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ABSTRACT

Monolithic Silicon
Opto-Electro-Mechanical

Light Modulator

by
Ching-Horng Wu

A Fabry-Perot light beam modulator of the reflection-type has been designed with process

and performance parameters optimized. This design takes advantage of the economies of

surface micromaching using silicon substrates and selected thin films. High performance

with a low drive voltage are achieved using electrostatic actuation of a thin polysilicon

diaphragm. The diaphragm is a novel corrugated structure which has maximum

compliance and maintains planarity during actuation. In addition, the corrugation-

suspension used provides an improved linearity of amplitude modulation response as a

function of the actuation voltage.

A preliminary version of this device has been fabricated through a contract foundry

using some industry-standard film thicknesses. The preliminary version of the device

confirms the physical mask design without optimal film processing. The optimized

Fabry-Perot structure is designed for operation at a wavelength of 1.3 nm. Using a thin,

corrugated diaphragm of 190 nm thickness a 48.90% modulation index is obtained with an

actuation voltage of 5 volts based on detailed simulation results. The final optimized

device will be fabricated at NJIT at a future date.

The proposed optimized device contains a titanium-tungsten metal film deposited

into a cavity of half wavelength depth and insulated from the monolithic silicon substrate.

An additional quarter wavelength film of silicon nitride is deposited over the metal to

increase the modulation index. In the fabrication process a 325nm sacrificial film of spin-

on glass is deposited to fill the cavity and form the spacer between the Fabry-Perot etalon



entrance and reflecting surfaces. The optical entrance surface is obtained next in the

fabrication process by depositing an infrared-transmissive film of polysilicon. The selected

polysilicon thickness is 190 nm or any odd integer multiple of a half wavelength.

This device can be used as an economical light modulator in near-infrared

communications and control systems. This device suitable for relatively low bandwidth

applications is expected to provide cost and reliability advantages over competing torsion

mirror and macro-sized modulators.
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CHAPTER ONE

INTRODUCTION

1.1 Thesis Description

Optical sensing technology has developed enormously during the last decade. Particular

use has been made of optical fibers not only for conveying the beams but also as the

sensing elements themselves. Advances to 1982 were reviewed by Giallorenzi et al (1982)

with reference to over one hundred and thirty papers. Devices for sensing various physical

perturbations, including magnetic, acoustic, thermal, acceleration, rotation etc., have now

been developed and are usually categorized as either amplitude or phase (interferometric)

sensors. In the former class the physical perturbation acts directly to modulate the intensity

of the light; such sensors are simple and reliable with a performance matching that of

existing technologies. In many cases however interferometic phase sensors offer

theoretically orders of magnitude improvement in sensitivity. In the most widely used

sensors they are made in centimeter scale.

With the increasing requirement for high density silicon memory cells has come the

need for sophisticated I/O interfaces with a high data rate, low crosstalk and high

reliability. Contactless connections such as optical interconnects are a promising solution,

provided that reliable transmitters and receivers can be fabricated. Reliable and cheap

transmitters fabricated in silicon, and compatible with standard silicon processing remain a

major problem in releasing these devices.

Structures such as GaAlAs diodes grown in silicon substrates have been fabricated,

but this increases production costs. A further solution is to use hybrid structures but this

increases the size of the device. The ideal solution is to fabricate a transmitter which can

be fabricated in silicon and is compatible with standard processing.

Light modulators have been produced in silicon by, for example, a silicon torsional

mirror [1], or a deformable mirror device [2]. However, these techniques have the

1
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disadvantages of a slow response time. Fabry-Perot interferometers have been fabricated

using a combination of bulk micromachining and wafer-to-wafer bonding [3]. This process

resulted in a high performance device with batch fabrication capabilities. However, bulk

micromaching does not lend itself to high density arrays. Surface micromachining, on the

other hand , by definition leads to small size and thus easy manufacture of arrays and

furthermore, these structures do not suffer from slow response time. With careful

consideration of the processing yields a process which is compatible with standard silicon

processing.

In this thesis, the design and processing consideration for developing a

micromechanical light modulator is described.

Chapter 1 reviews the development of Fabry-Perot etalon and micromechanics, the

brief history of Fabry-Perot etalon and bulk micromechanical techniques and surface

microengineering, Chapter 1 also introduces the background which inspired this work.

Those readers interested in the Fabry-Perot etalon theory and the design work of this

novel light modulator structure may concentrate on Chapter 2. The detailed theoretically

analysis is covered in Chapter 3. The detail processing and mask design are discussed in

Chapter 4. Chapter 5 describes spin on glass, as a sacrificial layer and planarization

material and corrugated support structure developed for cavity structure process. Chapter

6 describes application for this devices. Finally in Chapter 7, conclusions are made.

1.2 Fabry-Perot Etalon

In 1831 George Biddell Airy, Professor of Astronomy in the University of Cambridge

brought out a second edition of his 'Mathematical Tracts'. For that edition he had added a

chapter on 'The Planetary Theory' and one on 'The Undulatory Theory of Optics'. A direct

copy of Airy's figure 17 is shown as figure 1.1. In an elegant derivation Airy calculated the

retardation V of successive components of vibration as being 2Dcosβ and showed that the

brightness of the reflected light was



and of the transmitted light was

3

Figure 1.1 From Airy (1831, figure 17). The incident ray is shown entering along AB
and experiencing successive reflections and refractions at C, E, F, H and K. The
construction line FD is drawn perpendicular to the ray path CD.

In the forty years following Airy many significant advances were made in optics

with contributions from most of the notable physicists of the 19th century. (For a brief

review see for example the historical introduction to Principles of Optics by Born and

Wolf (1975)). In December 1897 Fabry and Perot published in Annales de Chimie et de
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Physique their paper 'On the fringes of thin silvered plates and their application to the

measurement of small thicknesses of air'. They noted prophetically that these '....have led

to the study of optical phenomena interesting in themselves, and to the invention of a

method of measurement of small thicknesses which will doubtless be useful in other

cases.' Fabry and Perot firstly pointed to the sharpness and contrast ratio of fringes arising

in a thin film of air between glass plates. In an ingenious device they described a mobile

plate constrained between the two plates, movements as small as V200 of the tethered

plate could be observed. In addition the tethered plate could itself be readjusted to a set

position without the necessity of following its displacement and counting fringes.

Some idea of the increased use of Fabry-Perot interferometers is given by the list

of leading centuries involved with measurement of standard wavelengths. Those topics

have remained of interest to the present and , for the most part, the basic remained

essentially unchanged from Fabry and Perot's day until the invention of the laser. The

detail theory for the Fabry-Perot etalon will be introduced in chapter 2.1.

1.3 Silicon Micromechanics

An important and rapidly expanding area of silicon integrated circuit technology is silicon

micromechanics [4]-[7]. This technology utilizes and develops silicon integrated circuit

processing techniques to fabricate micromechanical structures together with electronic

devices on silicon wafers. These micromechanical structures and devices when interfaced

with integrated circuits and signal processing open up new opportunities for integrated

sensors and robotics.

Two groups of unique processing techniques have been developed primarily for

the fabrication of micromechanical sensor devices, bulk technology and surface

technology. Bulk technology uses anisotropic wet chemical etching and special bonding

techniques [8]-[11]. Surface technology, in contrast, uses silicon thin film technology of
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polysilicon, oxide, PSG, silicon nitride, metal, and special purpose film such as stress free

polysilicon [12], polymer, piezoelectric films, tin-oxide films and special metal films [13].

1.4 Bulk Micromechanics Technology

The first micromechanical device was a silicon diffused element piezoresistive diaphragm

made in 1962 with bulk technology [14]. The main feature of this technology is the

anisotropical etching of the silicon substrate with doping dependent chemical etchants, and

some special bonding techniques. This technology has been extensively investigated and it

has been successfully used to micromachine complex structure. A representative example

is a integrated gas chromatography system developed by Standford in 1975 [15]. This

work integrated the GC system including a 1.5-m-long capillary column, a gas control

valve, and a detector element on a 2-inch wafer with isotropic etching, anisotropic etching

and anodical bonding of glass plate to silicon techniques.

Figure 1.2 shows a cross section of a typical device formed using selective etching

technology. The device could be a pressure sensor, an accelerometer, or light modulator.

The wafer is to be selectively thinned from 300-5001.m to from a diaphragm having a

thickness control in the order of 1μm. Anisotropic etching will produce the desired lateral

control. Anisotropic etchants attack the <100> and <110> directions at considerable etch

rate, but attack the <111> direction at a rate typically 50 times slower. Thus, as illustrated

in Figure 1.3(a), in <100> material, a cavity is formed with respect to the surface at an

angle of 54.7°. In <110> material, vertical sidewall are produced [8][18].

There are three generally accepted anisotropic etching solutions for silicon:

potassium hydroxide (KOH) [17], hydrazine [18], ethylene diamine-pyrocatechol-water

(EDP) [19][20], and cesivm hydroxide (CsOH). While hydrazine has the distinction of not

etching aluminum, it has few other advantages, tends to produce a rough surface, and can
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be very dangerous to handle. It is thus not widely used. KOH is rsed in near saturated

solutions (1:1 in water by weight) at 85°C. It produces a uniform etch and bright surface.

This etch is preferred for shallow cavities where uniformity is important. It attacks silicon

dioxide at a rate of about 60 Amin. EDP is better suited for deep etching since its oxide

etch is negligible (5A/min). Also EDP produces a somewhat smoother surface compared

with KOH.

In terms of vertical thickness control, the boron etch-stop technique has been

developed to allow the etching process stops at desired vertical thickness [21]. This

process relies on the fact that EDP essentially stops etching when the boron impurity

concentration exceeds about 5 x 10 19 cm-3 in the silicon lattice.

Bonding of one substrate to another substrate is also an important technology

usedd in the fabrication of this device. The most generally used techniques are eutectic

bonding [22], electrostatic silicon-to-glass bonding [23], silicon to silicon fusion bonding

[24] and cemented bonding.

The main problem with bulk micromachining technology is the reduced

compatibility with conventional IC processing for some process steps. One of the

problems occurs in masking where photoresist will etch away quickly with anisotropic

etchants. Special masking layers such as silicon nitride for KOH, aluminum or Silicon

dioxide for EDP have to be deposited and patterned before the etching. The other problem

is the slow etch rate of anisotropic wet etching. The temperature of the tech tank must be

increased to obtain resonable etch rates. For example the etch rate of silicon [100] surface

in KOH at 85°C is 1 µm/min [27]. The boron etch stop requiring a high doping level is also

a major problem in some processes. The high concentration doping makes the formation

of integral circuits more difficult in some instances. If the devices are formed in epitaxial

material grown on the top of the etch stop layer (a boron buried layer), there are problems
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Figure 1.2 Cross section of a typical sensor device formed using anisotropic and
selective etching techniques

Figure 1.3a Anisotropic etching on 	 Figure 1.3b Anisotropic etching on
<100> surface	 <110> surface

with epitaxial film quality and out-diffusion of boron from the buried layer.

1.5 Surface Micromechanics Technology

Recently, surface technology represented by using polycrystalline as a mechanical material

is drawing more attention because this technology avoids some challenging processing

difficulties of bulk technology. It provides better compatibility with standard silicon device

processes, and offers new degrees of freedom for the design of integrated sensors,

actuators and circuits [5][28]. Using this technology, various types of structures such as
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rotating and sliding structures, gears, springs [29][30] and various applications such as

micrometer [31][32] have been made.

Figure 1.4 illustrates the processing sequence for fabricating a polysilicon

cantilever and a double supported beam (microbridge). As shown in the figure, an oxide

layer is initially grown or deposited on the silicon wafer. The first masking step opens

windows in the oxide at the location the beam support areas, as shown in figure 1-3.2(a).

