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Abstract

Title of Thesis	 : An Artificial Neural Network for Redundant

Robot Inverse Kinematics Computation

Name of Candidate : Wibawa Utama, Master of Science, 1990.

Thesis Directed By	 :	 Dr. Edwin S. H. Hou, Assistant Professor

Department of Electrical & Computer Engineering

A redundant manipulator can be defined as a manipulator that has more degrees of

freedom than necessary to determine the position and orientation of the end effector.

Such a manipulator has dexterity, flexibility, and the ability to maneuver in presence

of obstacles. One important and necessary step in utilizing a redundant robot is to

relate the joint coordinates of the manipulator with the position and orientation of the

end-effector. This specification is termed as the direct kinematics problem and can be

where x is a vector representing the position and orientation of the end-effector, q is

the joint vector, and f is a continuous non-linear function defined by the design of the

manipulator. The inverse kinematics problem can be stated as: Given a position and

orientation of the end-effector, determine the joint vector that specifies this position

For non-trivial designs, f' cannot be expressed analytically. This paper presents a

solution to the inverse kinematics problem for a redundant robot based on multilayer

feed-forward artificial neural network.
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He who learns but dory not think is lost.

He who thinks but does not learn is in great danger.

Confucius
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Chapter 1

Inverse Kinematics : Problems and

Solutions

1.1 Introduction

A redundant manipulator can be defined as a manipulator that has more degrees of

freedom than necessary to determine the position and orientation of the end effector.

This redundancy provides the manipulator with dexterity, flexibility, and the ability

to maneuver in presence of obstacles. One important and necessary step in utilizing

redundant robot is to relate the joint coordinates of the manipulator with the position

and orientation of the end—effector. This specification is termed as the direct kinematics

problem and can be written as



where x is a (m x 1) vector (m is the degrees of freedom of the robot work space)

representing the position and orientation of the end—effector, q is a (n x 1) joint vector,

(n is the number of links ) and f is a continuous non-linear function defined by the

design of the manipulator. The inverse kinematics problem can be stated as: Given a

position and orientation of the end—effector, we want to determine the joint vector that

specifies this position and orientation. That is,

It should be noted that for non—trivial designs,	 cannot be expressed analytically.

1.2 Solutions to The Inverse Kinematics Problem

Various methods have been proposed to solve the inverse kinematics problem. They

can be categorized into 4 different groups : Closed Form Solution [4], Numerical Solu-

tion [27], Generalized Inverse Solution [1], and Neural Network Solution [6]. The last

two methods are currently being studied by researchers particularly for redundant ma-

nipulator which does not have closed form solution and cannot be solved by iterative

numerical methods.

1.2.1 Closed Form Solution

Closed form solution can be obtained by solving Eq. (1.1) algebraically. It should be

noted that most commercial robot manipulators have 6 degrees of freedom and it is
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possible to write their inverse kinematics solution in closed form if they satisfy one of

the following sufficient conditions :

1. Three adjacent joint axes intersecting.

2. Three adjacent joint axes parallel to one another.

Examples for these solutions are inverse transform technique for Euler angle solution

and geometric approach solution [4].

Inverse Transform Technique

In this technique, pure algebraic approach is used. The ill conditions (such as ψ =

cos -1 (0.5/sinθ)), under which the solution is inconsistent, inaccurate or undefined, appeared

in this approach can be eliminated by introducing a consistent trigonometric function,

atan(x, y) , or arc tangent with two arguments, as proposed by Paul [21]. Joint co-

ordinates are then solved by equating and premultiplying or postmultiplying matrix

equations. Although this technique provides us a general approach in determining the

joint solution of a manipulator, it does not give a clear indication on how to select an ap-

propriate solution from the several possible solutions for a particular arm configuration.

This merely depends on the user's geometric intuition.

