion term for simulation of adsorption or ion

exchange in fixed beds. These investigators found through

simulation of experimental results that the axial dispersive

effects were significant and could not be neglected. The fixed

bed ion exchange model for ternary systems developed and tested

by Omatete (78) did not include axial dispersive effects in

order to simplify his numerical method solution procedure. An

alternative material balance case shown on Figure 8-1 is that

for the moving bed. The moving bed has not had wide industrial

application due to practical problems involved with the handling

of fragile resin beads without damage. In any event it

represents a simple revision to the fixed bed model, since the

fluid phase material balance reflects a steady state

relationship to the resin phase at all points in the column.

The "batch" model listed on Figure 8-1 requires no fluid phase

material balance, since its use in this work assumed no change

in electrolyte composition during the exchange of ionic species

within the resin.

A search of the literature for correlations of axial

diffusion coefficients in packed beds led to development of
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Figure 6-1 (12, 23, 27, 32, 61, 78, 115, 124). A model for

simulating axial dispersion in packed beds was developed in this

research. This model was used to determine the axial dispersion

coefficients at two Reynolds numbers from the experimental data

developed by K. L. Erickson (26). These points were added to

Figure 6-1.

The material balance module for the electrolyte phase was

prepared in the form of partial differential equations,

including appropriate Initial and Boundary Conditions, to be

included in the overall model.

3. 	 Phase Equilibria 

The phase equilibria relationships describing the distribution

of three counterions between the electrolyte phase and the ion

exchange resin phase had to be developed in order to obtain reliable

predictable driving force potentials for the dynamic model.

Utilization of a standard format known as the rational thermodynamic 

equilibrium constant satisfied the Gibbs free energy equlibrium

constraints in that the activity relationship of each species, in

both the resin and electrolyte phases were related by a constant at

a given temperature. The equilibrium constants in a ternary system

are therefore related by the chain rule (equation (2-19)),

This relationship is useful in the estimation of ternary ion exchange

system equilibrium parameters since the degree to which it is

satisfied is a measure of the consistency of the experimental data.
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A survey of literature on correlation of activity

coefficients of single ionic species in single salt and mixed

salt electrolyte solutions led to selection of the Bromley

version (9) of the extended Debye-Huckel equation (equation

(3-4)). The Bromley equation was tested in this research

against experimental values given by Robinson and Stokes (106)

for activity coefficients on 17 salts at concentrations up to

5-6 molal, and was found to yield satisfactory predictions.

Bromley parameters (9) which extend the predictive concentration

range to the 5-6 molal region are available for a large number

of salts, and the Bromley equation format has been arranged to

allow prediction of single ion activity coefficients in mixed

salt electrolyte solutions.

The equilibrium model could not be completed until a

satisfactory model was found to describe the activity

coefficient relationship of three ionic species within an ion

exchange resin as a function of concentration. Three models

were selected based on a review of the literature, including the

work of Smith and Woodburn (116) on the NO3-Cl-SO4

system. These models were the three suffix Redlich-Kister, the

Wilson, and the NRTL equations.

The rational thermodynamic equilibrium relationship,

including the Bromley equation to describe electrolyte phase

activity coefficients, was tested with each of the resin phase

activity coefficient models described above. The models were

also tested with regard to improved predictive capability

depending on whether mole fraction or equivalent fraction
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concentration units were used in the resin phase. Use of

A. K. S. Murthy's non-linear regression program to estimate

unknown parameters in explicit algebraic equations allowed

testing of the models against experimental data available in the

literature for four ternary ion exchange systems. These were

(1) Mn++ , Cs
+
, Na

+
, (2) Sr

++
, Mn

++
, Cs

+
, (3) NH4 , Na

+
, H

+
,

and (4) NO 3 , Cl , SO4 .

The selected equilibrium model included the three suffix

Redl ich-Ki ster equation utilizing equivalent fraction

concentration units to describe activity coefficient

relationships in the resin phase. The selection was based on

overall ability of that model to correlate binary systems and to

predict ternary data points from the binary system parameters.

4. 	 Transport Resistance 

All models of diffusion processes must deal with the

phenomena related to movement of physical entities through a

medium, whether the entities are electrons, ions, or molecules.

The rate of movement or diffusion can be characterized by

(1) driving forces and (2) parameters related to the ease of

movement of the entities, the diffusion coefficients. Movement

of ions within an ion exchange resin, or intraparticle 

diffusion, has been characterized successfully with the

Nernst-Planck model (equation (5-5)). The general equation has

been derived for ternary systems in terms of chemical potential

(equations (5-6), (5-7), and (5-8), and has been reduced to the

ideal case (equations (5-10) and (5-11)) and to the binary

non-ideal and ideal cases (equations (5-21) and (5-13)). The
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inclusion of the Nernst-Planck model in the continuity equations

for the resin phase is shown in equations (5-48) and (5-50).

These equations, including appropriate initial and boundary

conditions, constituted formulation of the resin phase diffusion

model.

Many correlations for prediction of resistance to diffusion

of molecular species through a film have been produced over the

years, premised for the most part on boundary layer theory

(equation (4-1)). Carberry's correlation (11) for fixed beds

has been found satisfactory by many investigators and was

adopted in this research (equation (4-2)). Defining the

effective diffusion coefficient for use in such film resistance

correlations as applied to ion exchange has attracted the

interest of many investigators (26, 50, 78, 83, 131, 132), who

variously recommend use of the value for the slowest ion, the

average value, or the harmonic mean value. In most cases, the

limiting value (infinite dilution) diffusion coefficients of

single ions have been used regardless of the convention used in

the choice of diffusion coefficient. By combining the

Nernst-Hartley (104) equation, which relates the effect of the

activity of an ionic species on its diffusion coefficient

(equation (3-11)), with the Bromley equation which predicts the

effect of solution Ionic Strength on ionic species activity, a

relationship was derived between ionic diffusion coefficients

and electrolyte concentration. Both an integrated and a

differential form of that relationship was derived in this

research. The two forms were tested against experimental
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diffusion coefficient values given by Robinson and Stokes (106)

on 17 salts involving concentrations up to 4 molal, and the

integrated form was found to yield reasonable results. This

correction was applied to all electrolyte phase diffusion

coefficients in this work.

Migration of ions through the film surrounding each resin

particle was recognized in previous work as being subject to an

interdiffusivity dependency based on the Nernst-Planck model,

the coions in the film electrolyte being analogous to the fixed

charges in the resin. In this instance, however, the coions are

free to move and do so in such a way that the concentration

gradient of the coions in the film are counterbalanced by the

electric charge gradient in the film. This phenomenon is

interrelated with the relative diffusion coefficients of the

counterions diffusing through the film.

The effect of an electric field in the film for binary

systems had been treated rigorously by several investigators

(43, 50, 131, 132); however the complexity in applying these

rigorous derivations to ternary systems led this investigator to

adopt a model somewhat similar to that adopted by Rao and his

coworkers (92, 93). If the coion gradient in the film is

assumed to be small, i.e., δc *i/δy = 0, then the coion charges of

sign opposite to those of the counterions are distributed

uniformly thru the film, in a manner analogous to the fixed

charges in the resin. The Nernst-Planck equations derived for

the resin phase system can then be applied to the film phase to

interrelate the diffusivities of the exchanging ions. Assuming
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the concentration gradients of all species to be linear across

the film, average electrolyte phase ionic concentrations can be

used in the model to yield concentration corrected diffusion

coefficients for each species. The Nernst-Planck equations then

are used to predict the flux of each species through the film.

The film "thickness," δeff, is computed for the major flux

based on the following equation:

The effective diffusion coefficient D
ieff-max
	is derived

from the Nernst-Planck relationship and the film coefficient,

k L
	 , is calculated from the Carberry film coefficient

eff-max

correlation using D i 	for the major flux species.
eff-max

This film "thickness" is utilized to compute the film

coefficients of the other ionic species using equation (4-90)

and (4-91). The pseudo electric field model was tested against

the rigorously derived Kataoka and Yoshida correlation (50) for

homovalent exchange and found to yield comparable results in

subsequent simulations. The pseudo electric field film model

was judged adequate for incorporation into the overall

simulation models for both batch and fixed bed cases.

5. 	 Overall Simulation Model - Partial Differential Equations 

The general ternary system equations were developed for the

resin phase (equations (5-48) and (5-50)) and the electrolyte
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phase (equations (7-13) and (7-14)), along with the appropriate

boundary conditions described in Chapters V and VII. The

equations describing flux of species through the film linked the

two non-linear parabolic equations describing the electrolyte

phase with the two non-linear parabolic equations describing the

resin phase through the phase equilibria relationships at the

resin-film interface. The models could then be reduced to

numerical difference equations and subsequently solved.

6.

	

	 Numerical Methods and Reduction of Equations to Finite 

Difference Format 

6.1 General Background 

Svedberg (125), in his doctoral disseration involving

numerical methods for simulation of fixed bed processes,

found that the implicit Crank-Nicholson finite difference

method, combined with Lee's quasilinearization technique

(59) for resolution of non-linear terms, simulated fixed

bed operations successfully for a wide variety of

conditions. Svedberg used the Thomas algorithm (13, 125)

for solution of algebraic equations having tridiagonal

matrices, since the quasilinearization technique reduced

the system to a set of linear algebraic equations.

Solutions were found to be convergent and stable, providing

that grid increments were made fine enough. This method

was adopted for this research project.

6.2 Binary and Ternary System Batch Model 

The batch model involved solving the resin phase
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equations only, and in ternary systems, the combining of

the continuity equations for two species resulted in

algebraic coefficient matrices having 7-diagonal

regularity. An algorithm was derived and tested to invert

the seven-diagonal matrix in order to obtain solutions for

the unknown resin phase concentration values. The two

equations describing the ternary system phase equilibrium

involved an implicit relationship between the electrolyte

phase concentrations and the resin surface concentrations.

Since the particular derivatives were required for

quasilinearization of terms nonlinear in concentration,

the use of techniques for differentiation of implicit

functions (70) was required.

To reduce the quasilinearization complexity, values

fo rDii and Dijand their eight partial derivatives
13

with respect to species 1 and 2 concentrations were

performed at time step j versus 
j+1/2.

 It was

subsequently shown that systematic bias introduced by the

simplification was very small ( 0.01%). The binary system

batch model developed in this work was used as a subroutine

of Dr. A. K. S. Murthy's non-linear regression program for

time varying system parameter estimation. Several resin

phase models, (1) concentration driving force, (2) activity

driving force, and (3) multi-suffix diffusion coefficients

(Stefan-Maxwell model), were used to simulate experimental

batch data of Rao and his coworkers (92, 93), with ionic

species diffusion coefficients estimated for a variety of
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cases. The model utilizing the activity driving force

expressions performed best in these verification trials.

Subsequent verification of the resin phase batch

models against prediction of data generated by Rao and his

coworkers on ternary system ion exchange gave qualitative

indication that the activity driving force model performed

best.

6.3 Binary and Ternary System Fixed Bed Model 

The equations describing the fluid phase concentration

change in ternary systems could be reduced to finite

difference equations which, when combined, resulted in

matrix equations yielding a regular 5-diagonal coefficient

matrix. An algorithm for inversion of this type of matrix

equation was derived and tested. Coupling of the resin

phase matrix equations to the fluid phase matrix equations

was performed through the film boundary condition

representing equilibrium with the resin surface. The

7-diagonal algorithm factors containing fluid phase

concentration vectors in terms of resin surface

concentration vectors could be carried over into the

5-diagonal algorithm containing resin surface concentration

vectors, and substituted to eliminate resin phase

concentrations at each column node. The fluid phase

equations could now be solved for fluid phase

concentrations at each node down the packed bed. These

fluid phase concentrations could then be used back in the

7-diagonal algorithm to solve for the resin phase
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concentrations at each column node and at each resin node.

This mode of coupling permitted solution for all

concentrations at each iteration, and was repeated after

updates on derivatives for non-linear expressions until

convergence of non-linear terms had been achieved at each

time step.

At this stage, complete fixed bed effluent 

concentration histories (ECH) could be simulated, and this

was performed for the Erickson (26) experimental work on

the system NH+4-ETDA++, Dowex 50W X8/Cl in order

to verify the binary system fixed bed model. In addition,

comparison of the rigorous derivation of film field effects

by Kataoka and Yoshida (50) against the pseudo electric 

field model was performed to confirm the efficacy of the

latter model.

The diffusion coefficient parameters for the system

Ag
+
-Na+-H+/Dowex 50W X8 researched by Omatete (78)

were determined by matching the ECH curves on the six

binary system runs. These diffusion coefficients were

utilized to simulate the three ternary system runs.

Representation of the column exit boundary condition (B.C.)
dx.

as 	 = 0 gave rise to oscillation in concentration of

the column exit. Representation of this B.C. as a CFSTR at

the last column increment ameliorated the problem. The

CFSTR representation was added to the binary model as well,

and all binary simulations were rerun to confirm that no

unforeseen problems occurred. The three Omatete ternary
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systems were successfully simulated.

Other studies of Crank-Nicholson method stability as a

function of time and geometry increment size were performed

to provide guidelines in the use of the model.

The fixed bed model for ternary ion exchange and the

regression analysis support programs had now been proven

and tested against a wide variety of experiment conditions

and systems.

D. Results 

1. 	 Fluid Phase Material Balance 

The generation of the fluid phase material balance

equations for ion exchange in ternary systems was

straightforward. Addition of axial dispersive terms required

information on values of Axial Diffusion Coefficients versus

Reynolds number. A number of correlations are plotted on Figure

6-1. However, Erickson (26) had obtained data on dispersion of

NH+4 ion in aqueous solutions in fixed beds by pulsing

conentration, and a model was developed in this work to fit the

Erickson experimental dispersion curves. Values of axial

dispersion coefficients of 3-7 cm
2
/sec obtained from the

parameter fitting process were plotted on Figure 6-1 and are an

order of magnitude higher than values derived from other

correlations. A value of 4 cm
2
/sec was used in simulating the

Erickson binary system fixed bed experimental ion exchange ECH

curves with good results.

Use of the axial dispersion coefficient values within the

range indicated on Figure 6-1 for the Omatete (78) experimental
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runs gave satisfactory fits to the 9 ECH curves which he

generated experimentally. Resin phase diffusion coefficients

which were close to literature values for Ai+, Na+ , and H+

were used in the simulations. Use of higher values for axial

dispersion coefficients than those derived from Figure 6-1

resulted in poor simulations of the effluent concentration

histories. Consequently, this investigator recommends that

Figure 6-1 correlations be used when actual data are not

available for simulation with the dispersion model developed in

this work.

2. 	 Phase Equilibria 

2.1 Gibbs Free Energy Equilibrium Constraints 

There are many equilibrium conventions which have been

used in defining ion exchange equilibrium. The rational 

thermodynamic equilibrium constant was selected for this

work. The resin phase concentrations can be represented as

mole fraction or equivalent fraction concentration units

and, in this form, most of the ion exchanger selectivity is

vested in the equilibrium constant since the standard

states for the resin and electrolyte phases are different.

The activity coefficients for species in the resin phase

"trim up" the equilibrium correlations. In systems for

which the total number of moles is a constant, the

Gibb-Duhem relationship is given for constant temperature

and pressure as:
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In heterovalent ion exchange, dcT 	0, and the activity

coefficients estimated for such systems must "absorb" this

effect, since all of the equilibrium models for ion

exchange assume dc T to be zero. The activity

relationships resulting from Gibbs free energy constraints

in a ternary system provide that one of the equilibrium

constants is derivable from the other two. In correlation

of ternary system data, this relationship (chain rule given

by equation (2-19)) was used to provide an indication of

the data consistency.

2.2 Electrolyte Phase Activity Coefficient Model 

The Bromley equation (9) for the extended Debye-Huckel

equation for prediction of activity coefficients of ionic

species in aqueous solutions of salts was selected. It was

tested in this work against literature values given by

Robinson and Stokes (106) for activity coefficients on 17

salts at concentrations up to 5-6 molal. The averaged root

mean square of % relative difference, actual to predicted,

was 2.7% for the combined total of all 17 salts. In

addition, parameters to extend the concentration range have

been estimated by Bromley (9) for a wide variety of salts,

and can be utilized to predict single ion activities in

mixed salts, obviating the need to use Harned's Rule (105)

as an approximation in this research.

2.3 Resin Phase Activity Coefficient Models 

Three models were tested for ability to model the

resin phase activity coefficient as a function of
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composition. These were the three suffix Redlich-Kister,

the Wilson, and the NRTL equations. Each model has the

ability to predict ternary system data from the binary

system parameters.

2.4 Development of Equilibrium Models and Model Evaluation 

The three models described above were incorporated

into the rational thermodynamic equilibrium constant along

with the Bromley equation (9) for the electrolyte phase

activity coefficients. A non-linear regression program

created by Dr. A. K. S. Murthy allowed parameters to be

estimated for explicit algebraic relationships utilizing as

the objective function the global minimum of the sum of

squares of normalized difference between experimental and

observed data points. Experimental data on thirteen binary

systems (26, 91, 116, 121) and four ternary systems (91,

116, 121) were regressed to yield equilibrium parameter

estimates. The three suffix Redlich-Kister equation, using

equivalent fraction concentration units, was selected as

the most accurate model based on its ability to predict

ternary data points using binary system parameters. In

some regression runs using the Wilson equation the molar

volume ratio (Pij) was included as a parameter to be

estimated. In the case of regression runs using the NRTL

equation, the constant αij  was included as an estimated

parameter. Fixed values of pij=1.0 and α
ij =

	0.3

gave overall better results for those two models than were

obtained when these constants were included as estimated
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parameters. The results for the Erickson experiments (26)

are shown in Figure 2-7. Table 2-2 compiles the summary

information relevant to the experiments performed to obtain

equilibrium data on ternary ion exchange systems, and the

associated binary systems. Omatete's data (78) was not

used in the equilibrium model selection process, so the

experimental data used for model validation involved 4

ternary systems and 12 associated binary systems. Table

2-3 gives the comparative results of the equilibrium model

simulations performed in this work using the three suffix

Redlich-Kister, the Wilson, and the NRTL equations.

Standard deviations based on % normalized difference

between the experimental and calculated values are

tabulated for each case.

2.5 Preparation of Equilibrium Model for Use in Overall Ion 

Exchange Model 

The expressions representing equilibria in ternary

systems are implicit in nature, and particular derivatives

are required in the quasilinearization of these

expressions, so methods (70) for differentiation of

implicit functions were employed to meet this requirement.