Polysilicon is then deposited by chemical vapor deposition (CVD), and patterned by

reactive ion etching in the second masking step. A lip of poly-Si is left around the

perimeter of the oxide window to allow for misalignment error. If the poly-Si edge fails to

overlap the oxide, then conventional RlE will erode the substrate after etch through the

polysilicon layer. Immersing the wafer in buffered HF to remove all oxide and undercut

the poly-Si layer. In figure 1.4(c) a free standing cantilever beam is created as illustrated.

A double supported micromechanical beam (microbridge) is made by including a second

oxide window, as illustrated in figure 1.4 (d) to (f).

Surface technology often uses polysilicon as a mechanical material. Silicon dioxide

or phosphosilicate glass (PSG) as a sacrificial layer, and silicon nitride as an etch stop. The

feature size of the micromechanical device is 1 to 2 orders of magnitude smaller than bulk

technology. This technology is highly compatible with conventional processing

technology. Several applications of integrating polysilicon micromechanical devices with

on chip MOS circuit have reported [33][34].
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Figure 1.4 The processing sequence of polysilicon cantilever and double supported
beam (microbridge)



to

One major problem of surface technology is that as-deposited LPCVD polysilicon

film tends to buckle down due to strain after sacrificial layer of oxide is removed. Special

techniques are being developed to produce a smooth surfaced, stress relieved polysilicon

beam. Details will be discussed in Chapter 5 as it relates to this thesis.

1.6 Cavity Micromechanical Sensor Structure

One of the major applications of micromechanical technology is the solid state sensor

[33][35]. By using micromechanical technology, numerous types of sensors such as

accelerometer [36][38], pressure sensor, have been made.

Most microengineered accelerometer and pressure sensors reported up to now

have been made with bulk micromechanical technology. Surface microengineering alone

has not been used for many sensor applications yet. Surface microengineering is an even

newer field compared with bulk technology. Currently, most surface microengineering

techniques are more likely planar VLSI structures. As shown in figure 1.4., the planar

structure allows only thin sacrificial layers.

Up to now, all reported methods to produce cavities were using bulk

micromechanical techniques. The typical methods are:

1. Using anisotropic etching of silicon bulk to form cantilever beam, etching

cavity from glass plate and using special bonding techniques to bond them

together [41].

2. Producing SiO2/Si epi/Heavy doped P+ buried layer sandwich. The silicon

cavity is anisotropic etched from under the oxide to the heavily doped P+ buried

layer to release the SiO2 beam [42].

Those methods present processing complexity and compatible problems with conventional

IC processing.

This cavity based bottom metal layer, sacrificial layer, polysilicon sensing element

layer structure is a very powerful structure. It can be used to build three different types of
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sensor, capacitive type, mechanical resonance type or piezoresist type, if different external

circuits are connected.

Discussion will be limited to the light modulator application in this thesis although

other sensor types could be involved.



CHAPTER 2

Fabry-Perot Etalon

2.1 Principles of Operation

The Fabry-Perot etalon, or interferometer, named after its inventors, is a basis of

this thesis. It consists of a plane-parallel plate of thickness Z and index n that is

immersed in a medium of index n'. Let a plane wave be incident on the etalon at an

angle 8' to the normal, as shown in Figure 2.1-1. We can treat the problem of the

transmission (and reflection) of the plane wave through the etalon by considering the

infinite number of partial waves produced by reflections at the two end surfaces. The

phase delay between two partial waves is attributable to one additional round trip. It is

given, according to Figure 4.2, by

where A, is the vacuum wavelength of the incident wave and 0 is the internal angle of

incidence. If the complex amplitude of the incident wave is taken as A i , then the

partial reflections, B 1 ,B2 , and so forth, are given by

where r is the reflection coefficient (ratio or reflected to incident amplitude),  is the

transmission coefficient for waves incident from n' toward n, and r' and t' are the

corresponding quantities for waves traveling from n toward n'. The complex amplitude

of the total reflected wave is A r = B 1 + B2 + B3 , or

12



For the transmitted wave,

where a phase factor exp(iδ), which corresponds to a single traversal of the plate and is

common to all the terms, has been left out. Adding up the A terms, we obtain

for the complex amplitude of the total transmitted wave. We notice that the terms

within the parentheses in [2.1-2] and [2.1-3] form an infinite geometric progression;

adding them, we got

13

where we used the fact that r'= -r, the conservation of energy relation that applies to

lossless mirrors

as well as the definitions

R and T are, respectively, the fraction of the intensity reflected and transmitted at

each interface and will be referred to in the following discussion as the mirrors' reflectance

and transmittance.



14

If the incident photo intensity (watts per square meter) is taken as A iAi  ", we obtain

from (2.1-4) the following expression for the fraction of the incident intensity that is

reflected:

for the transmitted fraction. Our basic model contains no less mechanisms, so conservation

of energy requires that I t +I, be equal to , as is indeed the case.

Let us consider the transmission characteristics of a Fabry-Perot etalon. According

to [2.1-7] the transmission is unity whenever

Using [2.1-1], the condition [2.1-8] for maximum transmission can be written as

where c = vλ is the velocity of light in vacuum and u is the optical frequency. For a fixed 1

and 0, [2.1-9] defines the unity transmission (resonance) frequencies of the etalon. These

are separated by the so-called free spectral range



Figure 2.1 Multiple reflections model for analyzing the Fabry-Perot etalon

Figure 2.2 Two successive reflections,A1and A2 .
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Theoretical transmission plots of a Fabry-Perot etalon are shown in Figure 2.3. The

maximum transmission is unity, as stated previously. The minimum transmission, on the

other hand, approaches zero as the net reflectance R approaches unity.

If we allow for the existence of losses in the etalon medium, we find that the peak

transmission is less than unity. Taking the fractional intensity loss per pass as (1-A), we

find that the maximum transmission T drops from unity to

Calculated transmission plots of Fabry-Perot etalons are shown in Figure 2.4. This device

geometry is given in figure 2.2. The incident optical source is normal to the interferometer

surface. The bulk absorption of the device is neglected. The refraction index of the front

and back surface is silicon dioxide (n=1.5).



Figure 2.3a Transmission characteristics of a single film
Plotted with equations 2.1-7a and 8 is defined by 2.1-8

1 /



Figure 2.3a Reflection characteristics of a single film
Plotted with equations 2.1-6a and 8 is defined by 2.1-8
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Figure 2.4a Calculated reflection characteristics of a Fabry-Perot single film etalon
at 1300nm as a function of the etalon optical length with n'=1 and n=3.42 (figure
2.1). The peaks shown correspond to a change in the optical length Δ(n1)=λ/2.
(λ=λair/3.42)



Figure 2.4b Calculated transmission characteristics of a Fabry-Perot single film
etalon at 1300nm as a function of the etalon optical length with n'=1 and n=3.42
(figure 2.1). The optical length 1 vary from 0 to 2000nm.
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Figure 2.4c Calculated transmission characteristics of a Fabry-Perot single film
etalon at 1300nm as a function of the etalon optical length with n'=1 and n=3.42
(figure 2.1). The optical length I vary from 150 to 500nm.
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2.2 Previous Work

In the last years of the 19th century two young French physicists at the University of

Marseilles, Alfred Perot and Charles Fabry, described a novel form of interference device.

This made use of interference phenomena due to waves successively reflected between

two thinly silvered plane glass plates set accurately parallel. Comparable instruments of the

time were the diffraction grating which had been brought to its highest pitch in the work

of Rowland, and the two beam interferometer of Michelson. All these instruments,

including the grating, relied on interference. However for the Fabry-Perot etalon's

advantages, real and potential. is with great clarity and vigor. Within ten years all the

major applications and techniques had been introduced, largely from Marseilles, and

remained standard practice for over fifty years. For the reason of precisely adjust optical

length, all these instruments were made very large and heavy. Some of these instruments

are shown below.

By the early 1920s the Fabry-Perot interferometer had become well established in

the lab. For these years the application, apart from astrophysical measurements, would be

found in isotope shifts, line broadening and shift due to source conditions, and the

structure of complex lines. The basic manner of use remained essentially unchanged from

Fabry and Perot's day until the invention of the laser. Apart from photoelectric recording,

however, it is difficult to point to anything that had not been at least envisaged by Fabry

and Perot in their early work. This perhaps may stand as the highest possible tribute to

their endeavors.



Figure 2.5 The highly engineered interferometer built by M Jobin for Fabry and Perot are
described and illustrated in 1901. This is the same basic layout as the prototype instrument
described in detail in 1899.
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Figure 2.6 A photograph of interference rings of the green mercury line, shown by Fabry
and Perot in 1901 in the Astrophysical Journal. The full structure of four satellite rings
was lost in reproduction. This appears to be the first published record of Fabry and Perot
fringes.



Figure 2.7 A fixed etalon or standard of thickness developed by Fabry and Perot for
measurement on arc and solar lines.
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Figure 2.8 Interference fringes photographed by Barnes (1904) under various conditions
of plate separation, optical arrangement and focusing of the fringe forming lens.
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2.3 This Thesis Device

This thesis present the design and processing considerations of fabricating an

optoelectronic reflection type modulator device basically apply Fabry-Perot etalon. The

challenge is to make the etalon to micromachine scale and use electric to control the

optical length of the interferometer.

In previous design, people use very heavy and large mechanical instrument to

achieve the idea of control optical length. In these days the fast development of VLSI

technology made it possible to shrink the scale of the etalon to micro. It is possible to

control micro-sized gap between the two thin diaphragms by electrostatic force.

Figure 2.9 shows the basic idea of this thesis device. The detail will be illustrated in

chapter 3 and chapter 4.

Figure 2.9 The original idea of this thesis device



CHAPTER THREE

PERFORMANCE DESIGN OF THE LIGHT MODULATOR

3.1 Introduction

The Fabry-Perot interferometer (FPI) is an optical element consisting of two partially-

reflecting low-loss parallel mirrors separated by a gap. The optical reflection or

transmission characteristic of such an element consists of a series of sharp resonant peaks.

When the gap equals multiples of half wavelengths of primary and secondary reflection the

transmission T is a maximum, and the reflectance is a minimum. These peaks are caused

by wave interference between the two parallel plates. This device can operate in the a wide

range of wavelengths.

Figure 3.1 shows a first-generation microscaled FPI [45][46], consisting of a

similar fixed central thick silicon diaphragm, and a moveable diaphragm. The moveable

diaphragm serves as the moveable mirror. Although this device demonstrated the

feasibility of applying micromachining technology for Fabry-Perot etalon, the suspension

characteristics of the flat diaphragm resulted in an overall die size of about 12 mmx14

mm, much too large for fiber optic modulation. The proposed structure of this thesis uses

an etch-stopped corrugated diaphragm support in place of a flat diaphragm, to obtain

increased linear travel and isolation from stresses and resistance to of bending.

Corrugated structures can be particularly useful in providing a large vertical travel with a

relatively small suspension area. These corrugations are formed by etching concentric

grooves in the front surface of a wafer and diffusing an etch-stop layer into the resulting

non-planar surface. After etching from the back surface, the diaphragm that is formed

follows the etched contour of the front surface. By using anisotropic etch for the groove

formation, the corrugations can follow any desired pattern, including circular, spiral and

serpentine. In this case, the grooves have straight sides with rounded corners, surrounding

26
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Figure 3.1 The first generation of FPI. [45] [46]

a square center boss. The overall die size is 5 mm square, with a central optical cavity 1.4

mm square.

The second generation FPI [47], shown in Figure 3.2, consists of two silicon

wafers, bonded together at the wafer level, and sawed into individual devices. Both wafers

have highly reflective multilayer dielectric mirrors and arrays of metallic electrodes

deposited on the interior devices. One wafer consists of silicon mesas surrounded by

corrugated diaphragm suspensions. The other wafer has a matching set

of electrodes which are uses to vary the gap in the devices electrostatically.

Figure 3.2 Cross-sectional schematic view of second-generation reflection type FPI.
Vertical scale exaggerated for clarity. [47]
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3.2 Device Geometry

The third-generation Fabry-Perot Etalon (FPI) of this thesis, shown in Figure 3.3 is

fabricated entirely on a single wafer using surface micromachining technology. It has

highly reflective multilayer dielectric mirrors and arrays of metallic electrodes deposited on

the interior surfaces. The top side of the cavity consists of polysilicon thin film surrounded

by corrugated diaphragm suspensions. The substrate side has a matching electrode which

is used in conjunction with the top electrode to vary the gap electrostatically.

