
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 1990

Token bus LAN performance : modeling and
simulation
Ramesh Kurnool
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Kurnool, Ramesh, "Token bus LAN performance : modeling and simulation" (1990). Theses. 1331.
https://digitalcommons.njit.edu/theses/1331

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1331?utm_source=digitalcommons.njit.edu%2Ftheses%2F1331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

TOKEN BUS LAN PERFORMANCE:

MODELING AND SIMULATION

by

RAMESH KURNOOL

Thesis submitted to the Faculty of the Graduate school of the

New Jersey Institute Of Technology.

in partial fulfillment of the requirement for the degree of

Master of Science in Electrical Engineering.

January 1990

APPROVAL SHEET

Title of Thesis:	 Token Bus LAN Performance:
Modeling and Simulation.

Name of the Candidate:	 Ramesh Kurnool
Master of Science in Electrical Engineering, 1990.

Thesis Approved :

Dr. Anthony Robbi	 Date
Associate Professor
Electrical Engineering

Dr. C. N. Manikopoulos	 Date
Associate Professor
Electrical Engineering

Dr. Irving Wang	 Date
Associate Professor
Electrical Engineering

VITA

Name : Ramesh Kurnool

Degree and Date to be Conferred : M.S.E.E., 1990.

Secondary Education : Government Junior College, Kurnool, A.P., India.

Collegiate Institutions Attended : 	 Date 	 Degree

New Jersey Institute of Technology. 	 09/87-12/89 	 M.S.E.E

College of Engg., J.N.T.University. 	 08/82-11/86 	 B.E.

Major : Electrical Engineering.

Minor : Computer Systems.

ABSTRACT

Title of Thesis: 	 Token Bus LAN Performance:

Modeling and Simulation

Ramesh Kurnool, Master of Science, 1990

Thesis directed by: Professor Anthony Rabbi

A simulation model based on CSIM, a process oriented simulated language, to

analyze the performance of the Token Bus protocol is developed. Performance

measures such as throughput, average delay and maximum delay per packet are

presented. System performance is analyzed for different loads, number of

stations, network lengths, different physical and logical distribution of the

stations with packet length as a parameter. Previous studies were based on the

delay-throughput analysis with no discussion on the effect of variation of the

logical and physical distribution of the stations on the performance of the model

which is done in the present thesis. The load is offered to the network in the

form of a stream of data packets with uniformly distributed inter-arrival times. A

comparison of the Token Bus model with that of a CSMA/CD model shows that

the physical distribution of the stations has a minimum effect on the performance

of the model in the case of the Token Bus model but has a considerable effect on

that of the CSMA/CD model.

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to Dr. Anthony Robbi for his

valuable guidance, inspiration and encouragement during the entire course of this

thesis. I am deeply indebted to Mrs. Perkins, Miss. Sandra Huffman, Miss.

Susana Saldarriaga and Mr. Bill Bowman at Document Preparation Centre for all

their willful help and support. Furthermore, I would like to acknowledge the

Computer Aided Engineering Laboratory and the staff for providing the resources

vital for the thesis work. Last, but certainly not the least I am indebted to my

room partners Mr. Pratap Pasupuleti and Mr.Nanda Kanuri and my parents for

their constant moral support, valuable guidance and encouragement.

TABLE OF CONTENTS

CHAPTER	 Page

I INTRODUCTION 	 1

II PROTOCOL AND MODEL DESCRIPTION 	 11

III SIMULATION DESIGN AND EXPERIMENTS 	 26

IV SIMULATION RESULTS 	 36

V COMPARATIVE PERFORMANCE WITH CSMA/CD MODEL 54

VI COMPARATIVE RESULTS FROM ANALYTICAL AND

SIMULATION STUDIES 	 62

VII CONCLUSIONS 	 66

APPENDIX A

CSIM AND SOURCE LISTING OF SIMULATOR 	 68

REFERENCES 	 81

1

CHAPTER I

INTRODUCTION

The design, installation, and operation of computer networks is vital to

the functioning of modem computerized organizations. Over the past decade,

complex and diverse networks have been established, trying together mainframes,

minicomputers, personal computers, terminals, and other devices, such as

communications controllers and cluster controllers [1].

Many of today's networks use public telecommunications facilities to

provide users with access to the processing capabilities and data storage facilities

associated with the mainframes and to permit fast interchange of information

among the users of the network. As the cost of micro electronic devices has

dropped, the intelligence in the various devices that are attached to the network

has increased. Intelligent terminals, minicomputers, personal computers, and

other programmable devices are all part of these large networks. These networks

are called wide area networks (WANS).

In parallel with the growth of wide area networks, there has been another

area of expansion in the use of computing facilities. Personal computers have

spread rapidly and widely throughout organizations. As the use of personal

computers has grown, so has grown a need for these personal computers to

communicate-with each other and with the larger, centralized data processing

facilities of the organization. In order to make this feasible a type of networking

technology known as local area network (LAN) has been developed.

A local area network is a communications network that provides

2

interconnection of a variety of devices within a small area. These data

communicating devices are often called as Nodes or Stations [5]. At the turn of

this decade, the installed base worldwide, should be in excess of two million

LANs. It is therefore becoming more and more important for network designers

to evaluate the ability of LANs that use various communication protocols to

handle the desired message loads, number of stations, and desired length of the

network. It is further important to have a general scheme for modeling and

simulation of these protocols which can be used to assess the performance of new

protocols.

A. Local Area Network Considerations:

The present trend towards distributed data processing, coupled with the

increased emphasis on office automation and the explosive growth rate in the use

of automated office terminals, displays, and computers, has created a demand for

more flexibility in terminal installation and interconnection systems[1]. Personal

workstations are emerging as a means for increasing overall productivity by

allowing the individual office workers,both clerical and professional, to share

access to host systems, common data bases, peripheral printers, and remote

computer networks. The workstation itself may range anywhere from a low cost

keyboard/display device to a small computer[1].

The industry response to this need has resulted in several proposals and

offerings of communication systems specifically designed for localized data

transfer. These LANs are intended to provide a transport mechanism for digital

encoded data and text, as well as for non-coded data(facsimile), voice, and full-

3

motion video. A LAN can offer a solution that addresses these present and future

needs of industry when based on a communications architecture and physical

wiring strategy that allows for growth and migration into the 21st century.

A LAN can be defined then as an information transport system for data

transfer among office system terminals, clustered controllers, or host systems, via

an interconnecting medium, within the bounds of a single office building,

building complex, or campus. The geographical constrains eliminate the need to

use common-carrier facilities, thus increasing the data transfer capacity of the

LAN by allowing economical data transmission rates of many million bits per

second. Today's network transmission technology permits the transfer of large

blocks of data at these rates with simple error management procedures and

control protocols. These transmission rates also permit a large number of data

terminals to share the common physical interconnection link with minimum

performance degradation resulting from resource contention.

B. Standards for LANs

The IEEE's 802 LAN standard is the key standard for local area

networks. This project has a relationship to the ISO OSI (Open systems

Interconnection) reference model as shown in Fig 1.1. The architectural model is

a set of interfaces. The lower portion of the ISO OSI model has been sub

structured by the 802 project [2] as shown in Fig 1.2. In particular the functions

performed by the Data Link layer have been distributed over two sublayers a

"Logical Link Control(LLC)," an upper sublayer, and "Medium Access

Control(MAC)," the lower sublayer. The LLC layer serves to generate and

interpret the link control commands while the complementary, lower layer, the

Fig 1.1
ISO OSI Model

4

Fig 1.2
IEEE 802 Project Sublayer Model

5

6

MAC serves to frame the data units and acquire the right to access the medium.

Above the bottom two layers, the five layers specified by the ISO model should

operate independently.

Within this structure, the 802 project has defined four standards; a LLC

standard and three standards for medium access control, together with their

associated physical layers for use with the LLC standard. Three such standards

are:

(1) Carrier sense multiple access with collision detection.(CSMA/CD).

(2) Token-passing bus access.

(3) Token ring access.

The "Token-Passing Bus" access method, the subject of this thesis, is one

of the medium access control techniques which gives the right to the stations

connected to the medium to transmit. Like CSMA/CD, the token passing bus

access method communicates by broadcasting the signals generated at each

station to all stations attached to the medium . The medium serves as a common

bus through which the attached stations can transmit. Although CSMA/CD is

widely used in offices, during the development of 802 standard people from the

General Motors and other companies interested in factory automation had serious

reservations about it. Due to the probabilistic behavior of the MAC protocol,

there is a slight chance that a station might have to wait arbitrarily long to send a

frame (i.e, the worst case is unbounded).

In the token bus method there are 'n' stations and each station takes 'T'

seconds to send a frame. So, no frame will ever have to wait more than nT

seconds to get a chance to be transmitted [5]. The factory automation people in

7

802 liked the conceptual idea of a ring, but did not like its physical

implementation because a break in the ring cable will bring the whole network

down. Further they noted that a ring is a poor fit to the linear topology of most

assembly lines. As a result, a new standard was developed having the robustness

of the cable used by the CSMA/CD method 802.3, but the known worst case

behavior of a ring.

B.1. Discussion of the Physical layer

For the physical layer the token bus uses a broadband coaxial cable used

for cable television. Three different analog modulation schemes are permitted

in the token bus method :

(1) Phase continuous Frequency Shift Keying.

(2) Phase coherent Frequency Shift Keying.

(3) Multilevel duobinary Amplitude modulated Phase Shift Keying.

Data rates of 5 and 10 Mbps are possible using the phase coherent

frequency shift keying or the multilevel duobinary AM/PSK.

Two important aspects of the network size are overall length of the cable,

and total number of drops. In typical situations phase-continuous-FSK type of

analog modulation is used. In such practical networks the cable length is usually

limited by cable attenuation. The maximum network lengths achieved with

commercially-available cables vary from 1280 meters to 7600 meters [2].

