
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1990

A comparative study of edge detection techniques A comparative study of edge detection techniques

Jaskaran Singh Dhaliwal
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Dhaliwal, Jaskaran Singh, "A comparative study of edge detection techniques" (1990). Theses. 1325.
https://digitalcommons.njit.edu/theses/1325

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F1325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1325?utm_source=digitalcommons.njit.edu%2Ftheses%2F1325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

A COMPARATIVE STUDY OF EDGE DETECTION
TECHNIQUES

by
Jaskaran Singh Dhaliwal

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial

fulfillment of the requirements for the degree of Master
of Science in Mechanical Engineering, 1990.

APPROVAL SHEET

Title of Thesis: 	 A Comparative Study of Edge Detection Techniques.

Name of the Candidate: Jaskaran Singh Dhaliwal

Master of Science in Mechanical Engineering, 1989

Thesis and Abstract Approved:

Dr. R. Dave, 	 Date

Assistant Professor Department of

Mechanical Engineering

Date

Date

VITA

Name : Jaskaran Singh Dhaliwal

Degree and date to be conferred : M.S.M.E., Jan. 1990

Secondary education : Govt. High School Birampur, 1980

College/Institution	 Dates	 Degree	 Date of Graduation

G.K.S.M.G.C., Tanda	 80-82	 Pre Engg.	 June, 1982

G.N.E.C., Ludhiana 	 82-86	 B.E.M.E.	 Aug., 1986

N.J.I.T., Newark	 87-90	 M.S.M.E.	 Jan., 1990

Major : Mechanical Engineering

Positions held : Graduate Assistant, CAD Department,

N.J.I.T, Sept. 89 - Present

Graduate Assistant, Mechanical Engineering,

N.J.I.T., Sept. 88 - Sept. 89

ABSTRACT

Title of Thesis:	 A Comparative Study of Edge Detection Techniques.

Jaskaran Slngh Dhaliwal, M.S.M.E., 1990

Thesis directed by:	 Professor R. N. Dave

The problem of detecting edges in gray level digital images is considered. A literature

survey of the existing methods is presented. Based on the survey, two methods that are

well accepted by a majority of investigators are identified. The methods selected are: 1)

Laplacian of Gaussian (LoG) operator, and 2) An optimal detector based on maxima in

gradient magnitude of a Gaussian-smoothed image. The latter has been proposed by

Canny[], and will be referred as Canny's method. The purpose of the thesis is to compare

the performance of these popular methods. In order to increase the scope of such

comparison, two additional methods are considered. First is one of the simplest methods,

based on the first order approximation of the first derivative of the image. This method

has the advantage of relatively low amount of computations. Second is an attempt to

develop wedge fitting method based on eigenvector least-squared error fitting of an

intensity profile. This method is developed with an intent to keep the edge localization

errors small. All the four methods are coded and applied on several digital images, actual

as well as synthesized. Results show that the LoG method and Canny's method perform

quite well in general, and that demonstrates popularity of these methods. On the other

hand, even the simplest method of first derivative is found to perform well if applied

properly. Based on the results of the comparative study several critical issues related to

edge detection are pointed out. Results also indicate feasibility of the proposed method

based on eigenvector fit. Improvements and recommendation for further work are made.

ACKNOWLEDGEMENT

I take this opportunity to record my gratitude and thanks to Dr. Rajesh N. Dave,

Assistant Professor, Mechanical Engineering Department of New Jersey Institute of

Technology for his valuable guidance throughout the course of this thesis work.

I am extremely thankful to Dr. Joshua S. Greenfeld, Assistant Professor, Civil

Engineering Department for his valuable help and suggestions during the thesis work.

My many thanks are due to Mr. Somayajulu Bhamidipati for his great help during

the thesis work and typing it.

111

Table of Contents

ACKNOWLEDGEMENT

INTRODUCTION 	 1 	

1.1 IMAGE PROCESSING 	 1

	

1.2 EDGES 2

1.3 OBJECTIVE 	 9

1.4 EDGE OPERATORS •	 9

1.5 OVERVIEW OF REMAINING CHAPTERS 12

LITERATURE REVIEW 	 13

2.1 EDGE DETECTORS BASED ON FIRST OR SECOND DERIVATIVES 	 13

2.1.1 L.G. Robert: 	 13

	

2.1.2 A. Rosenfeld and M. Thurston: 14
2.1.3 I.D.G. Macleod: 	 15
2.1.4 Robert M. Haralick: 	 16
2.1.5 Binford: 	 17
2.1.6 Shanmugam, Dickey and Green: 	 18
2.1.7 Guner S. Robinson. 	 19
2.1.8 D. Marr and E. Hildreth: 	 21
2.1.9 Ramesh Jain and Doug Rheaume 	 21
2.1.10 Alan C. Bovik and David C. Munson. 	 23
2.1.11 John Canny: 	 24

2.2 EDGE DETECTORS BASED ON IMAGE SURFACE APPROXIMATION 25

2.2.1 Manfred H. Huckel: 	 25
2.2.2 Ramakant Nevatia and K. Ramesh Babu 	 26
2.2.3 Ralph Hartley: 	 27
2.2.4 Vishvjit S. Nalwa and Thomas 0. Binford 	 28

COMPUTER IMPLEMENTATION DETAILS 	 32

3.1 FIRST DERIVATIVE METHOD . 	 32

3.2 LAPLACIAN OF A GAUSSIAN (LoG) 	 35

3.2.1 Finding zero crossings: 	 38
3.2.2 Properties of the LoG: 	 40
3.2.3 Drawbacks of LoG 	 41

iv

3.3.4 Computational Considerations: 	 43
3.3 CANNY'S EDGE DEFECTOR 	 47

3.3.1 Detection and Localization Criteria 	 48
15

3.3.2 Eliminating Multiple Response 	 50
3.3.3 Optimal Detector 	 51
3.3.4 Implementation 	 52

EIGENVECTOR EDGE FITTING 	 61

4.1 EIGEN VECTOR APPROACH: 	 61

	

4.1.1 Implementation: 66
4.2 DESCRIPTION OF EIGHT CONNECTIVITY ALGORITHM 	 66

4.2.1 Description of the above algorithm: 	 68

RESULTS AND CONCLUSION 	 74

5.1 RESULTS: 	 74

5.2 CONCLUSION: 	 90

APPENDIX 	 93

REFERENCES 	 118

1

CHAPTER I

INTRODUCTION

1.1 IMAGE PROCESSING :

Image processing is the most important part of the machine vision. Machine

Vision is becoming more and more important these days because it is being used in

manufacturing, inspection of parts, medical applications and robot guiding. Machine

vision means making the machines to interact with the environment as human beings

do in terms of seeing. But there is much work left to be done. Visual data are most

complex and most useful sensory input for humans. Machine vision is concerned with

the interpretation of similar visual data. Image Processing is the science of modifying

and analyzing pictures. For analysis of images we need to find their edges first. Edges

information can be used for segmentation of images or for locating their boundary in-

formation. Edge detection is important because edges give the compact description of

the objects and objects can be reconstructed from the edge information.

Vision begins with transformation of a flux of photons into a set of intensity values

at an array of sensors. The first step in visual information processing is to obtain a com-

pact description of the raw intensity values. The primitive elements of the initial

description should ideally be complete in the sense of representing the full informa-

tion contained in the image, and meaningful (that is, capturing significant properties of

the three-dimensional surfaces around the viewer). Physical edges are among the most

2

ties of objects since they correspond to object boundaries or to changes in surface

orientation or material properties.[1]

1.2 EDGES :

Edges are image attributes which are useful for image analysis and classification in

a wide range of application. An edge is defined as a large and sudden change in some

image attribute, usually the brightness. The changes in brightness that we are particularly

interested in are the ones that mirror significant events on the surface being imaged.

These might be the places where surface orientation changes discontinuously, where one

object occludes another, where a cast shadow line appears, or where there is a discon-

tinuity in surface reflectance properties. The importance of edges in human visual and

perceptual system was first proven by Attneave[1] who showed that a crude outline of an

object is an enough information for an object recognition e.g. we can recognize the faces

or objects in cartoons easily, which are edges of faces or objects.

The edges are categorized into four types which may occur in an image. These are

step edge, ramp edge, roof edge, and spike edge. In the following description Figure (a)

represent the image of the edge and Figure (b) represent the edge profile at line AB.

These are described as follows:

1. Step edge : A step edge can be found in an image if we identify a region of the image

which is significantly brighter (or darker) from its surroundings. A step edge exists

-------E

J - ;

igure 1.1 (a) Step edge image (b) Step edge r file t lin AB

4

~--------------E

Figure 1.2 (a) Ramp edge image (b) Ramp edge pr fiI t lin A

H

/

Figure 1.3 (a) Roof edge image (b) Roof edge profil at line A

paz

Figure 1.4 (a) Spike edge image (b) Spike edge pr file at lin AB

7

igure1.5(a)N i yedgeimage (b)N iyedgepr fi l at Jin

8

between two neighboring pixels if one belongs to region and other belongs to surround-

ings. This is an idealized situation and is shown in Figure 1.1.

2. Ramp edge : This is more common in real images. In a ramp edge the transition

from the regions to surroundings over several pixels as shown in Figure 1.2.

3.Roof edge : Roof edge occurs if the profile of image function steadily increases and

after a certain point steadily decreases as shown in Figure1.3. This type of edge is usually

not due to object boundaries but rather due to changes in surface orientationwith respect

to an illumination source.

4. Spike edge : Spike edge is composed of two step edges of opposite signs which occur

in very short interval and illustrated in the Figure 1.4.

The step changes in intensity are important because they correspond to sharp changes

in orientation or to object boundaries. Edge detection is a means of generating compact

description which preserve most of the structural information in an image.

In actual practice the edge profiles are not smooth as shown previously, but noise

present in the image makes the profile to deflect from its actual path as shown in the

Figure 1.5.

According to Marr[10] there are four main factors responsible for intensity change

in an image. Geometry, illumination, reflectance and viewpoint. The purpose of the early

vision process is to sort out which changes are due to which factor. It is essential to develop

9

methods to identify changes of a specific kind. Needless to say that changes due to

geometry (edges of objects) are of greater interest while responses due to other factors

are of little or no interest and should be suppressed.

1.3 OBJECTIVE

The objective of this thesis is to compare the most widely used edge detection

techniques and to develop a new technique for edge detection. For this purpose literature

survey of various edge detection techniques was done and three techniques were selected

for implementation i.e., LoG, Canney's edge detector and First derivative method.

1.4 EDGE OPERATORS :

The ultimate goal of edge detection is the characterization of intensity changes in the

image in terms of physical process that originated them. The edge operators may include

any or all of the following:

1.Magnitude of the edge.

2. Direction of the edge.
3. Reliability of the edge description.
4. Width or blur.

The most simple edge detector is an arbitrary thresholding of gray level values at a

certain constant to formulate a binary image. In a binary image all pixels have a value

either 1 (white) or 0 (black). Thus, all pixels which have a gray level value larger than the

threshold will be assigned the value 1, and the rest will have the value 0. The edges are

10

formed by the boundaries between the black and white regions. The main problem in

devising an edge detector is that edges are a high frequency phenomenon and so is the

noise in the image. To avoid detecting noise as edges a low pass filter or a large (in spatial

extent) operator is used to average out the noise. But this operation also averages out the

edges and is likely to form a single averaged edge from several neighboring edges.

Consequently, this degrades the position accuracy of the detected edges.

Edge detectors should be formulated for different contexts. The requirements of

many situations are similar and it is possible to design one edge detector for several

contexts. The most important step in design of such a detector should be the specification

of performance criteria. The edge detector accepts discreet digitized images and proces-

ses an "edge map" as its output. The edge map includes information about the position,

strength and orientation of edges.

