# Decomposing non-product form queueing lattices through autorouting with $\mathrm{A}^{*}$ algorithm 

Chun-Chang Yu<br>New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses
Part of the Electrical and Electronics Commons

## Recommended Citation

Yu , Chun-Chang, "Decomposing non-product form queueing lattices through autorouting with $\mathrm{A}^{*}$ algorithm" (1991). Theses. 1294.
https://digitalcommons.njit.edu/theses/1294

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

## Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If $a$, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

# Decomposing Non-Product Form Queueing Lattices Through Autorouting With A * Algorithm 

BY CHUN-CHANG YU

Thesis submitted to the faculty of the graduate school of the New Jersey Institute of Technology in partial
fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

## VITA

NAME : CHUN-CHANG YU

Address : 125 Lincoln Ave. Apt. B5 Newark, NJ 07104

## Eductation :

1. New Jersey Institute of Technology

Electrical Engineering Department, M.S.E.E.
Spring,1989 - January,1991
2. Tamkung University

Electrical Engineering Department, B.S.E.E.
Fall,1982 - Fall,1987

## Position Held :

1. Digital Equipment Taiwan LTD

Testing Engineer
December 1987 - July 1988
2. Fortune Taiwan CO.

Circuit Design Engineer
July 1986 - November 1987

# ABSTRACT 

TITLE OF THESIS :
A Simulation to Decompose Non-Product Form Queueing Lattices Through Autorouting with $\mathrm{A}^{*}$ Algorithm

Name:
Chun-Chang Yu
Master of Science in Electrical Engineering

Thesis Directed by : Dr. Irving Wang

Direct solution techniques are expensive for the state transition lattice of a class of non-product form queueing modes. In this thesis, autorouting with $\mathrm{A}^{*}$ algorithm is adapted to decompose it as solvable subsets which can be solved sequentially and independently. Autorouting with $\mathrm{A}^{*}$ algorithm is heuristics in problem solving. It also is one of a class of global optimization problems that are difficult to solve. Some queueing modes of type A will be decomposed in this thesis through aAutorouting with $\mathrm{A}^{*}$ algorithm.

## ACKNOWLEDGEMENTS

I take this opportunity to express my deep gratitude to Dr. Irving Y. Wang, Assistant Professor, Electrical Engineering Department of N.J.I.T. for his advice and help throughout the course of this work.

I am also very thankful to Dr. Nirwan Ansari and Dr. Edwin Hou for devoting their precious time to reviewing my work and attendance.

Finally, I wish to give my loving appreciation for the encouragement and support given to me by my parents.

## Approval Sheet

# of Thesis: Decomposing Non-Product Form Queueing Lattices Through Autorouting With A * Algorithm 

Name of Candidate: Chun-Chang Yu<br>Master of Science in Electrical Engineering, 1990

Thesis \& Abstract Approved
by the Examining Committee:


Department of Electrical and Computer Engineering


Assistant Professor
Department of Electrical and Computer Engineering

Dr. Edwin Hou
Date
Assistant Professor
Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey.

## Contents

1 Introduction ..... 1
2 Product and Non-Product ..... 2
2.1 General Review ..... 2
2.2 Sequential Decomposition ..... 4
3 Autorouting with the A* Algorithm ..... 12
3.1 Autorouting Operation ..... 12
3.1.1 Data Structure for the First Phase ..... 13
3.2 Breadth-First Search Algorithm ..... 13
3.3 A* Algorithm ..... 19
3.4 Discussion ..... 24
4 Adapted Autorouting with A* Algorithm to Non-Product
Form Queueing Mode ..... 25
4.1 Type A ..... 25
4.2 Estimate Calculation ..... 28
5 Decomposition Results ..... 31
6 Discussion and Conclusion ..... 48

References 49

## Appendix:

## List of Figures

2.1 Product Form ..... 4
2.2 Non-Product Form ..... 5
2.3 A Solvable Subset ..... 8
2.4 The Basic Structure of Type A ..... 9
2.5 The Basic Structure of Type B ..... 10
2.6 A Typical Example of Type A Lattice ..... 11
3.1 Lee's Algorithm Searching for a Path ..... 18
3.2 Behavior of the A* Search Algorithm ..... 23
4.1 Definition of Estimate for Type A ..... 30
5.1 Type A Lattice ..... 33

## Chapter 1 Introduction

In studying the behavior of computer system, queueing network modes are a useful tool for evaluating performance and for studying the interaction between resources, software and workload [1]. The product form solution of the balance equations, when it exists, plays an important role in analyzing such queueing network modes. Product form solutions are of great interest because the direct numerical solution of balance equations is computationally expensive. Typically the existence of product form solutions has been characterized in terms of certain classes of queueing networks. In [2,3,4]it was characterized in terms of the algebraic topology of the state transition lattice. It was shown that the existence of the product form solution corresponds to a decomposition of the state transition lattice - complex - into elementary geometric building blocks - cells.

Non-product form queueing networks are far less likely to have a closed form solution for the equilibrium probabilities. Direction solution techniques are prohibitively expensive. In this paper autorouting with $\mathrm{A}^{*}$ algorithm will be submitted to decompose the non-product queueing lattice.

In chapter 2 , the product form and the non-product will be reviewed, while at the same time sequential decomposition will be discussed. In chapter 3 , the autorouting with A* algorithm is described. In chapter 4, the algorithm discussed in chapter 3 is implemented to decompose the non-product form queueing lattice for A type. Chapter 5 shows the results of simulation.

## Chapter 2 Product and Non-Product Form

### 2.1 General Review

In [4] it is shown that specific structure in the state transition lattice leads to a sequential method of solution. The method is sequential either in terms of individual state or in terms of groups of states. In both cases, substantial computational savings are possible. A great deal of research has been performed on the subject of product form solutions. Originally, Jackson described the equilibrium state probabilities for open networks of queues with a single class of jobs, Poisson arrival statistics, and exponential service time[5]. These probabilities were of a characteristic "product form":

$$
\begin{equation*}
P\left(n_{1} n_{2}, \ldots, n_{m}\right)=P_{1}\left(n_{1}\right) P_{2}\left(n_{2}\right) \ldots P_{m}\left(n_{m}\right) \tag{1.1}
\end{equation*}
$$

Later, Gordon and Newell analyzed closed queueing networks with each station having an exponential service time distribution[7]. The equilibrium states probability as:

$$
\begin{equation*}
P\left(n_{1}, n_{2}, \ldots, n_{m}\right)=\frac{1}{G(N)} \prod_{i=1}^{m} f_{i}\left(n_{i}\right) \tag{1.2}
\end{equation*}
$$

Where $G(N)$ is a normalization constant chosen to make all the feasible state probabilities sum to one. N is the total number of jobs. The $f_{i}$ are akin to the marginal probabilities of (1.1).

There is similarity between the balance equation of queueing network state transition lattices and current conservation equations of resistant circuits. Naturally, the flow in the former involves probability flux[6] rather than current. Transition rates three significant differences though. There is a scaling of equilibrium probabilities
to unity which induces probability flux flow in place of voltage sources. The flow directions are perdetermined from the transition directions. Finally, the transition rates are labeled in a patterned manner from the queueing scheme. The existence of product form solutions has been characterized in terms of certain types of queueing networks. That is the algebraic topology of the state transition lattice as shown in fig. 2.1.

Non-product is shown in fig 2.2. Direct solution techniques are prohibitively expensive. Techniques analogous to that of the $z$-transform can sometimes be used to determine distributions of interest $[4,7]$. In[7] the sequential decomposition technique was described.


Figure 2.1a


Figure 2.1b


Figure 2.1c

Figure 2.1 Product Form


Figure 2.2 Non-Product Form

### 2.2 Sequential Decomposition

The exact computation of the state probabilities of a class of non-product form queueing networks is discussed in this section. It is shown that specific structure in the state transition lattice leads to a sequential method of solution. The method is sequential either in terms of individual state or in terms of groups of states.

In[4] a class of non-product form networks is described whose state transition lattices can be shown to be equivalent to a lattice tree of simplexes. In this "flow redirection" method the lattice geometry is manipulated by equivalence transformations. Sequential decomposition refers to the related process of solving one subset of states at a time for the equilibrium probabilities:

Definition 1.1: a solvable subset of queueing network states is a subset of states for which the equilibrium probabilities can be determined without regard to the equilibrium probabilities of the remaining unknown states. Here probabilities are determined with respect to a reference probability.

