
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1992

User interface and data structure design for
architectural expert system
Yonghua Ma
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Architecture Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Ma, Yonghua, "User interface and data structure design for architectural expert system" (1992). Theses. 1270.
https://digitalcommons.njit.edu/theses/1270

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/773?utm_source=digitalcommons.njit.edu%2Ftheses%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

User Interface And Data Structure Design
For Architectural Expert System

by
Yonghua Ma

Computers are currently used to generate drawings in

the architectural design process. This thesis anticipates

the development of an Architectural Expert System, which

could provide assistance in the decision-making processes

in architectural design. The focus is on the design of

the user interface of such a system. Architectural

object-oriented data hierarchies are created. Also, a set

of drawing tools, which assist the user in the creation

of architectural objects such as walls, windows, and

doors, are provided.

USER INTERFACE AND DATA STRUCTURE DESIGN
FOR ARCHITECTURAL EXPERT SYSTEM

by
Yonghua Ma

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements
for the Degree of Master of Architecture

School of Architecture
October, 1992

APPROVAL PAGE

User Interface And Data Structure Design
For Architectural Expert System

by
Yonghua Ma

LI

Dr. Filiz Ozel, Thesis Adviser
Assistant Professor of Architecture, NJIT

Barry J 	 son, 4 	 ittee Member
Associ t Professo of Architecture, NJIT

Dr. David Hawk, Committee Member
Professor of Architecture and Co-Director of the Center
for Building Engineering and Architectural Research, NJIT

BIOGRAPHICAL SKETCH

Author: Yonghua Ma

Degree: Master of Architecture

Date: October, 1992

Undergraduate and Graduate Education:

• Master of Architecture, New Jersey Institute of
Technology, Newark, NJ, 1992

• Master of Architecture, Southeast University,
Nanjing, P.R.China, 1988

• Bachelor of Architecture, Southeast University,
Nanjing, P.R.China, 1985

Major: Architecture

iv

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to my

adviser, Dr. Filiz Ozel, for her advise, criticism, and

support. Without her guidance, this thesis would not have

been possible.

I also would like to express my thanks to professor

Barry Jackson, and Dr. David Hawk, for their very helpful

comments.

TABLE OF CONTENTS

Page

1 INTRODUCTION 	 1

1.1 Architectural Design Process 	 1

1.2 Uncertainties In Architectural Design 	 4

1.3 Computer Applications 	 6

1.4 Architectural Expert System and User Interface 	 8

2 OBJECT REPRESENTATION 	 10

2.1 Knowledge And Object-Oriented Data Base 	 10

2.2 Building Components, Spaces And Data Base 	 15

2.3 Building Component Hierarchy 	 20

2.4 Space Hierarchy 	 23

3 ABOUT AUTOCAD 	 31

4 DESIGN DATA STRUCTURE 	 34

4.1 Hierarchical Files 	 34

4.2 Object Data List 	 37

4.2.1 Basics Of LIST 	 37

4.2.2 Hierarchical Lists 	 39

4.2.3 AutoCAD Entity Pointer 	 41

5 GRAPHIC REPRESENTATION 	 43

5.1 General Issues 	 43

5.2 Components Representations 	 48

5.2.1 Floors 	 48

5.2.2 Walls 	 49

5.2.3 Openings 	 	 51

5.2.4 Beams, Ceilings 	 55

vi

Page

5.3 Multi-Level Representation 	 55

6 DEFINING SPACES 	 57

7 CONCLUSION 	 59

APPENDICES 	 61

A Menu File 	 61

B Program 	 66

BIBLIOGRAPHY 	 111

vii

LIST OF TABLES
Table 	 Page

1 AutoCAD Entities 	 31

viii

LIST OF FIGURES
Figure 	 Page

1-1 Architectural Design Process 	 3

1-2 Room Height and Air Conditioning System 	 4

1-3 Design Model 	 5

1-4 Building Requirements 	 6

2-1 Exit Space in a Building 	 10

2-2 Closed and Unclosed Spaces 	 12

2-3 A Building Plan 	 15

2-4 Rooms and Walls 	 17

2-5 Duplicated Walls Between Spaces 	 18

2-6 Building Objects in Different Hierarchies 	 22

2-7 Space Defining 	 25

2-8 Vertexes and Edge Types 	 26

2-9 Spaces in Hierarchy 	 27

2-10 Space and Building Components 	 28

2-11 Space Hierarchy 	 29

5-1 Draw an Opening With AutoCAD 	 44

5-2 Openings in a Wall 	 45

5-3 Representations in Early Design Phases 	 45

5-4 Difference Between LINE and PLINE 	 49

5-5 Connections of PLINEs 	 50

5-6 Break a PLINE 	 51

5-7 FILL and Connections 	 52

5-8 A Wall With a Door 	 52

5-9 Door Representation 	 54

ix

Figure 	 Page

5-10 Multi-Level Representations 	 56

5-11 Layers and Representations 	 56

6-1 Spaces Defining 57

6-2 Special Spaces Defining 	 58

CHAPTER 1
INTRODUCTION

Architectural design needs to meet a wide range of

aesthetic, functional and technical requirements. It

requires a wide range of knowledge from many disciplines

including: structures, construction, social sciences,

engineering, psychology, etc. Architectural design

objects are traditionally represented by drawings.

Computer graphics is becoming accepted by architects as a

tool to help generate drawings. Computers, plotters, and

printers are used in place of pencils, triangles, and T-

squares.

Is it possible that CAD systems can also be used to

assist architects in their more fundamental decision-

making processes, such as in design knowledge

representation. To find out what computers can do in the

wider field of architecture, we have to first understand

what architects do when they design a building.

1.1 Architectural Design Process

A building can be conceived as a container of activities.

The original goal of architectural design is 'to provide a

controlled environment so that certain human activities

can be carried out conveniently, comfortably and safely.

To design a project, architects interpret its objectives,

1

2

articulate its goals, and find the problems that need to

be solved in each phase. Thereafter they work out the

solutions and evaluate them.

This should not be a one-way process. After

evaluation of a solution, it may be found not to be a

good one. Therefore, designers try to get another

solution. Sometimes, a previous problems will return as a

later problem is solved. In this case, designers have to

go back and work on that problem again. This circle may

repeat several times before a satisfactory solution is

reached (figure 1-1).

The solution to any problem often results in new

problems to be solved. For example, in a certain phase in

the design of an office building, the ceiling height of a

office room is set to be 8'-6" for economical reasons. It

could be a comfortable room if well designed. With the

design taken further, the building air conditioning

system needs to be designed. The ceiling height of the

room will soon be a problem if the ducts are to be

located in the ceiling. The air that comes out of the

ducts may be 15 F-degree or more warmer than the room

temperature. People will thus feel uncomfortable when

resulting hot air blows directly onto them. It is not a

good solution to use air with lower temperature. Low air

temperature reduces the delta T between the intake air

design phase

problem
solving

solution 	 problem
message 	 message

L-1
evaluation F—J

3

problem
message

solution
message

design phase

problem
solving

solution
message 	

L-1

problem
message

	[—j
evaluation

--ifinal solution'

Figure 1-1 Architectural Design Process

and the room. It will lower heating efficiency, and cause

the waste of energy and money. To solve it, the room

height has to be raised. (figure 1-2).

IPMONIFENON)

8' 6"
	

10'
delta T >= 15 degree

Figure 1 -2 Room Height and Air Conditioning System

Meeting this situation, we must return to the

previous phase to re-decide room height and re-adjust

many relations to different parts of the building.

1.2 Uncertainties In Architectural Design

To interpret design objectives and set goal in the

different phases, architects need to use much personal

judgement from the study of human needs. This opens up

many different choices. Even if an objective is

interpreted in the same way, each designer can choose

different methods to reach it (figure 1-3).

This is because of different psychological

responses, experiences and so on. As stated before,

4

5

Goal

Needs

Problems

C - 	

Knowledge Solution

Figure 1-3 Design Model

buildings should be designed to meet the requirements of

convenience, comfort, and safety (figure 1-4).

It should be kept in mind that it is impossible for

every user to feel the same level of comfort in a

building. Many factors such as temperature, color,

lighting, humidity, noise, scale, etc. affect people's

feeling of environmental comfort in a building.

Perception of a building and psychological responses to

an environment vary greatly from person to person. It is

quite difficult, if not impossible, to set up standards

in all these matters. A room may be warm enough or not,

sufficiently cheerful or not, etc., according to

professional experiences and knowledge in relative

disciplines. A designer reaches his own decision on how

users will perceive his building by their senses, their

Structure

Construction

Fire Safety Codes

6

Safety

Building Comfort Color

Temperature

Ventilation

• • • •

Artistry_Li

Figure 1-4 Building Requirements

understanding of psychological responses, and ideas about

comfort.

1.3 Computer Applications

In architectural design, solutions are usually presented

by drawings. Most current CAD systems are used to this.

7

This is called Computer Aided Drafting. To assist design,

to assist the decision-making processes in architectural

design, computers should also be used in the process of

problem solving and solution evaluation.

Does this mean that computers could give out the

final design automatically when they are used in all

aspects of architectural design, such as problem solving,

solution evaluation, and design representation? This is

clearly not the case. The potential of computers in the

field of architecture should not be exaggerated. Looking

at the inherent characters of architectural design, we

can say that it can never be a completely automated

process.

We discussed the uncertainties in architectural

design above. Computers are not good in such jobs. CAD

systems will deal in certainties, or high probabilities

which are changed from uncertainties by architects. As

shown in figure 1.2-2, safety requirements of a building

include compliance with some safety codes, which are set

as rules. These codes are minimum requirements for all

buildings, or for certain types of buildings. They are

criteria. If they are interpreted to a computer, the

system will be able to do code-checking. That is what we

want a CAD system to do, and leave the jobs that need

soft-edged skills up to architects.

8

1.4 Architectural Expert System and User Interface

An Architecture Expert System is such a CAD system that

assists not only the drawing-generating but also the

decision-making processes in architectural design. This

study anticipates the development of a user interface for

such a system.

One of the focuses of this study will be the design

of object hierarchies, which can be linked to an

interpreted architectural knowledge base. These

hierarchies should be consistent and logical, and enable

one to analyze and evaluate buildings for compliance with

building codes and other requirements.

A user interface can be envisaged as an extension of

the short-term memory of the user. So it is very

important to understand the mechanisms by which the user

processes information. As the users of Architectural

Expert Systems are designers, architects, etc., we should

consider the specific needs and limitations of the

architectural design process. The other focus of this

study will be to provide drawing tools, object graphic

representation methods familiar to architects. The design

of these tools and representations will be based on the

study of architectural design process and traditional

architectural representation. All the functions should be

useful and easy for architects to learn.

9

The interface will be based on AutoCAD (Autodesk

inc.). The reason for this selection is that AutoCAD has

an open structure. By using its programming language

AutoLISP, one can create a new menu, a command language,

as well as a data structure.

CHAPTER 2
OBJECT REPRESENTATION

2.1 Knowledge And Object-Oriented Data Base

As we discussed before, architectural design is a goal-

directed activity. To design a project, architects

interpret the goal, set objectives, find out the

solutions for problems, and then evaluate the solutions.

During this process, knowledge about architecture, as

well as many other disciplines, is required.

Figure 2-1 Exit Space in a Building

Figure 2-1 is a building plan. E is an exit-space of

the building. According to architectural knowledge, it

must be enclosed. To use a CAD system to process such a

checking, we use the function as below:

10

Function: exit-space checking

.check if space E is an exit

.if NO

..end the function

.else (YES)

..check if the space is enclosed

..prompt the result of

the checking

.end the function

However, it is impossible to use this function on

general CAD systems, such as Auto CAD. Because although

space E needs to be closed, it could have door(s). The

two plans in figure 2-2 are different.

In figure 2-2(a), space E is not enclosed. Wall W

stops at point p2. In fig.2-2(b), D is a door in wall W.

Space E is enclosed, although wall W seems to stop at

point p2 too on the drawing. Plan (b) meets the

requirement while plan (a) does not. If both plans are

.DWG files created by Auto CAD, they do not have

essential structure to represent the difference.

All entities in Auto CAD are stored in terms of

1 1

12

pl

E

	4

p2

	411110Mall.

P3

p1

p2

D

P 3

Figure 2-2 Closed and Unclosed Spaces

points, lines, plines etc. Entities exist independently.

There is no relation among them:

.DWG 	- entity 1 	 type

start point

end point

• •
	

• • •

,•••■■•■•••■• entity 2 type

start point

end point .