Geometric Approach

By geometric approach, a consistent joint angle solution can be derived. In addition,

for a particular arm configuration, it also provides a means for the user to select a
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unique solution. For example, in the six axis PUMA—like robot arm, a consistent result

can be obtained by the assistance of three configuration indicators (ARM, ELBOW,

and WRIST). These indicators identify the various arm configurations and must be

prespecified by the user for finding the inverse solution. There are two steps to find the

inverse solution with this technique. The first three joints (joint 1, 2, and 3) is derived

in the first step. Then, in the second step, the last three joint is solved using the result

of the first step and certain transformation and orientation matrices. The results are

four possible solutions to the first three joints, and for each of these four solutions there

are two possible solutions to the last three joints. One can choose a solution from the

eight possible solutions by determining the ARM, ELBOW, and WRIST indicator.

1.2.2 Numerical Solution

Numerical solutions are commonly used if the closed form solution does not exist. This

can be applied either for non-redundant manipulators (m n) which do not have closed

form solutions or for redundant manipulators which have redundant degrees of freedom

(rn < n). Numerical solutions are usually based on iterative methods. For example,

Whitney [27] used Newton Raphson method to solve Eq. (1.2). By differentiating Eq.

(1.1), we have
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where J(q) is the Jacobian of f with respect to q.

If we rewrite Eq. (1.3) as

then wherever	 exist, we may write

Given initial values, q 0 and x0 , we can calculate the final value q f , by means of

Newton-Raphson method [26].

Khosla et al. [10] have also solved the inverse kinematics problem of the GYRO robot

(six degrees of freedom) which is specially designed for seam tracking applications. Their

work is based on the T6 and dT6 1 matrices and the assumption that three-dimensional

seam data are available. Even though they used a different approach, the resulting

algorithm still constituted iterative Newton-Raphson method. Because of their iterative

nature, the numerical solutions are generally much slower than the corresponding closed

form solutions, and convergence is not guaranteed.

1.2.3 Generalized Inverse Technique

To overcome the drawbacks encountered in solving Eq. (1.1) in terms of q, a method

called Generalized Inverse Technique is introduced [27].

1 T6 is the matrix representation of f (q) in Eq. (1.1) and dT6 is the differential change
matrix.
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In generalized inverse technique, we deal with the differential motion relationship

between x(t) and q(t), that is

where CI and X are joint velocities and end—effector velocity respectively, and J(q) is

the in x n Jacobian matrix.

If J is square matrix and nonsingular, then 	 exists. CI can be computed as

For redundant linkages, J is not a square matrix, but a rectangular (m < n) matrix

and for each velocity vector X there exist various joint velocities 4 which satisfy Eq.

(1.6). if J is full rank (rank m), then there exists a pseudoinverse, J+, such that 4

can be calculated as

J+ is the Moore-Penrose pseudoinverse [11] given by

This method has a drawback that the solution does not generate joint trajectories

which avoid singular configurations 2 in any practical sense [1]. This is because for

almost any point x o in the workspace and any point q* in a neighborhood of a singular

'Singular configurations happen if at points q, in the joint space, the Jacobian J is
rank deficient. These are the points where infinite 4 could be chosen in order to maintain
a given finite 5c.
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configuration, there is an initial configuration q(0) = q o and a workspace path x(t),

with x(0) = x o , such that the trajectory q(t) as defined by Eq. (1.8) passes through

q*.

Without further refinement this method cannot be used as manipulator control. As

an alternative [1], Eq (1.8) is modified to

where v is a (time varying) vector of the same dimension as q which remains to be

specified. With this modification one can show that by appropriate choice of v, the

trajectory which avoid singular configuration may be generated.

1.2.4 Artificial Neural Network Solution

There are two classes of neural network applications that can solve the inverse kine-

matics problem : optimization and pattern association (see chapter 2).

Hopfield "Optimization" Neural Network Solution

Guo and Cherkassky [6] solved the inverse kinematics problem for redundant manip-

ulator using Hopfield "optimization" neural network. They first introduced an energy

function E
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where xdi, is the desired end—effector velocity, and then rewrote Eq. (1.6) as

where J = [4], m < n and i = 1,... , m.