There are different ways to classify the edge operators. One way is to classify them

according to the type of mathematical method used for detecting the edges. Mathematical

methods can be gradient operators of first, second or higher derivatives to locate

discontinuities in the image function. Another mathematical model can be, for example:

Model fitting of stored model to the image function. Once we obtain a "good" fit the edges

are the boundaries of the recovered model. For the purpose of this work another

classification will be used: Directional and Non-Directional edge detectors. The direc-

tional edge detector evaluates the intensity changes (usually through a gradient opera-

tion) in the direction perpendicular to the edge direction. This class of edge detectors

requires that the edge direction should be evaluated prior to analyzing whether to mark

11

the pixel as being located on an edge. The non-directional or the isotropic edge detector

evaluates the intensity changes in the image function in no particular or preferred

direction. An example of a mathematical operator which differentiates a function sym-

metrically in all directions is Laplacian.

Some previous formulation have chosen the first or second derivatives as the ap-

propriate quantity to characterize step edges, and have formed optimal estimates of this

derivative over some support, Examples of first derivative operators are the operators of

Roberts (14) and Macleod (9), while Modestino and Fries (12) formed an optimal

estimate of the two dimensional Laplacian over a large support. Marr and Hildreth (10)

suggested the Laplacian of a broad Gaussian since it optimizes the trade-off in localiza-

tion and bandwidth. According to Canny [3] there are problems with the Laplacian

however and the whole concept of derivative estimation seems to have poor foundation

There is a second major class of formulations in which image support is approximated

by a set of basis functions and the edge parameters are estimated from the modeled image

surface. Examples of this technique include the work of Prewitt (1970), Huckell (1971)

and Haralick (1982), The methods allow more direct estimates of edge properties such

as position and orientation, but since the basis functions are not complete, the properties

apply only to a projection of the actual image surface on to the subsurface spanned by the

basic functions. According to Canny [3] the basis functions are a major factor in operator

performance, especially the ability to localize an edge.

12

1.5 OVERVIEW OF REMAINING CHAPTERS :

In Chapter 2 a literature review of the edge detectors is given. In Chapter 3 details

for implementing two most widely accepted edge detectors LoG and Canny's edge

detector, as well as an edge detector based on first derivative are described. LoG is a

non-directional edge detector while Canny's edge detector is a directional edge detector.

In Chapter 4 details of a new approach based on eigenvector line fitting to the intensity

values is described. Chapter 5 contains results and comparison of four edge detectors (

LoG, Canny's edge detector, Eigenvector line fitting, and First derivative) as well as

conclusions.

13

CHAPTER II

LITERATURE REVIEW

The computer vision literature is flooded with articles describing edge detectors.

Many different techniques for edge detection are discussed in the technical literature and

text books on machine vision and scene analysis. This chapter describes some of them.

There are two major classifications of edge detectors as listed below:

1.Edge detectors based on first or second derivatives as appropriate quantities
to characterize step edges.
2. Edge detectors based on image support approximation by a set of basic
functions and edge parameters.

2.1 EDGE DETECTORS BASED ON FIRST OR SECOND DERIVATIVES

2.1.1 L.G. Robert:

L.G. Robert [16] implemented first simple gradient function as an edge operator.

His edge detector is based on the assumption that the light intensity is constant or

smoothly varying over the image of an object and jumps discontinuously at the intersec-

tion with the image of another face. This assumption is valid if the object surfaces are

smooth, homogeneous and opaque and lighting is uniform and is arranged to eliminate

shadows. In a continuous image plane at which the intensity changes discontinuously are

easily identified to be those where the gradient of intensity function is infinite (or larger

then the threshold). An approximation to this gradient is given by:

14

where g(i,j) is the image intensity at pixel (i,j). The direction of gradient is given by

angle. where

This operator is called Robert's cross operator. An edge is present at a pixel (i,j) if

R(i,j) > T, where T is a chosen threshold. In a noise free image T can be taken as zero

and in a noisy image T is chosen by a trade-off between obtaining all the desired edges

and picking too many noise edges. The ideal requirements for Robert's operator are

never met in real life images, but it works well in many situations, where controlled

lighting is available.

2.1.2 A. Rosenfeld and M. Thurston:

Azriel Rosenfeld and Mark Thurston [18] introduced smoothing step before dif-

ferentiation. According to them an edge through a point can be detected by comparing

the average gray levels in pairs of non-overlapping neighborhoods that meet at a point.

Here the relative orientation of the neighborhoods determines the direction of edges that

will be detected and the size of the neighborhood determines the width of edges that will

be detected. To detect micro-edges small neighborhoods must be used. For digital

pictures on a squared grid, square neighborhoods whose signs are powers of 2 are

especially convenient. The steps for edge detection are:

1. First picture is shifted to the right by successive amounts 1, 2, 4, 8 2 k-1 and

these pictures are added point-wise. The result is an array in which the value at each

15

location (i,j) is the sum of gray levels in the original picture at points (i, j), (i, j-1) 	 (i,

j-2k + 1).

2. Picture is shifted downward so that the total number of shifts and adds is 2k at each

point, the sum of the gray levels is a 2 k x 2k square having the point as lower right hand

corner. These sums can be regarded as averages by simply shifting the binary point,

because the number of terms in each sum is a power of 2.

3. The difference between the averages for any pair of neighborhoods is computed

at every point by a single shift and pointwise subtraction. The edges are detected using

neighborhoods of size (mask size) 8, 16, and 32.

Here the problem is the mask size. Large size masks eliminate the small edges and

small sizes give noisy edges. All of these operations can be performed very efficiently in

parallel using a computer such as 'iliac III.

2.7,3 I.D.G. Macleod:

Macleod [10] developed Gaussian mask edge detector in 1970. Under his scheme,

edge weights were computed for each point by multiplying the gray level value of

corresponding point of a mask and summing. The mask consisted of the difference of two

Gaussians displayed perpendicular to the expected edge direction, multiplied by a

Gaussian envelop which tapered off parallel to the expected edge direction. This mask

is given by:

16

for edge expected to be in vertical direction.

2.1.4 Robert M. Haralick;

Haralick [5] locates edges at second directional derivative. According to him an edge

occurs at a pixel if and only if there is some point in the pixel's area having a negatively

sloped zero crossing of the second directional derivative taken in a direction of a non zero

gradient at the pixel's center. Thus to determine whether or not a pixel should be marked

as a step edge,. its underlying gray tone intensity surface must be estimated on the basis

of the pixels in its neighborhood. The directional derivative Edge Finder can be described

as:

Let derivative f at the point (r,c) in the direction a be denoted by by f'α(r,c), and is

defined as:

The direction angle is the clockwise angle from the column axis. It follows directly

from this definition that

The second directional derivative of f at the point (r,c) in the direction a is given by

f (r,c) and it is obtained by substituting f for fin (5) as shown below:

17

Taking f to be a cubic polynomial in r and c which can be estimated by the discrete

orthogonal polynomial fitting procedure as shown:

the angle is given by

At any point (r,c) the second directional derivative in the direction of a is given by:

For points (r,c) on the line in direction a, r = p sin a and r = p cos a then

If for some ρ, |ρ| <ρo where ρ0 is slightly smaller than the length of side pixel,

f"α(ρ) < 0, f"α (ρ) = 0 and f'α(ρ) = 0; then there is a negatively sloped zero crossing of

the estimated second directional derivative taken in the estimated direction of gradient

and the center pixel of the neighborhood is marked as an edge pixel.

2.1.5 Word;

Binford and co-workers [211 have suggested the use of support -limited filters in

filtering step of edge detection. They have used the Harr function

18

in directional fitting or a difference of functions of the type

for rotational filtering. There are two problems in using this approach:

1. Filtering with support-limited functions does not regularize the image intensity

profile, therefore the use of differential operator is unsafe.

2. A strictly support-limited filter, such as a DOB (Difference of Boxes) can not be

correctly sampled, and it is difficult to obtain a good digital representation.

2.1.h Shanmugam, Dickey and Green:

Shanmugam, Dickey and Green [20] consider the problem of optimizing special

domain filters for detecting edges in digital pictures. According to them filter is optimal

that it produces maximum energy within a resolution interval of specified width in the

cinity of the edge. The filter has the transfer function:

and it maximizes the proportion of (output) signal energy in a resolution interval

;ntered on the edge for a given bandwidth and resolution width. The filter works well

►r- detecting blurred edges in noisy images. The filter is implemented via FFT algorithm.

or an ideal edge S(x), the Fourier transform of optical filter is:

19

If the input to the filter is an exponentially blurred edge, it will be detected if the

width of the region of strong blurring is less than the width of the resolution interval. This

is controlled by adjusting the parameter c of the filter (c = 1/2). According to Torre and

Poggio [21] this edge detector performs very poorly on localization and has the intrinsic

feature of giving two maxima of energy in the output of the response.

2.1.7 Guner S. Robinson:

G.S. Robinson [19] has developed an edge detection scheme using 3 X 3 compass

gradient masks. Edge angles are quantized to eight equally spaced directions. The

compass names indicate the slope direction of maximum response e.g., the North gradient

mask produces a maximum output for vertical luminance changes i.e. for horizontal

Figure.2.1. The eight principal directions on a 3 X 3 grid

edges. The direction of horizontal edge could be from left to right or from right to left.

Mask no. Direction of edge Mask

1 2 1
0 0 0 0 0

-1 -2 -1

2 1 0
1 45 1 0 -1

0 -1 -2

1 0 -1
2 90 2 0 -2

1 0 -1

0 -1 -2
3 135 1 0 -1

2 1 0

-1 -2 -1

4 180 0 0 0
1 2 0

-2 -1 0

5 225 -1 0 1
1 	 2 0

-1 0 1

6 270 -2 0 2
-1 0 1

0 	 1 2

7 315 -1 0 1
-2 -1 0

20

Figure. 2.2. Masks used for Robinson's method

21

The numbers 0,1,2, 	 ,7 are used for eight principal directions in a 3 X 3 grid as shown

in Figure 2.1.

Edge directions corresponding to the eight compass directions are determined such

that the bright side of the edge is always to the left as one moves in the direction of the

edge. The application of the first four simple masks to 3 X 3 grid surrounding a picture

element gives the gradient magnitude and direction. The gradient picture is obtained by

taking the maximum gradient magnitude at each point. The mask which yields maximum

gradient value determines the direction of the edge. The masks used are as shown in

Figure 2.2.

2. 7. 8 D. Marr and E. Hildreth:

Marr and Hildreth [11] have proposed an edge detection based on the second

derivative of Gaussian. According to them intensity changes are best detected by finding

the zero values (or zero-crossings) of Δ 2G(x,y) * I(x,y) for image I, where G(x,y) is the

two-dimensional Gaussian distribution and Δ2 is the Laplacian. This scheme is also called

LOG (Laplacian of Gaussian). The details of this scheme are given in the chapter 3.

2.1.9 Ramesh Jain and Doug Rheaume;

R. Jain and D. Rheaume [8] have described a two stage method for edge detection.

In first stage the potential edge points in the image are obtained using a fast method based

on differencing edge detector. The real edge points are determined by applying an edge

operation only to the potential edge points. The algorithm can be described as below:

22

A digital picture P is a two-dimensional array of numbers. An element, P(I,J), of the

array represents the gray level of a pixel of the picture. The original picture has NXN

pixels and the array P has M X M elements, where M > N. A translation TΔI, ΔJ of P

results in translated picture TP such that

TP(I, J) = P(I + ΔI,J + ΔJ)

where a ΔI ≤ M - N and ΔJ ≤ M - N.

