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ABSTRACT

Title of Thesis: A Parallelogram. Four-Frame Model
in 3-D Motion. Analysis and Structure Recovery
Using Unified Optical Flow Field Approach

Zhichun Lin, Master of Science in Electrical Engineering, 1991
Department, of Electrical and Computer Engineering

Thesis directed by: Dr. Nirwan Ansari
Assistant Professor
Department of Electrical and Computer Engineering

In this paper, a new concept of the unified optical flow field (DOFF) for

3-D motion analysis Iron .) a stereo image sequence is implemented, which is

an extension of the fundamental temporal optical flow formulations developed

by Horn and Schunck A parallelogram four-frame model is established and a

spatial optical flow is also introduced.

In order to alleviate the problem of the strict requirement of two identi-

cal sensors in corn Mon stereo imagery, a new imaging system is presented

this paper that needs only one camera, two plane mirrors and two switches to

generate a. phase shifted binocular sequence of images. It. is shown that the

structure and motion of the object surface can be reconstructed from the paral-

lelogram four-frame image sequence. set if the information of the settings of the

experiment, including tile focal length, the distance between two mirrors and

the intersecting angle between two observing directions are known. Detailed

computer simulations are presented and analyzed to illustrate the algorithm

discussed.



A Parallelogram Four-Frame Model
in 3-D Motion and Structure Recovery

Using Unified Optical Flow Field Approach

by

Zhichun Lin

Thesis submitted to the 	 of the Graduate School of

the New Jersey institute of Technology in partial fulfillment of

ate requirements for the degree of

Master of Science in Electrical Engineering



APPROVAL SHEET

Title of Thesis: A Parallelogram Four-Frame Model
in 3-D Motion Analysis and Structure Recovery
Using Unified Optical Flow Field Approach

Candidate: 	 Zhichun Lin
Master of Science in Electrical Engineering, 1991

Thesis and Abstract Approved by the Examining Committee:

-Dr./ Nirwan Ansari, Advisor 	 Date
Assistant Professor
Department of Electrical and Computer Engineering

Dr. Edwin S.H. Hou 	 Date
Assistant Professor
Department of Electrical and Computer Engineering

Dr. Y.Q. SE.i Date
Assistant Professor
Department of Electrical and Computer Engineering

Dr. C.Q. Shu 	 Date
Research Associate
Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey.



VITA

Zhichun Lin

Education

	

1990-1991 	 New Jersey Institute of Technology 	 MSEE

	

1985-1989 	 Shanghai Jiao Tong University 	 BSEE



Dedicated to

My Dear Parents

&

My Lovely Sister



AC KN OWLED GEMENT

I am very grateful to my graduate advisor Dr. Nirwan Ansari whose

inspirations and guidance benefited me significantly; without his support this

work could not, have been finished.

I would also like to express my special thanks to Dr. C. Q. Shu, Dr.

Edwin Hon and Dr. Y. Q. Shi. In addition to providing me of the essential

formulations of motion reconstruction using U.O.F.F, Dr. Shu helped me a lot

from the very beginning of this thesis and was always willing to answer my

questions. Dr. [Ion helped me find out a bug in my computer program. Dr, Y.

Q. Shi provided me with sonic very helpful papers on Optical Flow. Without

their generous support, I cannot possibly complete the thesis.

I would also like to thank my .friends and classmates at, NJIT, who have

given me their assistance and encouragement in many ways.