After substituting Eq. (1.12) into Eq. (1.11) and rearranging the summation order,

they obtained a Liapunov energy function, from which the fixed weights and external

inputs in terms of Jij and xdicould be obtained. Finally they derived the dynamics

equation of neuron state of the Hopfield net in which joint velocities q came out as its

neuron state (output).

For a chosen task trajectory, their solution algorithm 3 can be cast into the following

steps.

1. With the given initial condition of joint angles q, compute the weights.

2. Differentiate the task trajectory to obtain the desired end—effector ve-

locity.

3. Input the network with the sampled value of the desired end—effector

velocity (over a sampling time T) and compute the external inputs.

4. Iterate, using Eq. (2.1) and Eq. (2.2), until convergence. Convergence

means that the neuron state (joint velocities) does not change for fur-

ther iteration or the process finds a local minimum of energy function

E.

3They simulated a 4—link manipulator moving along a straight line path with constant
velocity in the vertical direction in a 2—dimensional 	 y) space.
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5. Sample the neuron state obtained from step 4 over a sampling time T

6. Use this values as the joint velocity command for the redundant ma-

nipulator.

7. Integrate the neuron state and update the weights.

8. Go to step 3.

This method seems quite complicated and has the following drawbacks :

1. Iteration in step 4 must be done for each desired input.

2. Output must be integrated to give joint position q.

3. Weights and external inputs must be updated.

Pattern Association using Multilayer Perceptron

In this thesis, the ANN used is of the supervised type—multilayer feed-forward neural

networks with back error propagation (BEP) training algorithm. The network is trained

to associate input vector or pattern to output vector. In this special case, the input-

output relationship of the pattern is a nonlinear mapping described by Eq. (1.2).

The main idea of the BEP training algorithm is to minimize a "computation" energy

E which is denoted by

9



where :

p

	

is the number of training patterns,

m

	

is the number of nodes in the output layer,

n

		

is the total number of layers in the network,

Xdj 	 is the desired output pattern or the desired joint coordinates,

Xj, n 	 is the actual pattern or output of the network.

The local minimum of E can be achieved if

where W is the weights of the network.

Using optimization technique, local (optimal) minimum point can be reached by

iteration method called "gradient descent" or delta rule [23] which can be written as

where t indicate iteration time, and

where 7/ is positive step size or gain term (0 < η < 1), and ΔW is gradient or the

change that must be made to the weights after each iteration. Hence, during training,

the weights are updated until local minimum of E is found. The term Back Error

10



Propagation arises because a mechanism where the error 4 must be propagated backward

through the network is introduced [23] in the derivation of this learning procedure.

After training, the network should provide a proper response when a command input

vector that it does not know is given. If the training set is properly chosen, the network

will be able to generalize its knowledge to situations different from those encountered

during training. Inputs to a properly trained network will produce network output that

are very close to the corresponding actual joint positions of the redundant manipulator.

By introducing a simple concept called "computation" energy, we can adopt the

multilayer feed-forward neural network to solve a difficult problem such as the redun-

dant robot inverse kinematics problem. This thesis present a multilayer feed-forward

neural network approach to solve the redundant robot inverse kinematics problem.

In the following chapters, we will discuss neural networks with the emphasis on

multilayer feed-forward neural network and its learning algorithm. Chapter 3 will

explain our simulation model. Chapter 4 describes the simulation results. Finally, the

conclusion of this thesis will be presented in chapter 5. Note that the detailed derivation

of the back error propagation learning scheme and program listing are available in

appendices A and C.

4 the derivative of E with respect to Xi,1 (the output of all the nodes in each layer).
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Chapter 2

Background on Neural Networks

2.1 Introduction

Artificial Neural Networks (ANN) are an endeavor to model the function and archi-

tecture of neural networks found in the human brain. These models are composed of

many nonlinear computational elements or nodes operating in parallel and arranged in

pattern reminiscent of biological neural networks.

The basic operation of a single artificial neuron is shown in Fig. 2.1.a,. After sum-

ming N weighted inputs, the result is passed through a nonlinearity f (Fig. 2.1.(b)—(d)

show different types of f). If we relate this figure to a single biological neuron then

inputs can be considered as stimulation levels and weights as synaptic strengths. This

fundamental building block for all ANN is characterized by the type of nonlinearity f

and internal threshold or bias or external input 0 which determines the node output
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whenever the sum of the weighted input is zero.