A simple example is presented in figure 2.3. States S 1 and S 2 form a solvable subset. The equilibrium probabilities can be determined without regard to the values associated with the other states. This is done through the following global balance equations:

$$
\begin{gathered}
(\alpha+\beta) P_{0}=\gamma P_{1}+\beta P_{2} \\
\alpha P_{2}=\gamma P_{1}
\end{gathered}
$$

These equations can be solved for the probabilities $P_{1}$ and $P_{2}$ as a function of reference probability $P_{0}$. In fact, a more general principle can be established. The method of sequential decomposition is applicable to queueing systems whose states have the geometry shown in figure 2.4. Here each circular cluster represents a state
or a group of states. Consider the ith cluster, the rule is that there must be only one state, with unknown probability, external to the cluster form which a transition(s) entering the cluster originates.

The clusters are solved sequentially, starting from the first cluster to the second and so on. Note that there is no restriction on the number of transitions which may leave the ith cluster for destination in the $j=i+1, i+2, \ldots$, cluster. The solution equations may not be unique.

Note also that the direct solution of linear equations takes time proportional to the cube of the number of equations. If $N$ states can be solved as $M$ states then the computational effort is proportional to $(N / M)^{3} M$ rather than $N^{3}$.

Two types of the structure which allows the state transition lattice to be decomposed into solvable subsets were obtained in [7]. The first type of structure is illustrated in Figure 2.4 and Figure 2.6. Here each circular subset represents a state or a group of states. For the ith subset the rule is that there must be only one state, with unknown probability, external to the subset from which a transition(s) entering the subset to the second and so on. There is no restriction on the number of transitions which may leave the ith subset for destinations in the $j=i+1, i+2, \ldots$, subsets. This type of structure is type A structure.

The second type of structure is illustrated in Figure 2.5. Here the first subset consists of a single state. The remaining subsets each consist of a state or a group of states. They are arranged in a tree of configuration with the flow between subsets from the top of the diagram to the bottom and a return flow from the bottom level back to the top. The subsets may be solved from the top to the bottom. Transitions may traverse several levels as long as the direction of flow is downward. This type is referred to as type B structure.


Figure 2.3 A Solvable Subset


Figure 2.4 The Basic Structure of A Type A


Figure 2.5 The Basic Structure of Type B


Figure 2.6 A Typical Example of Type A Lattices

# Chapter 3 <br> Autorouting with the $A^{*}$ Algorithm 

Autorouting is one of a class of global optimization problems that are difficult to solve. A good decomposition for the non-product form queueing networks, for example, minimizes things like:

- the number of groups of states
- the time to search the group

At the same time, the decomposition maximizes things like reliability and ease of debugging. The overall value of a decomposition for a non-product form queueing network design is a function of these often conflicting variables. It is usually acceptable to find a solution for all but the most trivial problems. In this chapter, we would describe the autorouting with the $\mathrm{A}^{*}$ algorithm about how it works in the two phases and analysis of its complexity.

### 3.1 Autorouting Operation

Autorouting search algorithms typically operate in two phase[9], treating the statetransition lattice as a matrix of cells. The first phase starts at the source cell and searches for the target cell, usually by going in several directions at the same time .

The algorithms build in an auxiliary data structure to keep track of how each cell was reached. The first phase ends when the target cell has been found, and the second phase begins. If the first phase exhausts all possibilities without reaching the target cell, then no route exists between them, and there is no reason to do the second phase.

The second phase uses the auxiliary data structure to trace the route from the target cell back to the source cell.

The second phase is identical for the breadth-first [10][11] and A* search[12] algorithms. The first phase is different, and it is this phase that gives these algorithms different behaviors.

### 3.1.1 Data Structure for the First Phase

The main data structures used in the first phase are the OPEN QUEUE and the CLOSED SET, which hold cell coordinates. Because a cell's coordinates uniquely identies it, we'll say that the OPEN QUEUE and CLOSED SET contain cells. Cell corrdinate will be represented as r 5 c 5 for the cell at row 5 , column 5 .

To remind ourselves that OPEN is a queue and CLOSED is a set, when we talk about adding cell to them, we will put the cells " on " the queue and " in "the set. Initially, the OPEN QUEUE contains the source cell and the CLOSED SET is empty.

The first phase is a loop which removes an element from the head of the OPEN QUEUE, puts it in the CLOSED SET (which indicates that it has been searched ) and checks to see if it is the target cell. If so, the first phase is done, otherwise, the neighbors of the cell ( those adjacent to it ) are placed on the OPEN QUEUE, and the loop continues. As we'll see later, the essential difference in the breadth-first and A* search algorithms is placed on the OPEN QUEUE.

### 3.2 Breadth-First Search

Breadth-first search looks for the target among all elements of the matrix from the source cell.

Here is the procedure with proper terminating condition

To conduct a breadth-first searth:

1. From a one cell set consisting of the source.
2. Until the QUEUE is empty or the goal has been reached, determine if the cell(s) in the set is(are) the target.
(a) If the set is the target, do nothing.
(b) If the set is not the target, put its neighbors to the SET and add the neighbors of their neighbors to the QUEUE. Go back to 2 a .
3. If target has been found, announce success; otherwise announce failure.

Breadth-first search works by processing a first in first out (FIFO ) queue of open cells, that is, cells that have been reached, but not yet searched. Initially, the OPEN QUEUE contains only the source cell. A cell is removed from the head of the OPEN QUEUE, placed in the SET of closed cells (cells that have been searched ) and checked to see if it is the target cell. If not, its neighbors are placed at the tail of the OPEN QUEUE. Neighboring cells that have alreadly been reached are ignored ( If a cell's corrdinates is on the OPEN QUEUE or in the CLOSED SET, then it has been reached, otherwise it has not ). This continues until one of two things happens:

- The goal cell has been found.
- The OPEN QUEUE is empty in which case the goal can not be reached from the source cell.

A version of breadth-first search known as Lee's algorithm[11] has served as the basis for some autorouters since the early 1960s.

| Target Cell : $\mathbf{r}_{8} \mathbf{c}_{2}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  | T |  |
|  |  |  |  |  |  |  |
|  |  | $\searrow$ | $\downarrow$ | $\swarrow$ |  |  |
|  |  | $\rightarrow$ | S | $\leftarrow$ |  |  |
|  |  | $\nearrow$ | $\uparrow$ | « |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## CLOSED OPEN

$$
\begin{array}{cccc}
\mathbf{r}_{5} \mathbf{c}_{5} & \mathbf{r}_{5} \mathbf{c}_{4} & \mathbf{r}_{6} \mathrm{c}_{5} & \mathbf{r}_{5} \mathbf{c}_{6} \\
& \mathbf{r}_{4} \mathrm{c}_{5} & \mathbf{r}_{6} \mathbf{c}_{4} & \mathbf{r}_{6} \mathbf{c}_{6} \\
& \mathbf{r}_{4} \mathrm{c}_{6} & \mathbf{r}_{4} \mathbf{c}_{4} &
\end{array}
$$

Figure 3.1a

Target Cell : $\mathbf{r}_{8} \mathbf{c}_{\mathbf{2}}$

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | $\mathbf{T}$ |  |
|  | $\searrow$ | $\searrow$ | $\downarrow$ | $\swarrow$ | $\swarrow$ |  |  |
|  | $\searrow$ | $\searrow$ | $\downarrow$ | $\swarrow$ | $\swarrow$ |  |  |
|  | $\rightarrow$ | $\rightarrow$ | $\mathbf{S}$ | $\leftarrow$ | $\leftarrow$ |  |  |
|  | $\nearrow$ | $\nearrow$ | $\uparrow$ | $\searrow$ | $\searrow$ |  |  |
|  | $\nearrow$ | $\nearrow$ | $\uparrow$ | $\searrow$ | $\searrow$ |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## CLOSED OPEN

| $\mathbf{r}_{5} c_{5}$ | $r_{5} c_{4}$ | $r_{5} c_{3}$ | $r_{6} c_{3}$ | $r_{7} c_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{r}_{6} c_{5}$ | $r_{5} c_{6}$ | $r_{7} c_{4}$ | $r_{7} c_{5}$ | $r_{7} c_{6}$ |
| $\mathbf{r}_{4} c_{5}$ | $r_{6} c_{4}$ | $r_{7} c_{7}$ | $r_{6} c_{7}$ | $r_{5} c_{7}$ |
| $\mathbf{r}_{6} c_{6}$ | $r_{4} c_{6}$ | $\mathbf{r}_{4} c_{7}$ | $r_{3} c_{7}$ | $r_{3} c_{6}$ |
| $r_{4} c_{4}$ |  | $r_{3} c_{5}$ | $r_{3} c_{3}$ | $r_{3} c_{4}$ |
|  |  | $r_{4} c_{3}$ |  |  |