Although the Physical layer specification includes the use of repeaters to extend

the trunk cable beyond the permitted length, this has rarely been needed in

practice, and such use may compromise the simplicity otherwise offered b y the

phase-continuous-FSK type of service. The number of drops in the above

8

networks has typically ranged from 2 to approximately 30. This specification

does not constrain explicitly the maximum number of drops, nor is that number

explicitly defined cable parameters.

The preferred network topology is a long unbranched trunk requiring a

single trunk cable to be routed to every station site in turn. This specification

does cover the use of active, regenerative repeaters for branching. The data is

transferred between the stations in the form of packets. Each packet is a

collection of a finite number of bytes. (for ex., 512, 128 etc.,). The efficiency of

the network is largely dependent on the size of the packets being sent and is high

when large packets are used. This is due to the larger utilization of the bus by

the data packets at larger packet lengths.

An IEEE Standards Committee has published its ANSI/IEEE std 802.4

Token-Passing Bus Access Method in 1985. It has seen widespread

implementation throughout industry.

C. Performance of a network

The performance of a LAN, measured by the throughput achieved and the

delay suffered by the packets, is a function of several parameters of the protocol

and the network. These parameters include the number of stations, network

topology, network length, packet length, and the distribution of the stations [12].

The performance of a netowork is very much influenced by the length of the

network, which is the distance between the two farthest stations. In the present

Token Bus model as the stations form a logical ring, the performance of the

model is observed for various physical and logical distribution of the stations on

the bus.

9

Simulation studies that have been done on the Token Bus performance so

far were concentrated on the delay-throughput relationship and the effect of the

offered load on the performance of the model [3] [11]. Some studies were

concentrated on the acknowledgement and priority mechanisms in Token Bus

networks [9]. Some other studies were based on the queueing analysis of the

data packets in the buffers of the stations. All the above mentioned studies have

assumed one particular case of the physical and logical distribution of the

stations on the bus. No effort has been made so far to test the effect of variation

of the physical and logical distribution of the stations on the performance of the

model. Further in most of the above mentioned simulation studies every station

is modeled by a pair of processes. The first being able to send and receive data

packets using the bus and the second being able to act as a traffic generator[10].

Further a station queues the data packets for transmission in the output buffer

until it receives the token.

The Token Bus model developed in this thesis considers the traffic

generating conditions which are different from those assumed in the above

mentioned studies. The traffic is offered to the model by a traffic generator in the

form of a stream of data packets. Each data packet is assigned a source and a

destination station at random [12]. The source can not be same as the destination

station. Every station has a buffer with a capacity of storing exactly one data

packet. If all the stations are found busy i.e., their buffers are full, the traffic

generator waits for a random time till one of the stations is free to accept a data

packet. In this process of waiting the queuing delay of the data packets at the

traffic generator is not considered.

10

In the present model in addition to the delay-throughput analysis different

physical and the logical distribution of the stations have been considered. The

model assumes two different types of physical distribution namely:

(1) Uniform

(2) Clustered form

In the uniform distribution the stations are spaced uniformly along the

network length, whereas in the clustered form the stations are divided into a

number of equal or unequal sized clusters.

Two cases of logical distribution are considered in this model. The first

being the best case in which the physical and logical neighbors coincide each

other and the worst case in which the logical neighbors are separated by a large

distance. The effect variation of the physical and the logical distribution of the

stations on the performance of the model is observed in all the experiments the

details of which are explained later in Chapter IV. The details of the physical and

logical distribution of the stations are given in Chapter.III.

CSIM, a process oriented simulation language which is implemented as a

superset of the C programming language is used as a simulation tool. CSIM has a

number of features which ease the task of building simulation models. They

include modeling systems resources, message passing, data collection, and

debugging [41.

CSIM is copyrighted by Microelectronics and Computer Technology Corporation,

1985

11

CHAPTER II

PROTOCOL AND MODEL DESCRIPTION

This chapter presents the description of the model on which the protocol

is tested and an overview of description of the protocol that is tested. Further,this

chapter also defines the parameters used in the simulation of the Token-passing

bus protocol.

A.	 Protocol Description.

The IEEE 802 standards include two access control methods based on the

token passing technique. One of these methods is used on a network with bus

topology and the other on a network with ring topology. The token passing

standard employing the bus topology, known as token bus, is defined in IEEE

standard 802.4. This is the basis of the General Motors MAP architecture that is

used extensively in factory automation [6]. With the token bus approach, control

of the transmission medium is determined by possession of a token, which is

passed from station to a station in a logical ring.

A.1. Overview of Token bus method:

The right to access the physical medium is given by the token. The token

is a control frame that gives momentary control over the medium. The token is

passed from one station to another thereby forming a logical ring. Normal steady

state operation consists of two phases [2]; namely:

12

(1) Data transfer phase.

(2) Token transfer phase.

In the first phase the station which is the token holder transfers data to the bus.

After transferring the data, the token holder transfers the token to its successor in

its token transfer phase thereby relinquishing its control over the bus and the

process repeats.

The maintenance functions of the logical ring so formed within the

stations provide for the following:

(1) Ring initialization.

(2) Lost token recovery.

(3) New stations addition to the ring.

(4) General housekeeping of the logical ring.

The physical ordering of the stations on the bus is independent of the

logical ordering [2], although it may be related to it as shown in the example of

Fig 2.1. The token medium access method is always sequential in a logical sense.

That is, during normal, steady state operation, the right to access the medium

passes from station to station. The medium access control(MAC) sublayer

provides sequential access to the shared bus medium in a logically circular

fashion. This MAC sublayer determines when a station has the right to access the

shared medium by recognizing and accepting the token from its predecessor

station.

A.2. MAC INTERNAL STRUCTURE.

The MAC layer performs several functions which are loosely coupled.

Fig 2.1
Logical Ring on Physical Bus

13

14

The descriptions and specifications of the MAC layer in this standard are

organized in terms of one of the several possible partitioning of these functions.

The partitioning of the MAC layer is illustrated in the Fig 2.2, which shows five

asynchronous logical "machines", each of which handles some of the MAC

functions. These partitions are as follows:

(1) Interface Machine(IFM)

(2) Access Control Machine(ACM)

(3) Receive Machine(RCM)

(4) Transmit Machine(TxM)

(5) Regenerative Repeater Machine(RRM)

The purpose of each machine is explained below:

A.2.1. Interface Machine: This machine acts as a buffer and interface between

the LLC and MAC layers. It interprets all incoming data and other service

primitives and generates appropriate outgoing service primitives. Further it

handles queuing of service requests. It also performs the address recognition

function on received LLC frames, accepting only those addressed to its station.

A.2.2. Access Control Machine: This machine cooperates with the ACMs of its

fellow stations in handling the token to control the transmission access to the

shared bus. The ACM is responsible for the following:

i. Initialization and maintenance of the ring.

ii. Taking care of newly admitted stations.

iii. Detection and recovery from faults and failures in the network.

A.2.3. Receive Machine: This machine accepts inputs from the physical layer,

assembles them into frames which it validates and passes them to the IFM and

Fig 2.2
MAC Layer Functional Partitioning

15

16

ACM. The RxM accomplishes this by recognizing the frame start and end

delimiters, checking the frame check sequence and validating the frame's

structure. RxM is also responsible for reception of noise burst and quiet

conditions. This noise burst condition is prevalent when the station is listening to

the bus for some response.

A.2.4. Transmit Machine: This machine generally accepts a data frame from

the ACM and transmits it as a sequence of atomic symbols in a proper format to

the physical layer. The TxM builds a MAC protocol-data-unit by prefacing each

frame with the required preamble and starting delimiter, and appending the Frame

control sequence and end delimiter.

A.2.5. Regenerative Repeater Machine: This machine is an optional MAC

component present only in special "Repeater stations", e.g., in a broadband or a

head-end demodulator. In such stations the RRM repeats the incoming atomic

symbol stream, from the physical layer, back to the physical layer for

retransmission.

Of all these five machines the ACM is both the most critical and the most

complex. It is the key control mechanism for the token-bus method. The IFM

and RxM participate heavily in the operation of the MAC layer protocol.

A.3. MAC Definitions: Critical MAC parameters which are constrained by this

specification are defined as follows:

A.3.1. MAC-symbols: The smallest unit of information exchanged between two

MAC sublayer entities [2]. The six MAC- symbols are defined in Table 2.1.

17

NAME 	 ABBREVIATION

zero 	 0

one 	 1

non_data 	 N

pad_idle 	 P

silence 	 S

bad_signal 	 B

Table 2.1

MAC symbols.

Conventional binary 0 and 1 data bits are sent and received as zero and one

MAC-symbols respectively.

A.3.2. MAC_symbol_time: The time required to send a single MAC_symbol,

identical for all symbols. This is the inverse of the LAN data rate as shown in

Table 2.2.

Nominal 	 Nominal

data rate 	 MAC_symbol_time

1 Mb/s 	 1.0 micro second

5 Mb/s 	 0.2 micro seconds

10 Mb/s 	 0.1 micro seconds

Table 2.2

MAC symbol times.

18

A.3.3. Octet time: Corresponds to the time interval required to transmit eight

MAC-symbols.

A.4. Elements of MAC Sublayer Operation:

The MAC protocol as developed is intended to be robust, in sense that it

should tolerate and survive multiple concurrent errors [3]. These errors may be

caused by communication errors or station failures. These errors may include

multiple tokens, lost token, token-pass failure, Deaf station(station with

inoperative receiver) and duplicate station address . The present model under

study is assumed to be free of errors.

A.4.1. Basic Operation: Steady state operation (the network condition where a

logical ring has been established and no error conditions are present) simply

requires the sending of the token to a specific successor station as each station is

finished transmitting.

