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ABSTRACT

Interference cancelation has been mainly performed using arrays, in an im-

portant issue in communication both array and spatial cancelation and time domain

approach were used. In array applications, depth of cancelation may dependent on

the interferences to background power ratio and their spatial distributions. Also,

array cancelers are inadequate when the signals are less than an array beamwidth

apart. The latter was dealt with using supperesolution and eigenanalysis methods.

Different time domain methods were used in the past. Among them what is termed

Cross-Coupled PLL. It is an arrangement of two PLL each one is locked on and

tracking one signal of the two at the input. In fact the output of such a system

is dependent on one signal or the other. In a way Cross-Coupled PLL is a signal

separator. For the case of more than two signals we proposed in this thesis the

N-Cross Coupled PLL. It is used to receive and process one of the N signals while

suppressing the others which could be looked upon as interchannel interference.

N-Cross Coupled PLLs consist of N PLLs interconnected using amplitude control

loops that estimate the instantaneous amplitude of each signal. N-1 signals are then

subtracted from the input to leave, as clear as possible, one signal to be handled by

the corresponding PLL. If the PLLs are used as FM demodulators then we get at

the output the information contained in each signal regardless of the signal's rela-

tive powers and or their modulation content. Thus N-Cross Coupled PLLs behave

as N signals separator.
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Chapter 1

INTRODUCTION

1.1 Phase Locked Loops

1.1.1 History

In the year 1932, a group of British scientists experimented with a receiver simpler

than the superheterodyne receiver. They wanted to reduce the number of tuned

stages. The new method had to outperform the superheterodyne in order to receive

recognition. The so called homodyne, and later synchrodyne, receiver, consisted of

a local oscillator, a mixer, and an audio amplifier. Synchronization, however, was

difficult because of the local oscillator's drift in frequency. A phase detector was

then added to compare the output of the oscillator with the input signal. Thus

a correction signal for the oscillator was found. It was not until the fourties that

phase locked loops (PLLs) were widely used in television receivers. Today PLLs are

used in almost every communication system (e.g. AM, PM and FM demodulators,

FSK decoders, frequency synthesis, radar, telemetry, command, control, ranging,

2



Figure 1.1: Block diagram of a Phase Locked Loop

and instrumentation systems).[1]

1.1.2 General PLL

One of the biggest problems in communication is transmission power. Since trans-

mission power is somewhat limited (weight, power supply, price, or international

power radiation regulations) the transmitted signals are often immersed in noise and

more importantly in interference. In such cases traditional reception techniques are

useless, but coherent detection is efficient.

A PLL is a device designed to lock on and follow the phase of an input. A

PLL consists of three main blocks, a phase detector, a loop filter, and a voltage

controlled variable frequency oscillator. (Fig. 1.1)

The output of the VCO (reference signal) is desired to be a good estimate

of the input signal in frequency and phase. The two signals are then fed into a

phase detector whose output is a function of their phase difference plus a higher

3



frequency component. The latter is eliminated by the low pass loop filter, and the

former, (e.g. error signal), serves as an error voltage for the VCO. This error voltage

controls the change in the instantaneous frequency and phase of the reference signal.

1.1.3 Terminology

It will be helpful to become familiar with some basic terms before discussing PLLs.

A PLL operates in one of two modes. The first is called the acquisition mode and

it is the state of the loop when its reference signal has not yet started to follow

the input signal. In other words it is the state when the loop is trying to achieve

synchronization. The second mode is called the tracking mode and it is the state of

the loop when the reference signal is continuously close to the input signal within a

small phase error, or when the loop is in constant synchronization. Sync failure is

the process of loosing lock, after the loop was in the tracking mode. Cycle slipping

is the phenomenon when the reference signal either loses or gains one complete

cycle (360°, or 27).

The order of a PLL is determined by the number of poles at zero of the

loop filter plus 1. The addition of one takes into account the pole of the VCO. The

pull-in range is the maximum value of the difference in initial frequency from which

the loop can reach the tracking mode. The signal acquisition time, or pull-in time,

or lock-in time, is the time needed for the loop to reach the tracking mode after

being in acquisition mode. And last but not least, PLLs have what is known as the

capture effect. [2] This phenomenon describes the capability of a phase locked loop

to lock on the strongest of signals if a number of inputs is applied.

4



1.1.4 General Equations

The general equations governing the operation of a PLL in a noiseless environment

will be developed in this section. Assuming that:

where ϕ (t) and : ϕ(t) are,

Hence the output of the phase detector ε(t) is the product of its two inputs,

where,

and Km is the phase detector gain.

After the loop filter, f(t), which is a low pass, the double frequency term can be

neglected and the input to the VCO z(t) is,

where * is the convolution. Since the VCO is an oscilator whose frequency is

modulated by its input, with a modulation sensitivity K„ in rad/s/V, then,
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where K = K1KmKv,and is known as the open loop gain. Chapter 2 will discuss

some of the applications of PLLs as well as the loop equations in both noisy and

noiseless environments.

1.2 Cross Coupled Phase Locked Loops (CC-

PLL)

In this section, the basic theory behind CCPLLs (2CCPLL)[3] as an FM demod-

ulator will be introduced. The CCPLL is capable of seperating and demodulating

two signals even if they have the same center frequency. The scheme makes use of

the capture effect of a PLL.

CCPLL (see figure 1.2) consists of two PLLs connected together in such

a manner to help suppress interchannel and cochannel interference. One of the

two PLLs locks onto and tracks the stronger of the two signals, and through the

interconnection helps the other lock onto and track the weaker signal. Furthermore,

each PLL is capable of performing FM demodulation on one of the two signals.