Wall W in either plan (a) or plan (b) is:

13

type: PLINE

start pt:

P 1

end pt:

P 2

06$ 	 604

entity

You may even erase wall W in fig.2-2(b), while door

D is still there, which becomes meaningless.

In .DWG file, entity D and W are not door and wall.

They are lines same as steps, etc. To check if space E is

enclosed, computer needs to check its walls, floors. We

can see, the enclosing checking can not be done in such a

case. Knowledge is based on objects. It can not be used

without certain objects. We hope the plan to be stored in

terms of objects as following:

Building 	 Wall

Column 	 W2

Ceiling

Beam

14

,
start pt

p 1

end pt

P 3

•• 	 • 	 • 	 .
, .
door

W1

D1

D2

• • •

start pt: 	 p2D1

end pt: P3

While wall W stops at point p2 (figure 2-2 (a)),

space E is not enclosed. In figure 2-2 (b), wall W stops

at point p3, separates space E from other parts of the

building. D is only a door in wall W. If wall W is

erased, door D will not exist any more, because they are

stored in the computer in an "object-oriented" structure.

In such a data base, entities exist more similar as they

do in real word. Then many architectural knowledge can be

used based on such a data base.

i s 	I	 I

	I
	

'

15

2.2 Building Components, Spaces And Data Base

Now, we know we need an object oriented architectural

data base for design evaluation, code checking etc. In

this data base, architectural elements should exist just

as they are in real world.

What are those elements? What kind of object

hierarchy this data base should have? Let's have a look

at a building in real world.

Usually, one would say that a building consists of

many rooms, which are enclosed by wall(s), ceiling(s),

and floor(s). And there are some openings, such as doors

and windows, in those walls (figure 2-3).

Figure 2 - 3 A Building Plan

It is natural that we would assume the data base

should be as shown in below:

Floor RoomBuilding

Floor Room

•

Room nFloor m

16

Wall Wall 1 •••••••■•I1

Beam Wall 2

Opening

Stud

0 • •

Opening 1

Opening 2

• • •

I••••••••

• • • • • •

Name: 	 Door

Start Pt:

End Pt:

This hierarchy reflects architects' concepts of

buildings.

17

As we discussed before, a building is actually a

container of human activities. To be a container, it

provides a set of rooms (spaces) to shelter human

activities. In their design, architects are concerned

about spaces where people will live or work.

Because rooms (spaces) are considered as objects in

the hierarchy of the data base, such applications as

design evaluation, code compliance checking are possible.

However, it also results in some problems to put rooms as

objects in the same hierarchy with other building

components such as walls, openings, etc. Let's use the

plan in figure 2-3 as an example (figure 2-4).

W1

W3

Figure 2-4 Rooms and Walls

Actually, room R1 and R2 have a total of five walls.

In the data base, each room has four walls. R1 and R2 are

composed of eight walls (figure 2-5).

R1— wall W1
•••••••••••••

wall W2

wall W3

wall W4

• • • 	 • • 0
	•

■••••••■••••■

wall W501•0•4MIR2
■•••■••••■••••

wall W6

wall W7

wall W8

• • •	 • •

18

Obviously, they are not the same as they are in the

real world.

Actually, wall W4 and W8, W2 and W6 in figure 2-5

are the segments of wall W1 and W3 in figure 2-4. Wall W1

and W7 in figure 2-5 are the same wall. They are

W1 W7

W4

W3
	 R1

W2

W8

R2 	 W5

W6

Figure 2-5 Duplicated Walls Between Spaces

19

duplicated. There should be only one wall separating room

R1 from room R2 (W5 in figure 2-4). In the data base,

they are stored as two different walls. While using this

system, user has to draw those walls separately. All the

subcomponents, such as doors, windows, and studs, have to

be drawn twice too. It is not difficult to anticipate how

much more drawing work one has to do while drawing a

large project which has a lot of adjacent rooms (spaces)

that share the same walls. Of course it is not convenient

for users. Meanwhile, it takes more time for computers to

generate drawings. The processing speed of computers will

be much slower.

Besides the drawing problem, we will also get

problems during some evaluation and/or code checking

processes, due to the duplication of the walls shared by

two rooms. Those problems may be more serious.

For example, we want to estimate the cost of a

building. The cost of materials are needed. Those

materials are used to build walls, floors, etc. So the

total volume of walls has to be calculated.

Budget = Cost of Materials (COM) + 	

COM 	 = Volume of Walls *

20

To get the right result, each wall should only be

calculated once. If some walls are shared partially or

totally by different rooms, they are stored as different

walls in data base. There may be several walls in the

data base to represent one wall in the real world. It is

necessary for the system to find out which walls are

duplicated, so that they will not be calculated twice.

As we know, one important function of a wall is to

divide spaces. Therefore most walls of a building belong

to more than one space. To remove all duplicated walls, a

lot of calculation work has to be done. This also reduce

the prompt speed of the system.

The reason of why we have so many problems is that

rooms are used together with walls, floors in the

hierarchy of data base. Rooms are regarded as a type of

building component. However, rooms are different from

walls, floors and other building components.

2.3 Building Component Hierarchy

Building components, such as walls, floors, are used to

build a building. We never use rooms to build a building.

Rooms are what we will get when a building is built. They

are not physical objects, although people can perceive

them. They are only the spaces enclosed by certain

architectural elements. There are not the objects named

Floor WallBuilding

Floor

• • • •

Beam

Floor m

21

as rooms in the real building hierarchy. In this data

base, we add rooms to the building component hierarchy,

where they do not exist.

The solution is to create another hierarchy for the

data base reflecting the building hierarchy in the real

world:

Wall 1 Openin4•••••• ••••••••

Wall 2 Stud

• • •

■••••••611 Opening 1

Opening 2

• * •

Name:

Start Pt:

End Pt:

In this hierarchy, objects reflect their positions

in the real world. All these elements are those people

can see and touch in the real world. Other elements that

can only be conceived by human, such spaces, are removed.

W9W5 W7

W8 W12 W4

W2

W3

W4

W 1

W6 	 W10 W2

W3W 1 1 W1

	.4,

W5 W6

22

A building is divided into different floors. On each

floor, there are walls, steps. In some walls, there may

be some doors and/or windows.

Compared with the previous object hierarchy of the

data base, this one is more clear and simple. Not only

the duplicated walls are excluded from the data base, but

also a wall could be stored as a complete one in the data

base, instead of being stored as several different walls

(figure 2-6).

R1 R2 R3

Wall 1 Floor Wall 1

Wall 2 Wall 2

Wall 3 . 	 . 	 .

Wall 4 Wall 6

Floor
A	

Figure 2-6 Building Objects in Different Hierarchies

Computer memory for storing data and running time

for checking the relationships among the building

components are saved.

2.4 Space Hierarchy

As rooms are removed from the building component

hierarchy, there are no duplicated objects in data base

any more. This is good for certain evaluation as well as

graphic representation. But "room" is such an important

concept in architectural knowledge that we can not design

any building without this concept. It is even impossible

to evaluate designs without it. Actually, we should use

"space" here instead of "room". Room is a specific name

for certain kinds of spaces.

People use the spaces of a building. If we want to

design a comfortable and safe building for people, we

have to be concerned more about spaces. That is why many

building codes are about spaces. There are some

requirements for building components. However, they are

mostly for the spaces of the building. Following is the

5-1.3.1c (pp.37) in Life Safety Code:

Any opening (of an exit) shall be

protected by an approved self-closing

fire door.

23

It sets out the requirement for openings. The

purpose is for the exit. The exit is defined (5-1.2.3

pp.31) as:

Exit is that portion of a means of

egress which is separated from all other

spaces of the building or structure by

construction or equipment ... to provide a

protected way of travel to the exit

discharge.

It is very clear that exit is a space. The

requirement is for the openings of a specific kind of

space. Therefore, to check if the openings of a space is

in compliance with Life Safety Code, the space has to be

checked first. Only when it is an exit, its openings

should meet the requirement.

In our data base, spaces are removed. The system

does not know what a space is. It is not important to the

system where an opening is. With all objects and

attributes of any object in the data base, we are not

able to let the computer know what a space is. We have to

use spaces as a kind of basic element in data base.

We have discussed before, spaces are not the same

type of elements as other building components. It will

result in a lot of problems if we add spaces in building

component hierarchy. So, we need to create another

24

FloorBuilding Space 1

Floor Space 2

• • •

Space n

functional element hierarchy in the data base, which

includes spaces:

This hierarchy is parallel to the component

hierarchy.

When a set of walls are drawn, it becomes very clear

to humans where spaces are (figure 2-7).

But computers can not know. Defining a space to a

system is actually same as defining a polygon. A space is

stored as a polygon in data base, It is 2D. It can be

used for 3D calculation. Because the position of this

polygon is known to the system, the elevation of the

floor and the ceiling at that position can be found too.

So the height of the space can be calculated.

W1

W4
	

Space 	 W2

W3

25

Figure 2-7 Space Defining

To define a polygon, we only need to know the end

points (vertices) and the types of all edges (figure 2-

8).

edge

edge

Figure 2 -8 Vertexes and Edge Types Determine a Polygon

However, the polygon is used to represent a space.

The type of a polygon edge should include the information

of the building component(s) on this side of the space.

Is it formed by a wall, a set of columns, or nothing as

an open space?

Also, the attributes of spaces are determined by the

enclosing walls, floors and other building components. It

is meaningless if only the position and form of a space

is known. The attributes of all enclosing components

should be accessible. The relationships between spaces

and building components have to be reflected in the

hierarchy (figure 2-10).

26

wall edge 4

•
columns 1 edge 3 edge 1

1

wall edge 2

27

edge 1: nothing

edge 2: wall

edge 3: columns

edge 4: wall

Space

Figure 2 - 9 Spaces in Hierarchy

We can find some parts of this hierarchy are same as

those of building component hierarchy. All the walls and

openings are already stored in the data base. It is not

necessary to store them repeatedly. The functional

element hierarchy only needs to provide access to those

data stored in building component hierarchy. That means

in functional element hierarchy, each edge of the polygon

only needs some pointers which point to those building

components (figure 2-11).

••

SpaceFloor

Space 2

edge 1: wall 1 opening 1

edge 2: wall 3 opening 2

• • •

Wi

W4 	 space
	

W2

W3

Figure 2-10 Space and Building Components

As the figure above, space Si is a polygon which

has four edges, ED1, ED2, ED3 and ED4. In functional

element hierarchy, the pointers point to the enclosing

walls in building component hierarchy. And start points,

end points define the specific segments of those walls

which form the space.

Now we may check what kind space it is. If this

28

	•••••••••■•••••■•••••••■•••

ED4

W4 	 Si 	 W2

ED3 	 ED2 	 ED1

S2 S3W5

W 1

29

W6

z W3

Floor Wall 1

Wall 2

Wall 6

• • •

FloorOpening 1 Si edge

Opening 2 S2 edge

•
S3 edge

Stud 1 edge

start pt:

end pt:

pointer

Figure 2-11 Space Hierarchy

space is an exit. We want to check its openings in wall

ED1 for compliance with the requirement mentioned before.

From the given data, we know the edge ED1 is a part of

wall W1 in building component hierarchy. Then, we can

3 0

check all the openings in edge ED1 to find out which are

between the start and end points of edge ED1.

Wall Wl: opl, op2, op3, 	 op n.

Edge ED1: start point pl, end point p2.

i 	 1

while i <= n do

(if start point or end point of opening(i) is

between pl and p2

(put opening(i) into opening list OP-LST)

i 	 i +1

After this process, we get the opening list OP-LST.

All the openings in OP-LST are in the wall ED1, and

should meet the requirement.

CHAP TER 3
ABOUT AUTOCAD

As our user interface is based on AutoCAD, it is

necessary to introduce some basic concepts of entities,

and data structure of AutoCAD.

AutoCAD provides a set of entities for use in

constructing a drawing. An entity is a drawing element

such as a line, polyline, or circle.

The following table is given by AutoCAD Reference

Manual.

Table 1 AutoCAD Entities

Entity type Description

Lines
Lines can be drawn	 with various dot-dash linetypes. When
drawing a line segment, you can provide either 2D (x,y) coordi-
nates or 3D (x,y,z) coordinates.

Arcs and
Circles

Arcs and Circles can be drawn with various dot-dash linetypes.
Several methods are provided for drawing arcs and circles.

Points
Points can appear as dots, squares, circles, X's, or any combina-
tion of these. You can locate Point entities using either 2D or
3D coordinates.