Additionally, a Newton-Raphson method was developed to

solve simultaneously the two implicit non-linear

equilibrium expressions to yield the composition of each

ionic species in the electrolyte phase in equilibrium with

the composition of species at the resin surface, based on

the fitted parameters.
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3. 	 Transport Resistance 

3.1 Film Diffusion 

Most investigators (26, 50, 78, 83, 131, 132) utilize

the infinite dilution values of diffusion coefficients of

single ions in electrolyte solutions. Using the

Nernst-Hartley expression (equation (3-11)) in both an

integral and differential form, and utilizing the Bromley

equation to predict activity coefficient behavior as a

function of concentration, diffusion coefficient values at

concentration levels up to 3-4 molal were predicted and

compared to experimental data given by Robinson and Stokes

(106) for 17 salts. The integral version was found to be

best, yielding a root mean square of % normalized

difference of 13.2%, averaged for all 17 salts, as compared

to 26.6% for the differential version. The integral

version was even better in the range up to 1.5 molal which

was the upper limit for ion exchange simulations performed

in this work. The integrated version of the Nernst-Hartley

equation was used in the dynamic models to correct

individual ionic species diffusion coefficients for

concentration effects.

As described in Section C, part 4, of this chapter, a

pseudo electric field model was adopted for both the binary

and ternary system models based on Carberry's correlation

(11) for film coefficient in packed beds above Reynold's

number equal to 1. Integration of the ionic flux equation

across a film of "thickness", δ
eff, 

yields concentration
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gradients in the film which are nonlinear, as was derived

for the case of binary systems in Chapter IV (equation

(4-65)). Table 4-1 indicates maximum possible error in

using the linear gradient model versus the more rigorous

nonlinear case. These errors could approach 30% in

heterovalent exchange if the concentration difference

across the film was very high. In actual simulation of ion

exchange in heterovalent binary systems, the film

concentration difference values across the film were so low

as to yield negligible error in applying the simpler linear

driving force model. The pseudo electric field model based

on linear driving force was tested against the rigorous

electric field model derived by Kataoka and Yoshida (50)

for homovalent exchange and was found to give comparable

results. This is shown in Table 4-2 and Figures 7-7 and

7-10 for the Ag+-H+ system. The calculated data given

in Table 4-2 for concentration profiles and mass flux

values, compared over time, show little difference between

the two models.

The effectiveness of the pseudo electric field model

was demonstrated further in the two Erickson (26)

experiments involving the favorable exchange of ETDA ++

for NH
4 
on Dowex 50W X8 resin. Figures 7-2 and 7-3

show that the simulated ECH (effluent concentration

history) curves fit the experimental data very well,

although the two runs had Reynolds numbers differing by a

ratio of two (20 and 40). Prior to use of the pseudo
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electric field model, film coefficients derived from all

cited literature correlations had failed to allow

successful simulation of the two ECH curves with any given

film coefficient relationship. This was true whether the

diffusion coefficient used in any of the film correlations

was based on the slowest ion, the average, the harmonic

mean, or the fastest diffusing ion. The pseudo electric 

field model using Carberry's (11) film coefficient

correlation for packed beds resulted in the successful

simulations shown in Figures 7-2 and 7-3, all parameters

being the same except for the Reynolds numbers.

3.2 Intraparticle Diffusion 

The inclusion of activity driving force was a key

feature of the development of the Nernst-Planck model for

binary and ternary exchange systems in this research. The

results are described below. The ionic flux equations

describing the transport of ions in the resin phase were

derived in molar concentration units, then transformed to

equivalent fraction concentration units for ease of

mathematical manipulation through the relationship

where xi for species i is in

equivalent fraction units, c i is the molar concentration

of species i, 'z i t represents the species valence, and

Qr is the equivalent concentration of fixed charge

moities in the resin/liter. If the chemical potential,

—c
11.,is used as driving force instead of concentration

then, in non-ideal systems, the effective diffusion
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coefficient which describes ion exchange in binary systems

contains the additional term

Since all of the equilibrium parameter correlations were

performed using activity coefficient models in which the

concentration units were either mole fractions or

equivalent fractions, activity coefficient corrections are

required for mole fraction concentration units to reflect

the change in standard state to the molar basis as given in

the expression above. These transformations are discussed

in Chapter II, section F.

4. 	 Numerical Representation of the Ternary System Ion Exchange Model 

The selection of the Implicit Crank-Nicholson Finite

Difference method, along with quasilinearization of non-linear

terms, is discussed in section C, part 6, of this chapter. As

described, use of a non-linear regression program developed by

Dr. A. K. S. Murthy for time varying relationships allowed

regression estimation of diffusion coefficients for Sr++ ,

Mn
++

, Cs
+ 

and Na+ , utilizing the data of Rao and his

coworkers (92, 93). Table 5-3 compares the normalized sample

variance, s
2
, for models involving (1) concentration or (2)

activity driving force and (3) a two suffix diffusion

coefficient similar to the Stefan-Maxwell model (30). These
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regressions were performed for data sets consisting of 5, 6, and

7 binary systems, and the fitted values of diffusion

coefficients with their standard deviations are listed. The

activity driving force model is elegant in its ability to use

single values for so called "self diffusion" coefficients and

yet yield the best overall results. Heretofore, investigators

(46, 89) have found that the "self diffusion" coefficient for a

given counterion species has a different value depending on the

nature of the other counterion being exchanged. Figures 5-2 and

5-3 show the plots of experimental data versus the predicted

values, using the activity driving force model.

5. Ternary Model - Batch System 

The ternary ion exchange data for tagged single particle

experiments conducted by Rao and his coworkers (92, 93) were

simulated with the Ternary Batch Model using activity driving

force, concentration driving force, and some limited work with

the two suffix diffusion coefficient. Table 5-4 gives a

subjective quality rating to the observed results, and the

activity driving force model was rated somewhat better than the

others. The plots of experimental versus simulated time varying

concentration curves are shown in Figures 5-4 to 5-8. This is

the first ternary ion exchange model in which activity driving

forces have been utilized, and the results are gratifying.

6. Binary and Ternary Fixed Bed Models 

The results of simulating nine binary ion exchange

experiments conducted in fixed beds are shown on Figures 7-2 to

7-4 and Figures 7-5 to 7-10. The runs were made utilizing
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concentration driving force, since the ternary system batch

model which included activity driving force has not been

extended to the fixed bed model. The activity driving force was

used in the model for a fixed bed in binary systems, and Figure

7-3 shows the effect of use of activities in a positive

deviation system (NH+4-ETDA++), while Figure 7-9 shows the

effect in a negative deviation system (Ag+-Na+). Generally

the fixed bed simulation results are quite good, given the use

of literature correlations for all parameters except for resin

phase diffusion coefficients. The "ground rule," with respect

to the fit of the latter parameter, was that the values must be

not far different than reported literature values, and that the

same values for each species be used in all simulations

involving that species.

The simulation results of three ternary system experimental

runs by Omatete (78) are shown in Figures 7-11, 7-12, and 7-13.

The equilibrium data and diffusion coefficient values derived

from the work on the binary systems were used unchanged in

simulating the ternary experiments. Values for diffusion

coefficients which yielded best ECH curve fits during

simulations performed on this system were

DA
g
=0.9x10

-6 
cm

2
/sec

'Na
=25x10

-6 
cm

2
/sec, and

DH=10x10-6 cm
2
/sec. The coefficients for Ag

+ 
and Na

+

are close to literature values of 0.68x10
-6 

and 2.05x10
-6

respectively on Dowex 50W X8, as reported by Hering and Bliss

(46).



CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusions 

1. 	 Phase Equilibria 

It has been shown in this research that ion exchange

equilibria can be correlated very well in homovalent or

heterovalent binary systems using the rational thermodynamic

equilibrium constant in combination with the following

activity coefficient models. Electrolyte phase molal

activity coefficients can be estimated adequately for most

salts in aqueous solution by the Bromley (9) version of the

extended Debye-Huckel equation. Bromley (9) has published

values of his short range interaction parameter, B, for 175

salts. In tests performed in this work the model proved to

provide accurate estimates of electrolyte phase activity

coefficients for salts in concentrations up to 6 molal. The

Bromley equation (9) is available in a form which permits

estimation of the molal activity coefficients of single ionic

species in mixed electrolytes. The incorporation of the

Bromley equation into the phase equilibria models, developed

and tested in this work, precluded any need to include

electrolyte phase activity coefficient parameters in the

correlation of ion exchange equilibrium data.

Three models were used to represent the relationship of

activity coefficient of each ionic species in an ion exchange

352
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resin as a function of its concentration: the three suffix

Redlich-Kister, the Wilson, and the NRTL equations. All

three models can give adequate representation of a single

binary system. However, in a ternary system, the Gibbs free

energy constraints require that one of the three rational

thermodynamic equilibrium constants be predictable from the

other two. With this restriction, the three suffix

Redlich-Kister equation was clearly superior to the others,

as shown in Table 2-3.

The ability of the three models to predict equilibrium

compositions for ternary systems based on parameters derived

from the binary systems was good in the one cationic

homovalent ternary system used in this work, and only fair in

the two cationic heterovalent ternary systems. This is

indicated by the standard deviations of % relative difference

shown in Table 2-3 for these systems and models. Correlation

results were also good with the one heterovalent anionic

ternary system tested, as shown in Table 2-3. The three

suffix Redlich-Kister model, utilizing equivalent fraction

concentration units, yielded overall best results in

predicting ternary system equilibria from binary system

parameters. The poorer results with heterovalent systems are

believed to be caused by a non-zero dctotal (ctotal
 =total

moles of ionic species per unit volume of ion exchange resin)

term in the Gibbs-Duhem expression. This residual would then

be "absorbed" into the equilibrium constant and activity
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coefficient parameters during regression analysis.

Recombination of these binary system parameters to predict

ternary equilibria in heterovalent systems will lead to

poorer estimations in areas of the phase diagram close to the

homovalent ionic pair (where the "absorbed factors" are not

needed to describe the system).

Equivalent fraction concentration units gave better

results than mole fraction units in the prediction of ternary

system equilibria, as is shown in Table 2-4. The number of

equivalents in an ion exchange resin is constant, and the

rational equilibrium constant based on equivalent fractions

reflects a linear concentration pattern history during

heterovalent exchange. The mole fraction of a species in a

heterovalent exchange is not a linear function of the number

of moles of that species exchanged during the process. A

rational equilibrium constant based on mole fraction units

would represent a system having a greater degree of

non-linearity when contrasted to equivalent fraction

representation. This non-linearity effect must be

compensated for in the resin phase activity coefficient

parameters. Recombination of such parameters would give

poorer predictions of ternary system equilibria, as was

indicated in Table 2-4.

2. 	 Fluid Phase Material Balance 

It is concluded from the research performed in this

work that the axial dispersive term should be included in
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equations describing the electrolyte phase in order to

adequately represent the unsteady state concentration

profiles in fixed beds. The generalized correlations of

axial diffusion coefficients, as depicted in Figure 6-1,

should yield reasonable predictions of ECH (effluent

concentration history) curves over a wide range of Reynolds

number for liquid systems. If experimental axial dispersion

data is available for the ion exchange system under

investigation, the axial dispersion model developed in this

research should be used to obtain values of axial dispersion

coefficient for use in overall system modeling.

3. 	 Diffusion in the Film 

The pseudo electric field model based on the

Nernst-Planck equation, as derived in this work compares

favorably with the rigorously derived electric field model.

This was the case even when the ratio of diffusion

coefficients for exchanging species was large, and under

conditions of unfavorable exchange. As Pan and David (83)

point out, the conditions described above should produce a

high electric field gradient, a commensurate high coion

gradient in the film, and a large deviation from film mass

transfer coefficients calculated without consideration of

electric field effects. Kataoka and Yoshida (50) indicate

that errors of up to 30% can occur in prediction of

breakthrough curve (ECH) and column utilization efficiency if

a film coefficient model is used which does not account for
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electric field effects.

Although unfavorable heterovalent exchanges, such as

those involving H + , are unlikely to occur in industrial

practice, simulations of the types of exchange which would

give rise to these deviations were performed in this work.

Diffusion in the resin phase controls the magnitude of ionic

species flux throughout most ion exchange processes (except

for very dilute electrolyte concentrations). The ionic

species which diffuses most slowly through the resin phase is

normally the species most preferred by the ion exchanger.

Therefore in unfavorable exchange in a heterovalent system,

the resin phase flux is influenced by the slower more favored

ion, and its interfacial equilibrium concentration in the

electrolyte film would be low due to the favorable

selectivity the ion exchanger has for it. Since the film

flux must equal the resin phase flux, the concentration

gradients across the film are low along with commensurately

lower coion and electric field gradients.

Simulations carried out in this work showed that film

concentration gradients were low in systems such as the

exchange of Sr++ for Cs+ as shown in Table 4-2. If the

counterion gradients are small, the coion gradient is low,

and the pseudo electric field model yields results equivalent

to rigorous models such as developed by Kataoka and Yoshida

(50) for homovalent exchange. This result can be seen in

Figures 7-7 and 7-10. The pseudo electric field model can be
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extended readily to mulicomponent systems, whereas the

rigorous models cannot.

4. 	 Diffusion in the Resin Phase 

The use of the Nernst-Planck model to predict

interdiffusivity of species within the ion exchange resin is

now well established. Investigators have performed

experiments designed to isolate this effect from coupled film

diffusion. Two mechanisms are normally beneficial: (1) use

of concentrated solutions to increase gradients, and (2) high

electrolyte phase velocities to minimize film "thickness."

The experiments have generally been run in "batch" type

apparatus, i.e., where the change in electrolyte phase

concentration remains "unchanged" during the exchange.

Studies performed in fixed beds do not adequately

discriminate between the Fick's law models and the

Nernst-Planck model since ECH or "S" curves can be

represented readily by many mathematical models.

The clear advantage which the Nernst-Planck model has

over Fick's Law is that a single pair of "self" diffusion

coefficients can be used to predict both favorable and

unfavorable exchange (whereas with Fick's law a different

diffusion coefficient pair is required to model each exchange

direction).

The use of activity driving force in conjunction with

the Nernst-Planck model gave the best representation of the

ion exchange results obtained by Rao and his coworkers, as
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given in Table 5-3 and shown in Figures 5-2 and 5-3.

Activity driving force, used with the Nernst-Planck model,

may be shown to be a unifying ion exchange theorem. Single

and unique "self" diffusion coefficients for ionic species

could be used to characterize ion exchange in a given resin

without need for ion pair specific values or ion pair

corrector models, such as the Stefan-Maxwell model (30).

5. 	 Overall Ternary Ion Exchange Model 

This research project has shown that a practical model

has been developed for simulation of ternary ion exchange in

fixed beds which can be used to optimize process design

applications. The model utilizes recognized published

correlations for estimation of all parameters required,

except those specific to the ion exchange system being

investigated. Parameters which must be determined by

experimental measurement include the equilibrium parameters

and the resin phase "self" diffusion coefficients for each

species being exchanged.

Simple laboratory experiments utilizing tagged particle

techniques or other experimental methods as outlined in

Helfferich's publication, "Ion Exchange," (44) can yield data

for use in the regression analysis programs developed in this

research project. These regression programs can yield

parameter estimates for design, to map areas for further

experimentation to fill in gaps, or to resolve questionable

experimental results.
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The use of the Implicit Crank-Nicholson finite

difference method, using Lee's quasilinearization technique

(59) for resolving non-linear terms, is a robust solution

technique in terms of convergence and stability. Faster

solution times may be desirable in order to tie the ion

exchange model into a larger optimization model for process

plant design, such as ASPEN, or use it as a subroutine in

regression analysis for parameter estimation based on ECH

curve experimental data, and recommendations will be made

below to address this issue.

The model as now constituted is for stoichiometric

exchange. However it was shown in this work that

non-stoichiometric exchange resulting from complex formation

can be simulated. In the systems involving Ag+-NO-3,

the stable complex AgNO 3 is formed and adsorbs into the

resin phase. Assuming that the physical adsorption of

AgNO3 takes place as fast as the ion exchange process,

satisfactory system simulations can be realized by adjusting

the equivalent capacity of the ion exchange resin upward to

account for the additional Ag + uptake as AgNO 3 .

The ion exchange dynamic model could be modified to

include physical adsorption of complexed species, but the

quasilinearization algebra, size of matrices, and

computational time presently would limit this to a single

complex for practical purposes. The same conclusion could be

drawn with regard to addition of a reaction term to the resin
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phase material balance, or enthalpy terms to handle adiabatic

ion exchange processes for which there is a significant heat

of reaction. The latter case would occur when the ion

exchanged reacts with coion in the electrolyte phase

accompanied by a substantial heat of reaction (ex., H+ and

OH- ), particularly when there has been significant coion

intrusion into the resin. The model could be readily

modified to a pore diffusion model if that feature were

desirable to model ion exchange in macroreticular resins

(relatively large pore openings).

B. Recommendations 

1. 	 Phase Equilbria 

Although the phase equilibria model used in correlating

binary and ternary ion exchange system data was satisfactory

for binary systems, the ability of the model to predict

ternary equilibria from binary parameters was only fair in

heterovalent systems. As pointed out by Soldatov (119), the

Gibbs-Duhem expression leading to thermodynamic consistency

in models of excess free energy must take into account the

net change of moles in heterovalent exchange. This should be

examined in future work.

Other excess free energy models for equilibrium

relationships in ion exchange resins should be proposed and

examined, including a Debye-Huckel type model with terms to

extend its applicability to higher concentrations. At higher

concentrations of electrolyte in a resin, more resin swelling

occurs and the resin osmotic pressure changes are greater
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during the ion exchange. Most investigators have assumed

that the resin volume and pressure changes are small during

ion exchange and is neglected by setting the Gibbs-Duhem

equation equal to zero ( δ(πυ) T = 0). In fact, significant

resin volume changes occur and the osmotic pressure build up

can be quite large. Although satisfactory correlation of

binary system phase equilibria was possible with the above

stated assumption, this assumption may be in part responsible

for the poorer ability of the equilibria models to predict

ternary equilibria. The impact of the constant pressure

volume assumption should be assessed.

The phase equilibrium correlation package used in this

work allowed for one charged ionic complex to exist in the

electrolyte phase. However, the exchange selectivity of the

charged complexed species was assumed to be zero since the

existence in the resin of alternate complex forms of an ionic

species is not distinguished readily by experimental

procedures. Models which would correlate the activities of

three ionic species plus a charged complex form of one of the

species would be a quaternary model. It would be valuable to

know whether any of the models reviewed and tested in this

research would provide adequate prediction of quaternary

systems. This should be examined in future phase equilibria

model development for ion exchange systems.

Finally, resins are available with varying degrees of

cross linking, and this effect has a pronounced influence on

ionic species selectivity. It would be important to see if
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predictive trends can be established in the parameters which

characterize equilibrium ion exchange, i.e., K id and the

activity coefficient parameters, which would portray them as

functions of the degree of crosslinking in the resin.

