
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1991

A study in systems integration architecture
Sashidhar M. Prasad
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Prasad, Sashidhar M., "A study in systems integration architecture" (1991). Theses. 1286.
https://digitalcommons.njit.edu/theses/1286

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1286?utm_source=digitalcommons.njit.edu%2Ftheses%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

A STUDY IN SYSTEMS INTEGRATION ARCHITECTURE

By

SASHIDHAR M. PRASAD

Adviser

Prof. Wilhelm Rossak
Assistant Professor

This thesis is submitted to the Faculty of the Graduate
School of the New Jersey Institute Of Technology in

partial fulfillment of the requirement for the
Degree of Master Of Science in

Computer and Information Science

December 1991

APPROVAL SHEET

Title of Thesis: 	 A Study in System Integration Architecture

Name of Candidate:	 SASHIDHAR M. PRASAD

Master of Science in Computer
and Information Science, 1991.

Thesis and Abstract Approved :

Dr. Wilhelm Rossak	 Date
Assistant Professor
Computer and Information Science Department

Dr. Lonnie R. Welch	 Date
Assistant Professor
Computer and Information Science Department

VITA

Name:	 SASHIDHAR M. PRASAD

Secondary Education: 	 St. George's Grammar School - 1977

Colleges Attended:

New Jersey Institute of

Technology:
	

09/89 - 12/91	 M.S (CIS)	 10/91

Major:
	 Computer and Information Science

Positions Held:
	 Finance Executive, REFRATEK INDUSTRIES (P) Ltd.

ABSTRACT

Title of Thesis:

Name of Candidate:

Thesis Advisor:

A Study In Systems Integration Architecture

Prasad M. Sashidhar

Dr Wilhelm Rossak
Assistant Professor
Computer Information Science Department.

This Thesis studies the two architectures OSCA and ANSA which support

the ODPSE principle in the first two parts. In the third part the framework for

integrating these two architectures is described. The idea of integration

architectures in relation to open architectures is studied using the enabling

technologies.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Wilhelm Rossak for his valuable

suggestions and technical assistance during the preparation of this report.Also

the author wishes to thank Mr. Michael Bohomelec who proof read this report and

gave his valuable suggestions.

Contents

1 OSCATM Architecture 	 1
1.1 Introduction and Overview 	 1

1.1.1 What is OSCATM Architecture ? 	 1
1.1.2 Building Blocks 	 6
1.1.3 Contracts 	 9
1.1.4 Invocation Of Contracts 	 11
1.1.5 Data 12

1.2 Principles Of Building Blocks 	 13
1.3 Contracts 	 20
1.4 Layers 	 24

1.4.1 Corporate Data Layer Building Blocks 	 24
1.4.2 Processing Layer Building Blocks 	 29
1.4.3 User Layer Building Blocks 	 30
1.4.4 User Layer Functions 	 32

1.5 Communication Software Fabric 	 35
1.5.1 Composition 	 35
1.5.2 Communication Software Fabric Service Classes 	 36

1.6 Summary and Conclusions 38

2 ANSA Architecture 	 40
2.1 Introduction and Overview 	 40

2.1.1 What is ANSA Architecture 40
2.1.2 Objectives and Goals 	 41

2.2 Concepts 	 42
2.2.1 Standardization 	 42

2.3 Architectural Philosophy 	 43
2.3.1 Viewpoints On Distributed Processing 	 43

2.4 Design Of ANSA 	 47
2.4.1 Model For Computation For Ansa 	 48
2.4.2 Engineering Model For Ansa 	 49
2.4.3 Overall Structure 	 51
2.4.4 Implementation 	 57

1

3

	

2.5 	 ANSA's Relationship To ODPSE 	

	

2.6 	 Summary and Conclusions 	

Thoughts On Integration Of OSCA TM And ANSA

 	 59
63

64
3.1 Integration Architectures 	 64

3.1.1 	 Introduction 	 64
3.2 OSCATM And The Integral Framework 	 68

3.2.1 	 Channel Based Approach 	 69
3.2.2 	 Domain Model 	 71
3.2.3 	 System Architecture 	 72

3.3 Other Aspects of OSCA TM 	 73
3.3.1 	 Conclusions for OSCATm 	 75

3.4 ANSA And The Integral Framework 	 76
3.5 Ideas In Integrating OSCATM And ANSA 	 80
3.6 Summary 	 83

4 References 85

5 Glossary 87

ii

List of Figures

1.1 Building Blocks Configuration 	 8
1.4 Target Architecture 	 37

2.1 A Federation Of ANSA Systems 	 53
2.2 ANSA System 	 54
2.3 ANSA CAPSULE 	 56
2.4 System and Vendor Networks 	 62

iii

Chapter 1

OSCATM Architecture

1.1 Introduction and Overview

1.1.1 What is OSCATM Architecture ?

The OSCATM Architecture has been designed by Bellcore to enable and enhance

the interoperability among software systems [OSCA89]. OSCA TM architecture is a

strategic architecture intended to be used by Bellcore Client Companies (BCC's) to

provide software interoperability. This means software products of various suppli-

ers will be able to operate with the existing software products used by the Bellcore

Client Companies. It also allows the Bellcore Client Company Operating Systems

that are distributed over a wide range of computing environments such as a wide

range of database management systems, work stations and application architectures

to be compatible with a wide variety of communication architectures and data struc-

ture which should be able to interoperate. The OSCA TM architecture is a system

design framework which is intended to give the Bellcore Client Companies (BCC) the

flexibility to combine various software products in various ways that satisfy their busi-

1

ness needs. This is known as "Interoperability". Interoperability is the ability of

OSCATM to interconnect various software products of different manufacturers which

consists of large number of programs, transactions and databases. It also providea

access to the corporate data by any authorized user and to maintain this access and

interconnection even if there are changes in the suppliers and the vintages.

One of the fundamental ideas of this architecture is the notion of "SEPA-

RATION OF CONCERN". This means the application functionality, be grouped

into three layers or domains, namely, Data Layer, Processing Layer and User Layer.

The software which implements the functionality in these layers is partitioned into

"building blocks", and these have to work under certain fixed guidelines or prin-

ciples. These building blocks are interconnected by means of interfaces known as

"CONTRACTS" which also must adhere to certain rules and guidelines. A layer is

the union of functionality defined as either Corporate Data functionality, Processing

Functionality or User Functionality.

When we refer to "Separation of Concerns" in the OSCATM layers we

mean that the application functions are allocated to building blocks within a layer

and that no building block contains application functions for more than one layer.

It should also be noted interfaces amongst the functions in one building block are

well defined and contain well formed interfaces, so that the functions of one layer are

decoupled from the functions of another layer.

The Corporate Data layer provides the functionality to support the seman-

tic integrity of the Corporate Data. The User layer provides the functionality to

support human users. The Processing layer provides the functionality for business

processes. Each layer is made up of one or more well defined functional units called

2

Building Blocks. The building blocks are interconnected with each other by means of

interfaces called "CONTRACTS". These building blocks are the software product

deliverables. Any building block can communicate with any other building block that

provides a function that this building block requires. All these building blocks are

tied together by means of a "Communication Software Fabric".

To promote interoperability, OSCATM architecture provides the goals that are

given below :-

• Separation of application processing in a software product from the corporate

data processing used by a software product.

To be interoperable, the architecture must have its corporate data resources

defined. This must be made available to, and be shared by end users, and

authorized software products, thus enabling data to be treated as a Corporate

resource. Other business functions are processed separately and semantic in-

tegrity for the data is provided. Access is allowed to authorized end users in a

uniform manner, irrespective of the type of the database or the communication

network that is in use.

® Regulation of Redundant Corporate Data.

Quite often software products duplicate common corporate data in their own

private databases a number of times. This data becomes redundant as a result of

this multiple duplication. This multiple duplication or redundancy is eliminated

in OSCATM architecture by the software products which view the corporate

data as a shared, corporate resource and access is got through uniform standard

3

methods. OSCA TM sees to it that the redundant copies of the data be managed

such that the consistency and integrity are maintained.

• Separation of the application processing in the software products from device

handling facilities.

Under OSCATM architecture, the software products are directly not responsible

for the end user devices, nor do they know the characteristics of the end user

devices when they are communicating with an end user device or any other

software products.

• Ability for the software product selection to take place.

To meet its local needs, OSCA TM allows the Bellcore Client Companies (BCC's)

to configure a software product.

• Provision of a framework for interconnecting software products from device

handling responsibilities.

All participants of the architecture are required to develop their software prod-

ucts in the form of building blocks. This should conform to the principles and

guidelines as set forth by OSCATM architecture.

• National and International standards are used to ease software product inter-

communication and connection.

The OSCATM architecture allows the use of national and international stan-

dards to open the interfaces between software products. This would help a

4

large number of vendors to be able to participate in this architecture provided

the software products they develop would be consistent with these standards.