In general, a neural network consists of N nodes (processors), each of which is

connected to all the other nodes. One can compose these nodes into infinitely many

network configurations, for example, Fractal Neural Networks [2], Cyclic Neural Net-

works [5], and others ([18], [3], [19]). However, the underlying principle of these ANN

are based on 6 major artificial neural networks [17]. They are Hopfield Net, Hamming

Net, Carpenter—Grossberg Net, Perceptron, Multilayer Perceptron, and Kohonen Net.

This thesis will discuss only the multilayer perceptron.

The structure or model of a network explains the computation (algorithmic) process

happen inside the network. This process, in general, can be divided into two phase,

retrieving phase and learning phase [16].

2.1.1 Retrieving Phase

In response to input vectors or patterns (e.g., X1 (0), X2 (0), • • • XN0 (0) in Fig. 2.2), the

retrieving phase performs the propagative updating of output values of each neuron

based on the predefined rule in each network model to produce the responding outputs.

The rule for the retrieving phase of an ANN model can be written as

13



where 1 < i < N 1 + 1 and 0 < 1 < L — 1. The index 1 can represent either time or spatial

iterations. If 1 represents spatial iteration then 1 indicates layer number, L is the total

number of layers in the network, i indicates a node number in each layer and N1 is the

total number of nodes in layer 1. If 1 represents time iteration then 1 is the iteration

counter, L is the total number of iterations, i indicates node number in a layer, and N1

is the total number of nodes in the layer 1.

Two types of inputs can be used to represent the test patterns: the stimulus inputs

Xi(0) and the external inputs θi(l).

2.1.2 Learning Phase

The learning phase performs the iterative updating of the synaptic weights for all the

connections based on the input and/or target training patterns. The weight updating

problem is to find a set of connection weights so as to optimize certain predefined

mathematical quantity E based on a set of training patterns.

Typically, there are two steps involved in the learning phase. In the first step,

the input training patterns are processed by the network based on the retrieving phase

equations to generate some actual responses. In the second step, the weights are changed

according to the generated actual responses and the learning rules used.

In the learning rule aspects, many algorithms have been proposed to improve the

training process (that is, to reduce training time), such as Adaptive Least Squares

Algorithm [14], and Ring Systolic Arrays [16].

14



2.2 Class of Neural Nets Applications

In general ANN'S application can be grouped into 2 classes: optimization and pattern

association.

2.2.1 Optimization

For this application, the artificial neural networks are utilized as a state-space search

mechanism [9]. A set of fixed weights is derived before starting the search process. The

derivation of these fixed weights (Wi,j) usually depend on finding a Liapunov energy

function for the specific application. For example, if Hopfield neural network is used for

solving an optimization problem, the Liapunov energy function has the following form

In certain applications , the Liapunov energy function has to be derived from a given

cost function and the constraints in the optimization problem [25], [6]. Once the fixed

weights have been assigned from the energy function, the system then iterates until a

stable state configuration is reached.

It can be proved that if the weights used are symmetric, Wi,j = Wji , then the

iterations following the system dynamics in Eq. (2.1) and Eq. (2.2) will converge to a

(local) optimal state.

15



2.2.2 Pattern Association

Another very promising application of neural processing is for pattern association. In

pattern association, the network should give the complete pattern even though it is

input by partial information of the desired pattern. In mathematical language, the

network should be able to retrieve a corresponding pattern in subset B, given a pattern

in subset A (vector mapping). The retrieving phase uses the same system dynamics Eq.

(2.1) and Eq. (2.2) as in the optimization applications. For this class of application,

some learning schemes are often adopted to train the synaptic weights.

2.3 Robotic Applications

Most of the robotic problems currently being studied can be categorized into either one

of the following three processing levels:

1. Task Planning (e.g., scheduling of assembly tasks).

2. Path Planning (e.g., robot navigation).

3. Path Control (e.g., motor control).

Most of these robotic processing can be formulated in terms of optimization or pattern

association problems. Therefore neural networks can naturally be adopted to solve the

robotic processing tasks.

