
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-1991

Decomposing non-product form queueing lattices through Decomposing non-product form queueing lattices through

autorouting with A* algorithm autorouting with A* algorithm

Chun-Chang Yu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Yu, Chun-Chang, "Decomposing non-product form queueing lattices through autorouting with A*
algorithm" (1991). Theses. 1294.
https://digitalcommons.njit.edu/theses/1294

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1294?utm_source=digitalcommons.njit.edu%2Ftheses%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Decomposing Non-Product Form
Queueing Lattices Through

Autorouting With A * Algorithm

BY CHUN-CHANG YU

Thesis submitted to the faculty of the graduate school

of the New Jersey Institute of Technology in partial

fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

1991

VITA

NAME : CHUN-CHANG YU

Address : 125 Lincoln Ave. Apt. B5 Newark, NJ 07104

Eductation :

1. New Jersey Institute of Technology

Electrical Engineering Department, M.S.E.E.

Spring,1989 - January,1991

2. Tamkung University

Electrical Engineering Department, B.S.E.E.

Fa11,1982 - Fa11,1987

Position Held :

1. Digital Equipment Taiwan LTD

Testing Engineer

December 1987 - July 1988

2. Fortune Taiwan CO.

Circuit Design Engineer

July 1986 - November 1987

ABSTRACT

TITLE OF THESIS :

A Simulation to Decompose Non-Product Form Queueing Lattices Through

Autorouting with A* Algorithm

Name:

Chun-Chang Yu

Master of Science in Electrical Engineering

Thesis Directed by : Dr. Irving Wang

Direct solution techniques are expensive for the state transition lattice of a class

of non-product form queueing modes. In this thesis, autorouting with A* algorithm

is adapted to decompose it as solvable subsets which can be solved sequentially and

independently. Autorouting with A* algorithm is heuristics in problem solving. It

also is one of a class of global optimization problems that are difficult to solve. Some

queueing modes of type A will be decomposed in this thesis through aAutorouting

with A* algorithm.

ACKNOWLEDGEMENTS

I take this opportunity to express my deep gratitude to Dr. Irving Y. Wang,

Assistant Professor, Electrical Engineering Department of N.J.I.T. for his advice and

help throughout the course of this work.

I am also very thankful to Dr. Nirwan Ansari and Dr. Edwin Hou for devoting

their precious time to reviewing my work and attendance.

Finally, I wish to give my loving appreciation for the encouragement and support

given to me by my parents.

Approval Sheet

Title of Thesis: Decomposing Non-Product Form
Queueing Lattices
Through Autorouting With A
* Algorithm

Name of Candidate: Chun - Chang Yu
Master of Science in Electrical Engineering, 1990

Thesis & Abstract Approved
by the Examining Committee:

Dr. Irving Wang Advisor
Assistant Profesgor
Department of Electrical and Computer Engineering

Dr. Nirwan Ansari
Assistant Professor
Department of Electrical and Computer Engineering

Dr. Edwin Hou 	 Date
Assistant Professor
Department of Electrical and Computer Engineering

Date

Date

New Jersey Institute of Technology, Newark, New Jersey.

Contents

1 Introduction 	 1

2 Product and Non-Product 	 2

2.1 General Review 	 2

2.2 Sequential Decomposition 	 4

3 Autorouting with the A* Algorithm 	 12

3.1 Autorouting Operation 	 12

3.1.1 Data Structure for the First Phase 	 13

3.2 Breadth-First Search Algorithm 	 13

3.3 A* Algorithm 	 19

3.4 Discussion 	 24

4 Adapted Autorouting with A* Algorithm to Non-Product

Form Queueing Mode 	 25

4.1 Type A 	 25

4.2 Estimate Calculation 	 28

5 Decomposition Results 	 31

6 Discussion and Conclusion 	 48

References
	 49

Appendix:

i i

List of Figures

2.1 Product Form 4

2.2 Non-Product Form 5

2.3 A Solvable Subset 8

2.4 The Basic Structure of Type A 9

2.5 The Basic Structure of Type B 10

2.6 A Typical Example of Type A Lattice 11

3.1 Lee's Algorithm Searching for a Path 18

3.2 Behavior of the A* Search Algorithm 23

4.1 Definition of Estimate for Type A 30

5.1 Type A Lattice 33

iii

Chapter 1
Introduction

In studying the behavior of computer system, queueing network modes are a useful

tool for evaluating performance and for studying the interaction between resources,

software and workload [1]. The product form solution of the balance equations, when

it exists, plays an important role in analyzing such queueing network modes. Product

form solutions are of great interest because the direct numerical solution of balance

equations is computationally expensive. Typically the existence of product form

solutions has been characterized in terms of certain classes of queueing networks. In

[2,3,4]it was characterized in terms of the algebraic topology of the state transition

lattice. It was shown that the existence of the product form solution corresponds to

a decomposition of the state transition lattice - complex - into elementary geometric

building blocks - cells.

Non-product form queueing networks are far less likely to have a closed form solu-

tion for the equilibrium probabilities. Direction solution techniques are prohibitively

expensive. In this paper autorouting with A* algorithm will be submitted to decom-

pose the non-product queueing lattice.

In chapter 2, the product form and the non-product will be reviewed, while at the

same time sequential decomposition will be discussed. In chapter 3, the autorouting

with A* algorithm is described. In chapter 4, the algorithm discussed in chapter

3 is implemented to decompose the non-product form queueing lattice for A type.

Chapter 5 shows the results of simulation.

1

Chapter 2
Product and Non-Product Form

2.1 General Review

In [4] it is shown that specific structure in the state transition lattice leads to a

sequential method of solution. The method is sequential either in terms of individual

state or in terms of groups of states. In both cases, substantial computational savings

are possible. A great deal of research has been performed on the subject of product

form solutions. Originally, Jackson described the equilibrium state probabilities for

open networks of queues with a single class of jobs, Poisson arrival statistics, and ex-

ponential service time[5]. These probabilities were of a characteristic "product form":

P(n1n2,... = Pi(ni)P2(n2) Pm (nm) (1.1)

Later, Gordon and Newell analyzed closed queueing networks with each station

having an exponential service time distribution[7]. The equilibrium states probability

as:

P(ni,n2,... G(N) na l fi (n i) (1.2)

Where G(N) is a normalization constant chosen to make all the feasible state

probabilities sum to one. N is the total number of jobs. The fi are akin to the

marginal probabilities of (1.1).