5

1.1.2 Building Blocks

The OSCA TM architecture utilizes a building block approach to the software

product development, in which, each layer of the architecture is composed of many

building blocks that are working together. Each building block is a set of computer

programs, data schemas and other related software which possesses well defined func-

tionality and interfaces. A description of a building block consists of inputs, outputs,

syntax, semantics and pragmatics which unambiguously define the functions they

provide to other building blocks. This feature allows building blocks to be provided

by multiple suppliers. A building block need not have the knowledge of the internal

structure of other building blocks and similarly OSCA TM is not concerned with the

internal structure of the building blocks. OSCA TM specifies the guidelines that the

interfaces of a building block should meet, to interact with other building blocks

within a BCC configuration.

Interoperability is at the building block level. For a building block to be

interoperable, all of its inter-building block interfaces and its functions must be doc-

umented and fully supported. One implication of an interoperable architecture is that

a building block could be substitutable. If there are interfaces to a building block

that are not documented, then they are not substitutable and thus do not conform

to OSCATM . Other building blocks could use the building blocks through their doc-

umented interfaces; but if the building blocks were substituted, the undocumented

interfaces could become unsupported. This becomes a violation of the principle of

interoperability.

A building block utilizes hardware and software services from various sources,

like services provided by the operating systems, the communication software fabric

6

and the database management systems for it, to be able to perform its work. Since

the definition of the relationship between the services and the building blocks is an

intra building block concern, such definition is outside the scope of OSCA TM .

The building blocks can co-operate in a number of ways. For example, a User

Layer Building block could communicate with the Process Layer Building Block, by

fetching and manipulating data from a Data Layer building block for the end user.

Or a User layer building block can inquire directly into a Data Layer building block

or a Process Layer building block can access more than one Data Layer Building

Block or more than one instance of a Data Layer building Block. Whereas a user

layer building block could access many Processing Layer Building Blocks, which in

turn, each can have access to the data layer building blocks.

A User Layer Building Block can access many Process Layer Building Blocks

or instances of a Process Layer Building Block which in turn access a single Data

Layer Building Block. Building Blocks of any layer could communicate with building

blocks of the same layer. Shown on the next page are a few figures showing how

building blocks could cooperate with each other.

7

Figure 1.1: Building Blocks Configuration

1.1.3 Contracts

Normally large software and its components interact with one another by means of

" Interfaces "also known as " Protocols" in the communications world. In OSCA TM

these interfaces are known as "Contracts".

A contract is a well defined set of functionality that is available to the software

in all other building blocks and these should adhere to contract principles. A building

block could support one or more contracts and this set of all contracts that a building

block supports is termed as the "Contract Set" of that particular building block.

In general a contract invoker is not concerned where the contract is installed

or with which other contracts it is grouped to. There are no defined set of rules

for deciding which contract or contracts, a particular building block supports. A

building block could support a particular contract based on the rules given below:

1. High software cohesion and low coupling between contract sets;

2. Ease of release independence. Contracts which are expected to have interde-

pendencies with each other should be grouped together.

3. Related business functions that the contracts provide.

4. The architecture of the data which the building block acts upon, accesses, or

stewards.

5. Implementation issues such as performance, proper synchronization scope, avail-

ability requirements etc.

9

There are two aspects for a building block,

1. the "released" unit of the software from the developer and

2. the "installed" unit of the software.

It is generally possible for a single "released" unit of the software to be "installed"

at several different locations. To distinguish the "released" unit of the software from

the "installed" units of software is known as building block instance.

1 0

1.1.4 Invocation Of Contracts

Building blocks which interact with one another may for some unforeseen condition

may not do so due to communication loss, software/hardware problem etc. When

such a loss occurs, the building block software should be capable of handling the

unavailability in a way that is consistent and meaningful to the application. The non

availability of a contract should not cause a building block to terminate abnormally

or suspend other work which is being processed.

The contract principles of a well defined interface has two aspects. One set

of aspects are the functionality and the characteristics that the developer of the

contract has under his control and the other set of aspects are the characteristics

that are imparted due to particular building block deployment instance.

11

1.1.5 Data

Corporate and Local Data

Corporate Data is defined by the Bellcore Client Company (BCC) as a means

of data architecture and the modelling efforts. This is required for the performance

of the BCC business processes and it contains all the information about the Com-

pany. Corporate data is stewarded by the Data layer Building Blocks. These data

are not owned by any one organization or software components. Since these are a

Corporate resource, they can only be stewarded and not owned by any single Data

Layer Building Block.

In addition to the Corporate Data, OSCA TM allows for local data. Local data

is owned and not stewarded, this may occur in any layer of the architecture including

the Corporate Data Layer. There are two types of local data:

1. Copies of Corporate Data or redundant Corporate Data: If there are a

multiple instances of a piece of corporate data, only one instance is Corporate

Data. This Corporate Data is stewarded by only one data layer building block

and is always assumed to be correct. All other instances are Local Data.

2. Working data is temporary, transient and which does not have value outside

the present using building block. It is likely that, once a data modelling effort

is done, a minimal amount of this type of local data will remain.

12

1.2 Principles Of Building Blocks

Building blocks must adhere to the principles given below:

1. release independence;

2. physical database independence;

3. no accessibility assumptions between building blocks;

4. logical building block addressing;

5. execution in only one recoverable environment;

6. interactions among building blocks are defined by contracts;

7. secure environment;

The above given principles apply to building blocks. They do not apply to

programs or transactions within a single building block, although the architecture

does not preclude this. For example, although two building blocks must be release

independent, the programs within a single building block could and probably be

release dependent. The above mentioned principles are explained below:

1. Release Independence

To maximize the deployment flexibility of the building blocks, each instance of a

building block must be able to be installed and upgraded independently of other

instances of itself and other building blocks. A building block must operate with

a negotiated or predefined number of prior versions of other instances of itself

13

and other building blocks. New building blocks must be compatible with other

building blocks. To obtain new functionality, it may be required that new

versions of several building blocks be installed over a period of time before the

new functionality is available. Such installation is not required to take place

simultaneously.

Release Independence implies that:

(a) If a software product consists of multiple building blocks, a new version

of it may be installed piece meal. It is up to the suppliers to furnish the

documentation to the customer, about the details which the configuration

will deliver to the required functionality.

(b) An agreed set of rules that are consistently release dependent across all

building blocks is needed.

2. Physical Database Independence

In order to ensure the Bellcore Client Companies (BCC's) deployment flexi-

bility, two or more building blocks or instances of building blocks can use the

services of the same database management system. This means that their data

could be housed in the same database management system, only if release in-

dependence could be maintained amongst them. One and only one instance of

a data layer building block which is the steward of any given instance of Cor-

porate Data, uses the native access to that data. All other building blocks that

access and share the data, do so through contracts supported by the stewarding

building block and not via the native access. A building block could have local

14

data which it maintains and no other building block can access it.

The purpose of this principle are:

(a) any physical reorganization of one building block's data will not affect the

operation of other building blocks which are accessing and using that data

or the Database Management System;

(b) any changes made to a database in the Database Management System for

one building block will not affect other building blocks, since the stew-

arding block is responsible for buffering other building blocks from such

changes;

(c) only the stewarding building block can run on the same hardware as and

when it is required, to use the services of the databases and the vendor

Database Management System.

3. No Accessibility Assumptions Between Building Blocks

One instance of a building block communication with another building block

instance should be prepared to deal with the unavailability of the receiving

building block instance. The sending building block must be able to handle the

absence of another instance of itself or another building block in a manner that

preserves its own availability. A few major implications of this principles are:

(a) Building Blocks communicate in a manner such that the delayed or non-

existent response to one request will not impact the processing of other

requests.

15

(b) If the interface between two building blocks is interactive when a session

is established, a mechanism is required to detect the failure of either of the

partners during the interactive session and necessary action is required.

(c) Some of the building blocks could be required by other building blocks.

Which one is required depends on the functionality and customer need.

However, no accessibility assumption applies, because any instance of a

building block or the communication links to it may fail and the mandatory

building blocks cannot be assumed to be available. Thus the building

blocks, must be capable of handling the non-availability of the required

building blocks in a way that is appropriate to the application.

(d) A building block must have the functionality to manage the circumstances

where another building block is unavailable, including the procedures to

be followed, if a building block is inaccessible or if a building block itself

has become accessible after an outage, including the resynchronization of

the data when appropriate.

4. Logical Building Block Addressing

One instance of a building block must not assume that another building block

resides at a specific network location and such assumption limits the BCC's abil-

ity to manage its software products deployment and support. Building blocks

should identify other building blocks by their logical addresses that are inde-

pendent of the network location. The communication software fabric performs

the logical to network address mapping.

16

5. Execution In Only One Recoverable Environment

A recoverable environment is one where a physical machine is running on one

operating environment, or multiple machines. These are made to appear as

if they are one environment from the view of the operating system, messages,

databases and transaction recovery, and this is done with the use of vendor

hardware and software, such as distributed database management system or a

database machine.

No instances of any building block may be required to be installed on the same

recoverable environment, as any other building block or any other instance of

itself. Moreover, it cannot be restricted from being installed on the same recov-

erable environment as another building block or instance of itself. This means

that a building block is installed in a recoverable environment independent of

where the other building blocks are installed, in that working environment.