Contents

1 Introduction 1

2 Optical Flow 4

2.1 Introduction 	 4

2.2 Determine Optical Plow 	 4

2.3 Experimental Results 9

3 Unified Optical Flow Field (DOFF) and 3-D Reconstruction 13

3.1 Introduction 	 13

3.2 Dynamic image Interpolation 	 14

3.3 A Parallelogram Four-Frame Model 	 18

3.4 3-D Motion Estimation 	 22

4 Simulation Experiments 29

4.1 Imaging Setting 	 29

4.2 linage Capturing 	 31

4.3 Analysis of the Experimental Results 	 34

4.3.1	 Experiment 1 	 34

4.3.2	 Experiment, 2 	 37

4.3.3	 Experiment 3 	 38

4.3.4	 Experiment 4 	 43



5 Conclusions 	 46

Bibliography 	 48



List of Figures

2.1 The three partial derivatives of image brightness at the center of

the cube are each estimated from the average of first differences

along four parallel edges of the cube. Here the column index j

corresponds to the x direction in the image, the row index i to

the y direction, while 1 lies in the time direction 	

2.2 An image setting in the experiment to compute the temporal op-

tical flow distribution on the surface of a rotating sphere 	 10

2.3 Needle diagram displaying optical 'flow distribution patterns .  	 12

3.1 Dynamic. Image Interpolation  	 15

3.2 Imaging geometry using parallelogram four-frame model . . .  	 19

3.3 A parallelogram four-frame model  	 21

4.1 Simulated imaging geometry 	  30

4.2 A set of simulated images obtained corresponding to the paral

lelogram four-frame model.  	 35

4.3 Error in percentage in recovering Z vs. object distance D with

D f R fixed. 	  39

4.4 Error in percentage in recovering Z vs. ratio R/ D with D fixed

at 1000.0.  	 40



4.5 Error in percentage in recovering Z vs. object distance D with

R fixed at 0.0001. 	 41

4.6 Error in percentage in recovering Z vs. object distance D for

various values of RID 	  42

4.7 Projections from different directions of the reconstructed sphere 	 45



List of Tables

4.1 Imaging setting parameters in Experiment 1 	 36

4.2 Comparison of the actual and the recovered location and motion

parameters in Experiment 1 	 36

4.3 Overall error performance of recovery in Experiment 1 	 37

4.4 Imaging setting parameters in Experiment 9 	 37

4.5 Comparison of the actual and the recovered location and motion

parameters in Experiment 2 	 37

4.6 Overall error performance of recovery in Experiment 2 	 38

4.7 Imaging setting parameters in Experiment 3 	 38

4.8 Imaging setting parameters in Experiment 4 	 43



Chapter 1

Introduction

Research on estimation of surface structure and motion of objects from image

sequences ha.s come to play a dominant role within the computer vision com-

munity over the last decade. There are basically two different categories of

approaches to recover the surface structure of objects and the relative motion

between objects and observers: the optical flow field approach[1],[2] and the

feature correspondence approach [3],[4:.

It is generally agreed that the feature extraction and. correspondence ap-

proach is difficult, and so far only partial solutions suitable for simplistic sit-

uations have been developed[5]. Although some of the current techniques are

classified as the multiple optical flow field approach to stereo imagery[6],[7],

since they still need to implement the correspondence between features in the

pair of stereo images, they are essentially some hybrid of the optical flow ap-

proach and the feature correspondence approach. Therefore, they inevitably

inherit the similar problem in feature correspondence approach.

In this paper, a new concept of the unified optical flow field (U OFF),

originally proposed by Shu and Shi[2], for motion analysis from a stereo image

sequence is implemented. It is an extension of the fundamental optical flow for-

mulations developed by Horn and Schunck[1]. Instead of the original two-frame



model for temporal optical flow computation, a four-frame model is established

and a spatial optical flow is also introduced[2].

In stereo imagery, two cameras are usually needed during the imaging.

In order to make the derivation easier, most approaches proposed require the

optical characteristics of the two cameras to be identical. However, in prac-

tice, this requirement is somehow too strict to be achieved. This makes these

approaches difficult to be realized. To overcome the obstacle brought by this

requirement, we present here a new imaging system which needs only one cam-

era, two plane mirrors and two switches to generate a. phase shifted binocular

sequence of images. The four consecutive images of the sequence form a. paral-

lelogram four-frame model..

To recover the structure and motion of the object surface, an image inter-

polation technique employing optical flow is applied to the model to produce a

pair of stereo images. In addition, two assumptions are made. One is the invari-

ance of object brightness not only for the time variation but also for the space

variation. The other is the smoothness constraint which assumes that neigh-

boring points on the objects have similar velocities and the velocity field of the

brightness patterns in the image varies smoothly almost everywhere. More de-

tailed mathematical derivation of the above assumptions will be given later in

following chapters.

In Chapter 2, we will review an iterative algorithm to determine temporal

optical flow. In Chapter 3, the unified optical flow field is introduced. The

four-frame experimental model is set up. It will be shown that the. structure

and motion of the object surface can be reconstructed from the four-frame

image sequence set if the information of the settings of the experiment including

the focal length, the distance between two mirrors and the intersecting angle

2



between two observing directions are known. in Chapter 4, detailed simulations

are presented and analyzed to illustrate the algorithm discussed in Chapter 2

and 3. Conclusion along with discussion is drawn in Chapter 5.
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Chapter 2

Optical Flow

2.1 Introduction

Optical flow is the distribution of apparent velocities of movement of brightness

pattern in an image. Since optical flow can arise from relative motion of the

objects and the viewers, it can provide important, information about the spatial

arrangement of the objects viewed, and the rate of change of this arrangement.

In order to reconstruct the 3-1) spatial and temporal information of an

observed object) from its optical flow vectors, a good algorithm is needed to

determine the optical flow of an observed object by the two frames of image

captured by a camera at two different, instants. Horn and Schunck[1] proposed a

method in early 80's to determine the optical flow by the brightness distribution

of all the pixels in the image plane. Since then, this method has been very

frequently cited.

2.2 Determine Optical Flow

To simplify the computation, it is necessary to assume a restricted problem

domain. To avoid variations in brightness due to shading effects, it is initially



assumed that the surface being imaged is flat. It is further assumed that the in-

cident illumination is uniform across the surface, and reflectance varies smoothly

and has no spatial discontinuities. The latter condition assures that the image

brightness is differentiable. Situations where objects occlude one another par-

tially are excluded because discontinuities in reflectance are found at object

boundaries.

In the simple situation described above, the motions of the brightness pat-

terns in the image are determined directly by the motions of the corresponding

points on the surface of the object. Computing the velocities of points on the

object is a matter of simple geometry once the optical -flow is known.

There are two basic constraints: One is that the brightness of a. particular

point in the pattern is constant, i.e.,

where E is the brightness function E(x, y, t) a.s a. function of the spatial variables

x, y, and the temporal variable t.