There is similarity between the balance equation of queueing network state tran-

sition lattices and current conservation equations of resistant circuits. Naturally, the

flow in the former involves probability flux[6] rather than current. Transition rates

three significant differences though. There is a scaling of equilibrium probabilities

2

to unity which induces probability flux flow in place of voltage sources. The flow

directions are perdetermined from the transition directions. Finally, the transition

rates are labeled in a patterned manner from the queueing scheme. The existence of

product form solutions has been characterized in terms of certain types of queueing

networks. That is the algebraic topology of the state transition lattice as shown in

fig. 2.1.

Non-product is shown in fig 2.2. Direct solution techniques are prohibitively ex-

pensive. Techniques analogous to that of the z-transform can sometimes be used to

determine distributions of interest[4,7]. In[7] the sequential decomposition technique

was described.

3

Figure 2.1 Product Form

4

Figure 2.2 Non-Product Form

5

2.2 Sequential Decomposition

The exact computation of the state probabilities of a class of non-product form

queueing networks is discussed in this section. It is shown that specific structure in

the state transition lattice leads to a sequential method of solution. The method is

sequential either in terms of individual state or in terms of groups of states.

In[4] a class of non-product form networks is described whose state transition

lattices can be shown to be equivalent to a lattice tree of simplexes. In this "flow

redirection" method the lattice geometry is manipulated by equivalence transforma-

tions. Sequential decomposition refers to the related process of solving one subset of

states at a time for the equilibrium probabilities:

Definition 1.1: a solvable subset of queueing network states is a subset of states for

which the equilibrium probabilities can be determined without regard to the equilib-

rium probabilities of the remaining unknown states. Here probabilities are determined

with respect to a reference probability.

A simple example is presented in figure 2.3. States Si and S2 form a solvable

subset. The equilibrium probabilities can be determined without regard to the values

associated with the other states. This is done through the following global balance

equations:

(a+9) Po = 7P1 fl-P2

ceP2 = 7Pi

These equations can be solved for the probabilities P1 and P2 as a function of

reference probability Po . In fact, a more general principle can be established. The

method of sequential decomposition is applicable to queueing systems whose states

have the geometry shown in figure 2.4. Here each circular cluster represents a state

6

or a group of states. Consider the ith cluster, the rule is that there must be only one

state, with unknown probability, external to the cluster form which a transition(s)

entering the cluster originates.

The clusters are solved sequentially, starting from the first cluster to the second

and so on. Note that there is no restriction on the number of transitions which

may leave the ith cluster for destination in the j = i+1,i+2,....,cluster. The solution

equations may not be unique.

Note also that the direct solution of linear equations takes time proportional to

the cube of the number of equations. If N states can be solved as M states then the

computational effort is proportional to (N/M) 3M rather thanN3 .

Two types of the structure which allows the state transition lattice to be de-

composed into solvable subsets were obtained in [7]. The first type of structure is

illustrated in Figure 2.4 and Figure 2.6. Here each circular subset represents a state

or a group of states. For the ith subset the rule is that there must be only one state,

with unknown probability, external to the subset from which a transition(s) entering

the subset to the second and so on. There is no restriction on the number of transi-

tions which may leave the ith subset for destinations in the j=i+1,i+2,.... , subsets.

This type of structure is type A structure.

The second type of structure is illustrated in Figure 2.5. Here the first subset

consists of a single state. The remaining subsets each consist of a state or a group

of states. They are arranged in a tree of configuration with the flow between subsets

from the top of the diagram to the bottom and a return flow from the bottom level

back to the top. The subsets may be solved from the top to the bottom. Transitions

may traverse several levels as long as the direction of flow is downward. This type is

referred to as type B structure.

7

Figure 2.3 A Solvable Subset

8

Figure 2.4 The Basic Structure of A Type A

9

Figure 2.5 The Basic Structure of Type B

10

Figure 2.6 A Typical Example of Type A Lattices

11

Chapter 3
Autorouting with the A*

Algorithm

Autorouting is one of a class of global optimization problems that are difficult

to solve. A good decomposition for the non-product form queueing networks, for

example, minimizes things like:

• the number of groups of states

• the time to search the group

At the same time, the decomposition maximizes things like reliability and ease of

debugging. The overall value of a decomposition for a non-product form queueing

network design is a function of these often conflicting variables. It is usually accept-

able to find a solution for all but the most trivial problems. In this chapter, we would

describe the autorouting with the A* algorithm about how it works in the two phases

and analysis of its complexity.

3.1 Autorouting Operation

Autorouting search algorithms typically operate in two phase[9], treating the state-

transition lattice as a matrix of cells. The first phase starts at the source cell and

searches for the target cell, usually by going in several directions at the same time .

The algorithms build in an auxiliary data structure to keep track of how each

cell was reached. The first phase ends when the target cell has been found, and the

second phase begins. If the first phase exhausts all possibilities without reaching the

target cell, then no route exists between them, and there is no reason to do the second

phase.

12

The second phase uses the auxiliary data structure to trace the route from the

target cell back to the source cell.

The second phase is identical for the breadth-first [10][11] and A* search[12] al-

gorithms. The first phase is different, and it is this phase that gives these algorithms

different behaviors.

3.1.1 Data Structure for the First Phase

The main data structures used in the first phase are the OPEN QUEUE and the

CLOSED SET, which hold cell coordinates. Because a cell's coordinates uniquely

identies it, we'll say that the OPEN QUEUE and CLOSED SET contain cells. Cell

corrdinate will be represented as r5c5 for the cell at row 5, column 5.

To remind ourselves that OPEN is a queue and CLOSED is a set, when we talk

about adding cell to them, we will put the cells " on " the queue and " in " the set.

Initially, the OPEN QUEUE contains the source cell and the CLOSED SET is empty.

The first phase is a loop which removes an element from the head of the OPEN

QUEUE, puts it in the CLOSED SET (which indicates that it has been searched)

and checks to see if it is the target cell. If so, the first phase is done, otherwise, the

neighbors of the cell (those adjacent to it) are placed on the OPEN QUEUE, and

the loop continues. As we'll see later, the essential difference in the breadth-first and

A* search algorithms is placed on the OPEN QUEUE.