All the stations are connected to a common medium which is a bus made

of a broadband coaxial cable. Physically, the token bus is a linear or tree-shaped

cable onto which the stations are attached. Logically, stations are organized into

a ring with each station knowing the address of the station to its "left" (PS) and

"right" (NS) apart from knowing its own address (TS). When the logical ring is

initialized, the highest numbered station holds the token and may send the first

data frame. After it is done with transmitting, it passes the permission to its

immediate neighbor by sending the neighbor a special control frame called a

token. The token propagates around the logical ring, with only the token holder

being permitted to transmit frames. Since only one station is allowed to transmit

19

data frames at a time collisions will not occur.

An important point to realize is that since the cable is inherently a

broadcast medium, each station receives every frame, discarding those not

addressed to it. When a station passes the token, it sends a token frame

specifically addressed to its logical neighbor in the ring, irrespective of where the

station is physically located on the cable. It is also important to note that when

stations are first powered on, they will not be in the ring, so the MAC protocol

has provisions for adding to, and deleting stations from the ring.

A.5. Frame Format of IEEE 802.4 Std:

The token bus frame format is shown in the Fig.2.3. The various

components of the frame are described next.

A.5.1. Preamble: The preamble pattern precedes every transmitted frame.

Preamble is sent by a MAC layer as an appropriate number of pad_idle symbols.

This will be decoded by the receiver modem as arbitrary data symbols that occur

outside the frame delimiters. Preamble is primarily used by the receiving modem

to acquire signal level and phase lock by using a known pattern agreed upon by

the all the stations. A secondary purpose for the preamble is to guarantee a

minimum end delimiter(ED) to start delimiter(SD) time period to allow stations

to process the frame previously received. The minimum amount of preamble

transmitted is dependent on the data rate of the medium and the modulation

scheme implemented. The standard requires that the duration of the preamble

shall be at least 2 micro seconds, regardless of the data rate [2].

Fig 2.3
Frame format of token bus

21

A.5.2. Start Delimiter(SD): The frame structure requires a start delimiter, which

begins the frame. The start delimiter consists of signalling patterns that are

always distinguishable from data.

A.5.3. Frame Control Field: The frame octet(FC) determines what class of

frame is being sent. This field is of one octet. Various types of classes include

MAC control, LLC data, Station management data and Special purpose

data(reserved for future use).

A.5.4. Destination Address Field(DA): The destination address identifies the

station to which the frame is destined. This may be 2 or 6 octets depending on

the number of bits used for addressing. Addresses shall be either 16 bits or 48

bits in length. All addresses on a given LAN shall be of the same length.

A.5.5. Source Address Field(SA): The source address identifies the station

originating the frame and has the same format and length as the destination

address in a given frame.

A.5.6. MAC Data Unit Field: Depending on the bit pattern specified in the

frame's frame control octet, the MAC data unit field can contain a LLC protocol

data unit, which is used to exchange LLC information between LLC entities or a

MAC management data frame which is used to exchange management

information between MAC management entities or a value specific to one of the

MAC control frames.

A.5.7. Frame Check Sequence (FCS) field: The FCS is a 32 bit frame checking

sequence.

A.5.8. End Delimiter(ED): The frame structure requires an end delimiter, which

ends the frame and determines the position of the frame check sequence. The

22

data between the SD and the ED shall be an integral number of octets. All bits

between the start and end delimiters are covered by the frame check sequence.

A.5.9. Token frame: The token frame is a special MAC control frame which

gives a station the right to transmit. This frame has a structure shown in the Fig

2.3. This frame has the DA = the address of the station's successor in the logical

ring. The token frame has a null data_unit.

A.6. The Token Bus MAC Sublayer Protocol.

When the ring is initialized stations are inserted into it in the descending

order of their addresses. Token passing is also done from high to low addresses.

Each time a station possesses the token, it can transmit frames for a certain

amount of time called the token hold time, then it must pass the token on. If the

frames are short enough, several consecutive frames may be sent. If a station has

no data, it passes the token immediately upon receiving it.

The token bus defines four priority classes 0,2,4 and 6 for traffic, with 0

the lowest and 6 the highest. Each station is internally being divided into four

substaions, one at each priority level. As input comes into the MAC sublayer

from above, the data are checked for priority and routed to one of the four

substations. Thus each substation maintains its timer with stipulated time known

as Target rotation counter(TRTC). When a station receives the token it begins

transmitting the frames of priority class 6. When it is done, the token is passed

internally to the priority 4 substation, which may then transmit until its timer

expires, at which point the token is passed internally to priority 2 substation. This

process is repeated until all its frames have been sent or its timer has expired.

23

Again when the station does not have any frames to send it simply passes the

token to its successor. The priority scheme is beyond the scope of the present

model. The model assumes a single priority for all the data packets.

A.7. Logical Ring Maintenance.

From time to time stations are powered up and want to join the ring.

Other stations stations turned off and leave the ring. The MAC sublayer protocol

provides a detailed specification of exactly how this is done while maintaining

the known worst case bound on token rotation. Below a brief sketch of this

mechanism is given.

Once the ring has been established, each station's interface maintains the

addresses of the predecessor and successor stations internally. Periodically, the

token holder solicits bids from stations not currently in the ring that wish to join

by sending one of the solicit successor frames. The solicitation frame gives the

sender's address and its successor's address. Stations inside that range may bid

to enter(to keep the ring sorted in descending order of their addresses). After the

station sends the solicit successor frame, it opens a response window, which is a

controlled interval of time (equal to one slot time). If no station bids to enter

within a slot time(2T, as in Ethernet), the response window is closed and the

token holder continues with its normal business [4]. If exactly one station bids to

enter, it is inserted into the ring, and becomes the token holder's successor. If

more stations bid to enter at the same time the frames will collide and be garbled,

as in Ethernet. The token holder will then run an arbitration algorithm, starting

with the broadcast of a resolve contention frame.

24

The solicitation of new stations will not interfere with the guaranteed

worst case for the token rotation. Each station has a timer that is reset whenever

it acquires the token. When the station receives the token the old value of this

timer is inspected just before the timer is reset. If it exceeds a threshold value,

there has been too much traffic recently, so not bids may be solicited this time

around. No guarantee is provided for how long a station may have to wait to join

the ring when traffic is heavy, but in practice it should not be more than a few

seconds.

Leaving the ring is easy. Consider a station A, with successor B, and

predecessor C. To leave the ring, A sends C a set_successor frame telling it that

henceforth its successor is B instead of A. Then A stops transmitting.

Due to transmission errors or hardware failures, problems can arise with

the logical ring or the token. For example, if a station tries to pass the token to a

station that has gone down, what happens? The solution is straight forward.

After passing the token, a station listens to see if the successor either transmits a

valid frame passes the token. If it does neither, the token is passed a second time.

Even if that fails the station transmits a who_follows frame specifying the address

of its successor. When the failed station's successor sees a who_follows frame, it

responds by sending a set_successor frame to the the station whose successor

failed, naming itself as the new successor. In this way the failed station is

removed from the ring. Thus the logical ring is maintained. The model assumes

a stable steady-state as far as the membership of the logical ring is concerned.

Thus the performance figures computed are the upper bounds.

25

B. Model Description.

We are interested in evaluating the performance of token-bus network

which implements the IEEE 802.4 standard and offers an unacknowledged

datagram service to the data-link users. This means the datagram service

offered here is not responsible for managing any acknowledgement mechanisms

between remote stations. The following general assumptions have been made for

the model:

The network architecture includes a number N of stations connected to a shared

communication channel based on the IEEE 802.4 specifications.

Each station is modeled by a pair of processes. The first is to send and receive

the packets and the second to pass the token to its successor, after it is done with

the transmission of packets. Additionally each station can accept a data packet

from a server which generates the simulated network load.

The token is passed by the stations residing on the medium according to a logical

ring; the token gives control of the transmission channel.

Each station has a buffer to store the packets. For the present model the

capacity of the buffer is limited to one packet.

The logical ring is assumed to be static i.e. no 'windows' are opened to allow

for passive stations to be included in the logical ring nor shall any station shall

leave the logical ring [11].

A station is active if it has a packet to transmit in its buffer and is inactive if has

no packets. The station holding the token transmits exactly one packet if it is

active, and immediately passes the token, if it is not.

26

CHAPTER HI

SIMULATION DESIGN AND EXPERIMENTS

CSIM, a process oriented simulation language (implemented on top of the

C programming language) is used for implementation of the model and the

simulation. In this approach, processes are defined which are 'independent'

programs or procedures which can execute 'in parallel' (pseudo) with other

processes [3]. The processes appear to execute in parallel. In the CSIM model,

the communications medium is declared as facility , and transmissions are

declared as events. Simulated time is passed by using a hold function. The

description of all these functions is given in Appendix A.

A. Description of the software model

The software model comprises 'N' stations coupled together in a logical

ring. In a logical ring the stations are assigned logical positions in an ordered

sequence, with the last member of the sequence followed by the first. The

physical ordering of the stations, on the bus is independent of the logical

ordering. In other words, the logical successor of a station may not be its

immediate physical neighbor. Each station has a buffer to store a single outgoing

data packet of finite length (bits). Each station knows the address of its

predecessor (PS) and its successor (NS), apart from knowing its own address

(TS). In each experiment, the number of stations, the network length, the station

distribution, and the packet length are used as parameters.

Each experiment consists of running the model for 1000 packets which

27

are given to the overall network as load. These packets are offered to the model

by a traffic generator which generates a stream of packets. For every packet, a

source station and destination station are selected randomly [12]. Care was

taken in the random selection of the source station, that it is neither in the

transmission process nor its buffer is full. Obviously, the source station cannot be

the destination. If the buffers of all the stations are found full, then the traffic

generator waits for a random time until one of the stations is found ready to

receive a packet. During this process the delay experienced by a data packet at

the traffic generator before being assigned to any station is not considered.