Figure 3.1b

Target Cell : $\mathbf{r}_{8} \mathbf{c}_{2}$

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\searrow$ | $\searrow$ | $\searrow$ | $\downarrow$ | $\swarrow$ | $\swarrow$ | $\swarrow$ |  |  |
| $\searrow$ | $\searrow$ | $\searrow$ | $\downarrow$ | $\swarrow$ | $\swarrow$ | $\swarrow$ |  |  |
| $\searrow$ | $\searrow$ | $\searrow$ | $\downarrow$ | $\swarrow$ | $\swarrow$ | $\swarrow$ |  |  |
|  | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | S | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ |  |
|  | $\nearrow$ | $\nearrow$ | $\nearrow$ | $\uparrow$ | $\searrow$ | $\nwarrow$ | $\searrow$ |  |
|  | $\nearrow$ | $\nearrow$ | $\nearrow$ | $\uparrow$ | $\searrow$ | $\nearrow$ | $\searrow$ |  |
|  | $\nearrow$ | $\nearrow$ | $\nearrow$ | $\uparrow$ | $\searrow$ | $\searrow$ | $\searrow$ |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## CLOSED OPEN

| $r_{5} c_{5}$ | $r_{5} c_{4}$ | $r_{6} c_{5}$ | $r_{5} c_{2}$ | $r_{6} c_{2}$ | $r_{7} c_{2}$ | $r_{8} c_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $r_{5} c_{6}$ | $r_{4} c_{5}$ | $r_{6} c_{4}$ | $r_{8} c_{3}$ | $r_{8} c_{4}$ | $r_{8} c_{5}$ | $r_{8} c_{6}$ |
| $r_{6} c_{6}$ | $r_{4} c_{6}$ | $r_{4} c_{4}$ | $r_{8} c_{7}$ | $r_{8} c_{8}$ | $r_{7} c_{8}$ | $r_{6} c_{8}$ |
| $r_{5} c_{3}$ | $r_{6} c_{3}$ | $r_{7} c_{3}$ | $r_{5} c_{8}$ | $r_{4} c_{8}$ | $r_{3} c_{8}$ | $r_{2} c_{8}$ |
| $r_{7} c_{4}$ | $r_{7} c_{5}$ | $r_{7} c_{6}$ | $r_{2} c_{7}$ | $r_{2} c_{6}$ | $r_{2} c_{5}$ | $r_{2} c_{4}$ |
| $r_{7} c_{7}$ | $r_{6} c_{7}$ | $r_{5} c_{7}$ | $r_{2} c_{3}$ | $r_{2} c_{2}$ | $r_{3} c_{2}$ | $r_{4} c_{2}$ |
| $r_{4} c_{7}$ | $r_{3} c_{7}$ | $r_{3} c_{6}$ |  |  |  |  |
| $r_{3} c_{5}$ | $r_{3} c_{4}$ | $r_{3} c_{3}$ |  |  |  |  |
| $r_{4} c_{3}$ |  |  |  |  |  |  |

Figure 3.1c
Lee's algorithm searching for a path

In Figure 3.1a, the source cell ( r 5 c 5 ) has been searched, and its eight neighbors have been placed on the OPEN QUEUE. The arrows indicate the direction from which each cell was reached, and correspond to first phase data structure. After the first eight cells on the OPEN QUEUE have been reached and moved to the CLOSED SET, the algorithm searches the configuration in Figure 3.1 b, where there are sixteen cells on the OPEN QUEUE. Once these sixteen cells have been searched, the configuration in Figure 3.1c is reached. Now the goal cell (r8c2) is fourth from the end on the OPEN QUEUE, and a solution is imminent.

### 3.3 A* Algorithm Search

The $A^{*}$ procedure is branch-and-bound search, with an estimate of remaining distance, combined with the dynamic-programming principle [10]. It is a priority queue, which means cells are inserted according to the estimated distance to the target [10], not just at the end.

Cells that are on the shortest estimated path from source to target go to the head of the queue. The A* algorithm removes the cell from the head of the OPEN QUEUE and checks to see if it's the target. If not, the neighboring cells are put on the OPEN QUEUE at the proper position. The algorithm checks neighboring cells that have already been searched to see if the new path between them and the source is shorter than the previous one. If it is, they are repositioned on the OPEN QUEUE according to the new estimated path length from source to goal. As in Breadth-First search, this continues until the target cell has been found or until the OPEN QUEUR is empty.

A* depends on being able to estimate the distance between a cell and the target cell. In the case of autorouting, a simple measure of this distance is available, and this helps $A^{*}$ to concentrate the search on the direction most likely to succeed. The more accurate the estimate, the faster the search.

Figure 3.2 shows the behavior of the $A^{*}$ search algorithm. $A^{*}$ does not specify whether new cells go in front of or behind cells already on the OPEN QUEUE that evaluate to identical estimated path lengths. We use the convention that they are placed in front. This minimizes the time to insert a cell on the OPEN QUEUE.


## CLOSED OPEN

$\mathrm{r}_{5} \mathrm{c}_{5}$

$$
\begin{array}{llll}
\mathrm{r}_{5} \mathrm{c}_{4}(3) & \mathrm{r}_{6} \mathrm{c}_{5}(3) & \mathbf{r}_{5} \mathrm{c}_{6}(4) & \mathbf{r}_{4} \mathrm{c}_{5}(4) \\
\mathbf{r}_{6} \mathbf{c}_{4}(2) & \mathrm{r}_{6} \mathbf{c}_{6}(4) & \mathbf{r}_{4} \mathrm{c}_{6}(4) & \mathbf{r}_{4} \mathrm{c}_{4}(4)
\end{array}
$$

Figure3.2a


\[

\]

Figure 3.2b

Target Cell : $\mathbf{r}_{8} \mathbf{c}_{\mathbf{2}}$
$F(x)=1$

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | $\searrow$ | $\downarrow$ | $\swarrow$ |  |  |
|  |  |  | $\searrow$ | $\downarrow$ | $\swarrow$ | $\leftarrow$ |  |  |
|  |  | $\searrow$ | $\downarrow$ | $\swarrow$ | $\leftarrow$ | $\searrow$ |  |  |
|  |  | $\rightarrow$ | s | $\leftarrow$ | $\searrow$ |  |  |  |
|  |  | $\nearrow$ | $\uparrow$ | $\searrow$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## CLOSED OPEN

| $\mathrm{r}_{5} \mathrm{c}_{5} \mathrm{r}_{6} \mathrm{c}_{4}$ | $\mathrm{r}_{5} \mathrm{c}_{4}(3)$ | $\mathrm{r}_{6} \mathrm{c}_{5}(3)$ | $\mathrm{r}_{5} \mathrm{c}_{6}(4)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{r}_{7} \mathrm{c}_{3}$ | $\mathrm{r}_{4} \mathrm{c}_{5}$ (4) | $\mathrm{r}_{6} \mathrm{c}_{6}(4)$ | $\mathrm{r}_{4} \mathrm{c}_{6}(4)$ |
|  | $\mathrm{r}_{4} \mathrm{c}_{4}(4)$ | $\mathrm{r}_{6} \mathrm{c}_{3}(2)$ | $\mathrm{r}_{7} \mathrm{c}_{4}(2)$ |
|  | $\mathrm{r}_{7} \mathrm{c}_{5}(3)$ | $\mathrm{r}_{5} \mathrm{c}_{3}(3)$ | $\mathrm{r}_{7} \mathrm{c}_{2}(1)$ |
|  | $\mathrm{r}_{8} \mathrm{c}_{3}(1)$ | $\mathrm{r}_{8} \mathrm{c}_{2}(0)$ | $\mathrm{r}_{8} \mathrm{c}_{4}(2)$ |
|  | $\mathrm{r}_{6} \mathrm{c}_{2}(2)$ |  |  |

Figure 3.2c
Behavior of the $A^{*}$ search algorithm

In Figure 3.2a, the source cell ( r 5 c 5 ) has been searched, and its neighbors are on the OPEN QUEUE. Each cell on the OPEN QUEUE also includes the estimated length of the shortest path from $S$ to $T$ that goes through that cell (we set the estimated length of each grid to be one ). After the first cell (r6c4) has been searched and moved to the CLOSED SET, the configuration in Figure 2.2b is reached, where there are 12 cells on the OPEN QUEUE. After searching the next cell (r7c3), the algorithm reaches the configuration in Figure 3.2c. Now the goal cell (r8c2) is at the head of the OPEN QUEUE, and solution will be found on the next iteration of the loop. Searching r8c2, $A^{*}$ recognizes it as the target and uses the first phase data structure to construct a trace back to the source cell.

### 3.4 Discussion

Lee's algorithm suffers from a behavior inherent in the breadth-first search technique, which limits its application to problems of relatively small size. As the distance between the source and target cells increases by a factor of $N$, the number of cells processed by Lee's algorithm -and therefore processing time - increases by the square of N .