16



2.4 Multilayer Feed—forward Neural Networks

In the present work, only multilayer feed—forward network or multilayer perceptron

are used. These networks are popular because a sophisticated learning rule exists for

training the network. A typical network using multilayered structure is shown in Fig.

2.3. It consist of an input layer, output layer, and hidden layers in between. The nodes

in the hidden layer are necessary to implement nonlinear mappings between the input

and output patterns.

2.4.1 Terminology

By refering to Fig. 2.3, we will use the following terminology for the rest of this thesis.

Let

θi,l 	 be the threshold of the ith node in the lth layer,

Wi,j,l 	 be the weight between ith node in the (l-1)th layer to lth node in Phlayer,

Neti,l 	 be the input to node itb in lth layer, and

Xi,l 

	

be the output of i th node in lth layer.

The input to a node is given by

where the summation index j extends over all nodes in the (l - 1)th layer.

The output of a node is given by

17



In general, f is a nondecreasing function of the input to the output node.

2.4.2 Nonlinearity

There are several forms of function f we can use. If we use a linear activation function,

that is f Neti,l, then the network is called a linear network. Although linear networks

are useful for cases where the set of input patterns are linearly independent [12] , it

can be shown that a multilayered network with linear nodes can be collapsed into an

equivalent two layer network so that the advantages of hidden units is lost.

To enable the network to implement complex nonlinear mappings between input

and output patterns, it is necessary that the function f be a nonlinear function of the

node input. The most frequently used functions are the unit step (see Fig. 2.1.b) given

by

and sigmoid function (see Fig. 2.1.c) given by

The sigmoid function is characterized by an area in the vicinity of Net i,l=0 in

which the node output increases almost linearly with the input. Outside this area, the

node output saturates to a minimum or maximum value (0 or 1). The simplest network

using unit step units is the perceptron [17] which has no hidden layer units

Early researchers have recognized that layered networks with nonlinear activation

18



function are able to implement complex tasks [20]. However such networks were not

popular because of the lack of systematic learning algorithms. The main difficulty

encountered in developing learning algorithms for such system is that the unit step

function is nondifferentiable. Instead of using the unit step function, Rumelhart [23]

devised a multilayered network with a sigmoid function. Such networks can be trained

by a learning algorithm called the generalized delta rule [23].

Modification

In many practical cases, outputs other than 1 may be required. We can modified

Eq. (2.7) as follows:

where εi,landαi,lare both greater than zero [22].

There are two new parameters, ε and α , introduced after the modification. The

parameter ε determines the maximum output of a node and the value of a governs the

size of the input zone beyond which the node output saturates and also the steepness

of the sigmoid curve. When ε approaches zero, the size of this zone is very large.

Consequently, the input—output relationship within this zone is almost linear. In this

case, the node output saturates only for very large positive or negative inputs. Thus

for the lower value of 6, the node behave like a linear unit over most of its input range.

As € approaches infinity, the neuron behavior becomes extremely nonlinear and in the

limit approaches the unit step function. Since nonlinearities are associated with useful

feature extraction abilities, neurons that exhibit a high value of ε after the training
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process can probably be viewed as important feature extractors of the network.

In our application, we need both negative and positive value of the node output, then

it is necessary to symmetrically translate the sigmoid function (Eq. (2.8)) downward

along the vertical axis so that it becomes

as shown in Fig. 2.1.c.

2.4.3 Generalized Delta Rule

The generalized delta rule consists of two steps, the retrieving phase (forward pass) and

the parameters adjusting phase (backward pass). In the forward pass, we present an

input pattern to the network and calculate the output pattern at the output nodes with

the current set of learning parameters. The learning parameters of the network are the

weights and the node parameters such as θ Z , / , ϵi,/, and The network output pattern

is then compared to the desired output pattern, and the value of a predefined measure

function E is calculated by computing the Euclidean distance between the actual and

desired output patterns. This function can be expressed as

where the index j represent summation over all output nodes in the network. The

quantity X is the desired output at the jth output node. The total number of layer in

the networks is n.
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In the the backward pass, the learning rule tries to drive the value E to zero or close

to zero by suitable adjustments of the learning parameters. This essentially constitutes

a minimization problem that the delta rule attempts to solve using gradient techniques.

