
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1993

Design and implementation of IPIS : an X-Window
based image processing interactive system
Eduardo Morales
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Morales, Eduardo, "Design and implementation of IPIS : an X-Window based image processing interactive system" (1993). Theses.
1238.
https://digitalcommons.njit.edu/theses/1238

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1238?utm_source=digitalcommons.njit.edu%2Ftheses%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilms International
A Bell & Howell Information C om p an y

3 0 0 North Z e e b R oad. Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Order Num ber 1356273

D esign and im p lem entation o f IPIS: A n X -w in d ow based im age
processing in teractive sy stem

Morales, Eduardo, M.S.

New Jersey Institute of Technology, 1994

C opyright © 1 9 9 4 by M orales, Eduardo. A ll righ ts reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

ABSTRACT

Design and Implementation
of IPIS: an X-Window Based

Image Processing Interactive System

by
Eduardo Morales

Most of image processing systems are based on command line func­

tions or can only display one image at a time. This is a serious inconveni­

ence for those who need an interactive system session or want to compare

two images processed by different techniques at the same time.

The system was designed with these problems in mind. It is able to

display the processed image right after an operation and to display several

images simultaneously, making it simple to compare techniques. The sys­

tem was also created with the purpose to be used in an academic environ­

ment. Its structured design makes it easy to understand and to aggregate

new functions and features. Used properly it may be a valuable learning

tool for the areas of image processing and X/Motif programming.

Future work will expand the system in order to process color and

multispectral images. An object oriented approach is being considered to

achieve such goal.

DESIGN AND IMPLEMENTATION
OF IPIS: AN X-WINDOW BASED

IMAGE PROCESSING INTERACTIVE SYSTEM

by
Eduardo Morales

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 1994

Copyright © 1994 by Eduardo Morales

ALL RIGHTS RESERVED

APPROVAL PAGE

DESIGN AND IMPLEMENTATION
OF IPIS: AN X-WINDOW BASED

IMAGE PROCESSING INTERACTIVE SYSTEM

Eduardo Morales

Dr. Frank Y. Shill, Thesis Adviser 						Date
Associate Professor of Computer and Information Science, NJIT

Dr. Peter A. Ng, Committee Member 		 Date
Professor of Computer and Information Science and
Chairperson of the Department of Computer and
Information Science, NJIT

Dr. James A. McHugh, Committee Member 	 Date
Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	Eduardo Morales

Degree: 	Master of Science in Computer Science

Date: 	January 1994

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Computer Science,
Indiana University of Pennsylvania, Indiana, PA, 1991

Major: 	Computer Science

This thesis is dedicated to
my parents, Willy and Ladbye,

and to my sister, Lorena.

ACKNOWLEDGMENT

I would like to thank Dr. Frank Shih for his guidance, support, and

specially for introducing me into the field of image processing.

I would like to thank to all the professors from whom I had the

opportunity to leam invaluable knowledge.

I also would like to thank to Richard T. Tracy and his parents for

providing me a home away from my country.

Last but not least, I would like to thank my parents for providing me

moral and economic support. It is needless to say that I owe them every­

thing that I have achieved in life.

vi

TABLE OF CONTENTS

Chapter Page

1 OPERATING ENVIRONMENT ..1

1.1 Operating System ..1

1.2 X W indows.. 2

1.3 OSF/Motif Toolkit.. 3

1.4 Hardware... 4

2 SYSTEM OVERVIEW ... 5

2.1 The Main W indow.. 5

2.1.1 The M enubar... 6

2.1.2 The Message A rea... 7

2.1.3 The Action A rea .. 8

2.2 The Read and Write Dialogs ..8

2.3 Image Window Management ...10

2.4 Colormap M anagement.. 13

2.5 Other Features ... 16

3 IMAGE PROCESSING ROUTINES ..17

3.1 Enhancement Routines... 17

3.1.1 Histogram Processing ... 17

3.1.2 Filtering.. 18

3.2 Segmentation... 21

3.2.1 Bilevel Thresholding...23

3.2.2 Half Thresholding ... 23

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.3 Multilevel Thresholding..23

3.3 Mathematical Morphology...24

3.4 Transformation..27

3.4.1 Image M anipulation..27

3.4.2 Pixel Manipulation..29

3.4.3 Domain Manipulation ... 30

3.5 Degradation... 30

4 EXTENDING IP IS ...32

4.1 Global Variables ..32

4.1.1 Server Variables .. 32

4.1.2 State Variables... 34

4.1.3 Image Information Variables.. 36

4.2 Function Template...37

4.3 Modifying Dialogs ... 40

5 FUTURE WORK ...41

APPENDIX A WIDGET HIERARCHY ..44

APPENDIX B SELECTED PROGRAM LISTINGS54

REFERENCES...112

LIST OF FIGURES

Figure Page

2.1 The Main W indow.. 6

2.2 The Read and Write Dialogs ..9

2.3 Implementation of g e t _ c u r r e n t () ...12

2.4 Implementation of s e t_ c o lo r m a p () ...15

3.1 The Enhancement D ialog ...18

3.2 Traditional and New Trapezoidal F ilters.. 21

3.3 The Segmentation D ialog...22

3.4 The Morphology D ialog...25

3.5 The Transformation D ialog ..28

3.6 The Degradation D ialog ...31

4.1 Template Function for IPIS ..38

5.1 Possible Object Class Hierarchy ...42

CHAPTER 1

OPERATING ENVIRONMENT

The behavior and performance of the Image Processing Interactive System

are directly related to its operating environment. It requires of certain needs

in order to operate appropriately. Those needs can be grouped in four

areas: operating system, X Windows, OSF/Motif toolkit and hardware.

1.1 Operating System

EPIS was developed on SunOs 4.1.2. It is generally intended to be used

with UNIX systems. Although it has not been tested in other platforms, the

program was written in ANSI C to make it as portable as possible. To

further increase its portability to other flavors of UNIX, and even to other

operating systems supporting X Windows such as VMS, no system calls

have been used in the application. However, if ported outside of UNIX, the

nonstandard libraries used by the program, such as libmorph, libtiff and

libjpeg, will have to be ported too. Porting these libraries may not be an

easy task, luckily there may be a port in the public domain. Nevertheless,

with minor changes, the system can still perform adequately without those

libraries. The ability to read/write JPEG and TIFF files will be lost as well

as most—but not all—morphology routines. Anything else should work as

planned.

The system requires only one environment variable. This variable is

named IPT_HELP_PATH and contains the directory name where the help

1

files reside. Failure to define this variable will only restrict the ability to

access the on-line help in the program.

1.2 X Windows

The system uses X Windows to display its several capabilities. The whole

application is window oriented—use of a terminal screen may only be

needed to create test images in ASCII mode as well as structuring elements

for mathematical morphology— and therefore takes full advantage of the

features provided by the window system.

One of the features is network transparency. As all X Windows

applications, IPIS is able to mn on a remote machine and display the

results on the local monitor. This feature enables us to take full advantage

of hardware configurations to improve the performance of the BP system.

For example, a personal computer running an X server will be able to

increase the performance of IPIS by running it on a more powerful remote

computer, such as a SUN SPARCstation and display the results locally.

Academic environments can enormously benefit from this feature. Students

can run the software from their homes, just by using a PC with an X server

and a SLIP or PPP connection to the academic computing facilities at their

respective schools.

The system can display multiple windows, and that perhaps is its

biggest advantage. This feature allows us to be able to compare simultane­

ously several images that have been processed by different techniques.

Also dialogs and menus are displayed through windows to provide ease of

use. Windows also enable us to make better use of screen space since they

can be overlaid or they can be iconified.

3

The application is highly configurable. X applications can alter their

default values by reading a file called the resource file. This is only possi­

ble if the default resources have not been hardcoded in the application. In

IPIS, little resource information has been hardcoded, allowing the behavior

and appearance to be modified by the user at will. Among the resources

that the user can customize are the foreground and background colors, the

window geometry, the widget dimensions, the label strings, etc. Perhaps

the most useful of the configurable resources may be the label strings.

Almost all labels in the application can be set through a resource file. This

may prove to be very helpful when porting the program into an environ­

ment where the native language is not English. Just by changing labels for

buttons, dialogs and window titles, we have an application in the end user’s

native language.

For more information on X Windows refer to Barkakati (1) or any

other X Windows book.

The application has been successfully tested in XI1R4 and XI1R5.

1.3 OSF/Motif Toolkit

The OSF/Motif toolkit—Motif for short—is responsible for the look and

feel of the application. The program was developed using Motif 1.1, and

adheres to the OSF/Motif Style Guide in order to be consistent with other

Motif applications.

The decision to implement the application using Motif over OPEN

LOOK, or any other toolkit, was based in the fact that Motif has become

the industry standard.

4

The application should work with any window manager without any

major problem. Nevertheless, it will perform better with the Motif Win­

dow Manager (MWM) since it is able to process a close window function

from the MWM. The only other window manager tested is TWM, which

performed normally.

1.4 Hardware

The IP system was designed with the objectives of processing 256 gray

scale images in the present and of processing color images in the future.

Keeping this in mind, it was decided not to support 1-bit and 4-bit displays

since they do not provide enough colormap entries to adequately represent

the targeted images on screen. The decision is also supported by the fact

that computer displays with depth of less than 8-bits are less common

nowadays and eventually will be phase out.

Hardware, with the exception mentioned above, should not effect the

IP system in any way other than computational speed. This property can be

attributed to the fact that X Windows hides hardware details, such us

little-endian and big-endian CPUs, under the X protocol.

CHAPTER 2

SYSTEM OVERVIEW

EPIS was designed with the purpose to process gray level images at first

and to aggregate color capabilities at a later date. Currently it only

processes gray level images.

It is intended to be a comprehensive tool, covering all the fields in

image processing. An effort to include most of the IP techniques has been

attempted, but due to its large number some remain to be implemented.

Later versions will include missing techniques and as well as new ones.

Another of its goals is to be an instructional tool. The IP system has

a structured form which makes it very easy to upgrade and modify. Stu­

dents can leam about different techniques by inspecting the code and can

enhance the system by either implementing new techniques not supplied by

the system or improving the ones that are supplied.

It was also intended to be interactive. Results of techniques are

displayed soon after they are applied with its response time depending on

the computational complexity of the technique. The system is able to

display several images at the same time, making it possible to compare

images processed by different methods.

2.1 The Main Window

The principal interface to the program is the main window. It consists of

three areas: the menubar, the message area and the action area. Figure 2.1

shows the window.

5

6

Bihar* cement , Restoretion ' Seep entail on ; Transformation

phoioqAnetvels

Figure 2.1 The Main Window.