The CCPLL tracking behavior is the same as that of a PLL. Because of the

the two signals at the input, the acquisition behavior is different from that of the

single PLL. At the input of both adders in Figure 1.2, the signal is composed of

6



Figure 1.2: Block Diagram of a CCPLL

two independent signals x1 (t) and x2 (t). In steady state, only one signal will be

present at the output of each adder. Let us assume that one of the signals, say

x1 (t), is larger (even slightly) than the other, x 2 (t). Because of the capture effect,

it is reasonable to assume that loop 1 will lock on x1 (t). It is well known that the

VCO output, 7, 1 (0, is 90° behind its input, so the other 90° results in 180° phase

shift. The adder of loop 2 will subtract x 1 (t) from the input signal leaving only

x 2 (t) as an input to the second loop. In a similar manner, the adder of loop 1 will

subtract x 2 (t) from the input signal insuring that only x 1 (t) is applied to loop 1. It

does not matter which loop is tracking which signal. It is sufficient to recognize the

desired output to determine which loop it is. Since the amplitude of the VCO is

not related to the amplitude of the signal input to the loop, this scheme will need

an amplitude control system to make sure that the signals are subtracted in the

7



right amount.

This system, including the amplitude control, is discussed in chapter 3. Also,

chapter 3 will present the N-cross coupled PLL (NCCPLL) and its mathematical

model. Chapter 4 will particularly outline the 3CCPLL example. Chapter 5 con-

tains results and conclusions.
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Chapter 2

Phase Locked Loops

The PLL model described in chapter 1 contains the basic form, or the essential

building block of a PLL. The block diagram in figure 2.1 is a more general model

for a PLL as it applies to AM, PM and FM demodulation[4]. The following is a

list of keys for the figure:

• PD = Phase detector

• LF = Loop filter

• OF = Output filter

• 90° PS = A 90° phase shifter

• WG = The waveform generator that needs synchronization. Either a VCO

or an FCO

• AA = Acquisition aid

• AGC = Coherent automatic gain control

9



Figure 2.1: A General Model of PLLs

Most applications of a PLL can be considered as a special case of this general model.

PLLs have many applications, but the following are the more generally used:

1. Carrier tracking

2. Suppressed carrier tracking

3. Coherent Demodulation of analog and digital signals

4. Symbol (Bit) synchronization

5. Frequency synthesis

1 0



Figure 2.2: Carrier Tracking PLL

2.1 Carrier Tracking

Coherent communication is widely used at the present. Coherent demodulation

basicaly means that the modulated signal is demodulated using a carrier that is a

close replica of the input signal; exactly the same frequency and a small difference

in phase. A PLL can reconstruct a carrier from that of the received signal, even if

the signal is well below noise level. To achieve carrier tracking the loop operation

is the same as that described in the introduction. Only an additive white gaussian

noise may be present and an acquisition aid is added to help reduce the acquisition

time. The block diagram of such a system is shown in figure 2.2. With the added

noise,

where

and 722(t) is the background noise which is always considered white gaussian. A(t)

represents either analog or digital amplitude modulation, OM is either an analog

1 1



or a digital phase or frequency modulation. Also,

where ϕ (t) is the loop estimate of ϕ(t). e(t) in the diagram is the acquisition aid

voltage. Here the waveform generator is a VCO and the phase detector is a simple

multiplier. For the noise free case, the equations presented in the introduction are

applicable here. The loop of figure 2 can be designed so that, even in the presence of

noise, when the average of ε (t) is constant, the loop is phase locked and, therefore,

is in the tracking mode. As soon as either s(t,ϕ) or r(t,ϕ ) change phase, the output

of the loop filter creates an error voltage proportional in magnitude and direction

to the phase change. When both z(t) and ε(t) are applied to the VCO, a change in

frequency and phase in the VCO output follows so that it tracks the phase of the

input signal. Therefore the loop retains lock, and stays in the tracking mode. This

version of the PLL has found use in:

• Envelope detection

• PM and FM detection

• The synchronization of multiple clock frequencies in computers

• Multichannel receivers and transmitters

• The control of precision motor speed
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2.2 Suppressed Carrier Tracking

For many different reasons, some communication schemes require a suppressed car-

rier transmission. Although s(t , 0) in such cases does not contain a carrier compo-

nent, it is still possible, through a wide range of techniques using PLL to reconstruct

the missing carrier component and then track it. Different approaches were sug-

gested for suppressed carrier tracking; namely: Costas Loop, N th power loop, data

aided loops, decision directed loops, delay lock loops, hybrid loops, etc.

2.3 Coherent Demodulation of Analog Signals

Looking at the general model of a PLL one can see the different possibilities for

demodulation of analog signals. Narrowband FM or PM can be extracted from the

output of the phase detector of a the PLL, while wideband FM or PM demodulation

can be retrieved from the loop filter's output.

AM coherent demodulation, on the other hand, is possible by using a co-

herent detector after phase shifting the VCO's output by 90°. In addition to AM

detection this configuration can provide an Automatic Gain Control (AGC) or a

lock indicator. It should be noted, however, that most phase detectors used in PLL

applications are amplitude sensitive. Therefore, AGC is important where accurate

control of loop parameters is required.
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2.4 Coherent Demodulation of Digital Signals

Digital data is regularly used to modulate a subcarrier which in turn modulates the

main carrier. If the subcarrier is phase modulated, the digital data can be recovered

through another carrier tracking loop with a center frequency close to that of the

subcarrier. The input to the second carrier tracking loop is taken from the output

of the phase detector. Thus, the output of the second subcarrier tracking loop filter

is the desired digital data. In the case when the information is modulated such that

a suppressed carrier results as in PSIS, a Costas loop should be used instead of the

second carrier tracking loop. The output of the lower phase detector of Costas

loop would be the baseband modulation signal. Digital AM signal demodulation is

similar to that of analog AM signals.