6. Interactions Among Building Blocks Defined By Contracts

Following principles must be observed to attain interoperability, which are dis-

cussed below:

(a) building blocks must not have any contracts tailored specifically for use

by a particular interfacing building block, instead of being defined for a

more general use;

(b) the syntax encoding must be widely used and have general industry accep-

tance, utilizing appropriate available national and international standards,

17

so that no building block specifies its own private syntax encoding;

(c) relevant communication software fabric services will adhere to a commonly

agreed upon set of standards;

(d) the agreed upon set of standards should be targeted towards the industry

and emerging national and international standards.

7. Secure Environment

A building block must provide a secure environment, provide for the recognition

of authorized users and audit relevant security events as per the guidelines

discussed below:

(a) There must be no entry points into a building block, other than those

defined in its "contract specification"or in case of a User Layer Building

Block, those provided for authorized secure user access.

(b) Resources which are returned to the recoverable environment must not

contain any sensitive information.

(c) The identity of the invoking user must be maintained and passed through

the building blocks.

(d) Depending on their security requirements, building blocks may need to

re-authorize the identity of the invoking users or the building blocks.

(e) All interfaces from one building block to another must be authorized by

control mechanisms.

18

(f) Access to all local data and functions within a building block must be

limited to authorized users. This authorization may be provided by the

underlying recoverable environment.

(g) Depending on the security requirements, fine grained access controls that

restrict users access to local or corporate data based on the data content of

a specific field, attribute, tuple or record of any database may be required

of any building block.

(h) Also contract dependent access controls that restrict processing based on

the requesting user or building block identity, may be required by any

building block.

(i) All building blocks provide audit information at a level, co-incident with

security requirements.

19

1.3 Contracts

A Contract is a commitment by a building block to provide a well defined set of

functionality to all other building blocks, in such a way that it adheres to the contract

principles. A building block may support, one or more Contracts. The set of all

contracts that a building block supports is termed the Contract Set of that building

block. Interactions between OSCATM building blocks are accomplished by interfaces

which adhere to contract principles that are discussed below in detail:

1. Use Of Standards: The Contracts should use applicable national, interna-

tional and industry standards.

2. Restricted Set of Syntax Encoding: Contracts shall use a commonly agreed

upon and restricted set of syntax encoding and supporting communications soft-

ware fabric services. Common agreement should be obtained through a stan-

dard operating environment process which ensures that appropriate syntaxes

and standards are selected.

3. Isolation from Building Block Internals: Contracts should be able to

isolate the invoker from the internal building block details, like the type of

processor or the type of database used, etc. If the underlying database or the

processor that a building block uses should change, such change should remain

transparent to the invokers of the contracts that the building block provides.

4. Release Independence: Changes to a contract shall occur only with adequate

notice, and when a co-ordination process, is in place to affect that change.

20

Contracts shall limit the impact for the release changes that will have upon the

invoker of the contract, by making these changes in both upward and downward

compatible fashion. All contracts shall use the same single mechanism or set

of rules that make it possible to release different versions of the building block

independently of the building blocks that invoke the contracts.

5. Equality Of Invocation: The use of Contracts by building blocks may not

have assumptions that would preclude or make it unreasonably difficult. Ex-

cept for security reasons, a contract when invoked by building block "A" shall

function exactly in the same way as a contract that is invoked by building block

LLB')

6. Well Defined Interfaces: A contract should be defined by a contract speci-

fication, which is a textual documentation that contains the way in which the

functionality provided by the building block is invoked. Contracts should be

well defined in terms of interface, response time and availability.

7. Logical Addressing: Contracts shall be identified and invoked in a way that

is independent of the physical location of a building block that provides the

contract. Each contract that a building block provides should be uniquely

identifiable and accessible with respect to other contracts.

8. No Contract Accessibility Assumption: Building blocks that interact with

one another, might be unable to do so, for various reasons, like communication

loss, security etc. When such a loss of interaction occurs, the building block

software should have the capability to handle this non-availability in a way that

is consistent and meaningful to the application. The building block software

21

should be specifically capable of handling,

(a) to determine whether or not a contract was successfully invoked;

(b) or losing contact with the building block in the "middle" of the contract

when the contracts are spanning several interactions.

9. Recognition Of Authorized Users: The implementation of contract shall

perform actions only on behalf of authorized users.

10. Maintain Identity of the Invoking User: The invoking user's identity must

be maintained and passed through, to any other building block with which the

contract has to be established.

11. Minimum Trust Of Invoking User: A contract specification must describe

the rationale for "trusting" the identity of the building block or the user as part

of its security policy.

12. Security Audits: Contracts must incorporate enough information to allow a

security audit.

Apart from the separation of User, Processing and Data functionality and build-

ing block principles, there are no specific architectural rules for grouping of

contracts into the building blocks. Also there are no architectural restrictions

on the type of communication service or information exchange or invocation

paradigm that must be used, the number or type of exchanges, the direction

or flow of exchanges or the time within which a contract must be performed,

provided the layering, building block principles and contract principles are not

22

violated. It is possible that individual building blocks or contracts could impose

restrictions, but the architecture does not.

23

1.4 Layers

1.4.1 Corporate Data Layer Building Blocks

The fundamental principle of OSCATM is the separation of Corporate Data from

processing functions and this separation, makes it easier to provide:

• Open access to corporate data by an authorized system or an end user;

• Access to a wide variety of database management systems;

• Uniform interfaces between the corporate data layer and other layers.

The separation of corporate data from the processing functions provides a

framework whereby future technological advances such as semantic and knowledge

based database management systems (DBMS) could be utilized without major soft-

ware product rewrites, beyond the affected Data Layer Building Block (DLBB).

The Corporate Data is responsible for maintaining and providing access to

all corporate data, but the data layer is just not merely a data access layer. The

data layer contains much more functionality than just data access to corporate data.

It provides sufficient and necessary functionality to provide users with update op-

erations that will preserve the semantic integrity of the corporate data, including

appropriate security measures, to ensure that, only authorized users are allowed to

execute relevant contracts.

24

Data Layer building blocks (DLBB) are building blocks in the corporate data

layer that steward the corporate data. Stewarding means, that the DLBB takes the

responsibility for the corporate data and for all the users of this data. A DLBB

stewards one or more pieces of corporate data and a piece of corporate data is always

stewarded by one and only one instance of a DLBB. A piece of corporate data is an

instance of a data attribute, relationship or information that describe the grouping

of pieces of data at any one point in time.

The OSCATM architecture does not:

• Specify the Database Management System to be used;

• Or specify the data storage method like relation, heirarchical etc.,

• Or specify the partitioning of corporate data among Data Layer Building Block.

A Data Layer Building Block stewards the corporate data for all authorized

users, and thus in OSCAT M architecture, the Corporate data can be accessed by

other building blocks and end users, through the contracts of the stewarding data

layer building block and not directly through the native access.

The Corporate Data is determined by separate data architecture efforts. When

there are inconsistencies between corporate data and other data, corporate data

is always assumed to be correct. Corporate Data and consequently a data layer

building block, do not belong to a project or an organization, but to the company

as a whole. If two or more data layer building blocks use the service of the same

database management system, a change in the database management system used for

one building block may not require a corresponding change in other building blocks.

25

A Data Layer Building Block adheres to the principles that are discussed below

in detail:

1. Separation contains only the functionality enumerated in these principles and

guarantees a support of its contracts over the internal changes. This functional-

ity eliminates the processing and user functionality and provides query, integrity

and redundancy management functions for corporate data. A data layer build-

ing block provides access to the stewarded data through the contracts which

are kept invariant across the internal structural and database changes. This

ensures that the changes in the Data Layer Building Block are not a result of

the new functionality and this will not be visible to other building blocks.

2. Onlyness: A DLBB provides means such that the corporate data is only

updatable and readable through the stewarding DLBB. The DLBB provides

the functions of create, retrieve, update and delete capabilities. This prevents

unknown sources trying to read or damage the data.

3. Openness: The DLBB has the capability to provide query contracts. The

building block allows adhoc query of all corporate data, that, it stewards for

all authorized users. The queries are based on an implementation data model

and cast into an industry accepted standard query language. It also provides

other predefined queries and alternate views. Thus the principle insures that

all the data is accessible by authorized users via ad-hoc queries and it also

provides for other predefined queries and alternate views, thus ensuring that

all the data is accessible by authorized users only through ad-hoc queries. An

accepted industry standard is used and the language will change as the tech-

nology advances. Such changes have to conform to the contract principles. At

26

present the industry accepted query language is SQL.

The DLBB may provide the contracts with present predefined queries and al-

ternate views. These are not accessed through the ad-hoc query language and

all the data may not be available to them.

4. Integrity

The DLBB ensures the semantic integrity of the data it stewards. It ensures

that the corporate data is valid for all states intrinsic to the data. Semantic

integrity is described as:

(a) Constraint Scope: The database space may be constrained because of

i. Entity Constraints: It constrains the contents of the database entity,

such as a record or segment;

ii. Intra-entity Constraints: The database entities of the same class is

constrained;

iii. Inter-entity: Constrains the database entities of different classes.