2.1.1 The M enubar

In the menubar are located four pulldown menus. The first one is used to

call the read and write dialogs, and to exit the program. The second menu

is used to set some global attributes that will affect the behavior of the pro­

gram. With the first option, we can control how pixels with values less than

0 and greater than 255 will be processed. Possible choices are to scale them

so that the smallest value is mapped to 0, the largest is mapped to 255, and

all remaining values are linearly mapped in between. Another option is to

tmncate the pixel values. A pixel less than 0 or greater than 255 will be

truncated to 0 or 255 respectively. The last option is do nothing. In this

case, the value will be derived from the assignment of the integer holding

the exceeding value to the unsigned char (pixel value). This assigned value

will be the one in the least significant byte of the integer. The last option is

faster than the previous two and is useful when it is known that all resulting

pixel values will be within bounds. Examples:

Original 7x1 image:
Filtered image with [-13-1]:
Scaled filtered image:
Truncated filtered image:
Nothing done:

0 100 170 255 170 100 0
' -100 130 155 425 155 130 -100

0 112 124 255 124 112 0
0 130 155 255 155 130 0

' 156 130 155 169 155 130 156

7

The second and last option in the same pulldown menu lets the appli­

cation know which colormap to use when allocating images. There are two

possible choices: the standard colormap and a private colormap. The

advantage of using a private colormap is that all of the gray levels can be

allocated, so 256 gray level images can be accurately displayed on the

screen. The disadvantage is that the X server can only use one colormap at

a time; so when an image window with a private colormap gains input

focus, all other applications running with the X server will lose its colors

and display gray levels instead. This colormap mode despite being very

useful, it turns to be quite annoying. On the other hand, using the standard

colormap does not cause this kind of side effect, but the application has to

share the colormap with other applications running with the X server. This

means that it will not be possible to allocate the 256 gray levels. Refer to

section 2.4 to see how is this problem handled by IPIS.

The third pulldown menu selects which of the available images will

become the current one. The current image is the one in which a IP tech­

nique is performed. Refer to section 2.3 for more information.

The last pulldown menu in the menubar provides help for the main

window and information about the application. The first option pops a help

dialog, while the second pops a dialog with some information such as the

name of the application, the version number, the author, and the copyright.

2.1.2 The Message Area

The message area consists of a scroll window and a text widget. It provides

information to the user about the tasks the application is carrying out, such

as reading and writing files, errors detected by the program, image infor­

mation, etc. All information displayed is kept in the text widget. To refer

8

to any previously displayed message just slide the scrollbar until the text is

found. The text widget is output only.

2.1.3 The Action Area

The action area is a set of buttons that call different dialogs. These dialogs

contain specific functions and information about the selected IP field. The

fields present in the action area are: enhancement, analysis (not yet imple­

mented), restoration (not yet implemented), matching (not yet imple­

mented), segmentation, morphology, transformation and degradation.

Pressing on a button will cause its respective dialog to pop-up. If the dialog

is dismissed it can it poped-up again by pressing the respective button.

Only one instance for each dialog is allowed.

2.2 The Read and Write Dialogs

These dialogs are used to select a file to read or write an image from or to

disk, respectively. Both use the file selection box widget, this widget

encapsulates the task of opening a directory file, reading its entries and

traversing the directory tree. The contents are displayed in two list widgets,

one holds the directory files within a given directory and the other holds

ordinary, link and device files. Selecting a file and traversing the directory

tree is done by clicking an item in the appropriate list widget. Figure 2.2

shows the dialogs.

The write dialog contains a modified file selection box. Besides it

usual features, the write dialog provides a toggle box to allow the user

specify the format in which a given image will be stored. Formats sup­

ported by the IP system include PGM, in raw and ASCII mode, GIF, JFIF,

TIFF and PostScript (read only).

9

Fitter

S' 311
| | eofjttsipp

III MiSOIl,ip§

'» il ^
‘>1

(C v t ’’*

Sdcciion

Directories
|V>> i> ! . I f l f <(i 'p ' t »fl< I

«< r.t .i j (.<'(1^1 (•» ‘ >

Iff z IJB:
. n a i> i-jfK
s^uir w

J f S ' . i *-■-')(

v ̂ 'iir fm u r i t A

-A »P' sr ' V«c "s TiFP

jpcg <k<»uv

“'iff iC Kt.

Figure 2.2 The Read and Write Dialogs.

PGM performs no compression in the image. JFIF format allows for

JPEG compression, the lower the quality the greater compression ratio is

achieved. GIF provides LZW compression. TIFF reads several compres­

sion techniques such as LZW, CCITT Group 3 Facsimile, PackBits and no

compression at all, but only writes in LZW compression. Later application

versions will provide more writing choices.

Each dialog provides its own help dialog with instructions how to

use its features such as how to select files and traverse directories. The help

dialog also provides information about all the file formats that IPIS sup­

ports.

10

2.3 Image Window Management

When an IP system displays only one image at a time, then its manipula­

tion is trivial. If it is decided to process an image; there is no question to

which image we are referring to, since there is only one. Similarly, when

an image is processed and therefore producing a new image that needs to

be displayed, there is only one old image that can be replaced. In general,

decisions about image window manipulation are simplified because there is

no need to develop a policy to choose between images.

In a multi-window IP system, this manipulation task is more compli­

cated. There may be several images on display. If it is decided to perform

an operation on an image, then the system must have the means to single

out the image. This process can be automatic or user-assisted.

The number of images IPIS can display depends on the macro

NUM_QF_IMAGES, which is defined at compile time. The default value

is 6, computer systems with large amounts of memory can increase the

value accordingly. However, the limit of images that IPIS can hold at once

depends on the memory available at the server at that precise time.

In order to know which image to use when performing an operation.

The system uses the concept of a “ current” image. The current image is

the latest accessed image unless the user selects another one by using the

current image pulldown menu. The concept is implemented by creating a

variable current. This variable indexes a data structure that contains all

the information about the image. When an operation is performed, the

indexed data structure is accessed to retrieve all the required information.

When an operation is performed it yields a new image to be

displayed. The following steps are used to display a new image:

11

• Find an empty data structure.

• Set the data structure fields.

• Create a window with a drawing area.

• Place image in the drawing area.

As soon an empty data structure is found, current is updated making

the newly created image the current one.

On the other hand, when an image is destroyed— done by pressing

mouse button three in the image area—the following steps must be per­

formed:

• Free or update resources such as memory and colormap cells.

• Destroy the drawing area widget.

If the image destroyed is the current one, current will be updated

so that it points at the first non-empty image data structure it finds.

EPIS uses the function get_current () to automatically update

the current variable. The code is shown in figure 2.3. The code first

tries to find an empty ximage data structure. If successful, it allocates

memory for the image histogram and return the index to the empty data

structure—this value becomes the new current. If it fails, it means that IPIS

is already displaying the maximum of images allowed. If that is the case, to

display a new image it is necessary to destroy an old one. The application

destroys the latest accessed image (current), later version may implement

an alternate algorithm such as LRU, to make room for the new one.

Destroying an image is not as simple at it seems, certain resources

must be updated or freed. IPIS uses the callback function destroy () to

maintain integrity. The destroy () function is called automatically by

the server after it receives a destroy event for the drawing area widget. The

12

int get_current(void)
{
int i ;

/* Find an empty ximage structure. */
for (i=0; (i < NUM_OF_IMAGES) && (ximage[i]); i++);

/* Check if search was successful */
if (i < NUM_OF_IMAGES)
{
/* Success. Allocate memory and return the new current. */
hist[i] = (unsigned int *)XtCalloc(256, sizeof(unsigned int));
return i ;

}
else
(
/* Failure. Maximum number of images on display. Need to destroy */
/* one to make room for the new one. */
XtRemoveCallback(area[current] , XmNdestroyCallback, destroy, NULL);
XtDestroyWidget(gettopshell(top[current]));
destroy(area[current], &i, NULL);

/* Allocate memory for the histogram and return the value. */
hist[current] = (unsigned int *)XtCalloc(256, sizeof(unsigned int));
return current;

}

Figure 2.3 Implementation of get_current ().

server does not call this function immediately, it waits until other functions

are done processing before the X server actually makes the call.

Since the function get_current () destroys an image “ manu­

ally” , it must remove the image’s destroy callback, else the server will use

the callback at the wrong time. IPIS wants the image destroyed immedi­

ately so it can display the new one. The drawing area widget is tagged to be

destroyed by XtDestroyWidget () , the widget will not actually be

destroyed until the functions get_current () and the IP function that

called it are done processing. In order to maintain integrity

get_current () must call destroy () itself. Finally, memory for the

histogram is allocated and the same current value is returned.

13

2.4 Colorrnap Management

Similarly to image window management, managing the colorrnap in a

single-image system is trivial. If a private colorrnap is used there is nothing

to be done since all gray levels are allocated. If a standard colorrnap is

used, all gray levels can not be allocated because other running X applica­

tions are using some of the 256 colorrnap cells. To avoid running out of

colorrnap cells, only the set of gray levels G 1 used by the image must be

allocated. When the number of elements in the set, N(G 1), is still greater

than the number of available colorrnap cells, the application will have to

allocate the closest gray levels instead or switch to a private colorrnap.

When the application needs to display a new image with set of gray

levels G 2, then it deallocates the set G1-G2 and allocates the set G2-G 1. If

N(G2-G 1) is greater than the number of available colorrnap cells, then the

application will have to allocate the closest gray levels instead or switch to

a private colorrnap.

In a multi-image system, managing the colorrnap is more compli­

cated. The allocated colorrnap cells must be useful to more than one image.

IPIS takes advantage in the fact that the human eye has difficulty in detect­

ing more than 64 gray levels at a given time.

The Colorrnap is initialized at the start of the application. A

minimum of 86 gray levels are allocated and are never relinquished. This

number should be enough to adequately represent all images in the worst

case scenario. If IPIS fails to allocate this minimum, a message will notify

the user to quit some X applications in order to free colorrnap cells and res­

tart the program; or to continue by using a private colorrnap.

14

The 86 initial gray scales are allocated evenly between the 0 and 255

gray levels by three levels intervals. Let A be the set of the basic allocated

values. Example:

A = {0,3,6,9,12,15,...,246,249,252,255}

This arrangement is very convenient because when the colorrnap

runs out of cells and the closest gray level must be allocated, it happens to

be that the closest gray level will always be within one. Example:

• Let say there is no more room in the colorrnap and we need to

allocate gray levels 100 and 101.

• Let the set A = {0,3,6,...,96,99,102,105,...,249,252,255}

• The closest previously allocated gray level to 100 is 99. Which is

within one.

• The closest previously allocated gray level to 101 is 102. Which is

also within one.

In general, if gray level x is not in A , x+l or jt-1 will be in A.

Other gray level values that are not in set A are allocated and deallo­

cated on demand. When IPIS reads or calculates a new image, two vari­

ables are updated to reflect the need of a given gray level value. One is

used to build a histogram and also is used as a reference of which gray lev­

els and how many of them the image is using. The other one keeps count of

the total use of a given gray level by all the images that are currently

displayed. These variables are hist [image_index] [value] and

use [value], respectively.