The calculation of the gradient of E with respect to the learning parameters is performed

by propagating the error 1 backwards through the network and involves simple local

computations at nodes in the same layer, permitting parallel operation of all nodes in

that layer. The details of the error propagation and gradient calculation are presented

in Appendix A. Once the gradient is calculated, the learning parameters are adjusted

using gradient descent methods. Rumelhart [23] uses a "steepest descent" procedure

that has the advantage of being simple and requires only local calculations during

parameters adjustments. The change in the learning parameters is made as follows:

positive step size or gain term (0 < 77 < 1). As discussed before, the gradient is

computed only by local calculation so that the parameters updated by Eq. (2.11) can

be done in parallel. After all input—output pairs in the training set have been presented,

the total E is calculated. The total E can be expressed as

where the index p represent the summation over all patterns used for training. The

'the derivative of E with respect to Xi,!
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procedure is repeated until the E total reaches a small number which is determined before

we start training the network.

In case of a linear system, the E surface is bowl shaped and has only one minimum

(at 0) so that convergence is guaranteed. With nonlinear system, however, a large num-

ber of local minima may exist. There is no guarantee that the delta rule will converge

to the global minimum. However, as pointed out in [23], this apparent drawback is only

of theoretical interest because in most cases with the appropriate choice of hidden units

in the network structure (which leads to a high degree of redundancy) or by starting

with a small number of hidden units and increasing the number until it become to drive

the system to a global minimum.

In the present application, for a certain manipulator task trajectory, the network

is trained so that it can map every vector in the input domain (consist of patterns or

vectors representing end—effector positions) into the output domain (consist of vectors

representing joint positions of the manipulator arm) as mathematically expressed by

Eq. (1.2).
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Inputs

(a) Basic operation of an artificial neuron

Figure 2.1: An Artificial Neuron.
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Figure 2.2: An Artificial Neural Network

Figure 2.3: Terminology of feed-forward neural nets
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Chapter 3

Manipulator Model and Neural

Network Model

3.1 Manipulator Model

For the purpose of simulation, a 3 joint-links manipulator is used as the manipulator

model. The length of each link is one third of a unit length. The manipulator trajectory

used as follows :

A. a. straight line in z = 0 plane as shown in Fig. 3.1,

B. a straight line as shown in Fig. 3.2, and

C. a straight line as shown in Fig. 3.3.
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Figure 3.1: Simulation A

.3.2 Neural Network Descriptions

:Two network configurations will be utilized in this presentation, a network with 4$

nodes for simulation A and a network with 52 nodes for simulations B and C. The

nodes are specified as follow (see also Fig. 3.4):

0 For ,simulation A, there are six nodes in the output layer; they rep-

resent the joint coordinates of the manipulator, (x 1 , y1 ), (x 2 , y2 ), and

(x 3 , y3 ). For simulation B and C, there are nine nodes in the out-

',	 put layer; they represent the joint coordinates of the manipulator,

Twenty nodes in the second hidden layer for both configurations.

0 Twenty nodes in the first hidden layer for both configurations.
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Figure 3.2. Simulation B

Figure 3.3. Simulation C
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• For simulation A, two nodes are located in the input layer which repre-

sent either the desired end—effector coordinate during training, (xd3, yd3 ,

or the input command after training, (x 3 , y3 ). For simulations B and

C, three nodes are located in the input layer representing either the de-

sired end—effector coordinate during training, (xd3, yd3, zd3), or the input

command after training, (x 3 , y3 , z3 ).

The initial values of the learning parameters for this network are set to small random

numbers between zero and one. The same initial learning parameters are used for

simulations B and C. Table listing the learning parameters before and after training

can be found in Appendix B. It should be noted that some weights in the network can

be fixed. In this case, error is still propagated as usual but the fixed weights are simply

not modified.