Blocks Blocks are compound entities formed from groups of other enti-
ties.

Attribu. tes
Attributes attach constant or variable text information to each
instance of a Block. You can choose whether or not they are
visible.

Dimensions
Dimensions (generated when associative dimensioning is enabled)
are compound entities similar to Blocks, containing all the lines,
arcs, arrows, and text comprising a dimensioning annotation.

31

32

Entity type Description

Polylines

Polylines are 2D connected line and arc segments, with optional
dot-dash linetypes, width, and taper. 	 Commands are provided to
construct	 ellipses,	 regular polygons, filled circles, and "dough-
nuts" using Polylines.

3D Polylines
3D Polylines are fully general three-dimensional objects com-
posed of straight line segments (but no arcs, width, taper, or
linetypes).

3D Faces 3D Faces are three-dimensional triangular or quadrilateral plane
sections.

3D Meshes

3D Meshes are three-dimensional polygon meshes. 	 You can
specify the size of the mesh and the location of its vertices.
Commands are provided to construct ruled surfaces, surfaces of
revolution, and tabulated cylinders using 3D meshes.

Text

Text can appear in a variety of fonts,' with,any size and orienta-
tion you wish.	 In addition, you can create text styles to apply
mirroring,	 obliquing, or a horizontal expansion or compression
factor to the text characters.

Traces Traces are two-dimensional, solid-filled lines of any width you
specify.

Solids Solids	 are	 two-dimensional,	 solid-filled	 triangular	 or
quadrilateral objects.

Shapes Shapes are small objects you can define outside AutoCAD and
place in the drawing with a specified scale and rotation.

AutoCAD entities can be drawn at a specified

coordinate location. Many of them can be given a

thickness. All these data are stored in entity data

lists, which can be read by a programming language --

AutoLISP's entity access functions. For example, we draw

a line:

Command: line

From point: 1,0

To point: 1,1

To point: <Return>

The data list might be:

((-1 <Entity name: 	 6000003C>)

(0 	 . LINE)

(8 	 . A)

(62 . 	 3)

(38 1.000000)

(39 . 	 2.000000)

(10 1.000000 	 0.000000)

(11 1.000000 	 1.000000)

In entity data list, "entity name" is actually a

pointer. An entity can be accessed if its name is known.

33

CHAPTER 4
DESIGN DATA STRUCTURE

4.1 Hierarchical Files

Any computer has limited space for storing variables and

running programs. We can not predict how many components

a building will have. It may be a two-story house or a

eighty-story skyscraper. What we do know is that we

usually work on a certain floor at a time. It is not

necessary to know the information of all other floors. If

we create one file for the data of each floor

respectively, we can get a set of data files for a

project:

File name: HOUSE.BAC

(Basic information of the project)

Floor created: 1, 3

The last floor worked on: 3

File name: HOUSE.C1

(Components data of the first floor)

Total walls: 23

WALL[1][1]:

34

WALL[1][2]:

• 	 ..

Total columns: 10

COLM[1] [1] :

COLM[1][2]:

File name: HOUSE.S1

(Space data of the first floor)

Total spaces: 8

SPC[1][1]:

SPC[1][2]:

File name: HOUSE.C3

(Components data of the third floor)

Total walls: 18

WALL[3][1]:

WALL[3][2]:

Total columns: 4

COLM[3][1]:

35

COLM[3][2]:

File name: HOUSE.S3

(Space data of the third floor)

Total spaces: 4

SPC[3][1]:

SPC[3][2]:

When a user starts the system, and gives the project

name HOUSE, the computer reads the file HOUSE.BAC to find

out that the third floor is the one on which the user

worked during the last edition. Therefore, only the file

HOUSE.C3 and HOUSE.S3 are read into the computer space.

After the third floor is finished, all the variables are

written back to the files, and removed from the computer

space. Then the user can work on another floor.

By this way, the number of variable is reduced

respectably. Of course, the data for two or more floors

should be able to be read at one time if necessary. In

any case, variable number is always kept to the minimum.

36

37

4.2 Object Data List

4.2.1 Basics Of LIST

AutoCAD and AutoLISP support several basic data types,

such REAL, INTEGER, STRING, and LIST. The LIST is similar

as the STRUCTURE in C. It is a collection of one or more

entities, possibly of different types, grouped together

under a single variable name for convenient handling.

LISTs help to organize complicated data, particularly in

hierarchical data structure, because they permit a group

of related entities to be treated as a unit instead of as

separate ones. And those entities can be lower level

LISTs.

For a project, we use a set of LISTs, name FL[1],

FL[2], etc., to store the data of each floor.

FL[1]

(0.0 0.0) -- start point

1st (10.0 0.0) -- end point

wall

wall (.-- 	 • -- opening list

list

2nd

wall 	 • • • • .

)

wall

)

(

column .

list

• • 	 •

)

)

. 	 • •

)

38

LIST FL[1] has a clear hierarchical structure.

However, it is too large to handle. It is necessary to

reduce its size.

4.2.2 Hierarchical Lists

The entities of a list are not necessarily lists. They

can be pointers which point to lower level lists. A list

name is actually such a pointer. By using pointers

instead of lists wherever possible, we can separate a

large list into many small ones.

FL[1] =

(SUB 	 -- lower level lists

WALL[1][1]

WALL[1][2]

CLUM[1] [1]

CLUM[1] [2]

39

Each variable is a list:

WALL[1] [1]

(AutoCAD entities)

(NAME 	 wall)

(STAR PT 	 (0.0 	 0.0))

(END PT 	 (10.0 	 0.0))

60. 	 •••

(SUP 	 FL[1]) 	 -- higher level list

(SUB 	 -- lower level list

OPNG[1] [1]

OPNG[1] [6]

40

OPNG[1] [1]

41

In such a structure, the data are stored in many

lists, which can be accessed from either higher or lower

level list. List (SUP ...), and (SUB ...) are pointer

lists linking the different levels in the hierarchy.

4.2.3 AutoCAD Entity Pointer

AutoCAD entities are basic elements composing building

objects. In building component hierarchy, each object may

have a set of points, which point to its composing

entities.

For example, a wall is drawn with four lines. In the

data list of this wall, there should be four pointers

pointing to the four line-type entities in AutoCAD

drawing database. Whenever this wall needs to be

modified, the four entities can be called and modified.

Entity names are the pointers which make entities

accessible.

However, an entity may have different names during

different editing phases. That means, entity name can not

be used to link the drawing database and building

component hierarchy.

Fortunately, AutoCAD provides another unique

identifier, or entity handle to every entity in a

42

drawing. It is displayed in hexadecimal notation. An

entity handle is an identifier permanently assigned to an

entity throughout its lifetime. It can be used instead of

entity name as entity pointer in the hierarchy. By using

certain AutoLISP function, the entity name can be got

only if its handle is known.

CHAPTER 5
GRAPHIC REPRESENTATION

5.1 General Issues

Graphic representations play important roles in the

architectural design process. Most design messages are

transmitted in term of drawings in architectural design.

No matter how they are organized in the data base,

building components have to be represented graphically.

There is no command in AutoCAD to open a hole in an

object, while this object still exists. To draw an

opening, therefore, is actually not to draw it, just to

draw the objects enclosing it. In figure 5-1, the wall is

divided into several segments. When those segments are

created, the window will be there.

We can see, to draw a wall with a window, the system

needs to know the coordinates of the start points and end

points of the wall and the window. Also, it needs the

width and some other properties of the wall and the

window. By processing those data, the system gets the

vertexes of each segment of the wall. Then it will draw

them one by one. During this process, all the data, such

as coordinates, width, and so on, should be given. Any

change of the data will lead to re-doing the whole

process and regenerating the whole drawing (figure 5-2).

It will take a lot of time.

43

44

	I

Figure 5-1 Draw an Opening With AutoCAD

Many changes have to be made to the design during

architectural design process. All those changes should be

responded quickly by the system.

It may be a good solution to provide different

graphic representations at different design phases. Let's

take a look at the way that architects design a project.

Usually, architects begin a design with very

schematic sketch, then refine it, in step by step

fashion. In early design phases, refined drawings are not

necessary. Sketches, wireframe drawings are acceptable to

architects (figure 5-3).

11 1 1111111111.1111111 1 1111111111111111'111 1,101
11111111 1111111' 111111 11111111

'1•11 111:1 11 1 ;1 1 111'
LI

1111==111= 111111

Li Do

45

Figure 5-2 Openings in a Wall

Figure 5-3 Representations in Early Design Phases

So, the following tools may be provided by the

system:

DRAWING

WALL

OPENING

COLUMN

3D-VIEWING

RENDERING

2D

3D

The tools under DRAWING generate 2D representations,

such as plans. This kind of representations should be

able to be generated and regenerated quickly. They should

also reflect the object hierarchy of the data base, so

that they can present what are in the data base. And they

should allow the processing that needs architectural

knowledge, such as checking the design for compliance

with certain building code.

It is not necessary for such representations to be

well rendered, because they are for the architects who

46

47

design the project, and are quite familiar with the

project. Those architects could understand the

representations very well even though they are sketches

or wireframe drawings. What we are interested in is how

to reflect objects in data base by those representations.

3D-VIEWING generates wireframe 3D images. It

provides a time-saving way for users to visualize their

design.

When a design is completed, or it comes to the end

of a certain design phase, a set of well represented

drawings are needed. Those drawings should be in the form

of traditional drafting conventions, so that the

information provided by the drawings can be understood by

those who are not familiar with the project, such as

clients, other architects, etc. RENDERING is the function

to generate such drawings for final representation.

Whenever it is called, it generates 2D or 3D drawings.

All those drawings generated for final

representation are not related with the data base. They

are only the 2D or 3D pictures of the objects. To change

the design, the user has to go back to the modifying

mode. Any change made to the drawings generated for final

representation will not be written to the data base.

In this Chapter, we will discuss mainly 2D

representations for the drawing/modifying phases.

5.2 Components Representations

In architectural drawings, especially in plans, floors,

walls, and openings are the most important and basic

items.

5.2.1 Floors

We need to draw floors only if there are changes in

elevation on a floor. So floors are closely related with

steps and stairs.

On AutoCAD, we may set the variable THICKNESS

according to the changes in elevation, then use LINE to

draw a polygon as a floor or a step. Latter, whatever we

draw, check its position first, set the AutoCAD variable

ELEVATION equal to the thickness of the floor on which

this component is. In this case, user does not need to

calculate the height of a component from the ground

before drawing it. The height of a component is from the

floor on which it is located. This is the way architects

work. When we draw a wall, for example, we usually care

for how high it is from the floor. We may even not know

how high it is from ground.

48

49

5.2.2 Walls

In AutoCAD, if we draw a wall with LINE, we can only draw

the outline of the wall. By using PLINE, we can draw the

wall body at one time (figure 5-4).

line pline

Figure 5-4 Difference Between LINE and PLINE

Because plines have width, they look like walls in

both 2D and 3D. We select the pline as graphic

representation of wall.

By using pline, we can draw continuous walls

connected smoothly. However, those walls must be drawn at

one time. If not, walls can not connect smoothly (figure

5-5).

It is unpractical to ask users to draw all

continuous walls at one time. On the other hand, PLINE

50

Figure 5-5 Connections of PLINEs

only generates one entity at a time. In figure 5-5(a),

three walls are actually one entity. They only have one

entity name. If one of the wall need to be deleted, we

have to break this entity first, then delete it (figure

5-6).

In this case, the original entity does not exists

any more. Instead, two new entities are generated. They

have their own new entity names. It makes a lot of

difficulties for entity tracing, because after each

change, many data have to be corrected.

Avoiding such situation, we should only draw one

segment each time with PLINE. Then, the system checks all

51

	1

1	
(a) one entity 	 (b) break
	

(c) two new entities

Figure 5-6 Break a PLINE

the walls, to find out those end to end connections, and

extend the ends to make them connect smoothly.

However, such connections, as well as some others,

are still not what we want. We may set FILL to "ON" to

fill the interiors (figure 5-7).

5.2.3 Openings

Usually, a wall with a door is represented as figure 5-8.

The wall is from p1 to p4, and the door is from p2 to p3.

In the plan, the wall is displayed as two segments,

plp2, p3p4. If we draw plp2, p3p4 with PLINE

	1

52

I	

Figure 5-7 FILL and Connections

p2 	 p3

p4

Figure 5-8 A Wall With a Door

respectively, they will be treated as two walls in data

base:

53

Floor W 1

—I W2

Start Pt: P1

End Pt: 	 P2

Start Pt: P3

End Pt: 	 P4

•••■•••4

What we want is that the wall from point P1 to point

P4 is one entity, but looks broken from point P2 to point

P3.