A difference picture DP for two pictures P1 and P2 is a binary picture such that

If ABS(P1(I, J) - p2(I, J)) > T1 then DP(I, J) = 1

else DP(I, J) = 0.

where T1 is a threshold value.

A binary edge picture BEP is binary picture such that

BEP(I, J) = 1

if DP(I, J) = 1 and at least one of eight neighbors of DP(I,J) 0.

An edge picture EP obtained from picture such that

EP(I, J) = SOB(I, J)

if BEP(I, J) = 1 and SOB(I, J) T2

else EP(I, J) = 0.

where SOB(I, J) is an edge operator (Sobel operator) applied at point (I,J) of the

image.

23

2.1.10 Alan C. Bovik and David C. Munson:

Bovik and Munson [2] have developed an edge detector based on differencing the

median values of local image neighborhoods. According to them most usual approach to

the noise problem is to use difference between the average values (or more generally

weighted average) of local neighborhoods adjacent to each pixel. It works well if noise is

Gaussian, but if the noise is impulsive then the average tends to be inefficient. So they

proposed the use of median value (middle value in algebraic rank) of each image

neighborhood then the average. The median is well known as effective estimate of

location over a broad range of symmetric noise distributions. The edge orientation

sensitivity can be described as:

Let the detector be centered over an edge with an arbitrary angular orientation with

respect to the detector window. For simplicity let the edge follow a linear path through

the central pixel of the window pair. If the image array has a constant value C on one side

of the edge and value C + h (h 0) on the other, then for some integer m {0„2n +

1):

AL contains m elements with value C and (2n + 1- m) elements with value C + h,

and

AR contains m elements with value C + h and (2n + 1- m) elements with value C,

24

where AL and AR are left and right sides of the window. Using the absolute

difference-of-averages scheme with neighborhood sizes (2n + 1) and predetermined

threshold an edge will be deemed present if

Or

However, if the absolute difference-of-medians is used, an edge will be detected

whenever

So, the use of the median provides complete invariance to the orientation of the edge,

whereas the difference-of-averages scheme provides performance that varies with m.

2.1.11 John Canny:

Canny [3] has investigated the desired properties of an optimal edge detector, based

on efficiency of detection and reliability in localization. He has shown through variational

methods that optimal odd filter fop(x) in 1-D case is the linear combination of four

exponentials. The filter fop(x) is very close to

which is the optimal odd filter for minimum uncertainty in detection. Canny's

procedure for finding two-dimensional step edges and other type of edges uses directional

25

operators of varying width, length and orientation. This procedure includes an ap-

propriate thresholding as an essential part, which works well for real life images. More

details of this method are given in chapter 3.

2.2 EDGE DETECTORS BASED ON IMAGE SURFACE APPROXIMATION

2.2.1 Manfred H. Huckel;

Huckel [7] has developed an edge detector based on optimally fitting an ideal

edge-line to the image intensity values in a small circular neighborhood. The ideal

edge-line is determined by a 6-tuple of parameters, three parameters determine the

brightness levels b-, t-, and t+ as shown in Figure 2.3 and the other three parameters

determine the position, orientation, and width of line. The fitting process consists of

determining the values of six parameters for a best fit with the image intensities. Ideally

the tuple of parameters is computed such that

is minimum, where I is a vector representing image intensities and S is an ideal

edge-line. This minimization process is approximated by expansion of both the input

Figure 2.3 Intensity profile of an ideal edge.

26

image disk and the edge-line in an orthogonal Fourier series. If a is coefficients of

expansion for image and s is coefficients of expansion for an ideal edge-line, then

is minimized.

2.2.2 Ramakant Nevatia and K Ramesh Bahu ,

Nevatia and Babu [15] have described an edge detection scheme based on convolu-

tion with small edge like masks. The resulting output is thinned and linked by using edge

position and orientation and approximated by piecewise linear segments. Image is

convolved with masks corresponding to ideal step edges in a selected number of direc-

tions. The magnitude of the convolved output and the direction of the mask giving the

highest output at each pixel are recorded as edge data. The edge data consists of

magnitude and direction. An edge element is said to be present at a pixel if:

1.The output edge magnitude at the pixel is larger then the edge magnitudes of its

two neighbors in a direction normal to the edge.

2.The edge directions of the two neighboring pixels are within one unit (30) of that

central pixel.

3. The edge magnitude of the central pixel exceeds a fixed threshold.

27

Linking of edge pixels is obtained by considering connections of an edge point with

8-neighbors on a 3 X 3 grid. The boundaries are traced using this linking information.

Then each boundary segment is approximated by a series of piecewise linear segments.

The end point fit algorithm is used for this purpose.

2. .3 Ralph Hartley;

R. Hartley [6] has developed an edge detector which weighs the neighborhood of a

point according to a Gaussian function. The edge are found by fitting ideal edges to the

image. A fit is done for each point on a square grid. Each point in the image is weighted

so that its influence on the fit computed for a grid point falls off with the distance from a

given point to the grid point. An ideal edge is represented by four parameters 0, r, b, and

t. 0 and r determine the position of the edge as shown in Figure. 1.3.

The other two functions determine the gray levels on each side of the edge.

The gray level function of an ideal edge is:

Figure. 1.3. Ideal Edge

28

for a given image a(x,y), parameters are found for which the difference between the

ideal edge and the image is minimized. The weighing factor Q, which determines the

relative importance of each point is

If {Hi} is the orthogonal bias and ai = < a, Hi > and Si = < S, Hi. > Then the total

error is the approximate of a by S is given by

For an approximation to find an edge based on a limited range of spatial frequencies,

the approximated error is:

This can be minimized by setting its partial derivatives with respect to the parameters

to zero.

2.2.4 Vishvjit S. Nalwa and Thomas 0. Binford

According to Nalwa and Binford [14] differential operators are not adequate for

edge detection. Although step-edges contain large first derivatives and zero-crossings of

second, the mapping is neither one-one, nor onto. The operators that threshold on the

first derivative respond to smooth shading. Surface-fitting approach as given by Prewitt,

29

Haralick and Huckel also has the problem of choosing adequate basis, i.e. a basis which

can accurately represent the feature sought to be detected.

Nalwa and Binford [18] have developed a new approach called a variant of the surface

fitting approach to detect step edges. There are significant differences from previous

approaches:

1. An oriented one-Dimensional surface i.e. a surface constrained to be constant

along some direction is used to reduce noise without severely blurring edge as with

circularly symmetric smoothing operators.

2. Pixels are not marked as belonging to an edge, but to detect edgels (edgels are

linear edge-elements, each characterized by a direction and location).

3. The Blurring effect of the imaging system, which can be approximately modeled

by Gaussian convolution is taken into account.

4.An adequate basis has been found for step-edges, roof edges and line-edges. These

are various combinations of tank function.

5. A step-edgel is detected in a window if the basis constrained to have a step-shape

has a better fit (in least square sence) to the data then the relatively unconstrained basis

with the same number of parameters.

Outline of The Algorithm for Step-Edge Detection

30

Following procedure is repeated over the whole image by shifting the window in

1-pixel steps in X and Y directions:

1.Perform least-squares planar-fit to the window using

Initial Estimate of

and use the gradient of this fit for initial estimate of direction of variation in the

window, assuming that intensity surface is 1-D.

2. Refine the above estimate of direction by fitting 1-D cubic surface with

least-square-error criteria using

Calculate the 2, 20 F-Statistic for the planner and cubic fits obtained above. If it is

less then the 75% threshold then declare the absence of an edgel.

3. Find the least-square 1-D tanh surface oriented in the direction found in 2 using

31

(minimize w. r. t. s, p, and k)

The tanh-fit is localized to the nearest 0.1 pixel.

4. Find the least square 1-D quadratic surface oriented in the direction found in 2

using

If the least-square-error in this case is less than that for the tanh fit then declare the

absence of an edgel.

5. The least-square tanh-fit determines the intensities on two sides of the step and

its position in the window. The position of the step-edge is given by the displacement of

the tanh term and its intensities are given by the sum and difference of constant term in

the basis and the coefficient of the tanh term.

6.Threshold on the step-size determined from above.

32

CHAPTER III

COMPUTER IMPLEMENTATION DETAILS

The two most widely accepted and used methods, the LoG and Canny's edge detector

and the basic method based on first derivative for edge detection are described. Log is a

a directional operator and Canny's edge detector is a directional operator. All the three

generators are of gradient type (First type). The description includes reasoning for their

derivation, advantages and disadvantages.

FIRST DERIVATIVE METHOD:

The method is based on the definition that an edge is a step discontinuity in the image

fiction (usually brightness). To find these step discontinuities, take the difference

between adjacent pixel intensities (first degree approximation to first derivative) along

axis and Y-axis.

D(i, j) is the difference in intensity between the pixels at (i + 1, j) and (i, j) and I(i,

s the intensity of pixel at location (i, j) .

The pixel at (i, j) belongs to edge if

and

..... i ·
' .. ~ _______ n--

t ---r- -=--- .. -_.l

(a)

·~
____ · .v. ____ • __ ---. . .---..

.... ·.7

, .

t) J s L
(b) Thre hold = 15 and
(c) Threshold = 30 and TI

TL C (Threshold of Length of dge ntur)

35

Threshold the results to get the edges. It is found in experiments that the threshold

value which gives good results varies from image to image. Lower threshold value gives

noisy edges and multiple responses to one edge, but on the other hand the higher

threshold eliminates actual edges. This fact is illustrated in Figure 3.1. The results with

thresholding the first differences at 10 give multiple responses to the edges as shown in

Figure 3.2 (a), if the threshold value is increased to eliminate the multiple responses and

noise then some of the true edge are also removed as shown in Figures 3.2 (b) and 3.2

(c). To eliminate the false edges find the length of edge contours using 8-connectivity

and threshold the results. The cleaning of output from the above operator is shown in

Figure 3.2. This approach works well for simple cases but fails in the presence of large

amount of noise. This approach gives output very fast and can be used for rough

estimation of edges in many situations. This approach gives very good results if the

difference in pixel intensities lies in small interval.

This approach does not sacrifice localization because no averaging is applied to

eliminate noise. Detection is not very good as difference in intensity value is taken as

fixed which eliminates some true edges and marks some false edges.

3.2 LAPLACIAN OF A GAUSSIAN (LoG) :

In 1980 Marr and Hildreth [11] presented a theory of edge detection, based on the

study of human vision system. According to them an optimal filter should fulfill the

following requirements:

36

1.Intensity changes occur at different scales in an image. The filter reduces the range

of scales over which intensity changes take place. So the filter should be smooth and

band-limited in the frequency domain.

2. The sudden changes in intensity should give rise to peak in the first derivative or

zero crossing in the second derivative.

According to Marr and Hildreth human vision system is a non-directional operator,

so they chose Laplacian. Gaussian was chosen for blurring the image, because it is smooth

and localized both in spatial and frequency domains.

The Gaussian is:

The Laplacian is:

The convolved image is the result of blurring the image with Gaussian and taking the

second derivative (non-directional) using Laplacian.

By law of convolution equation (7) becomes:

Figure 33 The LoG function:
(a) The LoG profile
(b) The LoG as viewed from the top
(c) A 3-D view of LoG

37

Laplacian of Gaussian can be written as

This means Gaussian is differentiated first and then applied to the image. This is

computationally convenient and simple. The LoG function is shown in Figure(3.3).

The scale of filtering is controlled by the value of a or alternatively by w which is a

function of a.

As shown in Figure (3.3) "w" is the diameter of inner circle formed by the zero

crossing of the LoG.