The values used for the gain term (η) and the momentum term (κ) are 0.3 and 0.7

respectively.

3.3 Obtaining Training Pattern

The set of training patterns for simulations A, B and C are obtained by the following

steps :

1. The robot arm trajectory in two dimensional space is designed as shown

in Fig. 3.1.
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2. The coordinate of each joint is measured. The result is a set of training

patterns for simulation A as shown in Table 3.1.

3. Transforming the result of step 2 into three dimensional space by mul-

tiplying it with a rotational matrix [4]

where Vψ = Vers ψ = 1-  cos ψ, r is orientation vector and	 is the

angle of rotation about r. For r = (1 1 1) T then

In other words, we lift the z = 0 plane so that it has the same orien-

tation with and then rotate with angle ψ  about r. For simulation

B the matrix used is R(111) T 45° . For simulation C the matrix used

is R(111)T ,90°.The results for simulation B , and simulation C are

tabulated in Table 3.2 and Table 3.3.
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The synthesized inputs (the inputs which are not included in the training pattern

set, positions labeled by number 9 through 19 in Fig. 3.1.) are calculated using the

same procedure. The result is tabulated in Table 3.4.

Figure 3.4: Three layers feed—forward neural net
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Table 3.1. Original training set.

Table 3.2. Training set A obtained after transforming the original set through
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Table 3.3. Training set B obtained after transforming the original set through

Table 3.4. Synthesized inputs.



Chapter 4

Simulation Results

In this chapter we will present the simulation results. There are some terms that must

be annotated before the graphical and tabular results are presented.

4.1 Physically Realizable Output

lation, the outputs will be (x 1 , y1 ), (x 2 , y2 ), and (x 3 , y3 ) in simulation A or (x 1 , 2f 1 , z1 ),

(x 2 , Y2, 22), and (x 3 , y3 , 23) in simulations B and C. Due to inaccuracy in the numerical

computation, these outputs may not physically realizable. This means the length of

the manipulator's links calculated from the simulation outputs are different from the

length of the real manipulator's links. The physically realizable result can be achieved
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by replacing one of the selected coordinate element with a new calculated value. For

example, y 1 in simulation A or z 1 in simulations B and C can be replaced with a value

simulations B and C. Where / 1 is the length of link number one (the link attached to

the base coordinate (0, 0, 0)). By simple calculation we can also determined the length

B and C. In the table this value is listed in the column denoted by yphy in simulation

A or zphy for simulations B and C.

4.2 Error Measurements

The accuracy of the simulation is measured by calculating the error between the desired

output and the physically realizable ANN output in the least squared sense, that is

for simulation A, or

for simulations B and C.

The differences, xd — x n , yd — yphy for simulation A and x d — xn , yd y,, and

zd — zphy for simulations B and C, are tabulated in table 4.1 — 4.6.
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4.3 Results and Discussion

Fig. 4.1 and Fig. 4.2 respectively plots the error on joint number 2 and joint number

3 for simulation A. Fig. 4.3, Fig 4.4, and Fig 4.5 respectively plots the error on joint

number 1, joint number 2, and joint number 3 for simulation B. Fig. 4.6, Fig 4.7,

and Fig 4.8 respectively plots the error on joint number 1, joint number 2, and joint

number 3 for simulation C. Note that there is no graph for error on joint number 1 in

the simulation A, because for this joint, the errors are zero.

Simulation results presented show that the outputs of ANN are close to the desired

outputs. The resulting error is in the scale of 0.01, small enough compared to the scale

of 1 of the desired values.

It should have been expected from Fig. 3.1 that positions number from 14 to 18 will

give a bigger error than from another positions. This is because these position numbers,

unlike other positions, is not densely covered by the training positions (patterns). To

obtain a reasonably accurate output, the network should be trained by a number of

patterns that are sufficient to represent the manipulator task. The more the number

of patterns are used for training, the better the result. However, the number of nodes

utilized in the network directly corresponds to the number of training patterns used.