Further the time taken by traffic generator to assign a data packet to a station is

assumed to be zero.

Any station can transmit a data packet if it has the token and pass the

token to its successor station after transmitting the packet. A station holds the

token for a certain time given by the "token hold time" if it has a data packet to

transmit. This token hold time is the maximum time that a station can hold the

token to transmit the data packet. In the present model the token hold time is set

to a time large enough for a station to transmit one packet of variable length. The

token hold time is changed according to the packet length and is same for all the

stations in the model. The length of the token is same for all the experiments.

Until a station receives the token, a data packet waits in the buffer. Thereby the

token enables the station to transmit the packet to its destination. A station

passes the token to its successor immediately if it has no packet to transmit.

A.1.Time-domain discussion This section gives the time domain features from

28

the view point of the transmitting station. The various timings involved during

the data and token transmissions are shown in the Fig 3.2. All the timings

encountered during the simulation are defined in the Fig 3.1.

The general logic implemented at any station is explained clearly in the

flow chart given in the Fig 3.2. The part of the flow chart above the circle

marked in the Fig 3.2 is not simulated. The lower part of the flow chart, which is

simulated explains the steady state operation of the model. To start with the

highest addressed station which is the master station in the logical ring generates

the token and starts transmitting the data packet if its buffer has one. Otherwise,

it just passes the token to its successor and so on.

This present model does not deal with the reception side of

communication and handling of transmission errors. These issues are treated at

the higher levels of the protocol. The offered load to the network is controlled by

the time gap between packet transmissions of the traffic generator. After every

transmission initiation, the time gap for the next transmission is selected

randomly within a range given by two parameters R1 and R2 [12]. R1 and R2

are two integer values. By varying the values of R1 and R2 the inter arrival rate

of the packets at the stations is changed using a random function which generates

an integer between R1 and R2. The values of R1 and R2, control the offered

load in each experiment. The details of calculation of the offered load is given

later in this chapter. For each experiment, the packet length and the token length

are kept constant. IEEE Std 802.4 standards are used for the model. As per the

standards channel capacities of 1,5 and 10 Mbps(mega bits per second) [4] are

possible. For the present model the channel capacity is assumed to be 10 Mbps.

Fig 3.1
Time domain picture from the view point of the transmitting station,

30

Fig 3.2
Flow chart of the logic at the stations

31

B. Physical Distribution of the stations

The station distribution is varied for certain experiments in the following

configurations:

B.1.Uniform: 'N' Stations are spaced uniformly along the length of the

network(L), with spacing between every pair of adjacent stations being L / N-1

as shown in the Fig 3.3.

Fig 3.3

Station distribution. Uniform spacing.

B.2.Equal-sized Clusters: The 'N' stations are divided into Nc clusters, with

each cluster having N / Nc number of stations. The centers of the clusters are

uniformly spaced along the network. The stations in each cluster are spaced

uniformly. (Fig 3.4).

Fig 3.4

Station distribution. Equal sized clusters.

B.3.Unequal-sized clusters: The stations are divided into Nc clusters, with each

cluster having a different number of stations. (fig 3.5)

32

Fig 3.5

Station distribution. Unequal-sized clusters

C. Logical Distribution of the stations

In the token bus accessing method the stations form a logical ring as

already discussed. The logical neighbor of any station may not be its physical

neighbor. In the present model we consider two different logical distributions. In

the first distribution, which is the best case, the logical neighbors are same as the

physical neighbors. In the other distribution, the worst case, the logical

neighbours are physically apart by a maximum possible distance.

D. Statistical Measurements

The statistical measurements, collected during the simulation runs are

offered load, throughput, and average packet delay. Further the maximum delay

of a data packet is also recorded.

D.1. Offered Load (G): Offered load is the total number of bits offered to the

network. It includes the bits due to the control packets, tokens. The offered load

(normalized) is calculated by dividing the total packet bit rate, in bits per second

33

(total number of packets offered to the network, including the tokens) by the

channel capacity 10 Mbs. The formula used for computation of the offered load

in the present model is given as:

G = ((NO_OF-PACKETS * PACKET_LENGTH + TOTAL_TOKENS *

TOKEN_LENGTH) sim_time) capacity 	 (1)

where NO_OF_PACKETS is the total number of data packets

offered to the network.

PACKET_LENGTH is the length of the data packet in bits (512,

1024 etc)

TOTAL_TOKENS is the total number of token transmissions by

the stations during the sim_time.

TOKEN_LENGTH is the length of the token frame which is

assumed to be 112 bits.

sim_time is the total time simulated by the model.

capacity is the channel capacity, which is assumed to be10Mbps.

In the token bus access method when a station has no packet to transmit it

has to pass the token to its neighbor. Even if there are no packets offered to the

network the stations which are idle have to pass the token among themselves.

Since the offered load involves the tokens, there always exists a non-zero offered

load even in the absence of data packets.

D.2. Input Load (G'):

We define another load called as "input load" (G') defined as the number

34

of data bits offered to the network per second, normalized to system capacity.

The input load is given by the formula

G' = (NO_OF_PACKETS * PACKET_LENGTH/sim_time) capacity	 (2)

The input load does not take the token transmissions into consideration.

D.3. Throughput (S):

The throughput of the model is calculated by the formula

Where Tij is the time taken to transmit and propagate a data packet from a

station i to a station j. Looking back to the Fig 3.2, T ij includes the propagation

delay t ijwhich is the time taken to propagate the data packet from the station i to

the station j. sim_time is the total simulated time and capacity is the capacity of

the network (10 Mbps)

D.4. Average delay (D): The average delay is the average packet delay

calculated by the formula

where NP is the total number of packets offered to the model, Dij is the time

taken for a data packet to transmit successfully from the station i to the station j

plus the time spent by the packet in the buffer (tb uff from Fig 3.2) until the

station receives the token, enabling transmission. Thus Dij defines the total

delay for one packet.

35

D.5. Maximum Delay (D max) This is maximum delay experienced by a data

packet. Of the 1000 data packets offered to the network as the load one data

packet will experience the maximum delay than other data packets. Dmax will be

the maximum of all Dig's .

Thus the simulation parameters have been explained and the results of

these experiments are given in the following chapter.

36

CHAPTER IV

SIMULATION RESULTS

A. Overview of the experiments:

The performance of the LAN is modeled with various parameters like

packet length, station distribution, logical distribution of the stations, number of

stations and offered load which is controlled by the values of the packet arrival

rates R1 and R2. Each experiment consists of running the model for 1000 packets.

In each experiment the load offered to the network is varied by varying the arrival

rate of the packets at the stations by varying the values of R1 and R2. In some

experiments the packet length is varied for all other constant parameters. In some

experiments the physical station distribution is varied from uniform to clusters for

all other constant parameters. In some other experiments the number of stations is

varied from 5 to 50 for all other constant parameters. Finally in some experiments

the performance of the model is tested for different network lengths with all other

parameters constant. In most of the experiments the network length is assumed to

be of 1000 meters with 20 stations distributed uniformly. In all the experiments the

token hold time is same for all the stations, time enough for a station to

transmit one data packet and pass the token to its successor.

B. Discussion of the results

The results of various experiments are discussed in this section.

B.1. Throughput Versus Offered load:

Figure Fig 4.1 shows the variation of the throughput with the offered load

for a packet length of 512 bytes. It is observed that at lower loads the throughput

increases nearly linearly with the offered load. As the offered load becomes higher

1000 meters;20stations;512 bytes

Fig 4.1

38

the throughput is stabilized at a maximum value. It can also be observed that the

offered load will not be reduced to zero. This is due to the token passing between

the stations even when none of the stations have data packets to transmit. This

prevents the offered load from reducing to zero in the absence of data packet

transmission.

The throughput of an ideal network (a network that has no overhead or

token passing) increases to accommodate the load up to an offered load equal to

the full capacity of the system; then remains at 1.0, which means that the network

is fully utilized [3]. In the present experiment, the overhead due to the token

passing always causes the performance to fall short of this ideal. Fig 4.2 shows

the offered load-throughput relation for a shorter packet length. The slope of this

curve is less than that of the curve with a higher packet length. This is because

there is relatively more token overhead due to the token passing at smaller packet

lengths. The difference of the slopes of both these curves can be better seen

from Fig 4.3, where they are plotted together. It can also be observed that the

maximum throughput value is higher for longer packets. This is because,the

channel capacity being the same, the proportion of the number of useful data bits

carried by the medium at any instance decreases as the packet length decreases.

B.2. Effect of the total length of the network on the throughput

The total length of the network is the distance between the farthest stations .

The following Table 4.1 gives the values of the throughput achieved for various

lengths with a packet length of 4096 bits ,token length of 112 bits for 20 stations.

128 bytes;1000meters;20stations

Fig 4.2

1000 meters;20stations;uniformly distributed

Fig 4.3

R1 R2 Throughput Total length (meters)

1 10 0.980 100

1 10 0.974 500

1 10 0.971 1,000

1 10 0.968 2,000

1 10 0.957 4,000

1 10 0.928 8,000

1 10 0.919 10,000

100 300 0.968 100

100 300 0.963 500

100 300 0.959 1,000

100 300 0.954 2,000

100 300 0.937 4,000

100 300 0.909 8,000

100 300 0.895 10,000

300 400 0.963 100

300 400 0.959 500

300 400 0.955 1,000

300 400 0.948 2,000

300 400 0.933 4,000

300 400 0.906 8,000

300 400 0.892 10,000

Table 4.1

Throughput for different network lengths

41

42

From Table 4.1 it can be observed that for a given packet length (4096 bits) as the

length of the network is increased, the throughput of the network is decreased.