3.2.1 Finding zero crossings:

The convolution of the image with the LoG gives positive, negative or zero values of

each pixel. The pixels which have zero value after convolution are called edge pixels . But

the pixels with zero value are rare and the zero crossing occurs between two adjacent

pixels having opposite signs. To declare an edge pixel, the pixel having value nearer to

zero is chosen, e.g., if two pixels have values -10 and 2 respectively then the pixel with

value 2 is chosen as an edge pixel. To find zero crossings the simple scanning of convolved

image in horizontal or vertical direction does not work, because if the scan is horizontal

then horizontal edge will not be detected. Another problem is that which pixel to mark

38

Figure 3.4 Combinations of pixel signs in finding zero crossings

39

40

as an edge pixel in case of edges which are neither horizontal nor vertical, in such case

information about the neighboring pixels is needed.

To find the most probable pixel as the edge pixel , a method based on 4-connectivity

search has been developed [6]. As shown in Figure (3.4), the search is performed in four

directions (N, E, S, W). All 16 possible combinations are shown. It is assumed that the

center pixel is positive. If the center pixel is zero then this is an edge pixel. In case the

center pixel is negative then the signs of all the pixels in the window are reversed. Cases

1 and 16 are trivial. Case 1 shows that there is no edge as there is no change of sign. Case

16 shows an isolated edge, which is ignored due to probability that it is due to noise. The

remaining cases can be grouped according to number of candidate pixels present. Cases

2, 3, 5 and 9 have two candidates, cases 4, 6, 7 10, 11 and 13 have three candidates and

cases 8, 12, 14 and 15 have four candidates including the center pixel. The pixel with

minimum absolute value is marked as an edge pixel.

3.2.2 Properties of the LoG:

The LoG has desirable properties which make it very attractive for machine vision

[12]. These can be listed as:

It minimizes the localization in the frequency and spatial domains simultaneously.

The zero crossings from LoG are unique, because no new zero crossings are shown

with the increase in a, but with decrease in a additional zero crossings may appear due

41

to the noise present in the image. All zero crossing contours (iso-lines) that appear in the

image (excluding those which end at margins of frame) are theoretically closed.

The Gaussian is decreasing about the mean which assigns weights to pixels in filtering

process, the weights decrease smoothly with distance from the evaluated pixel.

Q is used as a spatial scalar, a large value of s gives an average signal of image and

small d gives almost unsmoothed signal (little filtering).

The LoG is a band pass filter which filters out noise when applied to image. The Log

allows obtaining subpixel accuracies by interpolating the zero crossing between two

neighboring edge pixels of opposite sign.

3.2.3 Drawbacks of LoG:

The LoG suffers from two major drawbacks. The first is the nonlinear nature of edges.

According to Marr and Hildreth [12]:

"Zero crossings of the second directional derivative, in the direction of the gradient,

will coincide with the zero crossings of Laplacian of the image if the intensity variation

of the image is linear along the line of zero crossings."

This means that, if the edge is not a straight line then zero crossings from the LoG

will be displaced. As shown in Figure 3.5 the zero crossing contour at a corner departs

from the actual edge.

Figure 3.5 Behavior of zero crossings from LoG at a nonlinear edge

42

Figure 3.6 Behavior of zero crossing of LoG at a vertex in which odd number of lines
converge :

(a) The image
(b) The true edge
(c) Edges as detected using zero crossings of LoG

43

The second problem is at the vertices at which odd number of edges converge as

shown in Figure 3.6. This is because of the property that zero crossings of LoG form a

close contours.

These drawbacks are significant only in fine resolution where it is needed to deter-

mine the location of the edge accurately.

3.3.4 Computational Considerations:

The amount of calculations involved in convolving the image with LoG is enormous.

If the image is an N x N array and window size of LoG is M x M then N x N x Mx M

multiplications and additions are required. Let image be 256 x 256 array and for a = 10,

M is 100, then 65.53x107 multiplications and additions are needed. Marr and Hildreth

[11] suggested the use of difference of two Gaussians (DoG) to approximate Laplacian

of Gaussian (LoG).

It has the Fourier transform

The DoG(w) behaves like w2 for values of w that are small as compared to ae and 01,

so these filters in common with Δ2G, approximate second derivative operator.

This equation is for 1-D. For 2-D x is replaced by r where

44

The shape pattern of DoG is similar to that of LoG for ore and al to be very close. The

advantage of DoG lies in the fact that it can be decomposed into two passes of 1-D

Gaussian, one in X direction and other in Y direction. The number of computations

reduces from N x N x M x M to N x N x Mx 4. So the amount of computation saved is:

As compared to 65.53x107 only 26.21x106 multiplications and additions are needed,

saving 62.91x107 calculations i.e. 95% of calculation load.

Medioni and Nevatia [12] has developed another method of decomposition of LoG

itself as shown below:

where:

and

--== --.:..----
___ 0'

-. - =---

(b)

- ---

.7

I
.~

= 1.5 and Tl
2.0 and T1
3.0 and Tl

... -.

--<.,..-----~

47

This method also needs 4 passes on a given image. The advantage of this over DoG

is that only one standard deviation is variable in the filter.

Experiments are conducted with modified LoG. The results from zero crossings are

cleaned by eight connectivity method (described in chapter 4) used to find the length of

edge contours from zero crossings and the results are thresholded to eliminate the noisy

edges . The experiments show that with the increase in blur factor (a) the noise is reduced

but the true edges are also sacrificed due to more averaging as illustrated in Figure 3.7.

As shown in Figure 3.7 (a) the edges found with a = 1.0 contain noise, but as the value

of a is increased to eliminate the noise, some of the true edges are also removed as shown

in Figures 3.7 (b), 3.6 (c), and 3.6 (d). With the increase in the value of a, localization is

also reduced due to averaging over a large number of pixels.

3.3 CANNY'S EDGE DETECTOR :

Based on pure mathematical considerations, Canny [3] has formulated an edge

detector using three performance criteria for an ideal edge detector. He assumes that

detection is performed by convolving the noisy edge with a spatial function f(x) and by

marking edges at the maxima in the output of this convolution. The three criteria are:

1. Good detection. There should be low probability of failing to mark real edges, and

low probability of falsely marking non-edge points. This criterion corresponds to maxi-

mizing the signal to noise ratio (SNR).

48

2. Good localization. The points marked as edge points by the edge operator should

be as close as possible to the center of the true edge.

3. Only one response to a single edge.

3.3.1Detection and Localization Criteria

Let the impulse response of the filter be denoted by f(x) and edge by G(x). If the

edge is centered at x = 0, then the response of the filter at its center HG is given by

Let the filter have a finite impulse response and be bounded by [-W, W], then the

root-mean-square response to noise n(x) is

where not is the mean-square noise amplitude per unit length. The first criterion, the

output signal-to-noise ratio is given by

49

Let Hn(x) be the response of the filter to noise only, and HG(x) to the edge, and let

there be a local maximum in the total response at the point x = xo, then

The Taylor expansion of H'G(x0) about the origin gives

HG (x) is always symmetric and its derivatives of odd orders are 0 at the origin. The

above two equations give

H' n(x0) is a Gaussian random quantity whose variance is the mean-squared of

H'n(x0), and is given by

Substituting the value of Hn'(x0) and H G "(0) gives

where δx0 is an approximation to the standard deviation of xo. The localization is

defined as the reciprocal of xo.

50

Equations (20) and (26) are mathematical forms for the two criteria, and the problem

is to maximize both simultaneously. To do so, maximize the product of both i.e. maximize

3.3.2 Eliminating Multiple Response

The above criterion measures the effectiveness of the filter in discriminating between

signal and noise at the center of an edge. It does not consider the behavior of the filter

nearby the edge center. The first two criteria can be maximized as follows:

From Schwarz inequality for integrals SNR (18) is bounded above by

and localization (24) by

51

Both bounds are attained and the product SNR and localization is maximized when

The mean distance between zero-crossings off' is

The distance between adjacent maxima in the noise response of f, denoted by xmax,

will be twice xzc. This can be set as some fraction of the operator width W.

Expected number of noise maxima in the region of width 2W is Nn where

Fixing k fixes the number of noise maxima that could lead to a false response.

3.3.3 Optimal Detector

This is done through numerical optimization by finding f which maximizes

52

where Pi is a function which has a positive value only when a constraint is violated.

The larger the value of i the more nearly the constraints are satisfied. The required

function can be approximated by first derivative of Gaussian G'(x), where

The impulse response of the first derivative filter is

For 2-D Gaussian is given by

3.3.4 Implementation

The general outline of Canny's edge detector is as follows :

1.Convolve the image with a symmetric Gaussian.

2. Take the first directional derivative of the convolved image.

3. Perform a "non-maxima suppress" in the direction of the gradient.

4. Threshold the results from step 3.

5. Perform a fine to coarse comparison.

The first step is to convolve the image with a symmetric Gaussian. The convolution

can be performed very efficiently by using the decomposition property of the Gaussian.

The decomposition property, is to perform two 1-D passes on the image instead of a full

2-D pass. The decomposition is of their impulse responses into independent linear filters

The decomposition property of the Gaussian is expressed mathematically by :

where f(x,y) is the 2-D Gaussian function,

fx, fy are 1-D Gaussian in x and y directions,

I(x,y) is the image function.

The decomposition means that the image is first convolved in the "y" direction only

and output of it is then convolved in the "x" direction. For a given convolution mask of

MxM, the computation load is reduced from M2 to 2M.

53

Figure 3.8 The non-maxima suppression operator.

54

The second step in Canny's edge detector is to take first directional derivative of the

filtered image. He has suggested a mask with 30° interval in orientation i.e. six masks over

the entire image. Sobel operator can also be used for this purpose.

The third step of "non-maxima suppress" is described in Figure 3.8. At each point the

value of the gradient perpendicular to the edge direction is interpolated. A pixel is

marked as an edge pixel if and only if its gradient magnitude is larger than G1 and G2

where G1 is the interpolated gradient between Px,y + 1 and Px + 1,y + 1 and is given by

Similarly G2 is interpolated gradient on the opposite side of Px,y and is given by

The fourth step is thresholding the edges marked in the previous step to eliminate

noisy edges. The thresholding is done with hysteresis as suggested by Canny. If any part

of a contour is above a high threshold, that point is immediately output, as is the entire

connected segment of the contour which contains the point and which lies above a low

threshold. The probability of streaking is greatly reduced because for a contour to be

broken it must now fluctuate above the high threshold and below the low threshold. Also

the probability of false edges is reduced because the high threshold can be raised without

risking streaking. The ratio of the high to low threshold is usually in the range two or three

to one.

;:-..

. .. '". - "' .. """.
'\ . ~ : ~

" I-,- -

f,' •

' -..... ..

.. .. I- • ~;., .. ~ ••

... . ..
. :. :. '. : k.,.

".

...
I.

.. -- ~

. --

..r "-, . ". .- • -, -_ ,'I

I ". _
". -. I •

~ '. . " -".... . - - . - I

TFD (Thre h ld of fir t derivativ re ult)

)

r,
" .. ~ '_ ... -,-- . ,

,., - I ~ - - ': -

(d)Edges from n n-maxima upper l n
and thresholding

59

The last step of Canny's edge detector is fine to coarse strategy. The main problem

in implementing a coarse to fine strategy for this edge detector is that unlike the LoG,

the property of continuity of the edge at different resolutions does not exist. Edges

detected at one spatial scale may disappear at a smaller one. To overcome this problem,

Canny devised a fine to coarse strategy which is contrary to the coarse to fine strategy

suggested by Marr and Poggio in their stereo vision theory. It is also contrary to our

intuition that first we look for large pronounced elements in the image and then in-

crementally examine the fine details. In fine to coarse comparison, edges are first found

by convolving the image with a Gaussian of a small spatial scale (small standard devia-

tion). Then, a predicted output for the coarser resolution is synthesized (by convolving

the output with a larger Gaussian) and compared to the actual output obtained by

convolving the image with the larger Gaussian. Additional edges are marked only if they

show significantly greater responses in the actual output, in comparison to that predicted

from the synthesis.