To draw such a wall, we can draw a solid wall plp4

with PLINE first (figure 5-9 a), then draw the door p2p3

still with PLINE (figure 5-9 b). So far, we have two

entities for wall plp4 and door p2p3. Next, we set the

redraw mode to 2, redraw door p2p3 with AutoLISP function

REDRAW. In this mode, an entity is invisible although it

still exists (figure 5-9 c). Door p2p3 looks erased. And

wall p1p4 looks broken while it is still a single entity.

At last, draw the leaf of the door (figure 5-9 d).

It is similar to draw a window.

Doors and windows may need to be represented in

details. We can create a block for each type of

p4pl p4pl

p2A1p3

I	 Ipl p4

p2 p3

54

(a) 	 (c)

p2 	 p3

phi 	
P4

(b) 	 (d)

Figure 5-9 Door Representation

subcomponents in details, such as windows, doors, and

columns. Users only need to input the position and the

name of type, the scaled block will be inserted

automatically.

To draw a subcomponent, it is necessary to define

under which component it is. For example, to add a window

or stud, we have to select a wall first. So the component

could be put to the correct position in the hierarchy in

the data base. If we erase the wall latter, the window or

stud will be found out by the system, and removed from

the data base.

55

5.2.4 Beams, Ceilings

Beams, ceilings are not always presented in plan. We can

set a layer for them. Whenever asked by user, they can be

displayed with dash lines.

5.3 Multi -Level Representation

Details of architectural drawings vary with the scale.

The system should be able to choose different

representations according to the scale of the drawing.

Because the objects in the data base are

hierarchical, we can use a variable LEVL to indicate the

position of the level in hierarchy. With given scale, the

system calculates at which level the representation

should be. If a drawing is too small, it may only have

walls (figure 5-10).

For multi-level representation, we can draw those

components on separate layers. By controlling the layers,

present different level (figure 5-11).

1

2 1111111111111111111111

door 	 window

Figure 5-10 Multi-level Representations

main layer layer 1 layer 2

I\

layer 3

3/1\= C

Figure 5-11 Layers and Representations

56

Si

p4 	 P3

Si edgel

edge2

• ••

vexl: p1

vex2: 2

• • •

CHAPTER 6
DEFINING SPACES

Before design evaluation or any code checking, the

functional element hierarchy has to be created. To define

a space, we may select a set of walls as the boundaries

of the space. After calculation, the system can get a

polygon as the space (figure 6-1).

W1
	 p1 	 p2
	 pl
	 p2

From: vex1

To: vex2

Name: W1

Figure 6-1 Spaces Defining

At the same time, we input the attributes of the

space, such as what the occupant load is, if it is an

exit or not.

57

exist access

assistant
line

hazardous
area

58

In some cases, spaces are not divided by walls. We

need to use assistant lines. Therefore, it is possible to

define subspaces within a large room, or an area which

includes several rooms (figure 6-2).

Figure 6 -2 Special Spaces Defining

Because we do not have duplicated boundaries in the

data base, it is impossible to generate spaces

automatically by the system. The user has to select

boundaries for each space.

CHAPTER 7
CONCLUSION

Architectural knowledge is needed in decision-making

processes in architectural design. The object-oriented

hierarchical data structure proposed in this study can be

linked with an interpreted architectural knowledge base,

to make the use of computers in theses processes

possible. All design objects are stored as they are in

the real world. The knowledge based on those design

objects can be used.

Usually, building components, instead of lines and

points, are used for representations in architectural

design. An Architectural Expert System enables its user

to use these components in design. It provides object

representations for many building components, such as

walls, openings, columns, etc., rather than for lines,

points, and surfaces. However, object representations

designed in this study are limited. It is impossible to

provide representation for every building component. With

the development of industries, there will be new building

materials and components. Therefore, the next step of

this study should provide tools for users to compose

their own objects and/or graphic representations. The

current system allows users to use their own graphic

representations instead of the symbolical

59

60

representations, and to change the position of any object

in the hierarchies. These functions are useful not only

for creating new object, but also for some unusual

designs. For example, a side of a space may be a big

window, from floor to ceiling. There is no wall on this

side. In the data hierarchy, an opening is under a wall.

We can use "DETACH" and "ATTACH" functions to change its

position to the same level as walls. Such functions, with

new-object-composing function, will enable the system to

be more flexible.

APPENDIX A
MENU FILE

The blank lines at the end of a menu serve to erase items
of longer submenu.

*** screen
[ArchCAD]$S=SCREEN

[HELP]

[SET FLR]$S=FLOOR FLOOR
[DRAW]$S=DRAW
[MODIFY] $S=MODIFY
[TOOLS]
[DISPLAY] $S=DISPLAY
[OPTION] $S=OPTION OPTION
[DATA LST]$S=LK LK

[SPACE] $S=SPACE

[RENDER]$S=RENDER
[PLOT]

[SAVE]SAVE
[END]END
[GIVE UP]QUIT

**FLOOR 3
[SET FLR]FLOOR

[NEW]NEW
[CHANGE]

[ON]
[OFF)

[LAST]$S=

**DISPLAY 3
[DISPLAY]

[RM ALINE] CLEAN
[REDRAW]REDRAW
[ZOOM]

[LAST]$S=

61

**DRAW 3
[DRAW]

[WALL] $S=WALL WALL
[OPENING] $S=OPENING OPENING
[COLUMN] $ S =COLUMN COLUMN
[STUD]
[STAIRS]
[BEAM]
[CEILING]

[AST-LINE] $S=ALINE ALINE

[OTHER]

[LAST] $S=

**WALL 3
[WALL] WALL

[WIDTH] W
[HEIGHT] H
[CLOSE] C

**OPENING 3
[OPENING] OPENING

[SEL WALL S
[DOOR] D $S=OPN2
[WINDOW] W $S=OPN2

**OPN2 4

[2ND PT] S
[HEIGHT] H
[WIDTH]

**COLUMN 3
[COLUMN] COLUMN

[CIRCLE] $S=C1RCLE C
[RECTANG] R
[SQUARE] S

62

**CIRCLE 4

[DIAMETER] D
[RADIUS]

**ALINE 3
[ALINE]ALINE

[END]END
[NEAR]NEA
[INTER]INT
[PERPEN]PER
[TANGENT]TAN

**SPACE 3
[SPACE]

[CREATE]SCREATE
[MODIFY]

[LAST] $S=

**RENDER 3
[RENDER]

[2D]
[3D]

[LAST]^C$S=

**MODIFY 3
[MODIFY]

[ATTACH]$S=TACH ATTACH
[DETACH]$S.TACH DETACH

[COPY]
[MOVE]$S.MOVE MV
[ROTATE]
[DELETE]DELETE

[LAST]$S=

**TACH 3

63

[REMOVE]R
[ADD] A

[DONE]

**MOVE 3
[MOVE]MV

[BASE PT]B
[XY DIST] XY
[2ND PT]

**OPTION 3
[OPTION] OPTION

[1]1
[2]2
[3]3
[4]4

[LAST]$S=

**LK 3
[DATA LST]LK

[SELECT] S
[NAME]N

[WALL]W
[OPENING]0
[COLUMN] C
[ASST-L]A

[LAST]$S=

*** pop1
[Draw]

*** pop2
[Modify]

*** pop3
[Display]

*** pop4
[Tools]

*** pop5
[Options]

64

*** pop6
[Floors]

*** pop?
[Files]

*** pop8
[Render]

*** pop9
[Help]

65

APPENDIX B
PROGRAM

;START UP

(defun S::STARTUP (/ tmpfile mlayer olayer copycmd)
;change environment variables, set new layers and
;variables
;this function will be executed automatically

(setq oldbl (getvar "BLIPMODE")
oldcm (getvar "CMDECHO")
oldth (getvar "THICKNESS")
oldfl (getvar "FILLMODE")

)

(setvar "CMDECHO" 0)
(setvar "FILLMODE" 1)
(setvar "BLIPMODE" 0)

;change AutoCAD commands
(command "handles" "on"

"undefine" "end"
"undefine" "redraw"
"undefine" "save"
"undefine" "quit"

)

(setq realfile (getvar "DWGNAME")
file (strcat realfile "$") ;temporary file

)

(if (not (equal (substr (getvar "CLAYER") 1 3) "FL-"))
;it is a new project

(progn
(setq fln 1

wain[l] 0
opngn[1] 0
clumn[1] 0
spcn[1] 0
FLLST (list fln)

dlevl 3
wlevl 3

(command "layer" "m" "FL-1"
"new" "WDTL-1-1,WDTL-1-2,WDTL-1-3,
DDTL-1-1,DDTL-1-2" ""

66

(progn
;it is an existing project

(setq copycmd (strcat "copy " realfile " *
file ".*"

)
;copy all files to temporary files

(command "shell" copycmd)

(setq tmpfile (strcat file ".BAC"))
(READFILE tmpfile)

(setq tmpfile (strcat file ".C" (itoa fln)))
(READFILE tmpfile)

(setq tmpfile (strcat file ".S" (itoa fln)))
(READFILE tmpfile)

)

(setq wain 	 (VALU "waln[fln]")
opngn 	 (VALU "opngn[fln]")
clumn 	 (VALU "clumn[fln]")
spcn 	 (VALU "spcn[fln]")

dtl 	 (strcat 	 "DTL-" 	 (itoa fin))
wdt1[1] (strcat "W" dtl "-1")
wdt1[2] (strcat "W" dtl "-2")
wdt1[3] (strcat "W" dtl "-3")
wdtl[4] (strcat "W" dtl "-4")

ddt1[1] (strcat "D" dtl "-1")
ddtl[2] (strcat "D" dtl "-2")
ddt1[3] (strcat "D" dtl "-3")

(setq mlayer (strcat "FL-" (itoa 	 fin))
olayer (getvar "CLAYER")

(if (not (equal mlayer olayer))
(command "layer" "t" mlayer "s" inlayer "f" olayer

(CHLEVEL)
(princ)

;end of STARTUP

;WALLS

(defun c:WALL (/ spt ept sptx higt)
;draw walls

67

(setq spt (getpoint "\nEnter start point: ")
sptx spt
ept 0

(if (not (equal spt nil))
(progn

(if (equal wdth nil)
(setq wdth 0)

)
(if (equal higt nil)

(setq higt 0)
)

(while (and (not (equal ept nil))
(not (equal ept sptx))

(WALMOR)
)

)

(princ)
) ;end of WALL

(defun WALMOR ()
;continue to draw walls

(initget "Width Height Close-wall")
(setq ept (getpoint spt

"\nWidth/Height/Close-wall/<To point:>"))
(if (equal ept "Width")

(WALWDTH)

(if (equal ept "Height")
(WALHIGT)

(if (equal ept "Close-wall")
(setq ept sptx)

)
(if (and (not (equal ept "Width"))

(not (equal ept "Height"))
(not (equal ept nil))

)
(progn
(setvar "THICKNESS" higt)
(setq spt (polar spt (angle ept spt) (/ wdth 2)))
(command "pline" spt "w" wdth wdth ept "")
(WALSAVE)
(setq spt ept)

68

69

)

);end of WALMOR

(defun WALSAVE (/ cwal hdl elel ele2 ele3 ele4 ele5 ele6
ele7 ele8 tmp oldwal newwal)

;save wall data

;get a name for the new wall
(if (null (valu "WALEMP[fln]"))

(setq wain (1+ wain)
cwal (var "WAL[fln][waln]")

)
(progn

(setq cwal (car (valu "WALEMP[fln]")))
(set (var "WALEMP[fln]")

(rmx cwal (valu "WALEMP[fln]"))

)

(setq hdl
elel

entity

(cdr 	 (assoc 5 	 (entget 	 (entlast))))
(list 	 'DWG hdl) 	 ;AutoCAD

ele2 (list 'NAME "Wall") ;type name
ele3 (list 'ROOT "WAL" 	 fin) ;variable name
ele4 (list 'SUP 	 (var 	 "FL[fln]")) ;parent object
ele5 (cons 'SPT spt) ;start point
ele6 (cons 'EPT ept) ;end point
ele7 (list 'WIDTH wdth) ;width
ele8 (list 'HEIGHT higt) ;height

tmp (list 	 (list hdl cwal))

oldwal (assoc 'SUB (valu "FL[fln]"))