(b) Temporal Class is the span of time over which the constraint applies,

i. static constrains in a database;

ii. dynamic constrains are the transition between the database states;

iii. historic constrains the specific time period.

5. Redundancy

27

The Corporate Data may be duplicated in any of the three OSCA TM layers as

Local Data. The data could be duplicated into the corporate data layer itself,

to provide alternate views of the data or to help to provide alternate views of

the data. Or also to provide help for adequate performance and availability.

Appropriate functionality to create and update the alternate views is provided

in the appropriate DLBB. Corporate Data may be duplicated in the Processing

and User layers to provide alternate views or enhance the performance.

A DLBB provides means whereby updates to redundant copies of the data

that it stewards can be provided to the building block owning copies of the

data either on request or automatically. If there is an inconsistency in the

redundant copies, the corporate copy stewarded by the DLBB is assumed to be

correct.

28

1.4.2 Processing Layer Building Blocks

The processing layer is fundamentally related to the business processes. The Process-

ing Layer Building Blocks (PLBB) numerous functions include crunching numbers,

construct report contents, do complex queries and control process flows. The PLBB's

provide value added services using the Corporate Data, that, an end user requires.

It doesn't own or steward corporate data, whereas it uses and produces corporate

data. PLBB's can obtain data from and send data to the data layer. Whenever

corporate data is required, the PLBB's request the appropriate Data Layer Building

Block which is responsible for accessing the data and returns the required results.

The PLBB's adhere to the principles given below:

1. Functionality: Any functionality that is not expressly forbidden in the follow-

ing principles and that which cannot be construed as communication software

fabric, data layer or user layer functionality and which guarantees support of

its contract over internal changes;

2. Corporate Data: Does not steward corporate data;

3. User Layer Functionality: Does not perform any function enumerated ex-

clusively for a User Layer Building Block.

29

1.4.3 User Layer Building Blocks

The OSCA TM architecture requires that the separation of data management and

processing functions from physical presentation functions. This separation promotes:-

• freedom of applications from concern with particular user devices, potentially

providing wide spread availability, facilitating adaption and development of

new technologies and prompting efficient access to building blocks by intelligent

workstations;

• isolation of deleterious effects resulting from changes in the business functions,

underlying database or user interface of an operating system;

• incorporation of user interface tool kits;

• simplified procedures for customization of the user interface;

• deployment flexibility, so as to facilitate distributed processing and co-operative

work;

• User Layer Building Block principles promote standardization.

The User Layer is the user's gateway to request services of multiple building

blocks. It serves a human user with whom it interacts directly or indirectly when,

used through printers or ULBB, and relieves other building blocks that perform the

function of database and/or business functions from dependencies on end user devices

such as terminals and printers.

30

Functionality of the User Layer

The essential functions of the user layer is to map semantic information into

a physical presentation and to map user actions back into a semantic representation.

This layer is responsible for maintaining a predictable, intelligible environment for

the user, so as to insulate the user to the degree possible from failures external to

itself, either in other building blocks or the communication software fabric.

There are three groups of functions in the User Layer that are divided into

required, additional and discretionary functions. Required functions are those that

the User layer must supply on behalf of the user. Additional functions are optimal

capabilities that deal with data presentation and collection, if supported they belong

to the User Layer. Discretionary functions are those that provide capabilities within

the User layer although these capabilities may not directly relate to data presentation

or collection.

31

1.4.4 User Layer Functions

The main functions which OSCA TM lists are not mutually exclusive and some could

be, the sub sets of a higher level functions. They are:

1. Required User Layer Functions: These functions must be performed on

behalf of the user in the User Layer; however not every User Layer Building

Block needs to provide all of these required functions. The required functions

are:

(a) Physical Mapping;

(b) Presentation Structuring;

(c) User Message Delivery;

(d) User Authentication.

Additional User Layer Functions are those which deal with the physical aspects

of the presentation and/or need to be in close proximity to the end user. These

are optional and important to all interfaces. These functions are:

(a) Data Entry and modification;

(b) Command Parsing/Processing;

(c) Display Processing;

(d) Menu Processing;

(e) Report Formatting;

(f) Help prevention;

(g) Interactive text and design tools;

32

(h) Session and Window Management and

(i) User Customization.

The discretionary User Layer functions are the ones that reside in the User

Layer Building Block. These functions are :

(a) Local Validations;

(b) Translation;

(c) Arithmetic Calculations.

2. User Layer Contracts

The user layer is the user's "gateway" to perform business function in OSCA TM .

The user layer serves as the user's agent to invoke contracts in other building

blocks (BB's) and to receive, appropriate requested data and messages which

it passes back to the user. Therefore the user layer is primarily a consumer of

contracts executing external to it.

3. User Layer Building Block Principles

These are intentionally made flexible to allow for a wide variety of implementa-

tions. The internal structure of the user layer building block is not prescribed

or constrained by OSCATM as long as the general building block principles and

user layer building block principles are maintained. The major principles are

(a) perform atleast one required or additional user layer function;

33

(b) may support contracts for required or additional, but not discretionary

user layer functions;

(c) does not steward corporate data nor perform any function or service enu-

merated exclusively for a data or processing layer building block.

4. User Layer Principle

In addition to the building block principles, OSCA TM stipulates one higher

level principle for the user layer, which is the combined service of the user layer

building blocks accessed by a user, that must provide all the required functions

of the user layer.

5. General Building Block Principles

Some of the important principles that have a peculiar effect on the user layer

are:

• release independence;

o a building block can execute in only one recoverable environment;

• secure environment.

34

1.5 Communication Software Fabric

This provides the software services and infrastructure for the inter-building

block communication, building block availability and performance manage-

ment. In a distributed environment, such as the one promoted by OSCA TM ,

no single building block provides all the services required by a user. In such

an environment, multiple building blocks operate together in a co-operative ef-

fort and communicate their results to each other. The communication software

fabric is the "glue" that ties the building blocks together. It also allows this

co-operative effort in providing services to the Users.

1.5.1 Composition

Internally, it consists of a communication network that provides the basic con-

nectivity and services, that are provided to the application logic and which

reside with in a building block. Some of this functionality is co-located with

the building block at the "edge" of the network, as part of shareable services.

Other functionality is provided from "with-in" the network. This is accessed

through the connectivity provided by the communication software fabric. These

communication services are able to foster and ease conformance.

35

1.5.2 Communication Software Fabric Service Classes

The typical Commmunication fabric service includes the following:

(a) Communication Services: These services allow contracting among the

building blocks by moving the data from one building block to the other.

(b) Communication Support Service: These assist both the building

blocks and the Communication Services to get the data back to its desti-

nation.

(c) BB Management Service: This service manages the distributed corn-

puting environment that OSCATM architecture specifies.

36

Figure 1.4: Target Architecture

37

1.6 Summary and Conclusions

The objective of OSCATM architecture is to be built upon the ISO and CCITT

standards as far as they are available and commonly agreed upon. These stan-

dards are targeted to interfaces among building blocks and to the interfaces

with in the communications software fabric.

The network functionality is allocatable to the data, processing and user layers,

and this data is either Corporate or Local. The operating systems and the

networking elements can thus operate as peers within OSCA TM architecture.

A number of concerns that must be addressed to apply the OSCA TM architec-

ture to the network functionality are

• A data architecture analysis is needed to determine what is corporate data.

For example, some operating systems traditionally, hold a view that, the

data is what the customer has ordered and if so, are these of the same

views or are there different views, and if so, what is their relationship?

• If the networking environment hosts a data layer building block, how will

the required performance of the computing environment be maintained

and how will the availability, required for the service process be attained.

When will the ad-hoc query and business oriented semantically valid up-

dates be provided?

• In the networking environment, to what extent can OSCA TM principles

be applied to provide the principles of interoperability with other func-

38

tionality?

o Can future technological advances such as semantic and knowledge based

DBMS and commercial grade heterogenous DBMS be utilized, without

major software product rewrites, beyond the affected data layer building

within OSCATMs principles?

39

Chapter 2

ANSA Architecture

2.1 Introduction and Overview

2.1.1 What is ANSA Architecture

ANSA stands for ADVANCED NETWORKS SYSTEM ARCHITECTURE

used as a part of the ODPSE architecture [ANSA89]. ANSA was originally designed

in 1986 by various European companies such as British Telecom, DEC, GEC/Marconi,

GPT, HP, ICL, ITL, Olivetti, Plessey etc within the U.K Alvey Information Tech-

nology Program. In 1989 a company by name Architecture Projects Management

Ltd (APM Ltd) was floated, to continue further work on ANSA for the sponsors at

Cambridge, England.

ANSA Project receives its funds through the Commission of the European

Communities (CEC) Espirit II Program within a project called Integrated System

Architecture (ISA). There are many sponsors for APM Ltd., which are companies

such as AEG, CTI-Patras, Erricson Telecom, Televerket, Phillips, Siemens and France

40

Telecom.