As the length of the network is increased, the distance travelled by the

token is increased. This increases the token delay, which is part of the time that a

packet has to wait before it is transmitted by the source station to its destination.

The increase in the token delay has the effect of increasing the total simulated

time, which brings down the throughput.

B.3. Throughput Versus Input load:

Fig 4.4 shows the variation of the throughput with input load defined in

the last chapter. It can be seen from the figure that the throughput increases

linearly with the input load and stabilizes to a maximum throughput at higher

loads. A striking difference between Fig 4.3 and 4.4 is that the the curve in the

Fig 4.3 passes through the zero origin where as the curve in Fig 4.4 does not pass

through the origin. This implies that the input load is zero when no data packets

are offered to the network, where as the offered load will never be zero, owing to

the token passing between the idle stations when they have no data packets to

transmit. Further the offered load to the network is greater than the input load.

This is due to the fact that the offered load includes not only the data packets

offered to the network but also the token passing between the stations ,whereas

the input load includes only the data packets.

B.4. Average Delay Versus Throughput

Fig 4.5 and Fig 4.6 show the variation of the average packet delay with

the throughput for two different packet lengths. As the arrival rate of the packets

at the stations increases, the offered load increases. As a result of the increased

512 bytes;20 stations; 1000 meters

Fig 4.4

512 bytes;20 stations;1000 meters

Fig 4.f

128 bytes;20 stations; 1000 meters

Fig 4.

46

offered load, the throughput of the model increases. This has an effect of

increasing the average token rotation period. Average token rotation period is the

average time taken by the token to complete one round of passing through all the

stations in the logical ring. A station has to wait for the token before it transmits

a packet. So, as the average token rotation period increases the average packet

delay increases. It can be observed from the figures that the average packet

delay increases gradually with the throughput and attains a maximum at the

highest throughput. Delay-throughput analysis of two different packet lengths

(in bytes) is shown in the figure Fig 4.7. The use of longer packets yields better

throughput , but at the cost of increase in the time delay. The sensitivity of the

model to varying packet lengths can be seen from the figure Fig 4.7. In this delay

analysis the additional overhead to the data packet transmission caused by the

token transmission is considered. The maximum delay experienced by a data

packet is recorded for each experiment. A situation arises where the traffic

generator supplies a data packet to a station that has just passed the token to its

successor. In such a case the data packet has to wait in the buffer until the station

receives the token in the next round. Thus the data packet experiences the

maximum delay under the above mentioned conditions. The maximum delay

experienced by a data packet is recorded as 8,945.55 micro seconds.

B.5. Throughput Versus Number of stations

Results of experiments with four different packet lengths (64, 128, 256

and 512 bytes) as a parameter, uniformly distributed in 1000 meters are shown in

the Fig 4.8. It can be seen that as the packet length increases the maximum

throughput increases. It can also be seen that as the number of stations increases

for any packet length the performance of the LAN is enhanced. This is because

as the number of stations is increased within the same length, the stations will be

located close to one another . Thus, less time is spent in token passing and the

1000 meters,20 stations;uniformly distributed

Fig 4.7

1000 meters uniformly distributed

Fig 4.8

49

overhead due to the token passing is decreased.

B.6. Throughput Versus Station Distribution

Results of experiments with equal sized clusters and unequal sized

clusters, for the best case with different intercluster spacing are as shown in the

Table 4.2, Table 4.3. The model has a 1000 meters length and a packet length of

512 bytes. All equal sized clusters are symmetrical about the physical center of

the network.

Table 4.2 shows the maximum throughput achieved when the 20 stations

are in equal sized clusters with intracluster spacing being 10 meters. It can be

seen that there is only a slight change in the throughput for a change in the

number of clusters, all else being equal

Configuration	 Inter-cluster	 Maximum

separation	 throughput

2 clusters	 410.0 meters	 0.976

4 clusters	 280.0 meters	 0.973

10 clusters	 100.0 meters	 0.974

Uniform	 55.0 meters	 0.973

Table 4.2

Equal sized clusters

Table 4.3 shows the maximum throughput achieved when the 20 stations

50

are in unequal clusters with the intercluster space being 10 meters. Even in this

case there is a negligible change in the throughput for the change in the number

of clusters

Configuration Inter-cluster Maximum

separation throughput

3 clusters (10,5,5) 415.0 meters 0.977

2 clusters (15,5) 820.0 meters 0.976

2 clusters (19,1) 820.0 meters 0.975

Table 4.3

Unequal sized clusters

These results confirm that physical configuration of the workstaions has a

minimal effect on the throughput. This is due to the fact that the total distances

travelled by the token in all the above mentioned physical configurations is the

same. Therefore the token overhead is the same.

C. Effect of logical distribution of stations on the performance of the model

As explained in the previous chapter the model is tested for two different

logical distributions of the stations. The first case of distribution being the best

case where the logical neighbours are same as the physical neighbours and the

other case being the worst case where logical neighbours are physically apart by a

maximum distance. In this experiment the stations are uniformly distributed on a

length of 1000 meters. Results of this experiment are as shown in the Table 4.4.

R1 R2 Throughput
(Best case)

Throughput
(worst case)

Total length
(meters)

1 10 0.980 0.977 100

1 10 0.974 0.971 500

1 10 0.971 0.969 1,000

1 10 0.968 0.965 2,000

1 10 0.957 0.954 4,000

1 10 0.928 0.925 8,000

1 10 0.919 0.899 10,000

100 300 0.968 0.965 100

100 300 0.964 0.961 500

100 300 0.960 0.959 1,000

100 300 0.954 0.952 2,000

100 300 0.937 0.934 4,000

100 300 0.909 0.890 8,000

100 300 0.880 0.875 10,000

300 400 0.961 0.959 100

300 400 0.957 0.954 500

300 400 0.949 0.945 1,000

300 400 0.939 0.935 2,000

300 400 0.927 0.925 4,000

300 400 0.906 0.890 8,000

300 400 0.889 0.879 10,000

Table 4.4

Comparison of throughput for the best and worst cases
(Uniform distribution)

51

52

It can be observed from the results that there is not an appreciable

difference in the throughput of the LAN between the two cases. We can infer

from this that the logical distribution of the stations does not have an effect on the

performance of the model when the stations are distributed uniformly. This is

primarily because, the token overhead is independent of the logical distribution of

the stations. The token has to pass through all the stations irrespective of their

locations on the medium, as such the token overhead will be the same.

On the other hand if the stations are distributed in the form of clusters as

explained in the previous chapter the throughput for the worst case of the logical

distribution is less than that of the best case. This is because when the stations

are distributed in the form of clusters, the distance travelled by the token between

the stations in the worst case is increased. This increases the token delay, which

is part of the time that a packet has to wait before it gets transmitted by the source

station to its destination. This increase in the token delay has the effect of

increasing the total simulated time, which has the effect of decreasing the

throughput. A close look at Table 4.5 shows that the throughput in the case of

the worst case decreases as the inter-cluster distance is increased. This is

because as the inter-cluster distance is increased the distance travelled by the

token in one rotation will be increased, increasing the token delay, thereby

decreasing the throughput.

53

Configuration Inter-cluster Throughput Throughput

separation (best case) (worst case)

2 clusters 810.0 meters 0.976 0.912

4 clusters 280.0 meters 0.973 0.934

10 clusters 100.0 meters 0.974 0.945

Table 4.5

Comparison of throughput for best and worst cases

(non-uniform distribution)

An implication of the results from Table 4.4 and Table 4.5 is that when the

stations are uniformly distributed, the logical distribution of the stations does not

have an appreciable effect on the throughput of the network. This is because, the

token overhead will be the same in both the cases as the token has to pass through

all the stations irrespective of their locations on the medium. But, when the

stations are distributed in the form of clusters, there will be a fall in the

throughput. This is due to the fact that the distance travelled by the token will be

large wdhen compared to the best case, which decreases the throughput.

54

CHAPTER V

COMPARATIVE PERFORMANCE WITH CSMA/CD MODEL

The purpose of this chapter is to give some insight into the relative

performance of the present model employing Token Bus access method with that

of another model employing CSMA/CD access method.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

media access method is a means by which two or more stations share a common

bus transmission medium. It is a LWT (listen while talk) network [5]. In

CSMA/CD there is no central station controlling the transmission activities of all

the stations. In this access method when a station has a data packet to send, it

first listens to the medium to see if anyone else is transmitting. If the medium is

found busy, the station waits until the medium becomes idle. When a station

detects an idle medium, it transmits a data frame. There is a small chance that

just after a station begins sending, another station will become ready to send and

sense the channel. If the first station's signal has not yet reached the second one,

the latter will sense an idle channel and will also begin sending, resulting in a

collision. If a collision occurs, the station waits a random amount of time and

retransmits the data frame that is collided.

For comparison, we consider the two models with identical load

generating conditions. Both the models have 20 stations in a network length of

1000 meters. The channel capacity in both the models is 10 Mbps.

Comparison of throughput

For both models the throughput is dependent on the packet length and the

55

number of stations. For a fixed number of stations and identical traffic conditions

the throughput of both models increase with the increase in the packet length.

But the maximum throughput achieved in the CSMA/CD model is less than that

of the token bus model. This is due the high collision rate at high loads in

CSMA/CD model. In the token bus, there is no chance for the packets to

collide. The performance of the token bus improves very much at higher loads .

The difference in the throughput of both models can be seen from the Table 5.1

Packet length in bytes
No. of
stations 	 64 	 128 	 256 	 512

TB CS TB CS TB CS TB CS

2 0.77 0.55 0.86 0.62 0.91 0.72 0.95 0.77

5 0.78 0.54 0.87 0.61 0.92 0.71 0.96 0.76

10 0.78 0.50 0.87 0.60 0.93 0.68 0.96 0.75

20 0.79 0.43 0.88 0.56 0.93 0.63 0.97 0.70

25 0.80 0.41 0.89 0.54 0.94 0.68 0.98 0.68

Table 5.1

Maximum Throughput

TB: Token Bus, CS: CSMA/CD

From a close look at the results in the above table it can be seen that the

56

throughput of a CS MA/CD model decreases as the number of stations within a

given length is increased. This is due to greater likelihood of collisions. But the

performance of the token bus model improves as the interstation distance

decreases, because less time is spent in token passing.