3.2 Breadth-First Search

Breadth-first search looks for the target among all elements of the matrix from

the source cell.

13

Here is the procedure with proper terminating condition

To conduct a breadth-first searth:

1. From a one cell set consisting of the source.

2. Until the QUEUE is empty or the goal has been reached, determine if the cell(s)

in the set is(are) the target.

(a) If the set is the target, do nothing.

(b) If the set is not the target, put its neighbors to the SET and add the

neighbors of their neighbors to the QUEUE. Go back to 2a.

3. If target has been found, announce success; otherwise announce failure.

14

Breadth-first search works by processing a first in first out (FIFO) queue of

open cells, that is, cells that have been reached, but not yet searched. Initially, the

OPEN QUEUE contains only the source cell. A cell is removed from the head of the

OPEN QUEUE, placed in the SET of closed cells (cells that have been searched)

and checked to see if it is the target cell. If not, its neighbors are placed at the tail of

the OPEN QUEUE. Neighboring cells that have alreadly been reached are ignored (

If a cell's corrdinates is on the OPEN QUEUE or in the CLOSED SET, then it has

been reached, otherwise it has not). This continues until one of two things happens:

• The goal cell has been found.

• The OPEN QUEUE is empty in which case the goal can not be reached from

the source cell.

A version of breadth-first search known as Lee's algorithm[11] has served as the

basis for some autorouters since the early 1960s.

15

CLOSED OPEN

r5c5	 r5 C4 r605 r5c6

r4c5 r6c4 r6c6

r4 C6 r4 C4

Figure 3.1a

16

CLOSED OPEN
r5c5 r5 C4	 r5c3 r6c3 r7c3

r6c5 r5 C6 	 r7c4 r7c5 r7c6

r4c5 r6c4 	 r7c7 r6c7 r5 c7

r6c6 r4c6 	 r4c7 r3c7 r3c6

r4c4 	r3 C5 r3c3 r3c4

r4 c3

Figure 3.1b

17

CLOSED OPEN
r5c5 r5c4 r6c5 r5c2 r6c2 r7c2 r8c2

r5c6 r4c5 r6c4 r8c3 r8c4 r8c5 r8c6

r6c6 r4c6 r4c4 r8c7 r8c8 r7c8 r6c8

r5c3 r6c3 r7c3 r5c8 r4c8 r3c8 r2c8

r7c4 r7c5 r7c6 r2c7 r2c6 r2c5 r2c4

r7c7 r6c7 r5c7 r2c3 r2c2 r3c2 r4c2

r4c7 r3c7 r3 c6

r3c5 r3c4 r3c3

r4c3

Figure 3.1c
Lee's algorithm searching for a path

18

In Figure 3.1a, the source cell (r5c5) has been searched, and its eight neighbors

have been placed on the OPEN QUEUE. The arrows indicate the direction from which

each cell was reached, and correspond to first phase data structure. After the first

eight cells on the OPEN QUEUE have been reached and moved to the CLOSED SET,

the algorithm searches the configuration in Figure 3.1b, where there are sixteen cells

on the OPEN QUEUE. Once these sixteen cells have been searched, the configuration

in Figure 3.1c is reached. Now the goal cell (r8c2) is fourth from the end on the OPEN

QUEUE, and a solution is imminent.

3.3 A* Algorithm Search

The A* procedure is branch-and-bound search, with an estimate of remaining

distance, combined with the dynamic-programming principle [10]. It is a priority

queue, which means cells are inserted according to the estimated distance to the

target [10], not just at the end.

Cells that are on the shortest estimated path from source to target go to the head

of the queue. The A* algorithm removes the cell from the head of the OPEN QUEUE

and checks to see if it's the target. If not, the neighboring cells are put on the OPEN

QUEUE at the proper position. The algorithm checks neighboring cells that have

already been searched to see if the new path between them and the source is shorter

than the previous one. If it is, they are repositioned on the OPEN QUEUE according

to the new estimated path length from source to goal. As in Breadth-First search,

this continues until the target cell has been found or until the OPEN QUEUR is

empty.

19

A* depends on being able to estimate the distance between a cell and the target

cell. In the case of autorouting, a simple measure of this distance is available, and

this helps A* to concentrate the search on the direction most likely to succeed. The

more accurate the estimate, the faster the search.

Figure 3.2 shows the behavior of the A* search algorithm. A* does not specify

whether new cells go in front of or behind cells already on the OPEN QUEUE that

evaluate to identical estimated path lengths. We use the convention that they are

placed in front . This minimizes the time to insert a cell on the OPEN QUEUE.

20

CLOSED OPEN
r5 c5 	r5c4(3) r6c5 (3) r5c6(4) r4c5(4)

r6 c4(2) r6 c6 (4) r4c6(4) r4c4(4)

Figure3.2a

21

CLOSED	 OPEN

r5 c5 r6c4 r5c4(3) r6c5 (3) r5c6(4)
r4c5 (4) r6c6(4) r4c6(4)

r4c4(4) r6c3(2) r7c4(2)
r7c3(1) r7c 5 (3) r5c3(3)

Figure 3.2b

22

CLOSED OPEN
r5 c5 r6 c4 	r5c4(3) r6 c5(3) r5 c6 (4)
r7 c3 	r4c5(4) r6 c6(4) r4c6 (4)

r4c4(4) r6 c3(2) r7 c4 (2)
r7c5 (3) r5c3(3) r7c2 (1)
r8c3(1) r8c2(0) r8c4(2)
r6 c2 (2)

Figure 3.2c
Behavior of the A* search algorithm

23

In Figure 3.2a, the source cell (r5c5) has been searched, and its neighbors are

on the OPEN QUEUE. Each cell on the OPEN QUEUE also includes the estimated

length of the shortest path from S to T that goes through that cell (we set the es-

timated length of each grid to be one). After the first cell (r6c4) has been searched

and moved to the CLOSED SET, the configuration in Figure 2.2b is reached, where

there are 12 cells on the OPEN QUEUE. After searching the next cell (r7c3), the

algorithm reaches the configuration in Figure 3.2c. Now the goal cell (r8c2) is at the

head of the OPEN QUEUE, and solution will be found on the next iteration of the

loop. Searching r8c2, A* recognizes it as the target and uses the first phase data

structure to construct a trace back to the source cell.

