
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1991

EEG data compression EEG data compression

Yun-Chu Wu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Wu, Yun-Chu, "EEG data compression" (1991). Theses. 1314.
https://digitalcommons.njit.edu/theses/1314

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.njit.edu%2Ftheses%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1314?utm_source=digitalcommons.njit.edu%2Ftheses%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Abstract

Title of Thesis: EEG data compression

Yun-chu Wu, Master of Science in Biomedical Engineering, 1991.

Thesis directed by: Dr. Stanley Reisman

Electrical Engineering Department, NJIT, Newark, NJ

Dr. Elizabeth Pinkhasov

Neuroscience Department

UMDNJ-New Jersey Medical School, Newark, NJ.

Dr.David Kristol

Biomedical Engineering Department, NJIT, Newark, NJ

This paper presents two different ways to compress EEG data- - direct data com-

pression and a data transformation technique. The Adaptive Delta modulation and

Huffman coding are used in the former method to predict or interpolate the data. Lin-

ear orthognal transformation algorithms are used in the latter method to detect and

reduce the redundancies of the data by analyzing the spectral and energy distribu-

tion. Each method is implemented by programming the computer. The experimental

results of their efficiencies and errors with different requirements and under different

situations are compared and discussed. By comparing the EEG data compression

degree and normalized square error, the paper shows that the adaptive delta coding

followed by Huffman coding is the best way to compress the EEG data.

EEG Data Compression

by
Yun-Chu Wu

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of
Master of Science in Biomedical Engineering

1991

Approval Sheet

Title of Thesis: EEG Data Compression

Name of Candidate: YunChu Wu

Master of Science in Biomedical Engineering

Thesis and Abstract Approved: 	

Dr. Stanley Reisman 	 Date

Electrical Engineering Department, NJIT

Dr. Elizabeth Pinkhasov 	 Date

Neurosciences Department, UMDNJ

Dr. David Kristol 	 Date

Biomedical Engineering Department, NJIT

Vita

Name: Yun-Chu Wu

Degree and date to be conferred: MSBME, 1991

Secondary education: The Si-Xi senior high school

Collegiate institutions attended	 Dates	 Degree	 Date of Degree

Shanghai University of Science and Technology 1981-87 BSBME 	 1987

New Jersey Institute of Technology 	 1989-91 MSBME 1991

Major: Biomedical Engineering

To dear dad and mom

Acknowledgement

Many people have assisted me during the course of this work. There are too

many such people to thank individually. However, I would like to acknowledge my

advisor Dr. Stanley Reisman whose inspiration and guidance benefitted me signifi-

cantly. Without his support this work could not have been finished.

A very special thanks is extended to Dr. Swany Laxminarayan for his encour-

agement and suggestions. His help in regard of Walsh Transformation System, both

the reference materials and software application, and comments on the research work

are valuable.

I would like to thank Dr. Elizabeth Pinkhasov for her support in obtaining the

EEC data in UMDNJ.

Also, I would like to thank my parents and Mr.Shing Lee for their support and

deep loves.

Contents

1 Introduction 	 1

2 Walsh transformation 	 6

2.1 Walsh transform data-compression algorithm 	 6

2.2 Walsh transformation in EEG data compression 	 10

3 Adaptive Delta coding method 	 16

3.1 Delta modulation 	 16

3.1.1 linear delta modulation 	 16

3.1.2 Digital delta modulation 	 18

3.2 Adaptive delta modulation 	 19

3.3 ADM in EEG data compression 	 19

4 Huffman coding 	 31

4.1 The principle of Huffman coding 	 31

4.2 Huffman coding in EEG data compression 	 34

5 The combination of ADM and Huffman coding 	 38

6 Discussion 	 44

A Computer Program 	 49

B Flow-Chart for the programs 	 56

Reference 	 62

List of Figures

1.1 System diagram 	 5

2.1 Walsh transform data-compression algorithm 	 8

2.2 Walsh Function 	 9

2.3 Original EEG waveforms 	 12

2.4 Reconstructed waveforms obtained using the Walsh spectrum

13

2.5 Reconstructed waveforms obtained using the Walsh spectrum

CR=0.4 	 14

2.6 Reconstructed waveforms obtained using the Walsh spectrum

CR=0.32 	 15

3.1 Basic delta modulator system 	 17

3.2 Linear D.M. waveform when the encoder is tracking the input

signal 	 17

3.3 The principle of digital delta modulation 	 18

3.4 Overload in delta modulation 	 20

3.5 Avoid the slope overload in ADM 	 20

3.6 Examples of specific waveforms. (a) K-complex. (b) Lambda

wave. (c) Mu rhythm (d) Spike 	 24

3.7 Original EEG waveform 1 	 25

iii

3.8 Reconstructed waveform 1 by using δ = 8 	 26

3.9 Reconstructed waveform 1 by using δ = 16 	 26

3.10 Original EEG waveform 2 	 27

3.11 Reconstructed waveform 2 by using δ = 8 	 28

3.12 Reconstructed waveform 2 by using δ = 16 	 28

3.13 Original EEG waveform 3 	 29

3.14 Reconstructed waveform 3 by using δ = 8 	 30

3.15 Reconstructed waveform 3 by using δ = 16 	 30

iv

List of Tables

3.1 Adapt Delta code of EEG data file δ = 8 	 23

3.2 Adapt Delta code of EEG data file δ = 16 	 23

4.1 Optimum Binary Coding Procedure 	 32

4.2 Results of Optimum Binary Coding Procedure 	 33

4.3 Combine the data in to group 	 35

4.4 Relationship between data value and the frequency 	 36

4.5 Result of Huffman coding for EEG data 	 37

5.1 Huffman coding tree δ = 8 	 40

5.2 Huffman coding tree δ = 16 	 41

5.3 Result of δ = 8 	 42

5.4 Result of δ = 16 	 43

6.1 Summary some EEG data compression schemes 	 48

B.1 Adaptive delta modulation 	 57

B.2 Reconstructed signal 	 58

B.3 Calculation the data frequency 	 59

B.4 Data combination 	 60

B.5 Error calculation 61

Chapter 1

Introduction

Sixty years ago, Han Berger recorded the Electrical potential at the surface

of the scalp given from the cortical and subcortical layers of the brain[1]. It

was known as the electroencephalogram or more simply, the EEG. The recorded

potentials are represented by many fluctuating waves whose frequency may vary

from 0.1 to 30Hz. These frequencies are broken down into the following bands

or ranges: Delta (below 3.5Hz); Theta (4-7.5Hz); Alpha (8-13Hz); Beta (above

13Hz). The clinical electroencephalographer correlates central nervous system

functions as well as dysfunctions and diseases with certain patterns of the EEG

on an empirical basis[1]. Thus EEG is of fundamental importance in diagnosing

certain brain defects and mental disorders, and in characterizing sleep.