Figure 3.3 Cross-sectional schematic view of third-generation reflection type FPI.
Vertical scale expanded for clarity.

This new device uses a novel technique for forming the optical gap cavity. The

silicon surfaces on which the optical coatings are deposited must have high polish

characteristic. This precludes the use of an etched silicon surface as the front surface of

the backside mirror. The isolated layer and metallization are then deposited and patterned.
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Next spin-on glass (SOG) is used as a sacrificial layer. The cap film which is a polysilicon

layer is then deposited. Next, the SOG layer is sacrificially etched away to provide the

desired gap of about 0.65µm. The final step is coated with optical coatings, which

increasing the transparency of light intensity. The detail process is presented in chapter 4.

The quality of the optical coating is critical to the operation of the device. The

coatings must have high reflectivity to provide narrow optical bandwidth, but with very

low loss to provide high peak transmittance. The reflective coatings used are multilayer

dielectric mirrors made up of multiple pairs of quarter wavelength layers with high and

low refractive indices. A common technique is to use a relatively low-index material, such

as silicon dioxide, and a higher index metallic oxide.

3.3 Electrostatic Force Model

The optical gap 1 is controlled by varying voltages between the two control electrodes

(diaphragm cap and the substrate). The electrostatic force tends to draw the cap film

towards the opposite surface reducing the cavity spacing. This motion is balanced by the

elastic restoring force of the diaphragm structure. There is a pair of drive electrodes on the

device. These electrodes are designed to allow not only the spacing of the cavity to be

controlled, but also the parallelism of the two mirrors, maximizing the finesse of the

system. Additionally, the spacing of the electrodes can be monitored capacitively. The gap

between the films must be maintained to high precision. Active control of the gap is

sometimes necessary to correct for the small changes in gap due by acceleration or

temperature changes.

The microstructure of this device with no applied voltage has the capacitance

in the parallel-plate approximation neglecting fringe fields. When a potential

is created which pulls the

electrodes together. The film warp caused by this pressure will be discussed in section 3.5.

is applied, a uniform pressure P



3.4 Optical Transmission

The transmission of a FPI is described by the Airy function

where A= mirror absorptance, R= mirror reflectance, d= cavity gap, 0= angle of incidence

of the beam, and k= 27/λ.

The wavelength response described by the Airy function consists of a series of

resonant peaks. It can be seen from equ. 3.4-1 that with kd=nπ, and with n, the order of

the interference, equal to a positive integer, the transmission for normal incidence eq. 3 .4-

1 becomes :

and the transmission intensity minimum between these peaks is given by

The transmission peaks are separated in wavelength by z =λ2/(2d), and this spacing is

referred to as the free spectral range (FSR). Each peak has a full width at half maximum

(FWHM) bandwidth given by

The instrument finesse F is the ratio of the free spectral range to the FWHM

linewidth. FR is the reflection finesse given by
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An important feature of a FPI is that the free spectral range and the FWHM

bandwidth can be independently controlled. For a given wavelength, the cavity gap sets
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the free spectral range and the mirror reflectivity controls the bandwidth. Thus the

properties of the filter can be tailored to a particular application.

3.5 Mechanics of Corrugated Diaphragm

Most reported micromachined silicon diaphragms have been flat and either square or

rectangular. These configuration have served well for piezoresistive pressure sensors for

pressure ranges above 100 mmHg. For very low pressure ranges, however, the non-

linearity caused by membrane stresses in a square diaphragm becomes appreciable, and

other, more elaborate schemes are needed. These have primarily taken the form of bossed

regions on the back side of the diaphragm to concentrate stress at the periphery for

piezoresistive devices or to produce piston-like travel from the central region of the

diaphragm [48]-[50]. These bossed structure offer better linearity than a non-bossed

structure, but the linear deflection possible from such structure is still vary small. It has

been recognized for decades in the field of conventionally formed metal diaphragms that

by introducing corrugations into the diaphragm structure, the linearity of a diaphragm can

be increased considerably [51]. To date only a limited amount of work has been

undertaken to transfer conventional corrugated diaphragm technology to micromachined

silicon structures [52]. In the present work a useful technique for forming these structures

is proposed modeled to increase the linearity of this device. But, however, the corrugated

structure will reduce the resonant frequency.

With the introduction of corrugations into the diaphragm structure, the device

performance can be improved dramatically. For shallow, sinusoidal corrugations the

deflection is approximately given by [53]:

where P is the applied pressure, R is the diaphram radius, h is the diaphragm thickness, E

is Young's modulus, v is poisson's ratio and y is the center deflection of the diaphragm.



and

and for shallow, sinusoidal profiles:

with q is the corrugation quality factor and H is the corrugation depth. Thus q varies from

1, for a flat diaphragm, to a value that approaches 1.22 times the ratio of corrugation

depth to diaphragm thickness. For conventional metal corrugated diaphragms, the value of

q is typically chosen to be between 10 and 30. It is clear that the coefficient ap increases

rapidly with increases in q, while the coefficient by decreases rapidly with increases in q.

Thus the linearity of the diaphragm can be increased dramatically by providing

corrugations that are as little as three times the diaphragm thickness. In this case, q=3.8,

and the linear term, ap, is increase by about a factor of four while the cubic coefficient, b y

, is reduced by a factor of over 10.

In many useful structures it is desirable to introduce a center boss into the

structure. This makes the structure stiffer for a given diaphragm thickness and corrugation

depth. Small deflections of a bossed, corrugated diaphragm can be expressed as:
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where
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and r is the ratio of boss radius to diaphragm radius. This correction is less than 20% for

boss ratios less than 0.4 with values of q grater than 4. It is vary significant, however, for

nearly flat diaphragms with boss ratios greater than 0.3. The influence of a boss on the

cubic term is somewhat more complicated; a factor similar in magnitude to n p can be used

to modify the b term.

There is an additional factor that needs to be considered depending on the method

of fabrication of the diaphragms. The traditional approach has been to use a heavily doped

boron layer as the etch stop used to form the diaphragm. It has been shown that these etch

stops introduce considerable residual tension in the resulting diaphragms. For large values

of initial tension the deflection of a flat diaphragm can be represented by:

where a is the initial stress. This resistance to bending due to initial stress can be added to

the terms given above using the principle of superposition to given, for a flat diaphragm:

This initial tension in very heavily doped etch stops can be very great. Chau and

Wise report a 3 mm square diaphragm, 1.7 µm thick, that is 600 times stiffer than a stress-

free diaphragm. The use of an electrochemically etch-stopped diaphragm can produce a

structure that has considerably less residual stress.



With this equation we get the followiing charts.
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Figure3.4 Applied voltages vs. modulated lengths (with corrugation)

Figure3.5 Applied voltages vs. modulated lengths (without corrugation)
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3.6 Results and Discussion

This device bases on the FPI but it is more complex than simple FPI. It is composed by

five different layers. The overall effect is illustrated here.

Figure 3.6 shows the main working area of this device. The light incident from air

through polysilicon layer, air (cavity), and silicon nitride then reflected by tungsten film

and bake through the same path again. Each layers' interface will transmit reflect light

intensity.

Figure 3.6 The overall light path of this device

We now consider the top sandwiches construction which is show in figure 3.7.

This structure is a air-polysilicon-air structure.



Figure 3.7 The top sandwich construction of this device

The transmission intensity of this constructure we have already discuss in chapter

2. Figure 3.8 shows the transmission characteristic. Here we pick

In this condition we can get a 98% transmission intensity, that is

Even the processing error change the polysilicon thickness ±50nm. We still get

90% transmission intensition.

Figure 3.8 Reflection Intensity vs. Polysilicon Film Thickness (nm)
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The second sandwich of this device is shown in figure 19. Now the complex

amplitude of this incident wave is A12, then the partial reflections, Rl, R2, and so forth,

are given by

where r i is the reflection coefficient of polysilicon interface, r2 is the reflection coefficient

of air and silicon nitride interface, t 1 is the transmission coefficient for waves incident

from polysilicon toward air, and t and r are the corresponding quantities for w aves

traveling from air toward polysilicon. The complex amplitude of the total reflected wave is

For the transmitted wave,

where a phase factor exp(iδ), which corresponds to a single traversal of the plate and is

common to all the terms, has been left out. Adding up the D terms, we obtain

for the complex amplitude of the total transmitted wave. We notice that the terms

within the parentheses in [3.6-1] and [3.6-21 form an infinite geometric progression;

adding them, we got

and

where we used the fact that ri= -r.
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If the incident photo intensity (watts per square meter) is taken as Ir, we obtain from

(3.6-3) the following expression for the fraction of the incident intensity that is reflected:

for the transmitted fraction. Our basic model contains no less mechanisms, so conservation

of energy requires that I t + I r be equal to 42, as is indeed the case.

Figure 3.9 The second part construction of this device

Figure 3.10 shows the reflection characteristic. With this structure, we can get a

0.53 reflection index.



Figure 3.10 Reflection Intensity vs. Physical Air Gap Length
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Now we discuss the bottom sandwich which is air-silicon nitride-tungsten

construction. With a similar method we get figure 3.12 which shows the reflection

characteristic of this construction. We choose X3=1300nm 323.38nm to get a zero
2.01x 2

reflection.

Figure 3.11 The bottom sandwich construction of this device

Figure 3.12 Reflection Intensity vs. Silicon Nitride Thickness
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Figure 3.13 shows the overall effect of this device. From the above calculations,

41=98% Ii. We can modulate Ii so that IRi2 varies from 0 to 53% of Ill . The reflection

intensity of the bottom sandwich is properly choose so that no reflection. The overall

modulation index of this device is, if we define that

then

and the reflection intensity is about 50% of Ii.

Figure 3.13 The overall effect of this device
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Figure 3.14 Total Reflection Intensity of this Device vs. Physical Length of Air Gap



CHAPTER 4

MASK DESIGN AND PROCESS PROCEDURE

4-1. Device Structure

A top view of the device design in this thesis is shown in figure 4.1. In this figure the

cavity underlies the diaphragm and corrugated structure. A cross section is shown in fig.

4.2. This device is fabricated within a single silicon wafer. The process uses six masks.

Figure 4.1 A top view of the full diaphragm region showing the corrugated
structure
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The third-generation Fably-Perot etalon (FPI) of this thesis, shown in Figure 4.1,

contains a single cavity structure. It has highly reflective multilayer dielectric mirrors and

metallic electrodes that are surface machined. The top side of the cavity consists of a

polysilicon thin film surrounded by corrugated diaphragm suspensions. The bottom or

lower side has a fixed position metal film which is used for electrostatic actuation.

This new device uses a novel technique for forming the initial optical gap which is

the depth of the cavity. The silicon surfaces on which the optical coatings are deposited

must be equivalent in surface finish to unprocessed silicon wafers. This precludes the use

of an etched silicon surface as the mirror surface, the isolated layer and metallization are

then deposited and patterned. Spin-on glass is used as a sacrificial layer to create the

cavity. The polysilicon cap film is then deposited. After that the sacrificial layer is etched

down to the desired gap width of approx. 1 In the final processing step, the

diaphragm is coated with optical coatings, thereby increasing the transparency for a

incident light. The detail process will be discussed in chapter 4.3. Figure 4.3 shows the

process flow of this device fabrication.
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Figure 4.2 Cross-sectional schematic view of third-generation FPI. Vertical scale
exaggerated for clarity.