Experiments are conducted with different values of blur factor (a). With the increase

in blur factor (a) noise is reduced but the true edges are also eliminated after a certain

value of a. The value of blur factor depends on the brightness of the image and noise

present in the image. The effect of a is illustrated in Figure 3.8., which shows that as the

value of a is increased from 0.5 to 3.0 the noise is reduced but some of the actual edges

are also removed. The increase in the value of a also reduces localization due to averaging

over a large number of pixels. The non-maxima suppression and thresholding cleans the

results from the first derivative maxima very efficiently as shown in Figure 3.7. The edges

60

from the maxima of first derivative contain large amount of noise and multiple responses

to edges as shown in Figure 3.8 (b). The non-maxima suppression gives fine edge

contours, but lot of false edge (edges due to noise) contours also as shown in Figure 3.8

(c) , these false edges are removed by thresholding the results from non-maxima suppres-

sion as shown in Figure 3.8 (d).

61

CHAPTER IV

EIGENVECTOR EDGE FITTING

In this chapter a new approach for edge detection is described. The approach is based

on the definition that an edge is a discontinuity in the image function. In the previous

methods some type of filtering (Gaussian or average) is applied to eliminate noise. Two

most important performance criteria that an edge detector has to satisfy are, good

detection and localization. There is a trade-off between these two criteria i.e. broad

operators have good signal to noise ratio but poor localization and vice-versa. Any filter

applied to reduce noise decreases localization of the edges to be detected in the next step.

In this approach some localization is suffered while detecting edges (discontinuities in

image), because eigenvector line is fitted to set of pixels which is like simple averaging.

The localization suffers less in this approach because number of pixels taken to fit eigen

vector lines is less than the convolution mask size used in other methods to eliminate

noise . To eliminate rest of noise (false edges) any kind of averaging filter is not used, but

rather noise is eliminated using the fact that noise (false edges) contours are small. For

this purpose edge contours are traced using 8-connectivity and results are thresholded

based on the length of contours. Thus by doing so we sacrifice very less localization and

eliminate most of noise. This approach is described in detail the following section.

4.1 EIGEN VECTOR APPROACH:

This approach is also based on step discontinuity in intensity of image, the fundamen-

tal of edge detectors. The pixel location is taken along one axis and intensity value along

62

the other to find the best eigenvector line fit. The eigenvector line fitting can be described

as follows:

The best fit line to a set of points is the one which minimizes the sum of the squares

of the perpendicular distances from the points to the line. The best fit line is the unique

line through the mean of set points and parallel to the eigen vector of the scatter matrix

of those points.

The algorithm for finding eigenvector line fitting is:

1. Find the mean of the set of points.

where n is number of points and Ni are the points.

2. Standardize the points by subtracting the mean the set from each point.

3. Calculate the scatter matrix. Consider a set of n points with zero mean. Denote ith

point (xi, yi) as the vector vi, and the perpendicular distance from vi to line as di, then the

task is to find the line minimizing

63

Let the line be characterized by its unit normal vector N through the origin. Then

explicitly denoting dependence on N, we get

and

where

is the scatter matrix of given n points.

4. Find the principal eigenvector of this scatter matrix.

5. Find the best fit line which is the unique line through the mean and parallel to the

eigenvector. This best fit line is characterized by the unit normal vector N that minimizes

The major advantage of eigenvector line fitting is that it is not dependent on the

choice of axis whereas the least squared line fitting is dependent on choice of the axis.

•
-+

~-- • Ie ,.... ~-- ""'-'''-''·~r''''.:

.(

...... r,.):-: "'"'I.::

:i"';:~:-·

I. "

r'

(b)

-"------ ---------,-----'---

------- ",---

,
(c) No. of pixels = 7, TD = 30 and TL
(d) No. of pixels = 10, TD = 20 and

TO (Threshold of di tance)

66

4. 1.1 Implementation:

Implementation of Eigen Vector method can be described as follows:

1.Using above algorithm fit eigenvector lines to intensity and position of pixels
along X-axis, taking n pixels at a time.

2. Find distances Dx(i) between two adjacent lines at common point i.

3.To find possible edge points Dx(i) should satisfy:
Dx(i-1) < Dx(i) > Dx(i + 1) 	 (7)

4. Threshold the results to get edges. The pixel (i) is a edge pixel if
Dx(i) > TD 	 (8)

5. To eliminate noise use 8-connectivity (described in the later part of the
chapter) to find length of edge contours and apply threshold to length of edge
contours.

The value of threshold in step 4 dependes on the intensity level of the image. Higher

threshold gives less noise but also eliminates some of edges as shown in Figure (41). Also

larger value of threshold in step 5 results in more the noise eliminatation but poorer

localization. Threshold value used for length of edge contours varies from 3 to 15 based

on the image . This approach needs further development to get good results.

4.2 DESCRIPTION OF EIGHT CONNECTIVITY ALGORITHM :

67

The algorithm used to trace contours to find their lengths based on eight connectivity

is descrived by Jadhav [9] and is as follows :

1. Mark the edge pixels found from our methods as intensity value 100.

2. Scan the edge data to find the first pixel whose intensity is 100. Change the intensity

of starting pixel to 250 and label it as #0.

3. Check if pixel #1 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 8. If pixel #1 does not belong to contour then continue.

4. Check if pixel #2 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 9. If pixel #1 does not belong to contour then continue.

5. Check if pixel #3 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 10. If pixel #1 does not belong to contour then continue.

6. Check if pixel #4 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 3. If pixel #1 does not belong to contour then continue.

7. Check if pixel #5 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 4. If pixel #1 does not belong to contour then continue.

8. Check if pixel #6 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 5. If pixel #1 does not belong to contour then continue.

68

9. Check if pixel #7 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 6. If pixel #1 does not belong to contour then continue.

10.Check if pixel #8 belongs to the contour. If then change its intensity to 250 and

label it as #0 and go to step 7. If pixel #1 does not belong to contour then continue.

11.Execute steps 3 to 10 till a pixel of intensity 100 is found.

12.A count is kept of the number of edge pixels thus determined along with their

coordinates and connectivity according to the chain code as shown in Figure (4.4) .

4.2.1 Description of the above algorithm:

Edge data is scanned and first starting pixel with value 100 is found and its intensity

is changed to 250. This pixel is labelled as zero. Since the scanning is from left to right,

the pixel immediately to the left of the this starting pixel has already been checked. This

checking process is performed in a clockwise manner. The intensity of pixel #1 is read

and checked if it is 100. If not the intensity of pixel #2 is checked and then pixel #3 and

so on till a pixel with an intensity value of 100 is found. If such a pixel is found then its

position is noted and intensity value is changed to 250. Now this pixel which is noted as

second point of contour is labelled as #0 and its eight pixel neighborhood is checked as

described above. A count is kept for the number of pixels found. In this manner search

is continued until all the contours are traced i.e. no pixel with a value of 100 is left. The

chain code used for above algorithm is shown in Figure 4.4.

· ... -.--.,z, .
--

----_. -..:-~

)

.--"" --'--r--' --.' _.J

. --
t""" - .. :

(b)

---. ---- '--_ .. -----

•• I.~

.. ,..:
......

0-

... _-.. _---~ .. -- t':-- :

------------- ~-----

___ . ___ :r:'L--.. ___ _ --.--.: --

........
.. ~

__ .-,.;-----~--- __ ... _-_-------l.-.-------
t • '!-.. --.. --

I
(b) TLEC = 3
(c)TLEIC = 5
(d) TLEC = 11

70

71

)

",
-.I

I

,
+1

~
I

I ,
11

';:11 -'

i I
:,(.... L'

I

I
~ 'J

\"
~
J

I I

! • .::1

~ -!
._~,J

)

('

)
(d) TLEC = 30

73

The cleaning operation of this method is shown in Figure (4.3). The threshold value

for length of edge contours is dependent on different situations. Large value of threshold

eliminates the noise but also eliminates true edge and on the other hand lower value of

threshold gives false edge (edges due to noise) as illustrated in Figure (4.4).

74

CHAPTER V

RESULTS AND CONCLUSION
5.1 RESULTS:

All the approaches described in the previous chapter, namely, Canny's approach,

LoG, First Derivative and Eigenvector line fitting, are applied on several images. The

results are shown in Figures 5.1 to 5.5. Generally speaking, conclusions regarding the

performance of these methods can be made by observing the results. The conclusions are

listed as follows:

The images in Figures 5.1, 5.2 and 5.3 can be considered similar because the intensity

variation in all these cases is smooth as the images are of curved or rounded objects. It is

observed that the results form Canvey's method and First derivative method are better

than the other two methods. The following arguments may be made to explain such

results:

In Canny's method there is a less sacrifice of localization due to averaging (convolu-

tion with Gaussian) than for Log because of a smaller convolution mask size for Canvey's

method.

The results from First Derivative method are even more clear then Canny's method

because intensity variation at edges is approximately constant and no localization is

suffered because no averaging is applied.

7~

(b)

- - -------..--

(d)

77

=

1 __ .r ,

a

- -. ; .: ---

.. ,~-

• -., -.. _ 1

(b)

7

• t

-
. -.

•• -<..

--,-
k_---.---

- .. -.

'.

r'- -- -_._- -.
. __ ..

-._ ... --

't. --==-----3"·

(d)

7

,...-
.... e __ _

------=-. -I

=

.1----..
,v.; .-.......

J

I

i;-:. \
\'-;' I ,

I ~. , , --~ ,.
'\ r'r
I, l~"-:: :0::-.

. ~ ..

(b)

! . ,
, r'
...;"

'1

j--

.~.; ..
. -:::.;. ... -

~ .
.;-f._- -,

-------.

- - ~ ',,-, .:. .-- . ,
~rJ'{I.<,.. --:--"".

:
"

I'
,I

/.
:., j"

I, I

I'
'/

"

~ I. /, [' ~ I I

I
I

t ~ • _./ 1 -----
::-::-- -- ..--.-. --. - --

(d)

I -.
)

'I ':~i .. _'.;

.--~ .-'-"-~~:-J

= 1

= 7,

=

--. '.~."

l

) , . -,.-

(b)

--- - - ,. ..

I L ... :
.;

I

,-. - l , .-
,- -,..-

.::

---.. _----

(d)

=

t 7

(b)

- -.

I •
I (.

: t .. ,

.
, I

I
j. (
I

(d)

"

"

9

I
J

90

The results from Eigenvector line fitting method are more noisy because this method

is not rotationaly invariant as it is applied only along X-axis and Y-axis.

In Figure 5.4 Canny's method and LoG have given better results than other two

methods because there is very high variation in intensity level in the image. Here again

result from Canney's method is better than LoG because of a smaller convolution mask

size.

In Figure 5.5 (image with random noise) the results from Canny's method and First

derivative are better than other methods because in Canny's method averaging is not as

severe as LoG (small value of a) and in First derivative method the threshold is kept equal

to maximum level of random noise.

5.2 CONCLUSION:

The Canny's method works better overall than the other methods implemented,

because it is rotationaly invariant as LoG and needs smaller convolution mask then LoG.