Since a large number of channels (16-24) is required to be recorded simul-

taneously from all electrodes on the scalp and a long term recording is required

to monitor the EEG wave, the efficiency of storing and recording EEG technique

is significant[2]. Electronic amplifiers and pen-writers have long been part of the

EEG laboratory. In the 1950s, some laboratories began to add tape recording

and telemetry systems for longer term recording , and then video recorders have

been used to capture both the movements and the EEGs of epileptic patients.

More recently, some laboratories and clinics have begun to use the computer to

1

analyze the electroencephalogram and it became more and more important to

store the EEG in the computer rather than on paper or video tape[10]. Since

the computer has limited storage capacity, the long-term and large numbers of

channels of EEG recording in a digital format must be compressed.

The existing methods for data compression can be classified into three

categories (1). direct data handling methods; (2). transformation methods; (3).

parameter extraction methods[3]. Usually in the medical data compression, the

first two methods are used. In ECG data compression, many algorithms based

on direct data handling have been proposed in the literature[5],[6],[8],[9],[11],[13].

The amplitude zero time epoch coding (AZTEC) algorithm[5],[6] has great data

reduction properties, but it is not visually acceptable to a cardiologist. The

AZTEC technique converts raw ECG sample points into plateaus and slopes.

The stored values for each plateau are the amplitude value of the line and its

length. The production of an AZTEC slope starts when the number of sam-

ples needed to form a plateau is less than three. The slope is saved whenever

a plateau of three samples or more can be formed. The stored values for the

slope are the duration (number of samples of the slope) and the final eleva-

tion (amplitude of last sample point). The coordinate reduction time encoding

system (CORTES)[7],[8] which is a hybrid of the turning point and AZTEC

algorithms, is effective in off- line data reduction, but it can not be applied in

real-time ECG data compression. Delta code algorithm[9] is based on the fact

that the difference in amplitude between successive samples is typically smaller

than the amplitude of the samples themselves. A modified technique called

"delta coding with threshold" for compression of three-lead (X, Y, Z) ECG sig-

nal is proposed in [13]. Whenever the absolute value of the difference between

adjacent pair samples in any of the three ECG lead signals exceeds a preset

2

threshold, data are saved. Otherwise data are considered redundant and, hence,

eliminated. The retained data comprises the amplitude difference, between the

pair samples at the time slot for each of the three-lead ECG signals, along

with the elapsed since the last saved data. The transform compression methods

which used in ECG data compression are Karhuner-Loeve transform[16], the fast

Walsh transforms[17] and the Fourier Descriptor[3]. All the transform methods

are similar. For example, the FFT technique transfer the data from time do-

main to frequency domain. According the distribution of frequency spectrum of

the signal, the data can be compressed by storing a fraction of a Fourier spec-

trum to reconstruct the signal. The prediction-interpolation method, variable

length encoding method and the transformation methods can also be applied in

Biomedical Images[12]. As examples, for blood cell analysis and X-ray images,

two-dimensional transformations are generally used with procedures, such as

thresholding, variable length encoding and prediction- interpolation. In partic-

ular, fast Fourier (FFT) and fast Walsh transforms (FWT) can be used; while for

nuclear medicine images different transformations (Fourier, Hadamard, Haar)

in fast form with thresholding are employed[14],[15].

The main goal of any compression technique is to achieve maximum data

volume reduction while preserving the significant signal morphology features

upon reconstruction[4]. In this project, we tried several methods to compress

the EEG data. The techniques we used are (1) direct data compression; (2)

transformation methods. The direct data compression techniques rely on uti-

lizing prediction or interpolating algorithms. A prediction algorithm utilizes a

priori knowledge of some previous samples, while an interpolation algorithm em-

ploys a priori knowledge of both previous and future samples. These techniques

attempt to reduced redundancy in a data sequence by examining a successive

3

number of neighboring samples. The direct data compression methods we used

here include two methods: the adaptive delta coding and the Huffman coding,

which will be discussed separately in chapter 3 and chapter 4. In chapter 3

we will apply the adaptive delta modulation to compress the EEG data and

in chapter 4 we will apply the Huffman coding (variable length coding) to

compress the EEG data. In ADM we store the codeword of difference between

adjacent pair samples instead of the data themselves. In Huffman coding we

assign every data a different codeword, the length of codeword depends on the

relative frequency of the data in the data file. Unlike the direct data com-

pression, most of the transformation compression techniques which have been

employed in data compression involve preprocessing the input signal by means

of a linear orthogonal transformation and reducing the amount of data needed

to adequately represent the original signal.

Transformation compression methods mainly utilize spectral and energy

distribution analysis for detecting redundancies. Many discrete orthogonal

transforms have been employed in digital signal representation such as Fourier

(FT), Walsh (WT), Cosine (CT) etc. In the next chapter we will discuss

how to use the Walsh transformation to reduce the data.

The A/D converter used in this project is the Metrabyte DASH-16[181,

which is a single board with 16 single ended / 8 differential analog input chan-

nels. It is used to perform control and data acquisition for the PC/XT/AT and

compatible computers (Fig 1.1). After A/D converting we obtain a packed data

file formed by the DASH-16 software. Thus the real data file was obtained by

unpacking the file directly from the A/D converter. Sampled data is 12 bits

long including one bit that indicates whether the attached packet is positive or

negative.

4

Figure 1.1: System diagram

Implementation of the EEG data compression is in the Unix system. All

programs were written in Pascal language. The experimental data were ac-

quired from the video tapes of seizure patients admitted to the intensive Video-

EEG unit of the Neurology department of UMDNJ. The video tapes also were

recorded by this Video-EEG machine. This machine can record the real-time

EEG data directly from the patient and at the same time we can see the real-

time EEG on the screen of the machine, as well as providing at output channel

to the A/D converter and computer.

5

Chapter 2

Walsh transformation

2.1 Walsh transform data-compression algo-
rithm

The orthogonal transforms in data compression enables signal representa-

tions which can be used to reduce the amount of redundant information[19],[20].

If a discrete signal consists of N sampled values, then it can be looked upon as

being a point in an N-dimensional space. Each sampled value is then a compo-

nent of the (N*1) data vector X which represents the signal in this space. For

a more efficient representation, we obtain an orthogonal transform of X which

results in Y = TX. Our objective is to select a subset of M components of

Y, where M is less than N. The remaining (N-M) components can be set equal

to zero and the signal is reconstructed using the M retained components of Y.

Thus the amount of data is reduces from N to M.

Let T denote the desired orthogonal transform, whose transpose T' is given

by T' [φ1φ2...φN] where φi is an (N*1) vector and the basis vectors O m are

orthonormal.

6

For each vector X belonging to a given class of data vectors, we obtain Y = TX

where X' = [x 1 x 2 ...x,], and Y' = [y1y2...yN]. Thus TT' = 1 and X = T'Y

[φ1φ2...φN]Y, which yields X = y1φ1+y2φ2+...+yNφN = ΣNi=1yiφi. We wish

to retain a subset y1,y2,...,yn of the components of Y and yet estimate X. This

can be done by replacing the remaining (N-M) component of Y with zero to

obtain

where X(M) denotes the estimate of X.