2. 	 Dynamics of Ion Exchange 

One key observation which requires follow-on

verification is that, by use of activity driving force,

single "self" diffusion coefficients can characterize ion

exchange in binary systems without recourse to multisuffix

diffusion coefficients or use of different values for various

ionic pair combinations. If activity "corrects" for

hydration shells around specific ions and other charge

potential effects, the verification of this observation on a

wider spectrum of ionic systems is required. As discussed

above in connection with equilibria, it would be valuable to

determine if the same "self" diffusion coefficient could be

used for resins with increasing degrees of crosslinking,

providing that the activity differences were known for each

ionic species within the various resins having different

degrees of crosslinking. Based on concentration driving

force models, the measured diffusion coefficients decrease

dramatically as crosslinking is increased, and perhaps this

primarily is an activity related effect.

The model developed in this work utilized the Implicit

rank-Nicholson numerical method. The State Variable (65) and

Collocation (29) methods should be evaluated for potential

improvement in computation speed commensurate with equivalent
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convergence and stability performance. The method of

Characteristics (2, 22, 58) is an attractive alternative, but

its use limits the user to asymptotic solutions which infer

stable self-sharpening elution or loading patterns (not both)

which have existed within the column long enough to have

reached a stable configuration. Effects of uneven bed

presaturation which exist in many practical applications

could not be evaluated with the above method, nor could

unfavorable exchange processes.

Finally, the model developed in this research simulated

fixed bed operations successfully based on data derived from

1" diameter glass columns. Obviously, scale-up effectiveness

has yet to be proven in an industrial application. This will

most likely not be within the purview of future academic

investigators, but result from actual industrial applications.

3. Other Potential Applications 

With modification, the model could be utilized to

simulate isothermal adsorption processes. The required

changes would include a pore diffusion model to describe

diffusion in the particle, and equilibrium relationships such

as the Langmuir or Freundlich models. Substantial changes

would be required, but the basic partial differential

equations and numerical solution techniques should be

reviewed for applicability to biotechnology operations

involving reactions induced by immobilized enzymes or

bacterial cultures within porous beads or gels.



Appendix A

EFFECT OF CONCENTRATION UNITS ON ACTIVITY COEFFICIENT

RELATIONSHIPS IN AN ION EXCHANGER 

A. Molar versus Equivalent Fraction Concentration Units 

The free energy relationship for the exchange of ionic species

in an ion exchange resin are as follows for the concentration units

of molar versus equivalent fraction:

Setting (A-1) and (A-2) equal to each other results in:

From equation (2-14), the following limits are observed:

Solving equation (A-3) at the limits gives the free energy difference

due to concentration units.
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substituting (A-5) into (A-3) yields:

so, it is obvious from (A-6) that:

This relationship applies at all concentrations. This can be proven

at the other concentration extreme where x 1 
and c

1 
approach zero.

Looking at Figure 2-2, and equations (2-15) and (2-16), the

following construct is possible:

Then for x 1 , as in (2-15) and (2-16),

Using the same treatment for molar units at the identical rIT/ point,
+o



and,
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Substitution of n-γ
1 

and n-γ
1 	

in equation (A-3) leads to equation
molar

concentration extreme.

B. Molar versus Mole Fraction Concentration Units 

The relationship between molar units and mole fraction units

is given as:

Using the free energy relationship given by equation (A-1) in

conjunction with:



Defining the limits as was done in equation (A-4),

and equation (A-4) gives the limits in molar units. Substitution

in equation (A-13) gives: 

Substitution of equation (A-15) in equation (A-13) yields:

but,

so,

367

therefore,
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A like derivation can be made for 
R 	

versus 
n
Ti2 	in

molar 	 mf
that:

SO,

Substituting equation (A-19) in (A-20) gives:

which leads to:

Checking the relationship at the limit where x 1 	 )0
mf

The lower limits are then defined as:



since,

it follows that:

Performing the same procedure in mole fraction units,

and,

it similarly follows that:

Substitution of equation (A-24) and (A-25) in equation (A-13) leads

to:
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Since x
1 	

= 0 , and K
mf 

= K as the concentration of species 1
mf

+0
approaches zero, then the following expression is derived:

Substitution of equation (A-26) in (A-13) leads to,

Dr,

The expression for x
1 	

in terms of c
1 

is,
mf

Substitution for 	 leads to:
mf

where x
1 
is the equivalent fraction unit

This expression is identical to equation (A-18).



Appendix B

NON—LINEAR PARAMETER ESTIMATION 

A. K. S. Murthy

A. Introduction 

The problem of establishing mathematical relationships between

a set of dependent variables and a set of independent variables

using experimental data is frequently encountered in applied science.

For example, it may be necessary to obtain expressions for the exit

composition of a chemical reactor in terms of the inlet composition.

The functional form of the mathematical relationships, whether they

are derived based on fundamental physical and chemical principles or

simply selected to give sufficient mathematical flexibility, may be

written as:

where, x are the independent variables, y
i 
the dependent variables,

and b
k 
are parameters. The functional relationships, although shown

above as explicit algebraic expressions, can also be implicity

defined in the form of algebraic, differential or integral equations,

or even a complex series of calculations performed by computer

simulation programs. Parameters are constants whose numerical values

change from system to system and are usually not directly

measurable. The mathematical process of determining the values of

the parameters using experimental x—y data is known as regression

analysis. When the functions f i are such that the partial

derivatives (δfi/δb
k
) are independent of b k , linear regression

techniques can be used to obtain the values of the parameters.

However, many chemical engineering models (mathematical relationships)
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are nonlinear with respect to the parameters and require iterative

techniques for parameter estimation. The purpose of this report is

to describe an algorithm (mathematical recipe) for nonlinear

regression and to provide instructions for using three general

purpose computer programs based on that algorithm. One program

handles explicit algebraic models and the other two differential

equation models. In the latter case, one version has built—in

integration procedures for ordinary differential equations with

initial conditions. The other version requires the user to provide

an integration routine for the partial or ordinary differential

equations.

B. The Weighted Least Squares Procedure 

If y*jl are experimentally observed values corresponding to a

set of independent variables x jl, in the l-th observation, the object

of regression analysis is to determine the values of the parameters

such that the difference between y*il and the values of yi

calculated using x jl in equation (B-1) is a minimum according to

some statistically valid criterion. The use of a statistically valid

criterion is important since, due to random errors, the exact x—y

relationship cannot be experimentally observed. Consequently, the

parameter values obtained from such measurements are subject to

uncertainty. A statistical procedure for obtaining the best estimates

of the parameters is the method of maximum likelihood (Draper and

Smith 1966). The least squares procedure developed by Gauss is the

most frequently used for parameter estimation and is the maximum

likelihood procedure when the following assumptions are satisfied.

Only the dependent variable measurements are subject to error. The
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errors are purely random and obey Gaussian statistics with zero mean

and known variance.

The least squares method calls for the minimization of the

following objective function.

where 	
1

si  is the variance associated with the measurement of yi,

L is the total number of data points, and m is the number of

dependent variables measured experimentally, or derived from those

measurements.

C. The Gauss—Newton Method 

An efficient method for finding the minimum of a multidimensional

function is due to Newton. His method consists of guessing the

location of the minimum, approximating the function by the first

three terms of the Taylor series expansion about the guess point,

finding the minimum of the approximation and using that minimum point

as the next guess. This procedure is repeated until the true minimum

is found. If b
o 

is the guess point, the quadratic approximation is

where, the function and the derivatives are evaluated at b=bo. A

set of corrections,Δb,which should be added to b
o 

to obtain the

minimum of the above approximation is given by
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where, P is the number of parameters in the model. It can be shown

that.

and 	 (B-6)

If the guess values are good, (y il — f i ) should be small and hence

Equation (B-7) is the approximation by Gauss leading to the

Gauss—Newton method. When the guess value is near the minimum, thi

method gives quadratic convergence like Newton's method, but does

not require the evaluation of the second derivatives. Gauss—Newtor

corrections are given by 	 (B-8)

If B is an (LxP) matrix who lj—th element is (δf i/δb
j
) for the

L—th data point, the above equation may be written as

m = number of dependent variables measured or derived

from those measurements,

where, e
i 
is a vector whose k—th element is (y *il —f j). Let



375

Then equation (B-9) may be written as

Sometimes it is necessary to analyze several sets of data,

obeying different functional relationships but having a common set

of parameters. For example, one may attempt to estimate the

parameters in a liquid phase excess free energy model using

vapor—liquid as well as liquid—liquid equilibrium data. 	 In such cases

equation (B-10) becomes

where W. is the weighting factor for the i—th set and G. and r i

are the G and r matrices associated with that set. As defined in

the computer program, weight = W
i
/s i

2
.

Both the Newton's method and the Gauss—Newton method are known

tobe the most efficient algorithms when good guesses at the minimum

can be made. They are unreliable if good guesses cannot be made.

The author's experience is that this unreliability is due to a few

poorly determined directions in applying the Newton's method, and

can be rectified by a quadratic surface analysis of the Gauss—

Newton matrix (G
T
G) as shown in the next section.

D. A Modified Gauss—Newton Method 

The Gauss—Newton method uses the following quadratic

approximation of the objective function about the guess point to

obtain the corrections to be added to the guess values.
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The nature of the quadratic surface given by equation (B-12)

can be determined by the eigenvalues and the eigenvectors of the

G
T
G matrix. It can be shown that G

T
G is a positive definite matrix

(all positive eigenvalues) and hence equation (B-12) represents a

hyperellipsoid. The eigenvectors give the directions of the axes

of the ellipsoid. The lengths of the axes are proportional to the

reciprocals of the eigenvalues. Directions corresponding to very

small eigenvalues are directions in which the function does not

change very rapidly [according to the local approximation given

by (B-12)] and hence large changes would be recommended by the

Gauss-Newton method. Large corrections given by any local

approximation method are likely to be unreliable. The modification

of the Gauss-Newton algorithm presented in this report is based on

this heuristic argument. The Gauss—Newton corrections are given by

If Q is a matrix whose columns are eigenvectors of G
T
G, then Q is

an orthonormal matrix and

where L is a diagonal matrix containing the eigenvalues of G
T
G.

Readers not famikliar with these properties should refer to any

textbook on matrix theory covering quadratic forms and unitary

transformation. From equations (B-13) and (B-14) it can be seen

that
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where, V i is the i-th eigenvector and l i the i-th eigenvalue.

The above equation gives the total Gauss-Newton correction as a

sum of corrections along the eigenvector.

The modified method consists of summing the terms of equation

(B-15) in the order of decreasing eigenvalues and, after the

addition of each term, checking the cumulative corrections to

determine if any of the corrections exceed the allowable step size.

When the step size is exceeded, no additional terms are included

in the summation. Only a fraction of the last term is used so that

no correction exceeds the allowable step size. User supplied

scale factors are used to scale the parameters and the corrections

to comparable magnitude so that the same step size can be used for

all the variables. The step size starts with a user specified

value and increases by 10% for every successful step (steps leading

to decrease in the objective function) and is cut to half for every

unsuccessful step. It is possible to conceive of several other

alternate strategies similar to the strategy outlined in this

section. A systematic study to determine the best strategy has not

been carried out, primarily because the present method has been

very satisfactory in a number of practical problems.



Appendix C

RESIN PHASE ION EXCHANGE FITTING PROGRAM 

RIONFT (AKM 62)

RIONFT (AKM 62) is a non—linear regression program for

estimation of the equilibrium parameters in binary and ternary ion

exchange systems, and has the following features:

A. Input module — subroutine M62A 

	

1.0 	 Input 1 - title

	

2.0 	 Input 2 gives the following information in free format:

2.1 the total number of data sets

2.2 the total number of parameters involved

2.3 debug options selected

2.4 non-default values, if desired, for parameter search

step size, numerical Jacobian perturbation values, and

run time limit

2.5 print control on a variety of computed values giving

full, partial, or minimum information

2.6 switching options on selection of K
ij
 to be computed by

the chain rule from K
ik
 and Kjk values

2.7 choice of resin phase activity coefficient correlation

method (i.e., Redlich-Kister, Wilson, or NRTL)

	

3.0 	 Input 3

A fit string which allows selection, 0 or 1, of those

parameters which are to be fit in a given run. Those

parameters not fit can be either zero, or be used in the

regression analysis with a preset estimate value
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4.0 	 Inputs 4 and 5

Involve scale factors and initial estimates for parameters

	

5.0 	 Input 6

Allows individual parameters to be bounded by upper and

lower values if known

	

6.0 	 The data sets are then read in giving, for each set,

6.1 Input 1 gives no. of data points, no. of constants,

no. of variables (y and x), no. of dependent

variables (y)

6.2 Input 2 — labels for constants

6.3 Input 3 gives the relative weight to be given to each

dependent variable (default = 1), and constants

6.4 Input 4 - labels for the variables

6.5 Input 5 — data points (y and x)

B. The subroutine CONTROL performs the sequencing of regression runs

1 through 26 as outlined in Chapter II, para. D, section 2.

C. The evaluation subroutine, M62G, is specifically designed by the

user of program AKM62 to compute the dependent and independent

variables for user specific equations in response to calls from

AKM62 subroutines. The independent variables are computed for

each data point utilizing the constants, and the dependent

variables are computed for the latest values of the fitted

parameters. Equations (2-73) and (2-75) given in Chapter II

represent the dependent and independent variables computed at

each call. If the data set being regressed is a ternary system,

the M62G, as designed for RIONFT, will switch to another part
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of the subroutine where the Y(1)
exp

, Y(2)exp, and Y(3)
exp

independent variables and the Y(1)
calc, Y(2)

calc, and Y(3)

calc dependent variables are calculated, the latter representing the

dependent portions of the three binary pair equilibrium

relationships.

D. Subroutines supporting M62G are the resin phase activity

coefficient generators, REDKIS, WILSON, and NRTL, and the

electrolyte phase activity coefficient gen rator, LIQION. LIQION

also computes the equilibrium composition of a stable complex,

if there is one, along with its effect on ionic strength

including the activity coefficient for the complex species and

the coion.

E. When the regression has met convergence criteria on all fitted

parameters for all sets within one of the 26 controlled runs,

subroutine M62C is called, which provides optional printout of the

best value of parameters along with standard deviation and

correlation coefficients between parameters. M62C stores the

best parameter values fitted, to be used by CONTROL in setting the

initial estimates for the next run, or in subsequent runs where

these values are required. It optionally will print out a variety

of information related to that run, including the activity

coefficients for each species in the resin and electrolyte phase,

ionic strength, and fraction of complex present if any, for each

data point.

F. Two major subroutines, called by the main program after each

of the 26 controlled runs, are TERION and BINION. These

subroutines, TERION for ternary systems, and BINION for binary
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systems, compute the equilibrium resin phase composition for each

experimental electrolyte composition data point for all sets

within a run, on a set—by—set basis. They compute the standard

sample deviation of the calculated equilibrium composition from

the experimental values for each set within a run, on a

difference and a % relative difference basis. These routines

print out the standard deviation information along with optional

information including actual data points alongside the calculated

points for all species. The resin and electrolyte phase activity

coefficients are printed out, along with ionic strength.

The equations describing either binary or ternary equilibria

are non—linear because of the relationships describing the activity

coefficient correlations. In BINION, a false positioning method

is utilized to solve the single equilibrium relationship

describing a binary pair, since the function is monotonic. With

TERION, a simultaneous solution of two of the equilibrium

relationships is required to define the equilibrium concentrations

of xi and xj, with x
k
= l—xi—xj. The Newton-Raphson method is used

1

in that subroutine to provide solution to the coupled non—linear

algebraic equations.



Appendix D 

CONCENTRATION EFFECTS ON DIFFUSION COEFFICIENTS OF IONIC SPECIES 

IN AQUEOUS SOLUTIONS 

A. Diffusion Coefficients of Salts in Aqueous Solution—Infinite 

Dilution 

where:

D+ 	 = diffusion coefficient of salt as
concentration 4'0, cm 2 /sec

= conductance of cation, mhos/equiv.

= conductance of anion, mhos/equiv.

A 	 = L
+
 + L_ , salt conductance, mhos/equiv.

o
K

z
+
,z
- 
= charge on ion

	 2
8.931 10

-6
, gas constant/Faraday constant

F2 	 0
,joule/ K/mole/Coulomb/equiv.

B. Diffusion Coefficients of Ions in  Aqueous Solution-Infinite Dilution 

combining (D-2) and (D-3) into (D-1) yields:
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C. Diffusion Coefficient Variation with Electrolyte Concentration

Nernst—Hartley Equation for Dilute Solutions:

where:

c± = molality (assume equal to molarity at
- 	 specific gravity of one)

n±  = molar activity coefficient of salt

If molality is equal to molarity, then

where:

y± = molal activity coefficient as given by

the Bromley equation.

D. Differential Form of Correction to Diffusion Coefficient

for Concentration 

If the viscous drag effects on hydrated ions which occur at high

electrolyte concentration are ignored, the following treatment

can be used to correct D0± for the effect of electrolyte

concentration. Using the Bromley equation to relate y ±(c±

) to concentration, c±, the Bromley equation can be differentiated

with respect to c±, molarity (molality).

1.0 Single Salt in Aqueous Solution 

Substitution of Ionic Strength, I , in the Bromley and

Nernst—Hartley equations leads to:



If norm = electrolyte normality

And,

The molarity of the salt is given by:

Differentiating (D-10) with respect to c, and

substituting in equation (D-6) leads to:

By differentiating the Bromley equation, the following

(D-12)
expression is obtained:

This relationship can be substituted into equation (D-11)

to correct the Diffusion Coefficient of a salt for

electrolyte concentration.
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2.0 Cation Relationship with a Single Salt in Aqueous Solution 

The Nernst—Hartley equation for a single cation is,

where:

The substitution of equations (D-15) and (D-16) in

equation (D-14) yields:

Substitution of equation (D-13) in (D-17) gives the

relationship for dependency of a single cation diffusion

coefficient on electrolyte normality.

Analagous treatment can be used for the anion 

diffusion coefficient. 
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3.0 Three Cations in Aqueous Solution with a Single Anion 

3.1 The ionic strength is given as,

or in equivalent fractions, 	 (D-19)

and equation (D-18) becomes:

3.2 Differentiating equation (D-19) yields:

and the Nernst—Hartley equation becomes,

3.3 The Bromley Equation in terms of Equivalent Fraction

versus Ionic Strength becomes upon substitution of

equation (D-20) in equation (3-4):
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It is noted that the major variable in computing

Y
+i 

is I, the ionic strength, so even if a cation

species equivalent fraction approaches zero, its

activity coefficient will remain relatively constant

in mixed cation solutions. For example, if a system

has z
+1 

= z
+2 

= z
+3

, I is constant, and Y
+1 

is a

function of norm only. In another example, if a

system has z+1 = z+2 = 2 and z+3 = 1, then relative

values of I will vary only between 1 and 1.5 as x

+3goes from a concentration value of one to zero.
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It is noted that the major variable in computing

y
+i

is I, the ionic strength, so even if a cation

species equivalent fraction approaches zero, its

activity coefficient will remain relatively constant

in mixed cation solutions. For example, if a system

has z
+1 

= z
+2 

= z
+3

, I is constant, and Y
+1 

is a

function of norm only. In another example, if a

system has z+1 = z+2 	= 2 and z+3 = 1, then relative

values of I will vary only between 1 and 1.5 as x +3

goes from a concentration value of one to zero.