(set cwal (list elel ele2 ele3 ele4
ele5 ele6 ele7 ele8

;put its name in index which is used to find an object
;from its handle

(set (var "WALLST[fln]")
(append (valu "WALLST[fin]") tmp)

(if (equal oldwal nil)
(progn

(setq newwal (list (list 'SUB cwal)))
(set 	 (var "FL[fln]")

(append (valu "FL[fin]") newwal)

70

)
(progn

(setq newwal (append oldwal (list cwal)))
(set 	 (var "FL[fln]")

(subst newwal oldwal (valu "FL[fln]"))
)

)

);end of WALSAVE

(defun WALWDTH (/ init)
;get wall width

(setq init (getdist (strcat "\nWall width <"
(rtos wdth) ">: "

(if (not (equal init nil))
(setq wdth init)

);end of WALFST

(defun WALHIGT (/ init)
;get wall height

(setq init (getdist (strcat "\nWall height <"
(rtos higt) ">: "

(if (not (equal init nil))
(setq higt init)

);end of WALHIGT

;OPENINGS

(defun c:OPENING (/ copng cmp cmplst wdspt wdept wdist
whigtl whigt2 cwal wdth ang dw spt ept)

;draw openings

(setq dw 0)
(GETWAL)

(while (and (boundp 'dw)
(boundp Icwal)

)

71

(initget "Select-wall Door Window")
(setq dw (getpoint "\nSelect-wall/Door/Window: "))
(if (equal dw "Select-wall")

(GETWAL)
)
(if (or (equal dw "Door")

(equal dw "Window")
)
(OPNGDRW)

)

(princ)
); end of OPENING

(defun OPNGSAVE 	 (/ oldopng elel ele2 ele3 ele4
ele5 ele6 ele7 ele8 tmp newopng)

;save openings into data list

(setq oldopng 	 (assoc 	 'SUB 	 (eval cwal))
elel (cons 'DWG cmp) 	 ;AutoCAD entity
ele2 (list 'NAME dw) ;type name
ele3 (list 'ROOT 	 "OPNG" 	 fln) ;varible name
ele4 (list 'SUP cwal) ;higher level
ele5 (cons 'SPT wdspt) ;start point
ele6 (cons 'EPT wdept) ;end point
ele7 (list 'HEIGHTI whigtl) ;height
ele8 (list 'HEIGHT2 whigt2) ;height
tmp (list elel ele2 ele3 ele4

ele5 ele6 ele7 ele8

(set copng tmp)
(set (var "OPNGLST[fln]") 	 ;put into opening index

(append (valu "OPNGLST[fln]") cmplst)

;process higher level object
(if 	 (equal oldopng nil)

(set 	 cwal (append (eval cwal)
(list (list 'SUB copng))

)
(progn

(setq newopng (append oldopng (list copng)))
(set cwal

(subst newopng oldopng (eval cwal))

)

);end of OPNGSAVE

(defun GETWAL (/ 1st name en1 en2 tmp)
;select a wall in which to draw a opening

(setq 1st (OBJSEL "\nSelect a wall: ")
cwal (car 1st)
name (cadr 1st)

(while (or (not (equal name "Wall"))
(equal cwal nil)

);check if the selected obj is a wall
(setq 1st (OBJSEL "\nNo wall selected.")

cwal (car 1st)
name (cadr 1st)

)

	(setq spt	 (cdr (assoc 'SPT (eval cwal)))

	

ept 	 (cdr (assoc 'EPT (eval cwal)))
wdth (cadr (assoc 'WIDTH (eval cwal)))

	

ang 	 (min (angle spt ept)
(angle ept spt)

);get information useful for opening
(if (> (angle spt ept) (angle ept spt))

(setq tmp spt
spt ept
ept tmp

)

);end of GETWAL

(defun OPNGDRW (/ wp cmpl cmp2 cmp3 cmp4)
;draw openings

(setvar "BLIPMODE" oldbl)
(initget 1)
(setq wdspt (getpoint spt "\nStart point: ")

wdspt (inters spt ept wdspt
(polar wdspt (+ ang (/ pi 2)) 2) nil

wdist "Height"

(while (equal wdist "Height")
(initget "Second-point Height")
(if (equal dw "Window")

(setq wdist (getdist wdspt "\nSecond-point
/Height<Window width:>"))

(setq wdist (getdist wdspt "\nSecond-point
/Height<Door width:>"))

72

(if (equal wdist "Height")
(progn
(initget 1)
(if (equal dw "Window")

(progn
(setq whigtl

(getdist "\nSill height: ")

(initget 1)
(setq whigt2

(getdist "\nWindow height: ")

)
(progn

(setq whigtl 0)
(setq whigt2

(getdist "\nDoor height: ")

)

)

)

(if (and
(not (equal wdist "Second-point"))
(not (equal wdist nil))

(setq wdept (polar wdspt ang wdist))

(if (equal wdist "Second-point")
(progn

(initget 1)
(setq wdept (getpoint wdspt "\nSecond-point: ")

wdept (inters spt ept wdept
(polar wdept (+ ang (/ pi 2)) 2)
nil

)
;check which one is closer to spt

(if (< (distance spt wdept)
(distance spt wdspt)

)
(setq wp wdspt

wdspt wdept
wdept wp

)
)
(setq 	 wdist (distance wdspt wdept))

73

);end of if

(if (boundp 'wdist)
(progn

(if (null (valu "OPNGEMP[fln]"))
(setq opngn (1+ opngn)

copng (var "OPNG[fln][opngn]")

(progn
(setq copng (car (valu "OPNGEMP[fln]")))
(set (var "OPNGEMP[fln]")

(rmx copng (valu "OPNGEMP[fln]"))
)

(setvar "BLIPMODE" 0)
(command "pline" wdspt "w" wdth wdth wdept "")
(setq cmpl (entlast))

(if 	 (equal dw "Window")
(progn

(command "change" cmpl "" 	 "p"
"la" 	 wdt1[1] 	 ""

(redraw 	 (entlast) 	 2)
(command "line" 	 (polar wdspt 	 (+ ang (/ pi 2))

(/ wdth 2)

(polar wdept 	 (+ ang (/ pi 2))
(/ wdth 2)

nu)
(setq cmp2 	 (entlast))
(command "line" 	 (polar wdspt 	 (- ang (/ pi 2))

(/ wdth 2)

(polar wdept 	 (- ang (/ pi 2))
(/ wdth 2)

II u)
(setq cmp3 (entlast))
(command "line" wdspt wdept "")
(setq cmp4 (entlast))

;change the entities'layer for multi-level representation
(command "change" cmp2 cmp3 ""

"p" "la" wdt1[2] ""
"change" cmp4 "" "p" "la" wdt1[3] ""

;get index data

74

(setq cmpl (cdr (assoc 5 (entget cmpl)))
cmp2 (cdr (assoc 5 (entget cmp2)))
cmp3 (cdr (assoc 5 (entget cmp3)))
cmp4 (cdr (assoc 5 (entget cmp4)))
cmp (list cmpl cmp2 cmp3 cmp4)
cmplst (list (list cmpl copng)

(list cmp2 copng)
(list cmp3 copng)
(list cmp4 copng)

)

(OPNGSAVE)
)

)
(if (equal dw "Door")
(progn

(command "change" cmpl "" "p" "la" ddt1[1]
un)

(redraw (entlast) 2)
(LEAFDRW)

(setq cmpl (cdr (assoc 5 (entget cmpl)))
cmp (list cmpl)
cmplst (list (list cmpl copng))

)
(if (boundp icmp2)

(setq cmp (append cmp (list cmp2))
cmplst (append cmplst

(list (list cmp2 copng)))

)
(OPNGSAVE)

)

)

);end of OPNGDRW

(defun LEAFDRW (/ if basept tmppt blk xx yy)
;draw a door leaf

(setq if (GMNUSEL "_door" 8)) ;select a leaf

;Set base point and xx 	 x scal factor
(if (or (equal if 1)

(equal if 6)
)
(progn

(setq tmppt (polar wdspt ang (/ wdist 2)))
(while (null basept)

75

76

(setq basept (getpoint tmppt
"Select the side the leaf is: "))

)
(if (< (distance basept wdspt)

(distance basept wdept)

(setq basept wdspt
xx 	 1

(setq basept wdept
xx	 -1

)

)
(setq basept wdspt

xx 1
)

;Set yy 	 y scale factor
(if (and (numberp lf)

(< if 4)
)
(setq yy (YYGET "\nDirection the leaf swings: ")))

(if (or (equal if 4)
(equal if 5)
(equal if 8)

)
(setq yy 1)

(if (or (equal if 6)
(equal if 7)

)
(setq yy (YYGET "\nSelect the side: "))

;Insert block
(if (numberp lf)

(progn
(setq blk (strcat "graphmnu/_door_" (itoa lf)))
(command "insert" blk basept (* xx wdist)

(* yy wdist) (* (/ ang pi) 180)
)
(setq cmp2 (entlast))
(command "change" cmp2 "" "p" "la" ddt1[2] "")
(setq cmp2 (cdr (assoc 5 (entget cmp2))))

)

); end of LEAFDRW

(defun YYGET (msg / blkang tt)
;calculate y scale factor

(while (null blkang)
(setq blkang (getangle basept msg))

(setq tt (- blkang ang))
(if (or (and (>= tt 0)

(<= tt pi)
)
(< tt (* -1 pi))

)
(setq yy 1)
(setq yy -1)

);end of YYGET

;COLUMNS

(defun c:COLUMN (/ basept tmp tmpx tmpy tmpang crap)
;draw columns

(setq basept (getpoint "\nEnter the center point: "))
(if (boundp 'basept)

(progn
(princ "\nCircle/Rectangular/Square/<")

;prompt the data of the last column
(if (equal clumlast "Circle")

(progn
(princ "Radius ")
(princ clumrad)

)
(if (boundp 'clumlast)

(progn
(princ "Side ")
(princ clumx)
(princ " ")
(princ clumy)
(princ "; Angle ")
(princ (angtos clumang))

)
)
(princ ">: ")

(initget "Circle Rectangular Square")
(setq tmp (getkword))

(cond
((equal tmp "Circle")

77

;draw circle columns
(initget "Diameter")
(setq clumrad (getdist basept

"\nDiameter/<Radius>: "))
(if (equal clumrad "Diameter")

(progn
(setq clumrad (getdist "\nDiameter: "))
(if (boundp 'clumrad)

(setq clumrad (/ clumrad 2))
)

)

)
(if (boundp 'clumrad)

;if the user hit <RETURN>, cancel the function
(CCLUM)

)

)
;draw rectangular columns

((equal tmp "Rectangular")
(setq tmpx (getdist "\nX-side length: ")

tmpy (getdist "\nY-side length: ")
)
(if (and (boundp 'tmpx)

(boundp 'tmpy)
)

(progn
(setq clumx tmpx

clumy tmpy
)
(setq tmpang (getangle "\nAngle <0>: "))
(if (null tmpang)

(setq clumang 0)
(setq clumang tmpang)

)

(RCLUM)

)

)

)
;draw square columns

((equal tmp "Square")
(setq tmpx (getdist "\nSide length: "))
(if (boundp 'tmpx)

(progn
(setq clumx tmpx

clumy tmpx
)
(setq tmpang (getangle "\nAngle <0>: "))
(if (null tmpang)

(setq clumang 0)
(setq clumang tmpang)

78

(RCLUM)

)
)

;draw columns as the last one
((boundp 'clumlast)

(cond ((equal clumlast "Circle")
(CCLUM)

(T (RCLUM))
)

)
end of cond

);end of progn

(princ)
);end of COLUMN

(defun RCLUM (/ spt cmpl cmp2 cmp3)
;draw rectangular or square columns

(setq spt (polar basept (+ clumang pi) (/ clumx 2)))

(command "pline" spt "w" clumy ""
(polar spt clumang clumx) "")

(setq cmpl (list 'X-SIDE clumx)
cmp2 (list 'Y-SIDE clumy)
cmp3 (list 'ANGLE clumang)
cmp (list cmpl cmp2 cmp3)

(CLUMSAVE)
);end of RCLUM

(defun CCLUM (/ spt)
;draw circle columns

(setq spt (polar basept 0 (/ clumrad 2)))

(command "pline" spt "w" clumrad "" "a" "ce"
basept (polar spt 180 clumrad) spt ""

(setq cmp (list (list 'RADIUS clumrad)))

(CLUMSAVE)
);end of CCLUM

79

(defun CLUMSAVE (/ tmpclum hdl elel ele2 ele3 ele4 ele5

indx oldclum newclum)
;save the column data

;save this column as the new "last column", so that the
;user could draw the same column without reinputting the
;same data