The physical configuration of the stations on the bus has a marked effect

on the throughput of the CSMA/CD model. As seen earlier the token bus model

is quite insensitive to the change in the physical configuration of the model

because the overhead due to the token passing will be the same irrespective of

the physical configuration of the stations as already discussed in the previous

chapter. The change of the throughput with a change in the physical

configuration can be observed from the Table 5.2 and 5.3

Configuration
Average

separation, m 	
Maximum Throughput

Token Bus 	 CSMA/CD

2 clusters 518.83 0.97 0.57

4 clusters 435.26 0.97 0.58

10 clusters 385.12 0.97 0.60

Uniform 368.41 0.97 0.61

Table 5.2

Equal sized clusters

57

Configuration
Average

separation, m 	
Maximum Throughput

Token Bus CSMA/CD

3 clusters(10,5,5) 455.98 0.97 0.57

2 clusters(15,5) 393.48 0.97 0.59

2 clusters(19,1) 112.75 0.97 0.69

Table 5.3

Unequal sized clusters

Comparison of average packet delay

The average packet delays for various values of the throughput can

be observed from the Table 5.4. It can be seen that at lower loads the CSMA/CD

method offers the shortest delay (milli seconds). This is because the stations do

not have to wait for a token; they can transmit data immediately. In the token

passing method the delay suffered by a packet at lower loads is higher than that of

the CSMA/CD. This is because, the overhead due to token-passing is relatively

severe at lower loads. But at higher loads the delay suffered by a data packet in

the token bus model is very much less than the delay in CSMA/CD model. The

higher delay in the CSMA/CD model is due to an increase in frequency of

collisions. The variation of the average packet delay with the throughput for

both the models can be seen from Fig 5.1.

58

Throughput 	 Average Delay 	 Average Delay

(milli sec) 	 (milli sec)

(CSMA/CD) 	 (TOKEN BUS)

0.80 80.0 6.90

0.78 60.0 6.10

0.68 1.50 5.97

0.63 0.90 5.96

0.54 0.70 5.70

0.48 0.60 5.30

0.40 0.55 4.70

0.32 0.52 4.4

0.21 0.50 4.10

Table 5.4

Average delay Versus Throughput

Comparing the offered load of the two models, it is seen that the offered

load in the case of the CSMA/CD model includes the originally transmitted data

packets and the retransmissions when portions of some of the data packets are

lost in collision. The offered load will be zero when no packets are offered to the

1000 meters; 20 stations; uniformly distributed; 512 bytes

Fig 5.1

60

network. But in the case of the token bus model, since the access to the medium

is controlled by the token, the offered load includes both the tokens and the data

packets. There are no collisions or retransmissions in the case of the token bus.

In the token bus model the offered load will never reduce to zero because the

token will always be passing among the stations.

Finally ,the CSMA/CD method is more nondeterministic [5], which is

often inappropriate for real time work. But the token bus accessing method is

more deterministic than the CSMA/CD. The token passing bus method has

excellent throughput and efficiency at high load.

Discussion of the MAP protocol:

A group of people working under the auspices of IEEE was set up to write

official standards for the LANs. Many people were invited to join the committee

and contribute to the work. Some of these people came from General Motors,

which was carefully looking at LANs. GM wanted to set up a network for

factories. An important application of the GM network was factory automation,

in which all the robots working on the assembly lines would all be interconnected

by a LAN [5]. Since the cars on the assembly lines move by at a fixed rate,

whether the robots are ready or not, GM felt it essential to have a LAN in which

the worst case transmission time had an upper bound that was known in advance.

CSMA/CD does not have this property.

Essentially, CSMA/CD works by having all the machines listen to the

cable. If the cable is idle, any machine can transmit. If two stations transmit at

the same time, there is a collision, in which case they all stop, wait a random

period of time, and try again later. In theory, there is no upper bound on the time

61

a station might have to wait to send a message. GM came up with the LAN

called token bus in which stations took turns, round-robin, thus giving a

deterministic worst-case performance rather than a statistical one [5].

GM and other companies concerned with factory automation clearly saw

the need to adopt specific protocols in each OSI layer. This work led to the MAP

(Manufacturing Automation Protocol) using the token bus. MAP protocol

follows very closely to the OSI model. MAP uses the token bus for the physical

medium. It uses the IEEE 802.2 data link protocol LLC (Logical Link Control)

in the data link layer in connectionless mode as the service available to the

network layer.

62

CHAPTER VI

COMPARATIVE RESULTS FROM ANALYTICAL AND SIMULATION

STUDIES

In the present chapter a comparison of the simulation results obtained in

the previous chapters will be done with those of the analytical results.

For the purpose of analysis we consider a group of N active stations

forming a logical ring. We consider one round of token passing assuming that

every station gets the token only once. The number of stations transmitting in

one token rotation depends upon whether or not a station has packets to transmit,

which depends on the arrival rate of the packets at each station. An inactive

station just passes the token to its logical neighbor.

In general the throughput of a network [10] can be defined as

where F is the time spent on the network transmitting messages and Y is the

overhead associated with the message transfers. The overhead calculation

depends upon the number of packets transmitted, because for each packet transfer

the token and other associated overheads are also transmitted. If there are no

packets waiting for transmission at any station, the token is passed without being

used. For the purpose of analysis we assume that all the stations have data

63

packets to transmit. This is the case for the maximum throughput.

We consider the best case of the token bus for our analytical model in

which the logical neighbors coincide with the physical neighbors. The following

assumptions are made in the evaluation of the throughput for the token bus:

(a) An explicit token scheme is considered; and

(b) The token is not an integral part of the packet, but is transmitted as a

separate packet.

(c) The logical ring is assumed to be static, i.e., no addition or deletion of

stations is possible.

(d) The total length of the network is assumed to be 1,000 meters.

The throughput for this model can be derived to the form as shown in the

equation (2)

where a is the normalized propagation delay defined as

where R is the data rate(channel capacity), d is the length of the total length of

the network, V is the propagation velocity, which is about two- thirds of the speed

64

of light, and L is the length of the data frame transmitted.

and q is the normalized token overhead delay defined as

q = token transmission time / message transmission time (4)

Consider the model with 20 stations and with the following parameters:

Packet length = 4096 bits

Token length = 112 bits

Speed of the channel = 2 * 10 8 m/sec.

Capacity of the channel = 10 Mbps.

Length of the network = 1,000 meters.

Substituting these parameters in the above formula for the throughput , we get

the value of the throughput as S = 0.969.

For the same packet length of 4096 bits, the simulated model yields a

throughput of 0.972.

Decreasing the packet length to 1024 bits, with the same token length of

112 bits the analytical model gives a throughput of 0.88, where as the simulated

model yields a throughput of 0.87.

Delay analysis:

A system with a known worst case is a ring with the stations take turns

sending data packets. We consider a logical ring with N stations in which the

token is rotating. Each data packet has to wait in the buffer until the station gets

65

the token to transmit the data packet. We define the worst case token rotation

time as the time taken by the token to go a round the logical ring once. This

includes the holding time of the token at each station. The average packet delay

is the average time taken by the data packet to transmit from the source station to

the destination plus the time spent by the data packet in the source buffer until

the station receives the token. Thus it can be seen that the average packet delay

depends on the token rotation time.

The general expression for the worst case token rotation time for the best

case of the logical distribution of the stations is given by the equation (5).

where T is the data packet transmission time.

For the model with 20 stations and a packet length of 4096 bits,

computation of the worst case token rotation time gives a value of 8.42 milli

seconds.

For the same parameters the simulated model gives a worst case token

rotation time of 8.37 milli seconds.

For a packet length of 1024 bits, the analytical model gives the worst case

token rotation as 2.28 milli seconds. The simulated model gives a worst case

token rotation of 2.25 milli seconds.

Thus it is observed that the simulated model gave the results very close to

those of analytical results.

66

CHAPTER VII

CONCLUSIONS

Simulation study of several aspects of the Token Bus performance is

presented. At lower loads the overhead due to the token-passing among the

stations causes low channel utilization yielding low throughput. But at higher

loads Token Bus yields an excellent throughput without showing any

degradation. The use of longer packets yields better utilization of the channel but

with an increase in the average packet delay. The offered load to the network is

never reduced to zero due to the token passings even if none of the stations have

data packets to transmit. The performance of the Token Bus improves as the

number of stations within a given length of the network is increased. For a

given number of stations and a given packet length the throughput of the network

decreases as the network length increases.

The physical distribution of the stations on the bus has a least effect on the

throughput of the network. When the stations are distributed uniformly the

difference of the throughput between the best case and the worst case of the

logical distribution of the stations is negligible. On the other hand when the

stations are distributed in the form of clusters there is a slight decrease in the

throughput in the case of the worst case. Finally a comparison of the

performance of the token bus model is compared with that of another model

using CSMA/CD access method.

The simulated model in this thesis does not consider the prix

mechanism offered by the token bus protocol. The token bus protocol enable:

67

priority mechanism in which the data packet s have different priorities. For

future work, extension of the present model is possible so as to include the

priority mechanism. An extensive study can be made to see how the bandwidth

will be allocated for various prioritized data packets. Further the the traffic

generating environment can be changed and the performance of the model can be

studied under these conditions.