The Walsh transformation data-compression method employs Walsh func-

tions (Fig-2.2) [17] as the orthogonal basis set. In this method a Walsh-coefficient

series is used to represent the sequence obtained by sampling the signal. The

Walsh-coefficient series representation of an N-element long sampled signal f(n)

can be expressed as

where φm is the m-th discrete Walsh function. The data compression system

described above by using the orthogonal representation of the sampled signals

is shown in Fig-2.1[17]. To exactly reconstruct f(n), all N a m coefficients must

be computed and transmitted. The data can be compressed by computing and

transmitting less than the entire set of N a m . In the Walsh transform method

this technique used to compress the data consists of using only a fraction of

a Walsh spectrum to reconstruct the signal. In doing so, the lowest sequence

fraction of the spectrum is retained, while the remaining portion of the spectrum

is set to zero. Walsh functions are a set of periodic orthogonal functions which

are rectangular in nature (Fig-2.2)[17]. The periodicity of the Walsh function

is described in terms of square waves of different sequences, and because the

7

Figure 2.1: Walsh transform data-compression algorithm

S

Figure 2.2: Walsh Function

values of the Walsh function are either -1-1 or -1, it is possible to compute the

Walsh transform representation of a sampled signal by adding and subtracting.

Such a reduction in computation time would theoretically allows a computer

currently programmed to do Fourier analysis of one channel of EEG data to

instead do Walsh analysis of several channels in the same time[21]. The Walsh

transform F(m) of an N-point discrete signal f(n) can be computed as

9

2.2 Walsh transformation in EEG data com-
pression

When applying the Walsh transformation to EEG, we first transfer the

EEG from time domain to sequency domain. After obtaining the Walsh coeffi-

cients of the EEG wave, we set a high sequence fraction of the spectrum to zero.

Therefore we can reconstruct the EEG waveform by the compressed spectrum.

In this project we have tried three different degrees of compression. The first

was to set the highest 1/5 spectrum to zero; the second was to set the highest

3/5 spectrum to zero; the last was to set the highest 17/25 spectrum to zero.

Fig 2.3 shows two original EEG waveforms. The plots of the reconstructed EEG

waveforms are shown in Fig-2.4, Fig 2.5 and Fig-2.6. Here x axis is the number

of sampled data and y axis is the amplitude of EEG wave. These three sets

of reconstructed EEG waveforms are obtained from 4/5, 2/5, and 8/25 respec-

tively, of the Walsh spectrum. As we can see from the reconstructed waveforms

(Fig-2.4, Fig- 2.5 and Fig-2.6) the more compression that was employed, the

more error was obtained. When the data were compressed from 20% to 68%

the error increase from 18.4 to 26.5 (we will discuss this error measure further

in chapter 6). Also the high frequency signals are cut off. This compression

scheme is therefore not suitable for the abnormal EEG waveforms with high

frequency spikes.

In order to assess the performance of the compression methods, in addition

to visual comparison, the normalized square error is employed. It represents a

measure of "goodness" of the reconstructed waveforms. The normalized mean

square error between the original and reconstructed EEG waveform is computed

10

as:

where x and x are samples of the original and reconstructed data. Thus we

can use this error to compare the error between the original and reconstructed

waveforms for a specified compression ratio among the different compression

methods. From table 6.1 we can see the errors in the Walsh transform data

compression method.

1 1

Figure 2.3: Original EEG waveforms

12

Figure 2.4: Reconstructed waveforms obtained using the Walsh spectrum
CR=0.8

Figure 2.5: Reconstructed waveforms obtained using the Walsh spectrum
CR=0.4

14

Figure 2.6: Reconstructed waveforms obtained using the Walsh spectrum
CR.0.32

15

Chapter 3

Adaptive Delta coding method

3.1 Delta modulation

3.1.1 linear delta modulation

The schematic diagram of the basic delta modulation system is shown

in Fig-3.1[22]. The delta modulator acts as an analog to digital converter. It

consists of an analog input signal x(t) and a binary output signal L(t). The

relationship between x(t) and L(t) is such that L(t) is a binary representation

of x(t), where the rate of occurrence of each binary pulse is directly proportional

to the instantaneous slope of x(t). If the slope of the input signal x(t) is positive,

the output waveform L(t) will have more positive pulses than negative ones. The

situation is reversed, when x(t) has a negative slope (Fig-3.2)[22].

The difference between x(t) and y(t) is the error signal e(t). If e(t) is

larger than zero, a positive pulse will be produced at the output of the encoder.

When this pulse is integrated, y(t) is increased by a positive step. This increase

in y(t) will be subtracted from x(t) and a change in the magnitude of the error

signal occurs. If the error has not become negative by the next clock instant,

the output of the encoder will be a positive pulse again. As long as e(t) is

16

Figure 3.1: Basic dclta modulator system

Figure 3.2: Linear D.M. waveform when the encoder is tracking the input signal

17

Figure 3.3: The principle of digital delta modulation

larger than zero at successive clock instants, a sequence of positive pulses will

be produced. Eventually y(t) will become greater than x(t), at which point e(t)

becomes negative and a negative pulse will occur at the output of the encoder.

3.1.2 Digital delta modulation

The principle of digital delta modulation which is shown in Fig-3.3[23] is

to use +1 or -1 to represent the difference between each sample value and its

predecessor. The predictor is used to predict the current value xi by using the

previous xi-j . After subtraction between the current value xi and the previous

a difference S is obtained. When this difference passes the quantizer the

receiver will receive +k or -k depending on whether 6 > 0 or 6 < 0. This

value also feeds back to the predictor to adjust the prediction by adding or

subtracting k.

18

3.2 Adaptive delta modulation

In using delta modulation if the step size is not large enough to track

the slope of wave, it will cause slope overload (Fig 3.4)[23]. Slope overload

can be minimized by increasing the step size, but as the step size is increased

the quantization noise will increase. Thus it is desirable to make the system

adaptive. Adaptive delta coding modulates the waveform by applying varied

step size quantization in delta modulation[23]. In ADM, the DM encoder feeds

back a range of step sizes depending on the polarity of the difference between

present and the previous values. If we suppose the minimum step size is r, then

the step height will change consecutively from r to rk2 , rk3 , rkn , (where

k2 < k3 < ... < kn) depending on the slope of the waveform. The step size

incrementally decreases when the error changes sign. In Fig 3.5, we can see

while the overload slope occurs the larger step size is used and while the slope

decreases the step size decreases as well. Thus as we see the ADM attempts

to track the slope by increasing or decreasing the step size and avoid the slope

overload in DM.

3.3 ADM in EEG data compression

The EEG waveform is very complex. It consists of two kinds of patterns[1].