Using the chain rule for differentiation it can be seen that

Let

The following single linear equation with two unknowns u and v is thus obtained,

The other constraint is the smoothness constraint: Neighboring points on the

objects have similar velocities, and the velocity field of the brightness patterns in



the image varies smoothly almost everywhere. One way to express the additional

constraint is to minimize the sum of the squares of the Laplacians of the x- and

y-components of the flow. The Laplacians of a and v are defined by

Here the square of the magnitude of the gradient will be used as a smooth-

ness measure. For convenience, assume that the images are sampled on a square

grid at regular intervals. Let, the measured brightness be E ij,k at the intersec-

tion of the i th row and j th column in the k th image frame. Note that this

introduces quantization errors.

The differentiation operation is approximated by,

Figure 2.1 shows the relationship in space and time between these measure-

ments. Here the unit of length is the grid spacing interval in each image frame

and the unit of time is the image frame sampling period.

The approximations of the Laplacians of u and v take the following forms

6



Figure 2.1: The three partial derivatives of image brightness at the center of the
cube are each estimated from the average of first differences along four parallel
edges of the cube. Here the column index ,j corresponds to the x direction in
the image, the row index i to the y direction, while k lies in the time direction.



where the local averages u and v are defined as follows[8],

The proportionality factor K equals 3 if the average is computed as shown, and

we again assume that the unit of length equals the grid spacing interval.

The total error to be minimized is

where εb , the sum of the errors in the equation for the rate of change of image

brightness is equal to

and εc, the measure of the departure from smoothness in the velocity flow, is

equal to

Here, α20, is a weighing factor empirically chosen according to the magnitude of

the expected noise. Using the calculus of variation to minimize Equation (2.12),

we obtain

Introducing the Laplacian approximations into the above equations and letting

α = 3α0,

8



Solving for u and o we find that

These equations can be written in the alternate form

Now  we have a pair of equations for each point in the image. If we solve

them simultaneously by one of the standard methods such as Gauss-Jordan elim-

ination, it would be very costly because the corresponding matrix is sparse and

very large. Thus we choose the Gauss-Seidel method as an iterative approach[9].

Now we can compute a. new set of velocity estimates 

(un

+1,

vn

+1 ) from the es-

timated derivatives and the average of the previous velocity estimates ( un , vn )

by

At the edge of the image. some of the points needed to compute the local average

of velocity lie outside the imago. Here we simply copy velocities from adjacent

points further in.

2.3 Experimental Results

To examine the accuracy of 1.1-1(s algorithm suggested in the above section exper-

imentally, some computer simukation have Hen clone. First, an image setting



Figure 2.2: An image setting in the experiment to compute the temporal optical
flow distribution on the surface of a. rotating sphere.
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is given a.s shown in Figure 2.2. We assume that the camera. is located upon

the origin, with its optical axis pointing to the positive-z direction. The focal

length of the camera is denoted . The center of the rotating sphere is on

the z-axis with a distance of D from the origin. Its radius is denoted as R.

In order to minimize the experimental noise and error, we do not perform

the experiment "physically," i. e., we do not really take pictures of a real rotat-

ing sphere by a real camera. Instead, a. computer simulation is made. Given all

the information about, the image setting, including D, R, and the brightness

function of the sphere surface, we can determine the corresponding image pat-

terns which are supposed to be taken by cameras. So. in this experiment, we

take two frames or image of the observed sphere, one at time T and the other

one at time 7 1 + T, after some motion of the sphere. Using the algorithm given

in Section 2.2, we get the iterative results of the optical flow for each pixel of

the image. Furthermore, knowing all the spatial information of the experiment

layout, we can easily obtain the optical flow distribution on the sphere surface

theoretically. This theoretical solution can be regarded as the actual solution.

It will be convenient for us to determine the efficiency of Horn's method by

comparing the two results. To visualize the results, we display the optical flows

by a needle diagram, as shown in Figure 2.3. The optical flow vector of each

pixel in the image is represented by a little arrow whose length is proportional

to the magnitude of the optical flow of this pixel, and whose direction is the

same as that of the optical flow.

it



Figure 2.3: Needle diagram displaying optical flow distribution patterns
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Chapter 3

Unified Optical Flow Field
(DOFF) and 3-D
Reconstruction

3.1 Introduction

In some sense, a camera taking pictures of an object is like a. human eye ob-

serving an object. Just like one can hardly tell the distance of the object by

only one eye, it is also impossible for us to reconstruct the 3- D spatial infor-

mation with just one single view. Intuitively, we can guess that if we introduce

one more camera into the imaging system, it would be possible to recover the

3-D information of the observed object, just like one can tell both the motion

and distance of objects by viewing with two eyes. This intuition of stereo im-

agery leads to a. novel concept of Unified Optical Flow Field proposed by Shu

and Shi[2]. We can tell from the name that this is a generalized extension of

the original optical flow method developed by Horn[i]. Instead of using the

temporal optical flow field only to detect the x y motion of the object, we

establish an a'dditiona'l spatial optical flow field to gain more information about

the spatial location of each point, in tie space.



Usually, in stereo imagery, two identical cameras are utilized to take pairs

of stereo images, ii us forming a sequence of stereo images. However, in practice,

it is very difficult, sometimes even impossible. to make the optical characteristics

of two cameras to be identical. To overcome this difficulty, a new experimental

arrangement is presented in this thesis. Instead of two identical cameras, only

one camera. is needed, along with two plane mirrors and two switches. A special

phase shifted binocular images from the sequence form a. parallelogram model.