389

3.4 Equation (D-23) must be differentiated in order

to use the relationship in the Nernst—Hartley equation.

This expression is:

3.5 Equation (D-19) can be differentiated to give:

Then the Nernst—Hartley equation becomes:



Integral Form of Correction to Diffusion Coefficients 

for Concentration 

Most salts show the following variation of mean activity

coefficient y± , with c±(molarity = molality):

390

The differential form of the Nernst—Hartley equation would

hold up to point a, but not at higher concentrations.

1.0 Single Salt in Aqueous Solution 	 (D-27)

where:

continued
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2.0 Three Cations in Aqueous Solution with a Single Anion 

where:

continued
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Equation (D-28) can be used for three anions with a single

cation by obvious juxtaposition of the terms.

F. Summary of Results 

Calculations were performed to predict the activity coefficients

and the diffusion coefficients for 17 salts, and the results

were compared to experimental data given by Robinson and Stokes(106).

The molalities of the solutions ranged from 0 to 6.0, and the

resulting output from the computations is shown in the following

pages. However, a summary of results is as follows:

Root Mean Square of 

% Relative Difference 

Activity Coefficients, Bromley Equation 	 2.7 %

Diffusion Coefficients, Nernst-Hartley

- differential form 	 26.6 %

- integral form 	 13.2 %



COMPOUND NACL

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 	 1
VALENCE OF ANION 	 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 	 50.1000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 	 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 	 0.057400
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 	 0.16100E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 	 0.16159E-04
NUMBER OF DEPENDENT VARIABLES 	 3
NUMBER OF DATA POINTS 	 11

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.778000 0.148300E-04
0.200000 0.735000 0.147500E-04
0.300000 0.710000 0.147500E-04
0.500000 0.681000 0.147400E-04
0.700000 0.667000 0.147500E-04
1.000000 0.657000 0.148400E-04

1.500000 0.656000 0.149500E-04

2.000000 0.668000 0.151600E-04
3.000000 0.714000 0.156500E-04
4.000000 0.783000 0.159400E-04
5.000000 0.875000 0.159000E-04

AQUEOUS SOLUTION OF COMPOUND NACL

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.778000 0.776447 0.199641
0.200000 0.735000 0.732401 0.353670
0.300000 0.710000 0.707714 0.321941
0.500000 0.681000 0.679917 0.159089
0.700000 0.667000 0.665477 0.228334
1.000000 0.657000 0.656161 0.127705
1.500000 0.656000 0.657962 0.299096
2.000000 0.668000 0.671844 0.575377
3.000000 0.714000 0.720452 0.903614
4.000000 0.783000 0.788211 0.665570
5.000000 0.875000 0.871853 0.359644

AVERAGE DIFFERENCE= 0.0028 AVERAGE PERCENT DIFFERENCE= 0.3812
ROOT MEAN SQUARE-DIFFERENCE= 0.0032 	 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 0.4443



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.148300E-04 0.150116E-04 1.224846
0.200000 0.147500E-04 0.148765E-04 0.857423
0.300000 0.147500E-04 0.148312E-04 0.550607
0.500000 0.147400E-04 0.148371E-04 0.658847
0.700000 0.147500E-04 0.149070E-04 1.064588
1.000000 0.148400E-04 0.150790E-04 1.610595
1.500000 0.149500E-04 0.154674E-04 3.460655
2.000000 0.151600E-04 0.159244E-04 5.042277
3.000000 0.156500E-04 0.169329E-04 8.197252
4.000000 0.159400E-04 0.179959E-04 12.897660
5.000000 0.159000E-04 0.190805E-04 20.002844

AVERAGE DIFFERENCE= 	 0.78941E-06 AVERAGE PERCENT DIFFERENCE= 	 5.0516
ROOTMEAN SQUARE-DIFFERENCE= 	 0.12427E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 7.8495

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst - Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.148300E-04 0.147793E-04 0.341746
0.200000 0.147500E-04 0.147260E-04 0.162981
0.300000 0.147500E-04 0.147619E-04 0.080500
0.500000 0.147400E-04 0.149472E-04 1.405421
0.700000 0.147500E-04 0.152259E-04 3.226667
1.000000 0.148400E-04 0.157479E-04 6.117671
1.500000 0.149500E-04 0.167570E-04 12.086767
2.000000 0.151600E-04 0.178391E-04 17.671994
3.000000 0.156500E-04 0.200656E-04 28.214406
4.000000 0.159400E-04 0.223038E-04 39.923294
5.000000 0.159000E-04 0.245333E-04 54.297635

AVERAGE DIFFERENCE= 	 0.23251E-05 AVERAGE PERCENT DIFFERENCE= 14.8663
ROOTMEAN SQUARE-DIFFERENCE= 	 0.36440E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 23.0543



COMPOUND NABR

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 50.1000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 78.1400
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.074900
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.16250E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.16280E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 9

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.782000 0.151700E-04
0.200000 0.741000 0.150700E-04
0.300000 0.719000 0.151500E-04
0.500000 0.697000 0.154200E-04
0.700000 0.689000 0.156900E-04

1.000000 0.687000 0.159600E-04
1.500000 0.703000 0.162900E-04
2.000000 0.731000 0.166800E-04
2.500000 0.768000 0.170200E-04

AQUEOUS SOLUTION OF COMPOUND NABR

COMPARISON OF ACTIVITY COEFFICIENTS - ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.782000 0.781008 0.126815
0.200000 0.741000 0.740442 0.075256
0.300000 0.719000 0.718797 0.028261
0.500000 0.697000 0.696498 0.072010
0.700000 0.689000 0.687277 0.250025
1.000000 0.687000 0.685789 0.176300
1.500000 0.703000 0.701362 0.233059
2.000000 0.731000 0.730433 0.077509
2.500000 0.768000 0.768869 0.113146

AVERAGE DIFFERENCE= 	 0.0009 AVERAGE PERCENT DIFFERENCE= 	 0.1280
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0010 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.1470



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.151700E-04 0.151977E-04 0.182312
0.200000 0.150700E-04 0.150994E-04 0.195378
0.300000 0.151500E-04 0.150880E-04 0.409135
0.500000 0.154200E-04 0.151574E-04 1.703054
0.700000 0.156900E-04 0.152892E-04 2.554594
1.000000 0.159600E-04 0.155545E-04 2.540965
1.500000 0.162900E-04 0.161017E-04 1.156220

2.000000 0.166800E-04 0.167210E-04 0.245804

2.500000 0.170200E-04 0.173793E-04 2.110761

AVERAGE DIFFERENCE= 	 0.19741E-06 AVERAGE PERCENT DIFFERENCE= 	 1.2331
ROOTMEAN SQUARE-DIFFERENCE= 	 0.25073E - 06 ROOTHEAN SQUARE-PERCENT DIFFERENCE= 	 1.5626

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.151700E-04 0.150045E-04 1.091182
0.200000 0.150700E-04 0.150192E-04 0.337214

0.300000 0.151500E-04 0.151171E-04 0.216839

0.500000 0.154200E-04 0.154230E-04 0.019722
0.700000 0.156900E-04 0.158246E-04 0.858091
1.000000 0.159600E-04 0.165369E-04 3.614805

1.500000 0.162900E-04 0.178740E-04 9.723775
2.000000 0.166800E-04 0.192905E-04 15.650772

2.500000 0.170200E-04 0.207364E-04 21.835480

AVERAGE DIFFERENCE= 	 0.98608E-06 AVERAGE PERCENT DIFFERENCE= 	 5.9275
ROOTMEAN SQUARE-DIFFERENCE= 	 0.16165E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 9.6116



COMPOUND NAI

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(In(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 50.1000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.8000
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.099400
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.16140E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.16255E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 10

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.787000 0.152000E-04
0.200000 0.751000 0.153200E-04

0.300000 0.735000 0.154700E-04
0.500000 0.723000 0.158000E-04

0.700000 0.724000 0.161200E-04
1.000000 0.736000 0.166200E-04
1.500000 0.771000 0.175100E-04
2.000000 0.820000 0.184600E-04
2.500000 0.883000 0.192500E-04
3.000000 0.963000 0.199200E-04

AQUEOUS SOLUTION OF COMPOUND NAI

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.787000 0.787439 0.055842
0.200000 0.751000 0.751849 0.113111
0.300000 0.735000 0.734605 0.053797
0.500000 0.723000 0.720394 0.360478
0.700000 0.724000 0.719003 0.690226
1.000000 0.736000 0.729529 0.879249
1.500000 0.771000 0.766972 0.522428
2.000000 0.820000 0.821142 0.139237
2.500000 0.883000 0.888651 0.639955
3.000000 0.963000 0.968510 0.572169

AVERAGE DIFFERENCE= 	 0.0032 AVERAGE PERCENT DIFFERENCE= 	 0.4026
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0039 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.4927



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.152000E-04 0.151590E-04 0.270029
0.200000 0.153200E-04 0.151146E-04 1.341028
0.300000 0.154700E-04 0.151508E-04 2.063161
0.500000 0.158000E-04 0.153079E-04 3.114446
0.700000 0.161200E-04 0.155240E-04 3.697497
1.000000 0.166200E-04 0.159149E-04 4.242222
1.500000 0.175100E-04 0.166743E-04 4.772931
2.000000 0.184600E-04 0.175092E-04 5.150670
2.500000 0.192500E-04 0.183854E-04 4.491396
3.000000 0.199200E-04 0.192857E-04 3.184327

AVERAGE DIFFERENCE= 0.56443E - 06 	 AVERAGE PERCENT DIFFERENCE= 3.2328
ROOTMEAN SQUARE-DIFFERENCE= 0.63188E-06 	 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 3.5654

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.152000E-04 0.150245E-04 1.154576
0.200000 0.153200E-04 0.151345E-04 1.211049
0.300000 0.154700E-04 0.153176E-04 0.985178
0.500000 0.158000E-04 0.157867E-04 0.084046
0.700000 0.161200E-04 0.163528E-04 1.443963
1.000000 0.166200E-04 0.173182E-04 4.200788
1.500000 0.175100E-04 0.190892E-04 9.018721
2.000000 0.184600E-04 0.209472E-04 13.473277
2.500000 0.192500E-04 0.228377E-04 18.637225
3.000000 0.199200E-04 0.247398E-04 24.195605

AVERAGE DIFFERENCE= 	 0.13931E-05 AVERAGE PERCENT DIFFERENCE= 	 7.4404
ROOTMEAN SQUARE-DIFFERENCE= 	 0.21310E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 11.0415



COMPOUND KCL

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(In(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 73.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.024000
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.19930E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.20047E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 12

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.770000 0.184400E-04
0.200000 0.718000 0.183800E-04
0.300000 0.688000 0.183800E-04
0.500000 0.649000 0.185000E-04
0.700000 0.626000 0.186600E-04
1.000000 0.604000 0.189200E-04
1.500000 0.583000 0.194300E-04
2.000000 0.573000 0.199900E-04
2.500000 0.569000 0.205700E-04
3.000000 0.569000 0.211200E-04
3.500000 0.572000 0.216000E-04
4.000000 0.577000 0.219600E-04

AQUEOUS SOLUTION OF COMPOUND KCL

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.770000 0.767815 0.283813
0.200000 0.718000 0.717294 0.098363
0.300000 0.688000 0.687034 0.140353
0.500000 0.649000 0.649357 0.055073
0.700000 0.626000 0.625770 0.036671
1.000000 0.604000 0.603120 0.145633
1.500000 0.583000 0.582445 0.095193
2.000000 0.573000 0.572747 0.044083
2.500000 0.569000 0.569139 0.024440
3.000000 0.569000 0.569400 0.070306
3.500000 0.572000 0.572353 0.061635
4.000000 0.577000 0.577307 0.053201

AVERAGE DIFFERENCE= 	 0.0006 AVERAGE PERCENT DIFFERENCE= 	 0.0924
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0008 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.1150



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst - Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.184400E-04 0.184747E-04 0.188210
0.200000 0.183800E-04 0.182179E - 04 0.881899
0.300000 0.183800E-04 0.180817E-04 1.622876
0.500000 0.185000E-04 0.179406E-04 3.023954
0.700000 0.186600E-04 0.178838E-04 4.159787
1.000000 0.189200E-04 0.178821E-04 5.485964
1.500000 0.194300E-04 0.179995E-04 7.362488
2.000000 0.199900E-04 0.181953E-04 8.978112
2.500000 0.205700E-04 0.184320E-04 10.393838
3.000000 0.211200E-04 0.186919E-04 11.496660
3.500000 0.216000E-04 0.189657E-04 12.195736
4.000000 0.219600E-04 0.192482E-04 12.348989

AVERAGE DIFFERENCE= 	 0.13338E-05 AVERAGE PERCENT DIFFERENCE= 	 6.5115
ROOTMEAN SQUARE-DIFFERENCE= 	 0.16365E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 7.8328

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.184400E-04 0.180904E-04 1.895686
0.200000 0.183800E-04 0.178639E-04 2.808078
0.300000 0.183800E-04 0.177639E-04 3.352227
0.500000 0.185000E-04 0.177149E-04 4.243521
0.700000 0.186600E-04 0.177786E-04 4.723331
1.000000 0.189200E-04 0.179905E-04 4.912751
1.500000 0.194300E-04 0.184940E-04 4.817457
2.000000 0.199900E-04 0.190742E-04 4.581147
2.500000 0.205700E-04 0.196817E-04 4.318446
3.000000 0.211200E-04 0.202979E-04 3.892499
3.500000 0.216000E-04 0.209154E-04 3.169384
4.000000 0.219600E-04 0.215311E-04 1.952948

AVERAGE DIFFERENCE= 	 0.72945E-06 AVERAGE PERCENT DIFFERENCE= 	 3.7223
ROOTMEAN SQUARE-DIFFERENCE= 	 0.75595E-06 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 3.8625



COMPOUND KBR

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 73.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 78.1400
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.029600
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.20160E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.20246E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 12

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.772000 0.187400E-04
0.200000 0.722000 0.187000E-04
0.300000 0.693000 0.187200E-04
0.500000 0.657000 0.188500E-04
0.700000 0.636000 0.191700E-04
1.000000 0.617000 0.197500E-04
1.500000 0.600000 0.206200E-04
2.000000 0.593000 0.213200E-04
2.500000 0.593000 0.219900E-04
3.000000 0.595000 0.228000E-04
3.500000 0.600000 0.235400E-04
4.000000 0.608000 0.243000E-04

AQUEOUS SOLUTION OF COMPOUND KBR

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.772000 0.769255 0.355541
0.200000 0.722000 0.719805 0.304057
0.300000 0.693000 0.690459 0.366666
0.500000 0.657000 0.654384 0.398241
0.700000 0.636000 0.632259 0.588278
1.000000 0.617000 0.611704 0.858283
1.500000 0.600000 0.594473 0.921175
2.000000 0.593000 0.588279 0.796171
2.500000 0.593000 0.588289 0.794443
3.000000 0.595000 0.592312 0.451722
3.500000 0.600000 0.599190 0.134971
4.000000 0.608000 0.608249 0.040881

AVERAGE DIFFERENCE= 	 0.0032 AVERAGE PERCENT DIFFERENCE= 	 0.5009
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0035 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.5724



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.187400E-04 0.187062E-04 0.180184
0.200000 0.187000E-04 0.184616E-04 1.274628
0.300000 0.187200E-04 0.183375E-04 2.043386
0.500000 0.188500E-04 0.182199E-04 3.342815
0.700000 0.191700E-04 0.181867E-04 5.129119
1.000000 0.197500E-04 0.182214E-04 7.739744
1.500000 0.206200E-04 0.184018E-04 10.757572
2.000000 0.213200E-04 0.186626E-04 12.464352
2.500000 0.219900E-04 0.189655E-04 13.753768
3.000000 0.228000E-04 0.192925E-04 15.383970
3.500000 0.235400E-04 0.196337E-04 16.594136
4.000000 0.243000E-04 0.199840E-04 17.761459

AVERAGE DIFFERENCE= 	 0.19522E-05 AVERAGE PERCENT DIFFERENCE= 	 8.8688
ROOTMEAN SQUARE-DIFFERENCE= 	 0.24363E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 10.7663

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.187400E-04 0.183339E-04 2.166890
0.200000 0.187000E-04 0.181320E-04 3.037583
0.300000 0.187200E-04 0.180553E-04 3.550718
0.500000 0.188500E-04 0.180530E-04 4.227988
0.700000 0.191700E-04 0.181652E-04 5.241708
1.000000 0.197500E-04 0.184531E-04 6.566418
1.500000 0.206200E-04 0.190889E-04 7.425440
2.000000 0.213200E-04 0.198046E-04 7.107872
2.500000 0.219900E-04 0.205488E-04 6.553790
3.000000 0.228000E-04 0.213023E-04 6.568846
3.500000 0.235400E-04 0.220573E-04 6.298731
4.000000 0.243000E-04 0.228105E-04 6.129580

AVERAGE DIFFERENCE= 	 0.11413E-05 AVERAGE PERCENT DIFFERENCE= 	 5.4063
ROOTMEAN SQUARE-DIFFERENCE= 	 0.12122E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 5.6569



COMPOUND KI

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 73.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K, INFINITE DILUTION 76.8000
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.042800
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.19990E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.20031E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 11

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.778000 0.186500E-04
0.200000 0.733000 0.185900E-04
0.300000 0.707000 0.188400E-04

0.500000 0.676000 0.195500E-04

0.700000 0.660000 0.200100E-04

1.000000 0.645000 0.206500E-04
1.500000 0.636500 0.216600E-04
2.000000 0.637000 0.225400E-04
2.500000 0.644000 0.234700E-04
3.000000 0.652000 0.244000E-04
3.500000 0.662000 0.253300E-04

AQUEOUS SOLUTION OF COMPOUND KI

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.778000 0.772662 0.686172
0.200000 0.733000 0.725758 0.987965
0.300000 0.707000 0.698599 1.188256
0.500000 0.676000 0.666385 1.422285
0.700000 0.660000 0.647819 1.845551
1.000000 0.645000 0.632425 1.949664
1.500000 0.636500 0.623816 1.992700
2.000000 0.637000 0.626575 1.636562
2.500000 0.644000 0.636016 1.239702
3.000000 0.652000 0.650034 0.301511
3.500000 0.662000 0.667535 0.836166

AVERAGE DIFFERENCE= 	 0.0085 AVERAGE PERCENT DIFFERENCE= 	 1.2806
ROOT MEAN SQUARE-DIFFERENCE. 	 0.0091 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 1.3838