3.4 Discussion

Lee's algorithm suffers from a behavior inherent in the breadth-first search tech-

nique , which limits its application to problems of relatively small size. As the distance

between the source and target cells increases by a factor of N, the number of cells

processed by Lee's algorithm —and therefore processing time — increases by the square

of N.

A* algorithm search process, as seen in the Figure 3.2, goes more directly toward

the goal cell. The target draws the search much as the earth's gravity pulls objects

toward the center of mass. If we double the size of the problem, the search will process

about twice as many cells, and if we triple its size, the search will run through three

times as many. This linear characteristic makes A* more attractive for autorouting

than the quadratic Lee's algorithm.

24

Chapter 4
Adapted Autorouting with A*

Algorithm to Non-Product Form
Queueing Mode

. In chapter 3 the autorouting with A* algorithm operation is introduced. In this

chapter it will be implemented to decompose the non-product form queueing lattices.

The non-product form queueing lattices will be seen as a matrix. From a given cell,

we will discuss how the target(group) will be found in this chapter . The pseudocode

will also be supplied.

4.1 Type A

Type A structure is illustrated in Figure 2.4. Here each circular subset represents

a state or a group of states. For the ith subset there must be only one state with

unknown probability, external to the subset from which a transition(s) entering the

subset originates. Our target is to find a small subgroup of cells that only one cell,

not contained in the target group, can enter this subgroup from the source cell .

From Figure 2.4 we can find that, at most, only one node enters the subgroup

from other subgroups . For convenience we call this node the bridge node. Now we

give every node an estimate . The rule is that the estimates of the cells of the former

subset should be less than that of the cells of the latter subset , i.e. the estimates of

the nodes of the second subset should be greater than those of the nodes of the first

subset. After each subset has been searched, i.e. after the bridge node for the subset

has been found , the every bridge node will be seen as the source cell for the search

of the other subgroups. Repeat this until we have done with each node.

25

If a source cell is a subset we have just finished with, set this subset's neighbors

as the bridge cell and search again. If not, put the source cell in CLOSED SET, add

its neighboring nodes that have path and compare their estimates to search for the

cell with largest estimate as a bridge node until there is only one node i.e. the bridge

cell , left on the OPEN QUEUE. Search the other subgroups again until no node can

be found.

26

Pseudo code for searched subgroup from type A

(* S is the start node *)

(* OPEN is an ordered list of nodes , CLOSED is a set of nodes (order contain the

lower F value) . In general, nodes that need to be searched are put on OPEN (at

the proper position) . As they are searched, they are removed from OPEN ann put

in CLOSED *)

(* F(x) is the estimated of x *)

(* G(x) is the number of nodes that enter the x, from its neighbors *)

1 	 OPEN 4-- { S } (* a list of one element *)

CLOSED 4—{ } *the empty set *)

while OPEN { } dand not found do

x 4—the first node on OPEN (* node with largest F valus *)

OPEN 4-- - {x} (*remove x from OPEN *)

CLOSED 4—CLOSED -I- {X}(* put x in CLOSED *)

5 	 IF G(X) == 1 (* x itself is a subset *)

Let N be the set of neighboring nodes of x

For each y on N do

IF(G(x) = { }) do nothing

IF (G(X) .. 1) (* x iteslf is subset *)

S 4- y

F(x) +-- F(y)

G(x) 4- G(y)

Print CLOSED (* searched finished *)

go to 1

27

ELSE

IF y not on OPEN or CLOSED THEN

IF F(y) / F(x) x +-- y

F(x)	 F(y)

ELSE

put y in CLOSED

ELSE

remove y from OPEN (* each node search one time *

until T is reached

else T can not reached from S

Starting with the source cell, the process stops if the cell is the last element. If

the cell is a subset itself, record it, take it as a subset and puts it neighboring cells on

OPEN, as they are treated as the source in this case. Compare F(y) with F(x). Add

y to CLOSED if F(x) >F(y). If F(x)<F(y), put y into OPEN and make F(x)+—F(y).

Continue the comparison between F(x) and F(y). When the neighboring cells of the x

have all gone through this comparison procedure, take the estimate of their neighbors

to do the comparison. Keep on until the largest F(x) is found.

4.2 Estimate Calculation

The A* search algorithm use a heuristic to estimate the distance between the

current cell and the target cell. As implemented in the autorouting program, the

heuristic is a simple geometric distance approximation. Figure 4.1 illustrates all the

possible cell types used to construct a trace, grouped by type.

28

For each group, the estimate of that cell type is also given. These estimates are

calculated based on an infinite cell size. If we take the example of Figure 4.1, the

estimated of r4c0 equals to

2* group C + 2 * group D 1 * group A

= 2 + 2 + 0

= 4

and the estimate of r4cl equals to

1 *group A + 2 * group C + 2 * group D 1 * group E

=0 + 2 + (5 * 1) + 2

=11

According to the estimated we can easily find the target cell . The estimate

design based on Figure 2.4. Every solvable subset has only one bridge node that has

incoming path to this subset. So we design the estimate of bridge node is larger than

that of all nodes in the subset that it enters. Every time when we search the bridge

node we compare the estimates. Finally, we can get a node with largest estimate

that is bridge node and the subset search is finished. The bridge node will be seen as

a source cell to searh the other subset. Until OPEN QUEUE is empty, all solvable

subsets will be searched.