Before we proceed to the discussion on the parallelogram four-frame model, it

is necessary to introduce a dynamic image interpolation algorithm in order to

produce a pair of stereo images.

3.2 Dynamic Image Interpolation

A dynamic image interpolation technique is developed in this section. In Figure

3.1, images (in) and (a) are taken by a. camera at tm and tn  instants, respec-

tively. The associated brightness functions are designated by E(x, y, tn ) and

E( x , y , tn ), respectively, where (x, y) are used to represent, the pixel coordinates

on images (111) and (ii).

Images (in) and (ii) can he viewed as two images chosen from a. monocular

image sequence. Define

In Equations (3.2) - (3,3), ( xm, ym) and (xn , yn ) are representing the two pixels

in images (m) and (n) such that t hey are related to the same world point in the

3-D space, respectively. It is assumed that the brightness of a particular point

14



Figure 3.]: Dynamic Image Interpolation
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in the pattern is constant, i.e.,

From Equation (3.1) - (3.3) it follows that

Expanding the right-hand side of the above equation in the Taylor series leads

to

where E represents second and higher order terms of Δx 1 , Δ y1 and Δ t 1 . With

Emx  Δ= δE(x,y,tm)/δx, Emy Δ= δE(x,y,tm)/δy andEmt Δ= δ
E(x,y,t

m)/δt, the following relation-, y

ship is obtained from Equations (3.4) and (3,6),

Dividing both sides of Equation (3.7) by Al i , and ket Al l	0, we have

where

That is, u and v are the velocities of pixel (x, y) in image (in) moving along the

x and y directions, respectively.

Under the smoothness constraint, following the derivation in [11 the next

two equations are obtained

1.6



where a is a constant. It is noted that partial derivatives Emx , Emy  and Emt can

be determined by using image data E ( x , y , tm ) and E(x, y, tn ) [1]. Now having

two equations, the two unknowns u and v can be solved by using the iterative

algorithm developed in [1].

It is noted that there is a. (lashed line rectangle in Figure 3.1 denoted by

image(1). It can be considered as a virtual image generated at t 1 instant by

the same camera which generates images (in) and (n). Its brightness pattern

is represented by E(x,y,1l). It will be shown that image (1) can be estimated

from images (ni) and (n) by using an interpolation technique.

Again, the brightness invariance of two pixels, (x t , yt) and ( xm, ym ), located

in images (m) and (1), respectively, relating to the same world point in the 3-D

space is assumed, i.e.,

In the following discussion it. is assumed that

That is, tl is a linear combination of tm  and tn . When λ varies between 0 and

1 continuously, t 1 will vary between 

t

m

 and 

tn. continuously. It can be seen that

Define



Equation (3.13) becomes

With u and v defined in Equations (3.9) k (3.10), we obtain

Since u and v have been determined and Δ t1 is known, E(xl , yl , tl) can then be

estimated via, the use of Equation (3.19). Applying Equation (3.19) to pixels on

image (1), pixel by pixel, results in an estimated image (1). The error between

the interpolated image (1) and the "true" image, (the one taken at t 1 instant if

it is possible), depends on the time difference tl - tm, i.e., λΔt1.

3.3 A Parallelogram Four-Frame Model

In this section a new imaging arrangement is presented. In Figure 3.2, the

imaging geometry is shown. Here S  is a camera, M1  and M2 are two plane

mirrors with an angle in between, SW1 and SW 2 are two switches used to

control the timing of taking images. The optical center of S is denoted by OZ.

The optical axis of S is denoted by OZ. The OZ axis and the normal of M1 are

coplanar. In this thesis, the case in which OZ and the normals of Mi and M2

are coplanar is discussed. Axis OX is perpendicular to OZ such that OX, OZ

and the normal of M1 are coplanar. Axis OY  is perpendicular to OXZ plane,

and is not drawn in Figure 3.2.

From geometric optics, it is known that the light reflected by M 2 then by

M 1 can arrive at camera S  generating an image that is equivalent to the image

"generated" by a "right" camera. with the optical center and the optical axis

being OR  and O R ZR , respectively, as shown in Figure 3.2. The angle between

18



Figure :3.2: Imaging geometry using parallelogram four-frame model
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two optical axes is 2 )6. Another Cartesian coordinate system is established with

ORXR axis on the OXZ plane, and ORYR  axis perpendicular to ORXR Z R

plane. Again O RYR  is not drawn in Figure 3.2. The whole system depicted

in Figure 3.2 works in such a manner that the light transmitted through

M1and the light reflected byM2and then byM1reachSalternately. Therefore, it

generates a particular binocular image sequence, i.e., a phase shifted binocular

image sequence. A closer look is taken next at these four consecutive images in

this binocular image sequence.

In Figure 3.3, a parallelogram four-frame model is shown. There t 1 , t2 , t 3

and t4 represent four different instants in time domain. In order to simplify the

derivations, it is assumed that

Let

and hence

where λ E [0, 1]. At t 1 and t 3 instants, the switches SW1 and SW2 are con-

trolled so that only the light transmitted through plane mirror M1 can arrive at

camera S generating the brightness patterns E L (xL ,yL ,t 1 ) and ER (xR ,y R , t 4 ),

respectively. Therefore, images (a), (b), (c) and (d) taken by camera S at four

different instants are equivalent to two images, (a) and (c), taken by the "left"

camera at t l and t 3 instants, respectively, and two images, (b) and (d), obtained

by the "right" camera at t2 and t4  instants, respectively. These four images are

referred to as a parallelogram four-frame model.