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.186500E-04 0.185913E-04 0.314659
0.200000 0.185900E-04 0.183843E-04 1.106753
0.300000 0.188400E-04 0.182929E-04 2.903848
0.500000 0.195500E-04 0.182352E-04 6.725559
0.700000 0.200100E-04 0.182591E-04 8.750042
1.000000 0.206500E-04 0.183786E-04 10.999734
1.500000 0.216600E-04 0.187014E-04 13.659072
2.000000 0.225400E-04 0.191067E-04 15.231993
2.500000 0.234700E-04 0.195555E-04 16.678642
3.000000 0.244000E-04 0.200292E-04 17.912959
3.500000 0.253300E-04 0.205180E-04 18.997411

AVERAGE DIFFERENCE= 	 0.23307E-05 AVERAGE PERCENT DIFFERENCE= 10.2982
ROOTMEAN SQUARE-DIFFERENCE= 	 0.28352E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 12.1770

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.186500E-04 0.182605E-04 2.088633
0.200000 0.185900E-04 0.181238E-04 2.507556
0.300000 0.188400E-04 0.181051E-04 3.900776
0.500000 0.195500E-04 0.182131E-04 6.838161
0.700000 0.200100E-04 0.184359E-04 7.866634
1.000000 0.206500E-04 0.188935E-04 8.505830
1.500000 0.216600E-04 0.198195E-04 8.497122
2.000000 0.225400E-04 0.208302E-04 7.585686
2.500000 0.234700E-04 0.218714E-04 6.811363
3.000000 0.244000E-04 0.229227E-04 6.054411
3.500000 0.253300E-04 0.239760E-04 5.345548

AVERAGE DIFFERENCE= 	 0.12944E-05 AVERAGE PERCENT DIFFERENCE= 	 6.0002
ROOTMEAN SQUARE-DIFFERENCE= 	 0.13863E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 6.3834



COMPOUND LICL

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 38.6800
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.128300
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.13660E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.13669E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 11

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.790000 0.126900E-04
0.200000 0.757000 0.126700E-04
0.300000 0.744000 0.126900E-04
0.500000 0.739000 0.127800E-04
0.700000 0.748000 0.128800E-04
1.000000 0.774000 0.130200E-04
1.500000 0.838000 0.133100E-04
2.000000 0.921000 0.136300E-04
2.500000 1.026000 0.139700E-04
3.000000 1.156000 0.143000E-04
3.500000 1.317000 0.146400E-04

AQUEOUS SOLUTION OF COMPOUND LICL

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.790000 0.795094 0.644778
0.200000 0.757000 0.765531 1.126991
0.300000 0.744000 0.753699 1.303605
0.500000 0.739000 0.749637 1.439363
0.700000 0.748000 0.758314 1.378822
1.000000 0.774000 0.784724 1.385498
1.500000 0.838000 0.852299 1.706339
2.000000 0.921000 0.942726 2.358992
2.500000 1.026000 1.054150 2.743678
3.000000 1.156000 1.187200 2.698935
3.500000 1.317000 1.343757 2.031675

AVERAGE DIFFERENCE= 	 0.0161 AVERAGE PERCENT DIFFERENCE= 	 1.7108
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0183 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 1.8264



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.126900E-04 0.128938E-04 1.605731
0.200000 0.126700E-04 0.129092E-04 1.888302
0.300000 0.126900E-04 0.129875E-04 2.344319
0.500000 0.127800E-04 0.132085E-04 3.352770
0.700000 0.128800E-04 0.134763E-04 4.629931
1.000000 0.130200E-04 0.139345E-04 7.023993
1.500000 0.133100E-04 0.147926E-04 11.139300
2.000000 0.136300E-04 0.157187E-04 15.324156
2.500000 0.139700E-04 0.166823E-04 19.415331
3.000000 0.143000E-04 0.176680E-04 23.552642

3.500000 0.146400E-04 0.186673E-04 27.508812

AVERAGE DIFFERENCE= 0.14872E-05 AVERAGE PERCENT DIFFERENCE= 10.7078
ROOTMEAN SQUARE-DIFFERENCE= 	 0.19781E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 13.9512

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.126900E-04 0.128373E-04 1.160838
0.200000 0.126700E-04 0.130256E-04 2.806368
0.300000 0.126900E-04 0.132662E-04 4.540848
0.500000 0.127800E-04 0.138283E-04 8.202733
0.700000 0.128800E-04 0.144743E-04 12.377896
1.000000 0.130200E-04 0.155488E-04 19.422788
1.500000 0.133100E-04 0.174900E-04 31.404751
2.000000 0.136300E-04 0.195128E-04 43.160341
2.500000 0.139700E-04 0.215665E-04 54.376883
3.000000 0.143000E-04 0.236314E-04 65.254757
3.500000 0.146400E-04 0.256996E-04 75.543392

AVERAGE DIFFERENCE= 	 0.40273E-05 AVERAGE PERCENT DIFFERENCE= 28.9320
ROOTMEAN SQUARE-DIFFERENCE= 	 0.54747E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 38.6105



COMPOUND LIBR

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 38.6800
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 78.1400
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.152700
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.13770E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.13869E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 11

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.796000 0.127900E-04
0.200000 0.766000 0.128500E-04
0.300000 0.756000 0.129600E-04
0.500000 0.753000 0.132800E-04
0.700000 0.767000 0.136000E-04
1.000000 0.803000 0.140400E-04
1.500000 0.895000 0.147300E-04
2.000000 1.015000 0.154200E-04
2.500000 1.161000 0.159700E-04
3.000000 1.341000 0.165000E-04
3.500000 1.584000 0.169300E-04

AQUEOUS SOLUTION OF COMPOUND LIBR

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.796000 0.801614 0.705285
0.200000 0.766000 0.777276 1.472122
0.300000 0.756000 0.770206 1.879072
0.500000 0.753000 0.775249 2.954700
0.700000 0.767000 0.793172 3.412259
1.000000 0.803000 0.834563 3.930653
1.500000 0.895000 0.931689 4.099360
2.000000 1.015000 1.059292 4.363729
2.500000 1.161000 1.217656 4.879935
3.000000 1.341000 1.409859 5.134898
3.500000 1.584000 1.640713 3.580347

AVERAGE DIFFERENCE= 	 0.0340 AVERAGE PERCENT DIFFERENCE= 	 3.3102
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0393 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 3.5785



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.127900E-04 0.130521E-04 2.049455
0.200000 0.128500E-04 0.131129E-04 2.045827
0.300000 0.129600E-04 0.132322E-04 2.100544
0.500000 0.132800E-04 0.135299E-04 1.881995
0.700000 0.136000E-04 0.138723E-04 2.002067
1.000000 0.140400E-04 0.144425E-04 2.866745
1.500000 0.147300E-04 0.154909E-04 5.165684
2.000000 0.154200E-04 0.166111E-04 7.724631

2.500000 0.159700E-04 0.177715E-04 11.280690

3.000000 0.165000E-04 0.189556E-04 14.882497

3.500000 0.169300E-04 0.201543E-04 19.044972

AVERAGE DIFFERENCE= 	 0.10141E-05 AVERAGE PERCENT DIFFERENCE= 	 6.4586
ROOTMEAN SQUARE-DIFFERENCE= 	 0.14200E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 8.6675

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.127900E-04 0.130440E-04 1.986012
0.200000 0.128500E-04 0.133148E-04 3.617110
0.300000 0.129600E-04 0.136303E-04 5.172256
0.500000 0.132800E-04 0.143374E-04 7.962223
0.700000 0.136000E-04 0.151306E-04 11.254340
1.000000 0.140400E-04 0.164330E-04 17.044025
1.500000 0.147300E-04 0.187661E-04 27.400721
2.000000 0.154200E-04 0.211884E-04 37.408749
2.500000 0.159700E-04 0.236448E-04 48.057529
3.000000 0.165000E-04 0.261138E-04 58.265261
3.500000 0.169300E-04 0.285864E-04 68.850844

AVERAGE DIFFERENCE= 	 0.41018E-05 AVERAGE PERCENT DIFFERENCE= 26.0926
ROOTMEAN SQUARE-DIFFERENCE= 	 0.56140E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 34.5350



COMPOUND LINOS

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 38.6800
ANION CONDUCTANCE-MHOS/EQIV.-298 K, INFINITE DILUTION 71.4600
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.093800
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.13360E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.13375E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 13

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.788000 0.124000E-04
0.200000 0.752000 0.124300E-04
0.300000 0.736000 0.124800E-04
0.500000 0.726000 0.126000E-04
0.700000 0.729000 0.127400E-04
1.000000 0.743000 0.129300E-04
1.500000 0.783000 0.131700E-04
2.000000 0.835000 0.133200E-04
2.500000 0.896000 0.133600E-04
3.000000 0.966000 0.133200E-04
4.000000 1.125000 0.129200E-04
5.000000 1.310000 0.123800E-04
6.000000 1.506000 0.115700E-04

AQUEOUS SOLUTION OF COMPOUND LINO3
COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.788000 0.785965 0.258269
0.200000 0.752000 0.749227 0.368786
0.300000 0.736000 0.730961 0.684646
0.500000 0.726000 0.714861 1.534353

0.700000 0.729000 0.711625 2.383470
1.000000 0.743000 0.719291 3.190944
1.500000 0.783000 0.751454 4.028865
2.000000 0.835000 0.799463 4.255981
2.500000 0.896000 0.859724 4.048708
3.000000 0.966000 0.931045 3.618483
4.000000 1.125000 1.106689 1.627648
5.000000 1.310000 1.330316 1.550823
6.000000 1.506000 1.610329 6.927566

AVERAGE DIFFERENCE= 	 0.0264 AVERAGE PERCENT DIFFERENCE= 	 2.6522
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0366 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 3.2316



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.124000E-04 0.125358E-04 1.095092
0.200000 0.124300E-04 0.124890E-04 0.474518
0.300000 0.124800E-04 0.125100E-04 0.240371
0.500000 0.126000E-04 0.126233E-04 0.185276
0.700000 0.127400E-04 0.127861E-04 0.361610
1.000000 0.129300E-04 0.130856E-04 1.203267
1.500000 0.131700E-04 0.136733E-04 3.821388
2.000000 0.133200E-04 0.143228E-04 7.528621
2.500000 0.133600E-04 0.150060E-04 12.320557
3.000000 0.133200E-04 0.157088E-04 17.934155
4.000000 0.129200E-04 0.171459E-04 32.708171
5.000000 0.123800E-04 0.186035E-04 50.270411
6.000000 0.115700E-04 0.200698E-04 73.464463

AVERAGE DIFFERENCE= 0.19185E-05 	 AVERAGE PERCENT DIFFERENCE= 15.5083

ROOTMEAN SQUARE-DIFFERENCE= 0.32647E-05 	 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 27.0921

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.124000E-04 0.124136E-04 0.109941

0.200000 0.124300E-04 0.124866E-04 0.455472

0.300000 0.124800E-04 0.126220E-04 1.137509
0.500000 0.126000E-04 0.129790E-04 3.008006
0.700000 0.127400E-04 0.134159E-04 5.305560
1.000000 0.129300E-04 0.141662E-04 9.561070
1.500000 0.131700E-04 0.155484E-04 18.059210

2.000000 0.133200E-04 0.170010E-04 27.635326

2.500000 0.133600E-04 0.184799E-04 38.322750
3.000000 0.133200E-04 0.199681E-04 49.910939
4.000000 0.129200E-04 0.229486E-04 77.620944
5.000000 0.123800E-04 0.259223E-04 109.388663
6.000000 0.115700E-04 0.288863E-04 149.665088

AVERAGE DIFFERENCE= 	 0.47091E-05 AVERAGE PERCENT DIFFERENCE= 37.7062
ROOTMEAN SQUARE-DIFFERENCE= 	 0.72089E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 59.2064 O



COMPOUND CSCL

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(In(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 77.2000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.002500
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.20440E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.20506E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 11

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.756000 0.181700E-04
0.200000 0.694000 0.185700E-04
0.300000 0.656000 0.185500E-04
0.500000 0.606000 0.186000E-04
0.700000 0.575000 0.187100E-04
1.000000 0.544000 0.190200E-04
2.000000 0.496000 0.202900E-04
3.000000 0.479000 0.217500E-04
4.000000 0.474000 0.229100E-04
5.000000 0.475000 0.236400E-04
6.000000 0.480000 0.233500E-04

AQUEOUS SOLUTION OF COMPOUND CSCL

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.756000 0.762309 0.834504
0.200000 0.694000 0.707735 1.979048
0.300000 0.656000 0.674043 2.750504
0.500000 0.606000 0.630417 4.029153
0.700000 0.575000 0.601473 4.604045
1.000000 0.544000 0.571268 5.012525
2.000000 0.496000 0.516833 4.200296
3.000000 0.479000 0.489371 2.165118
4.000000 0.474000 0.472448 0.327489
5.000000 0.475000 0.460961 2.955678
6.000000 0.480000 0.452718 5.683731

AVERAGE DIFFERENCE= 	 0.0173 AVERAGE PERCENT DIFFERENCE= 	 3.1402
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0193 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 3.5447



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.181700E-04 0.188761E-04 3.886321
0.200000 0.185700E-04 0.185537E-04 0.087727
0.300000 0.185500E-04 0.183611E-04 1.018302
0.500000 0.186000E-04 0.181183E-04 2.589559
0.700000 0.187100E-04 0.179655E-04 3.979259
1.000000 0.190200E-04 0.178220E-04 6.298555
2.000000 0.202900E-04 0.176591E-04 12.966266
3.000000 0.217500E-04 0.176722E-04 18.748500
4.000000 0.229100E-04 0.177412E-04 22.561372
5.000000 0.236400E-04 0.178315E-04 24.570827

6.000000 0.233500E-04 0.179301E-04 23.211419

AVERAGE DIFFERENCE= 	 0.24038E-05 AVERAGE PERCENT DIFFERENCE= 10.9016
ROOTMEAN SQUARE-DIFFERENCE= 	 0.32493E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 14.3004

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.181700E-04 0.184182E-04 1.366076
0.200000 0.185700E-04 0.180799E-04 2.639241
0.300000 0.185500E-04 0.178819E-04 3.601394
0.500000 0.186000E-04 0.176481E-04 5.117930
0.700000 0.187100E-04 0.175276E-04 6.319683
1.000000 0.190200E-04 0.174582E-04 8.211188
2.000000 0.202900E-04 0.175761E-04 13.375407
3.000000 0.217500E-04 0.178194E-04 18.071664
4.000000 0.229100E-04 0.180692E-04 21.129606
5.000000 0.236400E-04 0.183071E-04 22.558853

6.000000 0.233500E-04 0.185312E-04 20.637064

AVERAGE DIFFERENCE= 	 0.24309E-05 AVERAGE PERCENT DIFFERENCE= 11.1844
ROOTMEAN SQUARE-DIFFERENCE= 	 0.30659E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 13.6252



COMPOUND NH4CL

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS
VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 73.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.020000
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.19940E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.20047E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 14

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.770000 0.183800E-04
0.200000 0.718000 0.183600E-04
0.300000 0.687000 0.184100E-04
0.500000 0.649000 0.186100E-04
0.700000 0.625000 0.188300E-04

1.000000 0.603000 0.192100E-04
1.500000 0.581000 0.198600E-04

2.000000 0.570000 0.205100E-04
2.500000 0.564000 0.211300E-04
3.000000 0.561000 0.216400E-04
3.500000 0.560000 0.220300E-04
4.000000 0.560000 0.223500E-04
4.500000 0.561000 0.225700E-04
5.000000 0.562000 0.226400E-04

AQUEOUS SOLUTION OF COMPOUND NH4CL
COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.770000 0.766787 0.417233
0.200000 0.718000 0.715506 0.347412
0.300000 0.687000 0.684599 0.349546
0.500000 0.649000 0.645791 0.494457
0.700000 0.625000 0.621177 0.611699
1.000000 0.603000 0.597063 0.984613
1.500000 0.581000 0.574003 1.204315
2.000000 0.570000 0.561905 1.420122
2.500000 0.564000 0.555843 1.446202
3.000000 0.561000 0.553579 1.322846
3.500000 0.560000 0.553922 1.085364
4.000000 0.560000 0.556174 0.683168
4.500000 0.561000 0.559896 0.196841
5.000000 0.562000 0.564794 0.497224

AVERAGE DIFFERENCE= 	 0.0047 AVERAGE PERCENT DIFFERENCE= 	 0.7901
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0052 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.8962



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.183800E-04 0.184710E-04 0.495274
0.200000 0.183600E-04 0.182034E-04 0.853032
0.300000 0.184100E-04 0.180575E-04 1.914625
0.500000 0.186100E-04 0.178985E-04 3.823147
0.700000 0.188300E-04 0.178245E-04 5.339748
1.000000 0.192100E-04 0.177971E-04 7.355129
1.500000 0.198600E-04 0.178710E-04 10.015018
2.000000 0.205100E-04 0.180226E-04 12.127773
2.500000 0.211300E-04 0.182146E-04 13.797631
3.000000 0.216400E-04 0.184294E-04 14.836414
3.500000 0.220300E-04 0.186579E-04 15.306771
4.000000 0.223500E-04 0.188949E-04 15.458992
4.500000 0.225700E-04 0.191373E-04 15.209208

5.000000 0.226400E-04 0.193831E-04 14.385695

AVERAGE DIFFERENCE= 	 0.19892E-05 AVERAGE PERCENT DIFFERENCE= 	 9.3513

ROOTMEAN SQUARE-DIFFERENCE= 	 0.23652E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 10.9260

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.183800E-04 0.180750E-04 1.659499
0.200000 0.183600E-04 0.178291E-04 2.891732
0.300000 0.184100E-04 0.177117E-04 3.793033
0.500000 0.186100E-04 0.176294E-04 5.269086
0.700000 0.188300E-04 0.176594E-04 6.216603
1.000000 0.192100E-04 0.178194E-04 7.239075
1.500000 0.198600E-04 0.182337E-04 8.188638
2.000000 0.205100E-04 0.187233E-04 8.711297
2.500000 0.211300E-04 0.192394E-04 8.947360
3.000000 0.216400E-04 0.197640E-04 8.669212
3.500000 0.220300E-04 0.202897E-04 7.899605
4.000000 0.223500E-04 0.208136E-04 6.874214
4.500000 0.225700E-04 0.213345E-04 5.474207
5.000000 0.226400E-04 0.218519E-04 3.480989

AVERAGE DIFFERENCE= 0.12540E-05 AVERAGE PERCENT DIFFERENCE= 	 6.0939



COMPOUND AMNOS

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 73.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 71.4600
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION -0.035800
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.19290E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.19415E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 13

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.740000 0.176900E-04
0.200000 0.677000 0.174900E-04
0.300000 0.636000 0.173900E-04

0.500000 0.582000 0.172400E-04
0.700000 0.545000 0.170900E-04
1.000000 0.504000 0.169000E-04
1.500000 0.456000 0.166100E-04
2.000000 0.419000 0.163300E-04
2.500000 0.391000 0.160500E-04
3.000000 0.368000 0.157800E-04
4.000000 0.331000 0.152400E-04
5.000000 0.302000 0.147200E-04
6.000000 0.279000 0.142100E-04