1.Starting material (silicon wafer with [100] direction)

2. RIE etch define a flat-bottom cavity

3. Deposit SiO2 as an isolated layer between substrate and metal layer

4. Sputter tungsten as a mirror surface

Figure 4.3a The process flow of this device fabrication



5. LPCVD Si3N4
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6. Open windows for contact to the buried electrode

7. Spin-on glass as a sacrificial layer

Figure 4.3b The process flow of this device fabrication



8. Planerize spin-on glass
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9. Deposited polysilicon

10. Pattern the polysilicon layer

Figure 4.3c The process flow of this device fabrication (cont)
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11. Sputter Aluminum as bonding pad

12. Aluminum Removal

13. Etch small holes for the etchants coming into the cavity

Figure 4.3d The process flow of this device fabrication



14. Etch out the cavity
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Figure 4.3e process flow of this device fabrication
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4-2. Mask Design

Physical layouts of the 6 mask levels are in Appendix A. Figure 4.4(a) to (0 shows the

typical device mask layout.

In this third generation FPI, six masks are needed for fabrication. These mask

levels are :

Mask #1: Define the cavity

We apply this mask (figure 4.4(a)) in the very first step. The area of the cavity is

the mean working area. For experimental testing, three different sizes were designed to get

the best effect, they are 100x 100 μm, 200x200 pm, and 500x500 µm. Fields are specified

for positive photoresist.

Mask #2 Contact to the buried electrode

Two electrodes on each side of the cavity provide the electrostatic actuation. The

top electrode is the cap film that is doped polysilicon film. The other side is a tungsten

reflective metal film. The isolator film between these two electrodes is silicon nitride.

Mask #2 is shown in figure 4.4(b) which is a light field mask.

Mask #3 Planerize Spin-On Glass

The cavity of this device is fabricated through a sacrificial layer process. The

material which is used for the sacrificial layer is SOG. The SOG is applied by a spin-on

process. The SOG will cover the entire wafer. This mask is used to remove the SOG from

areas outside of the cavity. Additionally, this mask contains structures to define the

corrugation of the diaphragm. Mask #3 is shown in figure 4.4(c) which is a light field

mask.
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Mask #4 Pattern the Polysilicon

This mask exposes the bonding pad which contacts the lower electrode. This opens

the polysilicon to expose the under lying metal. Figure 4.4(d) shows mask #4 which is a

dark field mask.

Mask #5 Aluminum Removal

The device should be connect to the outside world. We use aluminum as the "wire"

in the device, then use it to wire bonding. This mask is for the aluminum removal. The left

area is the electrodes. They connect the electrode to the outside world. (Figure 4.4(e))

Mask #6 Etch small hole in polysilicon

The sacrificial layer is released as a final process stop. This mask opens an etch

window through the polysilicon. These holes should not be too large to effect the light

reflection and transmission (or, effect the result as little as possible). Several different hole

diameters and positions designs are used to get the best result. These holes also cannot be

too small, otherwise the time for the cavity release will be too long. (Figure 4.4(f))



Figure 4.4(a) Mask #1 Define the cavity
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Figure 4.4(6) Mask #2 Contact to the buried electrode
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Figure 4.4(c) Mask #3 Planerize Spin-on glass
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Figure 4.4(d) Mask #4 Pattern the polysilicon
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Figure 4.4(e) Mask #5 Aluminum removal

57



58

Figure 4.4(f) Mask #6 Etch small hole in polysilicon
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Figure 4.3 The six mask levels combined
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4-3. Process Description

4.3-1 Starting material

Silicon wafers oriented in the [100] crystallographic plane are used in this thesis. Prior to

use silicon wafers are cleaned chemically to remove surface contamination. Commonly

used are aqueous mixtures of NH4OH-H202, HCI-H202, and H2SO4-H202. Here we

use H2SO4-H2O2. All of the solutions are efficient in removing metallic impurities. The

ammonium hydroxide and sulfuric acid based mixtures will also remove organic

contaminants, but the latter is better in this regard. These cleaning solusions leave the

surface of the wafers in a hydrophilic state due to the oxidizing nature of the peroxide. In

a hydrophilic state, water will wet the wafer surface (i.e., will be retained by surface

tension). Since the chemically grown oxide can contain impurities from the chemicals, it is

usually removed by a short immersion in dilute hydrofluoric acid. A typical cleaning

sequence would be a sulfuric acid-hydrogen peroxide clean followed by the hydrofluoric

acid dip, with deionized water rinses following each acid step.

4.3-2 Lithography step: Mask #1 Defines Cavity

Figure 4.5 Device lithography generalization
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Figure 4.5 illustrates schematically the lithographic process used to process wafers.

The incident radiation is transmitted through the "clear" parts of the lithography mask.

The circuit pattern of opaque chromium blocks some of the radiation. This type of

chromium/glass mask is used with ultraviolet (UV) light.

Here we use optical lithography comprise the formation of images with visible or

ultraviolet radiation in a photoresist using contact printing. For integrated circuit

production the linewidth limit of optical lithography lies near 0.4 Inn, although 0.2 µm

features may eventually be printed under carefully controlled conditions.

Positive resists are used for processing this device. Positive resists have two

components: a resin and a photoactive compound dissolved in a solvent. The photoactive

compound is a dissolution inhibitor. When it is destroyed by exposure to light, the resin

becomes more soluble in an aqueous developer solution, so higher resolution is possible

with positive resists. The development process of projection printed images in positive

resists has been modeled theoretically. It is an isotropic etching process. The sensitivity of

most standard resists peaks in the 300 to 400 nm spectral range.

We open this window on the silicon substrate for the main working area. This

cavity forms the optical path, the cap. The window's size is really depend on the

application need. Three different window sizes: 100x 100µm 2, 200x200µm2, and 500x

500 "12 are used for the present design.



4.3-3 Silicon substrate etch (RIE)
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Figure 4.6 RIE etch define a flat-bottom cavity

We use reactive ion etching (RIE) to define a flat-bottom cavity. RIE has three

characteristics: physical (ion) and chemical, directional, and more selective than sputtering.

The pressure of this etching is in the range of 100 millitorr. The term reactive ion etching

is commonly used to denote processes in which plasma etching is accompanied by ionic

bombardment, is actually somewhat of a misnomer. Since the etching by the reactive

radicals is principally enhanced by the ionic bombardment, sometimes these processes

would be described as ion-assisted etching processes.

Since this bottom act like a mirror after sputtering metal. The bottom of the cavity

must be very flat. RIE provide the most uniform etching across the entire wafer to match

the requirement.



4.3-4 Thermally Grown Oxidation
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Figure 4.7 deposit SiO2 as an isolated layer between substrate and metal layer

Silicon Oxide has several uses here: to serve as a mask against implant or diffusion

of dopant into silicon, to provide surface passivation, and to provide electrical isolation of

next level metallization. Several techniques for forming the oxide layers have been

developed, such as thermal oxidation (including rapid thermal techniques), wet

anodization, vapor-phase technique [chemical vapor deposition (CVD)], and plasma

anodization or oxidation. Since the interface between the oxide and the silicon requires a

low-charge density level, thermal oxidation has been the preferred technique.

Because a silicon surface has a high affinity for oxygen, an oxide layer rapidly

forms when silicon is exposed to an oxidizing ambient. The chemical reactions describing

the thermal oxidation of silicon in oxygen or water vapor are given in equation 4.3-4(1)

and 4.3-4(2), respectively.
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The basic process involves shared valence electrons between silicon and oxygen;

the silicon-oxygen bond structure is covalent. During the course of the oxidation process,

the Si-SiO2 interface moves into the silicon. Its volume expands, however, so that the

external SiO2 surface is not coplanar with the original silicon surface. Based on the

densities and molecular weights of Si and SiO2, we can show that for growth of an oxide

of thickness d, a layer of silicon with a thickness of 0.44d is consumed (figure 4.8)

Figure 4.8 Growth of Si02

Thermally grown Si02 is in thickness ranging from 60A to 10000,Z. For here we

want 300g thickness for isolating the metal and substrate.



4.3-5 Sputtered tungsten film
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Figure 4.9 Sputter tungsten as a mirror surface

4.3-5 (a) Sputtering

Sputtering is a term used to describe the mechanism in which atoms are dislodged

from the surface of a material by collision with plasma-produced particles. It has become

the most widely utilized deposition technique for a variety of metallic films in VLSI

fabrication, including aluminum, aluminum alloys, platinum, gold, titanium:tungsten and

tungsten. It is also used in some applications to deposit molybdenum, Si, SiO2(silica

glass), and refractory metal silicides.

We choose sputtering to deposit metal layer because of the following reasons:

a) Sputtering can be accomplished from large-area targets, which simplifies the

problem of depositing films with uniform thickness over large wafers.

b) Film Thickness control is relatively easily achieved by selecting a constant

set of operating conditions and then adjusting the deposition time to react.
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c) Many important film properties, such as step coverage and grain structure,

can be controlled by varying the negative bias and heat applied to the

substrates.

4.3-5(b) Tungsten film

I. Fabrication concern

For fabrication concern, refractory films are required in contact and

interconnection, where low-resistivity and thermally stable layers are particularly required.

This growing requirement is a logical constant decrease of device dimensions in order to

achieve higher densities and performances. For "self-aligned" technology, the use of

refractory metals able to withstand the strong postime/plantation annealing (800-900 °C)

without any degradation of the film integrity is a requirement of prime necessity.

The refractory metals are legitimate candidates for the above-mentioned very large

scale integration (VLSI) requirements. The advantages of tungsten, in particular, are

compared in Table 4.3-5 I with those of AL and summarized below:

(i) The electrical resistivity is fairly low (W bulk resistivity: 5.6 tun cm)

(ii)The heat resistance is intrinsically high.

(iii)The films are readily etchable.

(iv)The patternability is fine.
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Table 4.1 Compared advantages of two metals (AL and W) according to VLSI
requirements.

Film characteristics	 Aluminum	 Tungsten

Resistivity ( µΩ  cm) 	 2.7 (bulk)	 5.6 (bulk)

Lithography resolution (gm) 1 	 0.2

Critical linewidth (11m)	 3	 0.5

Maximum temperature

of postannealings (°C)	 500	 800

Adhesion	 very good	 irregular

Low temperature	 Al203	 Low thermal

Oxidation	 problem with etching stability in oxygen ambients

II. Reflectivity

Figure 4.10 shows the variations of the optical reflectivity (light wavelength: 546

nm) for two W film Thickness (80 and 250 nm) in the 100-1000 W rf power range (during

deposition). In each case, a strong decrease of the reflectivity is observed —100-200 W and

is particularly pronounced for the lower thicknesses. Beyond 200 W, the reflectivity tends

to stabilize at a 54% upper limit, which corresponds to the following mean value of the

complex refractive index: N = 3.15 For comparison, the complex refractive index of a

quasi-ideal W surface (atomically clean and well-ordered surface) is N = 3.75 at 546 nm

and the corresponding reflectivity is also 54%.
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Figure 4.10 Optical reflectivity vs rf power for two film thickness (150 and 250 nm).
for tungsten [56]
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4.3-6 Use low-pressure chemical vapor deposition to grow silicon nitride
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Figure 4.11 LPCVD Si3N4

Stoichiometric silicon nitride (Si3N4) is used for passivating the tungsten layer

because it serves as an extremely good barrier to the diffusion of water and sodium. These

impurities cause devise metallization to corrode or devices to become unstable. Silicon

nitride is patterned and the exposed silicon substrate is oxidized. The silicon nitride

oxidizes slowly and prevents the underlying silicon from oxidizing. This process of

selective oxidation produces nearly planar device structures.

Silicon nitride is chemically deposited by reacting silane and ammonia at

atmospheric pressure at temperatures between 700 and 900°C (That's why tungsten was

selected as the metal layer) or by reacting dichlorosilane and ammonia at reduced pressure

at temperatures between 700 and 800°C. The chemical reactions are
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The reduced-pressure technique has the advantage of good uniformity and high

wafer throughput.

Silicon nitride, chemically deposited at temperatures between 700 and 900°C, is an

amorphous dielectric containing up to 8 atmospheric % hydrogen. The hydrogen is

bonded to the nitrogen and the silicon. The amount of hydrogen depends on the deposition

temperature and the ratio of reactants. More hydrogen is incorporated into the deposited

film at low deposition temperatures or at high ammonia to dichlorosilane ratios. Silicon

nitride deposited at low ammonia to dichlorosilane ratios contains excess silicon that

decreases the electrical resistivity which is the effect we don't want.