20



Figure 3.3: A parallelogram four-frame model

2 1



3.4 3-D Motion Estimation

Given the parallelogram four-frame model a method is developed to estimate

3-D motion using the unified optical flow field. This can be illustrated through

the following six procedures.

Procedure 1.	 Images (a) and (c) can be viewed as two images chosen from

a monocular image. sequence generated by the "left" camera. Define

In Equations (3.21) - (3.25), ( xL3 , yL3) and(xL1, yL1)represent the two pixels in

images (c) and (a,), respectively, such that they are related to the same world

point in 3-D space. It is assumed that the brightness of a, particular point in

the 'pattern is constant,[1], i.e.,

From Equations (3.24) - (3.25), it follows that

Expanding the right-hand side of the above equation in the Taylor series yields

where E contains second and higher order terms in Δ xL , ΔyL  and Δ t. With

EL3x Δ= δEL(xL,yL ,t3 )/δxL, EL3y Δ= δEL(xL,yL ,t3 )/δyL  and EL3t Δ= δEL(xL,yL ,t3 )/δtL, we obtained the

following using Equations (3.26) - (3.28)

27



Dividing both sides of Equation (3.29) by -Δ t, and let Δ t → 0, we have

where

This means that uL3 and vL3 are the velocities of pixel ( xL , yL ) in image (c)

moving along the x  and y directions, respectively.

Under the smoothness constraint, following the derivation in [1] the next

two equations are obtained

where α1  is a constant. The two unknownsuL3

 and

vL3  can thus be solved by

using the iterative algorithm developed in [1].

Procedure 2.	 A close look at images (b), (d) and (e) in Figure 3.3 re-

veals that image (e), a rectangle drawn with dashed line in Figure 3.3, can be

estimated from images (b) and (c), by using the dynamic image interpolation

technique developed in Section 3.2. Images (in) and (n) in Section 3.2 corre-

spond to images (b) and (d) here, respectively. The counterpart of estimated

image (1) is image (e). That, is

where the superscript R stands for the "right" camera. The subscript 2 repre-

sents the pixel velocities evaluated at t2 instant. image (e), i.e., the brightness

23



pattern ER (x R ,yR , t 3 ) can be considered as a. virtual image generated by the

"right" camera. at t3 instant. In other words, at this point, a pair of stereo

images,(c) and (e), that

is, EL (xL , yL , t3 )and ER (x R

,y

R

, t

3 )

 are available.

Procedure 3.	 Similar to Procedure 1, applying Horn and Schunck's ap-

proach[1] to image (b) and estimated image (e), the following equation is derived

where the superscript R and the subscripts 3, x , y , t have the same meanings

as defined previously. With the smoothness constraint uR3andvR3can be solved

by an iterative algorithm [1] derived from the following two equations,

In the above two equations, α l is a constant. It is observed that the time interval

between t2 (when image (b) is taken ) and t3 (when image (e) is supposed to be

"generated") is λΔt.

Procedure 4. Following the procedure presented in [2], the optical flow

for a spatial sequence of two images is developed. The image sequences, from

image (c) to image (e), can be viewed as "spatial" sequence of images - the time

is "frozen" and the camera moves in the spatial domain. One way to describe

the camera. movement in space is fixing the left camera and moving the right

camera. The displacement of the virtual right camera from the left camera. is

controlled by plane mirror M2 as shown in Figure 2. A measure of the variation

of the right camera position with respect to the left camera position is denoted

by δs. It is defined by
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where is the x coordinate of the origin O R of the coordinate system OR —

XR Y R ZR in the coordinate system 0 — XYZ, θ is the angle between OZ and

OR ZR , and x is a characteristic length according to imaging setting.

Define

where (x R ,y R ) and (xL ,yL ) are coordinates of pixels in images (e) and (c)

such that these two pixels are related to the same world point in 3-D space.

Therefore, δx and δy  are the horizontal and vertical coordinate differences of

these two pixels, respectively.

Define

Thus, u s and v s are considered as the spatial variation rates of δx and δy with

respect to δs, respectively. These two quantities generated from the spatial

sequence of images can be viewed as the counterparts of uL3andvL3(oruR3and

vR3) generated front the temporal sequence of images.

Similarly, the spatial optical flow field characterized by the following two

equations[2] is established by using the brightness space-invariant assumption

and the smoothness constraint:

where o!2 is a constant and



This is similar to the estimation of δE/δx and δE/δy in [1].

Procedure 5.	 According to [2], the unified optical flow field consisting of

the six field quantities, uR, vR, uL, vL, us and vs , is established. These field

quantities are related by Equations (3.33) - (3.34), (3.37) - (3.38), (3.42) - (3.43).

They form a. set of equations for the unified optical flow field and are rewritten

below.

It is noted that Equations (3.45) - (3.46) are a pair of equations from which

uL3 and vL3 can be solved. Similarly, Equations (3.17) - (3.48) and Equations

(3.49) - (3.50) are pairs associated with

u

R3

 and 

vR3 , and

u

s

 and 

vs , respectively.

Since the format of these pairs of equations are the same as the ones in [1], the

iterative algorithm proposed in [1] can be employed here to determine

v) and (us, vs). It can be shown in the next procedure that these six field

quantities contain sufficient information to recover the motion in 3-D space.