15

void set_colormap(int n)
{
int i;
int count=0
int close=0
XColor gray

/* Number of gray levels used by the image. */
/* Number of closely allocated gray levels. */

for (i = 0; i < 256; i++)
{
if (hist[n][i]) /* if the grey level is used ... */
{
count++;
if (!allc[i]) /* if it has not yet been allocated ... */
{
gray.red = (unsigned short)(i * 257); /* Assign RGB values. */
gray.green = (unsigned short)(i * 257)
gray.blue = (unsigned short)(i * 257)
gray.flags = DoRed | DoGreen | DoBlue;

/* Allocate color in standard colorrnap. */
if (IXAllocColor(theDisplay, theColormap, &gray))
{
/* If allocation failed. Allocate closest gray level. */
if (i % 3 == 1)
cmap[i] = cmap[i-1];

else
cmap[i] = cmap[i +1];

close++;
)
else
{
/* Success. Do not forget to keep the colorrnap cell position. */
cmap[i] = gray.pixel;
allc[i] = 1;

}
}

}
}
wprint("%d gray levels. Allocated %d true, %d close.0,

count, count-close, close);
)

Figure 2.4 Implementation of s e t_ c o lo r m a p () .

When an image is ready to display, IPIS sets the colorrnap by loop­

ing through the h i s t [] [] variable. If the image is using a gray level,

then checks if that gray level has been allocated before. If it has not, IPIS

sends a request to the X server to allocate the gray level in question. If the

16

request fails, the application assigns the closest gray level available. If the

request was successful, the application saves the position in the colorrnap

where the gray level is located and updates the allocation flag. Figure 2.4

shows the code to allocate gray values.

Colorrnap entries are deallocated when an image is destroyed. The

check if as gray value x must be deallocated, IPIS subtracts the values in

h i s t [n] [x] from u s e [x] . If u s e [x] is equal to zero, it means that

no other image is using that particular gray level, therefore it can be deallo­

cated.

2.5 Other Features

EPIS is able to display histograms from images by pressing shift-mouse

button 1 on the desired image. If a image is destroyed and its respective

histogram is also mapped on the screen, then the histogram will also be

destroyed. It would be inaccurate if the histogram remains on the screen

and a new image replaces the old one.

The application can also extract subimages from an image. Mouse

button 1 is used to define the upper left comer, while button 2 is used for

the bottom right comer. Once the subimage is extracted, it becomes an

image on its own right; i.e. all the operations and rules applying to an ordi­

nary image apply to the subimage.

Similarly, the decimal values of the pixels can be displayed on

screen. Mouse button 1 sets the upper left comer, and shift-mouse button 2

sets the bottom right comer. If the user simply presses button 2 or shift-

button 2, the origin will be consider as the upper left comer.

CHAPTER 3

IMAGE PROCESSING ROUTINES

IPIS contains a large number of IP routines. These can be grouped in

enhancement, segmentation, transformation, morphology and degradation.

Later versions may provide more routines in these IP fields as well as may

implement restoration , matching and analysis routines. Each IP field is

provided with a dialog to call all the functions relative to that particular

field.

3.1 Enhancement Routines

Image enhancement can be performed in two different aspects. It is possi­

ble to work on the contrast of the image by modifying the histogram; or to

filter the image in order to get a smoother or sharper result. Figure 3.1

shows the dialog.

3.1.1 Histogram Processing

The routines provided are stretching, global equalization and local equali­

zation. The simplest routine is histogram stretching, where the lowest

pixel value is mapped to 0 and the largest one is mapped to 255. All other

values are linearly mapped in between.

In histogram equalization the gray scale distribution is modified by a

transformation function which can be expressed as

g (x , y) = T [f (x , y)]

where g is the processed image, / is the original image and T is the

17

18

w « H i h t f i g

'N''

Figure 3.1 The Enhancement Dialog.

transformation function which converts what is usually a normal gray level

distribution into a uniform distribution. Therefore equalizing the possibility

of use between gray levels.

Local histogram equalization applies the same process as histogram

equalization to local neighborhoods in the image. The scale next to its

activation button is used to provide the neighborhood size for the opera­

tion. Histogram specification has not yet been implemented.

3.1.2 Filtering

Filtering is possible in the spatial and frequency domain. The operation is

performed by convolving the input image with a user selected mask—also

known as a filter—element. IPIS provides the following spatial filters for

user selection:

19

Average 3x3:
1 1 1 1 1 2 1 -1 -1 -1
1 1 1 Smooth 3x3: 2 4 2 Sharpen 3x3: -1 9 -1
1 1 1 10 1 2 1 -1 -1 -1

Average 5x5: 75

Average 7x7: 49

Sharpen 5x5:

0 - 1 1 - 1 0
- 1 2 - 4 2 - 1
1 - 4 13 - 4 1

- 1 2 - 4 2 - 1
0 - 1 1 - 1 0

Laplacian 3x3:
0 - 1 0

-1 5 -1
0 - 1 0

Prewitt left:

Smooth 5x5: W

1 1 1 1 1
1 4 4 4 1
1 4 12 4 1
1 4 4 4 1
1 1 1 1 1

Laplacian 5x5:

-1 -1
-1 -1
-1 25
-1 -1
-1 -1

1
T

-1 0 1
-1 0 1
-1 0 1

Prewitt top: y

Sobel left:
-1 0 1 1 -1 -2 -1
-2 0 2 Sobel top: - r 0 0 0
-1 0 1 4 1 2 1

The MAX and RMS versions of the Prewitt and Sobel operators are

the combination of the top and left filters such as the result is the maximum

value or the square root of the sums, respectively.

The filters are activated by selecting the appropriate filter from the

option menu and pressing in the “ SpatialDomain” button.

20

For the frequency domain the image is applied the Fourier transform

and then filtered by attenuating a specific range of frequencies. The 2-D

Fourier transform consist of two one-dimensional transforms applied suc­

cessively. The columns are transformed first and then the rows.

The following filters are available on IPIS:

• Ideal lowpass and highpass filter

• Butterworth lowpass and highpass filter.

• Exponential lowpass and highpass filter.

• Trapezoidal lowpass filter

• A variation of the trapezoidal highpass filter.

All the filters, except the modified trapezoidal filter, can be found on

Gonzales and Wintz (2), Pratt (3), and Rosenfeld and Kak (5).

The traditional trapezoidal filter is defined by

H (u , v) = '
n / „ v N _ n i f D (n , v) < D i

 (D ’ } D 1 if D 1 < D (u , v) < D 0
j 0 1 if D (u , v) > D 0

while the new variation is

- f J ^ 1 £>(M,V) + D i s ^ r,, , D o if D (u , v) < D 0
1 if £H«,v)>£>0

Figure 3.2 shows the radial cross for both filters. To the left is the

traditional trapezoidal filter, and to the right is the new trapezoidal filter.

The traditional one tends to lose too much frequency information, and

when the image is transformed back to the spatial domain it is sometimes

incomprehensible. The new filter sharpens the image better while it keeps

more information.

21

H(u, v) H{ u, v)

1

D(u , v) D {u ,v)

Figure 3.2 Traditional and New Trapezoidal Filters.

The D 0 and D { cutoff distances are provided by the scales with the

same name. For the Butterworth and exponential filters the “ D l ” scale

provides the exponential parameter.

The last filter in the dialog is a fast median filter. The neighborhood

size information is provided by the scale to the right of the button.

3.2 Segmentation

The segmentation routines were perhaps the most difficult to implement.

The problem was that initially the application was not designed to modify

an image that was already displayed on the screen, P IS could access the

image information through the x im a g e [] structure but it could not

modify the pixmap were the on-screen image was being stored by the X

server. If an image needed to be modified, the new modified image would

be displayed in a new window with a frame of its own.

This approach proved to be unacceptable if the user needed to apply

an interactive bilevel segmentation by sliding a scale. Unfortunately there

was no time to redesign the whole application and solve the problem from

Figure 3.3 The Segmentation Dialog.

its roots. Instead an approach that would solve the problem, but would

create another one easier to control, was chosen.

This approach consisted in declaring the drawing area widget—the

Motif widget where the image is displayed—and the pixmap structure—the

data structure where the X server stores the image and uses to redraw it

when expose events occur—global variables. By making them global they

could be accessed from any point in the application.

So far this would not create any problems, making these variables

global will allow the application to get hold of the window where a given

image is being displayed and to the data structure where it is being stored.

Although some encapsulation was lost.

The problem now is that the application has the means to alter infor­

mation on a window, the routine altering the image would have to remap

the new pixel values to the proper position in the colorrnap—gray level 125

is not necessarily stored in colorrnap cell number 125—and to allocate by

itself the new gray levels in the colorrnap, as well as to deallocate the gray

levels that are no longer used. This is a critical situation since if some other

routine tries to update the colorrnap in the mean time, the colorrnap will

become corrupted. One routine is not going to be aware of what the other

23

is doing, one may try to allocate a gray level and think it has succeeded,

while other may deallocate the same gray level, causing the other to

display an incorrect result.

To assure that only one routine is modifying the colorrnap as well as

the on-screen image, the segmentation dialogs are application modal, i.e.,

no other operation can be performed while the interactive segmentation is

taking place.

To keep the following three routines simple neither of them updates

the colorrnap. They do their best to display the segmented images with the

gray levels available. This does not mean that the critical period has been

avoided, since all three of them update the u s e [] variable. If this vari­

able gets corrupted, IPIS may deallocate the wrong gray levels at a later

time, or may not deallocate the gray levels that are not longer used.

3.2.1 Bilevel Thresholding

This kind of thresholding assigns white pixels to any gray level above the

threshold indicated by the scale. When the desired effect has been achieved

the modal dialog can be destroyed by pressing the “ Done” button.

3.2.2 Half Thresholding

Similar to bilevel thresholding. The difference is that the gray levels below

the threshold remain the same.

3.2.3 Multilevel Thresholding

This is the most functional of all the tresholding subroutines. It works by

defining cutoff points and assigning them a gray level value. To define a

cutoff point, press the mouse button 1 on the histogram drawing area, a bar

will appear signaling the cutoff. The user may assign up to 256 cutoff

24

points. To assign a value, slide the scale until it is shown on screen, then

press mouse button 2 on the area left of the chosen cutoff bar—if the cutoff

bar already has a value, this old value will be replaced by the new one.

Once the desired cutoff points as well as its gray level values has

been chosen, the image will be segmented once the user presses the

‘Apply” button. To start all over again, the user must press the “ Clear”

button. To destroy the modal dialog the button “ Done” must be pressed.

3.3 Mathematical Morphology

Most of the image morphology routines provided by this dialog use the lib-

morph library. This library was created by Dr. Richard A. Peters at Van­

derbilt University. The functions provided are:

• Dilation.

• Erosion.

• Opening.

• Closing.

• Order statistic filter (Rank filter).

• Lower-upper-middle filter (LUM).

• LUM smoothing filter.

• LUM sharpening filter.

• Image minus opening (Tophat).

• Closing minus image (Bothat).

Erosion and Dilation can be negated creating the following actions:

• Not dilate = Dilation && llmage

• Not Erode = Image && ! Erosion

25

The rank filter, uses the scale of the same name to obtain the order of

the statistical filter to perform. If the rank value is zero, it applies a median

filter. If the value is one, then a dilation is performed, If the value supplied

is the same as the support of the structuring element, then an erosion is per­

formed. Otherwise the statistical filter is performed.

The lower-upper-middle filters use the values provided by the scales

LUM parameters, respectively. In any other operation the scales provide

the upper and lower values for a bilevel segmentation. In between gray

levels are set to white, while others are set to black. This segmentation is

performed before the morphological function.