Silicon nitride films have a refractive index of 2.01 and an etch rate in buffered

hydrofluoric acid of less than 1 nm/min. Both properties are used to check the quality of

deposited nitrides. Oxygen impurities in the film cause a higher etch rate. High refractive

indices suggest a silicon-rich film; low indices are caused by oxygen impurities. Figure 4.3-

6 shows how the refractive index changes with composition. Silicon nitride films that

contain oxygen are silicon oxynitride. The composition of silicon oxynitride can vary from

silicon dioxide with a refractive index of 1.46 to silicon nitride with an index of 2.01. Films

that are free of oxygen but have silicon to nitrogen ratios greater than 0.75 are silicon-rich

silicon nitride and have a refractive index that increases as the amount of excess silicon.

Silicon nitride has a high tensile stress, about lx10 10 dyne/cm2 . Films thicker than

200 tun sometimes creak because of high stress. The resistivity of silicon nitride at room

temperature is about 10 16 ohm-cm. The electrical resistivity depends on the deposit

temperature, film stoichiometry, amount of hydrogen in the film, and the presence of

oxygen impurities.

Table 4.2 summarizes the properties of LPCVD silicon nitride.



Table 4.2 Properties of LPCVD silicon nitride

Temperature (°C) 700-800

Composition Si3N4(H)

Si/N ratio 0.75

Atom % H 4-8

Refractive Index 2.01

Density(g/cm3 ) 2.9-3.1

Dielectric constant 6-7

Resistivity (ohm-cm) 1016

The thickness of this layer we choose is 485nm. Figure 4.12 shows the reflection

intensity vs length.
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Figure 4.12 The reflection light intensity vs. silicon nitride thickness EQU [2.1-6]



4.3-7 Lithography Step: Open windows on silicon nitride
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Figure 4.13 Open windows for contact to the buried electrode

Since the silicon nitride film is used to isolate the W electrode, we need an

electrical path to the buried layer contacting the outside bonding pad. That's why we open

these windows. This window is designed 15x 15 gm. The detail please reference to chapter

4.3-2. We use the following steps to open the windows.

Silicon nitride can be etched by reflux boiling 85% phosphoric acid at 180°C.

However photoresist is lifted during such etching and does not make a good etch mask for

this application. Most wet silicon nitride etching thus utilizes a thin SiO2 layer (either

thermally grown or deposited), to mask the nitride. The SiO2 layer is first etched using a

resist mask, then the resist is stripped, and the patterned oxide serves as the etch mask for

the nitride in the phosphoric acid etch. The Si3N4 etch rate is about 100 A/min., but only
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0-25 Amin. for CVD SiO2. Films of plasma-enhanced CVD Si3N4 have much higher

etch rates than conventional high temperature CVD Si3N4 . The rates depend strongly on

the film composition, which may be expressed as

C

Figure 4.14 The wet process for Si3N4 [54]



4.3-8 Spin-on glass as a sacrificial layer

Figure 4.15 Spin-on glass as a sacrificial layer

The spin-on glass is liquid solutions which, upon drying, form doped SiO2 layers.

Most of the formulations are held proprietary by their manufacturers. The spin-on dopants

are applied to the wafers in a similar fashion as photoresist. The thickness of the deposit

depends on the solution viscosity and the spin speed. The dopant concentration in the film

can be varied by dilution with organic solvents. It is often necessary to bake the wafers at

200°C for 15 minutes to dansify the film, and to prevent absorption of water vapor prior

to driving the dopant into the silicon. The diffusion is performed over a range of

temperatures and times depending on the desired sheet resistance, and junction depth. The

detail will be discuss in chapter 5.



4.3-9 Planerize spin-on glass
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Figure 4.16 Planerize spin-on glass

The conformal deposition of a dielectric such as phosphorus-doped silicon dioxide

over a pattern conducting layer results in a stepped profile similar to that in figure 4.3-8.

In order to ensure uniform coverage of the next conducting layer, the dielectric surface

must be smoothed. This can be accomplished by flowing the dielectric at high

temperatures (>800°C). When the highest allowable substrate temperature is less than the

dielectric flow temperature, two etching techniques can be used to smooth the surface.

The first, called planarization, is accomplished by spinning a resist or any other polymeric

layer onto the irregular dielectric film, which is deposited thicker than necessary for the

final structure. This results in a smoothing of the new top surface. This new surface is then

transferred into the dielectric by etching in a reactive plasma that etches the resist and the
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dielectric at the same rate. Smoothing of a dielectric surface can also be accomplished by

depositing more dielectric than necessary and then simply etching in an RIE mode.

The mask used in planarization also has some frame-like structure. It is used for

generating the corrugated structure. The detail will be introduced in chapter 5. We may

need two masks (one for plannerize, one for frame-like structure) to finish this process.

4.3-10 Deposit Polysilicon

Figure 4.17 Deposit Polysilicon

Polycrystalline silicon, usually referred to as polysilicon, is prepared by pyrolyzing

silane at 575 to 650°C. Polysilicon is used as the cap film in this device. The doping

elements arsenic, phosphorus, or boron reduce the resistivity of the polysilicon and are

added later by diffusionor ion implantation.

We use LPCVD to deposit the polysilicon film. The chemical reaction is

A low-pressure process is used for depositing polysilicon. We use 20 to 30% silane

diluted in nitrogen at a pressure of 25 to 130 Pa (0.2 to 1.0 Ton). This process deposits



77

that results in low resistivities. The dopant concentration in diffused polysilicon often

exceeds the solid solubility limit, with the excess dopant segregated at the grain

boundaries. Hall mobilities for heavily diffused polysilicon are usually 30 to 40 cm2/V-s.

Figure 4.19 Resistivity of P-doped polysilicon. (a) Diffusion: 1 h at the indicated
temperature.(b) Implantation: 1 h anneal at 1100°C. (c) In situ: As deposited at
600°C and after a 30-min anneal at the indicated temperature.

The resistivity of implanted polysilicon depends primarily on implant dose,

annealing temperature, and annealing time. The high resistivity in lightly implanted

polysilicon (figure 4.3-19) is caused by carrier traps at the grain boundaries. Once these

traps are saturated with dopants, the resistivity decreases rapidly and approaches the

resistivity for implanted single-crystal silicon. The mobility for heavily implanted

polysilicon is about 30 to 40 cm 2/V-s, similar to the values for diffused polysilicon.
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Implanted polysilicon has about ten times higher resistivity than diffused polysilicon

because of the differences indopant concentrations: about 1020 cm-3 for a heavy diffusion.

The thickness of this polysilicon layer is very important. It is designed to allow the

maximum intensity of light to pass through this layer. Figure 4.20 shows the transmission

light intensity vs. thickness of polysilicon.

Polysilicon film thickness (nm)

Figure 4.20 Light transmission intensity VS. polysilicon layer thickness



4.3-11 Pattern the polysilicon layer
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Figure 4.21 Pattern the polysilicon layer

We use wet etch to etch out the area not in the pattern. Polysilicon is typically wet

etched in mixtures of nitric acid (HNO3) and hydrofluoric acid (HE). The reaction is

initiated by the HNO3 which forms a layer of silicon dioxide on the silicon, and the HF

dissolves the oxide away. The overall reaction is :
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Water can be used to dilute the etchant, but acetic acid (CH3COOH) is preferred

as a buffering agent, since it causes less dissociation of HNO3, and thus yields a higher

concentration of the undissiciated species.

The mixture compositions can be varied to yield different etch rates. At high HF

and low HNO3 concentrations (the region near the upper corner of the triangle), the etch

rate is controlled by the HNO3 concentration, because in such mixtures there is an excess

of HF to dissolve the Si02 created during the reaction. On the other hand at low HF and

high HNO3 concentrations, the etch rate is limited by the ability of the HF to remove the

SiO2 as it is created. In such etchants the etching is isotropic, and they are used as

polishing agents.

After etch the polysilicon, the device will look like figure 4.21. The left polysilicon

forms the cap film. This film will be attracted to move toward the bottom by electrostatic

force. The optical length will be controlled by the different voltage we put between cap

and bottom.



4.3-12 Sputtered Aluminum
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Figure 4.22 Sputtered Aluminum as bonding pads

Table 4.3 Properties of Aluminum and Aluminum alloy thin films

Name Symbol Melting
Point (°C)

Al/Si	 Density
Eutectic (°C) (g/cm3 )

Resistivity

(µΩ-cm)

Aluminum Al 660 577 2.70 2.7

Aluminum/ Al 4%Cu 650 —577 2.95 3.0
4% Copper

Aluminum/ Al 2%Si 640 —577 2.69 2.9
2% Silicon

Aluminum/ Al 4%Cu2%Si —577 2.93 3.2
4% Copper
2% Silicon
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The sputtering technique has been described in section 4.3-5(a).

Aluminum is primarily utilized in these applications in thin-film form, and it

functions as a material which interconnects the device structures formed in the silicon

substrate. Aluminum is emerged as the most important material for device metallization

because of its low resistivity (pAi = 2.7 µΩ-cm) and ease of processing. Aluminum thin-

films are deposited as polycrystalline materials, usually in the 0.5µm-1.5µm thickness

range.



4.3-13 Aluminum Removal

Mask #5 Aluminum Removal
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Figure 4.23 Aluminum Removal

We used wet etching to etch out the aluminum. Wet etching of aluminum is

generally done in heated solutions (35-45°C) of phosphoric acid , nitric acid, acetic acid,

and water. A typical etch composition may be 80% phosphoric acid, 5% acetic and 10%

water. The etch rate is in the range of 1000-3000 A/min and depends on several factors

including etchant composition and temperature, type of resist used, agitation of wafers

during etch, and impurities or alloys in the predominantly aluminum film.
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The chemical mechanism of wet etching aluminum proceeds as follows: The nitric

acid forms aluminum oxide, and the phosphoric acid and water dissolve this material.

Conversion to Al2O3 takes place simultaneously with the dissolution process.

One of the difficulties encountered in wet etching of aluminum is H2 gas bubble

creation. These bubbles tend to adhere firmly, locally inhibiting etching. Mechanical

agitation during etching, and the addition of agents which lower the interfacial tension, are

used to minimize this problem. Periodic removal of the wafers from the etching solution

also breaks the bubbles.

The H2 bubble formation and other problems (e.g. local contamination of the

developed metal, local oxidation, and delayed etching in certain locations [particularly in

narrow spaces due to incomplete removal of resist residue]) delay the start of etching or

prolong the time to clearly etch all the areas on the wafer. Thus, once the minimum

etching time for a given pattern is established, 10-50% overetch time is usually added to

assure the complete isolation of features.



4.3-14 Etch small holes for the etchants coming into the cavity
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Figure 4.24 Etch small holes for the etchants coming into the cavity

This device has so far almost done. The only things left are to etch out the cavity.

The cavity is formed by spin-on glass which is a sacrificial layer. To etch out this SOG, we

must open some windows on the top layer. These windows should not be too large to

change the intensity of the light, but can't too small to let the etching time too slow.

Several different designs of the locations and sizes are shown in figure 4.2. The solution

for etch these small holes on the polysilicon film is described in section 4.3-11.



4.3-15 Etch out the cavity
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Figure 4.25 Etch out the cavity

After open the windows on the top film, we can use 49% HF to etch out the SOG.

The etching rate is depend on the SOG. In this thesis's case, the etching rate is 15µm/min.

It is much faster than the etching rate of aluminum. So we don't have to protect those

aluminum circuits. To calculate the time we put the wafer in the solutions (49% HF) not

only concern the thickness of SOG, but also the distance of the holes. Figure 4.3-15(b)

shows how the distances of holes effect the etching time.

The high temperature SOG may not etch very fast in HF compared to ITO or

doped SiO2. It need some more experimences to varify the data we got from the paper.