2.1.2 Objectives and Goals

The main goal of ANSA is to provide an architecture for distributed systems that

satisfies the objectives given below:

• the architecture should be generic to many fields of application;

• the technical content contains state of art technology;

• the architecture is portable across a wide range of operating systems and pro-

gramming languages;

• it should be operateable in heterogeneous and multivendor environments;

• it is modular in structure, with maximum opportunity for reuse of the existing

functionality;

• it supports for a range of distribution naming, concurrency and fault handling

policies;

• is applicable to a wide range of computers and network topologies with no

constraints on size;

• oriented towards the requirements of application programmers;

• it focuses the open distributed processing for support environment (ODPSE)

part of architecture.

41

2.2 Concepts

The concepts associated with ANSA are:

Architecture: Is used for building distributed systems in the form of an inte-

grated set of structures, functions, design recipes and implementation guidelines.

Testbench: The software is developed to demonstrate and validate the ar-

chitecture. This known as the ANSA Test bench. This test bench can be

operated on various operating systems and machines such as HPUX, SunOs,

Ultrix, VMS, MSDOS etc.

Standards: The results contributed by ANSA should confirm to International

standards.

Technology Transfer: The transfer of the architecture and the testbench as a

technology to both the sponsors of ANSA and to the EDP community at large.

2.2.1 Standardization

ANSA has been designed on the concept, that the architecture should adopt

and not conflict with the current open standards where ever possible. Aspects

which fall outside the scope of current open standards are taken into the open

standard process. The ANSA team participates actively in ISO/IEC JTC1

SC21 WG7 on the standardization of a reference model for Open Distributed

Processing and with ECMA TC32-TG2 as a Open Distributed Processing for

Support Environment (ODPSE). The ANSA team participates to a lesser extent

in a number of other standards groups[ANSA 89].

42

2.3 Architectural Philosophy

The philosophy and goal of the ANSA project has primarily been to develop an

architecture that provides the simplest concepts necessary to build distributed

systems. This philosophy had profound effect on the design of the architecture

and the Testbench.

2.3.1 Viewpoints On Distributed Processing

A study had been conducted by the ANSA scientists and it was revealed that to

make up the 'distributed processing', five viewpoints were dominant. Each

viewpoint in some way or the other acknowledges the concerns addressed in

other view points, but with a lesser priority. As a result, the description of

ANSA is structured into models representing five viewpoints. The models that

describe these view points are enterprise, information, computation, engineering

and technology. A distributed system could be described using any of these

models of ANSA.

1. Enterprise Model

The purpose of the enterprise model is to provide a framework for explain-

ing and justifying the role of an information processing system within an

organization. An enterprise is one that describes the overall objectives of

the system in terms of roles for people, actions, goals and policies. It spec-

ifies the activities that take place within an organization using the system,

the roles that people play in the organization and the interactions between

43

the organization, the system and the environment in which the system and

the organiiation are placed.

2. Information Model

This model provides a framework to describe the information requirements

of a system. An information description of a system is made up of structures

of information elements in a system, constraints on the information elements

and the rules.

3. Computation Model

This model provides a framework for modelling the operations of infor-

mation transfer, retrieval, transformation and management necessary to

automate information processing. The mechanism required to support the

computation model thus defined are specified in the engineering projection

of the system. The computation description of a system, partitions the

required transformations among processing objects as necessary to achieve

the complete set of transformation. The partition thus defined is logical

and not location dependent.

4. Engineering Model

This model provides the framework for describing how to mechanize an

application definition identified using the computation model. This support

will include definition of physical distribution to realize the partitioning

defined in the computation projection.

44

5. Technology Model

This model provides the framework for describing the technical artifacts

from which the distributed system is built. This could include OSI and

proprietary standards as needed. It shows how the hardware and software

that comprise the local operating systems, the input/output devices, stor-

age, points of access to communications are mapped onto the mechanisms

identified in the engineering model.

6. Distribution Transparency

Various forms of distribution transparency are available to the programmers

which they can choose from. These transparencies determine the extent to

which the programmers need to be concerned with and have control over

the integration of disparately located pieces of application programs.

The various types of transparencies supported by ANSA are :-

— Access transparency provides identical invocation semantics for both

local and remote criterion;

— Location transparency hides the exact location of a program component

from any other component that interacts with it;

— Concurrency transparency hides the existence of the concurrent users

of a service;

— Failure transparency hides the effects of partially completed interactions

that fail for whatever reason;

45

— Replication transparency hides the effects of having multiple copies of

program components to provide for an increase in dependability or

availability;

— Migration transparency is a dynamic form of location transparency that

hides the effect of a program component being moved from one location to

another while it is being used by another component.

Currently ANSA testbench software supports - Access, Location and Concur-

rency transparencies.

46

2.4 Design Of ANSA

ANSA is an architecture for building distributed systems that can operate as

a unified unit such that the fact of distribution is transparent to the appli-

cation programmers and the users. ANSA allows full advantage to be taken

of the inherent concurrency and separation of distributed systems in order to

increase the performance, decentralization and reliability, while masking their

disadvantages such communication errors, partial failures etc.

ANSA follows a programming language view, which means that the distributed

computing concepts should be represented by extra syntactic constructs that

could be added to the existing programming languages. These could directly be

compiled into calls at the system level. The main advantages of this system

are :

— a simple programming model for application programmers;

— checking at compile times;

—independence of the application programmers view from the systems point

of view which makes the applications and systems compatible with future

modifications.

47

2.4.1 Model For Computation For Ansa

This model is a framework of programming structures and program development

tools that should be made available to distributed application programmers,

irrespective of the application programming language they choose to use. This

model addresses the topics given below:

— modularity of distributed application;

— access transparent invocation of operations in interfaces;

— parameter passing scheme;

— configuration and location transparency of interfaces;

— replication constraints on interfaces;

— extending existing languages to support distributed computing.

This concept specifies that maximum engineering flexibility is obtained if all

computation requirements of an application are expressed declaratively. This

allows tools to be applied to the specifications to generate the code satisfying

the declared requirements. It allows a clean separation between application

programmers by stating the requirements and system programmers by providing

the tools. These tools use the requirements in the environment, the appropriate

quality to the task in hand. This means that by making this separation it is

possible to identify the different forms of transparency that are required by a

distributed application. This technique should be able to choose the appropriate

technique for providing the required transparency for each application.

48

2.4.2 Engineering Model For Ansa

The Engineering Model is a framework of the compiler and the operating system

component for realizing the computation in heterogeneous environments which

are as follows:

— thread and task management - a thread is a function to be carried out, and

is allocated to a task which will execute it;

— Address space management;

— Inter address space communication;

— Distributed application protocols;

— Network protocols;

— Interface locator - identifies the location of a specific

interface;

— Interface traders - provide directory facilities for

identification of interfaces, both imported and exported;

— Configuration managers;

— Atomic operation manager;

— Replicated interface manager;

This model provides the system designer with a view of engineering trade-offs

that are available, when providing a mechanism for a particular function as

defined in the computation model.

The implementor may vary the quality attributes of a system by making trade-

offs in terms of its dependability (reliability, availability, safety, security) and

49

performance without disturbing its function. This is an important function of

ANSA since it decouples application design from technology to a certain extent.

In the computation model, the programmer is given the guarantee that his

program will be able to operate in a variety of different quality environments

without modification of the source.

The Engineering model gives the system implementor a toolbox for building an

environment of the appropriate quality to the task in hand, which means that by

making this separation it is possible to identify what forms of transparency are

required by a distributed application and be able to choose the most appropriate

technique for providing the required transparency for each application.

50

2.4.3 Overall Structure

The way in which the various components of ANSA fit with one another is

shown in the three figures shown. We are only interested in figures (1) and (2)

more than figure (3).

Figure (1) shows two ANSA systems. Each system is running several applica-

tions shown as 'A' in the figure. These are linked together with a trader `T'

and a configuration manager 'C'. The trader provides a directory structure that

can be searched by path name, property values or by combination of the two.

A server can export an interface reference to the trader to make it accessible

to other applications. An import operation is provided to clients so that they

can retrieve interfaces from the trader. The configuration manager provides the

means to start new application components executing in an ANSA system. To

provide federation between the systems, the two traders are also linked together.

This enables an application to export an object which the other imports, such

that to the user the distributed system appears to be running on a single host.

51

Figure 2 shows us nucleus components. These are represented to us as 'N'

or 'NUCLEUS' along with the Trader and the Configuration Manager which

are a part of the ANSA platform. These take the basic resources of the local

infrastructure and build on them to provide the basic distributed computing

environment common to each host, which are shown as 'host systems' in the

third level. These nucleus components are then able to work together, along with

the trader and configuration manager (which may themselves be distributed) to

provide a basic support platform for distributed computing.