2.5 Symbol (Bit) Synchronization Systems

In digital data communication it is vital to be able to achieve symbol synchro-

nization in order to recover the data. Achieving symbol synchronization means

determining the time when a modulation changes states. Although it is possible to

use a separate channel to provide symbol synchronization information, it is more

efficient to obtain this information directly from the received data signal. The block

diagram in Figure 2.3 shows the model of a class of symbol synchronization systems

as suggested by the maximum aposteriori estimation. The phase detector of such

systems could have one of the following characteristics:

14



Figure 2.3: Block Diagram of Symbol (Bit) Synchronization System, RCO = Ref-
erence Controlled Oscillator, LC = Logic Circuit

®The Early-late gate

OThose which incorporate an absolute value approach

OA difference of squares approach

®The decision directed

The following are keys for Figure 2.3

®RCO = Reference Controlled Oscillator

® LC = Logic Circuit

15



Figure 2.4: Frequency Division / Multiplication

2.6 Frequency Synthesis

Indirect frequency synthesizers of spectrally pure signals techniques rely heavily on

the PLL. It is used in performing frequency division as well as multiplication (Fig.

2.4), and frequency translation (Fig. 2.5). These operations can be performed

together to form a programmable frequency synthesizer. The divider/multiplier

operation is very simple. Before entering the loop the signal is frequency divided

by M and after the VCO the reference signal is again frequency divided by N,

thus, the output of the VCO is the signal multiplied by N and divided by M in

frequency. By the appropriate choice of M & N either division or multiplication

can be performed. The loop for frequency translation is even simpler. Here the

output of the VCO is mixed with a reference signal of frequency f l . Thus the

output of the VCO is shifted to a frequency fo = f

16



Figure 2.5: Frequency Translation

2.7 Operational Behavior of General PLL

As mentioned before, a PLL operation falls under two categories,

1. Acquisition mode

2. Synchronous or tracking mode

The performance of PLL could be statistical or deterministic depending on

whether noise is present or not. In the rotating phasor form, and assuming that

the amplitude is one,

the instantaneous angular velocities of the two phasors are,

17



Even though the phase error Φ(t) = ϕ(t) - ϕ(t) depends on the application and the

mode of operation, the performance measures associated with the random process

{Φ(t)} are essentially independent of the application.

2.7.1 Acquisition Mode

At time t = t0 the two phasors in Eqs. 2.4 and 2.5, rotate at angular velocities

of, ϕ(t)|t=t0 = w = w(t0 ) and ϕ(t)| t=t0 = w0 = w(t0 ). Hence, at t = t0 the relative

velocity is given by

Ω/2π is known as the initial frequency detuning. The phase locked loop is said to

have entered the synchronous mode if for t = t a , 	 |Φ| <  εΩ and |Φ(t) - 2nπ| < εΦ

for an integer n. Here, εΦ and εΩ represent the error of the derivative of the phase

difference and the error of the phase difference respectively. The time t acq = t a,-  t0

is the signal acquisition time. This value is sometimes referred to as either pull-in

time or lock-in time.

In a noisy environment tacq is a random variable with an Nth moment Tnacq=

E[tnacq] .This value depends on the initial state of the system. Sometimes the initial

state itself is a random variable. If so, Tnacqmust be averaged over the initial state's

probability density function (pdf).

After t > ta ,

is called the mean residual frequency detuning. Here, wv (t) is the average radian

frequency of the synchronized wave generator and w 0  - wv(t)/2πthe mean frequency
27r

18



shift.

If ϕ (t) = w (t) 	 constant, then Ω0 = w - w0 is also a constant. The largest

value of Ω0 (= |Ω0|m ) from which the system can reach the synchronous state is

known as either the pull-in range or lock-in range. Since the acquisition mode is

nonlinear, only nonlinear methods can be used to model its behavior.

2.7.2 Synchronous Mode

As soon as |Φ(t)| < εΩ and |Φ(t) - 2nπ| < εΦ , the loop is in the tracking mode,

it tends to stay in it. In the presence of noise, and because of the instability of

the wave generator, Φ(t) will fluctuate. Although linearized models have been

developed to explain the behavior of PLLs, a number of performance measures are

needed to explain the PLL's behavior. The most important of them is the time

dependent conditional transition pdf P(Φ, t|Φ 0 , t0 )[5] where ϕ is the phase error,

Φ0  is the initial condition on the phase and t0 is the time at t = 0. Also, in some

applications P ( φ((t), t|φ0,t0, n)is of interest as well as the steady state conditional

transition pdf P (φ|n) , where φ(t) is,

Some applications require emphasis on the phase error OM. In such cases,

the application determines the requirements needed in 0(t)'s mean and average.

Some cases restrict the mean to the order of few degrees, while others allow it to

be as large as 450 . If at some point in time (1. changes by +27r, the process is called

cycle-slipping. In relation to this phenomenon, the average rate of cycle-slipping .3

19



The time, Tfp, it takes for a sync failure to occur is a random variable

whose statistical description through its pdf and moments are important. The first

moment of this random variable is called the mean time to sync failure and it is

noted by,

This mean is very similar to the first passage time problem in the theory of Markov

processes.

To complete the system performance characteristics, the probability of a

sync failure P(t) in the time interval [to , t], as well as the probability of n cycle-

slippings in the same interval of time, are of interest. Also the average time between

cycle-slipping and the average time the system remains out of lock are important.

The statistical properties of sic. and :9 characterize the frequency stability of the

synchronized generator.