Canny's method is also faster than LoG because smaller value of a is needed as convolu-

tion matrix size depends on a (convolution matrix size = 2 x (4.828 x a) + 1) . First

derivative method is the fastest method due to less calculations as no convolution is

applied in this method. This method works well if the intensity variation at edges is

approximately same for all the edges in the image, and noise level is less than the

difference in intensity at edges. The new approach proposed here can detect those edges

91

clearly which are either along X-axis or Y-axis. Therefore, it needs to be modified in order

to make it rotationaly invariant so that better results can be obtained.

The major problem for all the methods is that each requires some parameters that

are user input. Such parameters are usually different for different types of images. The

User input variables used in above four methods are as shown in the following Table:

METHOD VARIABLES

Canny's Sigma (a.) and Threshold of first
derivative results

LoG Sigma (a) and TLEC

First Derivative Threshold of differences and
TLEC

Eigen vector No of Pixels , TD (Threshold of
Distance) and TLEC

Table 5pr1 Variables used in different methods, here TLEC means
Threshold of Length of Edge Contures.

As can be seen from Table 5.1, all the four methods discussed so far have user input

variables. Much work is left in the field of edge detection in order to eliminate such user

input parameters. Better methods need to be proposed that do not need such parameters

and increase the efficiency of edge detector.

The eigenvector method needs more modifications. At present, each point for

eigenvector fit has the same weight. It is likely that the use of half-Gaussian type weighting

factors before fitting eigenvector lines may improve the results. In some ways, this

approach is similar to edge fitting methods. Therefore, a natural extension would be to

try eigenvector surface fitting in a local area of interest. This may be done for example,

by trying to detect two clusters in a local area, where one cluster represents one side of

the edge and the other cluster represents the other side. Such approach may make this

method rotationaly invariant. More research in this area is recommended.

APPENDIX

PROGRAM LISTING

93

/**********************
* *
• Main Program
* *
*********************/

#include <stdio.h>
#include <pixrect/pixrect_hs.h>
#include 	 <math.h>

#define 	 TRUE 	 1
#define 	 FALSE 0

FILE 	 *fp;
int 	 i,j,index,h[260][260];
Pixrect *pr;
unsigned char red[256], green[256], blue[256];
int 	 res,flag;
char str[30];

main()
{

for (i = 0; i < 256; i++)
{

red[i] = green[i] = blue[i] = i;
)

pr = pr_open("/dev/fb");
if (!pr)

exit (1) ;
flag = TRUE;
while (flag) {

pr_rop(pr,0,0,900,1140,PIX_CLR,(Pixrect *)0,0,0);
pr_putcolormap(pr, 0, 256, red, green, blue);
printf("Pick the Edge Detector from

the following : \n");
printf("\n1. Canney. \n");

printf("2. LoG.\n");
printf("3. First Diff.\n");
printf("4. Eigenvector.\n");
printf("5. Quit.\n");
printf("Give the Response : ");
scanf("%d",&res);
if ((res 	 1) && (res <= 4)) {

printf("Input Image filename : ");
scanf("%s", str);
fp = fopen(str, "r");
if (fp == NULL)
{

printf("File %s cannot be
opened !!\n", str);

exit(-1);

for (i = 0; i < 240; i++)

94

for (j = 0; j < 256; j++)
{

fscanf(fp, "%d", &index);
h[i][j] = index;

}
red[250] = 250;
green[250] = 0;
blue[250] = 0;

)
if (res == 1)

canney();
else if (res == 2)

mlog();
else if (res == 3)

firstd();
else if (res == 4)

meig(h);
else if (res == 5)

flag = FALSE;
else

printf("\n\nType the Correct Response !!!\n\n");

}

pr_destroy(pr);
exit(0);

}

95

/********************************
* *
* First Derivative Method
* *
********************************/

#include <stdio.h>
#include <pixrect/pixrect_hs.h>
#include <math.h>
int 	 j, c, i, k, 1, m, p, cut, thresh;
double 	 xmean, ymean, temp, b5, b6, sq,

tempi, tempm, tempc, ang, rho;
double 	 a1[5], bl[5], a2[5], b2[5],

r1, r2, e5, e6, s1, s2, s3;
FILE 	 *fp, *fp1, *fp2, *fp3;
int 	 i , j, g[256][256], index, count, counter;
int 	 x1[10000], kl[10000], code[10000];
float 	 values[256][3], b;
char 	 str[10], strl[10], junck[10];
extern Pixrect *pr;
extern int h[260][260];
extern unsigned char red[256], green[256], blue[256];

firstd()
{

pr_rop(pr,0,0,1100,1140,PIX_CLR,(Pixrect *)0,0,0);
pr_putcolormap(pr, 0, 256, red, green, blue);
for (i = 0; i < 240; i++)

for (j = 0; j < 256; j++)
prput(pr, j, i, h[i][j]);

fird();
printf("Threshold for length of edge contours = 	 11);

scanf("%d", &cut);
printf("Out put file name : 	 ");
scanf("%s", strl);
fp1 = fopen(strl, "w");
counter = 1;
while (counter)

trace();
}

/* ---- Finding differences and thresholding the results ---

fird()

int 	 c[3], k[3];

printf("CUT OFF VALUE = 	 ”);
scanf("%d", &thresh);
c[0] = c[1] = c[2] = k[0] = k[1] = k[2] = 0;
for (i = 0; i < 239; i++)

for (j = 0; j < 255; j++)
g[i][j] = 0;

96

fp3 = fopen("fn", "w") ;
for (i = 0; i < 237; i++)

for (j = 0; j < 253; j++)
{

c[0] = abs(h[i][j] - h[i][j + 1]);
c[1] = abs (h[i] [j + 1] - h[i] [j + 2]) ;
c[2] = abs(h[i][j + 2] - h[i][j + 3]);
k[0] = abs(h[i][j] 	 h[i + 1][j]);
k[1] = abs(h[i + 1][j] - h[i + 2][j]);
k[2] = abs(h[i + 2][j] - h[i + 3][j]);
if (c[1] >= c[0] && c[1] >= c[2])

if (c[1] > thresh)

g[i][j + 1] = 100;
fprintf(fp3, "%d %d ", j + 1, i);
pr_put(pr, j + 520, i, 255) ;

if (k[1] >= k[0] && k[1] >= k[2])
if (k[1] > thresh)
{

g[i + 1][j] = 100;
pr_put(pr, j + 520, i, 255) ;
fprintf(fp3, "%d %d ", j, i + 1);

}

}

97

/*********************************
*

	

	 *
LoG* 	 *

*********************************/

#include <stdio.h>
#include <pixrect/pixrect_hs.h>
#include 	 <math.h>

FILE 	 *fp, *fpl;
extern int 	 h[260][260];
int 	 i , j, index, count, cut;
float 	 d, a, e, c2, cl, rr, rs;
float 	 sig, h1[260][260], h2[260][260],

h3[260][260], h4[260][260];
char 	 str[40], strl[10];
float 	 filter[3][150];
int 	 x1[1000], kl[1000], code[1000];
int 	 g[650][650], counter;

extern Pixrect *pr;
extern unsigned char red[256], green[256], biue[256];

mlog()
{

pr_rop(pr,0,0,900,1140,PIX_CLR,(Pixrect *)0,0,0);
pr_putcolormap(pr, 0, 256, red, green, blue);
for (i = 0; i < 240; i++)
{

for (j = 0; j < 256; j++)
pr_put(pr, j + 125, i + 125, (int) h[i][j]);

m log();
printf("Threshold for length of edge

contures = 	 ");

scanf("%d", &cut);
printf("Out put file name : 	 ");
scanf("%s", strl);
fp1 = fopen(strl, "w");
counter = 1;
while (counter)

trace();

m_log()
{

cons();
gauss();
convolv();
zc();

}

int 	 o, p, n;

98

99

cons()
{

int 	 w;

/* 	 constants 	 *1

printf("Sigma(The blur fator) =
scanf("%f", &sig);
w = (int) (2 * 1.414 * sig + 0.5);
o = (int) (1.8 * w + 1);
n = 2 * o + 1;

}

/* 	 Forming the Gaussion Filter 	 */

gauss()
{

for (i = 1; i <= n; i++)

rr = i - o 	 1.;
rs = rr * rr / sig;
filter[1][i] = exp(-rs / 2);
filter[2][i] = -(1 	 rs) * filter[l][i];

}

convolv()

int 	 kk, k;

/* 	 Convolving The Image in X Direction h12 ---*/

for (i = 0; i < 240; i++)
for (j = o; j < 256 - o; j++)
{

kk = j - o;
for (k = 1; k <= n; k++, kk++)

hl[i][j] += h[i][kk] * filter[1][k];

}

/* 	 Convolving The Image in Y Direction h12 ---*/

for (i = o; i < 240 - o; i++)
for (j = o; j < 256 - o; j++)
{

kk = i - o;
for (k = 1; k <= n; k++, kk++)
{

h2[i][j] += hl[kk][j] * filter[2][k];}

}

/*---- Convolving The Image in X Direction h21 	

for (i = o; i < 240; i++)
for (j = o; j < 256 - o; j++)
{

hl[i][j] = 0.;
kk = j - o;
for (k = 1; k <= n; k++, kk++)
{

h1[i][j] += h[i][kk] * filter[2][k];
}

}

/* 	 Convolving The Image in Y Direction h21 ----*/

d = a = c1 = c2 = 0;
for (i = o; i < 240 - o; i++)
{

for (j = o; j < 256 - o; j++)
{

e = 0;
h3[i][j] = 0.;
h4[i][j] = 0.;
kk = i o;
for (k = 1; k <= n; k++, kk++)

h3[i][j] += h1[kk][j] * filter[1][k];
}

h4[i][j] = h2[i][j] + h3[i][j];
}

}
}

/* 	 Findinr Zero Crossings 	 */

zc()

for (i = o; i < 240 - o; i++)
for (j = o; j < 256 - o; j++)
{

if (h4[i][j] >= 0.)
h1[i][j] = 10.;

else
h1[i][j] = 0.;

}
for (i = o; i < 240 - o; i++)

for (j = o; j < 256 - o - 1; j++)
{

if (fabs(h4[i][j]) > 20.)
{

if (h1[i][j] != h1[i][j + 1])
{

100

if (fabs(h4[i][j]) > fabs(h4[i][j +
1]))

g[i][j] = 100;
else

g[i][j + 1] = 100;
}

}
}

for (i = o; i < 240 - o 	 1; i++)
for (j = o; j < 256 - o; j++)
{

if (fabs(h4[i][j]) > 20.)
{

if (h1[i] [j] != h1[i + l][j])

if (fabs(h4[i][j]) > fabs(h4[i +
1][j]))

g[i][j] = 100;
else

g[i + 1][j] = 100;
}

}
}

for (i = o; i < 240 - o - 1; i++)
for (j = o; j < 256 - o; j++)
{

if (fabs(h4[i][j]) > 20.)
{

if (h1[i][j] != h1[i + 1][j + 1])
{

if (fabs(h4[i][j]) > fabs(h4[i + 1][j +
1]))

g[i][j] = 100;
else

g[i + 1] [j + 1] = 100;
}

}
}

fp = fopen("edge", "w");
for (i = o; i < 240 - o - 1; i++)

for (j = o; j < 256 - o - 1; j++)

if (g[i][j] == 100)

fprintf(fp, "%d %d ", j, i);
pr_put(pr, j + 150, i + 450, g[i][j]);