W athc j« a tica lM o rp h o io ,qy

i NcCfSate Ktei&w?

r air..- *3? j
r S i 1 *ij ■ (1 ! 'i J S i >

v n C j s t'lUi -<v>

r t)iiww

Figure 3.4 The Morphology Dialog.

Upper # ” and “ Lower # ” to obtain the values for the upper and lower

26

The structuring element for these operations is specified in the “ SE

Definition” section. To provide the routines with a user defined SE, the

file name containing such SE must be typed in the “ SE name” text field;

also the “ UserDef” toggle button must be set to true. For convenience, the

libmorph library provides four “ canned” SEs to use with its routines. To

select one, it is only necessary to set the proper toggle button. The possible

choices are:

• Auto. Defines a circular SE with its horizontal and vertical dimen­

sions provided by the x and y text fields. The z field provides the

gray level of the origin.

• Plus. Defines a 3 by 3 SE with the shape of a

• 3x3. Defines a 3 by 3 square SE.

• 5x5. Defines a 5 by 5 almost circular SE.

Figure 3.4 shows the morphology dialog. For more information on

the libmorph library routines. Refer to the on-line help menu.

Among the morphological functions not provided by the libmorph

library are the euclidean distance transformation and the four soft morpho­

logical operations.

The distance transform finds the euclidean distance between the

object pixels of an image and the background. Since it only applies to

binary images, the routine uses the “ Upper # ” and “ Lower # ” scales to

perform a segmentation before it actually does any calculations. The dis­

tance is found by iteratively applying erosions until no change is detected.

Finally the square root is performed for each individual pixel.

27

The soft morphological operations are another kind of order statistics

combined with morphological concepts. The function implementations are

based on the work done by Shih and Pu (6). These functions use the “ rank

” scale in order to obtain an ordering value. Dilation selects the nth order

largest value, while erosion selects the nth order smallest value.

Recursive soft morphology differs in the fact that it updates the input

image with the output as the results are being obtained. Both kinds of soft

morphological functions split the structuring element B into two sets. One

core set A , i.e., A czB and the soft boundary B -A . The SE can be read by

setting the “ UserDef” toggle button and providing the name of the ASCII

file containing the SE. The file first contains the number of elements in the

soft morphological boundary {B - A), followed by the ordered pairs specify­

ing the coordinates for B - A . Next is the number of elements in the core set

(A), followed by the coordinates for A .

3.4 Transformation

This dialog allows the user to manipulate the image from three different

aspects: image manipulation, pixel manipulation and domain manipulation.

Figure 3.5 shows the dialog.

3.4.1 Image Manipulation

The image can be flipped vertically or horizontally. These operations are

very simple, to obtain the result it is only necessary to copy the pixels onto

the new image in the correct order. Using the same technique, the image

can be rotated 90 degrees either clockwise or counter clockwise.

Figure 3.5 The Transformation Dialog.

Rotating an image an arbitrary number of degrees is a more chal­

lenging task. An affine transformation is used to accomplish such task. The

matrix used is

cos (a) sin (a)
-sin (a) cos (a)

The problem is that after applying the transformation some pixels of

the same image overlap each other, and some other pixels in the image are

left without an assigned value.

The solution to this problem is to interpolate the gray levels into

their final position. Three pixel interpolations are possible: biconstant, bil­

inear and bicubic.

29

Bicubic interpolation offers the best results but it also is the most

computational complex of all. Bilinear is the fastest of the three, but offers

the lowest quality. Probably the best choice is bilinear, it is relatively fast

and the results are of good quality.

To activate the rotation just press the rotation button or press the

return key in the text widget. The rotation is specified in degrees. It

accepts positive and negative values. If the value is zero, the function will

not be performed since zero is a no-op.

Images can also be scaled. Another affine transformation is used to

achieve this goal. The matrix used is

rx 0
0 ry

Here the problem is that some pixels in the new image are not

assigned a value if the image is being scaled up, or some pixels overlap if

the image is being scaled down.

Interpolation is also the solution here. As in rotation, biconstant and

bilinear are provided. Bicubic is not yet implemented. To activate the scal­

ing press the scale button or press return at the second text widget. Two

buttons for fast operation are provided, these double or half the image size.

3.4.2 Pixel Manipulation

This routines are used to operate on each pixel and not to the image as a

whole. It is possible to increment each pixel with a given amount to alter

the brightness. Similarly, each pixel can be multiplied by a given ratio to

alter the contrast. To obtain a negative of a picture is only necessary to

obtain the complement of the pixel.

30

The function log, log2 and log 10 are just provided to assist in the

remapping of gray levels. To apply the following gray level remapping

function

new = 32*log (old +2)

it is needed to increment the image brightness by two, then apply the log by

pressing the button of the same name and finally the contrast is modified

by a ratio of 32.

The final result will be an approximation to the actual values since

floating point information is lost when the output of the logarithmic func­

tion are rounded to be displayed.

3.4.3 Domain Manipulation

The routine provided in this section displays the magnitude of the Fourier

domain of a given image. This is the only purpose. To operate in the

Fourier domain see the filtering section on image enhancement.

3.5 Degradation

IPIS can degrade images by adding gaussian noise to each pixel. The dia­

log allows the user to specify the mean and the standard deviation of the

operation. The maximum values in the scale can be customized by provid­

ing the respective resources. Figure 3.6 shows the dialog.

The guass () function is used to add noise to the image. The ran­

dom seed is initialized with the current time. The function loops until all

pixels have been visited. In each loop a random number is obtained and is

added to the pixel.

31

IllIBB■■
tetifterd afbn

Cincei

Figure 3.6 The Degradation Dialog.

The number generator function uses the standard C function

r a n d () to obtain 12 random numbers which will be normalized and

added together. The expected value, 6, is substracted from the added

number and then is multiplied by the standard deviation and incremented

by the mean.

CHAPTER 4

EXTENDING IPIS

One of the goals of the application is to become a comprehensive image

processing tool. In order to cover all possible fields and include the latest

techniques, people related to IP must be able to contribute code.

The structured design of IPIS makes it very easy to understand and

extend. The programmer needs to be aware the global variables that pro­

vide information about the state of the application, the image and the X

server. A generic function template can be modified to implement most of

the IP routines. All functions currently implemented use this generic tem­

plate. Last but not least, the window dialogs must be modified to provide

an interface to the newly created routines.

4.1 Global Variables

The global variables can be divided in three categories. The first would be

variables that provide information about the X server. The second category

would be variables that provide information about the state of IPIS and the

last group would be variables that provide information about the image.

All these variables are declared in the header file.

4.1.1 Server Variables

These variables provide basic information about the display and resources

of of the server. These variables are:

32

33

• theDisplay

• theScreen

• theRootWindow

• the Visual

• theDepth

• theColormap

• myColormap

• theGC

• watch;

• top_level

Most of these variables are useful when using Xlib functions. For

example all functions that make a request to the server have as their first

argument a pointer to the display. Variable theDisplay is such pointer.

Similarly, theScreen —which holds the screen number in the

display—it is also useful for some Xlib functions. Variable

theRootWindow is a pointer to the root window of the display, theV-
isual holds the information about the capabilities of the display. IPIS

only supports pseudocolor visuals. The depth of the screen is represented

by theDepth, IPIS only supports 8-bit displays.

Pointers to the colormaps used by the application are in

theColormap and myColormap. The former points to the standard

colorrnap, while the other points to private colorrnap with all 256 gray lev­

els allocated.

The graphic context provides information for drawing text and

graphics in a window, theGC is useful when drawing lines, when setting

the foreground and background or when copying pixmaps. The watch

34

variable is the shape of the mouse cursor when the application is busy mak­

ing computations.

The variable top_level does not really belong in this category,

but has less in common with the other global variables. This variable

represents the widget of the main window. It is useful when creating dialog

shells and when changing the mouse cursor to a watch when the applica­

tion is busy performing an operation. The variable top_level is a glo­

bal variable just to provide speed when changing cursors. It is possible to

obtain the widget of the main window—the top_level widget— by

using the function gettopshell ().

4.1.2 State Variables

These variables provide information about the current state of the applica­

tion. These variables are:

• use[]

• cmap[]

• current

• image_count

• mode

The use [] array has a very important role in the application. It is

in charge to count the number of times a certain gray level is being used in

the application. The standard colorrnap depends of it in order to deallocate

colorrnap cells. The programmer should always update this array when it is

going to display a new image.

The cmap [] array was not meant to be a global variable at the

beginning. It was converted into a global one in order to implement the

35

segmentation routines. This array contains the positions in the colorrnap for

the allocated gray levels, i.e., if cmap[6] is equal to 78, it means that gray

level 6 is at position 78 of the colorrnap. The programmer should avoid

using this variable as much as possible, since it may be hidden in later

releases.

The current variable was already discussed at image window

management. It indexes the “ current” ximage [] structure. The sim­

plest way to update it is by using the get_current () function. The

current variable should always point at the latest image accessed by the

system.

The image_count has the only purpose of letting the program­

mer know if there are any images in which operations can be performed. If

the user requests for an IP function but there no current image to work on,

i.e., image_count == 0, then the function must return. The program­

mer must not altered the value of the variable. Once again this variable is

just used as a flag.

The mode variable holds several pieces of information. The appli­

cation uses this variable to find out if it should allocate a private colorrnap

or should use the standard colorrnap. However, the programmer should not

worry about colorrnap management and allocation—he/she should only

make sure to update use [] accordingly. The programmer should use this

variable to know how he/she must deal with pixel roundoffs. The possibili­

ties are: scale, truncate and do nothing. The macros SCALE, TRUNCATE

and NOTHING are defined in the ipt.h header file for this purpose, just bit­

wise the macros and the variable accordingly to find out the action to fol­

low.

36

4.1.3 Image Information Variables

These variables provide information about the image itself, useful for

retrieving data and performing IP functions. These variables are:

• hist[][]

• ximage []

• pixmap []

• histogram[]

• area[]

• top_hist[]

The hist [] [] is a two dimensional array, where the first index is

used for images and the second for gray levels. This variable stores image

histogram information. Memory is allocated through the function

get_current (). It was designed to obtain its memory dynamically

since it would provide better memory management for systems which com­

piled with a large NUM_OF_IMAGES macro. The programmer must make

sure to initialize this variable properly, since it is also used to allocate gray

levels.

The ximage [] stmcture contains all the information about the

image, including width, height, depth and the image data.

The pixmap [] is used to store the image in memory and redraw

the image after every expose event. It was made a global variable only for

the segmentation routines. The programmer should only use them when it

is absolutely necessary. Later versions may hide this variable.

The histogram [] is the pixmap used for the histogram window.

There is no strong reason for this variable to be global. It will be hidden in

the next version.

37

The a r e a [] is another variable that was made global for the seg­

mentation routines. The programmer should avoid using it. It may get hid­

den in later versions.

The last variable is used for the top level shell of the histogram win­

dow. It is necessary to destroy the histogram window when its correspond­

ing image is destroyed. It should not be of much use to the programmer.

4.2 Function Template

The template in figure 4.1 should be useful even with complex procedures.

It has been oversimplified; some steps can be merged depending on the

nature of the task.