Procedure 6.	 In [2] a set of eight equations for analysis of 3-D motion

field based on the unified optical flow field has been developed. In order to

employ the result to estimate 3-D motion for the new imaging system discussed

in this thesis, a. close look is taken at the two imaging settings: that presented
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in [2] and that discussed in this thesis. It can be seen that two settings are

basically the same. The two optical axes, presented in [2] and in this thesis, are

both coplanar. The center of the right plane mirror M2 is restricted to translate

along the OOR axis. The M2  can be rotated around the OY axis. In both cases

characteristic length that can be chosen according to imaging setting is denoted

by χ. The difference is that the distance between two lens center of the two

cameras denoted by l in [2] becomes l + h tan(2,β)here.

It is therefore clear that all the eight equations and the remarks made in

[2] are applicable here except that l is replaced by by

 l + h tan(2,β).

In summary, the set of equations used for reconstructing the six 3-D motion

parameters is listed below.

It can be seen that in Equations (3.51) - (3.58) all quantities on the right-hand

side are available because they are either the imaging setting parameters, the

unified optical flow field quantities, or the 3-ID coordinates and their derivatives
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which have been solved by the preceding equations. Quantities x R and y R on the

left-hand side of Equations (3.54) - (3.55) are used to determine uR (xR , y R , t3 )

which should be utilized ill Equation (3.56) to calculate Z. All quantities on

the left-hand side of Equations (3.51) - (3.53), (3.56) - (3.58), being the motion

parameters: position and velocity in 3-D space, and therefore can be solved

directly.

In Chapter 4, a detailed simulation will be given to verify the accuracy of

this method.
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Chapter 4

Simulation Experiments

4.1 Imaging Setting

A series of experimental simulations will be presented in this chapter to demon-

strate the unified optical flow field theory discussed in Chapter 3. Figure 4.1

shows the imaging setting for the simulation. Note that this setting is similar to

the one given in Chapter 2, as shown in Figure 2.2. The difference here is that

"two" cameras are used in this experiment (a real one on the left side and a

virtual one on the right side). 'Me object to be observed is a sphere with radius

R. Its center is along the OZ axis. The distance between the. center of the

sphere O 1 and the origin of the coordinate system O is denoted by D. Because

of the scheme of the imaging system, the left and right cameras are identical

in their optical characteristics, such as focal length f. The optical axis of the

left camera is aligned with the OZ axis. The optical axis of the right camera

is O RO1 , which intersects OZ-axis with an angle θ. Note that the intersecting

angle between two plane mirrors M1 andM2 is θ/2. The simulated sphere surface

can be represented by the following equation,



Figure 4.1: Simulated imaging geometry
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The next step is to choose a. brightness function for the surface of the

sphere. It can be expressed by Y, Z), where X, Y and Z are the coordi-

nates of the point under observation. However, from Equation (4.1), we can see

that variable Z can be treated as a function of variables X and Y. Therefore,

we may let E(X, Y, Z) = E(X,Y). Actually, every point on a plane can be

uniquely determined by two independent variables. Here we choose a polar co-

ordinate system in determining the position of the point on the sphere. Hence,

we can express the brightness function as E(X, Y) = E(φ, γ),whereφandγ

are two angles denoted in figure 4.1. To make the simulation condition con-

formable with the assumptions and constraints of the method for determining

optical flows, a sinusoidal function of angles φ  and γ  is chosen as the brightness

function of the sphere surface.

where Κ1 , Κ 2 and Κ 3 are constants.

It can be seen that if 0 < Κ1  < 64, the value of the brightness function

E(φ, γ) will range from 0 to 255. Furthermore, in order to avoid abrupt changes

of brightness on the sphere surface, Κ 2 is chosen to be a. integer such that an

integer multiples of the period of .sin( Κ 2 0) equals to 360°. This is also applicable

in choosing the value of Κ 3 .

4.2 Image Capturing

We need to obtain four frames of images of the sphere using the imaging setting

as shown in Figure 3.1. Two methods are considered.

In the first method. we have to scan over the surface of the sphere, and

project every point bad; onto the image frame: the brightness value of the point
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on the sphere will be assigned to the corresponding pixel in the image frame.

However, a scheme is needed to scan over the sphere. If the spatial intervals

between sampled points are too big, some pixels may be missed in the projected

image. On the other hand, if the intervals are too small, a severe overlapping

of projections will arise; this is neither necessary nor efficient.

The other method is described below. For each pixel in the SIZE x SIZE

image frame, a projection line is drawn from it to the sphere, through the origin

0. If the line never intersects the sphere, the pixel is not a projection of any

point on the sphere surface, and therefore it is taken as a. background pixel. On

the other hand, if it intersects, the brightness value of the point on the sphere

surface where the projection line intersects is assigned to this pixel in the image.

In this way, every pixel in the image can be explored. A detailed algorithm is

given below.

Procedure {projection}

begin
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end

end	 {projection}

In the above algorithm, the Brightness_function varies for different images. As-

sume that the sphere is spinning with uniform angular speed around its - own

axis which is parallel to Y axis. It is clockwise if it is observed from the top.