In figure 4.26 example 1, the distance between holes is 100µm,, with the etching

rate 15µm/min. we need 100/15=6.67 mins  to etch out all the SOG. In example 2, we

need 50/15=3.33 mins to etch out the whole thing. The smaller distance will save etching
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time but too many holes makes not only the cap film easy to broken but also decreasing

the reflection intensity of the light.

Figure 4.26 Two examples show that same thickness SOG with different etch holes



CHAPTER FIVE

TECHNIQUES FOR FABRICATION

5.1 Fabrication of Cavity using a sacrificial layer

Cavity structure is a very important basis of this device. It is also a very important

structure in micro-sensor field like pressure sensor, accelerometer, and light modulator.

Up to now, all reported methods to produce cavities were using bulk micromechanical

techniques. The typical methods are:

1. Using anisotropic etching of silicon bulk to form cap film (cantilever

beam	 ), etching cavity from glass plate and using special bonding techniques

to bond them together.

2. Producing SiO2/Si epi/Heavy doped P+ buried layer sandwich. The silicon

cavity is anisotropic etched from under the oxide to the heavily doped P+ buried

layer to release the Si0. .

Most cavity structure reported up to now were made with bulk micromechanical

technique. They made the cavity structure with two wafers, making cavities on both first

and then bonding them together. This technique has the advantages of easy making and

multilayer capacitance. Somehow most of those sensors with cavity structure are not too

many layers to be made in single wafer. The only advantage of wafer bonding is easy

making, besides this method present processing complexity and compatible problem with

IC processing.

Compare to the wafer bonding, sacrificial layer technology can make the cavity-

structure sensors in single wafer. The advantages of sacrificial layer technology shrink the

sensor size and more precisely structure could be made because we don't have to involve

the process of wafer bonding. The processes involved in making the sacrificial layer-cavity

are: etching a cavity on the substrate, thermal oxidize the button, sputter a metal film as

88
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the bottom electrode, spin-on glass as a sacrificial layer, deposit a nitride layer, deposit a

polysilicon layer with small holes, and etch out the SOG. The detail processes has been

introduced in chapter 4.

The most often used sacrificial layer in surface microengineering is PSG. The PSG

layer may be produced either with in stiu deposited LPCVD PSG or with LPCVD oxide

doped with phosphorous. However, PSG layer, after filling the cavity and patterned, will

tend to produce a leaning angle at the surface. Polysilicon deposited on such a surface will

tend to buckling or produce unflatness on the surface. Besides, in stiu LPCVD PSG is

usually not available, PSG would have to depend on the post phosphorous doping

process. However, post P doping process exhibits difficulties as oxide thickness in the

range of 1 µm. High temperature doping will create cracks on thick LPCVD oxide.

5.2 SOG processing

Spin-on glass (SOG) technique has been developed for intermetal planarization process for

many years. Its minimal thermal budget and equipment requirement is very attractive for

applications requiring or compatible with low temperature processing. The present work is

motivated toward the newly developed surface micromechanical device technology.

The nonplanar surface of LPCVD polysilicon film due to LPCVD PSG layer can

well be avoided by using multicoating process of SOG. Besides, phosphorous doped SOG

etches very fast in HF due to its low density, which is advantages of sacrificial layer. As

another tip, SOG process does not require special equipment, a spinner, a couple of hot

plates, baking furnaces or regular oxidation furnaces will do all the work. SOG has a good

potential as a surface planarization material and sacrificial film for micromechanical device

applications.

In this device, a phosphorous doped spin-on glass multicoating process proposed

to form a 0.65 µm (1 /sλ\ = 1300nm x 0.5 = 650nm) thick sacrificial layer for
2
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micromechanical device of polysilicon film were carried out to evaluate SOG process

conditions. SOG was evaluated as a planarization material and sacrificial film for

micromechanical device applications by building a device with polysilicon-SOG-nitride

protected oxide cavity sandwich.

Multicoating process is required for this device because:

1. One typical coating produces 1000A to 4000A dielectric layer, the sacrificial

layer thickness is 0.95 µM. To obtain enough thickness for a sacrificial layer,

multicoating is unavoidable.

2. Better planarization can be achieved through multicoating.

However, multicoating may bring problems like thermal stress between coated

layers, and the dielectric layer may crack when thickness reaches around 1 µm. By curing

the coated layer carefully, and choose the proper SOG product, those problems can be

solved.

SOG liquids consist of Si-O network polymers dissolved in common organic

solvents like alcohol and ketone. Inorganic silicate SOG is typically fragile and creaks

when thickness exceeds 0.5-0.7 µM. Organic siloxane SOG has a better creak resistance

and planarity.

The SOG used in this work is an organic siloxane SOG which has organic group of

methyl incorporated within the silicon-oxygen structure. Typically SOG like Allied Signal

Accuglass 311P exhibits a high creak resistance, low film shrinkage, very small

Silano/H2O content.

As reported elsewhere, differential thermal analysis suggested curing conditions.

From the analysis result shown in Figure 5.1, it was found that the solvent was
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Figure 5.1 Differential Thermal Analysis of SOG [56]

evaporated at about 100°C. The SOG material formed a network of Si-O bond at the

range between 250°C and 300°C and the SOG layer was condensed at 400°C.

The high etch rate of SOG in HF is a very desirable property as a sacrificial layer

for surface micromechanical device applications. Figure 5.2 shows that the etch rate

compared with LPCVD Oxide. High etch rate makes the SOG very suit for sacrificial

layer. It can be etched out before the other material be etched.
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Figure 5.2 Etch rate comparison between LPCVD oxide and doped SOG (in BHF)

[56]

5.3 The Corrugated Silicon Diaphragms Structure

The method used to fabricated these corrugated diaphragms has been to etch a series of

grooves on the top surface of the SOG. These grooves can be isotropically or

anisotropically etched, depending on the desired final diaphragm contour. If an isotropic

etch is used, the grooves can follow almost any desired pattern, including circular, spiral,

serpentine or radial.

An polysilicon is then deposited into the convoluted surface so that the polysilicon

layer follows the etched contours. The SOG is then etched out through the windows we

open on the polysilicon layer, left the desired corrugated cross-section, a free-standing

diaphragm.
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The precise shape of the corrugation profile is not particularly important in

determining the characteristics of the diaphragm. The design described here shows that

this structure causes stress concentration in the corners of the diaphragm, which

considerably reduces its maximum deflection.

Figure 5.3 Deflection characteristics of flat and corrugated diaphragms [57]



CHAPTER SIX

APPLICATION

This device has great potential of application. It can be used in configurations within

conventional cavities, solid etalons, and fiber-optic resonators. General application areas

include atomic spectroscopy area, astronomy and astrophysics area, metrology, optical

bistability, velocimetry, infrared, sensors, plasma physics and miscellaneous devices. Here

we describe a typical usage as a wavelength-selective filters for single-mode fiber

wavelength division multiplexing (WDM) systems.

In recent years optical fiber technology for telecommunication has progressed

rapidly. The attenuation of silica fiber has been reduced to as low as 0.2 dB/km by the

exploitation of the low-loss window at 1.55µm wavelength. Similarly, new source and

detector technologies have enabled systems to be demonstrated with data rates exceeding

1 G Bit/s, spanning a hundred kilometers and more. This FPI device has application within

these systems.

It has long been recognized that the ultimate theoretical transmission capacity of

optical fiber, and particularly single-mode fiber, is extremely high. Consequently, attention

has been directed toward the maximal utilization of the bandwidth by the use of: (a)single-

mode fiber, (b)line-narrowed laser source, (c)heterodyne detection systems, (d)wavelength

division multiplexing, (WDM), and more recently (e)optical frequency division

multiplexing (OFDM). WDM may be distinguished from OFDM in that each channel is

allocated to a physically separate optical source. OFDM is based on the use of a single

narrow line source, from which are derived optical subcarriers, onto which each .

information channel is separately modulated..

As is commonly found, conceptual developments relating to WDM system

configurations and devices are far in advance of actual hardware. Consequently, in spite of

a plethora of research papers describing prototypes, comparatively few components are
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commercially available. The reasons are partially attributable to the complex

optomechanical requirements of the multiplexer components. The function of a

wavelength division multi/demultiplexer is to perform a spatial/spectral transformation. In

the case of a multiplexer, the radiation from n spatially separate sources emitting at

different wavelengths is coupled into a single fiber. Commonly this transformation is

performed in parallel, providing a communication link supporting n separate channels.

Should the transformation be performed serially, the device would be termed a wavelength

switch. Hence it may be seen that optical multiplexing and this form of switching are

closely allied. The demultiplexer performs the complementary function, separating

spatially according to wavelength the n channels. This selection may be in parallel (n

channels directed toward n detectors simultaneously), or serially (one of n channels

directed to a single detector). In general, parallel elements are multiple fiber devices; serial

elements are tunable and therefore require a control system.

Although the Fabry-Perot Interferometer was first reported in the last century, the

device was not widely used. The device of this thesis could be used in here. The spacing

between successive peaks being termed the free spectral range (FSR). To effect

demultiplexing, one of the transmission peaks is tuned to the wavelength of the required

channel. Provided that the system spectral span is less than the nominal FSR of this device,

unambiguous channel selection is possible. The passband width and FSR may be chosen by

a suitable cavity spacing. Since WDM systems have channel spacing of the order of

nanometers, the small mirrors spaced characteristic of this device is very suit for this

application. OFDM system channel spacing are measured in megahertz, the consequence

being that FPI demultiplexers would have cavities ranging from a few centimeters to many

meters long. The selectivity of the FPI is determined by the finesse, a parameter which is

nominally determined by the reflectance of the mirrors, and degraded by cavity losses

produced by mirror misalignment and defects. The device is tuned by changing the optical

path length in the cavity by means of electrostatic actuation.



96

This device (fig. 6.1) consists of two single-mode fibers mounted in this device.

This device lends itself to the use of intracavity electrooptic materials. While many FPI

devices are relatively exotic and require large voltages to induce a sufficient phase change,

this device just need low voltage and very small space. This tunable FPI could work as a

optical filter to filter the frequency range we intend and then reflect to the output fiber.

Figure 6.1 An application of this device: A incident light, from the upper fiber as
drawn, is selectively reflected to the lower fiber and transmitted to a spectrum
analyzer.



CHAPTER SEVEN

CONCLUSIONS

The use of silicon micromachining has resulted in a high-performance Fabry-Perot

interferometer. This fabrication technique allows the inclusion of electrodes to tune and

adjust the parallelism, along with the ability to specify the initial gap of the device closely.

The ability to batch fabricate these devices should result in a substantially less expensive

device than is currently available. The use of an sacrificial layer and a corrugated support

in these third-generation devices has resulted in a device with increased performance and

reduced die size. These devices have significant benefits of being considerably smaller than

other types of FPI and operate at low drive voltages. They should prove to be of use as

wavelength-selection components in optical fiber communication systems. The economies

in processing for this device make it an excellent candidate for application as an

optomechanical device.

Using this process, free-standing structures remained flat and all the optical and

mechanical requirements have been met. By careful design a process compatible with

standard processing has been proposed. Initial calculations indicate that the cap film can

be moved by 0.34µm with a voltage of 5V. The high sensitivity of the filter characteristic

of this device to voltage opens many further application opportunities.

Compared with the previous published similar device, this present device has the

advantages of easy making and low voltage required.

Table 7-1 Compared three different design FPI

Proposed Design	 Ref[45]	 Ref[58]

Operation Voltage	 5v	 70v	 175v

Wave Length	 1.3µm	 1.3µm	 1.5µm

Technique	 Monolithic	 Wafer Bonding	 Wafer Bonding
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PHYSICAL LAYOUT FOR MCNC FOUNDRY
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MCNC Center for Microelectronic Systems Technologies

Process and Design Specification for the MEMS Multiproject Run
2 Layer polyslllcon surface micromachine technology

The attached document is the final design rules and process specification for the first multiproject
run of the 2 layer polysilicon micromachine process at MCNC. The project is being sponsored by
DARPA, and is open to all US companies, universities and organizations.