Normally a function like this will be called from a dialog, i.e., it will

be a callback function. The first parameter contains the widget that ori­

ginated the call. In most cases it will be a button widget.

The second parameter is the callback data. This data is assigned

when the callback function is added to the widget. It is useful when the

function needs a parameter supplied by the use. For example, the client

data for local histogram equalization would be the neighborhood size. It is

possible to pass multiple values through the client data. For example, the

gaussian noise function receives a struct data type which contains two

members, the mean and the standard deviation.

The third parameter depends of the widget producing the callback.

Most of time it will be from a button widget and will not have any use. A

few times, like in a scale callback, it will have a value that must be

retrieved. Each widget has its own callback stmct data type. Refer to Heller

(3) or any other Motif text for more information.

38

void ip_function(Widget w, XtPointer data, XmAnyCallbackStruct *cbs)
{
/* Check if there is any image to work on */
if (!image_count)
{
wprint("No image present.0);
return;

}

/* Set the busy cursor. */
XDefineCursor(theDisplay, XtWindow(top_level), watch);
XFlush(theDisplay);

/* Obtain all image information necessary. */
ix = ximage[current]->width;
iy = ximage[current]->height;
image = (PIXEL *)ximage[current]->data;

/* Allocate memory for new image. */
result = res = (PIXEL *)XtCalloc(ix*iy, sizeof(PIXEL));

/* retrieve function parameters, if any. */
parameters = (parameters_type *)data;

/* Body of the function. Do processing */
forfstart; end; step);

/* Get a new current value. */
current = get_current();

/* Update statistics for hist and use. */
for (y=0; y < iy; y++)
for (x=0; x < ix; x++)
{
u s e [*res]++;
hist[current][*(res++)]++;

}

/* Allocate new ximage structure. */
ximage[current] = XCreatelmage(theDisplay, theVisual, 8,

ZPixmap, 0, (char *)result, ix, iy, 8, 0);
ximage[current]->byte_order = MSBFirst;
ximage[current]->bitmap_bit_order = MSBFirst;

/* Display the image. */
display_image(current);

/* Reset the cursor to normal */
XUndefineCursor(theDisplay, XtWindow(top_level));

}

Figure 4.1 Template Function for IPIS.

39

The template in figure 4.1 shows the several parts that an IPIS func­

tion is composed of. The first part would be to check that there is an image

to work on. The second would be to set the cursor to a watch, so that the

user knows that EPIS is working. The third would be to access all the

necessary image information. Most of the time, the width, the height and

the raw data are enough.

The next step would be to allocate memory for the result. Notice that

IPIS does not use two dimensional arrays, instead a pointer to a one dimen­

sional array is used. This is done because it is faster to access the data by

incrementing the pointer one by one than using indexes with a conventional

array. For that reason we use two pointers to refer to the data, result
and res. The latter is used to access the data by incrementing it, when it

is needed to start again from the beginning, result is used to reset the

res pointer.,

The fifth part would be retrieve the parameters used by the function,

if any. Then we are ready to process the data accordingly to the technique

being implemented. Once it is finished, it is time to set the resulting image

as the current one. The function get_current () is used for that pur­

pose. From this point on the input image is an old one, and the output

image is the current.

The eight step is to update the histogram and pixel usage informa­

tion. In most cases this part will be merged with the processing of the

image (sixth step) to increase throughput. Here is shown separately to

make it simple. Have in mind that the seventh step HAS to precede the

eighth step, if it is decided to merge steps eighth and sixth, step seven will

have move up as well.

40

Step nine is to create a x im ag e [] structure to store the new image

information. Step ten, displays the image in its own window. Finally, set

the cursor back to its original shape.

As you can there is no need to deal with some internals such as

colormap allocation or any drawing primitives. Once the display function

is called IPIS takes care to allocate the needed gray levels, create a window

and draw the image. Similarly, the user or the programmer do not have to

worry about destroying an image, since IPIS will do all house cleaning

automatically.

4.3 Modifying Dialogs

Modifying the dialogs is relatively simple. The best advice is to read a

book about X and Motif and figure out how it works all together. Neverthe­

less, the programmer should be able to figure out how to create widgets

and assign callback functions by just looking at the code.

Creating good looking user interfaces is another matter. Some

experience is required, it is somewhat tedious to align widgets and make

them look like one is expecting.

CHAPTER 5

FUTURE WORK

Large amounts of work are left to be done, there are always new ideas to

be implemented or new requirements to be met. The near goal is to finish

implementing all the functions that are left such as histogram specification,

bicubic interpolation, restoration techniques, etc.

The next step is more ambitious, initially when I designed IPIS my

objective was to do some color processing. In order to achieve that goal the

program will have to be rewritten.

The way is implemented now, IPIS can only handle gray scale

images. It can not even handle true binary images, IPIS emulates binary

images by only allocating two gray levels, black and white, to a 256 gray

level image. This results in waste of memory space.

The new approach will have to be object oriented in order to take

advantage of inheritance, polymorphism and encapsulation. The language

of choice is C++. The program will not have to be rewritten from scratch,

many of the current routines can be modified to be useful. The overall

skeleton of the program will be maintained.

Inheritance will be advantageous because complex image classes

may be derived from simpler or basic image classes. Figure 5.1 shows a

possible class hierarchy. Certain function and data types may be enherited

from a basic class, while more specific functions are defined in the current

class.

41

42

Image

ColorBinary Gray Scale

Multispectral3Band

YIQ

32ChannelRGB CMY
16ChannelHSV 8Channel

Figure 5.1 Possible Object Class Hierarchy.

Encapsulation along with data abstraction will also be advantageous.

These features will produce cleaner code and will allow to hide implemen­

tation detail from users and programmers. For example, assume that a user

wishes to perform histogram equalization on an image. Since functions are

member of the objects, a color image may have a function called hist_equa,

similarly a gray scale image may also have a function called hist_equa.

Although both functions have the same name, and in principle do the same

thing (equalize histograms), the color function implementation is totally

different from the gray scale one. But for the user or the programmer the

difference will be hidden. From their point of view they will be applying a

histogram equalization to an “ image” regardless of its type.

Polymorphism will be useful because will allow the programmers to

treat the different kind of images, just by what they are: images. For exam­

ple, There will not be a need for a write function that takes as an argument

a color image object, and another write function that takes as an argument a

43

binary image object. A single write function with an image object as an

argument will suffice, because after all color and binary image objects are

image objects, both are derived from the same basic image class.

There is still a long way to go before final design decisions are

made, in the mean time new alternatives will be considered.

APPENDIX A

WIDGET HIERARCHY

The widget hierarchy is important in order to customize the application.

The list is given by the widget name and between parenthesis the widget’s

class. If the widget was created with a utility function and the widget’s

children are unknown, then the utility function will be between parenthesis.

Ipis (topLevelShell)

main (XmMainWindow)

menubar (XmRowColumn)

button_0 (XmCascadeButton)

filemenu (XmRowColumn)

button_0 (XmPushButton)

button_l (XmPushButton)

separatorj) (XmSeparatorGadget)

button_2 (XmPushButton)

button_l (XmCascadeButton)

settmenu (XmRowColumn)

button_0 (XmCascadeButton)

pullmenu (XmRowColumn)

button_0 (XmToggleButton)

button__l (XmToggleButton)

button_2 (XmToggleButton)

button_l (XmToggleButton)

button_2 (XmCascadeButton)

44

45

curr_menu (XmRowColumn)

button_0 (XmPushButton)

button, 1 (XmPushButton)

button_2 (XmPushButton)

button_3 (XmPushButton)

button_4 (XmPushButton)

button_5 (XmPushButton)

button_3 (XmCascadeButton)

help_menu (XmRowColumn)

button_0 (XmPushButton)

button_l (XmPushButton)

column (XmRowColumn)

scroll (XmScrolledWindow)

text (XmText)

form (XmForm)

Enhancement (XmPushButton)

Restorationt (XmPushButton)

Segmentation (XmPushButton)

Transformation (XmPushButton)

Analysis (XmPushButton)

Matching (XmPushButton)

Morphology (XmPushButton)

Degradation (XmPushButton)

Open (XmCreateFileselectionBoxDialog)

Write (XmDialogShell)

selbox (XmFileSelectionBox)

frame (XmFrame)

46

column (XmRowColumn)

toggle_box (XmRowColumn)

RawPGM (XmToggleButton)

AsciiPGM (XmToggleButton)

GIF (XmToggleButton)

JFIF (XmToggleButton)

PostScript (XmToggleButton)

TIFF (XmToggleButton)

scale (XmScale)

About (XmDialogShell)

pane (XmPanedWindow)

forml (XmForm)

tower (XmLabelGadget)

name (XmLabelGadget)

author (XmLabelGadget)

copyright (XmLabelGadget)

form2 (XmForm)

logo (XmLabelGadget)

caption (XmLabelGadget)

Enhancement (XmDialogShell)

pane (XmPanedWindow)

column (XmRowColumn)

frame 1 (XmFrame)

forml (XmForm)

HistogramProcessing (XmLabelGadget)

Stretching (XmPushButton)

Equalization (XmPushButton)

Specification (XmPushButton)

LocalEqua (XmPushButton)

scale 1 (XmScale)

frame2 (XmFrame)

form2 (XmForm)

Filtering (XmLabelGadget)

option 1 (XmCreateSimpleOptionMenu)

SpatialDomain (XmPushButton)

option2 (XmCreateSimpleOptionMenu)

FrequencyDomain (XmPushButton)

scale2 (XmScale)

scale3 (XmScale)

Median (XmPushButton)

scale4 (XmScale)

form3 (XmForm)

Help (XmPushButton)

Dismiss (XmPushButton)

Segmentation (XmDialogShell)

pane (XmPanedWindow)

frame (XmFrame)

forml (XmForm)

Segmentation (XmLabelGadget)

BilevelThresh (XmPushButton)

HalfThresh (XmPushButton)

MultilevelThresh (XmPushButton)

f0'rm2 (XmForm)

Help (XmPushButton)

48

Dismiss (XmPushButton)

Transform (XmDialogShell)

pane (XmPanedWindow)

board (XmForm)

frame 1 (XmFrame)

forml (XmForm)

ImageManipulation (XmLabelGadget)

frame2 (XmFrame)

toggle_box (XmRowColumn)

Biconstant (XmToggleButton)

Bilinear (XmToggleButton)

Bicubic (XmToggleButton)

up down (XmPushButton)

leftright (XmPushButton)

ccw (XmPushButton)

cw (XmPushButton)

double (XmPushButton)

half (XmPushButton)

rotate (XmPushButton)

degrees: (XmLabelGadget)

degrees_t (XmTextField)

scale (XmPushButton)

rx: (XmLabelGadget)

x_t (XmTextField)

ry: (XmLabelGadget)

y_t (XmTextField)

frame3 (XmFrame)

49

form2 (XmForm)

PixelManipulation (XmLabelGadget)

increase (XmPushButton)

brightness: (XmLabelGadget)

o f f j (XmTextField)

scale (XmPushButton)

contrast: (XmLabelGadget)

weight_t (XmTextField)

log (XmPushButton)

log2 (XmPushButton)

log 10 (XmPushButton)

inv (XmPushButton)

frame4 (XmFrame)

form3 (XmForm)