2.8 Loop Equations in the Absence of Noise

In the following analysis of the PLL it will be assumed that the phase detector is a

simple multiplier. Thus the loop block diagram is shown in figure 2.6. Also, it will

be assumed that

20



Figure 2.6: Carrier Tracking PLL

where A(t) could be either a message that amplitude modulates the carrier, or

caused by time varying multipath. It could also be a constant magnitude.

w0/2πis the center frequency of the input signal, andθ(t) is a message that is phase

modulating the carrier. θ (t) could also be a constant phase. Let

where

Ignoring the double frequency terms the output of the phase detector becomes,

where Km is the multiplier gain and

21



and using equations (2.11) and (2.13),

E(t) is known as the dynamic phase error. At the output of the loop filter z(t) is,

where F (p) is known as the heaviside operator, and thus, z(t) is,

In order to derive the transfer function of the VCO, one should know that

when the input of the VCO is zero then the oscillator operates at its natural fre-

quency coo . It is assumed that the VCO change in frequency is linear with respect

to the input voltage. Thus,

By using equations (2.13) and (2.20), and writing in operator p notation,

combining equations (2.21), (2.17), and (2.14) it follows that,

which implies from equation (2.16),

22



Since p denotes the derivative operation d/d t, equation (2.24) becomes,

and replacing F(p) by the convolution integral,

Equation (2.26) is in the form of a nonlinear integro-differential equation. It rep-

resents the loop equation in the absence of noise. If F(p) has n poles at the origin,

the loop would be of the (n+1) th order.

2.9 Loop Equation in the Presence of Noise

Additive white noise is part of any electric system. In PLLs the fluctuation in the

VCO and in the transmitter's local oscillator also have to be included as noise.

Again assuming that,

where

and 02 (0 is the phase jitter noise produced by the VCO.

23



Figure 2.7: PLL in a Noisy Environment

It will be assumed that the additive noise ni(t) in figure 2.7 is a narrowband

Gaussian random process (Appendix A), whose outocorrelation,

From Appendix A,

The input to the PLL, x(t), is the sum of the signal and noise,

Where,

24



Thus x(t) becomes,

Defining N(t) and Ns(t) as,

and,

hence x(t) becomes,

Therefore, the ouput of the phase detector ε(t) is,

and the output of the filter in the p operator notation is z(t) = F(p)ε (t), thus we

get a VCO instantaneous frequency of,

Replacing z(t) by its value in (2.17) the VCO phase output becomes,

Since Φ(t) = θ(t) - Θ(t), we have,
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Figure 2.8: Mathematical Model of a PLL

Equation (2.39) is known as the loop equation. It should be noted that 0(i) includes

three different processes,

where, d(t) is the Doppler input, M(t) is the digital or analog modulation, and

0 1 (0 is the transmitter's oscillator phase instability process.

Equation (2.39) suggests a mathematical loop model depicted in Figure 2.8.

This is a simple representation of the mathematical operations performed by a

PLL on the phase. Looking at the first block, the input is (t) and the output
6

is A(t) sin sT.(t) and then N ( , (1)(0	
(t)

) is added to form 	 The latter is then
Ki Im

passed through a filter F (p) with a gain Ki ifm, to give the signal z(t). Then e(t) is

added to form a voltage proportional to the instantaneous frequency. This voltage

is passed through an integrator with a gain of K,, to obtain the phase estimate '6(t).
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The phase jitter is finally added to get Θ(t) which is in turn subtracted from the

input phase to form the phase error Φ(t).

2.10 Linear Model of the Tracking Loop

In the tracking mode the phase error Φ(t) is small. Therefore, it is possible to

approximate sin Φ(t) by the phase error itself. Thus,

where Nc (t) is defined as in equation (2.30) and is assumed to be, Nc(t) >> Ns (t)Φ (t)

Replacing θ (t) in equation (2.41) by its value from equation (2.40), it follows,

where Δψ (t) = ψ1 (t) - ψ2 (t). This loop equation suggests the linear baseband

equivalent loop model shown in Figure 2.9. The loop equation in (2.42) can be

rearranged to get,

Directly from figure 2.9 the closed loop transfer function is,

It is possible to write F (p) in terms of HΦ (p),
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Figure 2.9: Linearized Model of a PLL

Thus equation (2.44) can be written as,

Equation (2.51) can be separated into two components. Because the first part is

multiplied by 1 - HΦ (p) , it is the part rejected by the loop. The second component

is multiplied by HΦ . (p) . This is the part passed by the loop. Hence, the phase error

is a result of two processes. First the noise normalized to the signal amplitude
Nc(t)/A

is put through HΦ(p).Second,d(t) +M(t) +Δψ(t) - Kv/pε(t) (the signal) is

put through 1 - HΦ (p).
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To summerize, we presented in this chapter some information regarding the

nonlinear and linear theories of the PLL. These theories can help understand the

tracking behavior of the PLL. In addition, some applications of PLLs were lso given.

Next, in chapter 3 we will concentrate on the CCPLL through its mathematical

model. All the material of this chapter can be found in greater detail in [4].
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Chapter 3

N-Dimentional CCPLL
(NCCPLL)

Following the introduction of the cross coupled PLL in chapter 1, this chapter will

present the mathematical representation of the acquisition mode of the N cross

coupled PLL (NCCPLL). Also, the loop equations will be developed. As it was

mentioned earlier, NCCPLL is capable of seperating N FM or PM signals even

if they are all at the same carrier frequency and they occupy the same frequency

band. Also the relative powers of the signals has little effect. This chapter will

follow the same format used in [6].

3.1 Acquisition Behavior of the NCCPLL

In this section the loop equations for the NCCPLL will be developed in the absence

of noise. It is difficult to draw the full NCCPLL block diagram. Therefore, two

graphs will be drawn, the first will consist of the N PLLs without the amplitude
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control, (see figure 3.1) while the second will include only the amplitude control.

(see figure 3.2) Since the amplitude control is similar for each loop, only one set

will be drawn.