29

i: the number of column

Figure 4.1 Definition of Estimate for Type A

30

Chapter 5
Decomposition Results

The simulation program is written in C code [appendix]. The author tested the

program on the lattices of type A, Figure 5.1, on an IBM 286AT Personal Computer

with source cell(r4c2). The results are as following:

Source cell : r4c2(14)

6 32 34 34 34 34 36 34 34 32

5 27 29 29 31 29 35 29 29 27

4 22 24 24 30 24 26 24 24 22

3 17 21 19 19 19 25 19 19 17

2 14 20 14 14 14 14 14 14 12

1 13 9 9 9 11 9 9 9 7

0 2 4 4 4 10 4 4 4 2

0 1 2 3 4 5 6 7 8

F(X)

31

Figure 5.1 Type A Lattice

32

Source Cell :r4c2(14)

F(x)=14

CLOSED OPEN

r4c2 r3c2(14)

r4c1(11)

r5c2(14)

First Search

Source Cell :r4c2(14)

F(x)=14

CLOSED OPEN

r4c2 	 r2c2(14)

r3c2 	 r3cl(9)

r4c1 	 r4c0(10)

r5c2 	 r5c1(9)

r6c2(14)

Second Search

33

Source Cell :r4c2(14)

F(x)=14

CLOSED OPEN

r4c2 r2c2 rlc2(20)

r3c2 r3cl r2c1(9)

r4c1 r4c0 r3c0(4)

r5c2 r5c1 r5c0(4)

r6c2 r6c1(9)

r7c2(14)

Third Search

Source Cell :r4c2(14)

F(x)=20

CLOSED 	 OPEN

r4c2 r2c2 r3c2 rlc2(20)

r3c1 r4cl r4c0 rlcl(9)

r5c2 r5c1 r6c2 r2c0(4)

r2c1 r3c0 r5c0 r6c0(4)

r6c1 r7c2 r7cl(9)

r8c2(12)

Fourth Search

34

Source Cell :r4c2(14)

F(x)=20

CLOSED 	 OPEN

r4c2 r2c2 r3c2 rlcl rlc2(20)

r3cl r4c1 r4c0 r2c0 r0c1(13)

r5c2 r5c1 r6c2 r6c0 r0c0(4)

r2cl r3c0 r5c0 r8c2 r1c0(4)

r6cl r7c2 r7c1 r7c0(4)

r8c0(2)

r8c1(7)

Fifth Search

Source Cell :r4c2(14)

F(x)=20

CLOSED	 OPEN

r4c2 r2c2 r3c2 rlcl rOcl rlc2(20)

r3c1 r4c1 r4c0 r2c0 r0c0

r5c2 r5c1 r6c2 r6c0 r1c0

r2c1 r3c0 r5c0 r8c2 r7cO

r6c1 r7c2 r7c1 r7c0 r8c0

r8c1
Sixth Search

35

Now, only one element has the largest estimate in OPEN QUEUE. The search

of first subset that is the group of the cells on CLOSED SET is finished. We begin

to search the second subset. The element in OPEN will be seen as a source cell for

second subset.

Source Cell :r1c2(20)

F(x)=21

CLOSED OPEN

r1c2 	 rlc3 (21)

First Search

Now, only one element has the largest estimate in OPEN QUEUE. The search of

second subset that is the group of the cells on CLOSED SET is finished. We begin to

search the third subset. The element in OPEN will be seen as a source cell for third

subset.

Source Cell :r1c3(21)

F(x)=21

CLOSED OPEN

rlc3 	 r0c3(17)

r2c3(19)

First Search

36

Source Cell :rlc3(21)

F(x)=21

CLOSED OPEN

r1c3 r0c3 r3c3(19)

r2c3

Second Search

Source Cell :rlc3(21)

F(x)=21

CLOSED OPEN

r1c3 r0c3 r4c3(19)

r3c3 r2c3

Third Search

Source Cell :rlc3(21)

F(x)=25

CLOSED OPEN

r1c3 r0c3 r5c3(25)

r3c3 r2c3

Fourth Search

37

Now, same as before there is only one cell in OPEN QUEUE, the third subset

search is finished. We begin to search the fourth subset. The element in OPEN will

be seen as a source cell for third subset.

Source Cell :r5c3(25)

F(x)=26

CLOSED OPEN

r5c3 	 r5c4(26)

r6c3(19)

First Search

Source Cell :r5c3(25)

F(x)=26

CLOSED OPEN

r5c3 	 r5c4(26)

r6c3 	 r7c3(19)

Second Search

38

Source Cell :r5c3(25)

F(x)=26

CLOSED OPEN

r5c3 	 r5c4(26)

r6c3 	 r8c3(17)

r7c3

Third Search

Source Cell :r5c3(25)

F(x)=26

CLOSED OPEN

r5c3 r6c3 r5c4(26)

r8c3 r7c3

Fourth Search

Fourth subset search is finished. Now, start the next subset. The cell r5c4 will be

the source cell of the next subset.

39

Source Cell :r5c4(26)

F(x)=26

CLOSED OPEN

r5c4 	 r4c4(24)

r6c4(24)

First Search

Source Cell :r5c4(26)

F(x)=30

CLOSED OPEN

r5c3 r5c4 r3c4(30)

r6c3 	 r7c4(24)

Second Search

Source Cell :r5c4(26)

F(x)=26

CLOSED 	 OPEN

r5c4 r4c4 r6c4 r3c4(26)

r7c4 r8c4

Third Search

40

Fifth subset search is finished. Now, start the next subset. The cell r3c4 will be

the source cell of next subset.

Source Cell :r3c4(30)

F(x)=31

CLOSED OPEN

r3c4 	 r3c5(31)

r2c4(24)

First Search

Source Cell :r3c4(30)

F(x)=31

CLOSED OPEN

r3c4 r2c4 r3c5(31) .

rlc4(24)

Second Search

41

Source Cell :r3c4(30)

F(x)=31

CLOSED OPEN

r3c4 r2c4 r3c5(31)

r1c4 r0c4

Third Search

Sixth subset search is finished. Now, start the next subset. The cell r3c5 will be

the source cell of next subset.

Source Cell :r3c5(31)

F(x)=31

CLOSED OPEN

r3c5 	 r4c5(31)

r2c5(29)

First Search

42

Source Cell :r3c5(31)

F(x)=35

CLOSED OPEN

r3c5 r2c5 rlc5(29)

r4c5 	 r5c5(35)

Second Search

Source Cell :r3c5(31)

F(x)=35

CLOSED OPEN

rOc5 rlc5 r5c5(35)

r2c5 r3c5

r4c5

Third Search

Seventh subset search is finished. Now, start the next subset. The cell r5c5 will

be the source cell of next subset.

43

Source Cell :r5c5(35)

F(x)=36

CLOSED OPEN

r5c5 	 r5c6(36)

r6c5(29)

First Search

Source Cell :r5c5(35)

F(x)=36

CLOSED OPEN

r5c5 r6c5 r5c6(36)

r7c5

Second Search

Source Cell :r5c5(35)

F(x)=36

CLOSED OPEN

r5c5 r6c5 r5c6(36)

r7c5 r8c5

Third Search

44

Eighth subset search is finished. Now, start the next subset. The cell r5c6 will be

the source cell of next subset.