}
}

fclose(fp);
}

101

/**
* 	 *

Canny's method for edge detection *
*
***/

#include <stdio.h>
#include <pixrect/pixrect_hs.h>
#include 	 <math.h>

#define 	 TRUE 	 1
#define 	 FALSE 0

FILE 	 *fp ;
extern int 	 h[260][260];
float 	 h1[260][260], h2[260][260], h3[260][260];
int 	 g[260][260], w, wl, o, 1;
int 	 i, j, n, con[3][1750], index, count;
float 	 g1[150], s, k, temp;
int 	 x, y, m, c;
char 	 str[40];
float 	 a;
extern Pixrect *pr;
extern unsigned char red[256], green[256], blue[256];

canney()

int i,j;
pr_rop(pr, 0, 0, 1100, 1140, PIX_CLR, (Pixrect *) 0,

0, 0);
pr_putcolormap(pr,0,256,red,green,blue);
for (i = 0;i < 240;i++)

for (j = 0;j < 256;j++)
pr_put(pr,j,i,h[i][j]);

oper();
convol();
edge();
nmax();

}
/* 	 Formation of Gaussian Filter 	 */
oper()
{

	

printf("Sigma (The operator width)= 	 iv);

scanf("%f", &s);
w1 = (int) (2 * 1.414 * s + 0.5);
o = (int) (1.8 * w1 + 1);
w = (int) (2 * o + 1);
for (i = 1; i <= w; i++)
{

c = i 	 o - 1;
temp = -(c * c) / (2.0 * s * s);
g1[i] = exp(temp);}

convol()
{

float 	 min, max;

/* 	 Convolution in X direction 	

for (i = 0; i < 240; i++)
for (j = o; j < 256 - o; j++)
{

m = j 	 o;
for (1 = 1; 1 <= w; 1++, m++)
{

h1[i][j] += h[i][m] * gl[1];
}

}
max = 0;
min = 10000;

	 Convolution in Y direction 	 A

fp = fopen("con", "w");
for (i = o; i < 240 - o; i++)
{

for (j = o; j < 256 - o; j++)
{

m = i 	 o;
for (1 = 1; 1 <= w; 1++, m++)
{

h2[i][j] += h1[m][j] * gl[l];
}
if (max < h2[i][j])

max = h2[i][j];
if (min > h2[i][j])

min = h2[i][j];
}

}

a = (max - min) / 256;
for (i = o; i < 246 - 0; i++)

for (j = o; j < 256 - o; j++)
{

fprintf(fp, "%d ", (int) (h2[i][j] / a + 0.5));
prput(pr, j + 500, i + 150, (int)

(h2[i][j] / a + 0.5));
}

fclose(fp);
}

float 	 k1, k2, k3, k4, k5, k6;
double 	 t[256][256];

edge()
{

double 	 x, y, theta;

103

104

	 Calculate directional derivative 	 -/

for (i = o + 1; i < 240 - o 	 1; i++)
for (j = o + 1; j < 240 - o - 1; j++)
{

x=(h2[i+1][j-1]+2*h2[i+1][j]+h2[i+1][j+1])
-(h2[i-l][j-1]+2*h2[i-l][j]+h2[i-l][j+1]);

y=(h2[1-1][j-1]+2*h2[i][j-1]+h2[i+1][j-1])
-(h2[i-l][j+1]+2*h2[i][j+1]+h2[i+1][j+1]);

theta = atan(y / x);
t[i][j] = fabs(theta);
h1[i][j] = 0;
h1[i][j] = sqrt(x * x + y * y);
prput(pr, j + 700, i + 600, (int) h1[i][j]);

}

/*---- Routine to perform non-maxima suppression 	

nmax()
{

double 	 ux, uy, gl, g2;
float 	 thresh;
FILE 	 *fpl;
char 	 strl[10];

printf("Threshold = 	 11);
scanf ("% f", &thresh);
printf("OUT PUT FILE : 	 ");
scanf("%s", str1);
fp1 = fopen(strl, "w");
for (i = o + 1; i < 240 - o - 1; i++)

for (j = o + 1; j < 240 - o 	 1; j++)
{

g[i][j] = 0;
/* 	 0 to 45 	 *1
if (t[i][j] <= 0.7857)

ux = uy = gl = g2 = O.;
ux = t[i][j] / 0.7857;
uy = 1. - ux;
gi = ux * h1[i-1][j+1] + uy * h1[i][j+1];
g2 = ux * h1[i+1][j-1] + uy * h1[i][j-1];

1
/* 	 45 to 90 	 */
else if (t[i][j] <= 1.5714)
{

ux = uy = gi = g2 = 0.;
ux = (t[i][j] - 0.7857) / 0.7857;
uy = 1. - ux;
g1 = ux * h1[i-1][j] + uy * h1[i-1][j+1];
g2 = ux * h1[i+1][j] + uy * h1[i+1][j-1];

}

/* 	 90 to 135 	 */
else if (t[i][j] <= 2.3571)
{

ux = uy = gl = g2 = 0.;
ux = (t[i][j] - 1.5714) / 0.7857;
uy = 1. - ux;
gl = ux * h1[i-1][j-1] + uy * h1[i-1][j];
g2 = ux * h1[i+1][j+1] + uy * h1[i+1][j];

}

/le 	 135 to 180 	 */
else if (t[i][j] <= 3.14285)
{

ux = uy = gl = g2 = 0.;
ux = (t[i][j] - 2.3571) / 0.7857;
uy = 1. - ux;
gl = ux * h1[i][j-1] + uy * h1[i-1][j-1];
g2 = ux * h1[i][j+1] + uy * h1[i+1][j+1];

}

if (h1[i][j] > g1 && h1[i][j] > g2)
if (h1[i][j] >= thresh)
{

g[i][j] = 250;
fprintf(fpl, "%d %d ", j, i);
fflush(fp1);

}
pr_put(pr, j + 200, i + 400, g[i][j]);

}

fclose(fp1);

105

/*****************************
*

	

	 *
Eigenvector Method

*	 *
*****************************/

#include <stdio.h>
#include <pixrect/pixrect_hs.h>
#include <math.h>

#define 	 MAX(a,b) 	 ((a) > (b) ? (a) : (b))
#define MIN(a,b) 	 ((a) > (b) ? (b) : (a))

int 	 a, j, c, i, k, 1, m, p, cut, r, ci, cj;
double 	 xmean, ymean, temp, b5, b6, sq, templ,

tempm, tempt, ang, rho;
double 	 al[15], bl[15], a2[15], b2[15], rl, r2,

e5, e6, si, s2, s3;
float 	 s[500][2], y[500][2], thresh;
FILE 	 *fp, *fpl, *fp2, *fp3;
int 	 g[256][256], gl[260][260], h[260][260],

index, count, counter;
char 	 str[10], strl[10];
int 	 code[10000], x1[10000], kl[10000];
extern Pixrect *pr;
extern unsigned char red[256], green[256], blue[256];

meig(g2)
int g2[260][260];

printf("No of Pixels for Eigen Vector= 	 11);

scanf("%d", &p);
printf("Cut of distance value = 	 11);

scanf("%f", &thresh);
printf("Min no of pixels for an edge = 	 11);

scanf("%d", &cut);
printf("Out Put File : 	 ");
scanf("%s", strl);
a = 0;
edgey(g2);
a = 0;
edgex(g2);
fclose(fp);
fp1 = fopen(strl, "w");
fp3 = fopen("dat", "w");
for (i = 0; i < 240; i++)

for (j = 0; j < 256; j++)
{

if ((gl[i][j] == 100) II (h[i][j] == 100))
{

g[i][j] = 100;
pr_put(pr, j + 650, i + 150, 255);
fprintf(fp3, "%d %d ", j, i);

106

else
{

g[i][j] = 0;
pr_put(pr, j + 650, i + 150, 0);

}

}
counter = 1;
while (counter)

trace();
}

/* 	 Eigenvector fitting in Y direction 	 *1

edgey(g2)
int g2[260][260];

for (i = 0; i < 240; i++)
{

for (j = 0; j < 256; j++)

pr_put(pr, j, 1 + 150, g2[i][i]);
s[j][1] = j;
s[j][0] = g2[i][j];

}
eigeny();

}
}

eigeny()
{

c = 0;
a = 0;
for (j = 0; j < 256; j++)
{

1 = 0;
xmean = ymean = 0.;
for (k = j; k < j + p; k++)
{

xmean += s[k][0];
ymean += s[k][1];
1++;

}
xmean /= 1;
ymean /= 1;
for (1 = 0, k = j; k < j + p; k++)

y[1][0] = s[k][0] - xmean;
y[1++][1] = s[k][1] 	 ymean;

}
Si = s2 = s3 = 0;
for (m = 0; in < 1; m++)

Si += y[m][0] * y[m][0];
s2 += y[m][1] * y[m][0];

107

s3 += y[m][1] * y[m][1];
}

temp = pow((s1 - s3), 2.0) + 4.0 * s2 * s2;
sq = sqrt(temp);
b5 = (Si + s3 - sq) / 2.0;
b6 = (Si + s3 + sq) / 2.0;
e6 = MAX(b5, b6);
e5 = MIN(b5, b6);
tempi = s2 + s1 	 e6;
if (tempi != 0.)
{

tempm = (e6 	 s3 - s2) / tempi;
tempc = ymean - tempm * xmean;
ang = atan(tempm);
rho = xmean * cos(ang) + ymean * sin(ang);

else
{

ang = 90 * 22.0 / 7.0 * 1. / 180.;
rho = xmean;

draw_eig();
}

draw_eig()
{

double 	 dl, d2, d3, d4;

dl = y[0][0] + xmean;
d2 = y[1 - 1][0] + xmean;
d3 = y[0][1] + ymean;
d4 = y[1 - 1][1] + ymean;
if ((sin(ang) != 0.) && (cos(ang) != 0.))
{

r1 = (d3 * cos(ang) - dl * sin(ang)) / cos(ang);
r2 = (d4 * cos(ang) - d2 * sin(ang)) / cos(ang);
r1 -= rho / sin(ang);
r2 -= rho / sin(ang);
r1 *= -1 * sin(ang) * cos(ang);
r2 *= -1 * sin(ang) * cos(ang);

b1[c] = (rho - r1 * cos(ang)) / sin(ang);
b2[c] = (rho - r2 * cos(ang)) / sin(ang);

a1[c] = r1;
a2[c] = r2;

}
else if (sin(ang) == O.)
{

a1[c] = dl;
a2[c] = d2;
b1[c] = b2[c] = rho;

}
else
{

108

al[c] = a2[c] = rho;
bl[c] = d3;
b2[c] = d4;

}

if (c < p)
c++;

else
{

line();
if (a < 2)

a++;
}

}

line()

float 	 dis[3];

dis[a] = (float) (sqrt((al[c] 	 a2[c - p]) * (al[c] -
a2[c - p]) + (bl[c] - b2[c - p]) * (b1[c] - b2[c

p])));
if (a >= 2)
{

if (dis[1] >= dis[2] && dis[1] >= dis[0])
{

if (dis[1] > thresh)
{

g1[i][j + (int) (p / 2 + 0.5)] = 100;
pr_put(pr, j, i + 400, 250);

else
g1[i][j + (int) (p / 2 + 0.5)] = 0;

}

dis[0] = dis[1];
dis[1] = dis[2];

}

for (r = 1; r <= p; r++)
{

al[r - 1] = al[r];
a2[r - 1] = a2[r];
bl[r - 1] = bl[r];
b2[r 1] = b2[r];

}

}

/* 	 Eigenvector fitting in X direction 	 */

edgex(g2)
int g2[260][260];
{

for (j = 0; j < 256; j++)
{

for (i = 0; i < 240; i++)

109

{

s[iJ[0] = i;
s[i][1] = g2[i][j];

eigenx();
}

}

eigenx()
{

c = 0;
a = 0;
for (i = 0; i < 240 - p; i++)
{

1 = 0;
xmean = ymean = 0.;
for (k = i; k< i + p; k++)
{

xmean += s[k][0];
ymean += s[k][1];
1++;