A* algorithm search process, as seen in the Figure 3.2, goes more directly toward the goal cell. The target draws the search much as the earth's gravity pulls objects toward the center of mass. If we double the size of the problem, the search will process about twice as many cells, and if we triple its size, the search will run through three times as many. This linear characteristic makes $A *$ more attractive for autorouting than the quadratic Lee's algorithm.

## Chapter 4 Adapted Autorouting with A* Algorithm to Non-Product Form Queueing Mode

In chapter 3 the autorouting with $A^{*}$ algorithm operation is introduced. In this chapter it will be implemented to decompose the non-product form queueing lattices. The non-product form queueing lattices will be seen as a matrix. From a given cell, we will discuss how the target (group) will be found in this chapter. The pseudocode will also be supplied.

### 4.1 Type A

Type A structure is illustrated in Figure 2.4. Here each circular subset represents a state or a group of states. For the ith subset there must be only one state with unknown probability, external to the subset from which a transition(s) entering the subset originates. Our target is to find a small subgroup of cells that only one cell, not contained in the target group, can enter this subgroup from the source cell .

From Figure 2.4 we can find that, at most, only one node enters the subgroup from other subgroups. For convenience we call this node the bridge node. Now we give every node an estimate. The rule is that the estimates of the cells of the former subset should be less than that of the cells of the latter subset, i.e. the estimates of the nodes of the second subset should be greater than those of the nodes of the first subset. After each subset has been searched, i.e. after the bridge node for the subset has been found, the every bridge node will be seen as the source cell for the search of the other subgroups. Repeat this until we have done with each node.

If a source cell is a subset we have just finished with, set this subset's neighbors as the bridge cell and search again. If not, put the source cell in CLOSED SET, add its neighboring nodes that have path and compare their estimates to search for the cell with largest estimate as a bridge node until there is only one node i.e. the bridge cell, left on the OPEN QUEUE. Search the other subgroups again until no node can be found.

Pseudo code for searched subgroup from type A
( $* \mathrm{~S}$ is the start node $*$ )
(* OPEN is an ordered list of nodes, CLOSED is a set of nodes (order contain the lower F value ). In general, nodes that need to be searched are put on OPEN (at the proper position ). As they are searched, they are removed from OPEN ann put in CLOSED *)
$(* F(x)$ is the estimated of $x *)$
( $* G(x)$ is the number of nodes that enter the x , from its neighbors $*$ )
1 OPEN $\leftarrow\{S\}(*$ a list of one element $*)$
CLOSED $\leftarrow\}$ ( *the empty set *)
while OPEN $\neq\{ \}$ dand not found do
$\mathrm{x} \leftarrow$ the first node on OPEN ( $*$ node with largest F valus *)
OPEN $\leftarrow-\{x\}$ (*remove $x$ from OPEN *)
CLOSED $\leftarrow$ CLOSED $+\{\mathrm{X}\}(*$ put x in CLOSED $*)$
$5 \quad$ IF $G(X)==1(* \mathrm{x}$ itself is a subset $*)$
Let N be the set of neighboring nodes of x
For each y on N do
$\operatorname{IF}(G(x)=\{ \})$ do nothing
IF $(G(X)==1)(* x$ iteslf is subset $*)$
$S \leftarrow y$
$F(x) \leftarrow F(y)$
$G(x) \leftarrow G(y)$
Print CLOSED ( * searched finished *)
go to 1

## ELSE

IF y not on OPEN or CLOSED THEN
IF $F(y) l F(x) \mathrm{x} \leftarrow \mathrm{y}$
$F(x) \leftarrow F(y)$
ELSE
put y in CLOSED
ELSE
remove y from OPEN (* each node search one time *)
until $T$ is reached
else $T$ can not reached from $S$

Starting with the source cell, the process stops if the cell is the last element. If the cell is a subset itself, record it, take it as a subset and puts it neighboring cells on OPEN, as they are treated as the source in this case. Compare $\mathrm{F}(\mathrm{y})$ with $\mathrm{F}(\mathrm{x})$. Add $y$ to CLOSED if $F(x) \geq F(y)$. If $F(x)<F(y)$, put $y$ into OPEN and make $F(x) \leftarrow F(y)$. Continue the comparison between $F(x)$ and $F(y)$. When the neighboring cells of the $x$ have all gone through this comparison procedure, take the estimate of their neighbors to do the comparison. Keep on until the largest $F(x)$ is found.

### 4.2 Estimate Calculation

The A* search algorithm use a heuristic to estimate the distance between the current cell and the target cell. As implemented in the autorouting program, the heuristic is a simple geometric distance approximation. Figure 4.1 illustrates all the possible cell types used to construct a trace, grouped by type.

For each group, the estimate of that cell type is also given. These estimates are calculated based on an infinite cell size. If we take the example of Figure 4.1, the estimated of r 4 c 0 equals to

$$
\begin{gathered}
2 * \text { group } \mathrm{C}+2 * \text { group } \mathrm{D}+1 * \text { group } \mathrm{A} \\
=2+2+0 \\
=4
\end{gathered}
$$

and the estimate of r 4 cl equals to

$$
\begin{gathered}
1 * \text { group } \mathrm{A}+2 * \text { group } \mathrm{C}+2 * \text { group } \mathrm{D}+1 * \text { group } \mathrm{E} \\
=0+2+\left(5^{*} 1\right)+2 \\
=11
\end{gathered}
$$

According to the estimated we can easily find the target cell. The estimate design based on Figure 2.4. Every solvable subset has only one bridge node that has incoming path to this subset. So we design the estimate of bridge node is larger than that of all nodes in the subset that it enters. Every time when we search the bridge node we compare the estimates. Finally, we can get a node with largest estimate that is bridge node and the subset search is finished. The bridge node will be seen as a source cell to searh the other subset. Until OPEN QUEUE is empty, all solvable subsets will be searched.
A
0

B

C

D

E

F
i: the number of column

6

1

1

$$
5 * i
$$

2


Figure 4.1 Definition of Estimate for Type A

## Chapter 5 Decomposition Results

The simulation program is written in C code [appendix]. The author tested the program on the lattices of type A, Figure 5.1, on an IBM 286AT Personal Computer with source cell(r4c2). The results are as following:
$\begin{array}{llllllllll}6 & 32 & 34 & 34 & 34 & 34 & 36 & 34 & 34 & 32\end{array}$
$\begin{array}{llllllllll}5 & 27 & 29 & 29 & 31 & 29 & 35 & 29 & 29 & 27\end{array}$
$\begin{array}{llllllllll}4 & 22 & 24 & 24 & 30 & 24 & 26 & 24 & 24 & 22\end{array}$
$\begin{array}{llllllllll}3 & 17 & 21 & 19 & 19 & 19 & 25 & 19 & 19 & 17\end{array}$
$\begin{array}{llllllllll}2 & 14 & 20 & 14 & 14 & 14 & 14 & 14 & 14 & 12\end{array}$
$\begin{array}{llllllllll}1 & 13 & 9 & 9 & 9 & 11 & 9 & 9 & 9 & 7\end{array}$
$\begin{array}{llllllllll}0 & 2 & 4 & 4 & 4 & 10 & 4 & 4 & 4 & 2\end{array}$
$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

$$
F(X)
$$



Figure 5.1 Type A Lattice

$$
\begin{aligned}
& \text { Source Cell :r4c2(14) } \\
& \qquad \begin{array}{ll}
\mathrm{F}(\mathrm{x})=14 \\
\text { CLOSED } & \text { OPEN } \\
\mathrm{r} 4 \mathrm{c} 2 & \mathrm{r} 3 \mathrm{c} 2(14) \\
& \mathrm{r} 4 \mathrm{c} 1(11) \\
& \mathrm{r} 5 \mathrm{c} 2(14)
\end{array}
\end{aligned}
$$

First Search

Source Cell :r4c2(14)

$$
F(x)=14
$$

CLOSED OPEN

| r 4 c 2 | $\mathrm{r} 2 \mathrm{c} 2(14)$ |
| :--- | :--- |
| r 3 c 2 | $\mathrm{r} 3 \mathrm{c} 1(9)$ |
| r 4 c 1 | $\mathrm{r} 4 \mathrm{c} 0(10)$ |
| r 5 c 2 | $\mathrm{r} 5 \mathrm{c} 1(9)$ |
|  | $\mathrm{r} 6 \mathrm{c} 2(14)$ |