AQUEOUS SOLUTION OF COMPOUND AMNO3
COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.740000 0.752598 1.702499
0.200000 0.677000 0.691020 2.070966
0.300000 0.636000 0.651507 2.438151
0.500000 0.582000 0.598034 2.754977
0.700000 0.545000 0.560504 2.844744
1.000000 0.504000 0.518637 2.904096
1.500000 0.456000 0.468230 2.682093
2.000000 0.419000 0.430406 2.722152
2.500000 0.391000 0.399708 2.227094
3.000000 0.368000 0.373645 1.533961
4.000000 0.331000 0.330581 0.126601
5.000000 0.302000 0.295511 2.148726
6.000000 0.279000 0.265858 4.710544

AVERAGE DIFFERENCE= 	 0.0113 AVERAGE PERCENT DIFFERENCE= 	 2.3744
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0121 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 2.571f



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.176900E-04 0.176942E-04 0.023899
0.200000 0.174900E-04 0.172906E-04 1.139882
0.300000 0.173900E-04 0.170199E-04 2.128310
0.500000 0.172400E-04 0.166260E-04 3.561367
0.700000 0.170900E-04 0.163227E-04 4.489870
1.000000 0.169000E-04 0.159491E-04 5.626768
1.500000 0.166100E-04 0.154331E-04 7.085497
2.000000 0.163300E-04 0.149815E-04 8.257768
2.500000 0.160500E-04 0.145618E-04 9.272496
3.000000 0.157800E-04 0.141595E-04 10.269365
4.000000 0.152400E-04 0.133815E-04 12.194948
5.000000 0.147200E-04 0.126196E-04 14.269259
6.000000 0.142100E-04 0.118636E-04 16.512393

AVERAGE DIFFERENCE= 	 0.11420E-05 AVERAGE PERCENT DIFFERENCE= 	 7.2948
ROOTMEAN SQUARE-DIFFERENCE= 	 0.13434E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 8.7932

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.176900E-04 0.171548E-04 3.025649
0.200000 0.174900E-04 0.166573E-04 4.760838
0.300000 0.173900E-04 0.163102E-04 6.209496
0.500000 0.172400E-04 0.157806E-04 8.465205
0.700000 0.170900E-04 0.153546E-04 10.154694
1.000000 0.169000E-04 0.148072E-04 12.383498
1.500000 0.166100E-04 0.140022E-04 15.699977
2.000000 0.163300E-04 0.132481E-04 18.872518
2.500000 0.160500E-04 0.125104E-04 22.053565
3.000000 0.157800E-04 0.117769E-04 25.368416
4.000000 0.152400E-04 0.103062E-04 32.373819
5.000000 0.147200E-04 0.882375E-05 40.056026
6.000000 0.142100E-04 0.732880E-05 48.425027

AVERAGE DIFFERENCE= 	 0.29753E-05 AVERAGE PERCENT DIFFERENCE= 19.0653
ROOTMEAN SQUARE-DIFFERENCE= 	 0.35407E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 23.4170



COMPOUND HCL

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(In(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 349.8000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.143300
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.33360E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.33371E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 12

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.796000 0.305000E-04
0.200000 0.767000 0.306400E-04
0.300000 0.756000 0.309300E-04
0.500000 0.757000 0.318400E-04
0.700000 0.772000 0.328600E-04
1.000000 0.809000 0.343600E-04
1.500000 0.896000 0.374300E-04
2.000000 1.009000 0.404600E-04
2.500000 1.147000 0.433700E-04
3.000000 1.316000 0.465800E-04
3.500000 1.518000 0.492000E-04
4.000000 1.762000 0.517000E-04

AQUEOUS SOLUTION OF COMPOUND HCL

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.796000 0.799096 0.388923

0.200000 0.767000 0.772731 0.747132

0.300000 0.756000 0.763804 1.032297
0.500000 0.757000 0.765280 1.093786
0.700000 0.772000 0.779557 0.978903
1.000000 0.809000 0.814998 0.741469
1.500000 0.896000 0.900265 0.475954
2.000000 1.009000 1.012770 0.373592
2.500000 1.147000 1.151860 0.423714
3.000000 1.316000 1.319521 0.267560
3.500000 1.518000 1.519243 0.081872
4.000000 1.762000 1.755699 0.357604

AVERAGE DIFFERENCE= 	 0.0052 AVERAGE PERCENT DIFFERENCE= 	 0.5802
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0056 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.6603



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.305000E-04 0.315699E-04 3.508009
0.200000 0.306400E-04 0.316750E-04 3.377953
0.300000 0.309300E-04 0.319264E-04 3.221345
0.500000 0.318400E-04 0.325777E-04 2.316743
0.700000 0.328600E-04 0.333395E-04 1.459321
1.000000 0.343600E-04 0.346198E-04 0.756253
1.500000 0.374300E-04 0.369886E-04 1.179164
2.000000 0.404600E-04 0.395283E-04 2.302774
2.500000 0.433700E-04 0.421631E-04 2.782721

3.000000 0.465800E-04 0.448540E-04 3.705398

3.500000 0.492000E-04 0.475794E-04 3.293822

4_000000 0.517000E-04 0.503268E-04 2.656014

AVERAGE DIFFERENCE= 	 0.98983E-06 AVERAGE PERCENT DIFFERENCE= 	 2.5466
ROOTMEAN SQUARE-DIFFERENCE= 	 0.10825E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 2.7116

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.305000E-04 0.315047E-04 3.294233
0.200000 0.306400E-04 0.320852E-04 4.716561

0.300000 0.309300E-04 0.327815E-04 5.986119

0.500000 0.318400E-04 0.343634E-04 7.925180

0.700000 0.328600E-04 0.361525E-04 10.019709
1.000000 0.343600E-04 0.391032E-04 13.804349

1.500000 0.374300E-04 0.444043E-04 18.632905
2.000000 0.404600E-04 0.499150E-04 23.368834

2.500000 0.433700E-04 0.555056E-04 27.981482
3.000000 0.465800E-04 0.611255E-04 31.226970
3.500000 0.492000E-04 0.667539E-04 35.678744
4.000000 0.517000E-04 0.723818E-04 40.003418

AVERAGE DIFFERENCE= 	 0.80172E-05 AVERAGE PERCENT DIFFERENCE= 18.5532
ROOTMEAN SQUARE-DIFFERENCE= 	 0.10324E-04 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 22.2623



COMPOUND HBR

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 349.8000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 78.1400
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.173400
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.34000E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.34073E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 6

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.805000 0.314000E-04
0.200000 0.782000 0.319000E-04
0.300000 0.777000 0.324900E-04
0.500000 0.789000 0.338800E-04
0.700000 0.815000 0.355200E-04
1.000000 0.871000 0.387000E-04

AQUEOUS SOLUTION OF COMPOUND HBR

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.805000 0.807188 0.271747
0.200000 0.782000 0.787382 0.688201
0.300000 0.777000 0.784493 0.964322
0.500000 0.789000 0.797662 1.097847
0.700000 0.815000 0.823998 1.104049
1.000000 0.871000 0.879319 0.955096

AVERAGE DIFFERENCE= 	 0.0068 AVERAGE PERCENT DIFFERENCE= 	 0.8469
ROOT MEAN SQUARE-DIFFERENCE= 	 0.0072 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 0.8957



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.314000E-04 0.323417E-04 2.999017
0.200000 0.319000E-04 0.325863E-04 2.151467
0.300000 0.324900E-04 0.329658E-04 1.464306
0.500000 0.338800E-04 0.338578E-04 0.065627
0.700000 0.355200E-04 0.348546E-04 1.873253

1.000000 0.387000E-04 0.364895E-04 5.711965

AVERAGE DIFFERENCE= 	 0.83365E-06 AVERAGE PERCENT DIFFERENCE= 	 2.3776
ROOTMEAN SQUARE-DIFFERENCE= 	 0.10735E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 2.9413

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.314000E-04 0.324239E-04 3.260739
0.200000 0.319000E-04 0.332622E-04 4.270182
0.300000 0.324900E-04 0.341940E-04 5.244728

0.500000 0.338800E-04 0.362341E-04 6.948213
0.700000 0.355200E-04 0.384901E-04 8.361844
1.000000 0.387000E-04 0.421650E-04 8.953471

AVERAGE DIFFERENCE= 	 0.21465E-05 AVERAGE PERCENT DIFFERENCE= 	 6.1732
ROOTMEAN SQUARE-DIFFERENCE= 	 0.23158E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 	 6.5158



COMPOUND CACL2

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 2
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 59.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.094800
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.13350E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.13434E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 11

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.518000 0.111000E-04
0.200000 0.472000 0.110700E-04
0.300000 0.455000 0.111600E-04
0.500000 0.448000 0.114000E-04
0.700000 0.460000 0.116800E-04

1.000000 0.500000 0.120300E-04
1.500000 0.616000 0.126300E-04
2.000000 0.792000 0.130700E-04
2.500000 1.063000 0.130600E-04
3.000000 1.483000 0.126500E-04
3.500000 2.080000 0.119500E-04

AQUEOUS SOLUTION OF COMPOUND CACL2

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED 	 DIFFERENCE-%

0.100000 0.518000 0.517008 0.191430
0.200000 0.472000 0.475877 0.821387
0.300000 0.455000 0.460006 1.100149
0.500000 0.448000 0.454181 1.379672
0.700000 0.460000 0.466020 1.308655
1.000000 0.500000 0.504512 0.902362
1.500000 0.616000 0.612326 0.596362
2.000000 0.792000 0.775249 2.115001
2.500000 1.063000 1.005329 5.425313
3.000000 1.483000 1.323511 10.754493
3.500000 2.080000 1.760267 15.371788

AVERAGE DIFFERENCE= 	 0.0531 AVERAGE PERCENT DIFFERENCE= 	 3.6333
ROOT MEAN SQUARE-DIFFERENCE= 	 0.1093 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 	 5.9739



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION 	 ACTUAL 	 PREDICTED 	 DIFFERENCE-%

0.100000 0.111000E-04 0.114678E-04 3.313806
0.200000 0.110700E-04 0.116249E-04 5.012953
0.300000 0.111600E-04 0.118337E-04 6.036678
0.500000 0.114000E-04 0.123280E-04 8.140323
0.700000 0.116800E-04 0.129240E-04 10.650781
1.000000 0.120300E-04 0.139657E-04 16.090539
1.500000 0.126300E-04 0.159367E-04 26.181217
2.000000 0.130700E-04 0.180546E-04 38.137453
2.500000 0.130600E-04 0.202404E-04 54.979737

3.000000 0.126500E-04 0.224591E-04 77.542645

3.500000 0.119500E-04 0.246942E-04 106.646225

AVERAGE DIFFERENCE= 0.39754E-05 AVERAGE PERCENT DIFFERENCE= 32.0666

ROOTMEAN SQUARE -DIFFERENCE= 	 0.56651E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 45.7862

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION 	 ACTUAL 	 PREDICTED 	 DIFFERENCE-%

0.100000 0.111000E-04 0.115411E-04 3.973834

0.200000 0.110700E-04 0.120124E-04 8.513259

0.300000 0.111600E-04 0.124955E-04 11.967175

0.500000 0.114000E-04 0.136939E-04 20.122035

0.700000 0.116800E - 04 0.151669E - 04 29.853197
1.000000 0.120300E-04 0.176631E-04 46.825443

1.500000 0.126300E-04 0.221278E-04 75.200333
2.000000 0.130700E-04 0.266965E-04 104.257636
2.500000 0.130600E - 04 0.312741E - 04 139.464851
3.000000 0.126500E - 04 0.358369E - 04 183.295707
3.500000 0.119500E-04 0.403802E-04 237.909372

AVERAGE DIFFERENCE= 0.97353E-05 AVERAGE PERCENT DIFFERENCE= 78.3075
ROOTMEAN SQUARE-DIFFERENCE= 	 0.13503E-04 ROOTMEAN SQUARE-PERCENT DIFFERENCE=108.6670



COMPOUND BACL2

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(ln(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 2
VALENCE OF ANION 1
CATION A CONDUCTANCE-MHOS/EQIV.-298 K, INFINITE DILUTION 63.6300
ANION CONDUCTANCE-MHOS/EQIV.-298 K, INFINITE DILUTION 76.3500
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION 0.063800
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.13850E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.13953E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 7

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.508000 0.115900E-04
0.200000 0.450000 0.115000E-04
0.300000 0.425000 0.115100E-04
0.500000 0.403000 0.116000E-04
0.700000 0.397000 0.116800E-04
1.000000 0.401000 0.117900E-04
1.500000 0.431000 0.118000E-04

AQUEOUS SOLUTION OF COMPOUND BACL2

COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.508000 0.497463 2.074233
0.200000 0.450000 0.444917 1.129617
0.300000 0.425000 0.419691 1.249093
0.500000 0.403000 0.396617 1.583762
0.700000 0.397000 0.390412 1.659553
1.000000 0.401000 0.397471 0.880003
1.500000 0.431000 0.435248 0.985711

AVERAGE DIFFERENCE= 0.0060 	 AVERAGE PERCENT DIFFERENCE= 1.3660
ROOT MEAN SQUARE-DIFFERENCE= 0.0063 	 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 1.4216



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION 	 ACTUAL 	 PREDICTED 	 DIFFERENCE-%

0.100000 0.115900E-04 0.116474E-04 0.495099
0.200000 0.115000E-04 0.116405E-04 1.221480

0.300000 0.115100E-04 0.117160E-04 1.789704
0.500000 0.116000E-04 0.119698E-04 3.188173

0.700000 0.116800E-04 0.123302E-04 5.566518

1.000000 0.117900E-04 0.130111E-04 10.357246

1.500000 0.118000E-04 0.143609E-04 21.702594

AVERAGE DIFFERENCE= 0.74370E-06 AVERAGE PERCENT DIFFERENCE= 	 6.3315
ROOTMEAN SQUARE-DIFFERENCE= 0.11132E - 05
	

ROOTMEAN SQUARE-PERCENT DIFFERENCE= 9.4443

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION 	 ACTUAL 	 PREDICTED 	 DIFFERENCE -%

0.100000 0.115900E-04 0.115266E-04 0.546714
0.200000 0.115000E-04 0.117406E-04 2.092229
0.300000 0.115100E-04 0.119998E-04 4.255149

0.500000 0.116000E-04 0.127468E-04 9.886105

0.700000 0.116800E-04 0.137424E-04 17.657109

1.000000 0.117900E-04 0.154879E-04 31.364544
1.500000 0.118000E-04 0.186584E-04 58.122252

AVERAGE DIFFERENCE= 0.20799E-05 AVERAGE PERCENT DIFFERENCE= 17.7034
ROOTMEAN SQUARE-DIFFERENCE= 	 0.30841E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 26.1704



COMPOUND AM2SO4

THIS PROGRAM EVALUATES THE EFFECT OF CONCENTRATION ON THE ACTIVITY AND DIFFUSION COEFFICIENTS
OF SALTS USING THE BROMLEY EQUATION AND THE Nernst-Hartley EQUATION FOR DIFFUSIVITY

D(c)=D(0)*(1+c*d(In(GAMA))/dc); DILUTE SOLUTIONS

VALENCE OF COMP.A 1
VALENCE OF ANION 2
CATION A CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 73.5000
ANION CONDUCTANCE-MHOS/EQIV.-298 K,INFINITE DILUTION 80.0200
BROMLEY EQ. SALT PARAMETER -CATION A,COMMON ANION -0.028700
Nernst LIMITING DIFFUSIVITY-CM**2/SEC 0.15300E-04
DIFFUSIVITY CALCULATED FROM CONDUCTANCES-CM**2/SEC 0.15346E-04
NUMBER OF DEPENDENT VARIABLES 3
NUMBER OF DATA POINTS 12

CONCENTRATION ACTIVITY COEFF. DIFFUSION COEFF.

0.100000 0.423000 0.825000E-05
0.200000 0.343000 0.867000E-05
0.300000 0.300000 0.897000E-05

0.500000 0.248000 0.938000E-05

0.700000 0.218000 0.972000E-05
1.000000 0.189000 0.101100E-04

1.500000 0.160000 0.104700E-04
2.000000 0.144000 0.106900E-04
2.500000 0.132000 0.108800E-04
3.000000 0.125000 0.110600E-04
3.500000 0.119000 0.112200E-04
4.000000 0.116000 0.113500E-04

AQUEOUS SOLUTION OF COMPOUND AM2SO4
COMPARISON OF ACTIVITY COEFFICIENTS-ACTUAL VS. PREDICTED BY BROMLEY EQUATION

CONCENTRATION ACTUAL PREDICTED DIFFERENCE-%

0.100000 0.423000 0.443425 4.828548
0.200000 0.343000 0.364001 6.122638
0.300000 0.300000 0.319207 6.402475
0.500000 0.248000 0.264697 6.732861
0.700000 0.218000 0.230207 5.599323
1.000000 0.189000 0.195110 3.232685
1.500000 0.160000 0.157178 1.763951
2.000000 0.144000 0.131537 8.655208
2.500000 0.132000 0.112392 14.854847
3.000000 0.125000 0.097279 22.176523
3.500000 0.119000 0.084932 28.628396
4.000000 0.116000 0.074611 35.679909

AVERAGE DIFFERENCE= 0.0195 	 AVERAGE PERCENT DIFFERENCE= 12.0564
ROOT MEAN SQUARE -DIFFERENCE= 0.0221 	 ROOT MEAN SQUARE-PERCENT DIFFERENCE= 16.0001



COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY INTEGRAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION 	 ACTUAL 	 PREDICTED 	 DIFFERENCE-X

0.100000 0.825000E-05 0.120429E-04 45.974038
0.200000 0.867000E-05 0.114752E-04 32.355218
0.300000 0.897000E-05 0.110937E-04 23.675366
0.500000 0.938000E-05 0.105204E-04 12.157892
0.700000 0.972000E-05 0.100681E-04 3.580809
1.000000 0.101100E-04 0.950263E-05 6.007596
1.500000 0.104700E-04 0.870273E-05 16.879332
2.000000 0.106900E-04 0.79w2E-05 25.372170
2.500000 0.108800E-04 0.728143E-05 33.075096

3.000000 0.110600E-04 0.659585E-05 40.363018
3.500000 0.112200E-04 0.591317E-05 47.297911

4.000000 0.113500E-04 0.522984E-05 53.922097

AVERAGE DIFFERENCE= 0.28989E-05 AVERAGE PERCENT DIFFERENCE= 28.3884
ROOTMEAN SQUARE-DIFFERENCE= 	 0.33854E - 05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 32.5502