DomainManipulation (XmLabelGadget)

FT (XmPushButton)

form4 (XmForm)

Help (XmPushButton)

Dismiss (XmPushButton)

Morphology (XmDialogShell)

pane (XmPanedWindow)

column (XmRowColumn)

frame 1 (XmFrame)

forml (XmForm)

MathematicalMorphology (XmLabelGadget)

Dilation (XmPushButton)

Erosion (XmPushButton)

50

Opening (XmPushButton)

Closing (XmPushButton)

NotDilate (XmPushButton)

NotErode (XmPushButton)

TopHat (XmPushButton)

BotHat (XmPushButton)

DistT (XmPushButton)

SoftDil (XmPushButton)

SoftEro (XmPushButton)

RecSoftDil (XmPushButton)

RecSoftEro (XmPushButton)

Rank (XmPushButton)

scale 1 (XmScale)

LUM (XmPushButton)

LUMSMO (XmPushButton)

LUMSHA (XmPushButton)

scale2 (XmScale)

scale3 (XmScale)

toggle_boxl (XmRowColumn)

Binary Image (XmToggleButton)

SetOperation (XmToggleButton)

ZeroPadding (XmToggleButton)

Scale (XmToggleButton)

frame2 (XmFrame)

form2 (XmForm)

SEDefinition (XmLabelGadget)

frame3 (XmFrame)

51

toggle_box2 (XmRowColumn)

UserDef (XmToggleButton)

Auto (XmToggleButton)

Plus (XmToggleButton)

3x3 (XmToggleButton)

5x5 (XmToggleButton)

SEName: (XmLabelGadget)

name_t (XmTextField)

x: (XmLabelGadget)

x_t (XmTextField)

y: (XmLabelGadget)

y_t (XmTextField)

z: (XmLabelGadget)

z_t (XmTextField)

BinarySE (XmToggleButton)

form3 (XmForm)

Help (XmPushButton)

Dismiss (XmPushButton)

Noise (XmDialogShell)

pane (XmPanedWindow)

frame (XmFrame)

forml (XmForm)

GaussianDistribution (XmLabelGadget)

scale 1 (XmScale)

scale2 (XmScale)

form2 (XmForm)

Cancel (XmPushButton)

52

Ok (XmPushButton)

Bilevel (XmDialogShell)

forml (XmForm)

scale (XmScale)

Done (XmPushButton)

HalfLevel (XmDialogShell)

forml (XmForm)

scale (XmScale)

Done (XmPushButton)

Multilevel (XmDialogShell)

form (XmForm)

frame 1 (XmFrame)

areal (XmDrawingArea)

frame2 (XmFrame)

area2 (XmDrawingArea)

scale (XmScale)

Clear (XmPushButton)

Apply (XmPushButton)

Done (XmPushButton)

Image (topLevelShell)

scroll (XmScrolledWindow)

area (XmDrawingArea)

Charview (topLevelShell)

pane (XmPanedWindow)

scroll (XmScrolledWindow)

text (XmText)

form (XmForm)

Help (XmPushButton)

Dismiss (XmPushButton)

Hist (topLevelShell)

area (XmDrawingArea)

APPENDIX B

SELECTED PROGRAM LISTINGS

A selected set of listings is included to provide an inner look to the applica­

tion itself. Contact the Computer and Information Science Departmant at

NJIT for a complete code set.

ipt.h

#include <stdio.h>
ttinclude <X11/StringDef s .h>
#include <Xm/Xm. h>
#include <Xm/Form. h>
#include <Xm/LabelG. h>
#include <Xm/PushB .h>

#define PIXEL unsigned char
#define MY_COLORMAP 0x01
#define SCALE 0x02
#define TRUNCATE 0x04
#define NOTHING 0x08
#define LINE 80
#define LONG_LINE 255
#define DEFAULT_NEIGHBORHOOD 5
#define DEFAULT_MEAN 0
#define DEFAULT_STD 10
#define DEFAULT THRESHOLD 10 0

54

55

#ifndef NUM_0F_IMAGES
#define NUM_0F_IMAGES 6
#endif
#ifndef MAX
#define MAX(a,b) ((a>b)?(a):(b))
#endif
#ifndef MIN
#define MIN(a,b) {(a<b)?(a):(b))
#endif

typedef struct
{
float mean;
float std;
> gaussian;

typedef struct
{
int class;
int qlty;
} imgfmt;

typedef struct
{
int imgtype;
int nzpad;
int lthresh;
int uthresh;

char sename[LINE];
int autose;
int sx;
int sy;
int sz;
int setype;
int sorf;
int rank;
int noscale;
} mparameters;

typedef struct
{
int ffn;
int dO;
int dl;
} freqinfo;

Widget gettopshell(Widget);
void unmap_shell(Widget, Widget);
void destroy_shell(Widget, Widget);
int get_current(void);
void display_image(int);
void wprint(char *, ...);
void help dialog(Widget, int,

XmAnyCallbackStruct

#ifndef FLAG IPT

extern Display *theDisplay;
extern int theScreen;
extern Window theRootWindow;
extern Visual *theVisual;
extern int theDepth;
extern Colormap theColormap;
extern Colormap myColormap;
extern GC theGC;
extern Cursor watch;

extern unsigned int use[256];
extern int cmap[256];
extern unsigned int *hist[NUM_OF_IMAGES]
extern int current;
extern int image count;
extern int mode ;
extern Ximage *ximage[NUM_OF_IMAGES];
extern Pixmap pixmap[NUM OF IMAGES];
extern Pixmap hist ogram[NUM_OF_IMAGES]
extern Widget area[NUM_OF_IMAGES];
extern Widget top_hist[NUM_OF_IMAGES];
extern Widget top level;
#endif

58

#define
#include
#include
ttinclude
ttinclude
#include
#include
ttinclude
ttinclude
ttinclude
#include
ttinclude
ttinclude
ttinclude
ttinclude

Widget
Display
Screen
Window
Visual
int
Colormap
Colormap
GC

ipis.c

FLAG_IPT
"ipt.h"
<Xll/cursorfont .h>
<Xm/MainW.h>
<Xm/FileSB. h>
<Xm/RowColumn. h>
<Xm/Text. h>
<Xm/PanedW.h>
<Xm/ScrolledW.h>
<Xm/DialogS . h>
<Xm/Frame. h>
<Xm/Scale .h>
<Xm/ToggleB. h>
<stdarg.h>
<string.h>

%

top_level; /* Widget for top shell. */
theDisplay; / Pointer to the display. */

theScreen; / Pointer to the screen. */
theRootWindow; /* Root window ID. */
theVisual; / Pointer to the visual. */

/* The screen depth. */
/* The standard colormap. */
/* The private colormap. */
/* The graphics context. */

theDepth;
theColormap;
myColormap;
theGC;

59

Cursor
unsigned
int

unsigned
int
int
int
Ximage
Pixmap

Pixmap

Widget

Widget

static

static

watch; /* Busy cursor. */
int use[256]; /* Amount of grays used. */
cmap[256]; /* Index to the std cmap. */
/* Histograms for images. */
int *hist[NUM_OF_IMAGES] - {NULL};
current; /* The current image. */
image_count = 0; /* Image count. */
mode = TRUNCATE; /* The program mode. */
ximage [NUM_OF_IMAGES] ;/ Img. structs . */
pixmap [NUM_OF_IMAGES] ; /* Img. pixmaps. */

/* Histogram pixmaps. */
histogram[NUM_OF_IMAGES];
/* Image drawing areas. */

area[NUM_OF_IMAGES];
/* Dialogs for histograms. */
top_hist[NUM_OF_IMAGES];
/* Main window text area. */
Widget top_text;
/* Format info for writes. */
imgfmt format info = {0, 75};

void main(int argc, char *argv[])
{
XtAppContext app; /* Application context. */

/* Widgets used to in */

Widget main win, menu bar, sett menu, rc;

/* the main window. */
Widget curr_menu, widget, scroll, form;
char i, name[4];

/* Error */
int x_error(Display *, XErrorEvent *);

/* handlers. */
void xt_error(char *) ;
void init_colormap(void);

/* Widget callbacks. */
void file_cb(Widget, int);
void help_cb(Widget, int);
void sett_cb(Widget, int);
void pixel_cb(Widget, int);
void current_cb(Widget, XtPointer,

XmRowColumnCallbackStruct *
void enhance_dialog(Widget);
void morpho_dialog(Widget);
void transform_dialog(Widget);
void segment_dialog(Widget);
void stat_scale_dialog(Widget, XtPointer

XmAnyCallbackStruct *

/* Connect to the X server and execute command */
/* line options. */

top_level = XtVaAppInitialize(&app, "Ipis",
NULL, 0, &argc, argv, NULL, NULL);

61

/* Set the error handlers. */
XtAppSetErrorHandler(app, xt_error);
XtAppSetWarningHandler(app, xt_error);
XSetErrorHandler(x_error);

/* Init. server dependent global variables. */
theDisplay = XtDisplay (top__level) ;
theScreen = XtScreen(top_level);
theRootWindow = RootWindowOfScreen(theScreen);
theVisual = DefaultVisualOfScreen(theScreen);
theDepth = DefaultDepthOfScreen(theScreen);
theColormap = DefaultColormapOfScreen(theScreen);
theGC = DefaultGCOfScreen(theScreen);
watch = XCreateFontCursor(theDisplay,

XC_watch);

/* Create the main window widget. */
main_win = XtVaCreateManagedWidget("main",

xmMainWindowWidgetClass, top_level,
NULL);

/* Create the menubar and its pulldown and */
/* pullright menus. */
menu_bar = XmVaCreateSimpleMenuBar(

main_win, "menubar",
XmVaCASCADEBUTTON, NULL, NULL,
XmVaCASCADEBUTTON, NULL, NULL,
XmVaCASCADEBUTTON, NULL, NULL,

XmVaCASCADEBUTTON, NULL, NULL,
NULL);

widget = XtNameToWidget(menu_bar, "button_3")
XtVaSetValues(menu_bar, XmNmenuHelpWidget,

widget, NULL);

XmVaCreateSimplePulldownMenu(
menu_bar, "filemenu", 0, file_cb,
XmVaPUSHBUTTON, NULL, NULL, NULL,

NULL,
XmVaPUSHBUTTON, NULL, NULL, NULL,

NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, NULL, NULL, NULL,

NULL,
NULL);

sett_menu = XmVaCreateSimplePulldownMenu(
menu_bar, "settmenu", 1, sett_cb,
XmVaCASCADEBUTTON, NULL, NULL,
XmVaTOGGLEBUTTON, NULL, NULL, NULL,

NULL,
NULL);

XmVaCreateSimplePulldownMenu(
sett_menu, "pullmenu", 0, pixel_cb,
XmVaRADIOBUTTON, NULL, NULL, NULL,

NULL,
XmVaRADIOBUTTON, NULL, NULL, NULL,

63

NULL,

XmVaRADIOBUTTON, NULL, NULL, NULL,
NULL,

XmNradioBehavior, True,
XmNradioAlwaysOne, True,
NULL);

curr_menu = XmVaCreateSimplePulldownMenu!
menu_bar, "curr_menu", 2, NULL,
NULL);