Second Search

Source Cell :r4c2(14)

$$
F(x)=14
$$

CLOSED OPEN
$r 4 c 2 r 2 c 2 r 1 c 2(20)$
r3c2 r3c1 r2c1(9)
$\mathrm{r} 4 \mathrm{c} 1 \quad \mathrm{r} 4 \mathrm{c} 0 \quad \mathrm{r} 3 \mathrm{c} 0(4)$
$\mathrm{r} 5 \mathrm{c} 2 \quad \mathrm{r} 5 \mathrm{c} 1 \quad \mathrm{r} 5 \mathrm{c} 0(4)$
$r 6 \mathrm{c} 2 \quad \mathrm{r} 6 \mathrm{c} 1(9)$
r7c2(14)

Third Search

Source Cell :r4c2(14)

$$
F(x)=20
$$

| CLOSED |  |  | OPEN |
| :--- | :--- | :--- | :--- |
| r 4 c 2 | r 2 c 2 | r 3 c 2 | $\mathrm{rlc} 2(20)$ |
| r 3 c 1 | r 4 c 1 | r 4 c 0 | $\mathrm{r} 1 \mathrm{c} 1(9)$ |
| r 5 c 2 | r 5 c 1 | r 6 c 2 | $\mathrm{r} 2 \mathrm{c} 0(4)$ |
| r 2 c 1 | r 3 c 0 | r 5 c 0 | $\mathrm{r} 6 \mathrm{c} 0(4)$ |
| r 6 c 1 | r 7 c 2 |  | $\mathrm{r} 7 \mathrm{c} 1(9)$ |
|  |  |  | $\mathrm{r} 8 \mathrm{c} 2(12)$ |

Fourth Search

Source Cell :r4c2(14)

$$
F(x)=20
$$

| CLOSED |  |  |  | OPEN |
| :--- | :--- | :--- | :--- | :--- |
| r 4 c 2 | r 2 c 2 | r 3 c 2 | rlc 1 | $\mathrm{r} 1 \mathrm{c} 2(20)$ |
| r 3 c 1 | r 4 c 1 | r 4 c 0 | r 2 c 0 | $\mathrm{r} 0 \mathrm{c} 1(13)$ |
| r 5 c 2 | r 5 c 1 | r 6 c 2 | r 6 c 0 | $\mathrm{r} 0 \mathrm{c} 0(4)$ |
| r 2 c 1 | r 3 c 0 | r 5 c 0 | r 8 c 2 | $\mathrm{r} 1 \mathrm{c} 0(4)$ |
| r 6 c 1 | r 7 c 2 | r 7 c 1 |  | $\mathrm{r} 7 \mathrm{c} 0(4)$ |
|  |  |  |  | $\mathrm{r} 8 \mathrm{c} 0(2)$ |
|  |  |  |  | $\mathrm{r} 8 \mathrm{c} 1(7)$ |

## Fifth Search

Source Cell :r4c2(14)

$$
F(x)=20
$$

| CLOSED |  |  |  | OPEN |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| r 4 c 2 | r 2 c 2 | r 3 c 2 | r 1 c 1 | r 0 c 1 | $\mathrm{r} 1 \mathrm{c} 2(20)$ |
| r 3 c 1 | r 4 c 1 | r 4 c 0 | r 2 c 0 | r 0 c 0 |  |
| r 5 c 2 | r 5 c 1 | r 6 c 2 | r 6 c 0 | r 1 c 0 |  |
| r 2 c 1 | r 3 c 0 | r 5 c 0 | r 8 c 2 | r 7 c 0 |  |
| r 6 c 1 | r 7 c 2 | r 7 c 1 | r 7 c 0 | r 8 c 0 |  |
| r 8 c 1 |  |  |  |  |  |
|  |  | Sixth Search |  |  |  |

Now, only one element has the largest estimate in OPEN QUEUE. The search of first subset that is the group of the cells on CLOSED SET is finished. We begin to search the second subset. The element in OPEN will be seen as a source cell for second subset.

| Source Cell | $\begin{aligned} & l \mathrm{rrc}(20) \\ & =21 \end{aligned}$ |
| :---: | :---: |
| CLOSED | OPEN |
| r1c2 | r1c3 (21) |
| First | Search |

Now, only one element has the largest estimate in OPEN QUEUE. The search of second subset that is the group of the cells on CLOSED SET is finished. We begin to search the third subset. The element in OPEN will be seen as a source cell for third subset.

$$
\begin{aligned}
& \text { Source Cell :r1c3(21) } \\
& \qquad \begin{array}{ll}
\mathrm{F}(\mathrm{x})=\mathbf{2 1} \\
\text { CLOSED } & \text { OPEN } \\
\text { r1c3 } & \mathrm{r} 0 c 3(17) \\
& \mathrm{r} 2 \mathrm{c} 3(19)
\end{array}
\end{aligned}
$$

First Search

Source Cell :r1c3(21) $\mathrm{F}(\mathrm{x})=21$

CLOSED OPEN
r1c3 r0c3 r3c3(19)
r2c3

Second Search

Source Cell :r1c3(21)

$$
F(x)=21
$$

| CLOSED | OPEN |  |
| :--- | :--- | :--- |
| r1c3 | r 0 c 3 | $\mathrm{r} 4 \mathrm{c} 3(19)$ |
| r 3 c 3 | r 2 c 3 |  |

Third Search

Source Cell :r1c3(21)

$$
F(x)=25
$$

CLOSED OPEN
r1c3 r0c3 r5c3(25)
r3c3 r2c3
Fourth Search

Now, same as before there is only one cell in OPEN QUEUE, the third subset search is finished. We begin to search the fourth subset. The element in OPEN will be seen as a source cell for third subset.

| Source Cell :r5c3(25) |  |
| :---: | :---: |
| $\mathrm{F}(\mathrm{x})=26$ |  |
| CLOSED | OPEN |
| r5c3 | r5c4(26) |
|  | r6c3(19) |

First Search

Source Cell :r5c3(25)

$$
F(x)=26
$$

CLOSED OPEN
r5c3 r5c4(26)
r6c3 r7c3(19)

Second Search

| Source Cell :r5c3(25) |  |
| :---: | :---: |
| CLOSED | OPEN |
| r5c3 | r5c4(26) |
| r6c3 | r8c3(17) |
| r7c3 |  |
| Third Search |  |
| Source Cell : r 5 c 3 (25) |  |
| $\mathrm{F}(\mathrm{x})=26$ |  |
| CLOSED OPEN |  |
| r5c3 r6c3 r5c4(26) |  |
| $\mathrm{r} 8 \mathrm{c} 3 \quad \mathrm{r} 7 \mathrm{c} 3$ |  |
| Fourth Search |  |

Source Cell :r5c3(25)

$$
F(x)=26
$$

Fourth Search

Fourth subset search is finished. Now, start the next subset. The cell r5c4 will be the source cell of the next subset.

## Source Cell :r5c4(26)

$$
F(x)=26
$$

| CLOSED | OPEN |
| :--- | :--- |
| r5c4 | r4c4(24) |
|  | r6c4(24) |

First Search

Source Cell :r5c4(26)

$$
F(x)=30
$$

CLOSED OPEN
r5c3 r5c4 r3c4(30)
r6c3 r7c4(24)

Second Search

Source Cell :r5c4(26)

$$
F(x)=26
$$

```
CLOSED OPEN
r5c4 r4c4 r6c4 r3c4(26)
r7c4 r8c4
```

Third Search

Fifth subset search is finished. Now, start the next subset. The cell r3c4 will be the source cell of next subset.
Source Cell :r3c4(30)

\[\)| $\mathrm{F}(\mathrm{x})=\mathbf{3 1}$ |  |
| :--- | :--- |
|  CLOSED  |  OPEN  |
|  r3c4  |  r3c5(31)  |
|  |  r2c4(24)  |

\]

First Search

Source Cell :r3c4(30) $\mathrm{F}(\mathrm{x})=31$

| CLOSED |  | OPEN |
| :--- | :--- | :--- |
| r3c4 | r2c4 | r3c5(31) |
|  |  | r1c4(24) |

Second Search


Sixth subset search is finished. Now, start the next subset. The cell r3c5 will be the source cell of next subset.

| Source Cell $\operatorname{sr3c5(31)}$ |  |
| :--- | :--- |
| $\qquad \mathrm{F}(\mathrm{x})=\mathbf{3 1}$ |  |
| CLOSED | OPEN |
| r3c5 | $\mathrm{r} 4 \mathrm{c} 5(31)$ |
|  | r2c5(29) |

First Search
Source Cell :r3c5(31)
$\mathrm{F}(\mathrm{x})=35$

| CLOSED |  | OPEN |
| :--- | :--- | :--- |
| r3c5 | r 2 c 5 | $\mathrm{r} 1 \mathrm{c} 5(29)$ |
| r 4 c 5 |  | $\mathrm{r} 5 \mathrm{c} 5(35)$ |

Second Search
Source Cell :r3c5(31)
$\mathrm{F}(\mathrm{x})=35$
CLOSED OPEN
r0c5 r1c5 r5c5(35)
r2c5 r3c5
r4c5
Third Search

Seventh subset search is finished. Now, start the next subset. The cell r5c5 will be the source cell of next subset.