(if (boundp 'tmp)
(setq clumlast tmp)

;check if there is any deleted column, if yes, use its
;name for the new column, if not, give a new name

(if (null (valu "CLUMEMP[fln]"))
(setq clumn (1+ clumn)

tmpclum (var "CLUM[fln][clumn]")
)
(progn

(setq tmpclum (car (valu "CLUMEMP[fln]")))
(set (var "CLUMEMP[fln]")

(rmx tmpclum (valu "CLUMEMP[fln]"))
)

)

(setq hdl (cdr (assoc 5 (entget (entlast))))
elel (list 'DWG hdl)
ele2 (list 'NAME "Column")
ele3 (list 'ROOT "CLUM" fln)
ele4 (list 'SUP (var "FL[fln]"))
ele5 (cons 'SPT basept)

indx (list (list hdl tmpclum)) ;for index

oldclum (assoc 'SUB (valu "FL[fln]"))

(set tmpclum (append (list elel ele2 ele3 ele4 ele5)
cmp

(set (var "CLUMLST[fln]")
(append (valu "CLUMLST[fln]") indx)

;put a pointer in its higher level object
(if (null oldclum)

(progn
(setq newclum (list (list 'SUB tmpclum)))
(set (var "FL[fln]")

(append (valu "FL[fln]") newclum)

)
(progn

(setq newclum (append oldclum (list tmpclum)))

80

81

(set 	 (var "FL[fln]")
(subst newclum oldclum (valu "FL[fln]"))

)

) ;end of CLUMSAVE

;ASSISTANT LINES

(defun c:ALINE (/ tmplin cly cclr spt ept)
;draw assistant lines

(setq cly (getvar "clayer")
cclr (getvar "cecolor")

);change layer and color

(if (null aln)
(setq aln 0)

(command "layer" "m" "0" "")
(command "color" "blue")

(print "\nDraw assistant line(s)
for open boundary(s).")

(setq spt
(getpoint "\nEND/NEAr/INTer/PERpen/TANgent

<Start point>: ")

(while (boundp 'spt)
(setq ept

(getpoint spt "\nEND/NEAr/INTer
/PERpen/TANgent <To point>: ")

(if (boundp 'ept)
(progn

(command "line" spt ept "")
(setq aln (1+ aln)

tmplin (VAR "ALIN[aln]")

(set tmplin (list (list 'NAME "Asst-line")
(cons 'SPT spt)
(cons 'EPT ept)

(setq hdl
(cdr (assoc 5 (entget (entlast))))
ALINLST (append ALINLST

(list (list hdl tmplin))

)

)
(setq spt ept)

;change the layer and color back
(command "layer" "m" cly "")
(command "color" cclr)
(princ "\n(To remove all asst-lines, type \"CLEAN\")")
(princ)

);end of ALINE

;SPACES

(defun c:SCREATE (/ vn en mesgl mesg2 stop 1st objl obj2
objx namel name2 namex sptl spt2 sptx
eptl ept2 eptx done i v tmp e du obj name)

;create spaces

(setq vn 0
en 0
mesgl "\nSelect boundary: "
mesg2 "\nSelect boundary: "

(while (and (null stop)
(null EDGE[1])

)
(setq 1st (OBJSEL mesgi))
(if (null 1st)

(setq stop "y")
(progn

(setq objl (car 1st)
du nil

(DUCHECK objl)
(if (boundp 'du)

(setq mesgl "\nDuplicated.
Select again: ")

(progn
(setq namel (cadr 1st)

spt1
(cdr (assoc 'SPT (eval objl)))
eptl
(cdr (assoc 'EPT (eval objl)))

(if (null eptl)
(VSAVE1)
(ESAVE1)

8 2

)

)

(while (and (null stop)
(null done)

)
(setq 1st (OBJSEL mesg2)

du nil
)
(if (null 1st)

(setq done "Y"
obj2 objx
name2 namex
spt2 sptx
ept2 eptx

)
(progn

(setq obj2 (car 1st))
(DUCHECK obj2)
(if (boundp 'du)
(setq mesg2 "\nDuplicated.

Select again: ")
(progn

(setq name2 (cadr 1st)
spt2
(cdr (assoc 'SPT (eval obj2)))
ept2
(cdr (assoc 'EPT (eval obj2)))

)
)
(if (null du)

(if (null ept2)
(VSAVE2)
(ESAVE2)

)

)

(if (or (and (boundp 'done)
(equal en 3)
(equal EDGE[1] EDGE[3])

)
(and (boundp 'done)

(< en 3)
)

)
(progn

(setq mesg2

83

"\nToo few boundaries to form a space.")
(princ mesg2)
(setq stop "Y")

)

(if (equal mesg2
"\nUnclosed boundary. Select again: ")

(progn
(princ "\nUnclosed boundary. No space formed.")
(setq stop "Y")

)

(if (and (null stop)
(boundp 'eptx)

)
(progn

(set (var "EDGE[en]") nil)
(setq en (1- en)

VEX[0] (valu "VEX[vn]")
)

)

(if (null stop)
(progn

(setq tmp (list (list 'VEX vn)
(list 'EDGE en)

i 	 0
)
(while (<= i vn)

(setq v
(cons (var "VEX[i]") (valu "VEX[i]"))
trap (append trap (list v))
i 	 (1+ i)

)
(setq i 1)
(while (<= i en)

(setq obj 	 (valu "EDGE[i]")
name (cadr (assoc 'NAME (eval obj)))

(if (equal name "Asst-line")
(setq obj "NONE")

(setq e 	 (list (var "EDGE[i]") obj)
trap (append trap (list e))
i	 (1+ i)

84

85

)
(setq spcn (1+ spcn))
(set (var "SPC[fln][spcn]") tmp)
(princ "\nSpace ")
(princ (var "SPC[fln][spcn]"))
(princ " formed.")

)

)

(setq i 0)
(while (<= i en)

(set (var "VEX[i]") nil)
(set (var "EDGE[i]") nil)
(setq i (1+ i))

)
(princ)

);end of SCREATE

(defun DUCHECK (obj / i tmpobjl tmpobj2)
;check if a boundary is selected again

(setq i 0)
(while (and (null du)

(<= i en)

(setq tmpobjl (cadr (valu "VEX[i]"))
tmpobj2 (valu "EDGE[i]")

)
(if (or (equal obj tmpobjl)

(equal obj tmpobj2)

(setq du "Y")
(setq i (1+ i))

)
)

);end of DUCHECK

(defun VSAVE1 H
;save the first vertex

(if (boundp 'VEX[0])
(setq mesgl "\nUnclosed boundary. Select again: ")
(setq VEX[0] (list sptl obji)

sptx sptl
eptx epti
objx obj1

)

)
);end of VSAVE1

(defun ESAVE1 H
;save the first edge

(if (null VEX[0])
(setq en (1+ en)

EDGE[1] objl
sptx sptl
eptx eptl
objx objl

)
(if (or (equal sptx sptl)

(equal sptx ept1)
(equal (angle sptl sptx)

(angle sptx eptl) 0.01

)
(setq en 1

EDGE[1] objl
)
(setq mesg1

"\nUnclosed boundary. Select again: ")
)

);end of ESVAEI

(defun VSAVE2 H
;save vertexes

(if (equal vn en)
(setq mesg2 "\nUnclosed boundary. Select again: ")
(progn

(if (or (equal spt2 sptl)
(equal spt2 eptl)
(equal (angle sptl spt2)

(angle spt2 eptl) 0.01

(progn
(setq vn (1+ vn)

mesg2 "\nSelect boundary: "

(set (var "VEX[vn]") (list spt2 obj2))
)
(setq mesg2

"\nUnclosed boundary. Select again: ")
)

86

)

);end of VSAVE2

(defun ESAVE2
;save edges

(if (boundp (var "VEX[en]"))
(progn

(setq pt (car (valu "VEX[en")))
(if (or (equal pt spt2)

(equal pt ept2)
(equal (angle spt2 pt)

(angle pt ept2) 0.01

)
(progn

(setq sptl spt2
eptl ept2
en (1+ en)
mesg2 "\nSelect boundary:

)
(set (var "EDGE[en]") obj2)

)
(setq mesg2

"\nUnclosed boundary. Select again: ")
)

(progn
(setq pt (inters sptl eptl spt2 ept2))
(if (or (equal sptl spt2)

(equal sptl ept2)
)
(setq pt sptl)

)
(if (or (equal eptl spt2)

(equal eptl ept2)
)
(setq pt eptl)

)
(if (null pt)

(setq mesg2
"\nUnclosed boundary. Select again: ")

(progn
(setq sptl spt2

eptl ept2
vn (1+ vn)
en (1+ en)
mesg2 "\nSelect boundary: "

(set (var "VEX[vn]") (list pt))
(set (var "EDGE[en]") obj2)

87

88

)

)

);end of ESAVE2

;FLOORS

(defun c:FLOOR (/ tmpfln filel file2)
;set new floor or change to another floor

(initget "New")
(setq tmpfln (getint "\nNew/<Change to>: "))
(if (equal tmpfln fln)

(progn
(princ "\nIt is the current floor.")
(setq tmpfln nil)

)

(if (boundp 'tmpfln)
(if (equal tmpfln "New")
(progn

;set new floor
(setq tmpfln (getint "\nNew floor number: "))
(if (equal tmpfln fln)

(progn
(princ "\nIt is the current floor.")
(setq tmpfln nil)

)
(if (numberp tmpfln)

(NEWFLOOR tmpfln)
)

)
(progn

;change to another floor
(if (member tmpfln FLLST)
(progn

;save the data of the current floor
(WRITEDAT)
(setq filel

(strcat file ".C" (itoa tmpfln))
file2
(strcat file ".S" (itoa tmpfln))

;read the data of the selected floor
(READFILE filel)
(READFILE file2)
(CHFLOOR tmpfln)

89

(progn
(princ "\nFloor-")
(princ tmpfln)
(princ " not found.

\nSelect \"New\" to create it.")

)

)

(princ)
);end of FLOOR

(defun NEWFLOOR (newfln / comfm oldfln onfl clsfl)
;execute a new floor setting

(if (member newfln FLLST)
(progn

(princ "\nFloor ")
(princ newfln)
(princ " already exists. Delete it <N>? ")
(initget "Yes")
(setq comfm (getkword))
(if (equal comfm "Yes")

(progn
(WRITEDAT)
(DELFLOOR newfln)
(CHFLOOR newfln)

)

)

)
(progn

(WRITEDAT)
(setq oldfln fln

fin newfln
FLLST (append FLLST (list fln))

)
(set (VAR "waln[fin]") 0)
(set (VAR "opngn[fln]") 0)
(set (VAR "clumn[fln]") 0)
(set (VAR "spcn[fln]") 0)

(CH-VAR)
(setq onfl (strcat "FL-" (itoa fln))

clsfl (strcat "*DTL-" (itoa oldfln)
"*,FL-" (itoa oldfln))

)
(command "layer" "m" onfl "n" wdt1[1] "n" wdt1[2]

"n" wdt1[3] "n" ddt1[1] "n"
ddt1[2] "f" clsfl ""

)
(CHLEVEL)

)

);end of NEWFLOOR

(defun CHFLOOR (newfln / oldfln onfl clsfl)
;execute floor changing

(setq oldfln fln
fln newfln

(CH-VAR)

(setq onfl (strcat "FL-" (itoa fln))
clsfl (strcat "*DTL-" (itoa oldfln)

"*,FL-" (itoa oldfln)

)
(command "layer" "t" onfl "m" onfl "f" clsfl "")
(CHLEVEL)

);end CHFLOOR

(defun CH-VAR 	 (/ dtl)
;change glable variables

(setq dtl 	 (strcat 	 "DTL-" (itoa fln))
wdt1[1] (strcat "W" dtl "-1")
wdt1[2] (strcat "W" dtl "-2")
wdt1[3] (strcat "W" dtl "-3")
wdt1[4] (strcat "W" dtl "-4")

ddt1[1] (strcat "D" dtl "-I")
ddt1[2] (strcat "D" dtl "-2")
ddt1[3] (strcat "D" dtl "-3")

wain (VALU "waln[fln]")
opngn (VALU "opngn[fln]")
clumn (VALU "clumn[fln]")
spcn (VALU "spcn[fln]")

)
);end of CH-VAR

(defun DELFLOOR (n / dt18 dtl dtli dt12 dtl3 dt14 dtl5
dt16 dt17 i ii len entlst ent)