The simple patterns of waves can be classified as delta (frequency < 4Hz),

theta(4Hz < f < 8Hz), alpha (8 < f < 13) and beta (f > 13). The

complex patterns can be placed into two classes. The first consists of patterns

of fluctuations which may be considered as combinations of two or more simple

patterns. The second consists of specific wave shapes. These specific waveforms

19

Figure 3.4: Overload in delta modulation

Figure 3.5: Avoid the slope overload in ADM

20

are fluctuations of amplitude which have a characteristic shape. Among the

specific waveforms there are the K-complex (the maximum voltage is very

variable but usually about 200 μ v), lambda waves (the amplitude is usually

less than 50μv), spike (a wave transient clearly distinguished from background

activity with pointed peak at conventional paper speeds, its amplitude is very

variable), spike and wave rhythm (the amplitude may attain 1000 μv), etc (Fig

3.6). Thus, the differences among sampled data are very variable, and can not

be replaced by a fixed value. The most effective way is to use the adaptive delta

modulation to code the difference between two adjacent data values. Although

the range of sampled data is from -2048 to 2048, the difference between the

two adjacent samples varies from -120 to 120 in all files examined during this

project. We applied the ADM to EEG data compression in two methods. First,

we used 5 bits (one bit indicates positive sign or negative sign), and second,

we used 4 bits (also one bit indicates positive sign or negative sign). Tables

3.1 and 3.2 show these two ways. In table 3.1, the minimum step size δ equals

8, and k2 , k3 , k15 are 2,3, ..., 15, respectively. If the difference is between

kiδ + δ/2 and ki+1δthen the code is ki+1. If the difference is betweenkiδand

kiδ + δ/2 then the code iski.Table 3.2 is the same as table 3.1 but 8 equals 16

and k2 , k3, k7 are 2,3, 7, respectively.

Fig-3.7, Fig-3.9 and Fig-3.13 are three original EEG waveforms. Fig-3.8,

Fig-3.11 and Fig-3.14 are the reconstructed waveforms from the code files which

store the coded difference of adjacent data by using the algorithm in table 3.1.

Similarly, Fig-3.9, Fig-3.12 and Fig-3.15 are the reconstructed waveforms from

the code files which store the coded difference between adjacent data based on

table 3.2. The data is compressed from 12bits to 5 bits (table 3.1) and 4 bits

(table 3.2), respectively.

21

As we can see from the reconstruction waveforms the errors are very small

whether we use = 16 or 8 = 8, the method of chapter 2 we again used to

calculate the error and the value of 2.547 and 6.019 were obtained, respectively.

We will discuss these errors further in chapter 6. Fig 3.7 is a normal EEG

waveform while Fig 3.10 has some spikes. From the reconstructed waveforms

of Fig 3.5 and Fig 3.8 shown in Fig 3.11 and Fig 3.12 we can see that the

high frequencies are not cut off, because the reconstructed spikes in Fig 3.11

and Fig 3.12 are very visible. Also the slow rhythm in Fig 3.13 is not affected

in the reconstructed waveforms (Fig 3.14 and Fig 3.15). Obviously the other

components in the reconstructed waveforms such as alpha, beta, etc. will not

be affected because their frequencies are lower than those of the spikes. If the

higher frequency waveforms can be reconstructed well, then the lower frequency

waveforms can be reconstructed well.

22

Table 3.1: Adapt Delta code of EEG data file S = 8
Difference Code
0 → ± 3 0
±4 → ±11 ±1

±12 → ±19 ±2
±20 → ±27 ±3
±28 → ±35 ±4
±36 → ±43 ±5
±44 → ±51 ±6
±52 → ±59 ±7
±60 → ±67 ±8
±68 → ±75 ±9
±76 → ±83 ±10
±84 → ±91 ±11
±92 → ±99 ±12

±100 → ±107 ±13
±107 → ±115 ±14

±116 → ±15

Table 3.2: Adapt Delta code of EEG data file b = 16

Difference code
0 → ±7 0

±8 → ±23 ±1
±24 → ±39 ±2
±40 → ±55 ±3
±56 → ±71 ±4
±72 → ±87 ±5
±88 → ±103 ±6
±104 → ±120 ±7

23

Figure 3.6: Examples of specific waveforms. (a) K-complex. (b) Lambda wave.
(c) Mu rhythm (d) Spike

24

Figure 3.5: Original EEG waveform 1

Figure 3.6: Reconstructed waveform 1 by using S = 8

Figure 3.7: Reconstructed waveform 1 by using b = 16

26

Figure 3.8: Original EEG waveform 2

Figure 3.9: Reconstructed waveform 2 by using δ = 8

Figure 3.10: Reconstructed waveform 2 by using δ = 16

28

Figure 3.11: Original EEG waveform 3

29

Figure 3.12: Reconstructed waveform 3 by using 8 = 8

Figure 113: Reconstructed waveform 3 by using S = 16

30

Chapter 4

Huffman coding

4.1 The principle of Huffman coding

Huffman coding is a data-compression technique due to D.A.Huffman

which represents the symbols of an alphabet by minimizing the average code

length. This algorithm[24} replaces each character by a variable length code

according to the relative frequency of that character in the text. This technique

is a fixed to variable length coding. The Huffman code is an optimum code since

it results in the shortest average code length of all fixed to variable encoding

techniques when the frequencies are given. In addition, Huffman codes have a

prefix property which means that no short code word appears as the beginning

of a longer code word. The Huffman code can be developed through the uti-

lization of a tree structure. Huffman's method makes two passes over the data:

one pass is to collect frequency counts of the characters in the text, followed by

the construction of a Huffman tree; the second is to encode and transmit the

characters themselves based on the static tree structure.

Table 4.1 is an example of Huffman coding. First, these messages are listed

in descending order of their frequencies. The two messages with the smallest

31

Table 4.1: Optimum Binary Coding Procedure

32

i P(+) L(i) PWL(i) Code
12 0.20

0.18
2
3

0.40
0.54

10
000

3 0.10 3 0.30 011
45

6

7

0.10
0 . 10
0.01
0.00

3
3
4
S

0.30
0.30
0.24
0.30

110
111
0101
00100

8 0.01 5 0.20 00101
9 0.01 S 0.20 01000
10 0.01 5 0.20 01001
11 0.01 5 0.20 00110
12 0.0.5 6 0.18 001110
13 0.0t 6 0.06

I....→3.42
001111

Table 4.2: Results of Optimum Binary Coding Procedure

frequencies are combined into a node with the lowest frequency. Then, the two

nodes with the lowest frequencies (including joint frequencies) are merged.

The tree is built up the same way for the remaining nodes as shown in table

4.1. By assigning 0 (1) to every left (right) edge emanating from each node, one

can derive the Huffman code for each message[24].

The Huffman length of a code word is the number of its bits. The lengths of

all the encoded messages derived from table 4.1 are given in table 4.2 Thus this

code uses 3.42 bits per message. The binary fixed length code for 13 messages

needs 4 bits. Therefore Huffman coding saves 0.58 bits per message.

33

4.2 Huffman coding in EEG data compression

In this project the length of sampled data is 12 bits long. Thus the value

of every 12-bit-sampled data of EEG is between -2048 and 2048. Actually, in

all the data files the value is between -1000 and 1000 and most of the files are

between -300 and 300 except for some special waveforms. Thus the data variable

range is very large. It is very difficult to use Huffman coding to code EEG data

because if we use Huffman coding directly to code this file, we should give every

value a different code. We will therefore obtain up to thousands different codes

for the EEG file. It will become very complicated. In other words it is difficult

to be implemented in EEG data coding.