For example, if the sphere rotates from instant, 1 , to instant T + Δ T for an

angle of ψ, and if the brightness function detected by the left camera, at instant

T is f(φ,ψ), then the brightness function detected by the right camera at in-

stant T + ΔTwill bef((φ-ψ+0),γ)Similarly, at instantT +2ΔT, the

brightness 'function for the left, camera will be f(( φ - 2ψ),γ) and at instant

T + 3ΔT,the brightness friction for the right camera will bef((φ - 3ψ +0), γ).

The above four brightness functions are the brightness functions

EL(xL, yL, t1)

,

ER(xR, yR, t2 )

,

E

L(xL, yL, t

3 )

 and

E

R(xR, yR, t4), respectively, as shown in Fig-

ure 3.3. Using the interpolation technique discussed in Chapter 3, the brightness

function ER(xR, yR, t3)can be obtained.

Having obtained the four frames of images, the Gauss-Seidel method dis-

cussed in Chapter 2 can be applied to obtain the unified optical. flows iteratively.
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The motion of the object can be recovered by using the eight equations given

in Chapter 3 (3.51 - 3.58). Next, we shall discuss the experimental results.

4.3 Analysis of the Experimental Results

Each experiment performed follows the procedures below.

1. Choose imaging setting parameters. They include:

of :	 focus length of the camera,
• D:	 distance between the sphere center and the origin 0
• 0:	 intersecting angle of two viewing directions

sphere radius
• φ/ΔT: the angular velocity at which the sphere is rotated

uniformly and clockwise around its axis.

2. Simulate four frames of images which correspond to EL (x, y, t 1 ), ER (x, y, t 2 )

EL (x,y,t 3 ) and ER (x,y,t4 ) as shown in Figure 3.3, respectively. Then in-

terpolate an image which corresponds to EL (x, y, t 2 ) in Figure 3.3.

3. In image frame E L (x,y,t1 ) shown in Figure 3.3, decide which pixel is to

be examined.

4. Geometrically determine the actual values of 3-ID location and motion

parameters of the corresponding point, including X, Y, Z, X Y and Z,

on the sphere surface,

5. Use unified optical flow method to recover the corresponding 3-D location

and motion parameters.

6. Examine error of each parameter.

4.3.1 Experiment 1

The parameters of the imaging setting are shown in. Table 4.1.



Figure 4.2: A set of simulated images obtained corresponding to the parallel°.
gram four-frame model
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f D 0 R φ/Δ T
10.0 1000.0 0.04° 0.0001 3°

Table 4.1: Imaging setting parameters in Experiment 1

First, we examine a particular point on the sphere surface. The actual and

the recovered values of the 3-D location and motion parameters of this point

are shown in Table 4.2.

Actual Value Recovered Value Percentage of Error
X 0.000040000 0.000040000 0%
Y - 0.000056667 - 0.000056667 0%
Z 999.999927966 1000.000049797 0%

X 0.000003715 0.000003715 0%
Y 0.000000000 0.000000000 0%

Z -0.000002192 -0.00000219,1 0.09%

Table 4.2: Comparison of the actual and the recovered location and motion
parameters in Experiment 1

The values obtained by the simulation are compatible to the values ob-

tained mathematically. Note that the recovered 3-D motion parameter Z is very

close to the reference value. The recovered X, Y, X and -Y and the reference X

and If are so close that they are essentially the same within the given precision

range.

Table 4.3 shows the error bounds of each parameter per pixel over the

whole image.

Further analysis is needed to show how the parameters of the imaging

setting affect the accuracy of the recovery. These effects are demonstrated by

the subsequent experiments.
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Parameter V l' Z
Error range p p <0.0001% p <0.0001% p <0.0001%

Parameter X C' Z
Error range p p <0.0001% p <0.0001% 0.05< p <0.1%

Table 4.3: Overall error performance of recovery in Experiment 1

4.3.2 Experiment 2

The parameters of the imaging setting are shown in Table 4.4.

f D 0 Ii φ /ΔT
10.0 1000.0 0.04° 1.0 :3°

Table 4.4: Imaging setting parameters in Experiment 2

Similar to Experiment 1, we , first examine one particular point on the

sphere surface. The actual and the recovered values of the 3-D location and

motion parameters of this point are shown in Table 4.5.

Actual Value Recovered Value Error range p
X .1.595377513 1.595379994 ρ  <0.0002%
Y - 2.2601181;13 - 2.260121(158 ρ  <0.0002%

Z 997.110945351 997.112196179 ρ  <0.0002%
X 0.151270543 0,155975030 ρ  =3.0162%

Y 0.000000000 0.0098781195
Z -0 0S3531770 -1,41518-11:32 >1000%

Table 4.5: Comparison of the actual and the recovered location and motion
parameters in Experiment 2

Note that the imaging setting in this experiment is the same as in the

previous one except that the radius of the sphere R is increased to 4.0. In this

case, the location parameters recovered agree well with the theoretical ones.
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However, the recovered motion parameters, in particular, Z, are not acceptable

as compared to the theoretical values.

Table 4.6 shows the error bounds of each parameter per pixel over the

whole image.