68

APPENDIX A

CSIM AND SOURCE LISTING OF SIMULATOR

CSIM is a process oriented simulation language which is implemented as

a superset of the C programming language. In CSIM, a process is an

'independent' program or procedure which can execute in 'parallel' with other

processes (the processes only appear to execute in parallel, CSIM simulates

parallel or simultaneous sequences of activities). CSIM provides an extended set

of features which facilitate the implementation of process oriented simulation

models. These are implemented as a set of extensions to the C programming

language. A CSIM program accesses these features via function or procedure

calls from a C program constructed by the modeler.

CSIM applied to communication system: In the CSIM model the

communication medium is declared as a facility , which is a data object and can

be reserved and released by processes. A facility can be in one of the two states;

BUSY or FREE. If a process reserves a FREE facility, the facility is assigned to

that process and the process continues. If a process reserves a BUSY facility, the

process is suspended until another process releases that facility. When this

happens, the waiting process is given control of the facility and execution

resumes.

Summary of the CSIM statements used:

CSIM is embedded in C programming language. In addition to C, the

following statements of CSIM are used in the simulation.

69

Declarations and Initializers: Initializers are really executable CSIM functions

which return pointers to CSIM data structures. Initializer statements must be

executed after the create statement in the respective processes.

1. EVENT ev;

ev = event("name");

The above declaration declares ev(a variable of type EVENT) to be a pointer to

an event of name "name". Events declared in the sim(first) process are globally

accessible. Events declared in another processes are local to the declaring

process. These local events can be passed as parameters to other processes.

Local events are deleted when the declaring process terminates.

The transmissions are declared as events in the CSIM model. An event

is another kind of data object, has two states; occured and not-occured. When a

process waits for an event which is in theoccured state, the event is automatically

placed in the not-occured state and the process continues. When a process waits

for an event which is in the not-occured state, execution of the process is

suspended. When some other process sets that event, the event is placed in the

occured state.

2. FACILITY f;

f = facility ("name");

The above declaration declares f (a variable of type FACILITY) to be a facility of

name "name". Facilities should be declared with global variables and initialized

in the sim(main) process, prior to the beginning of the simulation part of the

model.

70

Execution Statements:

1. clear(ev);

This statement resets event ev to a not-occured state. The event must have been

declared to be of type EVENT and initialized using an event statement.

2. hold(t);

This statement is used to suspend a process for a simulated time interval of length

t. The variable t should be of type float.

3. release(f);

This statement is used to release a facility f. f must have been declared to be of

type FACILITY and initialized with afacility statement.

4. reserve(f);

This statement is used to reserve a facility f. If the facility is already reserved by

other processes, then the reserving process is suspended until the facility is

released so that it can gain access to the facility.

5. set(ev);

This statement sets an event ev to the occured state.

6. t = simtime();

This statement sets t to the current simulated time. This is a function of type

float.

7. terminate();

This function is used to end of terminate a process that is executing. A terminat

statement is not required if the process exits normally.

8. rerun();

The rerun statement causes the simulation support system to be completely

7 1

reinitialized (with the exception of the random number function). This feature is

used to obtain several independent executions of the models.

Operation: The CSIM command file, csim should be copied to the present

working directory or a path is to be set properly so as to access it. The CSIM

programs are compiled by the command csim filename.c and executable module

is placed in the file a.out. All the standard options to the C compiler can be used,

including the -o option which specifies a name for the executable module. The

command a.out -T will cause a CSIM debugging event trace to be created on the

standard output file. The first executable procedure must be named sim. Sim

must contain a create function. The header file csim.h must be included with

proper path at the beginning of the program. The create function causes a

procedure to be set up as a process, capable of executing in a pseudo-parallel

manner with other processes.

DESCRIPTION OF THE CSIM CODE
FOLLOWS

72

Jan 10 12:03 1990 report Page 1

73
********************,1******k****AkAk***

TOKEN BUS MODEL WITH TWENTY STATIONS IN A LENGTH OF 'L' METERS
******************** **

/* Heade/. Files */

#include <stdio.h>
#include <math.h>
#include "/usr/mesuna/csim/lib/csim.h"
#include u/usr/mesunb/users/rxk8784/exper/tokens.h" /* contains the parameters like

packet length, token length,capacity of the network, propagation speed etc.*/
**

/* Global variable declarations */
int total_dist;

struct tkn find_token();
int stninitialize();
static int stn distance() = {
50,50,50,50,5(l,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50); /* initializing the

inter station distances */
static int order[]-{
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 }; 	 /* initializing the

logical ordering of the staions */
EVENT ev0, ev1, ev2, ev3, ev4, ev5, ev6, ev7, ev8, ev9, ev10, ev10, ev11, ev12, ev13,
evil, ev15, ev16, ev17, ev18, ev19; 	 /* declaring the events */
int find_av_stn(),tot_phy_len();
extern float prob();
extern int random();
float TOKEN_HOLD_TIME;
flout no rotations;
float extra_tim•;
struct stn 	 /* structure that holds tho details of the current data packet */

flout mess_arr_time;
float 	 dep_time;
int 	 dint;

*c..linticn[Nn_OFTICd5i,Aphv_stn(NOL_OFJ',TATINS];

struct tkn /" structure holding the details of the station currently holding
the token */

int stn no; 	 /* number (A-.	 !-d.utien holding the token currently A /
int tokendist; /A dis',:ance t - ru•olled by the token A/
int rev_dit: 	 /A distance trayelited by the token after it crossed the

11::t ''.tation in the logical ring */
float time_:Ifent; 	 /A Lime .spent by the token at the station A /

}to k en;
static int check-0;
/* Peginning- of the !:iml) process A/

sim()

int i, bps l - v, (led -0, int 	 1p, 	 0, t L017•11!": -	'Tit	 pre:7,nnt;
flout C 	 Lokenthne 	 - 0.0, Mc,ly. , agedelay - 0.0,
packer_delay -

74

Jan 10 12:03 1990 report Page 2

token_delay2-0.0,messagedelay-0.0,average_delay-0.0,total_delay-0.0,
av_token delay-0.0,
avpacket_delay-0.0,sum_yarket_delay-0.0,S-0.0,D-0.0,av_tk_delay = 0.0,
tot_tkdelay - 0.0;
int tot_phy_dist, rand_source_no,rand_dest_no,total_dist,count 	 0,;
int ret_stn,pathl,path2,token_pos;

create ("sire")
/* initializing all the events */
ev0 	 event("ev0");
evl = event("ev1");
ev2 	 event("ev2");
ev3 	 event ("ev3")
ev4 	 event("ev4");
ev5 = event("ev5");
ev6 	 event: ("ev6");
ev7 = event("ev7");
eve 	 event("ev8");
ev9 	 event ("ev9")
ev10 - event("ev10");
evil - event("ev11");
evl2 - event("ev12");
ev13 	 event("ev13");
ev14 - event("ev14");
ev15 = event("ev15");
ev16 event("ev16");
ev17 - event("ev17");
evi8 - event("ev1R");
evI9 - ovent("ev19");
token - facility ("token");

:-,et(ev0); 	 /* ,ettinq rill the e% , .t/
.:er(:vi);

set_
sot (ev5) ;
;:et (ev6);
set (ev7);
set (ev8);
set (ev9);
set (ev10);
set (ev11) ;
set. (ev12);
set (ev13);
set (evil);
set (ev15);

set (ev16);
set (ev17);
set (ev18);
set (ev19)

TOKEN_HOLD_TIME = TOKEN_TIME +(tot_phy_dist/TOkEN_PROP_SPEED);
tot_token_time = (NO_OF_STATIONS)*TOKEN_HOLD_TIME;
totaL_dist = stn_initialize();
while(count < NO OF PACKETS)

Jan 10 12:03 1990 report Page 3 75

no_tokens = 0;
current_time =prob();
inter_gap = random(P1,P2);

if (pps1=-0)

inter_gap-0;
pps1=1;}

current_time 4 -- interg.M;
rand_source_no 	 random(0,NO_OFSTATIGNS -1);/*random function to_

pick the source station */

rand_dest_no - r,Indom(0,NO_OF_STATIONS - 1) ; /*random function to
pick up the destination*/

sim_time 	 current_time; /* sim time keeps track of
the current simulated time */

if(station(rand_source_no]->messdep time 	 sim_time)

ret_stn - find_av_stn(rand_source_no,sim_time);
if(ret_stn -= -1)

token - find_token(token,current_time);
continue;
1

else
rand_source_no-retstn;

whiie(randsourceno--randdestne)

rand_destno-random(0,NOOFSTATIOUS-1);

count++;
printf(n2d,ri;9.3f, ",counk,simtime); 	 /* 	 used for debugging */
printir2d,'!,20,",rand_sourceno,rand_dust_no); /* used for debugging */

if(sim_time 	 current_time)
{

t oken. ninno 	 nrder I 0];
t 01:on t	 it [or 	 [-->!:;t.rLd i
token. t. 	 - 0;
token.rev_dir - 0;

eine

token - findtok(tokn,currenttime);
}

/* this printf is for dehn , jlinl */
printf 	 3.3f, ",tokcn.stnno,token.tokondist,token.t.imspent);

token pos - token.toendisktcken.revdir;
if(tokenpof: <- -:tatien(rand!;ourceno)->!_;tndist)

tokendelayl --(station(randsourceno]-> stn_dist 	 token.tokendist.)/VJFENPPulti;t1
else

token_delayl = (station(rand_sourcero]-> stn_diut+ totaldist-token.revdir-
(okrr, okon 	 I /TOKIMLPPA':::PEEli:

if(tokendelayl < 0)
token_delay1 	 (total_dist-koken.koken disk +

Jan 10 12:03 1990 report Page 4

76
station[rand_source_no]->stn_dist)/TOKEN_PROP_SPEED;

token delay2 = (rand_source_no - token.stn_no - 1) * TOKEN_HOL
if(tokendelay2 < 0)
token_delay2 = (NO_OF_STATIONS 	 token.stn_no-1 +

rand_source_no) * TOKEN HOLE
no tokens += token_delay2/TOKEN_HOLD_TIME;
if(sim_time--eurrent_time)

tokon_delay2 += TOKEN_HOLD_TIME;
if(token.time_spent > 0)

token delay2 += TOKEN_HOLD_TIME token.time_spent;
no_toiCens++;