In using Huffman coding in this application, the numbers of data value

have to be reduced. In this project we combined a number of data value which

have a small difference between them into a group and assign a specific value

for this group. We use the way as table 4.3 shows to combine the data. For

example, if the data values are between 0 and 8, we set these data to a value of 4.

Thus these data become identical. As we will see, we can combine data in this

way we will get the same quantization error as in ADM in chapter 3 (6 = 8).

Table 4.4 shows the combined data value and its corresponding frequency of

the data files we used in chapter 3. For example, the frequency of 4 is 385

and frequency of -4 is 483. The number of data values is reduced to about one

hundred. Thus we can use Huffman coding to code this file.

The Huffman coding result for EEG data corresponding to the relations

given in table 4.4 is shown table 4.5. Table 4.5 shows that the shortest word

length is 4 bits; the longest word length is 13 bits and the average word is

34

Table 4.3: Combine the data in to group

actual value set value I
0 → ±8 ±4

±9 → ±16 ±12

±(8i + 1) → ±(i + 1)8 ±8i + 4

5.08 bits. Thus, this method saves 6.92 bits per sample. Since Huffman coding

does not produce an error[25], the only error we get here is during the data

combination. Comparing table 4.3 with table 3.1 we can see the error produced

from data combination is the same as by using ADM method while 6 8.

Because the data combination quantizes the data the same as in the ADM

method, then for the same original data file we can get the same combining

data value. Thus we can get the same reconstructed waveform as we get by

using ADM (8 = 8). (Fig-3.8, Fig-3.11 and Fig-3.14).

35

A[4]=385 B[-4]=483 A[340)=0 B[-340)=8

A[12]=400 B[-12)=405 A[348)=0 B[-348)=14

A[20]=362 B[-20)=389 A[356]=0 B[-356)=12

A[28]=317 B[-28)=445 A[364)=0 B[-364]=9

A[36]=266 B[-36]=455 A[372]=0 B[-372]=12

A[44]=251 B[-44]=348 A[380]=0 B[-380]=11

A[52]=202 B[-52]=337 A[388)=0 B[-388)=18

A[60]=160 B[-60)=312 A[396]=0 B[-396]=15

A[68]=138 B[-68]=305 A[404]=0 B[-404]=11

A[76]=98 B[-76]=301 [412]=0 B[-412)=12A

A[84]=76 B[-84]=262 A[420]=0 B[-420)=7

A[92]=48	 B[-92)=222 [428]=0 B[-428)=12A

A[100]=57 B[-100]=194 A[436]=0 B[-436]=7

A(108)=47 B[-108]=160 A[444]=0 B[-444)=4

A[116]=34 	 B[-116]=143 A[452]=0 B[-452)=7
A[124]=29 	 B[-124]=128 A[460]=0 B[-460)=5

A[132)=36 B[-132]=105 A[468]=0 B[-468]=4

A[140]=21 B[-140]=96 A[476]=0 B[-476]=7

A[148]=18 	 B[-148]=78 A[484]=0 B[-484)=8
A[156]=9	 B[-156)=67 A[492]=0 B[-492)=7
A[164]=3 	 B[-164]=74 A[500]=0 B[-500)=5
A[172]=6 	 B[-172]=48 A[508]=0 B[-508]=2
A[180]=7	 B[-180]=50 A[516]=0 B[-516)=1
A[188]=3 	 B[-188)=40 A[524]=0 B[-524)=4
A[196]=1 	 B[-196)=38 A[532]=0 B[-532]=4
A[204]=0 	 B[-204)=42 A[540]=0 B[-540]=0
A[212]=1 	 B[-212]=26 A[548]=0 B[-548]=3
A[220]=0 	 B[-220]=36 A[556]=0 Bt-556J=2
A[228]=0 	 B[-228]=25 A[564]=0 B[-564]=2
A[236]=0 	 B[-236)=24 A[572]=0 B[-572]=1
A[244)=0 B[-244]=28 A[580]=0 B[-580]=0
A[252)=0 	 B[-252]=16 A[588]=0 B[-588)=1
A[260]=0 	 B[-260)=19 A[596]=0 B[-596]=0
A[268]=0 B[-268]=12 A[604]=0 B[-604]=0
A[276]=0 B[-276]=15 A[612]=0 B[-612]=0
A[284]=0 	 B[-284)=14 A[620]=0 B[-620)=O
A[292]=0 	 B[-292)=12 A[628)=0 B[-628]=0
A[300)=0 B[-300)=9 A[636)=0 B[-636]=0
A[308]=0 B[-308)=13 A[644)=0 B[-644]=0
A[316]=0 	 Br-316)=7 A[652]=0 B[-652)=0
A[324)=0 	 B[-324]=10 A[660)=0 B[-660)=0
A[332]=0 	 B[-332)=17

Table 4.4: Relationship between data value and the frequency

Table 4.5: Result of Huffman coding for EEG data

frequency length of code
1 13 bits
2 12 bits
5 11 bits

3, 4, 8, 10, 11 10 bits
6, 13, 14, 15, 16, 17, 19 9 bits

9, 12, 25, 26, 27, 28, 29, 30
31, 33, 34, 35, 36, 38, 44

8 bits

65, 67, 70, 74, 76, 82, 84 7 bits
46, 48, 49, 52, 98, 102, 125

131, 132, 138, 142, 162
6 bits

85, 91, 170, 190, 199, 209
220, 224, 228, 231

236, 237, 253, 255, 265, 271
5 bits

274, 277, 280, 284, 295, 307 4 bits

37

Chapter 5

The combination of ADM and
Huffman coding

After applying adaptive delta modulation to compress the EEG data we

can get a codeword file. For the same sampled data file the length of the

codeword depends on the value of δ. In this project we obtained two different

codeword lengths from the same data file by using two different δs (δ1 = 8;

δ2 = 16). In the first codeword file the range of the codeword value is between

00000 and 11111; in the second, the values vary from 0000 to 1111. Thus, it

is very easy to apply Huffman coding to these codewords. Tables 5.1 and 5.2

are the Huffman coding trees for δ = 8 and δ =16, respectively and tables

5.3 and 5.4 are the results. From table 5.3, we can see the shortest length of

codeword is 2 and the average wordlength is 3.8235. In table 5.4 the shortest

length of codeword is 2 and the average wordlength is 2.7986. Comparing to

the delta modulation method, this method saves up to 1.1765 bits per word and

1.2014 bits per word respectively. As we discussed in chapter 4, Huffman coding

never produces any error[25]. Therefore if we combine ADM with Huffman

coding we will get the same error as we get with adaptive delta coding and the

38

same reconstructed waveforms we obtained in chapter 3. However, the average

number of bits per word will be significantly reduced.