}

xmean /= 1;
ymean /= 1;
for (1 = 0, k = i; k < i + p; k++)
{

y[1][0] = s[k][0] - xmean;
y[1++][1] = s[k][1] 	 ymean;

Si
}

 = s2 = s3 = 0;
for (m = 0; m < 1; m++)
{

s1 += y[m][0] * y[m][0];
s2 += y[m][1] * y[m][0];
s3 += y[m][1] * y[m][1];

temp = pow((s1 - s3), 2.0) + 4.0 * s2 * s2;
sq = sqrt(temp);
b5 = (Si + s3 - sq) / 2.0;
b6 = (s1 + s3 + sq) / 2.0;
e6 = MAX(b5, b6);
e5 = MIN(b5, b6);
tempi = s2 + s1 - e6;
if (tempi != 0.)
{

tempm = (e6 - s3 	 s2) / tempi;
tempc = ymean - tempm * xmean;
ang = atan(tempm);
rho = xmean * cos(ang) + ymean * sin(ang);

}

else
{

ang = 90 * 22.0 / 7.0 * 1. / 180.;
rho = xmean;

110

draw_eigx();
}

}

draw eigx()
{

double 	 dl, d2, d3, d4;

d1 = y[0][0] + xmean;
d2 = y[l 	 1][0] + xmean;
d3 = y[0][1] + ymean;
d4 = y[l 	 1][1] + ymean;
if ((sin(ang) != 0.) && (cos(ang) != O.))
{

r1 = (d3 * cos(ang) 	 d1 * sin(ang)) / cos(ang);
r2 = (d4 * cos(ang) - d2 * sin(ang)) 	 cos(ang);
r1 -= rho / sin(ang);
r2 -= rho / sin(ang);
r1 *= -1 * sin(ang) * cos(ang);
r2 *= -1 * sin(ang) * cos(ang);
b1 [c] = (rho - rl * cos(ang)) / sin(ang);
b2[c] = (rho - r2 * cos(ang)) / sin(ang);
a1[c] = r1;
a2[c] = r2;

}
else if (sin(ang) == 0.)
{

a1[c] = dl;
a2[c] = d2;
b1[c] = b2[c] = rho;

}
else
{

a1[c] = a2[c] = rho;
b1[c] = d3;
b2[c] = d4;

}

if (c < p)
c++;

else
{

linex();
if (a < 2)

a++;
}

linex()

float 	 dis[3];

111

112

dis[a] = (float) (sqrt((al[c] 	 a2 [c 	 p]) * (a1[c] -
a2[c - p]) + (b1[c] - b2[c - p]) * (b1[c] - b2[c

13])));
if (a >= 2)
{

if (dis[1] >= dis[2] && dis[1] >= dis[0])
{

if (dis[1] > thresh)
{

g1[i + (int) (p / 2 + 0.5)][j] = 100;
pr_put(pr, j, i + 400, 250);

else
g1[i + (int) (p / 2 + 0.5)][j] = 0;

dis[0] = dis[1];
dis[1] = dis[2];

}

for (r = 1; r <= p; r++)
{

a1[r - 1] = a1[r];
a2[r 1] = a2[r];
b1[r - 1] = b1[r];
b2[r 1] = b2[r];

/**************************
* *
* Eight Connectivity *
* Method to Find Length *
• of Edge Contures
* *
*************************/

#include <stdio.h>
#include <math.h>
#include <pixrect/pixrect_hs.h>
extern 	 FILE *fpl;
extern 	 Pixrect *pr;

#define TRUE 1
#define FALSE 	 0
#define MAX_BO 10000
#define MAX_BH 3000
#define dmax 10000

trace()
{

int	 c, chi, i , n, x, y, a, b,
ab, err, check, peri;

float 	 corr;
extern int g[256][256], cut, counter;
int 	 x1[10000], k1[10000], code[10000];
int	 x2[MAX_BH], y2[MAX_BH];
int	 count;
char 	 str[10];

count = 0;
chi = TRUE;

for (a = 0; a < 239; a++)

for (b = 0; b < 255; b++)
{

n = g[a][b];
if (n == 100)
{

g[a][b] = 0;
goto abc;

if ((a == 236) && (b == 252) && (n l= 100))
counter = 0;

}
}

ch1 = FALSE;
goto 1mn;

abc: ;

113

for (i = 0; i < MAX_BO; i++)
{

code[i] = 0;
xl[i] = 0;
k1[i] = 0;

x1[0] = a;
k1[0] = b;
for (i = 1; i < MAX_BO; i++)
{

check = FALSE;
ab = 0;
err = 0;
while (check == FALSE)
{

if (check == FALSE)
{

if (code[i 	 1] == 4 II ab == 1
code[i - 1] == 0)

{

ab = 1;
n = g[x1[i - 1] - 1][k1[i - 1] - 1];
if (n == 100)
{

x1[i] = xl[i - 1] - 1;
kill] = k1[i - 1] - 1;
code[i] = 1;
check = TRUE;

}

}
}

if (check == FALSE)
{

if (code[i - 1] == 5 II ab == 1)
{

ab = 1;
n = g[xl[i - 1]][k1[i - 1] - 1];
if (n == 100)
{

x1[i] = x1[i - 1];
k1[i] = k1[i - 1] - 1;
code[i] = 2;
check = TRUE;

}

}
}

if (check == FALSE)
{

if (code[i - 1] == 6 II ab == 1)
{

114

ab = 1;
n = g[x1ri - 1] + 1][k1[i - 1] - 1];
if (n == 100)
{

x1[i] = x1[i - 1] + 1;
k1[i] = k1[i - 1] - 1;
code[i] = 3;
check = TRUE;

}
}

if (check == FALSE)
{

if (code[i 	 1] == 7 II ab == 1)
{

ab = 1;

	

n = g[x1[i - 1] + 1][k1[i 	 1]];
if (n == 100)
{

x1[i] = x1[i - 1] + 1;
k1[i] = k1[i - 1];
code[i] = 4;
check = TRUE;

}

}

if (check == FALSE)
{

if (code[i - 1] == 8 II ab == 1)
{

ab = 1;
n = g[x1[i - 1] + 1][k1[i - 1] + 1];
if (n == 100)
{

xl[i] = x1[i - 1] + 1;
k1[i] = k1[i - 1] + 1;
code[i] = 5;
check = TRUE;

}

}
}

if (check == FALSE)
{

if (code[i 	 1] == 1 II ab == 1)
{

ab = 1;
n = g[x1[i 	 1]][kl[i - 1] 	 + 1];
if (n == 100)
{

x1[i] = x1[i - 1];
k1[i] = kl[i - 1] 	 1;

115

code[i] = 6;
check = TRUE;

}
}

if (check == FALSE)
{

if (code[i - 1] == 2 II ab == 1)
{

ab = 1;
n = gd[x1[i - 1] - 1][k1[i - 1] + 1];
if (n == 100)
{

x1[i] = x1[i - 1] - 1;
k1[i] = k1[i - 1] + 1;
code[i] = 7;
check = TRUE;

}
}

if (check == FALSE)

if (code[i - 1] == 3 II ab == 1)
{

ab = 1;
n = g[x1[i - 1] - 1][k1[i - 1]];
if (n == 100)
{

x1[i] = x1[i - 1] - 1;
k1[i] = k1[i - 1];
code[i] = 8;
check = TRUE;

}

}
}

err += 1;
if (err > 2)

ch1 = FALSE;
goto 1mn;

}

if (check)
{

g[x1[i]][k1[i]] = 0;
count++;

}

1mn:
if (count > cut)

116

for (a = 0; a < i + 1; a++){
pr_put(pr, k1[a] + 500, x1[a] + 450, 255);
fprintf(fp1, "%d %d ", k1[a], x1[a]);

fflush(fp1);

117

118

REFERENCES

1. Attneave, F., "Some information Aspects of Visual Perception," Psycological review,
61, 1954, pp. 183-193.

2. Bovik, A.C. and Munson, D. C., "Edge Detection Using Median Comparisons," Com-
puter Vision, Graphics and Image Processings, Vol. 33, 1985, pp. 377-389.

3. Canny, J. F., " Finding Edges and Lines in Images," MIT Artificial Intelligence
Laboratory Techinical Report '1'R-720, June 1983.

4. Greenfeld, J. S., "A Stereo Vision Approach to Automate Stereo Matching in
Photogrammetry," Techinical Report, Ohio State University Columbus, Depart-
ment of Geodetic Science and Surveying, TR-381, July 1987.

5. 	 Haralick. R. M., "Digitial Step Edges from Zero Crossings of Second Directional
Derivative," IEEE PAMI-30, Jan. 1971, pp. 113-125.

6 	 Hartly, R., " A Gaussian Weighted Multiresolution Edge Detector," Computer
Vision, Graphics and Image Processing, Vol. 30, 1985, pp. 70-83.

7. Huckel, H. M., "An Operator Which Locates Edges in Digitized Pictures," Journal of
ACM, Vol. 18, No. 1, Jan. 1971, pp. 113-125.

8. Jain, R. and Rheaume, D., " A two Stage Method for Fast Edge Detection," Com-
puter Vision, Graphics, and Image Processing, Vol. 14, 1980, pp. 177-181.

9. Jadhav, R., "Development of a Low Cost PC Based Vision System," Masters Thesis,
NJIT, 1987.

10. Macleod, I. D. G., " Comments on Techinques for Edge Detection," Proceedings of
IEEE, Vol. 60, March 1972, pp. 344.

11. Marr, D. and Hildreth, E. C., "A Theory of Edge Detection," Phil. Trans. Roy. Soc.
London B 207, 1980, pp. 187-217.

12. Medioni, G. and Nevatia, R., "Matching Images Using Linear Features," IEEE
PAMI-6, No. 6, 1984, pp. 675-685.

13. Modestino, J. W. and Fries R. W., "Edge Detection in Moving Image Using Recur-
sive Digital Filtering," Computer Graphics and Image Processing, Vol. 6, 1977,
pp. 409-433.

119

14. Nalwa, V. S. and Binford, T. 0., " On Detecting Edges," IEEE PAMI-8, No.6, Nov.
1980, pp. 699-715.

15. Nevatia, R. and Babu, K. R., " Linear Feature Extraction and Description," Com-
puter Graphics and Image Processing, Vol. 13, 1980, pp. 699-715.

16. Nevatia, R., "Simple Polygonal Scenes," Machine Perception, Printice Hall, 1982,
pp. 24-40.

17. Prewitt. J. M. S., "Object Enhancement and Extraction." Picture Processing and
Psychopictorics B. lipkin & A. Rosenfeld Eds, Academic Press, New York, 1970,
pp. 75-149.

18 Rosenfeld, A. and Thurston, M., " Edge and Curve Detection for Visual Scene
Analysis," IEEE Transactions on Computers, Vol. 20, No. 5, 1971, pp. 562-569.

19 Robinson, G. S., " Edge Detection by Compass Gradient Masks," Computer
Graphics and Image Processing, Vol. 6, 1977, pp. 492-501.

20. Shanmugam, K. F., Dickey, F. M., and Green, J. A., " An Optimal frequency
Domain Filter for Edge Detection in Digital Images," IEEE PAMI-1, No. 2,
1979, pp. 37-49.

21. Torre, V. and Poggio, T. A., " On Edge Detection," IEEE PAMI-8, March 1986, pp.
147-163.

	A comparative study of edge detection techniques
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract (1 of 2)
	Abstract (2 of 2)

	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Computer Implementation Details
	Chapter 4: Eigenvector Edge Fitting
	Chapter 5: Results and Conclusion
	Appendix: Program Listing
	References