1
if(token.stn_no--rand_source_no && (token.token_dist==0 II token.time_spent > 0))

(
token_delay2 	 (tot_token_time-token.time_spent);
token delayl 	 (total_dist/200.0);
no tokens = NO_OF_STATIONS-1;

1
tot_tk delay += (token delayl + token_delay2);

if (data present == 1) 	 /*if the buffer of the station has the packet to send
when the token is received */

reserve(token);
hold (TOKEN_HOLD_TIME); /*holding the token for the hold time when the

station has a data packet to transfer */
release(token); /*release the token and pass it to the successor */

else 	 /* if the buffer of the staion does not have a
data packet to transmit */

release (token); /* pass the token to its successor */
1

/* message_delay gives the propagation delay of the data packet from the source t
destination station */

message_deiay -(phy_stn[rand_dest_no]->stn_dist - phy_stn[rand_source_no]->stn_di
MESSAGEPROPSPEED;

if (message delay < 0)
message delay

/* Message_delay is the sum of the transmission and propagation delays
of the data packet */

Message_delay = message_delay +(float) PACKET_LENGTH/CAPACITY;

/*packet delay actual delay experienced by a data packet which includes the waiting
time of the data packet in the buffer of the source station */

packet delay 	 Message_delay + token_delayl+token_delay2;

if(packet_delay > maxdelay)

maxdelay = packet delay; /*calculates the maximum delay experienced

Jan 10 12:03 1990 report Page 5
77

by a data packet */
sum packet_delay += packet_delay; /* total delay of all the data packets */

if(sim_timeTtoken_delayl+token_delay2+Message_delay > max_time)

max_time 	 sim_time+token_delaylt-token_delay2+Message_delay; /* max_time is the total
simulated time */

station[rand_source_no]->mess_dep_time 	 rim time + token_delayl -1-token_delay2;

total_delay += Message delay;

/*total_delay is the sum of the transmission and
propagation delays of all data packets */

ttokens += no tokens; /* keeps track of the total token transmissions during
the entire simulation */

}/*for while loop*/

av_packet_delay 	 sum_packet_delay/NO_OF_PACKETS;/*computes the average packet delay*/

S 	 ((totaldelay/maxtime))/10.0;
/*S computes the normalized throughput of the model */

D =(((PACKET_LENGTH*NO_OF_PACKETS) + (Ltokens*TOYENLENGTH)) /max_time) /10 . 0;
/* D computes the normalized offered load */

G = ((PACKETLENGTH*NOOFPACKETS)/max_time)/10.0;
/* G computes the normalized input load */

printf(" 	 '1.:31 	 3 .3f, 	 1.31 , %.3f\n",D (G,S,av_packet_delay f maxdelay);
rerun();
1

/* the structure below is used to find the position of the token
at a given instance of time */

struct tkn find_token(present,presenttime)
str rr ct tkn present;
float present Lime;
{

float cal_time = 0.0,propdelay;
int next_stn,token_stn_dist,cond-O f pps-0;
char c;

if(present.1Levdir > 0)

prop delay 	 (total_dist-station[NOOFSTATION-1]->stndist
- present.revdir)/TOKEN_PROP_SPEED;

if (prop delay <- presenttime)

cal time = prop delay;
che ,J:k-0;
present.stnno=order[O];
present.token_dist-station[order(0]]->stn_dist;
present.rev_dir=0;
pps-1;

else

Jan 10 12:03 1990 report Page 6

78
1

cal time = 100000;
present.rev_dir += present time*TOKEN PROP SPEED;

1
if(present.time_spent > 0)

if(TOKEN_HOLD_TIME	 present.time_spent <- presenttime)

cal_time = TOKEN_HOLD_TIME - present.time_spent;
present.time_spent = 0;

1

else

cal_time - 100000;
present.time_spent += present time;

1

if(cal_time != 100000)
1
whlle(cal_time <= present_time)
{
if(cond==1 II check==0)

check=1;
if(cal_time + TOKEN_HOLD_TIME > present time)

present.time_spent = present_time 	 cal_time;
caltime-100000;

else
cal time += TOKEN HOLD TIME;

if 	 !-100000)

nextstn = (present.stnno) + 1;
if((next_stn == NO_OF_STATIONS) && pps==0)

token_stn_dist=total_dist 	 phy_stn[next_stn 	 1.1->stndist;
prop_delay = token_stn_dist/TOKEN_PROP_SPEED;

if(prop_delay > present_time - cal_time)

present.rev_dir += (present_time - cal_time)*TOKEN_PROPSPEED;
caltime=100000;

C lse

present.stn_no = next stn;
if (next_stn—NO_OF_STATIONS)
next_stn=order(0];
present.token_dist = station[next_stn]->stn_dist;
cal_time += prop_delay;

Jan 10 12:03 1990 report Page 7
79

next_stn=order[0];
}
if(next_stn 	 NO_OF_STATIONS)
{

next_stn=order[0];

if(cal_time != 100000)

token_stndist=station(next_stn]->stn_dist-present.token_dist;
if(token_stn_dist < 0)

token_stn_dist=station[next_stn]->stn_dist;
next_stn=1;

1
prop_delay 	 token_stn_dist/TOKEN_PROP_SPEED;
if (prop_delay > present time 	 cal_time) (
present.token dist += (present time - cal_time)*TOKEN_PROP_SPE
if(present.toendist > total dist)
present.token dist 	 total_dist;
cal_time 	 100000;
]

else

present.stn_no	next stn;
present.token_dist 	 station[next_stn]->stn_dist;
cal_time += prop_delay;

}

cond=1;
1

return(present);

/* the function below is used to initialize the distribution of the staions
given inter station distances and the logical ordering of the staions */

stn_initialize()

int total distance;
int i,dist=0;

for(i=0;i<NO_OF_STATIONS;i++)

phy_stn[i] 	 (struct stn *) malloc(sizeof(struct stn));
station[i] 	 (struct stn *) malloc(sizeof(struct stn));
dint += stn_distance[i];
phy_stn[i]->stn_dist = dist;

phy_stn[i]->mess_arr_time = 0;
total_dist += stn distance(order[i]];
station[i]-> stn dirt 	 total_dist;
station[i]-> mess arc time = 0;

total_dist += phy_stn[i-1]->stn_dist;
return(total dist);

tot_phy_len() 	 /* this function is used to calculate the total length of the network w
inter station distances */

(
int i,len-0;
for(i-0;i<NO_OF_STATIONS;i++)

len += stn_distance[i];
return(len);

find_av_stn(busy_stn,at_time) /* this function is used to pick up the source station
generator when all the staions are busy */

int busy stn;
long float at_time;

int i,stn;
for(i-1;i<-NOOFSTATIONS;i++)

stn 	 i+busy_stn;
if (stn > NO_OF_STATIONS-1)

stn 	 NO_OF_STATIONS;
if(station[stn]->mess_dep_time < at_time)

return(stn);
}
return(-1);

81

REFERENCES

[1] James Martin Local Area Networks Architecture & Implementation,

Arben Group, Prentice Hall, 1984.

[2] WEE Standards for Local Area Networks: Token Bus Accessing method

ANSI/IEEE Std 802.4-1985 ISO/DIS 8802/4.

[3] Stallings, William, "Local Network Performance", IEEE Communications

Magazine, vol 22, pp. 3-41, Mr '84.

[4] Herb Schwetman, "CSIM: A C-Based, Process-oriented simulation

Language," Research Report, Microelectronics and Computer

Technology Corporation, Austin, Texas.

[5] Tanenbaum A.S. , Computer Networks. Englewood Cliffs, NJ: Prentice-

Hall, 1988.

[6] Mischa Schwartz., Telecommunication NETWORKS Protocols, Modeling

and Analysis. Addison-Wesley Publishing company, 1987.

[7] Kernighan, B.W. and D.M. Ritchie, The C Programming Language.

Engle-Wood Cliffs, NJ: Prentice Hall, 1978.

[8] Herb Schwetman, CSIM Reference Manual(Revision 12). Austin, Texas:

Mcc,1987.

[9] Anura P. Jayasumana , "Throughput Analysis of the IEEE 802.4 Priority

Scheme", IEEE Transactions on Communications, Vol 37, No.6, June

1989. pp.565-571.

[10] A.K.Sood, S.Akhtar and K.Y. Srinivasan, "An extended Token bus

Protocol for embedded networks", Computers & Elect Engg Vol.14

No.3/4, pp.105-123, 1988.

[11] Peter MARTINI, Otto SPANIOL, "Token-passing in high speed backbone

networks for campus-wide environments," "Modeling Techniques and

Performance Evaluation, Elsevieer Science Publishers , 1987.

[12] Nanda K. Kanuri "CSMA/CD LAN Performance: Modeling and

simulation in CSIM", Vol 20 Part 3, Proceedings of the Twentieth

Annual Pittsburgh Conference held May 4-5, 1989. pp 1003-1007.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1990

	Token bus LAN performance : modeling and simulation
	Ramesh Kurnool
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract
	Acknowledgments
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Protocol and Model Description
	Chapter 3: Simulation Design and Experiments
	Chapter 4: Simulation Results
	Chapter 5: Somparative Performance with CSMA/CD Model
	Chapter 6: Comparative Results from Analytical and Simulation Studies
	Chapter 7: Conslusions
	Appendix A: CSIM and Source Listing of Simulator
	References