39

Table 5.1: Huffman coding tree 6. = 8

40

Table 5.2: Huffman coding tree 8 = 16

41

Table 5.3: Result of 6. 8

i f(i) L(i) code
-1 1708 2 11
1 1270 3 011
2 992 3 101
-2 812 4 0011
0 786 4 0010
3 677 4 0000
-3 516 4 0101
4 433 4 1001
-4 337 5 00010
5 256 5 10001
-5 232 6 000111
6 147 6 010000
-6 136 6 010011
7 126 6 100001
-7 96 7 0001101
-8 76 7 0001100
8 67 7 0100101
-9 69 7 0100011
9 45 8 01000101
-10 36 8 01001001
10 28 9 000110001
-11 30 9 000110011
11 16 9 010010001
-12 18 9 010001001
-13 15 9 010010000
-15 28 9 000110010
12 11 10 0100010001
13 12 10 0001100000
-14 14 10 0001100001
14 1 11 01000100000
15 9 11 01000100001

42

Table 5.4: Result of 6 = 16

i f(i) L(i) code
-1 2627 2 11
1 2220 2 01
0 1511 3 101
2 895 3 001
-2 640 4 1001
3 354 4 0001
-3 252 5 10001
-4 150 5 00001
4 138 6 100001
-5 59 6 010001
5 46 7 1000001
-7 38 7 1000000
-6 35 7 0000001
6 24 8 00000001
7 10 8 00000000

43

Chapter 6

Discussion

In the previous sections, direct data compression methods and transforma-

tion technique used for EEG data compression have been discussed. Table 6.1

provides a summary of EEG data compression techniques in terms of compres-

sion ratio (CR) and error. The compression ratio calculation of each technique

is based on comparing compression parameters with the number of samples in

the original data file and comparing the word length of the compression param-

eters with the word length of samples in the original data file. The former is

used to calculate the compression ratio for transformation techniques (Walsh

transformation technique). The latter is used to calculate the direct data com-

pression methods. The error is calculated the same as we discussed in chapter

2. For the transformation method, the error comes from reducing the number

of transformation coefficients. This error occurring in the ADM method is the

quantization error. We notice that the Walsh transformation method produced

larger error than the direct data compression methods for the same degree of

compression, and that some high frequency signals are cut off. This is because

the distribution of power in the frequency spectrum of the EEG is very wide[26].

Therefore when it appears in the Walsh transformation the power spectrum is

44

very diffuse[27]. During the data compression, we set some Walsh coefficients

to zero. Actually these data are not near zero. As a result a large error occurs

as well as the loss of high frequency signals.

In the direct data compression methods, we have two methods (1). delta;

(2). Huffman coding. In the first method we can see from table 6.1 that if δ= 8

we get CR = 0.416 (58.4% compressed) and an error of 2.5 and if δ = 16 we get

CR = 0.333 (66.7% compressed) and a corresponding error of 6.019. It seems

that if the CR is reduced by 0.1 the error will become three times larger than

before. But when the error is compared with the sampled data value (usually

the range is 600), it is still very small. From the reconstructed waveform (Fig-

3.8 and Fig-3.9; Fig- 3.11 and Fig-3.12; Fig-3.14 and Fig-3.15, we can see there

are not big differences between CR = 0.416 and CR 0.333 and also no big

effect on the spikes and the particular waveforms. Therefore we prefer to use

CR = 0.333, in other words we can get 66.7% data compressed.

One of the advantages of Huffman coding is that it never produces an

error in the reconstructed file[25]. However Huffman coding is impossible to use

directly in EEG data compression as we discussed in chapter 4. In chapter 4 we

made some assumption got almost the same result (table 6.1) as we get from

delta coding (δ = 8).

The Huffman coding method is hard to apply directly to the EEG data file

even if we did some data combining. But we can apply this method to the ADM

system, in other words the codewords of the second difference EEG data were

encoded again by Huffman coding. It can be seen from the table that ADM

encoding followed by Huffman encoding resulted in a high data compression

ratio while the error remains the same as ADM encoding. In other words the

reconstructed waveform is the same as that reconstructed from ADM encoding.

45

The normal EEG, spikes and the particular EEG waveform such as slow rhythm

can be reconstructed the same as we obtained in the chapter 3 (Fig- 3.8, Fig-

3.9, Fig-3.11, Fig-3.12, Fig-3.14 and Fig-3.15) while the data file are compressed

10% more than ADM coding.

From the above analysis, it seems the delta modulation followed by Huff-

man coding is the best way to compress the EEG data among these data com-

pression methods used in this project. However before we compress the data we

have already made some assumptions during the A/D convertion. We fixed the

sampling frequency at 0.2 KHz and fixed the wordlength as 12 bits. Conceptu-

ally, data compression is the process of detecting and eliminating redundancies

in a given data set. According to Shannon's definition[28] the redundancy is

a fraction of a message or datum which is unnecessary and hence repetitive in

the sense that if it were missing, the message would still be essentially com-

plete, or at least could be completed. Hence the first step towards EEG data

compression is of the selection of minimum sampling rate and wordlength. If

we reduced the sampling frequency to exactly two times of the EEG frequency

and exactly the length of word to present the EEG signal, it will not affect

the result of the Walsh transform, because it will not affect the distribution of

EEG frequency. Thus the Walsh coefficients will not be affected. However in

adaptive delta modulation we use the varied steps to trace the EEG waveform.

If the sampling rate is reduced, the difference between the adjacent pair samples

will be increased, since the 8 is selected by using the largest difference divided

by the length of codeword. Therefore if we still use the same length of code-

word to code the difference, the 6 will be increased and hence the quantization

error will be increased. Also the delta modulation and Huffman code method

compress the data by reducing the wordlength. Therefore, if we reduce the

46

wordlength before using any data compression method, then the data compres-

sion degree in the delta coding and Huffman coding will be decreased. And the

Walsh transformation method will not be affected, because the Walsh transform

method compresses the data by reducing the number of samples rather than the

wordlength.

The EEG frequency band is between 0 and 30 Hz[1] except for some special

spikes. Thus the high frequency cut off for the low-pass filter in the EEG

machine is 70 Hz. Also, the value of the data varies from -1000 to 1000 including

some special cases as we discussed in Chapter 4. Therefore, 140 Hz sampling

rate and 11 bits long wordlength are enough for the EEG waveform. If we use

these parameters it will not affect the Walsh transformation as we discussed

above while in the delta coding and the Huffman coding methods the data

compression degree will decrease and the error will increase. In this situation,

maybe, the Walsh transformation method may be better than the direct data

compression methods. The reason for using 0.2 KHz sampling and 12 bits long

wordlength is because when we use the DASH-16 in the A/D converting the

wordlength of sampled data is fixed as 12 bits long[18]. Also the sampling

rate in the DASH-16 can only be 0.1 KHz, 0.2 KHz, ..., etc and it can not be

0.14 KHz[18]. Therefore the lowest sampling frequency for the EEG waveform

can be chosen is 0.2 KHz. Under this situation, we found the adaptive delta

modulation followed by Huffman coding is the best for EEG data compression

among all signal data compression methods we used in this project.