The number of nodes for the network should be big enough so that the network can

adopt the kinematics of the manipulator with a greater degree of accuracy. A question
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arises from this fact is how many nodes must be used to get the best result. There

is no theoretical explanation pertaining to this problem and the best results is usually

determined by experiments.
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Table 4.1: Result of Simulation A
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Table 4.1: continued

Table 4.2: Result of Simulation A, Synthesized Input
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Table 4.2: continued
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Table 4.2: continued
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Position number

Figure 4.1: Error on joint number 2 (simulation A)

Position number

Figure 4.2: Error on joint number 3 (simulation A)
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Table 4.3: Result of Simulation B
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Table 4.3: continued

Table 4.4: Result of simulation B, Synthesized Input
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Table 4.4: Continued
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Table 4.4: Continued
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Position number

Figure 4.3: Error on joint number 1 (simulation B)

Figure 4.4: Error on joint number 2 (simulation B)
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Position number

Figure 4.5: Error on joint number 3 (simulation B)
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Table 4.5: Result of Simulation C
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Table 4.5: Continued

Table 4.6: Result of Simulation C, Synthesized Input
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Table 4.6: Continued
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Table 4.6: Continued
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Figure 4.6: Error on joint number 1 (simulation C)

Figure 4.7: Error on joint number 2 (simulation C)
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Figure 4.8: Error on joint number 3 (simulation C)
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Chapter 5

Conclusion

As mentioned earlier in chapter 1, the inverse kinematics problem of most redundant

robots does not have a closed form solution. The difficulties lie in the redudancy of the

manipulator, and various approaches have been taken to solve this problem. Artificial

neural network approach is presented in this thesis. This method according to our

opinion, is the easiest and simpliest approach to the inverse kinematics problem.

This thesis demonstrates how neural networks can be used to solve the inverse

kinematics problem of the redundant robot. Two kinds of neural nets can be utilized,

Hopfield neural net and multilayer feed—forward net, the latter is our approach to the

problem. Both approaches introduced a simple concept of a "computation" energy

function and then minimized it. Different minimization algorithms are used because of

their different network architectures. Unfortunately, we could not compare our results

to Guo and Cherkassky's [6] results because our manipulator model and our input
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command control are different from theirs.

Finally, the success of neural networks methods can only be proven and tested

in the real time applications when the neural network hardware technology has been

established.
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Appendix A

This appendix derives the Bach Error Training Algorithm. Refer to section 2.4 and Fig.

2.3 for further explanation on the terminologies used.

Since we use sigmoid function as the squashing function, the input—output relation-

ship of each node can be expressed by

For a network with n outputs and after presentation of one pair of input and desired

60



output pattern, the "computation" energy function E is defined by

The learning algorithm is the procedure that minimize Etotal in Eq. (A.3) by means

derived using delta rule or gradient descent method as proposed by Rummelhart [8].

Tine rule for changing the learning parameters following presentation of a pair of input

and output pattern is given by
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where index t indicate iteration time, and
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The following derivatives are computed from Eq. (A.6) and Eq. (A.7)

Now, the derivatives of E with respect to the learning parameters can be calculated by

All quantities in Eq. (A.9) are obtained from the forward pass calculation, except

the network. This can be achieved by the following derivation.
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Substituting the last equation of Eq. (A.8) and Eq. (A.11) into Eq. (A.10) yields

Since we do not have the equation like Eq. (A.2) for the lower layers, we propagate the
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computation).

Using Eq. (A.9), (A.11), (A.12), (A.15), and (A.17), we can write Eq. (A.5) as

For output layer:
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The above derivation is for one pair of input and desired output pattern. For multiple

patterns, we presented them cyclically using the same iteration formula as in Eq. (A.4)

until all learning parameters stabilize. Eq. (A.4) , Eq. (A.18) and Eq. (A.19) constitute

the learning algorithm which is the well known Back Error Propagation (BEP) training

algorithm.

For fast convergence and smooth changes in all the learning parameters, we can add

a momentum term K. into Eq. (A.4) [23]. Therefore
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