3.1.1 Characteristic Equations

The input signal is assumed to be of the form:

where S i (t) is an angle modulated signal, with a slowly varying amplitude,

Let the amplitude control signals be denoted by,

where the subscripts R and I stand for in-phase and quadrature components re-

spectively. The indices, i and j, note the amplitude control from loop j to loop i

From figure 3.1 the output of the summer of loop i is:

where from figure 3.2,
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the relation between y in the previous two equations and Y in figure 3.2 will be

explained latter in this section. Vi (t) becomes,

where, A*B denotes the sum of the product of the rows of A by the columns of B.

Assuming that the output of the VCO of loop i is an estimate of the input signal

Si(t) we have,

Then from figure (3.2),

Clearly, from equation (3.6) the input to the VCO or the output of the loop filter

at loop i is φi (t). Assuming that the loop filter is low-pass we have from figure 3.1:

Using the following sinusoidal identities,
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and neglecting double frequency terms, we get:

Making the following variable changes, (co n is the PLLs natural frequency)

it follows,

Defining the following,
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equation (3.11) becomes,

Equation (3.11) can be written as,

where

In most cases it is more appropriate to write equation (3.11) in dot product form

as follows,
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3.1.2 Amplitude Control Equations

Equation (3.13) or (3.14) are differential equations that depend on the amplitude

control signals Y jRi(t) and YjIi (t). These signals can be found from figure (3.2) as

follows: first let us evaluate the input to the integrator, VjRi(t) and VjIi(t),

Also from figure (3.2) it is evident that,
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Making the same variable changes as in equations (3.8), (3.9) and (3.10), we get,

Also defining the following,

where it is assumed that KjRi = KjIi = Kji . Thus,

The solution of this differential equation takes the form,
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where

and

Similarly, for the imaginary part we have,

where

and
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Equations (3.22) and (3.23) can also be written in their respective dot product

notations,
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Because YjRi and YjIi on the right hand side of equations (3.24) and (3.25) are each

multiplied by a zero term, they are removed from the equations. Hence, YjRi and

YjIi depend on other signals and control parameters only. If Fji(t)

= Fki Fj; low pass responce, and assuming that the system is in tracking

mode, that is

then,

where δji and λ ii are the damping factor and the phase shift introduced by the

filter Fj(t). Equations (3.22) and (3.23) can be written as,

Where the error terms,
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Equations (3.29) and (3.30) can be rearranged to get,

Squaring both sides of each equation and then adding, we get,

Thus, the instantaneous amplitude estimate of each signal can be found by:

If the damping factor of each filter is small enough the error terms can be neglected

and the amplitude estimates become,

Hence, from equation (3.15) we have

and thus, from (3.14) and (3.15), since Y jRj = 	 = 0 we have,

Since Φ i (t) = ψ i (t) it is the derivative of the phase estimate. Thus, if the estimate

is good, FM or PM is acheived.
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®2 2CCPLL

In [7], the differential equations for two CCPLLs were developed. As a test, let us

develop these expressions from equation (3.14). With N = 2 we get,

The amplitude control equations can be found by evaluating equations (3.22) and

(3.23),

Also from equations (3.35), (3.43) and (3.44), we find,

These equations are identical to those found in [7].
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Figure 3.1: NCCPLL
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Figure 3.2: Amplitude Control from loop j to loop i
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Chapter 4

3CCPLL

In chapter 3, the loop equations and the control equations were developed for the

general case of NCCPLL. In this chapter the specific equations for a 3CCPLL are

found and simulated using CSMP as a modeling program.

4.1 3CCPLL

Here N=3 and the signal S(t) is composed of 3 signals,

where
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4.2 Loop Equations

The following three equations are directly deduced from equation (3.11),

Equations (4.5), (4.6) and (4.7) can be written in the following dot product form.

From equation (3.16), we have,
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4.3 Amplitude Control Equations

The following 12 equations are retrieved from equations (3.21) and (3.22).

4.3.1 For Loop 1
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Equations (4.11) and (4.12) are the in-phase and quadrature components needed to

estimate the amplitude of s 2 (t). This estimate is subtracted from the incomming

compound signal and, thus, eliminating s 2 (t) from the input to loop 1. Equations

(4.13) and (4.14) have the same function as the first pair but they estimate and are

used to cancel 33 (t).

4.3.2 For Loop 2
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Equations (4.15) and (4.16) are the inphase and quadrature components needed

to estimate the amplitude of s i (t). This estimate is subtracted from the incoming

compound signal and, thus, eliminating s i (t) from the input to loop 2. Equations

(4.17) and (4.18) have the same function as the first pair but they estimate and are

used to cancel s3 (t).

4.3.3 For Loop 3
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Equations (4.19) and (4.20) are the inphase and quadrature components needed

to estimate the amplitude of s1(t). This estimate is subtracted from the incoming

compound signal and, thus, eliminating s 1 (t) from the input to loop 3. Equations

(4.21) and (4.22) have the same function as the first pair but they estimate and are

used to cancel s 2 (t).

To use a different perhaps more clear notation, the next 12 equations are the same

as equations (4.11) - (4.22) but using the dot product notation,
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Chapter 5

SIMULATION RESULTS

The first objective was to determine whether or not lock, separation and demodu-

lation occur on each PLL. The three FM signals that served as input to the 3CC-

PLL are at three very close carrier frequencies (FC1 = 1000Hz, FC2 1010Hz,

FC3 = 990Hz). Thus, the 3 FM signals occupied the same frequency band. Each

of the FM signals carried a message. Figure 5.1 shows the steady state output of

all 3 PLLs. It is apparent that separation and demodulation were successful. The

power ratios of the three signals were [4:2.25:1].

The three messages where sine waves with respective frequencies 10Hz, 20Hz,

and 15Hz and modulation was chosen to have 10 as an index of modulation. The

three carriers were changed in such a manner to come closer to each other as well

as equal each other. The output stayed the same as in figure 5.1. For this sim-

ulation, the system blocks rather than the final derived equations were simulated

using CSMP (See Appendix B). The reason fo this is that the derived equations

assume that all carrier frequencies are the same, thus, different carrier frequencies
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cannot be simulated through the the derived equations.