COMPARISON OF DIFFUSION COEFFICIENTS-ACTUAL VS. PREDICTED BY DIFFERENTIAL VERSION OF Nernst-Hartley EQUATION

CONCENTRATION 	 ACTUAL 	 PREDICTED 	 DIFFERENCE-%

0.100000 0.825000E-05 0.112609E-04 36.496010
0.200000 0.867000E-05 0.105908E-04 22.154631
0.300000 0.897000E-05 0.100792E-04 12.366037
0.500000 0.938000E-05 0.926873E-05 1.186216
0.700000 0.972000E - 05 0.861311E-05 11.387716

1.000000 0.101100E-04 0.775865E-05 23.257669
1.500000 0.104700E-04 0.644406E-05 38.452114
2.000000 0.106900E-04 0.514528E-05 51.868321
2.500000 0.108800E-04 0.382793E-05 64.816826
3.000000 0.110600E-04 0.248736E-05 77.510331
3.500000 0.112200E-04 0.112549E-05 89.968859
4.000000 0.113500E - 04 - 0.254553E - 06 102.242762

AVERAGE DIFFERENCE= 0.47087E-05 AVERAGE PERCENT DIFFERENCE= 44.3090
ROOTMEAN SQUARE-DIFFERENCE= 	 0.59686E-05 ROOTMEAN SQUARE-PERCENT DIFFERENCE= 54.4470
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Appendix E

SOLUTION ALGORITHM - 7 DIAGONAL ARRAY 

The following matrix equation is to be solved for X.:

Ai X i = bb7. (E- 1)
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1
7
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 1 	 1

7 	 7E7 	 A
2 	

B
7

C
2 	

D
7
2

o 	 o 	 o 	 o 	 o
2 

..P

■A	 F 7 	 E 7 	 A 7 	 B 7 	 C 7 	 D7 	 o 	 o 	 o 	 o
33 	 3 	 3 	 3 	 3

7
4 	 4G7

4 	F
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Ai
7
. can be specified as:

7 	 7A. = L.U.
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(E-3)

where (E-4)
& (E-5)

W
7	

0 	 0 	 0
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a' 	 W7
2 	 2
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7

13 	 I)
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3 	 3 	 3
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7n7
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matrix multiplication of (E-4) and E-5),
equal to those in (E-1), yields:

e? = G7 for i = 4 	 N

(I) 7 = D7/ 7 = D7/A7
1 	 1 w 1 	 11

setting the coefficients
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(E-6)

(E-7)

A -7 	 n7/ 7
Y 1 - ui/w1 	 for i = 2 --- N-3 	 (E-8)

87 = C 7/w7 = C7/A7 	 (E-9)
1 	 11 	 11

67 = C?-e?0. 	 for i = 2 --- N-2 	 (E-10)
1 	 1 	 1 1-1 

7w i

777 	 77
= B i 	

(E-11)
Y1 	 l wl = B l iAl

7,7 b7,7_
Y2 - '2-P2 u 1 

7
w2

77 7 7 	 77
y . = B.-a.o. 	 a.s.
i 	1 - 2 	 1 - 1 

7
1

(E-12)

for i = 3 --- N-1 	 (E-13)

7 	 73,2 = E2
7 7 7E3-a3y 1

7 	 7 77 	 77a. = E.-o.8. -a.y. 	 for i = 4 	 N
1 	 1	 1 1-3 	 1 1-2

7 _ ,7- 3

7 	 7 77a. =F-or 	 for i 	 4 	 N
1 	 1 	 1 	 -3

7 _ A 7
wl - m 1

7 7 .77
w2 = -2-P2Y 1

7 7
W3 = A/3'Ya7 73 6 1

7 	 7 7 7 	 7 7 	 7 7w. = A-e.y. -a6. -e(1). 	 for i = 4 	 N
1 	 1 	 1 1-1 	 1-2	 1 1-3

(E-14)

(E-15)

(E-16)

(E-17)

(E-18)

(E-19)

(E-20)

(E-21)

(E-22)



(E-23)

(E-24)

(E-25)

7

x

bb l

bbN

FF 1

FF N
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defining FF7 _ U7.X i
 1

then L.7 FF.7 = bb.7
1 	 1

where

7

■
\0 7

I 7 	
'P 2 	 .

L. = 	 . 	 .

7 ' 	 ..1 	
. ...a3 	.	 .

\ 	 \■

V4.,
,7 . 7 	 b

N
7 	 . 7

•11°N 	
'a 	 P 	 (14

solution to the sets of equations defined by (E-25)

7 	 7FF1 = bbd/w1

7 7 	 7 7FF 1 (3 2 + FF2w2 = bb27

or FF2 = bb2-FF 17 6 2
7

7
w2

FF7 = bb7-FF77-FF 7
26 7

3 	 3 	 1 3 	 3
7

W3

FF7 = bb7-FF 76 7-FF 7a7-FF7
6

7
4 	4 1 4	 2 4 	 3 4

w7
4

(E -26)

(E -27)

(E -28)

(E -29)

7 	 7 	 7 	 7 	 7 	 7 	 7FF i = bb-FF i-36 i -FF i-2a i -FF i-1 6 i for i = 4 --- N 	 (E-30)
w7

i

Returning to U i
7 X i .1' FF.
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solution to equations defined by (E-31) in terms of (E-30)

X = FF7
	bb-FF-FF7 	 7 -FF7 aN 	 N 	N	 N-3 

7
N 	 N-2'N 	 N-1 N

7
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(E-32)

and

FF7 = X 	 + y7 XN-1 	 N-1 	 11-1 N

7 v 	 4- x 7 VFF7 	
=- vN-2 	 ^N-2 	 YN-2"N-1 '

FF7 = X 	 + y7 X 	 + 67 X
	
+ .7 XN-3 	 N-3 	 N-3 N-2 	 N-3 N-1 	 N-3 N

7 	 7 	 7FF.7 = X. + y.X. 	 + 6.X. 	 + cp.X.

	

1+1 	 1+2 	 1+3

so 	 FF7 = X
1

 yX + 
6 7 X3 	.X1 	 I 2 	 3 	 1 4

Rearranging in terms of X i

X 	 = FF77 XN-I 	 N-1 N-I N

X 	 - FF 	 y7 - 7 X 	 -67 XN-2 - 	 N-2 N-2 N-1 N-2 N

X 	 = FF7 -y7 X 	 -67 X 	 -4)7 X
N-3 	 N-3 N-3 N-2 N-3 N-1 N-3 N

	

7 	 7X.1 	 1= FF.7 -y.7 
1X.+1

 -6.X.+2 -4).1X.1+3 	for i = N-3 --- 1 1 

so 	 X 1 = FF-y 7X -6 X -4)X1 	 121314

from equation (E-30)

7 	 = 7 	 7	 7 	 7 	 7 	 7 	 7FFm _ i 
7

wN-i

for i = 1 --- N-4

iwith FF 7 FF 2
7 
' FF3

7 given in equations (E-26) through (E-28).

fora = N-3 --- 1

(E-33)

(E-34)

(E-35)

(E-36)

(E-37)

(E-38)

(E-39)

(E-40)

(E-41)

(E-42)

(E-43)

The 7 diagonal algorithm then consists of separating the coefficient

matrix? into an upper and lower diagonal matrix, which when multipliedA i

and set equal to the terms in Ai, allows values to be computed for the

factors:

7 . 7 	 7 	n7
10.1 	 Pi 	 ,

Dy defining a vector FF 7. E U?Xi° advantage is taken of the upper	1 	 U?X i ,

diagonal U 7i in which all diagonal elements are unity to solve for X i

in terms of vectors bbi and vector FFi, which is known in terms of

the lower diagonal factors. X i is then solved for starting with

7X
N 

and proceeding to X
1 . Thus in effect inverting the matrix A i.

and solving for X i .



Appendix F

SOLUTION ALGORITHM - 5 DIAGONAL ARRAY 

The following matrix equation is to be solved for Xi:



A5i can be specified as:
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matrix multiplication of (F-4) and (F-5), setting the coefficients
equal to those in (F-1), yields:

solution to the sets of equations defined by (F-18)
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returning to U 5iXi = FF5i (F-16)

solution to equations defined by (F-24) in terms of (F-23)

and

rearranging in terms of X i

from equation (F-23)

with FF51 and FF52 given in equations (F-20) and (F-21).

Use of the above algorithm inverts the A 5i matrix and solves for Xi.



Appendix G

DERIVATION OF THE GENERAL EQUATION FOR DIFFUSION OF IONIC 

SPECIES IN THE RESIN PHASE — TERNARY SYSTEMS 

A. 	 Derivation using irreversible thermodynamics treatment 

The Nernst—Planck equation for transport of ionic species

in dilute electrolytes is given as:

where:

N k
	

= molar flux of component k

c
k 	

= molar concentration of species k (moles/liter)

c
= chemical potential of species j

z. 	 = charge on species j

1(j 
= phenomenological coefficients

F 	 = Faraday constant

(1) 	 = electric potential, volts

For electroneutrality in the resin, the following relationship

holds: (n-2)

Then the gradient is given by:
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and since no electric current flows,

Substituting (G-1) in (G-4),
(G-5)

Putting V 	 from equation (G-5) into equation (G-1)

yields: 	 (G-6)

437

From the chain rule,



438

and substituting (G-7) in (G-6) gives,
(G-8)

This can be expressed as:

where: 	 r 	 (G-10)
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B. Simplifying Assumptions 

1.0 	 Elimination of Cross Phenomenological Coefficients

If we assume that cross phenomenological coefficients are zero,

and,

resulting in:

The following diffusion coefficients result from substitution

of (G-12) and (G-13) in equation (G-10): 	 (G-14)

and, 	 (G-15)

2.0 	 Pressure—Volume Effects 

If pressure in the resin and the volume of the resin are
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assumed to be constant, i.e.,

then water diffusion is negligible, and,

therefore,

and

C. Elimination of species 3 in sets of equations 

By expanding equation (G-18), there results

and in view of (G-19) which yields,

so , 	 (G-22)

This can be shown as,

or,



D. Effective Diffusion Coefficients — chemical potential 

By combining equations (G-15) and (G-16) to satisfy (G-23)

and (G-24), there results,

441

Assuming the "self" diffusion coefficient of species k is:

The chemical potential is defined as:

then:

Substituting equations (G-26) and (G-27) in equation (G-24)

(G-29)
yields,
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likewise 	 (G-30)

The activity of species k is given as,

where 
1k
 is the molar activity coefficient

and therefore,

Substituting for δln(a

k

)/δck in equations (G-29) and (G-30)

yields, 	 (G-33)
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and ,



Appendix H

Quasilinearization of Non—linear Terms 

Numerical Approximation of Resin Phase Continuity Equations 

- Ternary System — 

Several terms appear in the resin phase continuity equations

for the ternary system which are non linear, in addition to the

equilibrium relationship. Multiplication of finite difference

equations approximating those terms result in algebraic variables

which cannot be separated, and the quasilinearization approach

is used to resolve those terms. The following terms are treated

accordingly.



(H-2) continued

since:

and:

clearing terms in (H-2) leads to:

445

Since the concentration values from the n
th 

iteration are

Known, they are treated as constants in the 
n+Ith 

iteration, and

the iterations are repeated until convergence criteria are met at

each time step.Satisfactory solution tolerances were met in 3 to 5

iterations in most cases studied.



Appendix I

COUPLING OF RESIN PHASE MATRIX EQUATIONS TO THE 

FLUID PHASE MATRIX EQUATIONS - TERNARY FIXED BED MODEL 

A. General 

The seven diagonal array solution algorithm allows the

solution of the coupled resin phase diffusion equations. The

boundary conditions at the resin—electrolyte phase interface

allow carrying the resin phase compositions into the solution

of the coupled electrolyte phase equations, which equations

are solved by the five diagonal array algorithm. This section

deals with the coupling of the matrices and vectors describing

the equations for both phases, through that boundary condition

relationship.

B. Resin Phase Equations — Matrix Notation 

In matrix notation, the coupled resin phase equations

(5-81) and (5-82) are: 	 (I-1)

and 	 (I-2)

C. Seven Diagonal Array Algorithm and Resolving of Resin Surface 

Concentration in terms of the Bulk Electrolyte Concentrations

	

The coefficients and vectors are loaded into a scratch 7

diagonal array (fig. 5-1) and (fig. E-2) in which the vectors

bb7N and bb7N-1 are the solution vectors for equations (I-2)

and (I-1) respectively. These two vectors also contain the
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boundary conditions:

and:

respectively.

Taking advantage of the solution algorithms given by

equation (E-32),

but bb 7Nincludes the term

so

and therefore by equations (E-43) and (I-1):
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where:

so from equation (E-38) the following expression results:

Combining equation (1-10) with (I-12) yields: 	 (1-13)

and in terms of x 2, using equations (I-10) and (I-9): 	 (I-14)



In view of (1-13) and (I-14), the following can be shown:

449

So, 	 (I-16)

The resin phase concentrations at the boundary condition have

now been described in terms of the bulk electrolyte phase

concentrations at every column node, i = 1 to I.
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D. Resolution of the Electrolyte Phase Concentrations — Five Diagonal 

Array

In matrix notation, the coupled electrolyte phase equations, (7-27)

and (7-28), are:

Substituting (I-16) and (I-14) into (I-17) and (I-18) results in:



and,

451

Collecting terms, the following expressions result:



Final condensation of terms results in:

where from Figure (7-1),

452

Likewise,



where from Figure (7-1),

The five diagonal algorithm, called ZSOLVE, solves for values

of x 1bulk (i,j+l)n+1 and x2bulk (i,j+1)n+1 as illustrated in Fig. (7-1),

and as outlined in Appendix F.

E. Resolution of Resin Phase Concentrations — Seven Diagonal Array 

In order to compute the values for ;x l(M,i,j+l) n+1 and

x
2
(M,i,j+1)

n+1 
we note that from Appendix E and Fig. (5-1),

x2(- M'i'j+1)n+1 = FF
N as defined by equation (I-9), for which

the n+1
th 

values of x. (i,j+1)
n+1 

are now known, and:
bulk

The FF
7
N-1

 term can be computed from (1-10) since the

x
i 

(i,j+1)
n+1 

values are known, and x
1
(M,i,j+1)

n+1 
values

bulk

can be computed from (I-12) since )( 2 (M,i,j+1) 11+1 values are

known. Using the algorithm described in Appendix E for the

remaining sequence of x i values, and keeping in mind that the

x
1 

and x
2 
values alternate in the scratch array XSOLVE, the

remaining resin phase concentrations are calculated.

The sequence is repeated, updating quasilinearized

expressions at each iteration, until convergence is attained

for the given time step.
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Appendix J

NUMERICAL SOLUTION DEVELOPMENT 

MODEL FOR ION EXCHANGE IN FIXED BEDS 

BINARY SYSTEMS 

A. Resin and Fluid Phase Matrix Equations 

The resin phase equations in matrix notation are given in

equation (5-71) as:

The fluid phase equations in matrix notation are given as an

adaptation of equation (7-27): 	 (j-2)

B. Tridiagonal Treatment, Resin Phase 

Recognizing that E
1
•xlbulk (i,j+l)n+1 applies only at m = M, the

resin—film interface, then:

A
in

can be divided into two matrices, L in and Q in

, such that:

where:
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and,

and since, from equation (5-72)

If matrix L
in 

is multiplied by matrix Q
in

, and the result is set

equal to matrix A in , there results the following algorithm:

455

for m = 2 to M-1 and i = 1 to I, for the n
th 

iteration 
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and ,

then ,

resulting in:

At the resin surface, the relationship becomes:

In addition, since Q. is upper triangular with all diagonal
n

elements equal to unity, then: 	
(J-17)

and )(1(M'j+1)n+1 is now expressed as a function of x 1 (i,j+1)
n+11

bulk

C. Tridiaqonal Treatment, Fluid Phase Resolution of Concentrations 

Referring to the fluid phase coefficient matrix, B1i

(equation (7-29)), and vector Vi i (equation (7-31)), and using

the revised notation for binary systems, i.e. B1 i = B i , and

Vl.
1
 = V.

1
, then:
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but since x
1
(M,i,j+1)

n+1 
is now known in terms of x 1bulk(i,j+1)

n+1'
bulk

a revised coefficient matrix and solution vector can be derived

for the fluid phase,

where:

Also, substitution of (J-17) in equation (J-2) results in:
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The matrix equation then becomes:

D. Resin Phase — Resolution of Concentrations 

The values of x
1 (i'j+1)n+1 

are found with the tridiagonal
bulk

algorithm derived above for the fluid phase. These values are

substituted in equation (3-17) for f m,i 	to obtain the values
n+1

for the resin phase compositions at the surface, x l (M,i,j+1)
n+1

,

at each i node. In view of the definition of F
i 	

, equation (3-11):
n+1

E. Convergence 

The remaining values of resin compositions at each node m can

be calculated for each column node i at the n+1
th 

iteration

during time step j+1. The iterative process is continued at

time step j+1 until convergence criteria have been met for all

values of x (m i j+1) and x 1 (i, j+1). The criterion for convergence1 	 V 	 1
bul

normally was:

F. Summary 

In summary, the defined resin solution vectors, f 
m,1

., made up of

the lower diagonal coefficients and solution vectors from the

resin phase matrix equation are calculated from the resin center

to the resin surface—fluid interface. The defined vectors
, 

f
M,i'
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are then carried into the solution phase to obtain the column

compositions through the equilibrium relationship. This

relationship, as result of the quasilinearization procedure,

expresses x 1 (i) 	 as a linear function of x 1 (M,i) int'1
bulk int

The column matrix equations are then solved for x 1 (i)1 bulk

The values of the vector f m,i are then calculated, and since

f(M,i) = x 1 (M,i) the values of x 1 (M,i) are now known. Through use

of the calculated resin phase matrix equation upper diagonal

coefficients and the defined factors, fm,i' the remaining

compositions in the resin phase are calculated from the surface

to the center dimension. Equilibrium estimates are refined at

each iteration through the quasilinearization procedure and the

process is repeated until convergence is attained. Normally, with

proper "conditioning" of the column prior to the time step j=1,

5 iterations per time step were required to meet the convergence

criteria at the beginning, dropping quickly to 3 and continuing to

the end of the run. This was true of both the concentration and

the activity models.