Source Cell :r5c6(36)

F(x)=36

CLOSED OPEN

r5c6 	 r4c6(34)

r6c6(34)

First Search

Source Cell :r5c6(36)

F(x)=36

CLOSED OPEN

r5c6 r4c6 r3c6(34)

r6c6 	 r7c6 (34)

Second Search

45

Source Cell :r5c6(36)

F(x)=36

CLOSED OPEN

r5c6 r4c6 r2c6 (34)

r3c6 r6c6 r8c6(32)

r7c6

Third Search

Source Cell :r5c6(36)

F(x)=36

CLOSED 	 OPEN

r5c6 r4c6 r2c6

r3c6 r6c6 r8c6

r7c6 rl c6 r0c6

Fourth Search

All solvable subsets are searched. The list follows:

First subset

Second subset

Third subset

Fourth subset

Fifth subset

Sixth subset

Seventh subset

Eighth subset

Ninth subset

r4c2 r2c2 r3c2 rlc2 rOcl r3c1 r4cl r4c0

r2c0 r0c0 r5c2 r5cl r6c2 r6c0 rid r2c1

r3c0 r5c0 r8c2 r7c0 r6c1 r7c2 r7c1 r7c0

r8c0 r8cl

rlc2

rl c3 rOc3 r3c3 r2c3

r5c3 r6c3 r7c3 r8c3

r5c4 r4c4 r6c4 r7c4 r8c4

r3c4 r2c4 rlc4 rOc4

r3c5 r2c5 rlc5 rOc5 r4c5

r5c5 r6c5 r7c5 r8c5

rOc6 rl c6 r2c6 r3c6 r4c6 r5c6 r6c6 r7c6

r8c6

47

Chapter 6
Discussion and Conclusion

6.1 Discussion

The lattice is represented as a two-dimensional array with one dimension for X

axis and the other for y axis in which the dimensions are the number of rows and

columns of cells. There are eight possible cell contents, which can be represented with

3 bits per cell. On a matrix of N rows and M columns, we will need N*M*3 bits in

total.

The preprocessor structure is also a two-dimensional array, where an entry must

be able to represent one of the four compass directions. This takes 2 bits per cell, or

N*M*2 bits.

The CLOSED can be represented by a pair of two dimensional, single-bit array ,

where a bit is one if the corresponding cell has been searched, and zero otherwise .

This will take N*M*2 bits in total.

F(x) and G(x) will be similar to the lattice arrays, but they must have a 2 bit

integer for each cell, requiring N*M*4 bits in total. Note that if memory usage needs

to be minimized at the cost of increased processing time, we could omit the F(x)

arrays, and calculate the F values as they are needed from G(x) arrays.

6.2 Conclusion

A decomposition algorithm has been developed to solve the state transition lattice

of Type A structure. By dividing the lattice into several solvable subsets which can

be solved sequentially, a large amount of computation time can be saved.

48

References

[1] L. Kleinrock, Qqeueing Systems, Vold: Theory, Wiley, 1975.

[2] A.A. Lazar and T.G. Robertazzi, "The Geometry of Markovian Queueing Net-

works,"Columbia University Technical Report, 1984.

[3] A.A. Lazar and T.G. Robertazzi, "The Geometry of Lattices for Multiclass

Markovian Queueing Networks," Proc. of the 1984 Conf. on Info. Sci. and

Sys., Princeton, N.J., pp. 164-168.

[4] A.A. Lazar and J.M. Ferrandiz, "Geometric Analysis of Qqasi-Birth-and-Death

Processes by Flow Redirection," Proc. of the 1987 Conf. on Info. Sci. and

Sys., The John Hopkins University, Baltimore, MD. March, 1987.

[5] J.P. Buzen, "Computational Algorithms for Closed Queueing Networks with Ex-

ponential Servers," Comm. ACM, vol. 16, no. 9, Sept. 1973.

[6] M. Schwartz, Telecommunication Networks Protocols, Modeling and Analysis.,

Addison-Wesley 1987.

[7] F. Baskett, K.M. Chandy, R.R. Muntz and F.Palacios," Open, Closed and Mixed

Networks of Queues with Different Classes of Customers," J. ACM, vol. 22, no.

2, April 1975.

[8] W.J. Gordon, and G.J. Newell, "Closed Queueing Systems with Exponential

Servers," Operations Research, 15, March 1967.

49

[9] Stephen E. Belter, "Computer-aided Routing of Printed Circuit Boards: an Ex-

amination of Lee's Algorithm and Possible Enhancements," BYTE,(June 1987),

199-208.

[10] Patrick Henry Winston, "Artificial Intelligince", 2nd edition, "Addision-Wesley

Publishing Company," 1984.

[11] C.Y. Lee, "An Algorithm for Path Connections and Its Applications,"/RE

Transactions on Electronic Compurers," (September 1961),pp 346-365.

[12] Steven L. Tanimoto, The Elements of Artificial Intelligence, (1987, Rockville,

Maryland : Computer Science Press),pp 148-164.

50

Appendix

/* ** */
/* Program Name : y_0.c 	 */
/* ** */
#include <stdio.h>
#include <dos.h>
#include <process.h>
#define point 1
#define xmax 9
#define ymax 7
#define n (xmax*ymax)

struct {
int x;
int y;

} buffer[n];
struct neighbor {

int link;
};
struct {

struct neighbor north;
struct neighbor east;
struct neighbor south;
struct neighbor west;

} state[xmax][ymax];
int temp[n];
main()
{
unsigned before, after;
int count=0;
int xl,yl;
int num_cont=0;
before=biostime(0, 0);
read data(;
clrscr();
printf("\n\n\n\n\n\n");
printf("Please Enter Initial State !\n");
scanf("%d %d",&xl,&y1);
if(xl<0 II xl>=xmax II yl <0 11 yl >=ymax)
{

printf("Please Enter X From 0 to %d\n",(xmax-1));
printf("Please Enter Y From 0 to %d\n",(ymax-1));
printf("Please Try Again !\n");
scanf("%d %d",&xl,&yl);
if(xl<0 11 xl>=xmax II yl <0 II yl >=ymax)

exit(0);

while(xl < xmax && yl < ymax && xl >=0 && yl >= 0)

switch ((state[xl][yl].north.link + \
state[xl][y1].east.link + \
state[xl][yl].south.link + \
state[xl][y1].west.link)) {

case 0 :

c_comp_0(&xl,&y1,&num_cont,count);
break;

case 1 :
c_comp_1(&xl,&y1,&num_cont,count);
break;

case 2 :
c_comp_2(&xl,&y1,&num_cont,count);
break;

case 3 :
c comp_3(&xl,&y1,&num_cont,count);
break;

case 4 :
c comp_4(&xl,&y1,&num cont,count);
break;