Source Cell :r5c5(35)

$$
F(x)=36
$$

| CLOSED | OPEN |
| :--- | :--- |
| r5c5 | $\mathrm{r} 5 \mathrm{c} 6(36)$ |
|  | $\mathrm{r} 6 \mathrm{c} 5(29)$ |

First Search

Source Cell :r5c5(35)
$\mathrm{F}(\mathrm{x})=36$
CLOSED OPEN
r5c5 r6c5 r5c6(36)
r7c5
Second Search

Source Cell :r5c5(35)

$$
F(x)=36
$$

CLOSED OPEN
r5c5 r6c5 r5c6(36)
r7c5 r8c5
Third Search

Eighth subset search is finished. Now, start the next subset. The cell r5c6 will be the source cell of next subset.

# Source Cell :r5c6(36) <br> $$
F(x)=36
$$ <br> CLOSED OPEN <br> $r 5 c 6 \quad r 4 c 6(34)$ <br> r6c6(34) 

First Search

| Source Cell :r5c6(36) |  |
| :---: | :---: |
| $\mathrm{F}(\mathrm{x})=36$ |  |
| CLOSED | OPEN |
| r5c6 r4c6 | r3c6(34) |
| r6c6 | r7c6(34) |
| Second | earch |



$$
\begin{gathered}
\text { Source Cell :r5c6(36) } \\
\qquad F(x)=36
\end{gathered}
$$

Fourth Search

All solvable subsets are searched. The list follows:

## First subset

$$
\begin{array}{llllllll}
\mathrm{r} 4 \mathrm{c} 2 & \mathrm{r} 2 \mathrm{c} 2 & \mathrm{r} 3 \mathrm{c} 2 & \mathrm{r} 1 \mathrm{c} 2 & \mathrm{r} 0 \mathrm{c} 1 & \mathrm{r} 3 \mathrm{c} 1 & \mathrm{r} 4 \mathrm{c} 1 & \mathrm{r} 4 \mathrm{c} 0 \\
\mathrm{r} 2 \mathrm{c} 0 & \mathrm{r} 0 \mathrm{c} 0 & \mathrm{r} 5 \mathrm{c} 2 & \mathrm{r} 5 \mathrm{c} 1 & \mathrm{r} 6 \mathrm{c} 2 & \mathrm{r} 6 \mathrm{c} 0 & \mathrm{r} 1 \mathrm{c} 0 & \mathrm{r} 2 \mathrm{c} 1 \\
\mathrm{r} 3 \mathrm{c} 0 & \mathrm{r} 5 \mathrm{c} 0 & \mathrm{r} 8 \mathrm{c} 2 & \mathrm{r} 7 \mathrm{c} 0 & \mathrm{r} 6 \mathrm{c} 1 & \mathrm{r} 7 \mathrm{c} 2 & \mathrm{r} 7 \mathrm{c} 1 & \mathrm{r} 7 \mathrm{c} 0 \\
\mathrm{r} 8 \mathrm{c} 0 & \mathrm{r} 8 \mathrm{c} 1 & & & & & &
\end{array}
$$

Second subset
r1c2
Third subset

$$
\mathrm{rlc} 3 \quad \mathrm{r} 0 \mathrm{c} 3 \quad \mathrm{r} 3 \mathrm{c} 3 \quad \mathrm{r} 2 \mathrm{c} 3
$$

Fourth subset
$r 5 c 3 \quad r 6 c 3 \quad r 7 c 3 ~ r 8 c 3$
Fifth subset
$\mathrm{r} 5 \mathrm{c} 4 \quad \mathrm{r} 4 \mathrm{c} 4 \quad \mathrm{r} 6 \mathrm{c} 4 \quad \mathrm{r} 7 \mathrm{c} 4 \quad \mathrm{r} 8 \mathrm{c} 4$
Sixth subset
r3c4 r2c4 r1c4 r0c4
Seventh subset
r3c5 r2c5 r1c5 r0c5 r4c5
Eighth subset
$r 5 c 5 \quad$ r6c5 $\quad$ r7c5 $\quad$ r8c5
Ninth subset

$$
\begin{array}{llllllll}
\text { r0c6 } & \text { r1c6 } & \text { r2c6 } & \text { r3c6 } & \text { r4c6 } & \text { r5c6 } & \text { r6c6 } & \text { r7c6 } \\
\text { r8c6 } & & & & & & &
\end{array}
$$

# Chapter 6 Discussion and Conclusion 

### 6.1 Discussion

The lattice is represented as a two-dimensional array with one dimension for X axis and the other for y axis in which the dimensions are the number of rows and columns of cells. There are eight possible cell contents, which can be represented with 3 bits per cell. On a matrix of N rows and M columns, we will need $\mathrm{N} * \mathrm{M} * 3$ bits in total.

The preprocessor structure is also a two-dimensional array, where an entry must be able to represent one of the four compass directions. This takes 2 bits per cell, or $\mathrm{N} * \mathrm{M} * 2$ bits.

The CLOSED can be represented by a pair of two dimensional, single-bit array, where a bit is one if the corresponding cell has been searched, and zero otherwise . This will take $\mathrm{N} * \mathrm{M} * 2$ bits in total.
$F(x)$ and $G(x)$ will be similar to the lattice arrays, but they must have a 2 bit integer for each cell, requiring $\mathrm{N} * \mathrm{M} * 4$ bits in total. Note that if memory usage needs to be minimized at the cost of increased processing time, we could omit the $F(x)$ arrays, and calculate the F values as they are needed from $\mathrm{G}(\mathrm{x})$ arrays.

### 6.2 Conclusion

A decomposition algorithm has been developed to solve the state transition lattice of Type A structure. By dividing the lattice into several solvable subsets which can be solved sequentially, a large amount of computation time can be saved.

## References

[1] L. Kleinrock, Qqeueing Systems, Vol.I: Theory, Wiley, 1975.
[2] A.A. Lazar and T.G. Robertazzi, "The Geometry of Markovian Queueing Networks,"Columbia University Technical Report, 1984.
[3] A.A. Lazar and T.G. Robertazzi, "The Geometry of Lattices for Multiclass Markovian Queueing Networks,"Proc. of the 1984 Conf. on Info. Sci. and Sys., Princeton, N.J., pp. 164-168.
[4] A.A. Lazar and J.M. Ferrandiz, "Geometric Analysis of Qqasi-Birth-and-Death Processes by Flow Redirection," Proc. of the 1987 Conf. on Info. Sci. and Sys., The John Hopkins University, Baltimore, MD. March, 1987.
[5] J.P. Buzen, "Computational Algorithms for Closed Queueing Networks with Exponential Servers," Comm. ACM, vol. 16, no. 9, Sept. 1973.
[6] M. Schwartz, Telecommunication Networks Protocols, Modeling and Analysis., Addison-Wesley 1987.
[7] F. Baskett, K.M. Chandy, R.R. Muntz and F.Palacios," Open, Closed and Mixed Networks of Queues with Different Classes of Customers," J. ACM, vol. 22, no. 2, April 1975.
[8] W.J. Gordon, and G.J. Newell, "Closed Queueing Systems with Exponential Servers," Operations Research, 15, March 1967.
[9] Stephen E. Belter, "Computer-aided Routing of Printed Circuit Boards: an Examination of Lee's Algorithm and Possible Enhancements," BYTE,(June 1987), 199-208.
[10] Patrick Henry Winston, "Artificial Intelligince", 2nd edition, "Addision-Wesley Publishing Company," 1984.
[11] C.Y. Lee, "An Algorithm for Path Connections and Its Applications," IRE Transactions on Electronic Compurers," (September 1961),pp 346-365.
[12] Steven L. Tanimoto, The Elements of Artificial Intelligence, (1987, Rockville, Maryland : Computer Science Press),pp 148-164.