The cost structure for the project is as follows:
Each 1 cm x 1 cm mask position costs

$500 if a cif, GOSH or stream-file tape is provided to MCNC by November 30, 1992
$1000 if layout support from MCNC Is requested (or tape conversion labor in excess of
two hours is required)

The lot will be fabricated starting January 15, 1993, with anticipated delivery of up to 20 die/ mask
position around February 20, 1993.

The die will be returned to the customers unreleased. If you are not able to (or do not wish to)
perform the release step in your own facility, arrangements can be made forthe release to be
performed at MCNC.

For additional information, clarification or questions contact:
Karen Markus
Program Manager: MEMS Technology Applications
(919) 248-1437
(919) 248-1455 fax
markus@mcnc.org (email)
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Process Sequence

The process sequence for the multiproject MEMS run is an enhanced 2-poly, 2-sacrificial oxide
process. A silicon nitride layer, for device -to- substrate isolation, and a metalization layer, for
improved electrical performance, are also Included. Dimpling of the polysilicon 1 layer is provided
to reduce the surface area for stictioning friction. The thick oxide etch layer (COL) allows
anchoring of polysilicon 2 to the substrate or nitride.

The basic process is outlined below. Thicknesses are targets, and the design rules for each
lithographic layer are provided in section 2.

Starting wafers: 100 mm N-type Si, (100) orientation, —1 a-cm resistivity

Deposit 2500A low stress SixNy 	 : -
Coat with positive photoresist, and expose level 10 (CSN)
RIE etch nitride and piranha strip PR

' Deposit 2.0 gift oxide -11111 oxide (High etch rate material)

Coat with positive PR and expose level 20 (COF) (20 aligns to 10)
RIE first oxide and piranha strip PR

Coat and expose level 40 - dimples (COS) (40 aligns to 20)
Wet etch dimples - target depth 3500A
Piranha strip PR
Deposit 2.0 pm polysilicon - first polysilicon

Deposit 500A hard mask and phosphorous dope the oxide

Coat and expose level 50 - first pot), (CPF) (50 aligns to 20)
RIE etch hard mask LTO
RIE etch polysilicon
Solvent strip PR
Deposit 5000A oxide - second oxide

Coat and expose level 60 - thin oxide (2) etch (COT) (60 aligns to 'so)
RE etch thin oxide (openings for poly 2 - poly 1 connection)
Piranha strip PR

Coat and expose level 90 - thick oxide (2) etch (COL) (90 aligns to 50)
RIE etch thick oxide (openings for Poly 2 - substrate or nitride connection)
Piranha strip PR
Deposit 1.5 pm polysilicon second poly 	 •
Deposit 500 A hard mask and phosphorous dope the oxide
Anneal at 1050 °C 1 hour

Coat and expose level 70 - second ply (CPT) (70 aligns to 60)
RIE etch hard mask LTO
RIE etch second polysilicon

Solvent strip PR



Coat with positive photoresist and expose level 80 - metal (CCM) (80 aligns to 70)
lmtek bake and flood expose for reverse image pattern
Deposit 0 Al metal
Acetone liftoff metal level
Anneal 400 °C - 30 minutes

Protective coat water frontsides
Remove polysilicon (and nitride?) layers from wafer backsides
Dice wafers and sort die
Solvent clean die to remove frontside protection layer
Die packs delivered with die ready for release processing in 49% HF.

Sacrificial oxide layer etc prate in 49% HF 4 µm/minute
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Design Rules
The design rules were developed to provide a guide for layout of 2 layer polysilicon structures for
fabrication on the multiproject run. The minimum rules are given so as to ensure that all layout will
remain compatible with MCNC's process tolerances. The 11 mandatory rules are highlighted with
an asterix(*). All other rules are cautionary rules, which may be violated for certain desired
applications.
Table 1 fists MCNC's layer name associated with a feature levels, the GDS layer number, and the
minimum feature (line) and space allowable for that level. Figure 1 provides a composite cross
sectional drawlng of the 2 layer polysllicon process.
Table 2 lists the minimum allowed dimension for overlaps and interlevel spaces, and is followed
by more detailed explanations of each rule. Figures 2 - 5 illustrate the rules in table 2.
Terminology is consistent with the process outline above. If there are additional rules you would
Oke defined. or if you wish clarification on existing rules, please contact MCNC.

Figure 1: Cross sectional view of 2 polysilicon process



Table 2: Design rules for overlap and interlevel spacings
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Explanation of rules A-V:

Nitride border of oxide 1 - 2-A
The amount of nitride border to ensure that the entlre oxide I opening is on nitride.

Nitride overlap of poly I • 2•E
The amount of nitride overlap to ensure that all the poly 1 is on nitride.

Nitrlde overlap of thin oxide 2 cut - 3-H
The amount of nitride overlap to ensure that the entire thin oxide 2 opening is on nitride.

Nitride overlap of thick oxide 2 cut - 4-1
The amount of nitride overlap to ensure that the entire thick oxide 2 opening is on nitride.

Nitride overlap at poly 2 -
The amount of nltride overlap to ensure that all the poly 2 is on nitride.

Thick oxide 2 cut border of nitride -
The amount of overlap of the thlck oxide 2 openlng of the nitride to ensure that the silicon
substrate is exposed as well.

Dlmple to oxide I space - 2-B
The space required between an oxide 1 opening and a dimple to ensure that the
dimensions of the oxide 1 opening are not altered.

Poly I overlap outslde oxide 1 • 2-C
The amount of pair overlap outside an oxide 1 opening to ensure that the entire oxide 1
opening is covered with poly 1.

Poly 1 overlap Inside oxide 1 - 2-0
The amount of poly 1 overlap inside an oxide 1 opening to ensure no ply 1 stringers.

Poly 1 overlap of thin oxide 2 cut - 3-F
The amount of poly 1 overlap to ensure that the entire thin oxide 2 opening is on poly 1.

Poly 1 space to thin oxide 2 cut - 3-G
The space requlred between a thin oxide 2 openlng and a poly 1 feature to ensure that
the poly1 remains covered with oxide.

Poly 1 space to thick oxlde 2 cut - 4-J
The space required between a thick oxide 2 openlng and a poly 1 feature to ensure that
the poly1 remains covered with oxide.

Poly 2 overlap outside thick oxide 2 cut - 4K
The amount of poly 2 overlap outside a thick oxide 2 opening to ensure that the entire
thick oxide 2 opening is covered with poly 2.

Poly 2 overlap Inside thick oxide 2 cut -
The amount of poly 2 overlap inside a thick oxide 2 opening to ensure no poly 2 stringers.

Poly 2 overlap outside thin oxide 2 cut • 4-M
The amount of poly 2 overlap outside a thin oxide 2 opening to ensure that the entire thin
oxide 2 opening is covered with poly 2.

Poly 2 overlap Inslde thin oxide 2 cut - 4-N
The amount of poly 2 overlap inside a thin oxide 2 openlng to ensure no poly 2 stringers.
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Poly 2 overlap outside Oxide 1 cut - 5-P
The amount of poly 2 overlap outside an oxide 1 opening to ensure that the entire oxide
opening is covered with poly 2.

Poly 2 overlap InsIde oxide 1 out -
The amount of poly 2 overlap inside an oxide 1 opening to ensure no poly 2 stringers.

Poly 2 border of metal - 5-S
The amount of poly 2 border to ensure that the entire metal area is on poly 2.

Poly 2 space to poly 1 - 5-U
The space requlred to between poly 2 and poly 1 to ensure that the features are
separate.

Lateral etch hole in poly 1 and pot), 2 - 6-V
Maximum spacing between hotel  opened in 1;4491 and poly 2 to allow &solution of the

SiO2 layers



Figure 2: Cross section view

2-A:Nitride overlap of oxide 1 - 4.0 µm 	 Not to scale
2-B:Dimple to oxide 1 space - 3.0 p.m
2-C:Poly 1 overlap outside oxide 1 cut- 4.0 gm
2-D:Poly 1 overlap Inside oxide 1 cut - 5.0
2-E: Nitride overlap of poly 1 - 4.0 fun

Figure 3: Cross section view
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3-F: Poly 1 overlap of thin oxide 2 - 4.0 i µm	
Not to scale

3-G: Poly 1 space to thin oxide 2 - 3.0 µm
3-H: Nitride overlap of thln oxide 2 - 5.0 p.m



Figure 4: Cross section View
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Not to scale
4-1: Nitride overlap of thick* oxide 2 cut - 5.0 lung
4-‘1 Poly 1 space to thick oxide 2 cut- 3.0 gm
4-K:Poly 2 overlap outside thick oxide 2 cut - 5.0µm 	 " thick oxide" is cut to
4-L:Poly 2 overlap lnside thick oxide 2 cut - 5.0 µm 	 substrate or nitride through
4-M:Poly 2 overlap outside thin oxide 2 cut - 4.0 µm 	 both oxide 1 + oxide 2
4-N:poly 2 overlap inside thin oxide 2 cut - 5.0 lull

Figure 5: Cross section vlew

5.0: Nitride overlap of poly 2.4.0 µm
5-P: Poly 2 overlap outside oxide 1 cut - 5.0 µm 	Not to scale
5-0: Poly 2 overlap inside oxide 1 cut - 5.0 gm
5-S:Poly 2 border of metal • 3.0 pm
5-T:Thick oxide 2 cut border of nitride -4.0 gm
5-V: Poly 2 space to poly 1 - 3.0 µm



Figure 6: Top view of (for example) poly 1 plate flanged by poly 2
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6-V: Lateral etch holes in poly I and poly 2 - S40 µm

This rule ensures that the HF release etch has sufficient
time to remove oxide from under all polysilicon layers.
(rule applies equally to poly I AND poly 2)
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Figure Ad Physical layout of device mask



Figure A.1a Mask#1 for deposit low stress silicon nitride
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Figure A.1b Mask#2 for first oxide layer
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Figure A.1c Mask#3 for first polysilicon



Figure A.1d Mask#4 for second oxide layer
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Figure A.1e Mask#5 for second polysilicon

114



Figure Alf Mask#6 for deposit Al metal
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APPENDIX B

PHYSICAL LAYOUT FOR NJITMRC
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Figure B.1 Physical layout of device mask
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Figure B.1a Mask#1 for etch out the cavity



Figure B.1b Mask#2 for contact to the lower electrode
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Figure 13.1c Mask#3 for planerize the SOG and corrugated construction



Figure B.1d Mask#4 for aluminum removal
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Figure Bile Mask#5 for deposit polysilicon



Figure B.1f Mask#6 small holes for etchant go into the cavity
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APPENDIX C

SEVERAL DESIGN FOR OPTIMAL POLYSILICON FILM
ACTUATION

In the following pages, we present several different design to get better effect. These
designs will reduce the driven voltages.
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TOP VIEW

SIDE VIEW
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TOP VIEW

SIDE VIEW



REFERENCES

[1] K.E. Petersen, "Silicon torsional scanning mirror", IBM J. Res. Development, vol 24,
pp 631-637,1980.

[2] D.R. Collins, J.B. Sampsell, L.J. Hornbeck, J.M. Florence, P.A. Penz and M.T. Gately,
"Deformable mirror device spatial light modulators and their applicability to optical
neural networks", Appl. Opt., vol. 22, pp 4900-4907, Nov 1989.

[3] J.H. Jerman and S.R. Mallinson, "A miniature Fabry-Perot interferometer using silicon
micromachining techniques", Proc. Solid state sensors and actuators, Hilton Head, pp
16-18, 1988.

[4] K. Gabriel, J. Javis, and W. Trimmer, Small Machines, Large Opportunities: A Report
on the Emerging Field of Microdynamics, 1987.

[5] Richard S. Muller, "From ICs to microstructures: material and technologies",
Technical Digest, IEEE International Electron Device Meeting,1987

[6] Kurt Pertsen, "The silicon micromechanics foundry", Technical Digest, IEEE
International Electron Device Meeting,1987.