The second objective was to determine how long it would take the CCPLL

to lock and what, if any, is the relation between power ratios and acquisition time.

Figure 5.2 shows the result of simulation in the case of 3CCPLL. Here, in order to

illustrate the acquisition time, the interferers carried no messages and they were at

the same carrier frequency as that of the desired FM signal. The ratios of interferers

to desired signal are [49:9:1]. In this exercise, equations (4.5) - (4.7) and (4.11) -

(4.22) were simulated using CSMP. The amplitude control signals for this case are

shown in figure 5.3. It is evident that all three signals start at the same value

and end up at different steady state values. Also, in figure 5.2 Φ 1 (t) and Φ2 (t) are

exactly equal and very small. In figure 5.3 qab denotes the squareroot of the sum

of squares of the in phase and quadrature components of the amplitude control.

The disturbances in the amplitude control signals correspond to the time when the

instintaneous frequencies of the three carriers cross.

Figure 5.4 is the same as figure 5.2 with [196:36:1] as power ratios. It is

evident that the higher the power ratio the longer the acquisition time. This is

reasonable since it would be harder to detect lower power signals burried under

higher power interferers. The amplitude control corresponding to figure 5.4 are

shown in figure 5.5. In order to show the relation between power and acquisition

time, figure 5.6 shows a plot of the latter versus the former. Here, one of the

interferers was fixed at a certain power (4W) and the other was changed from 16W

to 74W while the message carrier was 1W.

For the CCPLL to work, the filter Fi(t) in the control circuit has to be of
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narrow bandwidth to include x i (t) cos(ψ i(t) Φ i (t)) but not x i (t) cose(ψi (t) — 4) .i (t)).

A plot of acquisition time versus filter bandwidth is dipicted in figure 5.7. It can be

seen that it takes a long time to enter the tracking mode if the bandwidth is small.

For example, with a message that has the bandwidth of ird, if the filter bandwidth

is 3rd it takes about 17s to enter the tracking mode. However, if the filter bandwidth

is 30rd it takes around 5s. For BW > 200 rd the acquisition is constant. This can

be explained by pointing out that the smaller the filter bandwidth the less the

information (in this case power, and therefore amplitude) is available to correctly

estimate the magnitude. What figure 5.7 does not show is that the acquisition time

should increase again when the bandwidth of the filter gets close to the frequency

range of x i (t)cos(ψ i (t) - Φ j (t)). This is so because in our simulation ψj( t) was set

to zero.

Figure 5.8 illustrates the capture effect of PLL. Here, the message amplitude

was switched with that of the interferer with the lowest amplitude. Thus, the

desired signal power is in between that of the two interferers. Figure 4.6 shows that

the message is now received on PLL #2 rather than PLL #3 as was the case in

figure 4.2 when the desired message had the lowest power. Also notice that here

the acquisition time is very close to 0, although one interferer is still larger than

the desired FM signal.

Future work in this area should include the analysis of the NCCPLL in a

noisy environment as well as stability considerations and the probabilityies of cycle

slipping and sync failure.
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Figure 5.1: The input to the VCO of loop 1, 2, and 3 for the case of 3 FM signals
with messages

56



Figure 5.2: The case of 1 FM signal and 2 interferers with no messages.
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Figure 5.3: Amplitude control estimates for figure 5.2.
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Figure 5.4: Same as figure 5.2 but power ratio is different.
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Figure 5.5: Amplitude control estimates for figure 5.4.
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Figure 5.6: Acquisition time versus power ratio.



Figure 5.7: Acquisition time versus filter bandwidth.
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Figure 5.8: Capture effect is illustrated by the switch from loop three in figure 5.2
to loop 2 in this figure.
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Appendix A

Narrowband Gaussian Process

Let nc (t) and ns (t) be two narrowband zero-mean Gaussian random processes. One

can form a new process of the form

This process can also be written in its polar form

where Ni (t) and θ i (t) are the envelope and phase of the ni (t). It is apparent that,

The autocorrelation function Rni(t,t + τ ) is defined as,
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Therefore,

This process is stationary if and only if

Thus, under these conditions, Rni (t, t + τ) = Rni(τ) and hence,

where

If the processes nc (t) and ns (t) are uncorrelated, then q(τ ) = 0 and the autocorre-

lation of ni (t) becomes,
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Appendix B

Program 1

This is a program to simulate a 3CCPLL system that can separate 3 FM signals

and demodulate their messages.

In this program the following notations will be used:

• Al, A2, A3 are the messages amplitudes.

• AC1, AC2, AC3 are the FM carriers powers.

• WC1, WC2, WC3 are the carriers frequencies.

• W1, W2, W3 are the messages frequencies.

• KF1, KF2, KF3 are the frequency deviation constants.

• WV1, WV2, WV3 are the VCO center frequencies.

• KV1, KV2, KV3 are the loop gains.

• KV/T1, 1/T2 are the loop filter break frequencies.