XtAddCallback(curr_menu,
XmNentryCallback, current_cb, NULL);

/* Add dynamically a menu option for each */
/* image that can be displayed. */

for (i = 0; i < NUM_OF_IMAGES; i + +)
{
sprintf(name, "%d", i+1);
XtVaCreateManagedWidget(name,

xmPushButtonWidgetClass, curr_menu,
XmNuserData, i,
NULL);

}

XmVaCreateSimplePulldownMenu(
menu_bar, "help_menu", 3, help_cb,
XmVaPUSHBUTTON, NULL, NULL, NULL,

NULL,
XmVaPUSHBUTTON, NULL, NULL, NULL,

64

NULL,
NULL);

XtManageChild(menu_bar);

/* Create Message Area. */

rc = XtVaCreateManagedWidget(
"column", xmRowColumnWidgetClass,
main_win,
NULL);

scroll = XtVaCreateManagedWidget(
"scroll", xmScrolledWindowWidgetClass,
rc,
XmNscrollingPolicy,
XmAPPLICATION_DEFINED,
XmNvisualPolicy,
XmVARIABLE,
XmNscrollBarDisplayPolicy, XmSTATIC,
XmNshadowThickness, 0,
NULL);

top_text = XtVaCreateManagedWidget(
"text", xmTextWidgetClass, scroll,
XmNeditable, False,
XmNeditMode, XmMULTI_LINE_EDIT,
XmNscrollHorizontal, False,
XmNwordWrap, True,
XmNautoShowCursorPosition, True,
XmNcursorPositionVisible, False,

65

NULL);

/* Create the window's push buttons. */

form = XtVaCreateManagedWidget(
"form", xmFormWidgetClass, rc,
XmNfractionBase, 4,
NULL);

widget = XtVaCreateManagedWidget(
"Enhancement", xmPushButtonWidgetClass,
form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 0,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 2,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 0,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 1,
NULL);

XtAddCallback(widget, XmNactivateCallback,
enhance_dialog, NULL);

widget = XtVaCreateManagedWidget("Restoration",
xmPushButtonWidgetClass,
form,
XmNt opAt t achment, XmATTACH_POSITION,
XmNtopPosition, 0,
XmNbottomAttachment, XmATTACH POSITION,

66

XmNbottomPosition, 2,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 2,
NULL);

widget = XtVaCreateManagedWidget(
"Segmentation", xmPushButtonWidgetClass,
form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 0,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 2,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 2,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 3,
NULL);

XtAddCallback(widget, XmNactivateCallback,
segment_dialog, NULL);

widget = XtVaCreateManagedWidget(
"Transformation", xmPushButtonWidgetClass,
form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 0,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 2,

67

XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
NULL);

XtAddCallback(widget, XmNactivateCallback,
transform_dialog, NULL);

widget = XtVaCreateManagedWidget("Analysis",
xmPushButtonWidgetClass, form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 2,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 4,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 0,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 1,
NULL);

widget = XtVaCreateManagedWidget("Matching",
xmPushButtonWidgetClass, form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 2,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 4,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH POSITION,

68

XmNrightPosition, 2,
NULL);

widget = XtVaCreateManagedWidget("Morphology",
xmPushButtonWidgetClass,
form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 2,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 4,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 2,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 3,
NULL);

XtAddCallback(widget, XmNactivateCallback,
morpho_dialog, NULL);

widget = XtVaCreateManagedWidget("Degradation",
xmPushButtonWidgetClass,
form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 2,
XmNbottomAttachment, XmATTACH_POSITION,
XmNbottomPosition, 4,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,

69

NULL);
XtAddCallback(widget, XmNactivateCallback,

stat_scale_dialog, NULL);

/* Set the main window's widgets and make them */
/* visible. */
XtVaSetValues(main_win,

XmNmenuBar, menu_bar,
XmNworkWindow, rc,
NULL);

XtRealizeWidget(top_level);

/* Initialize the colormap with a minimun of */
/* gray levels. */
init_colormap();

/* Loop waiting for events. */
XtAppMainLoop(app);

>

void file_cb(Widget w, int n)
{

void open_file(void);
void write_file(void);

switch(n)
{

case 0 : open_file();
break;

70

case 1 : write_file();
break;

case 2 : XtCloseDisplay(theDisplay);
exit(0);

>

}

void sett_cb(Widget w, int n)
{
switch(n)
{
case 0 : break;

/* Can never happen. Pullright menu is called */
/* instead. */

case 1: mode MY_COLORMAP; break;
/* Toggle colormap mode. */
>

>

void pixel_cb(Widget w, int n)
{
switch(n)
{

case 0:
mode &= MY_COLORMAP; mode 1= SCALE; break;
case 1:
mode &= MY_COLORMAP; mode 1= TRUNCATE; break;
case 2:

71

mode &= MY_COLORMAP; mode 1= NOTHING; break;
>

>

void current_cb(Widget w, XtPointer client_data,
XmRowColumnCallbackStruct *cbs)

{
int n ;

/* Find out which button was selected from the */
/* pulldown menu. */
XtVaGetValues(cbs->widget, XmNuserData, &n, NULL);

/* if it exists, set it the current image. */
if (ximage[n])
current = n;

}

void help_cb(Widget w, int n)
{
void about_dialog(Widget);

if (n)
about_dialog(w);

else
help_dialog(w, 0, NULL);

}

void open file(void)

72

{
static Widget dialog;
void input_image(Widget, XtPointer,

XmFileSelectionBoxCallbackStruct *) ;

/* If the open_file dialog has been created */
/* before then skip this code. */
if (!dialog)
{
dialog = XmCreateFileSelectionDialog(top_level,

"Open", NULL, 0);
XtAddCallback(dialog, XmNokCallback,

input_image, NULL);
XtAddCallback(dialog, XmNhelpCallback,

help_dialog, 6);
XtAddCallback(dialog, XmNcancelCallback,

XtUnmanageChild, NULL);
>

/* Make sure that the dialog is visible. */

XtManageChild(dialog);
XtPopup(XtParent(dialog), XtGrabNone);

>

void write_file(void)
{
Widget frame, rc, box, toggle, scale;
static Widget dialog, selbox;
void set format(Widget, int,

73

XmToggleButtonCallbackStruct *) ;
void set_quality(Widget, XtPointer,

XmScaleCallbackStruct *) ;
void write_image(Widget, XtPointer,

XmFileSelectionBoxCallbackStruct *) ;

/* If write_file dialog has been created before */
/* then make it visible. */
if (dialog)
{
XtManageChild(selbox);
XtManageChiId(dialog);
XtPopup(dialog, XtGrabNone);
return;

}
/* If not, create dialog. */
dialog = XtVaCreatePopupShell("Write",

xmDialogShellWidgetClass,
top_level,
XmNdeleteResponse, XmUNMAP,
NULL);

selbox = XtVaCreateWidget("selbox",
xmFileSelectionBoxWidgetClass, dialog,
XmNautoUnmanage, True,
NULL);

frame = XtVaCreateManagedWidget("frame",
xmFrameWidgetClass, selbox,

74

XmNshadowType, XmSHADOW_ETCHED_IN,
NULL);

rc = XtVaCreateManagedWidget("column",
xmRowColumnWidgetClass, frame,
NULL);

box = XtVaCreateManagedWidget("toggle_box",
xmRowColumnWidgetClass, rc,
XmNradioBehavior, True,
XmNradioAlwaysOne, True,
XmNpacking,
XmNnumColumns,

XmPACK COLUMN,
3,

NULL);
toggle = XtVaCreateManagedWidget("RawPGM",

xmToggleButtonWidgetClass, box,

NULL);
XtAddCallback(toggle, XmNvalueChangedCallback,

set_format, 0);
toggle = XtVaCreateManagedWidget("AsciiPGM",

xmToggleButtonWidgetClass,
box, NULL);

XtAddCallback(toggle, XmNvalueChangedCallback,
set_format, 1);

toggle = XtVaCreateManagedWidget("GIF",
xmToggleButtonWidgetClass, box,
NULL);

XtAddCallback(toggle, XmNvalueChangedCallback,

XmNset, True,

75

set_format, 2);
toggle = XtVaCreateManagedWidget("JFIF",

xmToggleButtonWidgetClass, box,
NULL);

XtAddCallback(toggle, XmNvalueChangedCallback,
set_format, 3);

toggle = XtVaCreateManagedWidget("PostScript",
xmToggleButtonWidgetClass,
box, NULL);

XtAddCallback(toggle, XmNvalueChangedCallback,
set_format, 4);

toggle = XtVaCreateManagedWidget("TIFF",
xmToggleButtonWidgetClass, box,
NULL);

XtAddCallback(toggle, XmNvalueChangedCallback,
set_format, 5);

scale = XtVaCreateManagedWidget("scale",
xmScaleWidgetClass, rc,

NULL);
XtAddCallback(scale, XmNvalueChangedCallback,

set_quality, NULL);
XtManageChild(selbox);

XmNorientation XmHORIZONTAL,
5,
95,
format_info.qlty
True,

XmNminimum
XmNmaximum
XmNvalue,
XmNshowValue

76

XtAddCallback(selbox, XmNokCallback,
write_image, &format_info);

XtAddCallback(selbox, XmNhelpCallback,
help_dialog, 7);

XtAddCallback(selbox, XraNcancelCallback,
XtUnmanageChild,
XtParent(selbox));

XtManageChild(dialog);
XtPopup(dialog, XtGrabNone);

>

#include "bitmaps/tower"
#include "bitmaps/njit"

void about_dialog(Widget w)
{
P ixmap b i tmap;
Pixel fg, bg;
static Widget dialog, pane;
Widget form, labell, label2, label3;
XmFontList list;
XFontStruct *font;

/* If dialog has been created them make it */
/* visible. */
if (dialog)
{

XtManageChild(pane);

77

XtManageChild(dialog);
XtPopup(dialog, XtGrabNone);
return;

>

/* If not, create dialog. */
dialog = XtVaCreatePopupShell("About",

xmDialogShellWidgetClass,
top_level,
XmNdeleteResponse, XmUNMAP,
NULL);

pane = XtVaCreateWidget("pane",
xmPanedWindowWidgetClass, dialog,
XmNsashWidth, 1,
XmNsashHeight, 1,
NULL);

form = XtVaCreateManagedWidget("forml”,
xmFormWidgetClass, pane,
XmNfractionBase, 19,
NULL);

XtVaGetValues(form,
XmNforeground, &fg,
XmNbackground, &bg,
NULL);

/* Create monochrome a pixmap of depth 8. */

bitmap = XCreatePixmapFromBitmapData(
theDisplay, theRootWindow,
tower bits, tower width,

78

labell

label2

label3

tower_height, 0, bg, 8);
XtVaCreateManagedWidget("tower",
xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_FORM,
XmNlabelType, XmPIXMAP,
XmNlabelPixmap, bitmap,
NULL);
XtVaCreateManagedWidget("name",
xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 3,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, labell,
XmNlabeIString,
XmStringCreateSimple(
"IPIS - Version 0.5"),
NULL);
XtVaCreateManagedWidget("author",
xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, label2,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, labell,
XmNalignment, XmALIGNMENT_BEGINNING,
XmNlabelString,
XmStringCreateLtoR(