Appendix K

RFMAVD — FEATURES OF SIMULATION PROGRAM 

FOR ION EXCHANGE IN FIXED BEDS 

— BINARY SYSTEMS —

A. Main Program 

1. Input and Display Options 

RFMAVD, (Revised Final Mass Action (equilibrium)

Variable (solid phase) Diffusivity), the binary

model program, calls required input data, then

displays the read in information plus key calculated

parameters such as:

o diffusion coefficients of ions in electrolyte phase

at infinite dilution

o diffusion coefficients of salts in electrolyte phase

at infinite dilution

o diffusion coefficients of salts in electrolyte phase

corrected to feed normality

o activity coefficients of salts at feed normality

o Reynolds number

o Peclet number

o initial column concentration values, x
1
(m,i)

'

x
1 

(i) , x (i)
1
intbulk

o initial values of film coefficients, k
L
 (i)
eff

o initial average Biot number

o percent bed capacity available after initialization

procedure

460
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o

	

	 plug flow time to completely utilize available

capacity in solution and resin

o 	 debug options selected

2. Run Options available include:

a. Operation in a "batch" mode.

b. Operation with resin phase equilibrium parameters

correlated in equivalent fraction or mole fraction

for the resin phase.

c. Operation with activity driving force vs.

concentration driving force.

d. Operation with Kataoka et al (50) electric field

model for equal valence exchange.

e. Selection of a particle form factor, a = 0,1,2,

for slab, cylinder, or sphere.

f. Fractional adjustment of the constants in the

Carberry (11) or Koloini et al (54) film

coefficient correlation to observe effect on fit

of ECH curves.

g. Selection of a bypass option in which a fraction of

the feed is assumed to bypass directly from the

feed inlet to mix with the effluent stream.

h. Option of no printout until x 1 	 (column outlet)
bulk

reaches a preselected value, i.e., first appearance

of "S" curve at column exit. Key column variables

are written out to a separate file during that "blind

period" for every 10 dimensionless time steps, with



462

every third file being replaced by the current data

update. This allows examination and early "killing"

of runs which appear to be of no interest to the user.

i. Since on some runs where, because of use of small grid

spacing, column length spacing, and many time steps,

CPU time can be up to 1-2 hours -- all required data

is read out into a file every 50 minutes, which can be

used to restart the program at that point if the

computer is inadvertently shut down, or if the system

has a batch queue time limit. In the latter case, an

option is provided to shut the program down prior to

the time limit for resubmission to the queue.

3. Output Options 

o 	 At selected times and intervals:

— Profiles at 0.1 column lengths for species 1 for:

• fluid phase composition

• interface (equilibrium) composition of fluid

• interface (equilibrium) composition of resin

surface

• film coefficient

o 	 and at a second selected interval

— either

all profiles for j and j+1 time steps for
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— or

Complete flux balance for species 1 in both 

phases, showing convection flux, axial dispersion

flux, holdup flux, film diffusion flux, and resin

accumulation flux. In addition, an approximation

of the B.C. flux is computed by a backward difference

approximation for comparison to the resin accumulation

flux. Species 1 film diffusion flux is also

calculated by the net difference resulting from the

fluid phase fluxes for comparison to the resin

accumulation flux. All printed at column intervals

preselected.

B. RFMAVD Subroutines 

1. Input 

Reads in data, performs computations to obtain

key program control parameters and constants, and writes

out prerun information described above.

2. INISHL 

Computes the initial distribution for column nodes

2 to IMAX, of x
1
(MMAX,i), x 1 (i) , and x

1 
(i), by a

1
bulk 	 int

procedure described in Chapter VII, Section C, paragraph

2. This procedure is based on a flux balance in which

diffusion flux into the top resin layer is set equal to

the flux across the film. The equilibrium values,

x1 (i) , calculated by subroutine ISOTEM from the
int

x
1
(MMAX,i) values, and the film coefficients k

L
 (i)
eff

calculated by subroutine KONST, are used to obtain
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the x 1bulk (i) values which permit the flux balance to

close at each column node. This subroutine is used

in conjunction with an initializing procedure in the

Main Program in which the flux at column node 1 is

balanced, based on the Boundary Condition described

by equation (7-21) in Chapter VII, Section B. If the

first column increment is treated as a CSFTR, then

The procedure in the Main Program solves the monotonic

non—linear relationship with a false positioning

procedure (secant method) embodied in subroutine

AKM33.

3. KONST 

Computes k (i) and the Biot numbers (i), at
L
eff

every j+1 time step using time step j values of

(1) average film concentrations if the pseudo electric

field method is utilized, or (2) calculated values of

	

film concentrations x (i) and x 1 (i) and k (i) 	 ifx1(i)
	

1
bulk 	

Leff

the Kataoka et al (50) electric field model is selected

(applies to homovalent exchange only).

+1
th

jAdditionally calculates the 	 and n
th 

iteration

values of both the resin phase and the electrolyte phase

matrix coefficients and solution vectors.

4. ISOTEM 

Computes the values of electrolyte phase

concentrations x
1 

(i) in equilibrium with the resin

int
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surface compositions x i (MMAX,i). This subroutine

utilizes Lee's quasilinearization procedure to solve

the non—linear equilibrium relationship. Since this

procedure is a variant of the Newton—Raphson method,

if a guess value close to the solution is utilized,

rapid convergence is obtained. Since the concentrations

do not change rapidly between time steps, use of the

value of x
1 

(i) from time step j as a first guess makes
int

this procedure work rapidly.

5. LEECAL 

Calculates the derivatives required for the

quasilinearization procedure which allows expression of

x
1 
(i) as a linear function of x

I
(MMAX,i). This

int
procedure is:
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Therefore the derivatives given in the expression

must be updated at each iteration, n + 1, with n
th

values of the concentrations. The subroutine computes

the derivatives by numerical perturbation, and calls

the subroutines GAMCAL and GAMRCL to obtain the

activity coefficients.

6. GAMCAL 

Computes solution ionic strength, I, and the

electrolyte phase ionic species molal activity

coefficients, 	 and y2' 
which are derived from the

Bromley equation. 	 In addition, the derivatives,

dy./dI are calculated for use in the quasilinearization

procedure used to compute the equilibrium

concentrations in ISOTEM.

7. GAMRCL 

Computes resin phase ion species activity

coefficients based on the Redlich-Kister equation for

binary systems, with parameters correlated in either

mole or equivalent fraction concentration units, based

on concentration arguments from the various calling

subroutines.

8. LEEKON 

Performs the solution to the coupled resin and

electrolyte matrices at each time step, j+1, and

iteration, n, as described in Appendix J. Portions of

the solution vector and coefficient matrices involving

the boundary condition at the resin—film interface
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are updated at the beginning of this subroutine using

n
th 

iteration values of compositions. The n+1
th

values of x
1
(m,i) and x 1 (i) are computed, and ISOTEM

1
bulk

is called to calculate values of x 1 (i) from the
1
int

latest values of x
1
(m,i).

9. DFDVNU 

If the activity driving force model is used then

in arriving at the term 
3(51(mi) 

, which is needed in

ax
1
(m,i)

the resin phase continuity equation, the following

expression must be evaluated and added to the simpler

partial derived for the concentration driving force

model:

The expression is separated into parts u and v, and the

relationship d(uv) = u.dv + v•du is used in the solution.

The derivative of part u is taken analytically, and dv

is solved by numerical perturbation.

10. AKM33 

This subroutine, developed by Dr. A.K.S. Murthy,

involves the secant method false positioning technique

to solve non—linear relationships which are monotonic

with respect to the variable whose value is required.
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C. Main Program Function Details 

Performs the following functions:

o calls Input

o performs the initialization procedure involving

calling the subroutine INISHL. Prints out initial

concentrations and other parameters resulting from

the initialization procedure

o performs the calculation procedure for dimensionless

time, j = 1 to j max 1, by performing the following

functions:

o at iteration n = 1, sets all concentrations to

values from the last time step j as a first

approximation

o at iterations n = 2 to n(convergence), resets all

.4.1th
concentration approximations calculated at the

n
_ith

iteration to those calculated at the n
th

iteration. These values are used to compute the

derivatives required in the quasilinearization

procedure.

o computes the effective diffusion coefficients, ri 	 (m i)
' eff' 	 "

based on the j
th 

concentration values. The effective

diffusion coefficients can be (1) based on the harmonic

mean of the individual species diffusion coefficients

(Fick's Law), (2) based on the concentration model of

Nernst—Planck, or (3) include activity effects so that

the activity driving force is utilized instead of

concentration.
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o computes the partial derivatives of D eff (m,i) with

respect to x
1
(m,i) when using the N—P model. When

the activity driving force model is used, calls

subroutine DFDVNU to obtain the second derivative

terms.

o calls LEEKON for each iteration, which in turn calls

KONST and LEECAL to obtain the n
th 

values of x
1
(m,i)

and x 1 (i) at time step j+1. Also, LEEKON calls
1
bulk

ISOTEM to obtain the n
th 

values of x 1 (i).
1
int

o checks the indicator, ICOUNT, which represents the

number of variables not meeting convergence criteria,

and if>0, recycles through another iteration. The

user inputs the maximum number of iterations desired

before moving on, from j to j + 1. Since this

override represents moving on without total convergence,

a warning message is written out giving the count of

variables not meeting convergence criteria. Iterations

normally ranged between 3-5 for convergence. If the

system was ill conditioned due to poor initialization,

or if one species reached a very low value (binary),

increasing the maximum number of iterations above, say,

20 did not provide convergent solutions. Simulations

containing non—convergent sections were discarded as

suspect.

o controls all output options.



Appendix L

TERNEX — FEATURES OF SIMULATION PROGRAM 

FOR ION EXCHANGE IN FIXED BEDS 

— TERNARY SYSTEMS -

A. Main Program 

1. Input and Display Options 

TERNEX, (TERNary Ion EXchange), the ternary model

program, calls required input data, then displays the

read in information plus key calculated parameters

such as:

o diffusion coefficients of ions in electrolyte phase

at infinite dilution

o diffusion coefficients of salts in electrolyte phase

at infinite dilution

o diffusion coefficients of salts in electrolyte phase

corrected to feed normality

o activity coefficients of salts at feed normality

o Reynolds number

o Peclet number

and displays the initial values of x.(i) , x. (1) , x.(i) ,
dmax 	 3bulk 	 dint

and k (i) for the three species.
L
eff

Additionally, the column average concentration for each

species is shown for each phase after initialization to

give an indication of column "preloading". Debugging options

are shown as selected by the user, if required. Unlike the

binary model, RFMAVD, only a few run options are available.

470
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2. Run Options: 

a. Option of no printout until x 1 	 (column outlet)
bulk

reaches a preselected value, i.e., first appearance of

"S" curve at column exit. Key column variables are

written out to a separate file during that "blind

period", for every 10 dimensionless time steps, with

every third file being replaced by the current data

update. This allows examination and early "killing" of

runs which appear to be of no interest to the user.

b. Since on some runs where, because of use of small grid

spacing, column length spacing, and many time steps, CPU

time can be up to 1-2 hours, all required data is read

out into a file every 50 minutes which can be used to

restart the program at that point if the computer is

inadvertently shut down, or if the system has a batch

queue time limit. In the latter case, an option is

provided to shut the program down prior to the time

limit for resubmission to the queue.

3. Output Options: 

o At selected times

- Column average concentration for each species,

both phases.

- Profiles @ 0.1 column lengths

fluid phase — each component

film coefficients — each component.

o At other selected times
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Either

Complete flux balance for each species in

both phases, showing convection flux,

dispersion flux, holdup flux, film diffusion

flux, matching resin boundary condition flux,

resin boundary condition flux, and resin

accumulation flux. In addition, an

approximation of the B.C. flux is computed by

a backward difference approximation, and

species 3 fluxes are computed and also

arrived at by difference from species 1 and 2

fluxes for comparison.

All printed at column intervals preselected.

— Or

Complete composition printout of x i , x ibulk, and

for i = 1,2,3 at both j and j+1 time steps	x i 	for

at all column and resin nodes.

B. 	 TERNEX Subroutines 

1. INPUT 

Reads in data, performs computations to obtain key

program control parameters and constants, and writes

out prerun information described above.

2. ENISHL 

Supported by subroutines INSHDV and FLXCAL, performs

the flux balance solution to obtain initial compositions

of x
i
(M,1), x (i), and x (i), using the Newton—

i
bulk

	x i (i),

Raphson method, for solution of non—linear equations.
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3. KFCALC 

Calculates k Lkehf 	 keff(i) and Bi (i) (Biot no.), for

k = 1,2,3 at every j + 1 calculation using j th

values of fluid phase compositions. Also computes

these values as called by ENISHL for initialization.

4. DRVCAL 

Calculates the derivatives:

for k = 1,2,3 and i = 1 to I

This is performed at each time step, j+1, and at each

iteration,n . The method (70) for differentiation of

implicit functions is utilized (uses Cramer's Rule).

5. GAMRCL

Computes resin phase ionic species activity

coefficients based on the Redlich—Kister equation for

ternary systems, with parameters correlated in equivalent

fractions, based on concentration arguments from the

various calling subroutines.

6. GAMCAL 

Computes electrolyte phase ionic species molal activity

coefficients,γ
k
(where k = 1,2,3),based on the Bromley equation

plus the derivatives, dγk /dI (where I = ionic strength),

based on concentration arguments from the various calling

subroutines.
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7. EQUILB 

Computes, with its support subroutine, EQICAL,

the values of x
k.
(ij+1)

n 
from input values of

x
k
(M

'
i,j+1)

n 
for k = 1,2,3 at i=1 to I based on the

Newton—Raphson method for solution of non—linear

equations. EQICAL computes the numerical derivatives

ti
of the functions with respect to x 1 (i,j+l) n and

int
x 2 (i j+1) for use in the Newton—Raphson method
2 	 '
int 	

n

for solving non—linear equations.

8. DFTYCL

Computes:

for k = 1,2,3 and 9, = 1,2,3

at m = 1 to M and i = 1 to I utilizing concentrations

calculated at time step j versus j+1.

9. CONCAL 

+1jComputes the 	 and n
th 

iteration values of

resin phase matrix coefficients and solution vectors.

10. ZCONCL 

+1
	andComputes the j 	 and n

th 
iteration values of

electrolyte phase matrix coefficients and solution

vectors.

11. ZSOLVE 

Scratch 5—diagonal array algorithm which solves for

electrolyte phase concentrations x (i.j+1)
n 	

= 1,2)
'bulk

for i = 1 to I at each time step, j+1, and each iteration,n,
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based on coefficients and vectors computed by

ZCONCL.

12. XlSOLVE and X2SOLVE 

Scratch 7-diagonal array algorithm which solves for

resin phase concentrations x k (m,i,j+1) n (k = 1,2) for

m = 1 to M and i = 1 to I, at each iteration,n, and time

step,j+1, with coefficients and vectors computed by

CONCAL. Calls ZCONCL and ZSOLVE to get latest values

of x
k 

(i
'
j+1)

n
, since these are part of the solution

bulk
vector for -) (

-
-

1‹
(M

'
i,j+1)

n
(k = 1,2)for i = 1 to I. As

discussed in Chapter V, Section D, the algorithms

give better precision if the larger of X 1 (1,i,j+1)
'n+1

or 
x2(1''j+1)n+1 

is in the first position in the

scratch array, the decision being based on their

respective values at the n
th 

iteration.

C. Main Program Function Details 

Performs following functions:

o calls INPUT

o calls ENISHL

o performs the calculation procedure from dimensionless

time, j = l to 
jmax—

 1, by performing the following functions:

o calls EQUILB, KFCALC, and DFTYCL to get j th values

of variables

o at n = 1, sets all concentrations to values at last

time step j as a first approximation, where n is

iteration number
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o at n
2 

to 
nconvergence,

 resets all j+1
th

concentration approximations calculated at the

n-1
th 

iteration to those calculated at the n
th

iteration. These values are used to compute the

derivatives required in the quasilinearization

procedure.

o calls XlSOLVE or X2SOLVE

o checks the indicator, ICOUNT, which represents the

number of variables not meeting convergence criteria,

and if>0, recycles through another iteration. The

user inputs the maximum number of iterations desired

before moving on, from j to j 	 1. Since this

override represents moving on without total convergence,

a warning message is written out giving the count of

variables not meeting convergence criteria.

Iterations normally ranged between 3-5 for convergence.

If the system was ill conditioned due to poor

initialization, or if one species reached a very low

value (binary), increasing the maximum number of

iterations above say 20 did not provide convergent

solutions. Simulations containing non-convergent

sections were discarded as suspect.

o controls all output options.
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LISTING OF PROGRAMS DEVELOPED IN THIS RESEARCH 

The following listing gives a brief description of programs

developed in the course of this research project. All programs are

written in Fortran and are compatible with the Fortran 77 standards

as compliable on the DEC VAX 11/780 SYSTEM. Since the eight basic

programs comprise over 12,000 lines of source code, the source code

listings are not included in this dissertation. The source code

listings are given in a supplement which is available in the New

Jersey Institute of Technology library. In addition, source codes

may be obtained on magnetic tapes for a nominal fee either from the

NJIT Chemical Engineering and Chemistry Computational Center or from

the author at the following address: D. W. H. Roth, Jr., Allied

Corporation, P.O. Box 1021R, Morristown, NJ 07960. The following is

a list of programs in the shapter order in which they were utilized.

1. Chapter 2 — RIONFT 

This program is used to regress non-linear ion exchange

equilibrium data to obtain equilibrium constants and resin phase

activity coefficient parameters for binary and ternary systems.

The main features are covered in Appendix C. Including diagnostics

and commentary statements, the program has about 2600 lines of

coding.

2. Chapter 3 — DIFACT

This program utilizes the Bromley equation to compute activity

coefficients of salts in aqueous solution. In addition, the

Nernst—Hartley equation is used to predict the values of

477
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diffusion coefficients for salts at concentrations up to 6 molal.

Both an integral and a differential form of the equation are used

for comparison. The program has about 160 lines of coding.

3. Chapter 5 - BMAVDM 

This program is based on the batch binary ion exchange dynamic

model, i.e., the electrolyte concentration does not change during

the exchange. It can handle equilibrium correlated in either mole

or equivalent fraction concentration units, and the driving force

can be defined either as a concentration or an activity difference.

About 880 lines of coding.

4. Chapter 5 — DFUSFT 

This program is designed to fit ion exchange "self" diffusion

coefficients by modeling experimental batch ion exchange curves.

It consists of BMAVDM appended to A. K. S. Murthy's non—linear

regression program discussed in Appendix B. It can fit parameters

using either the concentration or activity driving force models,

plus a two parameter diffusion model involving an ion pair

interaction factor. There are about 1420 lines of coding.

5. Chapter 5 — TRYBCH 

This program is based on the batch ternary ion exchange dynamic

model, i.e., the electrolyte concentration does not change during

the exchange. It runs with either concentration or activity driving

force. It is used to test the ability of "self" diffusion

coefficients correlated with DFUSFT to predict ternary system

behavior. About 2700 lines of coding.
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6. Chapter 6 - DISPRS 

This program models dispersive diffusion experiments to correlate

axial dispersion coefficients in packed columns based on step

change in inlet concentration. The resulting effluent

concentration histories (ECH) or "S" curves are matched by

adjusting the axial dispersion coefficient and are discussed in

Chapter 6. About 400 lines of coding.

7. Chapter 7 — RFMAVD 

This is the dynamic ion exchange column modeling program for

binary systems as described in Appendix K. There are about 1920

lines.

8. Chapter 7 — TERNEX 

This is the dynamic ion exchange column modeling program for

ternary systems as described in Appendix L. About 2380 lines.
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