• 1/P is the control circuit filter break frequency.
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INITIAL
NOSORT

CONSTANT Al=5.0, A2=8.0, A3=5.0,
CONSTANT AC1 =20.0, AC2=10.0, AC3=15.0
CONSTANT WC1 = 6283.19, WC2 = 6346.0, WC3 6220.35
CONSTANT W1 = 62.83, W2 = 125.66, W3 = 94.25
CONSTANT KF1 = 125.66, KF2 = 157.08, KF3 = 188.5
CONSTANT B1 = 1, B2 = 1, B3 = 1, Ti = 62.8, 12 = 0.02
CONSTANT WV1 = 6283.19, WV2 = 6346.0, WV3 = 6220.35
CONSTANT KV1 = 100000, KV2 = 100000, KV3 = 100000,
CONSTANT P = 0.01, PIE = 1.571

DYNAMIC
NOSORT

PS1 = Al * SINE(0.0,W1,0.0)
PS2 = A2 * SINE(0.0,W2,0.0)
PS3 = A3 * SINE(0.0,W3,0.0)
FM1 = KF1 * INTGRL(0.0,PS1)
FM2 = KF2 * TNTGRL(0.0,PS2)
FM3 = KF3 * INTGRL(0.0,PS3)
FM1I FM1 + PIE
FM2I = FM2 + PIE
FM3I FM3 + PIE
TEM1A = SINE(0.0,WC1,0.0) * SIN(FM1I)
TEM1B SINE(0.0,WC1,PIE) * SIN(FM1)
TEM1C = TEM1A TEM1B
TEM2A SINE(0.0,WC2,0.0) * SIN(FM2I)
TEM2B = SINE(0.0,WC2,PIE) * SIN(FM2)
TEM2C TEM2A TEM2B
TEM3A = SINE(0.0,WC3,0.0) * SIN(FM3I)
TEM3B SINE(0.0,WC3,PIE) * SIN(FM3)
TEM3C TEM3A TEM3B
Si = AC1 * TEM1C
S2 = AC2 * TEM2C
S3 = AC3 * TEM3C
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V = S1 + S2 + S3
SORT

CV1 = Y2R1*V2ER + Y2I1*V2E + Y3R1*V3ER +
Y3I1*V3E

CV2 = Y1R2*V1ER + Y1I2*V1E + Y3R2*V3ER +
Y3I2*V3E

CV3 = Y1R3*V1ER + Y1I3*V1E + Y2R3*V2ER H-

Y2I3*V2E
V1 = V - CV1
V2 = V - CV2
V3 = V - CV3
XI= V1* VIE
X2 = V2 * V2E
X3 = V3 * V3E

PH1 = (1/T1)*(T2 * X1 + INTGRL(0.0,X1))

PH2 = (1/T1)*(T2 * X2 + INTGRL(0.0,X2))
PH3 = (1/T1)*(T2 * X3 + INTGRL(0.0,X3))
TEMPI = KV1 * INTGRL(0.0,PFI1)
TEMP2 = KV2 * INTGRL(0.0,PH2)
TEMP3 = KV3 * INTGRL(0.0,PH3)
TEMPI = TEMPI + PIE

TEMP2I = TEMP2 + PIE

TEMP3I = TEMP3 + PIE

TE1C = SINE(0.0,WV1,TEMP1)
TE2C = SINE(0.0,WV2,TEMP2)

TE3C = SINE(0.0,WV3,TEMP3)

TE1CI = SINE(0.0,WV1,TEMP1I)

TE2CI = SINE(0.0,WV2,TEMP2I)
TE3CI = SINE(0.0,WV3,TEMP3I)

VIE = B1 * TE1CI

V2E = B2 * TE2CI

V3E = B3 * TE3CI

VIER = B1 * TE1C

V2ER = B2 * TE2C

V3ER = B3 * TE3C
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DVC1R2 = V2 * V1ER
DVC1I2 = V2 * V1E
DVC1R3 = V3 * V1ER
DVC1I3 = V3 * VIE

DVC2R1 = V1 * V2ER

DVC2I1 = V1* V2E
DVC2R3 = V3 * V2ER
DVC2I3 = V3 * V2E

DVC3R1 = V1 * V3ER
DVC3I1 = V1 * V3ER
DVC3R2 = V2 * V3ER
DVC3I2 = V2 * V3E
VC1R2 = INTGRL(0.0,DVC1R2)
VC1R3 = INTGRL(0.0,DVC1R3)

VC2R1 = INTGRL(0.0,DVC2R1)

VC2R3 = INTGRL(O.O,DVC2R3)
VC3R1 = INTGRL(0.0,DVC3R1)
VC3R2 = INTGRL(0.0,DVC3R2)
VC1I2 = INTGRL(0.0,DVC1R2)

VC1I3 = INTGRL(0.0,DVC1R3)
VC2I1 = INTGRL(0.0,DVC2R,1)
VC2I3 = INTGRL(0.0,DVC2R3)
VC3I1  = TGRL(0.0,DVC3R1)

VC312 = INTGRL(O.O,DVC3R2)
Y2R1 = REALPL(0.O,P,VC2R1)

Y2I1 = REALPL(0.0,P,VC2I1)
Y2R3 = REALPL(0.0,P,VC2R3)

Y2I3 = REALPL(0.0,P,VC2I3)

Y1R2 = REALPL(0.O,P,VC1R2)
Y1I2 = REALPL(O.O,P,VC1I2)

Y1R3 = REALPL(O.O,P,VC1R3)
Y1I3 = REALPL(0.0,P,VC1I3)

Y3R1 = REALPL(0.0,P,VC3R1)

Y3I1 = REALPL(O.O,P,VC311)
Y3I2 = REALPL(0.0,P,VC3I2)
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TERMINAL

NOSORT

TIMER FINTIM = 0.5, OUTDEL = 0.005, DELMIN = 1.0E-14

PRINT PS1, PS2, PS3

END

STOP

ENDJOB



Appendix C

Program 2

The following is a program to simulate equations (4.8) - (4.10) and (4.23) - (4.34).

In this program the following definitions are assumed:

• Al, A2 and A3 are the gains for loop filters of PLL # 1, 2 and 3 respectively.

• B1, B2 and B3 are the gains for the amplitude control filters.

• ZA1, ZA2 and ZA3 are the VCO constants.

• LR and LI are the break frequencies for the amplitude control filters.

• XA, XB and XC are the input amplitudes of the FM signals.

• SA, SB and SC are the modulating phases of the FM signals.