Parameter X Y Z
Error range ρ ρ <0.0002% ρ  <0.0002% ρ <0.0002%

Parameter X Y Z
Error range ρ ρ <17.500% ρ  <17.500% ρ >1000.0%

Table 4.6: Overall error performance of recovery in Experiment 2

From the dramatic change of the accuracy of recovery due to the change

of the scale of the observed object, one may guess that this is brought about by

the presumed far field condition, to which this experiment violates. Since all the

derivations conducted in the paper do not employ any measurement unit, the

far field condition can be satisfied by either increasing the scale of the observing

distance, which is represented by value D, or by decreasing the scale of the

observed object, which is represented by value R. The following experiment

will demonstrate this conjecture.

4.3.3 Experiment 3

The parameters of the imaging setting are shown in Table 4.7.

f D 0 R φ/ΔT

10.0 Varying 0.04° Varying 3°

Table 4.7: imaging setting parameters in Experiment 3

Here, all parameters but .D and R are fixed. We are varying D and R in

order to examine the far-field condition.
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Figure 4.3: Error in percentage in recovering Z vs, object distance D with DIR
fixed.
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Figure 4.4: Error in percentage in recovering Z vs. ratio R/D with D fixed at
1000.0.
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Figure 4.5: Error in percentage in recovering Z vs. object distance D with R
fixed at 0.0001.



Figure 4.6: Error m percentage in recovering Z vs. object distance D for various
values of RI D.
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Following conclusions are drawn from these simulations.

• Figure 4.3 shows that the error in recovering motion parameter Z remains

almost the same when ft and D vary proportionally., i.e., the ratio R/D is

constant.

• Figure 4.4 shows that the error in recovering Z increases linearly with

respect to the ratio R/D in the range U < R/D < .00035.

• Figure 4.5 shows that the error in recovering Z decreases inversely pro-

portional to the object distance D. Here, the sphere radius R is fixed.

• Figure 4.6 shows that the error in recovering Z increases with respect to

RID, regardless of the scale of D.

These figures show that the error depends on the ratio R/D which is a

measure of the far-field condition.

4.3.4 Experiment 4

The sphere surface can be reconstructed by scanning every pixel in the captured

image, and by recovering the 3-D coordinates of its corresponding point on the

sphere surface.

Table 4.8 shows the parameters of the imaging setting.

f D 0 R. φ/Δ T
10.0 1000.0 0.04° 0.0001 3°

Table 4.8: Imaging setting parameters in Experiment 4

We employ the following two measures to evaluate the reconstruction al-

gorithm.
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The mean absolute error:

where Zrec is the reconstructed value of coordinate Z, and Zacu is the

accurate value of it. In this experiment, 6 = .00122

• The mean square error:

In this experiment, σε = .00122

The error in the depth recovery is very small compared with the actual depth

which is about 1000.0 for each pixel on the sphere surface.

To show that the recovered plane i..s a. sphere surface, a graphic approach

is used to visualize the simulation results. Four images are shown in Figure

4.7. Images (a), (b) and (c) show the three projections on three different planes

YOZ, ZOX and XOY from three directions X0, YO and ZO, respectively.

Here the brightness of the images does not reflect, the actual brightness

value of the corresponding point, on the object sphere. Instead , the brightness

is utilized to indicate the depth of the object Z, i.e., the further a point on the

sphere is away 'Frain the the camera., the darker the corresponding pixel in the

projection is. Note that the perimeter of image (a) is a. circle, and the perimeters

of image (b) and (c) are semicircles.

Furthermore, image (d) shows a. pattern of several concentric circles. Each

circle is an equidistance circle indicating that the reconstructed surface corre-

sponding to the points on the circle is of the same depth. The depth correspond-

ing to each circle increases from the center to the outer circles. This agrees with

the surface of a. sphere.

1,1



Figure 4.7: Projections from different directions of the reconstructed sphere
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Chapter 5

Conclusions

From all the analysis we conduct and the experimental results we obtain

in Chapter 2, 3 and 4, the .following conclusions are drawn:

1. A new imaging system, consisting of only one sensor, two plane mirrors

and two switches, is implemented in this paper. Based on the unified

optical flow field, a. parallelogram four-frame model is established along

with a. set of formulation to recover the surface structure and 3-D motion

being proposed.

2. An image interpolation technique is used in this paper by employing the

optical flow con cept and scheme. Based on two "extreme." images taken

at two instants, any "intermediate" image between two instants can be

estimated.

3. The stereo imaging scheme presented in this thesis requires only one

sensor (or camera). Such scheme eliminates the highly restricted requirement

of two optically identical sensors in stereo imagery. Hence, it. is expected

to be more usefull in practice.

4. Detailed experiments are conducted in Chapter 4. The accuracy of the



structure and motion recovery is analyzed in a quantitative way. Differ-

ent aspects in the imaging setting which affect the accuracy of the overall

recovery result are discussed. It is noticed that the accuracy of the recov-

ery can be significantly affected if the far-field condition is not satisfied.

Furthermore, we notice that the accuracy of the recovered parameters

varies exam For the same imaging setting. The accuracy of the recovered

parameters falls into following three levels.

• Level 1:	 X and Z.

• Level 2:	 X and Y.

• Level 3:	 Z.

From Level 1 to Level 3, the accuracy of recovery decreases rapidly.

However, it is shown through the simulations that, if the imaging setting

parameters are chosen properly, the error of recovery can be minimized.

5. in conclusion, the application of the new arrangement of the imaging sys-

tem presented and the unified optical flow approach established to analyze

structure and motion. from a sequence of stereo images are very promising.
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