## Appendix

```
/* *******************************************************/
/* Program Name : Y O.c
*/
/* ****************末****************************************
#include <stdio.h>
#include <dos.h>
#include <process.h>
#define point 1
#define xmax }
#define ymax 7
#define n (xmax*ymax)
struct {
    int x;
    int y;
} buffer[n];
struct neighbor {
    int link;
};
struct {
                struct neighbor north;
                        struct neighbor east;
                        struct neighbor south;
                        struct neighbor west;
} state[xmax][ymax];
int temp[n];
main()
{
unsigned before,after;
int count=0;
int x1,y1;
int num_cont=0;
before=\overline{b}iostime( 0, 0);
read_data();
    clrscr();
    printf("\n\n\n\n\n\n");
    printf("Please Enter Initial State !\n");
        scanf("%d %d",&x1,&y1);
        if(xl<0 || xI>=xmax || yI <0 || y1 >=ymax)
            {
            printf("Please Enter X From 0 to %d\n",(xmax-1));
            printf("Please Enter Y From 0 to %d\n"r(ymax-1));
            printf("Please Try Again !\n");
            scanf("%d %d",&x1,&y1);
            if(x1<0 || x1>=xmax || Y1 <0 || Y1 >=ymax)
        exit(0);
        }
    while( x1 < xmax && y1 < ymax && x1 >=0 && Y1 >= 0)
        {
            switch ((state[x1][Y1].north.link + \
                        state[x1][y1].east.link + \
                        state[x1][y1].south.link + \
                        state[x1][Y1].west.link) ) {
                                case 0 :
```

```
                    c_comp_0(&x1,&y1,&num_cont, count);
                    break;
            case 1:
                    c_comp_1(&x1,&Y1,&num_cont, count);
                    break;
                    case 2 :
                    C_comp_2(&x1, &y1,&num_cont, count);
                    b\overline{reak;}
                    case 3 :
                    c_comp_3(&x1,&yI,&num_cont,count);
                    break;
            case 4 :
            c_comp_4(&x1,&y1,&num_cont,count);
            břeak;
        }
            count++;
        }
    out_print();
    after=biostime( 0, 0);
    printf("\n\n\n This program use %f second to execute ",
        (unsigned float)(after-before)/18.204);
}
out_print()
{
int i=0;
int k=0;
int j;
FILE *out;
out=fopen("y_0.out","w");
while (i < n) {
    fprintf(out,"THE GROUP\n");
    for(j=0;j<temp[k];j++)
    {
    fprintf(out,"(%d, %d )\n",buffer[i].x,buffer[i].y);
    i++;
    }
k++;}
fclose(out);
}
read_data()
{
int i,ji
FILE *in;
if((in=fopen("isdn.dat","r")) == NULL)
    {
        puts("Can't open data file !\n");
        exit(0); }
else
    {
        for ( j = 0 ; j < ymax ; j++ )
            for ( i = 0 ; i < xmax ; i++ )
                {
                    fscanf( in,"%d %d %d %d",\
                &state[i][j].north.link,l
```

```
            &state[i][j].east.link,\
                &state[i][j].south.link,\
                &state[i][j].west.link);
        }
    }
close(in);
}
c_comp_0(a,b,c,d)
iñt *a,**b,*c;
int d;
{
buffer[*c].x=*a;
buffer[*c].y=*b;
(*C)++;
(*a)++;
(*b) ++;
temp[d]=1;
}
c_comp_1(a,b,c,d)
int *a,**b,*c;
int d;
{
    buffer[*c].x=*a;
    buffer[*c].Y=*b;
    (*C) ++;
    temp[d]=1;
    if(state[*a][*b].north.link == point )
        {
            (*b)++;
            state[*a][*b].south.link = 0 ;
        }
    else if (state[*a][*b].east.link == point )
        {
        (*a) ++;
            state[*a][*b].west.link = 0 ;
            if(*b< (ymax-1))
                state[(*a)-1][(*b)+1].south.link=0;
        }
    else if (state[*a][*b].south.link == point )
        {
        (*b)--;
            state[*a][*b].north.link = 0 ;
        }
    else
        {
        (*a)--;
            state[*a][*b].east.link = 0 ;
            if(*b < (ymax-1))
                state[(*a)+1][(*b)+1].south.link=0;
        }
}
c_comp_4(a,b,c,d)
int *a,**b,*c;
int d;
```

```
{
int i,j;
int sum=0;
*a=*a;
(*b) ++;
for(j=0;j<*b;j++)
    for(i=0;i<xmax;i++)
    {
        buffer[*c].x=i;
        buffer[*c].Y=j;
            (*C) ++;
            sum++;
    }
    for(i=0;i<xmax;i++)
        state[i][*b].south.link=0;
temp[d]=sum;
}
c_comp_2(a,b,c,d)
int *a,*b,*c;
int d;
{
int i,j,_value,t_value;
int sum=0
if(state[*a][*b].north.link==point)
    {
        if(state[*a][*b].east.link==0)
            for(i=0;i<=*a;i++)
            {
                buffer[*c].x=i;
                buffer[*c].y=*b;
                        (*C) ++;
                sum++;
                state[i][(*b)+1].south.link=0;
            }
            else
                for(i=*a;i<xmax;i++)
                {
                buffer[*c].x=i;
                buffer[*c].y=*b;
                    (*C) ++;
                sum++;
                state[i][(*b)+1].south.link=0;
            }
    (*b)++;
    }
else /* state[*a][*b].north.link=0 */
        {
    if(state[*a][*b].south.link==0)
{
    if(*b!=(ymax-1))
    {
```

```
    for(i=0;i<xmax;i++)
        if(state[i][*b].north.link==point)
            {
                value=i;
                break;
            }
if(_value < *a)
    {
        (*a)--;
state[*a][*b].east.link=0;
        for(i=(*a)+1;i<xmax;i++)
        {
            buffer[*c].x=i;
            buffer[*c].Y=*b;
                (*C) ++;
            sum++;
            state[i][(*b)+1].south.link=0;
        }
    }
else /* _value > a */
    {
        (*a) ++;
state[*a][*b].west.link=0;
        for(i=0;i<*a;i++)
        {
            buffer[*c].x=i;
            buffer[*c].Y=*b;
            (*C)++;
            sum++;
            state[i][(*b)+1].south.link=0;
        }
    }
}
else /*b=ymax*/
    {
        if(*a>xmax/2)
        { 
            for(i=*a;i<xmax;i++)
            {
                buffer[*c].x=i;
                buffer[*c].Y=*b;
                (*C) ++ i
                sum++;
            }
        (*a) --;
        state[*a][*b].east.link=0;
        }
    else
    {
        (*a)++;
                for(i=0;i<*a;i++);
        {
```

```
            buffer[*c].x=i;
                buffer[*c].y=*b;
                (*C) ++;
                sum++;
            }
        state[*a][*b].west.link=0;
    }
    }
}
else /* south=1 */
            for(j=0;j<*b;j++)
            for(i=0;i<xmax;i++)
                {
                buffer[*c].x=i;
                buffer[*c].y=j;
                (*C) ++;
            sum++;
        }
            if((*b)!=(ymax-1))
            {
    for(i=0;i<xmax;i++)
    if(state[i][*b].north.link==point)
        {
                _value=i;
            \squarēreak;
        }
    for(i=0;i<xmax;i++)
    if(state[i][(*b)-1].north.link==point)
        {
            t_value=i;
                break;
        }
    if(state[*a][*b].east.link==point)
        if( (t_value==(*a)) && (t_value==_value) )
        {
            (*b) ++;
            for(i=*a;i<xmax;i++)
            {
                buffer[*c].x=i;
                buffer[*c].y=(*b)-1;
                (*c) ++;
                sum++;
                state[i][*b].south.link=0;
            }
        }
        else if( t_value == *a)
```

```
            state[*a][(*b)+1].south.link=0;
            buffer[*c].x=*a;
            buffer[*c].y=*b;
        (*C) ++;
        sum++;
        (*a) ++;
        for(i=*a;i<xmax;i++)
        state[i][*b].south.link=0;
        state[*a][*b].west.link=0;
}
    else if(t_value<_value)
        {
        for(i=*a;i<=t_value;i++)
            {
                buffer[*C].x=i;
                buffer[*c].y=*b;
                    (*C) ++;
                    sum++;
                    state[i][(*b)+1].south.link=0;
                }
            *a=t value+1;
            for(\overline{i=*a;i<xmax;i++)}
                state[i][*b].south.link=0;
            state[*a][*b].west.link=0;
        }
        else /* t_value >_value */
        {
for(i=*a;i<_value;i++)
{
    buffer[*c].x=i;
    buffer[*c].y=*b;
        (*C) ++;
    sum++;
    state[i][(*b)+1].south.link=0;
}
for(i=_value+1;i<xmax;i++)
{
    buffer[*c].x=i;
    buffer[*c].y=*b;
    (*C)++;
    sum++;
    state[i][(*b)+1].south.link=0;
}
    *a= value;
    sta\overline{te[*a][*b].south.link=0;}
    state[*a][*b].east.link=0;
    state[*a][*b].west.link=0;
    }
```

```
}
else /* east=0 */
    {
        if((t_value==*a) && (t_value==_value))
            for(i=0;i<=(*a);i++)
            {
                buffer[*c].x=i;
                buffer[*c].y=*b;
                (*c)++;
                sum++;
                state[i][(*b)+1].south.link=0;
            }
            (*b) ++;
        }
        else if(t_value == *a)
            {
                state[*a][(*b)+1].south.link=0;
                buffer[*c].x=*a;
                buffer[*c].y=*b;
                (*C) ++;