• VCO1I, VCO2I and VCO3I are the inputs to the VCOs of loop 1,2 and 3

respectively.

• SQAB, SQAC, AQBA, SQBC, SQCA and SQCB are the amplitude estimates

as in equation (3.38).
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CONSTANT Al = 5, A2 = 5, A3 = 60
CONSTANT B1 = 1.0, B2 = 1.0, B3 = 1.0
CONSTANT ZA1 = 20, ZA2 = 30, ZA3 = 10
CONSTANT LR = 100, LI 100
ILI = 1 / LI
ILR = 1 / LR
XA = 2.0
XB = 1.5
XC = 0.5
SA = 0.0
SB = 0.0
SC = 60*SINE(0.04.0,0.0)
Fl = XA*SIN(SA - YA) XB*SIN(SB - YA) XC*SIN(SC - YA)
F2 = XA*SIN(SA - YB) XB*SIN(SB - YB) XC*SIN(SC - YB)
F3 = XA*SIN(SA - YC) XB*SIN(SB - YC) XC*SIN(SC - YC)
F4 = ARB*SIN(YB - YA) AIB*COS(YB - YA) ARC*SIN(YC - YA)

AIC*COS(YC - YA)
F5 = BRA*SIN(YA - YB) BIA*COS(YA - YB) BRC*SIN(YC - YB)

BIC*COS(YC - YB)
F6 = CRA*SIN(YA YC) CIA*COS(YA - YC) CRB*SIN(YB - YC)

CIB*COS(YB - YC)
F14 = F1 - F4
F25 = F2 - F5
F36 = F3 - F6
VCO1I A1*(F14 ZA1*INTGRL(0.0,F14))
VCO2I = A2*(F25 ZA2*INTGRL(0.0,F25))
VCO3I = A3*(F36 ZA3*INTGRL(0.0,F36))
YA = INTGRL(0.0,VCO1I)
YB INTGRL(0.0,VCO2I)
YC = INTGRL(0.0,VCO3I)
FAIB = B2*(F2 - ARC*SIN(YC - YB) - AIC*COS(YC - YB) - AIB)
FAIC = B3*(F3 - ARB*SIN(YB - YC) - AIB*COS(YB - YC) - AIC)
FBIA = B1*(F1 - BRC*SIN(YC - YA) BIC*COS(YC - YA) - BIA)
FBIC = B3*(F3 - BRA*SIN(YA - YC) - BIA*COS(YA - YC) - BIC)
FCIA = B1*(F1 - CRB*SIN(YB - YA) - CIB*COS(YB - YA) - CIA)
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FCIB = B2*(F2 - CRA*SIN(YA - YB) - CIA*COS(YA - YB) - CIB)
FARB = B2*(XA*COS(SA - YB) XB*COS(SB - YB) XC*COS(SC

- YB) - ARC*COS(YC - YB) - AIC*SIN(YC - YB) ARB)
FARC = B3*(XA*COS(SA - YC) XB*COS(SB - YC) XC*COS(SC

- YC) - ARB*COS(YB - YC) - AIB*SIN(YB - YC) - ARC)
FBRA B1*(XA*COS(SA YA) XB*COS(SB - YA) XC*COS(SC

- YA) - BRC*COS(YC - YA) BIC*SIN(YC - YA) - BRA)
FBRC = B3*(XA*COS(SA - YC) XB*COS(SB - YC) XC*COS(SC

- YC) - BRA*COS(YA - YC) - BIA*SIN(YA - YC) - BRC)
FORA = B1*(XA*COS(SA - YA) XB*COS(SB - YA) XC*COS(SC

- YA) - CRB*COS(YB - YA) - CIB*SIN(YB - YA) - CRA)
FCRB = B2*(XA*COS(SA - YB) XB*COS(SB YB) XC*COS(SC

- YB) - CRA*COS(YA - YB) - CIA*SIN(YA - YB) - CRB)
AIBDOT = REALPL(0.0,ILI,FAIB)
AICDOT = REALPL(0.0,ILI,FAIC)
BIADOT = REALPL(0.0,ILI,FBIA)
BICDOT = REALPL(0.0,ILLFBIC)
CIADOT = REALPL(0.0,ILI,FCIA)
CIBDOT = REALPL(0.0,ILI,FCIB)
ARBDOT = REALPL(0.0,ILR,FARB)
ARCDOT = REALPL(0.0,ILR,FARC)
BRADOT = REALPL(0.0,ILR,FBRA)
BRCDOT = REALPL(0.0,ILR,FBRC)
CRADOT = REALPL(0.0,ILR,FCRA)
CRBDOT = REALPL(0.0,ILR,FCRB)
AIB = INTGRL(0.0,AIBDOT)
AIC =INTGRL(0.0,AICDOT)
BIA = INTGRL(0.0,BIADOT)
BIC = INTGRL(0.0,BICDOT)
CIA = INTGRL(0.0,CIADOT)
CIB = INTGRL(0.0,CIBDOT)
ARB = INTGRL(0.0,ARBDOT)
ARC = INTGRL(0.0,ARCDOT)
BRA = INTGRL(0.0,BRADOT)
BRC = INTGRL(0.0,BRCDOT)
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CRA = INTGRL(0.0,CRADOT)
CRB INTGRL(0.0,CRBDOT)
SQAB = SQRT(AIB**2 ARB**2)
SQAC = SQRT(AIC**2 ARC**2)
SQBA SQRT(BIA**2 BRA**2)
SQBC = SQRT(BIC**2 BRC**2)
SQCA SQRT(CIA**2 CRA**2)
SQCB = SQRT(CIB**2 CRB**2)
TIMER FINTIM = 18.8
PRTPLT YA, YB, YC. SQAB, SQAC, AQBA, SQBC, SQCA, SQCB
END
STOP

ENDJOB
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