52

Figure 2.1: A Federation Of ANSA Systems

53

Figure 2.2: ANSA System

54

Figure 3 is an expansion of the nucleus components in both the directions. the

transparency components 'T' provide additional functions which enable the var-

ious aspects of distribution to be made transparent to the applications. Below

the nucleus there are components to provide Execution Protocols 'E' and Mes-

sage Passing Protocols 'M'. If interworking between the heterogeneous systems

is not required, either or both of these could be replaced by local equivalents.

Below these will be the local cpu management 'P', communications 'C', memory

management 'S' and other local functions 'F'.

55

Figure 2.3: ANSA CAPSULE

56

2.4.4 Implementation

The ANSA Testbench software is a suite a ANSI C Programs that conform to the

architecture. These represent an instantiation of the results of the architecture

intended for porting across the current generation of operating systems and

network protocols. In particular, the standard distribution includes porting

instructions for SunOS, HPUX, Ultrix, VMS, MSDOS.

The Testbench software consists of modules that are discussed below:

1. A threads management policy is to provide for concurrency within an ad-

dress space, if it is not provided by the host. Concurrency is needed so that

the servers can respond to multiple clients in parallel. In addition so that

the clients can distribute the computation in time to perform parallel tasks.

As well as perform remote tasks or run remote tasks in parallel.

2. The function of the address space management package is to complement the

threads package with facilities for managing multiple stacks, communication

buffers and a shared heap within a single address space. To sup port true

concurrency multiple stacks are necessary.

3. An inter address space communication package also known as the inter-

preter is to provide an implementation independent standard interface for

interactions between threads in separate address spaces.

4. A remote execution protocol (REX) provides for the messages to be trans-

ported to implement the communications requirements of the inter address

space communications package. This provides functions of transport, error

57

recovery, fragmentation of large messages and control of optional end to end

connections.

5. An interface description language (IDL) is used to describe the interfaces

between the application components.

6. An IDL processor reads interface descriptions and generates libraries of stub

procedures in C language. These procedures handle the packing/ unpacking

of arguments or results into/from buffers of transmission and exchanging

buffers between the distributed portions of the application. These functions

are known as marshalling, unmarshalling and communications respectively.

. An application description language (DPL) for C. The DPL preprocessor for

C extracts statements that augment an ANSI Standard C program to con-

nect to interfaces and invoke remote operations. These statements are then

translated into calls to the appropriate stub procedures and interaddress

space communication package calls.

8. A Trader is a distributed application component which acts as a directory

and management facility for distributed application components.

9. A Configuration Manager is also a distributed application component which

provides a means to instantiate application components above the platform.

The ANSA architecture is not restricted to any particular programming lan-

guage, operating system, network or hardware platform.

58

2.5 ANSA's Relationship To ODPSE

The ISO ODP scope, states:

"This standard will be concerned with, and limited to, the general aspects and

common features of distributed systems". It will provide for:

(a) common definitions of concepts and terms for distributed processing;

(b) a generalized model of distributed processing using these concepts and

terms;

(c) a general framework for identifying and relating together open dis-

tributed processing standards.

As per the above paragraphs ANSA is based on the principles of ODPSE.

ODPSE stands for Open Distributed Processing for Support Environment. Then

the question comes what does ODP stand for ?

ODP stands for Open Distributed Processing which is:

(a) an attempt to establish a consistent framework for networked distributed

application;

(b) the support environment is required to enable the

implementation of distributed application in an open vendor indepen-

dent way [ODPSE].

An Open Distributed Application is a set of software components which cooper-

ate independently irrespective of their location within a global network (which

59

consists of several vendor networks). These components can run on any vendor

application environment that contain an ODPSE. Given on next page is figure

4, that shows the Systems and Vendor Networks.

60

A Distributed Operating System tackles the task of distributed applications in a

homogeneous environment by establishing the distribution platform at the Op-

erating System Level. The main idea of an identical operating system is that it

has to run on all systems that participate in a distributed application environ-

ment. The Distributed Operating Systems do not unify information processing

on an enterprise, wide scale as to a large extent the enterprise information pro-

cessing system are heterogeneous.

61

Figure 2.4: System and Vendor Networks

62

2.6 Summary and Conclusions

The ANSA architecture follows the principles of object oriented design, this is

carried through to an object oriented implementation for the Testbench within

the limitations of C language.

The architecture emphasizes the concept of generic functions and narrow inter-

faces as the key to minimizing concepts and enabling maximum reuse of the

components.

This Project has a strong commitment to see that its work is placed in the

public domain by actively participating in relevant standardization activities.

63

Chapter 3

Thoughts On Integration Of
OSCATM And ANSA

3.1 Integration Architectures

3.1.1 Introduction

This part of my thesis presents conceptual ideas of how OSCATM could

be integrated with ANSA. As said earlier in Chapters 1 and 2, both these

architectures support the ODPSE architecture either directly or indirectly.

A distributed operating system is a program or a set of programs run-

ning on various types of computing environment that are interconnected by a

network. The distributed operating system unifies computers of different archi-

tectures into a single integrated compute and storage resource. Depending upon

the facility it provides, a distributed operating system is classified either as gen-

eral purpose, real time or embedded [CLOUDS91]. ODP or Open Distributed

Processing is one step ahead of distributed operating system [ODPSE].

64

It is:

(a) an attempt made to establish a consistent framework for networked

distributed applications as well as;

(b) the support environment required to enable the implementation of

distributed applications in an open vendor independent way.

As networked computing environments have become popular these days,

powerful computing systems have become more affordable. Most computing en-

vironments consist of combinations of various types of architectures like work-

stations, main frames, minis, and personal computers. In the network environ-

ments, the fact of distribution is kept transparent to the user without affecting

his productivity and the complete environment must appear like a centralized

pool of resources. Also in a network environment there is an increasing level of

interoperability which results because

1. customers will need access to operations and information that span multiple

discipline oriented operating systems and network elements;

2. many operating systems and network elements can be spanned when a new

service is implemented;

3. flexible environment is needed to develop new services to access network

element data and functionality.

A distributed system is one where it makes a collection of different com-

puters look and feel like one centralized system, yet keeps the advantages of

distribution intact. There are two paradigms that fall in to this category of

65

distributed systems. These are (1) Channel-based or message based and (2)

Object Based. In my thesis the paradigm of Channel based or message based

system conies in the view of OSCA TM and Object based system for ANSA. As

said in Chapterl, the Contracts support local communication with in the same

level of building blocks or at different levels.

In an object based system, services and resources are encapsulated into

entities called "Objects". ANSA which falls under this system uses the ap-

proach of Object Orientedness through its computation model. Objects are

similar to the instances of abstract data types. They are written in individ-

ual modules composed of specific operations that define the module interfaces

[CLOUDS91]. The framework for an integration model in general consists of

three major components mentioned below:

1. Enabling Technologies;

2. Integration Architectures and

3. Global Integration.

1. Enabling Technologies form the basis for system integration by providing

the required building blocks to begin with. It talks about the mechanisms,

tools and systems that could be used for system integration. This addresses

the mechanisms, systems etc., which could be used as a basis for system

integration.

2. Integration Architectures describe the use of these building blocks that

help in forming a system which is integrated internally and allows for future

expansion. It refers to the idea of an open architecture which is implemented

on the basis of enabling technologies.

66

The elements of an integration framework that are described within an

integration architecture should be contributed by the :

(a) conceptual layout of the architecture that consists of specification of

standards and restrictions of components of modules, communication

and data storage;

(b) the mapping of the domain model into the architecture;

(c) the applied standards and

(d) the guidelines for implementation.

In contrast to the standards for an integration architecture, the standards

for implementation describe the technological basis on which the generic

integration architecture is implemented. The standards for communication

are specified on top of the application model,e.g. using the ISO/OSI model

at the level of the integration architecture.

3. Global Integration describes the coordination and fine tuning of the sys-

tem on its semantic and interface levels.

NOTE:

This part of my thesis talks about a framework of integration which is based

on integrating the OSCATM Architecture of Bellcore [OSCAN] and ANSA

architecture of APM Ltd [ANSA89]. (See also Chapters I and II).

67

3.2 OSCATm And The Integral Framework

OSCA TM of Bellcore [OSCA90] as discussed in Chapter I of this thesis is an

example of an open system approach at the company level to guide the process

of integration. OSCA TM specifies a "strategic architecture to be used by the

Bellcore Client Companies to provide software interoperability."

Interoperability is the ability of the building blocks to communicate with

each other, and the users to communicate with any building block irrespec-

tive of the internal architectures and the environments on which these building

blocks reside. OSCATMs approach is targeted towards the definition of an in-

tegration architecture or a "meta-architecture by providing the guidelines and

constraints for product specific architectures", instead of a process model for

the management of integration.

68

3.2.1 Channel Based Approach

From our point of view, OSCATM follows a modified channel based approach

for its basic layout. We assume that a channel is existing and it is transparent.