;delete an existing floor to set it as a new one

90

91

(set (VAR "WALLST[n]") nil)
(set (VAR "WALEMP[n]") nil)
(set (VAR "OPNGLST[n]") nil)
(set (VAR "OPNGEMP[n]") nil)
(set (VAR "CLUMLST[n]") nil)
(set (VAR "CLUMEMP[n]") nil)
(set (VAR "waln[n]") 0)
(set (VAR "opngn[n]") 0)
(set (VAR "clumn[n]") 0)
(set (VAR "spcn[n]") 0)

(setq dtl8 (strcat "FL-" (itoa n))
dtl (strcat "DTL-" (itoa n))
dtll (strcat "W" dtl "-1")
dtl2 (strcat "W" dtl "-2")
dtl3 (strcat "W" dtl "-3")
dtl4 (strcat "W" dtl "-4")
dt15 (strcat "D" dtl "-1")
dtl6 (strcat "D" dtl "-2")
dtl7 (strcat "D" dtl "-3")

(while (<= i 8)
(setq dtl (read (strcat "dtl" (itoa 1))))
(setq entlst (ssget "X" (list (cons 8 (eval dtl)))))
(if (boundp 'entlst)

(progn
(setq len (sslength entlst)

ii 0

(while (< ii len)
(setq ent (ssname entlst ii))
(entdel ent)
(setq ii (1+ ii))

)
)
(setq i (1+ i))

);end of DELFLOOR

;MOVE

(defun c:MV (/ 1st obj name basept newpt tmp tmpx tmpy)
;move an object and its subobjects

(setq 1st (OBJSEL "\nSelect object: "))
(if (boundp '1st)

92

(progn
(setq obj (car 1st)

name (cadr 1st)
basept (caddr 1st)
newpt "Base-point"

(princ "\nThis is ")
(princ name)
(princ " ")
(princ obj)
(princ ".")

;reset base point
(while (equal newpt "Base-point")

(initget "Base-point XY")
(setq newpt (getpoint basept

"\nBase-point/XY/<Second-point>: ")
)
(if (equal newpt "Base-point")
(progn

(setq tmp (getpoint "\nBase point: "))
(if (boundp 'tmp)

(setq basept tmp)
)

)

)
);end of while

;get XY distance
(if (equal newpt "XY")

(progn
(setq tmpx (getdist "\nX distance: ")

tmpy (getdist "\nY distance: ")
)
(if (and (boundp 'tmpx)

(boundp 'tmpy)

(setq newpt (polar basept 0 tmpx)
newpt (polar newpt (/ pi 2) tmpy)

(setq newpt nil)

(if (boundp 'newpt)
(progn

(setq dist (distance basept newpt)
ang (angle basept newpt)

)
(MOVOBJ obj ang dist)

93

)
);end of progn

)
(princ)

);end of MV

(defun MOVOBJ (_obj _ang _dist / 1st objdwg objsub spt
ept newspt newept hdl ent subent)

;execute object moving

	

(setq 1st 	 (eval _obj)
objdwg (cdr (assoc 'DWG 1st))
objsub (cdr (assoc 'SUB 1st))

	

spt 	 (assoc 'SPT 1st)

	

ept 	 (assoc 'EPT 1st)

newspt (polar (cdr spt) _ang _dist)
newspt (cons 'SPT newspt)

)
(set _obj (subst newspt spt 1st))

(if (boundp 'ept)
(progn

(setq newept (polar (cdr ept) _ang _dist)
newept (cons 'EPT newept)

)
(set _obj (subst newept ept (eval _obj)))

)

)

(if (boundp 'objdwg)
(foreach hdl objdwg

(setq ent (handent hdl))
(command "move" ent "" basept newpt)

)
)

;move subobjects
(if (boundp 'objsub)

(foreach subent objsub
(MOVOBJ subent _ang _dist)

)
)

);end of MOVOBJ

;REMOVE ASST-LINES

(defun c:CLEAN (/ entlst ent len i ly)
;remove all assistant lines

(setq entlst (ssget "X" (list (cons 8 "0"))))
(if (boundp 'entlst)

(progn

	

(setq aln 	 0
ALINLST nil

	len	 (sslength entlst)
0

)
(while (< i len)

(setq ent (ssname entlst i))
(entdel ent)
(setq i (1+ i))

)

)

;change the layer back
(setq ly (strcat "FL-" (itoa fin)))
(command "layer" "s" ly "")
(princ)

);end of CLEAN

;DELETE

(defun c:DELETE (/ 1st comfm type obj
tmpsup oldsub newsub)

;delete an object

(setq 1st (OBJSEL "\nSelect Object: "))
(if (boundp '1st)

(progn
(setq obj 	 (car 1st)

name (cadr 1st)
)
(princ "\nThis is ")
(princ name)
(princ " ")
(princ obj)
(princ ". Delete it <N>?")
(initget "Yes No")
(setq comfm (getkword))
(if (equal comfm "Yes")

(progn
(DELOBJ obj)
(setq tmpsup (cadr (assoc 'SUP (eval obj)))

oldsub (assoc 'SUB (eval tmpsup))
newsub (RMX obj oldsub)

(set tmpsup
(subst newsub oldsub (eval tmpsup))

94

(set obj nil)

)
)

)
(princ)

);end of DELETE

(defun DELOBJ (cobj / tmplst objroot objflr objlst objemp
objsub objdwg hdl ent 1st subent)

;execte object deleting

(setq tmplst (eval cobj)
objroot (cadr (assoc 'ROOT tmplst))
objflr (caddr (assoc 'ROOT tmplst))

objlst (VAR (strcat objroot "LST[objf1r]"))
objemp (VAR (strcat objroot "EMP[objflr]"))
objdwg (cdr (assoc 'DWG tmplst))
objsub (cdr (assoc 'SUB tmplst))

)

(foreach hdl objdwg
(setq ent (handent hdl)

1st (list hdl cobj)
)
(entdel ent)
(set objlst (RMX 1st (eval objlst)))

)

(set objemp (append (eval objemp) (list cobj)))
;delete its subobjects

(if (boundp 'objsub)
(foreach subent objsub

(DELOBJ subent)
(set subent nil)

)

)
);end of DELOBJ

;ATTACH AND DETACH

(defun c:ATTACH (/ subobj pobj)
;change parent object for selected object(s)

(setq subobj (MOBJSEL))
(if (boundp 'subobj)

95

96

(setq pobj (car (OBJSEL "\nNew parent-object: ")))

(if (boundp 'pobj)
(XXTACH subobj pobj)

(princ)
;end of ATTACH

(defun c:DETACH (/ subobj pobj)
;release selected object(s) from its parent object

(setq subobj (MOBJSEL))
(if (boundp 'subobj)

(progn
(setq pobj (VAR "FL[fln]"))
(XXTACH subobj pobj)

)

(princ)
);end of DETACH

(defun XXTACH (1st pob / obj oldsub
newsub newsup oldsup oldind newind)

;execute attaching some objects to another object

;change the pointer for a new higher level object
(foreach obj 1st

(setq oldsup (assoc 'SUP (eval obj))
supobj (cadr oldsup)

)
(if (or (equal supobj pob)

(equal obj pob)
)
(setq 1st (RMX obj 1st))
(progn

(setq newsup (list 'SUP pob))
(set obj (subst newsup oldsup (eval obj)))

;remove its pointer from original parent object
(setq oldind (assoc 'SUB (eval supobj))

newind (RMX obj oldind)

(set supobj
(subst newind oldind (eval supobj))

)

;put its pointer into tne new parent object
(setq oldsub (assoc 'SUB (eval pob)))
(if (null oldsub)

(set pob (append (eval pob)
(list (cons 'SUB 1st))

)
(progn

(setq newsub (append oldsub 1st))
(set pob (subst newsub oldsub (eval pob)))

)

);end of XXTACH

;REDRAW

(defun c:REDRAW (/ coo oolst In i n ent)
;redraw all objects

(command ".redraw") 	 ;call AutoCAD command
(setq i 1)

;redraw all openings to keep them invisible
(while (<= i opngn)

(setq coo (VAR "OPNG[fln][i]"))
(if (not (equal (eval coo) nil))
(progn

(setq oolst (cdr (assoc 'DWG (eval coo)))
In 	 (length oolst)

ent 	 (nth 0 oolst)
ent 	 (handent ent)

) 	 ;get entity name from its handle
(redraw ent 2)
(setq n 1)
(while (< n in)
(setq ent (nth n oolst)

ent (handent ent)
)
(redraw ent)
(setq n (1+ n))
)

)

)
(setq i (1+ i))

(princ)
);end of REDRAW

97

;DETAIL LEVEL

(defun c:OPTION (/ optn initl init2)
;change the level for opening representation
;return the level numbers for windows and doors

(princ "\nCurrent detail level for Doors is <")
(princ dlevl)
(princ ">. ")
(setq initl (GMNUSEL "_ddtl" 4)) 	 ;call graphic menu
(if (boundp 'initl)

(setq dlevl initl)
)

(princ "\n\nCurrent detail level for Windows is <")
(princ wlevl)
(princ "›. ")
(setq init2 (GMNUSEL "wdtl" 4))
(if (boundp 'init2)

(setq wlevl init2)
)

(if (or (boundp 'initl)
(boundp 'init2)

(CHLEVEL)
)
(princ)

);end of OPTION

(defun CHLEVEL (/ wonlayers donlayers)
;execute the level change

(if (> wlevl 1)
(setq wonlayers wdt1[1])

)
(if (equal wlevl 2)

(setq wonlayers (strcat wonlayers " " wdtl[2]))
)
(if (equal wlevl 3)

(setq wonlayers
(strcat wonlayers 	 wdtl [2] "," wdt1[3])

)
(if (equal wlevl 4)

(setq wonlayers (strcat wonlayers "," wdtl[4]))
)

(if (> dlevl 1)

98

99

(setq donlayers ddt1[1])

(if (equal dlevl 3)
(setq donlayers (strcat donlayers ," ddt1[2]))

(if (equal dlevl 4)
(setq donlayers (strcat donlayers "," ddt1[3]))

(command "layer" "f" "w*" "f" "d*"
"t" wonlayers "t" donlayers ""

(c:REDRAW) 	 ;keep opening invisible
);end of CHLEVEL

;DATA LISTS

(defun c:LK (/ tmp mesgl mesg2 1st maxm i n totl)
;get data lists of building objects

(initget "Select Name Wall Opening Column Asst-line")
(setq tmp (getkword "\nSelect/Name/Wall

/Opening/Column/Asst-line: ")

;list data for named object
(cond ((equal tmp "Name")

(setq tmp (read (getstring "\nName: ")))
)

;select an object to list its data
((equal tmp "Select")

(setq tmp
(car (OBJSEL "\nSelect Object: \n"))

)
(T

;list data of all walls
(if (equal tmp "Wall")

(setq maxm waln
tmp "WAL[fln][i]"

)
;list data of all openings

(if (equal tmp "Opening")
(setq maxm opngn

tmp "OPNG[fln][i]"

)
;list data of all columns

(if (equal tmp "Column")

(setq maxm clumn
tmp "CLUM[fln][i]"

)

)
;list data of all assistant lines

(if (equal tmp "Asst-line")
(setq maxm aln

tmp "ALIN[i]"
)

)

(princ "\n")
(if (equal (type tmp) 'str)

(progn
;list all objects of a type, such as walls, openings,
;etc.

(textscr)
(setq i 	 1

totl 0
)

;print the data on the screen
(while (<= i maxm)

(princ (VAR tmp))
(princ "\n")
(if (boundp (VAR tmp))

(progn
(foreach n (VALU tmp)

(princ n)
(princ "\n")

(setq totl (1+ totl))

(princ "No Value\n")

(setq i (1+ i))
(princ "\n")

)
(princ "\nTotal Number: ")
(princ totl)

;list a named or selected object
(if (boundp 'tmp)

(progn
(textscr)
(princ tmp)
(princ "\n")
(if (boundp tmp)

(foreach n (eval tmp)

100

(princ n)
(princ "\n")

(princ "No value\n")

)

)

(princ)
); end of LK

;SAVE

;save changes, stay in modifying model

(defun c:SAVE (/ tmpf newf comfm cmd)
(while (not (equal comfm "Yes"))

(princ "\nEnter the file name < 11)
(princ file)
(princ "> ")
(setq tmpf (getstring))

(if (and (not (equal tmpf ""))
(findfile (strcat tmpf ".dwg"))

)
(progn

(princ "\n")
(princ tmpf)
(initget "Yes No")
(setq comfm (getkword " already exists.