47

Table 6.1: Summary some EEG data compression schemes

Technique CR=compressed data file
/original data file

error = Σi=1N(xi-xi)2/N

Walsh

transformation

0.8 the last 1/5
Walsh spectrum was ignored

18.4

0.4 the last 3/5
Walsh spectrum was ignored

25.8

0.32 the last 17/25
Walsh spectrum was ignored

26.5

Adaptive
delta coding

0.416 δ = 8 2.547
0.333 δ = 16 6.019

Huffman coding 0.423 2.547
ADM followed

by Huffman coding
0.311 δ = 8 2.547
0.233 δ = 16 6.019

48

Appendix A

Computer Program

The following includes programs to perform Adaptive delta modulation,

reconstruct ADM waveforms, calculate frequency of occurrence of data for Huff-

man coding, perform data combination for Huffman coding, and calculate er-

rors. All the programs are written in Pascal language and the flow charts for

the programs are in the Appendix B.

(1). Adaptive delta modulation

In this program we kept the first original data for reconstructing and also

as the first predictor data. By subtracting the current data with the predictor

data we obtained a suitable step k iδ , then we outputki as the codeword and

adjust the predictor. Proceeding in this way, we can code the whole data file.

(2). Reconstruct signal from ADM

Because we have already stored the first original data, we can reconstruct

the data by adding the k

i

δ to the previous one. k

i

 is the codeword in the code

file.

(3). Calculate the frequency of the data value

By counting the number of occurrences of the same data value we can

obtain the corresponding frequency of occurrence.

(4). Calculate the frequency of data group value

49

Comparing the data with 8i, if the data is between 8(i — 1) and 8i, we

set it to 8(i — 1) -1- 4. Then we count the number of data in the same interval

8(i — 1) and 8i.

(5). Error calculation

We compare the data from original file and the reconstructed file by using

the normalized square error.

50

**
** 	 PROGRAM 1 ADAPTIVE DELTA MODULATION 	 **
** **
** The original data comes from "infile" and the **
** compressed data sends to "outfile". The first original **
** data is kept in outfile for reconstructing and also as **
** the first predictor data "a". By subtracting the **
** current data "b" with "a", we obtain a suitable step **
** "n*d". Output n as the codeword and add "a" by "n*d" **
** to get a new predictor. **
**

program code (input,output,infile,outfile);
var

infile,outfile:text;
a,b,n,c:integer;

begin
assign (infile,'a:gar07.u');
assign (outfile,'a:gar07.c');
reset (infile);
rewrite (outfile);
readln (infile,a);
writeln (outfile,a);
c:=a;
while not eof(infile) do

begin
readln (infile,b);
n:=0;
if a>b then
begin

while (a>b) and (n<15) do
begin

b:=b+7;
n:=n+1;

end;
b:=b-3;
if (a<b) and (n>1) then

n:=-(n-1)
else

n:=-n;
c:=a-((-n)*7);
end

else
if a<b then
begin
while (a<b) and (n<15) do

begin
b:=b-7;
n:=n+1;

end;
b:=b+3;
if a>b then

n:=n-1;
c:=a+(n*7);

51

end
else

n:=0;
writeln (outfile,n);
a:=c;

end;
close (outfile);

end.
**
** 	 PROGRAM 2 RECONSTRUCTED FROM ADM 	 **
** **
** The codewords come from "infile" and the reconstructed **
** data send to "outfile". Because we have already **
** reserved the first original data. Therefore we can **
** reconstruct the data by adding the "n*d" to the **
** previous one. Here n is the codeword in the code file. **
**

program recov (input,output,infile,outfile);
var

infile,outfile:text;
a,n:integer;

begin
assign (infile,'a:gar07.c');
assign (outfile,'a:gar07.r');
reset (infile);
rewrite (outfile);
readln (infile,a);
writeln (outfile,a);
while not eof(infile) do

begin
readln (infile,n);
a:=a+7*n
writeln (outfile,a);

end;
close (outfile);

end.

**
** PROGRAM 3 CALCULATE THE FREQUENCY OF THE DATA VALUE **
** **
** Count the number of same data value from "infile" **
** and send the data value with the corresponding **
** frequency to "outfile". **
**

program st (input,output,infile,outfile);
var

infile,outfile:text;
i,j,k:integer;
A:array [0..9,0..9,0..9] of integer;
B:array [0..9,0..9,0..91 of integer;

52

PA:array [0..9,0..9,0..9] of real;
PB:array [0..9,0..9,0..9] of real;
c: real;

begin
assign(infile,'a:gar07.u');

reset (infile);
assign(outfile,'a:gar07.s');
rewrite (outfile);
for i:=0 to 9 do
begin

for j:=0 to 9 do
begin

for k:=0 to 9 do
begin
A[i,j,k]:=0;
B[i,j,k]:=0;

end;
end;

end;
readln (infile,c);
while not eof (infile) do

begin
if c>0 then
begin

c:=trunc(c);
i:=trunc(c/100);
j:=trunc((c-i*100)/10);
k:=trunc(c-i*100-j*10);
A[i,j,k]:=A[i,j,k]+1;

end
else
begin
c:=abs(c);
c:=trunc(c);
i:=trunc(c/100);
j:=trunc((c-i*100)/10);
k:=trunc(c-i*100-j*10);
B[i,j,k]:=B[i,j,k]+1;

end;
readln(infile,c);

end;
for i:=0 to 9 do
begin
for j:=0 to 9 do
begin
for k:=0 to 9 do
begin
writeln(outfile,'A[',i,j,k,']=',A[i,j,k],'

end;
end;

end;
close (outfile);

end.

53

**
** PROGRAM 4 CALCULATE THE FREQUENCY OF DATA GROUP VALUE **
** **
** Get the data from the "infile" and compare the data **
** with i*8. If the data between (i-1)*8 and i*8, set it **
** to (i-1)*8+4. Count the number of data in the same **
** interval (i-1)*8, i*8, output the value (i-1)*8+4 and **
** the corresponding frequency to "outfile". i=1,2, . **
**

program st (input,output,infile,outfile);
var

infile,outfile:text;
i,j,k:integer;
A:array [0..125] of integer;
B:array [0..125] of integer;
c:real;

begin
assign(infile,'gar07.u');
reset (infile);
assign(outfile,'gar07.s');
rewrite (outfile);
for i:=0 to 125 do

begin
A[i] :=0;
B[i] :=0;

end;
readln (infile,c);
while not eof (inf ile) do

begin
if c>0 then
begin

c:=trunc(c);
i:=trunc(c/8);
A[i] :=A[i]+1;

end
else
begin
c:=abs(c);
c:=trunc(c);
i:=trunc(c/8);
B[i]:=B[i]+1;

end;
readln(infile,c);

end;
for i:=0 to 125 do

begin

writeln(outfile,'A[',i*8+4,']=',A[i],

54

end;
close (outfile);

end.