                sum++;
                (*a)--;
                for(i=0;i<=*a;i++)
                    state[i][*b].south.link=0;
                state[*a][*b].east.link=0;
            }
        if(t_value>_value)
            for(i=t_value;i<=*a;i++)
                        {
                        buffer[*c].x=i;
                            buffer[*c].y=*b;
                            (*C) ++;
                            sum++;
                            state[i][(*b)+1].south.link=0;
                    }
                        for(i=0;i<t value;i++)
                        state[i][*\overline{b}].south.link=0;
                    *a=_value-1;
                        stāte[*a][*b].east.link=0;
            }
            else /* <= */
                {
for(i=0;i<= *a;i++)
    if(i != _value)
{
    buffer[*c].x=i;
    buffer[*c].y=*b;
        (*C)++;
    sum++;
    state[i][(*b)+1].south.link=0;
}
```

```
            *a= value;
            stat\overline{e}[*a][*b].west.link=0;
            state[*a][*b].south.link=0;
            state[*a][*b].east.link=0;
    }
}
    }
    else /* b= ymax */
{
for(i=0;i<xmax;i++)
        if(state[i][(*b)-1].north.link==point)
        {
            t_value=i;
            break;
        }
        if(state[*a][*b].east.link==point)
        {
        if(t_value <= (*a))
        {
        for(i=0;i<=*a;i++)
            {
                buffer[*c].x=i;
                buffer[*c].Y=*b;
                (*C) ++;
                sum++;
            }
            (*a) ++;
            for(i=*a;i<xmax;i++)
            state[i][*b].south.link=0;
            state[*a][*b].west.link=0;
            }
        else
            for(i=*a;i<xmax;i++)
            {
                buffer[*c].x=i;
                buffer[*c].Y=*b;
                (*C) ++;
                sum++;
            }
            (*a)--;
            for(i=0 ; i<=*a;i++)
            state[i][*b].south.link=0;
            state[*a][*b].east.link=0;
            }
/* } */
        else
        {
            for(i=0;i<xmax;i++)
            {
                buffer[*c].x=i;
                buffer[*c].Y=*b;
                (*C) ++;
                sum++;
```

```
        }
        (*a) ++;
        (*b) ++;
        }
    }
    temp[d]=sum;
    }
    c_comp_3(a,b,c,d)
    int *a,*b,*c;
int d;
{
int i,j,_valud,_valup;
int sum=0;
if(state[*a][*b].north.link==point)
    {
            (*b) ++;
            if(state[*a][(*b)-1].south.link==point)
            {
            for(j=0;j<=*b;j++)
                    for(i=0;i<xmax;i++)
                    if(j == *b )
                        state[i][*b].south.link=0;
            else
                {
                    buffer[*c].x=i;
                        buffer[*c].y=j;
                        (*C) ++;
                            sum++;
                    }
        }
        else /* state[*a][*b].south.link != point */
            {
                        for(i=0;i<xmax;i++)
                    {
                        buffer[*c].x=i;
                        buffer[*c].Y=(*b)-1;
                        (*C)++;
                        sum++;
                                state[i][*b].south.link=0;
                    }
            }
        }
    else /*north=0 */
        {
            if((*b)< (ymax-1))
                for(j=0;j<=(*b)-1;j++)
                for(i=0;i<xmax;i++)
                    {
                    buffer[*c].x=i;
                    buffer[*c].y=j;
                    (*C)++;
```

```
        sum++;
    }
    for(i=0;i<xmax;i++)
    if(state[i][*b].north.link==point)
    {
        valup=i;
    break;
    }
    for(i=0;i<xmax;i++)
    if(state[i][(*b)-1].north.link==point)
    {
        valud=i;
    break;
    }
        if(_valup < *a)
        {
        if(_valud >= *a )
        {
        for(i=*a;i<xmax;i++)
            {
                            state[i][(*b)+1].south.link=0;
                buffer[*c].x=i;
                buffer[*c].y=*b;
                    (*C) ++;
                    sum++;
            }
            for(i=0;i<*a;i++)
                state[i][*b].south.link=0;
                (*a)--;
                state[*a][*b].east.link=0;
        }
    else if ( _valud > _valup)
        {
        for(i=_valud+1 ; i < xmax ; i++)
            {
                        state[i][(*b)+1].south.link=0;
                        buffer[*c].x=i;
                        buffer[*c].y=*b;
                        (*C)++;
                        sum++;
                }
            *a = valud;
            state[*a][*b]. east.link=0;
            for(i=0 ;i<=*a ;i++)
            state[i][*b].south.link=0;
        }
else /* _valud <= _valup */
    {
        *a = valup;
        for(i\equiv0;i<xmax;i++)
        if( i != *a)
```

```
                {
                        state[i][(*b)+1].south.link=0;
                        buffer[*c].x=i;
                        buffer[*c].y=*b;
                    (*c) ++;
                    sum++;
                }
                        state[*a][*b].east.link=0;
                        state[*a][*b].south.link=0;
                            state[*a][*b].west.link=0;
            }
        }
else /* _valup > a */
    {
        if(_valud<=*a)
            {
            for(i=0 ;i<= *a;i++)
                {
                    state[i][(*b)+1].south.link=0;
                buffer[*c].x=i;
                buffer[*c].y=*b;
                    (*C)++;
                sum++;
        }
            (*a)++;
        for(i=*a;i<xmax;i++)
            state[i][*b].south.link=0;
            state[*a][*b].west.link=0;
        }
    else if ( _valud < _valup )
        {
            *a= valud ;
            for(\overline{i}=0 ;i<*a ;i++)
                {
                    state[i][(*b)+1].south.link=0;
                    buffer[*c].x=i;
                buffer[*c].y=*b;
                    (*C) ++;
                sum++;
            }
        for(i=*a;i<xmax;i++)
            state[i][*b].south.link=0;
            state[*a][*b].west.link=0;
    }
    else /* __valud >= _valup */
    {
            *a=_valup;
            for(i=0;i<xmax;i++)
                if( i != *a )
                    {
                    state[i][(*b)+1].south.link=0;
```

```
    buffer[*c].x=i;
    buffer[*c].y=*b;
        (*c)++;
    sum++;
}
    state[*a][*b].east.link=0;
    state[*a][*b].west.link=0;
    state[*a][*b].south.link=0;
        }
}
}
else /* b=ymax */
    {
        for(j=0;j< (*b) ;j++)
                        for(i=0;i<xmax;i++)
            {
            buffer[*c].x=i;
            buffer[*c].y=j;
                    (*C) ++;
                    sum++;
        }
        for(i=0;i<xmax;i++)
        if(state[i][(*b)-1].north.link==point)
            {
                    _valup = i ;
                    break;
            }
        if( _valup < (*a) )
            (*a) ++;
            for(i=0 ; i< xmax; i++)
            {
            if(i >= (*a) )
                    state[i][*b].south.link=0;
            else
                {
                        buffer[*C].x=i;
                            buffer[*c].Y=*b;
                            (*C) ++;
                            sum++;
                    }
            }
            state[*a][*b].west.link=0;
        }
else if(_valup ==(*a))
    {
            if(*a > xmax/2)
            {
            (*a)--;
            for(i=0 ; i< xmax; i++)
        {
            if(i<=*a )
                        state[i][*b].south.link=0;
            else
```

```
                                {
                        buffer[*c].x=i;
                        buffer[*c].y=*b;
                        (*c)++;
                            sum++;
                    }
                }
                    state[*a][*b].east.link=0;
                }
            else /* a <xmax/2 */
                        {
                (*a)++;
            for(i=0 ; i< xmax; i++)
            {
                if(i >=(*a))
                    state[i][*b].south.link=0;
                else
                    {
                            buffer[*c].x=i;
                            buffer[*c].y=*b;
                            (*C) ++;
                            sum++;
                    }
                    }
            state[*a][*b].west.link=0;
        }
        }
        else /* _valup > a */
        {
        (*a)--;
        for(i=0 ; i< xmax; i++)
            if(i <= *a )
            state[i][*b].south.link=0;
        else
            {
                        buffer[*c].x=i;
                        buffer[*c].y=*b;
                        (*C)++;
            sum++;
            }
        state[*a][*b].east.link=0;
    }
}
}
temp[d]=sum;
}
```