The channel provides the means of working on different machines. A Channel

based approach separates the "passive" communication components from the

"active" functional components. The building blocks of OSCA TM form the "ac-

tive" components and the Communications Software Fabric is the "passive"

channel component. This provides a communication infrastructure to transmit

standardized messages on the application level, from the "active" components

which constitute the functionality and data storage capacity of the system. The

channel and the passive components transport data and files in the form of stan-

dardized messages "CONTRACTS" at the system level. The existence of the

communications software fabric in OSCATM hides the networking effort under-

neath the specified channel interface. The channel acts transparently for the

building blocks and delivers messages or returns error messages as a guaranteed

service.

The Channel Based approach goes with the concept of distributed data

storage. Therefore, message passing integration architectures must take into

consideration data integrity by specifying the communication protocols and the

interaction among the distributed components which handle the data in the

system.

OSCATM takes care of this problem, by introducing the concept of "stew-

arding". Stewarding means that the Data layer of the OSCA TM provides suf-

69

ficient and necessary functionality to

1. update and access Corporate Data,

2. preserve the semantic integrity of the Corporate Data and

3. allow appropriate security measures [Mills 90].

The Message passing systems focus their concern on the communication

side of the architecture and leave the distributed handling of data to the dis-

tributed components of the system which behaves like data capsules. As said in

the Introduction of this part of my thesis, we find that there are two classes of

message passing systems - Object Oriented systems and Channel based systems.

(Remark: The Channel based approach acts like an object oriented approach

with regards to message passing, but does not include hierarchy of classes and

inheritance mechanism.) As said earlier OSCA TM falls into the Channel based

system approach.

While OSCATM talks in detail about the three levels or layers of func-

tionality namely, the data, the processing and user layers, it is relatively silent

on its channel the "Communication Software Fabric". This fabric connects

the three levels of functionality along with their building blocks. It allows the

building blocks to communicate with each other with in the same level or at

other different levels.

This communication software fabric, as specified in [OSCA90], doesn't

specify the communications networks but provides only the architectural guide-

lines which the chosen network must satisfy.

70

3.2.2 Domain Model

OSCA TM uses the concept of "separation of concerns" in the model, where

every component in the system is related to one of the three layers of function-

ality, namely:

—the data layer;

—the processing layer;

—the user layer.

Every functionality in OSCA TM Architecture relies on this abstract model

of "Separation Of Concern". This is done by defining the handling of the

user, processing and data activities as layers of functionality. The architecture

maps this very general domain model onto a model at the next lower level by

placing the building blocks, exactly on one level of functionality and by explain-

ing the dynamic behavior of the system in terms of those layers.

However, OSCATM never mentions something like a domain model ex-

plicitly. The Three layers of functionality are chosen to allow all different sorts

of application systems to be handled within the framework of OSCA TM [MILLS

90]. From this point of view, OSCATM has no real model of an application

domain as a basis, but relies simply on separation of groups of functionality.

71

3.2.3 System Architecture

Open Architecture:

Specification design and eventually implementation details should be

made available to every user or a vendor of the system. An open system should

define the system parts given below:

1. basic architecture;

2. user interface;

3. data storage and representation;

4. system function;

5. data transfer and

6. using enabling technologies.

The concepts used in this thesis are based on the layered models of

architectures like OSCATM . These architectures talk about the basic technolo-

gies, specify the integration architecture and continue on the problems of con-

cept integration over multiple system parts. System Integration is achieved by

pasting the existing parts together as in a jigsaw puzzle through an integrated

approach. To co-ordinate the integration process either the top down or bottom

up approach is taken into consideration.

72

3.3 Other Aspects of OSCATm

As said earlier, OSCA TM Architecture relies on an abstract model of "sepa-

ration of concerns", by defining the handling of user, processing and data

activities as layers of functionality. The architecture maps this process model

onto a model at the next lower level by placing the building blocks on exactly

one level of functionality and by explaining the dynamic behavior of the system

in terms of those layers.

OSCATM follows a standard format where messages are sent via a pre-

defined communication system to other building blocks at the same level or at

different levels. This scheme of message passing is a variation of the object ori-

ented approach/ channel based approach. As I mentioned in section 3.2.1 the

building blocks of OSCATM are the "active" components. Objects are said to be

"active" when an active object has one or more processes associated with it that

communicate with the external world with other building blocks at the same

level or different levels, and handles the task it is supposed to do internal to the

object. For example, a process can monitor an object's environment and can

inform some other entity (another object) when the event has occurred. Con-

ceptually, an object is an encapsulation of data and a set of operations on the

data. The operations are performed by invoking the object and can range from

simple data-manipulation routines to complex algorithms, from shared library

accesses to elaborate system services. Objects can gather data from a device

without knowing about the mechanisms involved in accessing it or its locations.

Objects are a simple concept with a major impact. They can be used for

73

almost every need - from general purpose programming to specialized purposes,

but yet provide a simple procedural interface to the rest of the system. However,

OSCA TM is relatively silent on the object oriented aspects of the architecture.

It could be assumed that the building blocks at different levels of functionality

are the "active" components which do a similar function like objects

The separation of corporate data is one of the main feature of the OSCA TM

Architecture. This data is accessible by the users of the system who are widely

distributed geographically with in the BCC environment. It allows for the fail-

ures to be reported which occur during communication and partial failures that

occur during execution of a program. The Building Blocks act like objects and

encapsulate the data. This provides the functionality when a question is asked

and the answer is got back.

OSCATM favors a "top down " approach which allows a more traditional

phased model of system integration. This allows a system like OSCA TM to

provide a basis not only for technical integration but also for the management

of organizational, budgetary and legal aspects.

This allows us to integrate the already existing components such as the

building blocks, the contracts, the communications software fabric and to pro-

vide a framework for interface definitions, performance and cost evaluation. The

architecture is generic and robust, enough to provide the flexibility and adapt-

ability for changes in requirements and technologies.

74

3.3.1 Conclusions for OSCA Tm

The global functions of OSCA TM like "user interface", "stewarding of cor-

porate data" and "functional processing" are derived from the application

domain. The global integration activities such as semantic integration can be

handled in a top down fashion. While OSCA TM talks in detail about the three

levels or layers of functionality namely, the data, the processing and user lay-

ers, it remains relatively silent on the "Communication Software Fabric"

implementation.

The principles of Architecting and Archetyping are used to overcome

the difficulties of system development and integration [EISN90]. The phase of

archetyping, is independent from the subsequent building phase and constitutes

the phased top down approach. This is further divided into two steps

1. architecting;

2. prototyping.

Architecting uses a top level design approach to construct a model of the sys-

tem. With respect to OSCA TM , the Building Blocks the Contracts specification

and the design of the Software Fabric falls with in the principles of Architecting.

Whereas the prototypes of the building blocks, the implementation of the con-

tracts, the implementation and testing of the Communication Software fabric

fall into the principles of Archetyping [ROSSAK91].

75

3.4 ANSA And The Integral Framework

ANSA favors a bottom up or the "POST FACTO"approach . ANSA basically

focuses on a programming language which is used for interconnecting various

parts in a heterogeneous system. When an architecture follows a bottom up or

POST FACTO approach then it has the following properties:

—parts design precede system design;

—system is heterogeneous;

—multilingual;

—loosely coupled;

—parts are typically medium to large size;

—non standardized reuse.

In ANSA, the above mentioned properties can be seen in one or all of

the five models (the Enterprise Model, Information Model, Computation Model,

Engineering Model and the Technology Model) [ANSA89}.

An Enterprise model follows the property that the system is heteroge-

neous, because the purpose of this model is to provide a framework for explaining

and justifying the role of an information processing system with in an organi-

zation. It describes the overall objectives in terms of roles the people or users

play or the actions, goals and policies that they do.

The Information Model follows the property that the system is heteroge-

neous ,because this model provides a framework to describe the system which

is made up of structures of information elements. It also states the rules and

76

constraints that state the relationship about the elements of the Information

System. It also follows the property that the parts are typically medium to

large size because this model shows how the information is partitioned across

logical boundaries and has required quality attributes. This model also has the

property that it is loosely coupled, because it does not have to differentiate

between parts that are to be automated or performed manually.

The Computation Model follows the rule that the parts design precede

the system design. This is because it provides a framework for modelling the op-

erations of information transfer, retrieval, transformation and management that

is required to automate information processing. This model also concentrates

on the problems and opportunities presented by the execution of applications

of many loosely coupled computer systems. ANSA plays follows the function

of multilinguality. As ANSA is an architecture for open systems and it is not

viable to impose a single language. Heterogeneity is another important property

of ANSA, where various parts of a large application could be written in differ-

ent languages for various reasons like history or suitability. The property that "

parts design precede system design" could be seen in detail in the Computation

Model. The design philosophy of this model is to find the smallest number of

concepts that are needed to describe distributed computations and to propose

a declarative formulation for each concept rather than imperative formulation

[ANSA89].

The Engineering Model of ANSA follows the property of non standard

reuse because it provides a framework to describe how to mechanize an appli-

cation definition used in conjunction with the Computation Model.

77

The Technology Model follows the principle or property that parts design

precede system design because this model provides the framework for describing

the technical or realized components from which the distributed system is built.