Overwrite it? <N>"))
)
(setq comfm "Yes")

)

(setq cmd "cmd") ;cmd will be checked in WRITEDAT
;save temporary files

(WRITEBAC)
(WRITEDAT)
(command ".save" file "y")

(if (not (equal tmpf ""))
(setq newf tmp)
(setq newf realfile)

;copy all temporary files to the named files
(setq cmd (strcat "copy " file ".* " newf ".*"))
(command "shell" cmd)
(c redraw)
(princ)

101

);end of SAVE

;QUIT

(defun c:QUIT (/ op delcmd)
;give up the changes and quit

(initget "Yes")
(setq op (getkword "\nReally want to

discard all changes to drawing?"))
(if (equal op "Yes")

(progn
;delete temporary files

(setq delcmd (stracat "del " file ".*"))
(command "shell" delcmd)

;change environmental variables back
(setvar "CMDECHO" oldcm)
(setvar "FILLMODE" oldfl)
(setvar "BLIPMODE" oldbl)
(setvar "THICKNESS" oldth)

;recover AutoCAD commands
(command "redefine" "end"

"redefine" "redraw"
"redefine" "save"
"redefine" "quit"

(command "quit" "y")

);end of QUIT

;END

(defun c:END (/ copycmd delcmd)
;save all changes, and quit

;change environmental variables back
(setvar "CMDECHO" oldcm)
(setvar "FILLMODE" oldfl)
(setvar "BLIPMODE" oldbl)
(setvar "THICKNESS" oldth)
(command "redefine" "end"

"redefine" "redraw"
"redefine" "save"
"redefine" "quit"

;save objects
(WRITEBAC)

102

(WRITEDAT)
;copy temporary files back and delete them

(setq copycmd (strcat "copy " file ".*
realfile

delcmd (strcat "del " file ".*")

(command "shell" copycmd)
(command "shell" delcmd)

(command "end")
(princ)

);end of END

;WRITE FILES

(defun WRITEBAC (/ filel fp)
;write data to main file

(setq filel (strcat file ".BAC")
fp (open filel "w")

(prinl 'fln fp)
(print fln fp)
(print 'FLLST fp)
(print FLLST fp)
(print 'dlevl fp)
(print dlevl fp)
(print 'wlevl fp)
(print wlevl fp)
(close fp)

);end of WRITEBAC

(defun WRITEDAT (/ n i maxm fp filel filet fpl fp2)
;write a floor data into its file

(setq tt 0)
(set (VAR "waln[fln]") waln)
(set (VAR "opngn [fin]") opngn)
(set (VAR "clumn[fln]") clumn)
(set (VAR "spcn[fln]") spcn)

(setq filel (strcat file ".C" (itoa fln))
filet (strcat file ".S" (itoa fln))

)

(setq fpl (open filel "w")
fp2 (open filet "w")
fp fpl

103

)

;as the first line should use function "prin1",
;others use "print", tt has no meaning, it is used
;for the first line, so that the rest of the file
;can use a same function

(prin1 'tt fp)
(print "tt" fp)

;Save cmp-information.
(WRITEVAR "FL[fln]")
(WRITEVAR "WALLST[fln]")
(WRITEVAR "WALEMP[fln]")
(setq i 1

maxm (VALU "waln[fln]")
)
(while (<= i maxm)

(WRITEVAR "WAL[fln][1]")
(setq i (1+ i))

)
(WRITEVAR "waln[fln]")

(WRITEVAR "OPNGLST[fln]")
(WRITEVAR "OPNGEMP[fln]")
(setq i 1

maxm (VALU "opngn[fln]")
)
(while (<= i maxm)

(WRITEVAR "OPNG[fln][i]")
(setq i (1+ i))

)
(WRITEVAR "opngn[fln]")

(WRITEVAR "CLUMLST[fln]")
(WRITEVAR "CLUMEMP[fln]")
(setq i 1

maxm (VALU "clumn[fln]")
)
(while (<= i maxm)

(WRITEVAR "CLUM[fln][i]")
(setq i (1+ i))

)
(WRITEVAR "clumn[fln]")

(close fp)

;Save space-information.
(setq fp fp2)
(prin1 'tt fp)
(print "tt" fp)

(setq i 1
maxm (VALU "spcn[fln]")

104

)
(while (<= i maxm)

(WRITEVAR "SPC[fln][i
(setq i (1+ i))

)
(WRITEVAR "spcn[fln]")
(close fp)

);end of WRITEDAT

(defun WRITEVAR (v / tmp)
;save a variable

(setq tmp (VAR v))
(if (boundp tmp)

(progn
(print tmp fp)
(print (eval tmp) fp)

;delete this variable except for function SAVE
(if (null cmd)

(set tmp nil)
)

)

)
);end of WRITEVAR

;READ FILES

(defun READFILE (if / tmp tmpl fp)
;read a named file

(if (findfile ff)
(progn

(setq fp (open ff "r")
tmp (read-line fp)

)
(while (not (equal tmp nil))

(setq tmp (read tmp))
(setq tmpl (read-line fp))
(set tmp (read tmpl))
(setq tmp (read-line fp))

)
(close fp)
(setq wain (VALU "waln[fln]")

opngn (VALU "opngn[fln]")
clumn (VALU "clumn[fln]")
spcn (VALU "spcn[fln]")

)

)
(progn

;variable name

;value

105

(princ "\007\007\007\n")
(princ filel)
(princ " not found.")

);end of READFILE

;SELECTE OBJECT

(defun OBJSEL (_mesg / _ent _hdl _1st _type _basept _obj)
;select an object and return a list of variable name,
;object name, and the base point,
;for example: (WAL[1][1] Wall (3.0 3.0 0.0))

(setq _ent (entsel _mesg))
(if (boundp '_ent)

(progn
(setq _basept (cadr _ent)

_ent (car _ent)
_hdl (cdr (assoc 5 (entget _ent)))

) ;get the handle
;search for the object in data list

(setq _obj
(cadr (assoc _hdl (VALU "WALLST[fln]")))

)
(if (null _obj)

(setq _obj
(cadr (assoc _hdl (VALU "OPNGLST[fln]")))

)
(if (null _obj)

(setq _obj
(cadr (assoc _hdl (VALU "CLUMLST[fln]")))

)

(if (null _obj)
(setq _obj (cadr (assoc _hdl ALINLST)))

)

(setq _type (cadr (assoc 'NAME (eval _obj))))
(list _obj _type basept) ;get the list

)

);end of OBJSEL

(defun MOBJSEL (/ stat obj objlst)
;select several objects at on time

(setq stat "Add")
(while (or (equal stat "Remove")

106

(equal stat "Add")
)
(setq obj (car (OBJSEL "\nSelect object: ")))
(while (boundp 'obj)

(if (equal stat "Add")
(if (member obj objlst)

(princ "\nDuplicated.")
(setq objlst

(append objlst (list obj))

(if (member obj objlst)
(setq objlst (RMX obj objlst))
(princ "\nNot found in

the selected-object set.")

)
(setq obj

(car (OBJSEL "\nSelect object: "))
)

)
(initget "Remove Add Done")
(setq stat (getkword "\nRemove/Add/<Done>: "))

(setq objlst objlst)
);end of MOBJSEL

;GRAPHIC MENU

(defun GMNUSEL (_name _number / _base _higt _scale
_choice)

;call graphic menu, and return the selected number

(setq _name (strcat "graphmnu/p _name ".dwg"))
(if (findfile _name)

(progn
(setq _base (getvar "viewctr")

_higt (getvar "viewsize")
scale (/ _higt 9)

_choice 0

;insert the graphic menu
(command "insert" _name _base _scale "" "")

(while (and (numberp _choice);input is not a number
(or (> _choice _number)

(<= _choice 0) 	 ;out of the range

)
(setq _choice (getint "\nType the number

107

of your selection:")

)
(entdel (entlast)) 	 ;remove the graphic menu
(setq _choice _choice) ;return the selection

)
(progn

(princ u\nGraphic menu ")
(princ u\"")
(princ _name)
(princ "\"")
(princ " not found.")
(princ)

)

)
);end of GMNUSEL

;OTHERS

(defun VAR (_v / 	 _ln _vname _char _m _n)
;this function makes set possible in AutoLISP
;it gives the name of a variable with subvariables,
;i.e. WAL[m] [n] 	 WAL[1] [3]

(setq _ln 	 (strlen _v)
1

_vname ""
_char (substr _v _i 1)

)
(while (and (not (equal _char "["))

(<=	 _ln)

(setq vname (strcat _vname _char)
(1+ _i)

char (substr _v 	 1)
)

)

(if (equal _char "[")
(RDN)

)
(if (< 	 _ln)

(progn
(setq _m _n

i (1+ _i)
)
(RDN)

)

108

)

(if (not (equal _m nil))
(setq _vname

(strcat _vname "[" (itoa (eval _m)) TI] II)
)

)
(if (not (equal _n nil))

(setq _vname
(strcat _vname "[" (itoa (eval _n)) "]")

)
)

(setq _vname (read _vname))
);end of VAR

(defun RDN ()
;change the subvariable from string to integer

(setq 	 (1+ _i)_char (substr _v _i 1)
_n

)
(while (and (not (equal _char "]"))

(<= 	 _ln)

(setq _n (strcat _n _char)
_i (1+ _i)
_char (substr _v _i 1)

)

)
(setq _n (read _n))

);end of RDN

(defun VALU (_v)
;give the value of a variable with subvariables

(eval (VAR _v))
);end of VALU

(defun RMX (_item _list / _halfl _half2 _tmplst _newlst)
;remove an item from a list, and return the new list

(if (member _item _list)
(setq _half2 (cdr (member _item _list))

_tmplst (reverse _list)
_tmplst (cdr (member _item _tmplst))_halfl (reverse _tmplst)
newlst (append _halfl _half2)

109

)

(setq _newlst _list)

);end of RMX

110

BIBLIOGRAPHY

."AutoCAD Release 10 -- Reference Manual."
Autodesk, Inc.(1989)

."AutoLISP Programmer's Reference"
Autodesk, Inc.(1989)

Boy, Guy A."Intelligent Assistant Systems." translated by
Philippa H. Boy Moffett Field, CA: NASA-Ames
Research Center (1989).

Broadbent, Geoffrey. "Design in Architecture-Architecture
and the Human Sciences."David Fulton Publishers Ltd.
(1988)

Cleal, D. M.,and N. 0. Heaton."Knowledge-based Systems."
NY: Halsted Press (1988).

Huo, Xinming."AutoLISP Program Design & Applications."
China: H. Computer Tech., Inc.(1989)

Jablonski, Allen D."Integrated Component-based Computer
Design Modeling System." Newark, NJ: NJIT (1990).

Khoshafian, Setrag. "Object Orientation." NY: Wiley
(1990).

Kim, Won. ,and Frederick H. Lochovsky."Object-Oriented
Concepts, Databases and Applications." NY: ACM
Press (1989) .

Laseau, Paul."Graphic Problem Solving — for Architects &
Builders"

."Life Safety Code Handbook" edited by James K.
Lathrop. Quincy, MA: National Fire Protection
Association (1981).

MacKellar, Bonnie K., and Filiz Ozel. "ArchObjects:
Design Codes as Constraints in an Object-Oriented
KBMS." Newark, NJ: NJIT (1990).

Omura, George. "The ABC's of AutoLISP." Alameda, CA:
SYBEX, Inc.(1990)

Ozel, Filiz. "User Interface Issues in Object Oriented
Architectural Data Models and Domain Specific Data
Needs of Fire Safety in Buildings." Newark, NJ: NJIT
(1991).

111

Rumbaugh, James, and Michael Blaha, and William
Premerlani, and Frederick Eddy, and William
Lorensen. "Object-Oriented Modeling and Design."
Prentice-Hall, Inc.(1990)

Stanland Jr., Raymond E."The design Process." (1974)

Wade, John W. "Architecture, Problems, and Purposes --
Architectural Design as a Basic Problem-Solving
Process." John Wiley and Sons, Inc.(1977)

112

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1992

	User interface and data structure design for architectural expert system
	Yonghua Ma
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Object Representation
	Chapter 3: About Autocad
	Chapter 4: Design Data Structure
	Chapter 5: Graphics Representation
	Chapter 6: Defining Spaces
	Chapter 7: Conclusion
	Appendix A: Menu File
	Appendix B: Program
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