}

count++;
}

out_print();
after=biostime(0, 0);
printf("\n\n\n This program use %f second to execute ",

(unsigned float)(after-before)/18.204);
}
out_print()
{

int i=0;
int k=0;
int j;
FILE *out;
out=fopen("y_O.out","w");
while (i < n) {

fprintf(out,"THE GROUP\n");
for(j=0;j<temp[k];j++)
{

fprintf(out,"(%d , %d)\n",buffer[i].x,buffer[i].y);
i++;
}

k++;1
fclose(out);
}

read_ data()
{
int i,j;
FILE *in;
if((in=fopen("isdn.dat","r")) == NULL)

{

puts("Can't open data file !\n");
exit(0); }

else
{

for (j = 0 ; j < ymax ; j++)
for (i = 0 ; i < xmax ; i++)
{
fscanf(in,"%d %d %d %d",\

&state[i][j].north.link,\

&state[i][j].east.link,\
&state[i][j].south.link,\
&state[i][j].west.link);

}
}

close(in);
}
c comp_0(a,b,c,d)
int *a,*b,*c;
int d;
{

buffer[*c].x=*a;
buffer[*c].y=*b;
(*c)++;
(*a)++;
(*b)++;
temp[d]=1;
}

c_comp_1(a,b,c,d)
int *a,*b,*c;
int d;
{

buffer[*c].x=*a;
buffer[*c].y=*b;
(*c)++;
temp[d]=1;
if(state[*a][*b].north.link == point)
{

(*b)++;
state[*a][*b].south.link = 0 ;

}

else if (state[*a][*b].east.link == point)
{

(*a)++;
state[*a][*b].west.link = 0 ;
if(*b<(ymax-1))

state[(*a)-1][(*b)+1].south.link=0;
}

else if (state[*a][*b].south.link == point)

(*b) --;
state[*a][*b].north.link = 0 ;

}
else

(*a)--;
state[*a][*b].east.link = 0 ;
if(*b < (ymax-1))
state[(*a)+1][(*b)+1].south.link=0;

}
}

c_comp_4(a,b,c,d)
int *a,*b,*c;
int d;

{
int i,j;
int sum=0;
*a=*a;
(*b)++;
for(j=0;j<*b;j++)

for(i=0;i<xmax;i++)
{

buffer[*c].x=i;
buffer[*c].y=j;
(*c)++;
sum++;

}
for(i=0;i<xmax;i++)

state[i][*b].south.link=0;
temp[d]=sum;
}

c_comp_2 (a, b, c,d)
int *a,*b,*c;
int d;
{
int i,j, value,t value;

if(state[*a][*b].east.link==0)
for(i=0;i<=*a;i++)
{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}
else
for(i=*a;i<xmax;i++)
{
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}
(*b)++;
}

else /* state[*a][*b].north.link=0 */
{

if(state[*a][*b].south.link==0)
{

if(*b!=(ymax-1))

int sum=U;
if(state[*a][*b].north.link==point)
{

for(i=0;i<xmax;i++)
if(state[i][*b].north.link==point)

{
_value=i;
break;

}

if(_value < *a)
{

(*a)--;
state[*a][*b].east.link=0;

for(i=(*a)+1;i<xmax;i++)

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}
}

else 	 /* value > a */
{
(*a)++;

state[*a][*b].west.link=0;
for(i=0;i<*a;i++)
{
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}
}
else /*b=ymax*/

{

if(*a>xmax/2)
{

for(i=*a;i<xmax;i++)
{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
(*a) --;
state[*a][*b].east.link=0;
}

else
{

(*a)++;
for(i=0;i<*a;i++);

buffer[*c].x=i;
buffer[*c].y=*b;
(*c) ++;
sum++;

}

state[*a][*b].west.link=0;
}

}

}

else /* south=1 */
{
for(j=0;j<*b;j++)
for(i=0;i<xmax;i++)

{

buffer[*c].x=i;
buffer[*c].y=j;
(*c)++;
sum++;

}

if((*b)!=(ymax-1))
{

for(i=0;i<xmax;i++)
if(state[i][*b].north.link==point)

{
value=i;

break;
}

for(i=0;i<xmax;i++)
if(state[i][(*b)-1].north.link==point)

{

t_value=i;
break;

}

if(state[*a][*b].east.link==point)
{

if((t_value==(*a)) && (t_value==_value))
{
(*b)++;
for(i=*a;i<xmax;i++)
{
buffer[*c].x=i;
buffer[*c].y=(*b)-1;
(*c)++;
sum++;
state[i][*b].south.link=0;

}

else if(t value == *a)

state[*a][(*b)+1].south.link=0;
buffer[*c].x=*a;
buffer[*c].y=*b;
(*c)++;
sum++;
(*a)++;
for(i=*a;i<xmax;i++)
state[i][*b].south.link=0;
state[*a][*b].west.link=0;

else if (t value< value)
{

for(i=*a;i<=t_value;i++)

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

1
*a=tvalue+1;
for(i=*a;i<xmax;i++)
state[i][*b].south.link=0;
state[*a][*b].west.link=0;

else /* t value > value */
{

for(i=*a;i<_value;i++)

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

for (i= value+l; i<xmax; i++)
{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

*a= value;
state[*a][*b].south.link=0;
state[*a][*b].east.link=0;
state[*a][*b].west.link=0;
}

if ((t value==*a) && (t value== value))
{ —
for(i=0;i<=(*a);i++)

{

}
else /* east=0 */

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}

(*b)++;
}
else if(t value == *a)