** 	 PROGRAM 5 ERROR CALCULATION **
** **
** Get the data from original file (infilel) and the **
** reconstructed file (infile2). calculated the error as: **
** ΣNi=0(xi-xi)2/N **
** 	 **
**

program sums (input, infilel,infile2);
var

infile1,infile2:text;
a, b, sum, x: real;
n:integer;

begin
assign (infile1,'a:gar07.u');
assign (infile2,'a:gar07.r');
reset (infile1);
reset (infile2);
sum:=0;
n•=1•
while no eof (infile1) and (infile2) do

begin
readln (infile1,a);
readln (infile2,b);
x:=(b-a)*(b-a);
x:=sqrt(x);
sum:=x+sum;
n:=n+1;

end;
sum:=sum/n;

writeln(sum);
end.

55

Appendix B

Flow-Chart for the programs

56

Table B.1: Adaptive delta modulation

57

Table B.2: Reconstructed signal

58

Table B.3: Calculation the data frequency

Table B.4: Data combination

Table B.5: Error calculation

61

Bibliography

[1] E. Niederrneyer and F. Lopes da Silva, Elect roencephalography Basic Prin-

ciples, Clinical Applications and Related Fields Amsterdam:Elsevier. 1987

[2] A.Remond, Handbook of Electroencephalography and clinical neurophysi-

ology. Amsterdam:Elsevier. 1975.

[3] B.R.S.Reddy and A.S.N.Murthy," ECG data compression using Fourier

descriptors." IEEE Trans. Biomed. Eng., Vol.BME-33, pp.428-434. April

1968.

[4] M.S.Sateh, J.Chriswell, G.Hutchens, R. D.Strattan, W.A.Coberly, "ECG

data compression techniques — a unified approach." IEEE Trans.Biomed.

Eng., Vol 37. No.4, April 1990.

[5] J.R.Cox, F.M.Nolle, H.A.Fozzard and G.C.Oliver. "AZTEC a preprocess-

ing program for real-time ECG rhythm analysis." IEEE Trans. Biomed.

Eng., Vol BME-15. pp.128-129. Apr. 1968.

[6] J.R.Cox, F.M.nolle and R.M.Arthur, "Digital analysis of electroen-

cephalogram, the blood pressure wave and the ECG." Proc. IEEE, Vol

60. pp.1137-1164. 1972.

[7] W.J.Tompkins and J.G.Webster, Design of microcomputer-based medical

instrumentation. Englewood Cliffs, NJ: Prentice-Hall, 1981.

69

[8] J.P.Abenstein and W.J.tompkins. "A new data reduction algorithm for

real-time ECG analysis." IEEE Trans. Biomed. Eng., Vol BME-29. pp.43-

48. Jan. 1982.

[9] H.K.Wolf, J.Sherwood and P.M.Rantaharju. "Digital transmission of

electrocardiograms— A new approach." Proc. 4th Corn. Med. Biol. Conf.,

pp.39a- 39b, 1972.

[10] P.B.Jayakav, E.Brusse, J.P.Patrick, E.Shwedyk and S.S.Seshia, "Com-

puter database of ambulatory EEG signal." Electroencephalography and

Clinical Neurophysiology, pp.82-88. 1987.

[11] D.Stewart, G.E.Dower and O.Suranyi, "An ECG Compression Code."

J.Electrocard., Vol 6. pp.175-176, 1973.

[12] V.Cappellini, "Data compression Application to Biomedical Images."

Data Compression and Error Control Techniques Applications. Academic

Press, LTD, pp.268-272, 1985.

[13] M.Shridhar and N.Mohankrishnan, "Data compression techniques for elec-

trcardiograms," Can. Elec. Eng.J., vol.9, no.4, pp.126-131, 1984.

[14] V.Cappellini, "Some digital techniques for biomedical signal and image

processing." Elektrotchnika, Proc. Symposium Medicine and Techniques,

Zagreb, Yugoslavia, pp.283 - 285. 1977.

[15] V.Cappellini and A.N.Venetsanopoulous, "Two- dimensional digital fil-

ters with applications to biomedical image processing." Proc. Congresso

Brasileiro de Engenhoria Biomedical, 8th, Florianopolis, Brasil, Nov.

1983.

63

[16] M.E.Womble,	 J.S.Halliday,	 S.K.Mitter,

M.C.Lancaster and J.H.Triebwasser. "Data compression for storing and

transmitting ECG's/VCG's." Proc. IEEE Vol 65, pp.702-716. May, 1977.

[17] W.S.Kuklinski, "Fast Walsh transform data compression algorithm:

E.C.G. applications." Comput. Biol.Medi. vol.21 pp.465-472. 1983

[18] Metrobyte Data acquisition and control — Dash- 16 Manual. Copy-right

by MBC 1984.

[19] N.Ahmed and K.R.Rao. "Data compression using orthogonal transforms."

Applications of Walsh Functions and sequency theory. IEEE Cat. pp.191 -

209. 1974

[20] N.Ahmed, D.J.Milne and S.G.Harries. "Electrocardiographic data com-

pression via orthogonal transforms." IEEE Trans. Biomed. Eng., Vol

BME-22. pp.484-492, Nov. 1975.

[21] R.Dzwonczyk, M.B.Howie and J.S.Mcdonald. "A comparison between

Walsh and Fourier analysis of the Electroencephalogram for tracking the

effects of Anesthesia." IEEE Trans. Biomed. Eng., Vol BME-31. No.8,

August 1984.

[22] R.Steele and C.Eng. "Linear Delta Modulation." Delta Modulation. Hal-

sted Press. 1975.

[23] T.J.Lynch "Delta Modulation." Data Compression. Techniques and Appli-

cation. pp.94-97. Van Nostrand Reinhold. 1985

[24] D.A.Huffman, "A method for the construction of minimum redundancy

codes." Proc. IRE, 40(9), pp.1098-1101. 1952.

64

[25] V.Cappellini "Huffman coding." Data compression and error control tech-

niques with applications. Academic Press, Ltd, pp.20-21. 1985.

[26] H.Larsen and D.C.Lai, "Walsh spectral estimates with applications to the

classification of EEG signal." IEEE Trans. Biomed. Eng,. Vol BME-27.

NO.9, Sept. 1980

[27] B.W.Weide and L.T.Andrews and A.M.Iannone. "Real-time analysis of

EEC using Walsh transforms." Comput. Biol. Med. Vol 8. pp.255-263.

[28] C.E.Shannon and W.Weaver. The mathematical Theory of Communica-

tion. Urbana. IL: Univ. Illinois Press. 1949.

65

	EEG data compression
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Walsh Transformation
	Chapter 3: Adaptive Delta Coding Method
	Chapter 4: Huffman Coding
	Chapter 5: The Combination of ADM and Huffman Coding
	Chapter 6: Discussion
	Appendix A: Computer Program
	Appendix B: Flow-Chart for the Program
	Bibliography

	List of Figures (1 of 2)
	List of Figures (1 of 2)

	List of Tables