It shows how the hardware and software make up the local operating systems,

the Input/Output device storage, points of access to communication are all

mapped to mechanisms in the Engineering Model.

ANSA uses concepts similar to Object Orientedness through the Compu-

tational Model. It takes the scoping and encapsulation mechanism down to the

level of single data structures and data types. Embedding or encapsulating the

programming components by wrapping them up in the necessary distribution

transparency is accomplished by the use of Object Oriented philosophy and by

the separation of the interface specification from object definition in the ANSA's

computation model. The Computation Model includes syntactic structures and

a flexible type system which permits a wide range of checks that are to be made

statically at compile time, without compromising the ability of the programmer

to defer some decisions to run time through the use of explicit control.

ANSA doesn't speak about the object orientedness but tells us how these

objects communicate. ANSA implements mechanisms to send messages even

though it is not concerned that these objects would use it's services. All data

is stored in objects and accessed indirectly through interfaces. This is dealt

by the Computation Model which deals only with interface references. The

Computation Model of ANSA specializes in distribution, by packaging sets of

operations into interfaces. This is to restrict the scope of operation names as

tightly as possible and by always accessing interfaces indirectly, so that location

78

transparency is maintained [ANSA89].

79

3.5 Ideas In Integrating OSCA TM And ANSA

To integrate OSCATM and ANSA the following aspects should be taken into

account. OSCATM talks about the layers, contracts and the building blocks in

detail but is silent on the communication software fabric. So here in this section

we see how ANSA could be integrated as the communications software fabric of

OSCATM .

ANSA supports the ODPSE type of architecture [ANSA89]. OSCA TM

doesn't mention about the ODPSE architecture. It could be a part of the

ODPSE architecture, because users and data are located at different places

within the BCC configuration [OSCA89]. This feature of users and data being

distributed widely geographically is a typical feature of the ODPSE architecture.

ANSA follows the programming language paradigm in its test bench to

integrate its modules. Whereas in OSCA TM , the programming aspects are han-

dled inside the building blocks, which are hidden behind the interfaces. Since

ANSA is an architecture for open system, it is not viable to impose a single

language as the conformance criterion for the computation model [ANSA89].

OSCATM follows a top down approach in a networked environment and

stays at a much higher level, whereas ANSA follows a bottom up approach. If

OSCATM and ANSA are to be integrated, it will be necessary to apply a mix-

ture of both both "top down " and "bottom up" approach. Since OSCATM is a

channel based architecture, ANSA could be integrated as OSCATMs Commu-

nication Software Fabric.

80

For ANSA to function successfully as the Communication Software Fabric

of OSCATM it has to follow the following properties:

1. The Enterprise Model of ANSA provides a framework for the role of infor-

mation processing. It could also play an important role in the Data layer

and Processing layer of OSCATM for the transfer of data efficiently through

the Communication Software Fabric. When it is integrated, it should have

the capability of describing the overall objectives of the complete system

in terms of the actions, goals and policies that take place during operation

within the BCC environment.

The role that ANSA's Information Model plays when it is integrated with

OSCATM is to provide a framework that describes the information require-

ments of the three layers of OSCA TM - the data, the user and the processing

layers.

The Computation Model of ANSA concentrates on the problems and

opportunities that are present on many loosely coupled computer systems.

It provides the programming language features for the Communication Soft-

ware Fabric.

As both ANSA and OSCA TM are multiple-purpose system architectures,

it is not viable and possible to impose a single and a particular program-

ming language. The other important aspect is a program, application or

data of the integrated system should be capable of being ported on to any

machine using the SunOs, HPUX, ULTRIX, VMS or MSDOS, to keep this

integrated system running. The trader of ANSA acts as a directory and

81

management facility for distributed application. The configuration man-

ager which is also a distributed application component provides means to

instantiate applications components above the ANSA platform [ANSA89].

It could be recommended that ANSA could be integrated with OSCA TM to

play the role of Communication Software Fabric.

As OSCA TM maintains company or corporate data, it is necessary that a

user of the system should be able to access data that only pertains to him.

Different users of the complete system of OSCA TM and ANSA could write

a distributed program in a high level programming language for the various

building blocks of OSCATMs corporate data layer. ANSA would provide

various forms of distribution transparency that support access, location and

concurrency transparency to maintain secrecy of the Corporate Data.

82

3.6 Summary

The total integrated functionality is allocated to data, processing and user

layers of OSCATM and the data is either local or corporate. In the dis-

tributed environment, data entities with global importance within the BCC

environment have to be decentralized in different data layer blocks. To guar-

antee data consistency and to provide access flexibility, these data blocks

act very much like abstract data types, protecting the data and granting

access only through standard set of actions. Thus when ANSA is integrated

with OSCATM it should be able to interoperate as a peer within OSCATM s

interoperable architecture.

Enabling technologies are not only identified but are also classified with

respect to an integration architecture with regards to basic elements of

technology. These basic elements of technology could be hardware systems,

operating systems, basic networking etc.

The concepts of semantic integrity concepts and the application domain

have been discussed with respect to OSCA TM and ANSA. As we have seen

earlier the communication between the building blocks of OSCATM is lim-

ited through the contracts. These contracts are handled by the commu-

nication software fabric which provides transparent access to the building

blocks of OSCATM. ANSA, when integrated should be able to do this job,

when it functions as the communications software fabric of OSCA TM .

John Mills suggests in his paper [Mills 901, that the drivers of distributed

83

functions tend to move the architectures towards separation of concerns

and accommodation of the OSCA TM building block principles. The dis-

tributed architectures must be concerned about location transparency and

standardized messages. This fact of location transparency is given by ANSA

which provides for distribution transparency. Standardization of messages

in ANSA is the first step in moving towards contracts.

Thus we can see that if OSCA TM and ANSA are integrated, the applications

of OSCATM might raise the level of interoperability enhancing the Bellcore

Client Company's ability to offer advance services efficiently and rapidly.

84

Chapter 4

References

(a) [ANSA89] ANSA: An Engineer's Introduction to the Architecture. Re-

lease [TR.03.02], November 1989. M/s Architecture Projects Ltd., Po-

seidon House, Castle Park, Cambridge, U.K.

(b) [ARM89] The ANSA Reference Manual. Architecture Projects Man-

agement Ltd., Poseidon House, Castle Park, Cambridge, U.K.

(c) [EISN 90] H. Eisner, "The New Process of Archetyping for Large Scale

Systems Integration", submitted to the Journal of System Integration,

November 1990.

(d) [Mills9l] John A. Mills, Lecture delivered at NJIT on 4/17/91 on OSCATM .

(e) Mills90] John A. Mills, "An OSCA TM Architecture Characterization of

Network Functionality and Data". Bellcore, 444 Hoes Lane, CN - 1300,

Piscataway, NJ 08854-4182, August 27, 1990.

(f) [ODPSE] Project Reference to the Open Distributed Processing Sup-

port Environment, ALCATEL/ELIN Research Center, Vienna, Austria.

Annexure to ANSA: An Engineer's Introduction to the Architecture.

Release [TR.03.02], November 1989. M/s Architecture Projects Ltd.,

85

Poseidon House, Castle Park, Cambridge, U.K.

(g) [ROSSAK91] Wilhelm Rossak, " Some Thoughts on Systems Integra-

tion: A Conceptual Framework", Journal On System Integration, Vol

I/1, 1991.

(h) [OSCA90] The Bellcore OSCA TM Architecture; Technical Advisory [TA-

STS-000915]; Issue 2; 2/27/90.

(i) [CLOUDS91] Partha Dasgupta and Richard J. LeBlance, "The Clouds

Distributed Operating System", Computer, November 1991.

NOTE:

The figures shown in Chapter' and 2 of this thesis are taken from

[OSCA2:90] and [ANSA89].

OSCATM is the registered trademark of Bellcore and ANSA "Ad-

vanced Networked Systems Architecture" is the registered trademark

of APM Ltd.

86

Chapter 5

Glossary

(a) Building Blocks or BB's: A set of computer programs, data schemas

and other related software that have interfaces with and whose func-

tionality is independently releasable and installable. These executable

software components adhere to OSCA TM architecture's separation of

concerns and building block principles.

(b) DLBB: Data Layer Building Block stewards the Corporate Data and

allows data access by other building blocks.

(c) PLBB: Processing Layer Building Block. A building block in the Pro-

cessing Layer.

(d) ULBB: User Layer Building Block in the User Layer.

(e) Steward: The Data Layer Building Block responsible for some set of

Corporate Data.

(f) DBMS: Database Management System.

(g) ODPSE: Open Distributed Processing For Support Environment.

(h) ANSA: Advanced Networked Systems Architecture.

(i) APM Ltd.: Architecture Projects Management Ltd.

87

(j) BCC: Bellcore Client Companies.

88

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1991

	A study in systems integration architecture
	Sashidhar M. Prasad
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract
	Ackowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: OSCA Architecture
	Chapter 2: ANSA Architecture
	Chapter 3: Thoughts on Integration of OSCS and ANSA
	Chapter 4: References
	Chapter 5: Glossary

	List of Figures