{

state[*a][(*b)+1].south.link=0;
buffer[*c].x=*a;
buffer[*c].y=*b;
(*c)++;
sum++;
(*a)--;
for(i=0;i<=*a;i++)
state[i][*b].south.link=0;

state[*a][*b].east.link=0;
}

if (t value> value)
{

for (i=t value;i<=*a;i++)
{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}
for(i=0;i<tvalue;i++)
state[i][*b].south.link=0;

*a=_value-1;
state[*a][*b].east.link=0;

else /* <= */
{

for(i=0;i<= *a;i++)
if(i != _value)

{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;
state[i][(*b)+1].south.link=0;

}

*a=_value;
state[*a][*b].west.link=0;
state[*a][*b].south.link=0;
state[*a][*b].east.link=0;
}

}
else /* b= ymax */

{
for(i=0;i<xmax;i++)

if(state[i][(*b)-1].north.link==point)
{

tvalue=i;
break;

}

if(state[*a][*b].east.link==point)
{

if (t value <= (*a))
{
for(i=0;i<=*a;i++)
{
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
(*a)++;
for(i=*a;i<xmax;i++)
state[i][*b].south.link=0;
state[*a][*b].west.link=0;
}

else
for (i=*a; i<xmax; i++)
{
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}

(*a)--;
for(i=0 ;i<=*a;i++)
state[i][*b].south.link=0;
state[*a][*b].east.link=0;
}

/* 	 1 */
else
{

for(i=0;i<xmax;i++)
{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}

(*a) ++;
(*b)++;

}
}
}

temp[d]=sum;
}
c comp_3(a,b,c,d)
int *a,*b,*c;
int d;

int i,j, valud, valup;
int sum=0;
if(state[*a][*b].north.link==point)

{

(*b)++;
if(state[*a][(*b)-1].south.link==point)
{

for(j=0;j<=*b;j++)
for(i=0;i<xmax;i++)
if (j == *b)
state[i][*b].south.link=0;

else
{

buffer[*c].x=i;
buffer[*c].y=j;
(*c)++;
sum++;

}

}

else /* state[*a][*b].south.link 1= point */

for(i=0;i<xmax;i++)
{

buffer[*c].x=i;
buffer[*c].y=(*b)-1;
(*c)++;
sum++;
state[i][*b].south.link=0;

}
1

}

else /*north=0 */
{

if((*b) < (ymax-1))
{

for(j=0;j<=(*b)-1;j++)
for(i=0;i<xmax;i++)

{

buffer[*c].x=i;
buffer[*c].y=j;
(*c)++;

sum++;
1

for(i=0;i<xmax;i++)
if(state[i][*b].north.link==point)
{
valup=i;
break;
1

for(i=0;i<xmax;i++)
if(state[i][(*b)-1].north.link==point)
{
_valud=i;
break;

if(_valup < *a)
{

if(_valud >= *a)
{

for(i=*a;i<xmax;i++)
{

state[i][(*b)+1].south.link=0;
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

for(i=0;i<*a;i++)
state[i][*b].south.link=0;
(*a)--;

state[*a][*b].east.link=0;
}

else if (valud > valup)

for(i= valud+1 ; i < xmax ; i++)

state[i][(*b)+1].south.link=0;
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

1
*a = valud;
state[*a][*b].east.link=0;
for(i=0 ;i<=*a ;i++)
state[i][*b].south.link=0;

else /* valud <= valup */

*a = _valup;
for(i=0;i<xmax;i++)

if(i != *a)

{

{

{

state[i][(*b)+1].south.link=0;
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
state[*a][*b].east.link=0;
state[*a][*b].south.link=0;
state[*a][*b].west.link=0;

}

}

else /* valup > a */
{

if(_valud<=*a)
{

for(i=0 ;i<= *a;i++)
{

state[i][(*b)+1].south.link=0;
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}

(*a)++;
for(i=*a;i<xmax;i++)
state[i][*b].south.link=0;

state[*a][*b].west.link=0;
}

else if (valud < valup)
{

*a= valud ;
for(i=0 ;i<*a ;i++)

{

state[i][(*b)+1].south.link=0;
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
for (i=*a; i<xmax; i++)
state[i][*b].south.link=0;
state[*a][*b].west.link=0;

}

else /* _valud >= _valup */
{

*a=_valup;
for(i=0;i<xmax;i++)

if(i != *a)
{

state[i][(*b)+1].south.link=0;

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
state[*a][*b].east.link=0;
state[*a][*b].west.link=0;
state[*a][*b].south.link=0;

}
}

}

else /* b=ymax */
{

for(j=0;j< (*b) ;j++)
for(i=0;i<xmax;i++)

{

buffer[*c].x=i;
buffer[*c].y=j;
(*c)++;
sum++;

}

for(i=0;i<xmax;i++)
if(state[i][(*b)-1].north.link==point)

{

_valup = i ;
Break;

}

if(_valup < (*a))
{

(*a)++;
for(i=0 ; i< xmax; i++)
{

if(i >= (*a))
state[i][*b].south.link=0;

else
{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}

}
state[*a][*b].west.link=0;

1
else if(_valup ==(*a))

{
if(*a > xmax/2)
{

(*a)--;
for(i=0 ; i< xmax; i++)
{
if(i <= *a)

state[i][*b].south.link=0;
else

{
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
}

state[*a][*b].east.link=0;
}

else /* a <xmax/2 */
{
(*a)++;
for(i=0 ; i< xmax; i++)
{
if(i >=(*a))

state[i][*b].south.link=0;
else

{
buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}

}
state[*a][*b].west.link=0;

}

else /* _valup > a */
{
(*a)--;
for(i=0 ; i< xmax; i++)
if(i <= *a)

state[i][*b].south.link=0;
else

{

buffer[*c].x=i;
buffer[*c].y=*b;
(*c)++;
sum++;

}
state[*a][*b].east.link=0;

}

}
temp[d]=sum;

	Decomposing non-product form queueing lattices through autorouting with A* algorithm
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Vita
	Abstract
	Acknowledgment
	Approval Sheet
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Product and Non-Product Form
	Chapter 3: Autorouting with the A* Algorithm
	Chapter 4: Adaped Autorouting with A* Algorithm to Non-Product Form Queueing Mode
	Chapter 5: Decomposition Results
	Chapter 6: Discussion and Conclusion
	Appendix

	List of Figures