[7] Kurt Pertsen, "Silicon as a mechanical material", Proc. of IEEE, Vol. 70, No. 5, pp
420-457 1982.

[8] K. D. Wise, Silicon micromaching and its application to high-performance integrated
sensors, Micromachining and Micropackaging of Transducers, Edited by C.D. Fung,
P.W. Cheng, W. H. Ko, and D. G. Fleming, Elsevier Science Publishers, Amsterdam,
1985, pp 3-18.

[9] W.H. Ko, J.T. Suminto and G.T. Yeh, Bonding Techniques for Microsensors,
Micromachining and Micropackging of Transducers, Edited by C.D. Fung, P.W.
Cheng, W. H. Ko, and D. G. Fleming, Elsevier Science Publishers, Amsterdam, 1985,
pp 41-61.

[10] Ernest Bassous, "Fabrication of Novel Three-Dimensional Microstructures by the
Anisotropic Etching of [100] and [110] Silicon", IEEE Trans. of Electron Device,
Vol. ED-25, No. 10, Oct. 1978, pp 1178-1193.

[11] H. Seidel, " The Mechanism of Anisotropic Silicon Etching and its Relevance on
Solid-state Sensors and Actuators, Tokyo, Japan, June 2-5, 1987, pp 120-125

127



• 128

[13] L.Y. Chen, and et al, "Selective Chemical Vapor Deposition of Tungsten for
Microdynamic Structures", Technical Digest, 2nd IEEE Workshop on Micro
Electromechanical Systems, Salt Lake City, Utah, Feb, 20-22, pp 82-87,1989.

[14] O.N. Tufte, P.W. Chapman, and D. Long, "Silicon Diffused-Element Piezoresistive
Diaphragms", J. Appl. Physics, 33, pp 3322-3329 1962

[15] S.C. Terry, J.H. Jerman and J.B. Angell, "A Gas choromatograph air analyzer
fabricated on a silicon wafer", IEEE Trans. Electron Devices, vol. ED-26, pp 1880,
1979.

[16] K.E. Bean and W.R. Runyan, "Dielectric Isolation: Compressive, Current and
Future", J. Electrochem. Soc., 124, pp 56,1977.

[17] D.B. Lee, "Anisotropic Etching of Silicon", J. Appl. Physics, 40, 1969, pp. 4569.

[18] M.J. Declercq, L. Gerzberg, and J.D. Meindl, "Optimization of the Hydrazine-Water
Solution for Anisotropic Etching of Silicon in Integrated Technology", J.
Electrochem. Soc., 122, pp 545,1975.

[19] R.M. Finne and D.L. Klein, " A Water-Amine-Complexing Agent System for Etching
Silicon", J. Electrochem. Soc., 114, pp 965-970, 1967.

[20] A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufman, and D.C. Green, "The
Controlled Etching of Silicon in Catalyzed Ethylene diamine-Pyrocatechol-Water
Solutions", J. Electrochem. Soc. 126, August, pp 1406-1414, 1979.

[21] A. Bohg, "Ethylene diamine-Pyrocatechol-Water Mixture shows Etching Anomaly in
Boron-Doped Silicon", J. Electrochem. Soc. 118, Feb., pp 401-402, 1971.

[22] W.H. Ko, J. Hynecek, S. F. Boettcher, "Development of a miniature pressure
transducer for biomedical applications", IEEE Trans. Electron Devices, vol. ED 26,
No. 12, pp. 1896-1905, 1979.

[23] W.H. Ko, M. H. Bao, Y.D. Hong, "A High Sensitivity Integrated Circuit Capacitive
Pressure Transducer", IEEE Trans. Electron Devices, vol. ED 29, pp. 48-56,1982.

[24] A.D. Brooks, and R.P. Donovan, "Low Temperature Electrostatic Si-to-Si Seals
Using Sputtered Borosilicon Glass", J. electrochem. Soc. 1119, pp 545-546, 1972.

[25] E. Bassous, "Fabrication of Novel Three Dimensional Microstructure by Anisotropic
Etching of [100] and [110] Silicon", IEEE Trans. Electron Devices, vol. ED 25, pp
1178-1185, 1978.



129

[26] T.L. Poteat, "Submicron Accuracies in Anisotropic Etched Silicon Piece Parts - A
CASe Study", Micromachining and Micropackaging of Transducers, Edited by C.D.
Fung, P.W. Cheung, W. H. Ko, and D.G. Fleming, Elsevier Science Publishers,
Amsterdam, pp151-158, 1985.

[27] Kenneth E. Bean, "Anisotropic Etching of Silicon", IEEE Trans. Electron Devices,
vol. ED 25, No. 10, pp 1193,1978.

[28] R.T. Howe, "Polycrystalline Silicon Microstructure", Micromaching and
Micropackaging of Transducers, Edited by C.D. Fung, P.W. Cheung, W. H. Ko, and
D.G. Fleming, Elsevier Science Publishers, Amsterdam, pp169-187, 1985.

[29] Long-Sheng Fan, Yu-Chong Tai, and Richard S. Muller, "Integrated Movable
Micromechanical Structures for Sensors and Actuators", IEEE Trans. Electron
Devices, vol. ED 35, No. 6, pp 724-730, 1988.

[3 0] Mehran Mehregany, Kaigham J. Gabriel, and William S.N. Trimmer, "Integrated
Fabrication of P{olysilicon Mechanism", IEEE Trans. Electron Devices, vol. ED 35,
No. 6, pp 719-723, 1988.

[3 1] Long-Sheng Fan, Yu-Chong Tai, and Richard S. Muller, "IC Processed
Micromotors: Design, Technology, and Testing", Technical Digest, 2nd IEEE
Workshop on Micro Electromechanical Systems, Salt Lake City, Utah, Feb. 20-22,
pp 1-4,1989.

[32] Long-Sheng Fan, Yu-Chong Tai, and Richard S. Muller, "IC Processed Electrostatic
Micromotors", Technical Digest, IEEE International Electron Devices Meeting, San
Francisco, CA, Dec. 11-14, pp 666-669,1988.

[33] Richard S. Muller, "Strategies for Sensor Research", Technical Digest, International
Conference on Sensors and Actuators, Tokyo, Japan, pp 853-856,1987.

[34] Wen H. Ko, "Frontiers in Solid State Biomedical Transducers", Technical Digest,
IEEE International Electron Devices Meeting, pp 112-114, 1985.

[35] S. Middelhoek and A.C. Hoogerwerf, "Smart Sensors, When and Where?", Sensors
and Actuators, 8, pp 39-48, 1985.

[36] P.L. Chen, R.S. Muller, and et al, "Integrated Silicon Microbeam PI-FET
Accelerometer", IEEE Trans. on Electron Devices, ED 29, pp 27-33, 1982.

[3 7] K.E. Petersen, A. Shartel, and N. F. Raley, "Micromechanical Accelerometer
Integrated with MOS Detection Circuitry", IEEE Trans. on Electron Devices, ED 29,
pp 23-27,1982.



130

[3 8] S.C. Chang, M.W. Putty, D.B. Hicks and C.H. Li, and R. Howe, "Resonant-bridge
Two-axis Microaccelerometer", Abstract, Transducers, The 5th International
Conference on Solid-State Sensors and Actuators & Eurosensors HI, Montreux,
Switzerland, June 25-30, pp 142-143, 1989.

[3 9] T.S. J. Lammerink, W. Wlodarski, "Integrated Thermally Excited Resonant
Diaphragm Pressure Sensor", Technical Digest, 3rd International Conference on
Solid State Sersors and Actuators, Philadelphia, Pennsylvania, June 11-14, pp 97-
100, 1985.

[40] M.W. Putty, S.C. Chang, R.T. Howe, A.L. Robinson, and K.D. Wise, "One port
Active Polysilicon Resonant Microstructure", Technical Digest, IEEE Micro
Electromechanical System Workshop, Salt Lake City, Utah, Feb. 20-22, pp 60-
65,1989.

[4 1] L.M. Roylance and J.B. Roylance and J.B. Angell, "A batch fabricated silicon
accelerometer", IEEE Trans. Electron Devices, vol. ED 26, pp 1911,1979.

[42] Kurt Petersen, "Micromechanical light modulator array fabricated on Silicon", Appl.
Phys. Lett., vol. 31, pp 521, 1977.

[43] Amnon Yariv, "Optical Electronics" Fourth Edition, Hotl, Rinehart and Winston,
Inc., 1991.

[44] J.M. Vaughan M.A., DPhil, "The Fabry-Perot Interferometer - history, theory,
practice and applications", Adam Hilger imprint by IOP publishing Ltd., 1989.

[45] S.R. Mallinson and J.H. Jerman. "Miniature micromachined Fabry-Perot
interferometers in silicon", Electron. Lett. 23, pp 1041-1043. 1987.

[46] S.R. Mallinson and J.H. Jerman. "A miniature Fabry-Perot interferometer fabricated
using silicon micromachining techniques", Tech. Digest. Hilton Head Workshop,
Hilton Head Island, SC, U.S.A., pp 16,1988.

[47] J.H. Jerman, D.J. Clift and S.R. Mallinson, "A miniature Fabry-Perot interferometer
with a corrugated silicon diaphragm support", Sensors and Actuators A, 29 pp 151-
158,1991.

[48] M. Shimazoe, Y. Matsuoka, T. Oyama, Y. Yamamoto and A. Yusakawa, "A silicon
diaphragm pressure sensor for very low pressure", Proc. 3rd Sensor Symp., Japan,
p309, 1983.

[49] J. T. Suminto, Gong-Jong Yeh, T. M. Spear and Wen Ko," Silicon diaphragm
capacitive sensor for pressure, flow, acceleration and attitude measurements", Proc.



131

4th EA. Conf. Solid-State Sensors and Actuators (Transducers '87), Japan, Tokyo, pp

336,1987.

[50] J.H. Jerman and S.R. Mallinson, " A miniature Fabry-Perot interferometer fabricated

using silicon micromachining techniques", Proc. IEEE Solid-State Sensors and

Actuators Workshop, Hilton Head Island, SC, U.S.A., June 6-9, pp 16, 1988.

[51] W. A. Wildhack and V. H. Goerke, "Corrugated metal diaphragms for aircraft

pressure-measuring instruments", National Advisory Committee for Aeronautics,

Tech. Note 738,1939.

[52] J. R. Mallon and A. D. Kurtz, " Transducer apparatus employing convoluted

semiconductor diaphragms", U. S. Patent 4 467 656 (1984).

[53] J. A. Haringx, "Design of corrugated diaphragms", ASME Trans., 79 ,1957.

[54] S. M. Sze, VLSI Technology, second edition, 1988.

[55] Stanley Wolf, Silicon Processing for the VLSI Era volume 1: Process Technology,

Lattice Press,1986.

[56] J.H. Jerman, "The Fabrication and use of Micromachined Corrugated Silicon

Diaphragms",Sensors and Actuactors, A21-A23, pp 988-992, 1990.

[57] Massood Tabib-Azar and Jeffrey S. Leane, "Direct Optical Control for a Silicon

Microactuator", Sensors and Actuactors, A21-A23, pp 229-235, 1990.

[58] N.F. Raley, D.R. Ciarlo, J.C. Koo, B. Beiriger, J.Trujillo, C. Yu, G. loomis and R.
Chow, "A Fabry-Perot Microinterferometer for Visible Wavelengths", IEEE 1992


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1993

	Monolithic silicon opto-electro-mechanical light modulator
	Ching-Horng Wu
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Fabry-Perot Etalon
	Chapter 3: Performance Design of the Light Modulator
	Chapter 4: Mask Design and Process Procedure
	Chapter 5: Techniques for Fabrication
	Chapter 6: Application
	Chapter 7: Conclusions
	Appendix A: Physical Layout for MCNC Foundry
	Appendix B: Physical Layout for NJITMRC
	Appendix C: Several Design for Optimal Polysilicon Film Actuation
	References

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)