79

label2

form

bitmap

labell

"Developed by Eduardo Morales\nat the
Computer Vision Laboratory.", "charset"),
NULL);
XtVaCreateManagedWidget("copyright",
xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, labell,
XmNtopOffset, 5,
XmNleftAttachment, XmATTACH_FORM,
XmNlabeIString,
XmStringCreateSimple(
"Copyright 1993 New Jersey Institute of
Technology"),
NULL);
XtVaCreateManagedWidget("form2",
xmFormWidgetClass, pane,
XmNfractionBase, 22,
NULL);
XCreatePixmapFromBitmapData(
theDisplay, theRootWindow, njit_bits,
njit_width, njit_height, 0, bg, 8);
XtVaCreateManagedWidget("logo",
xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNlabelType, XmPIXMAP,

80

XmNlabelPixmap, bitmap,
NULL);

font = XLoadQueryFont(theDisplay,
M-adobe-times-bold-i-normal— 14-14 0-7 5-
7 5-p-77-iso885 9-l");

list = XmFontListCreate(font, "charsetl");
labe!2 = XtVaCreateManagedWidget("caption",

xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_POSITION,
XmNtopPosition, 3,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, labell,
XmNfontList, list,
XmNlabelString,
XmStringCreateSimple("A Public Research
University."),
NULL);

/* According to the Motif Style Guide, */
/* action area must not be resized. */

{
Dimension h;
XtVaGetValues(labell, XmNheight, &h, NULL);
XtVaSetValues(form,

XmNpaneMaximum, h,
XmNpaneMinimum, h,
NULL);

81

>

XtManageChiId(pane);
XtManageChild(dialog);
XtPopup(dialog, XtGrabNone);

>

void set_format(Widget w, int num,
XmToggleButtonCallbackStruct *cbs)

{

if (cbs->set)
format_info.class = num;

}

void set_quality(Widget w, XtPointer client_data,
XmScaleCallbackStruct *cbs)

{

format_info.qlty = cbs->value;
>

Widget gettopshell(Widget w)
{

while (w ScSc ! XtIsWMShell (w))
w = XtParent(w);
return w;

>

void unmap_shell(Widget w, Widget shell)
{

XtUnmapWidget(shell);

82

}

void destroy_shell(Widget w, Widget shell)
{

XtDestroyWidget(shell);
}

/* This function works like printf but instead */

/* of printing to the stdout it prints */
/* the message in a text widget. */
void wprint(char *fmt, ...)
{
char msgbuf[LONG_LINE];
static XmTextPosition wpr_position;
va__list args ;

va_start(args, fmt);
vsprintf(msgbuf, fmt, args);
va_end(args);

XmTextInsert(top_text, wpr_position, msgbuf);
wpr_position += strlen(msgbuf);
XtVaSetValues(top_text,
XmNcursorPosition, wpr_position, NULL);
XmTextShowPosition(top_text, wpr_position);

}

int x_error(Display *dpy, XErrorEvent *err)
{

83

char buf[LINE];

XGetErrorText(dpy, err->error_code, buf,
sizeof(buf));

wprint("X Error: %s\n", buf);
return 0;

}

void xt_error(char *mess)
{
/* We can disregard the "Cannot allocate. . . " */
/* error message because it's granted that we */
/* will run out of colormap cells (only 256 */
/* available) . */
if (strstr(mess,

"Cannot allocate colormap entry for") == NULL)
wprint("Xt Error: %s\n", mess);

}

84

degradeD.c

#include "ipt.h"
#include <Xm/DialogS.h>
#include <Xm/RowColumn.h>
ttinclude <Xm/Frame.h>
#include <Xm/PanedW.h>
#include <Xm/Scale.h>

/* Contains the mean and std. */

static gaussian distrib;

void stat_scale_dialog(Widget w, XtPointer
client_data, XmAnyCallbackStruct *cbs)

{
static Widget dialog;
Widget pane, frame, form, label, scalel, scale2;
Widget action;
void gauss(Widget, XtPointer,

XmAnyCallbackStruct *);
void set_mean(Widget, XtPointer,

XmScaleCallbackStruct *);
void set_std(Widget, XtPointer,

XmScaleCallbackStruct *);

/* Check if it has been created, if true then */
/* make it visible. */
if (dialog)
{

85

XtMapWidget(dialog);
return;

>

/* Create the dialog. */
dialog = XtVaCreatePopupShell("Noise",

xmDialogShellWidgetClass,
gettopshell(w),
XmNdeleteRespon.se, XmDO_NOTHING,
NULL);

pane = XtVaCreateWidget("pane",
xmPanedWindowWidgetClass, dialog,
XmNsashWidth, 1,
XmNsashHeight, 1,
NULL);

frame = XtVaCreateManagedWidget("frame",
xmFrameWidgetClass, pane,
XmNshadowType, XmSHADOW_ETCHED_IN,
NULL);

form = XtVaCreateManagedWidget("forml",
xmFormWidgetClass, frame,
XmNfractionBase, 19,
NULL);

label = XtVaCreateManagedWidget(
"GaussianDistribution",
xmLabelGadgetClass, form,
XmNtopAttachment, XmATTACH_FORM,

86

XmNtopOffset, 2,
XmNleftAttachment, XmATTACH_FORM,
XmNleftOffset, 5,
NULL);

distrib.mean = DEFAULT_MEAN / 10.0;
scalel = XtVaCreateManagedWidget("scalel",

xmScaleWidgetClass, form,
XmNorientation, XmHORIZONTAL,
XmNdecimalPoints, 1,
XmNvalue, DEFAULT_MEAN,
XmNshowValue, True,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, label,
XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
NULL);

XtAddCallback(scalel, XmNvalueChangedCallback,
set_mean, NULL);

distrib.std = DEFAULT_STD / 10.0;
scale2 = XtVaCreateManagedWidget("scale2",

xmScaleWidgetClass, form,
XmNorientation, XmHORIZONTAL,
XmNdecimalPoints, 1,
XmNvalue, DEFAULT_STD,
XmNshowValue, True,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, scalel,

87

XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
NULL);

XtAddCallback(scale2, XmNvalueChangedCallback,
set_std, NULL);

form = XtVaCreateManagedWidget("form2",
xmFormWidgetClass, pane,
XmNfractionBase, 5,
NULL);

action = XtVaCreateManagedWidget("Cancel",
xmPushButtonWidgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment , XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtAddCallback(action, XmNactivateCallback,
unmap_shell, dialog);

action = XtVaCreateManagedWidget("Ok",
xmPushButtonWidgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH POSITION,

88

XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtAddCallback(action, XmNactivateCallback, gauss,
(XtPointer) kdistrib);

/* According to the Motif Style Guide, */
/* action area must not be resized. */

{

Dimension h;
XtVaGetValues(action, XmNheight, &h, NULL);
XtVaSetValues(form,

XmNpaneMaximum, h,
XmNpaneMinimum, h,
NULL);

>

XtManageChild(pane);
XtPopup(dialog, XtGrabNone);

}

/* Update the mean every time the value is */
/* changed. */
void set_mean(Widget w, XtPointer client_data,

XmScaleCallbackStruct *cbs)
{

89

distrib.mean = cbs->value / 10.0;
}

/* Update the standard deviation every time the */
/* value is changed. */
void set_std(Widget w, XtPointer client_data,

XmScaleCallbackStruct *cbs)
{

distrib.std = cbs->value / 10.0;
}

90

image.c

#include "ipt.h"
ttinclude <X11/Xlib.h>
#include <X11/Xut i 1.h>
#include <Xm/DrawingA.h>
#include <Xm/MwmUtil.h>
#include <Xm/ScrolledW.h>

int allc[256] = {0>;
static Widget top[NUM_OF_IMAGES];

void input_image(Widget w, XtPointer client_data,
XmFileSelectionBoxCallbackStruct *cbs)

{

char *filename;
char *dire;
FILE * f i 1 e ;
PIXEL buf[5];
int f lag;
int read_JPEG(FILE *)
int read_RPGM(FILE *)
int read_APGM(FILE *)
int read TIFF(char *)

XDefineCursor(theDisplay, XtWindow(top_level),
watch);

XFlush(theDisplay);

91

/* Get filename to open from the */

/* FileSelectionBox structure. */
XmStringGetLtoR(cbs->value,

XmSTRING_DEFAULT_CHARSET, ^filename);

if (!(file = fopen(filename, "rb")))
{
wprint("Error opening input file: %s\n",

filename);
return;

>

/* Print filename on the screen, but first get */
/* rid of the pathname. */

XmStringGetLtoR(cbs->dir,
XmSTRING_DEFAULT_CHARSET, &dire);

wprint("Reading file %s\n",
filename+strlen(dire));

current = get_current();

/* Read the file's first two characters to find */
/* its type. */
fread(buf, sizeof(char), 2, file);
/* Rewind the file. Some library functions use */
/* the first two chars. */
rewind(file);

/* Determine file type and call appropiate
/* function.
if (*buf == Oxff I I *buf == 0xd8)
flag = read_JPEG(file);

else if (*buf == 'P' && *(buf+l) == '5')
flag = read_RPGM(file);

else if (*buf == 'P' && *(buf+l) == '2')
flag = read_APGM(file);

else if (*buf == '1' I I *buf == 'M')
{

/* readJTIFF requires a closed file.
fclose(file) ;
flag = read_TIFF(filename);

}

else
{

fclose(file);
wprint("Error: Unknown file format.\n");
return;

}

/* Check if there were any errors. Don't worry
/* about messages, error handlers should have
/* taken care of that.
if (!flag)
return;

display_image(current);

93

/* Unmap FileSelection dialog. */
XtUnmanageChild(w);
fclose(file);
XtFree(filename) ;
XtFree(dire);
XUndefineCursor(theDisplay, XtWindow(top_level));

>

void display_image(int num)
{
int x, y, ix, iy;
char name[9] ;
char *img;
PIXEL *temp, *t;
Xlmage *xtemp;
Widget sw;
Colormap colormap;
void redraw(Widget, XtPointer,

XmDrawingAreaCallbackStruct *) ;
void input_cb(Widget, XtPointer,

XmDrawingAreaCallbackStruct *);
void destroy(Widget, XtPointer,

XmDrawingAreaCallbackStruct *) ;
void set_colormap(int);

/* Select appr opiate colormap. */
if (mode & MY_COLORMAP)
colormap = myColormap;

94

else
{
/* If standard colormap is used, try to */
/* allocate the new gray levels used by the */
/* current image. */
set_colormap(num);
colormap = theColormap;

}

/* Create shell to place the image. */
sprintf(name, "image-%d", num+1);
top[num] = XtVaAppCreateShell("Image", "Image",

topLevelShellWidgetClass, theDisplay,
XmNmwmDecorat ions,
MWM_DECOR_RESIZEH I MWM_DECOR_TITLE,
XmNtitle, name,
XmNwidth,
ximage[num]->width + 4,
XmNheight,
ximage[num]->height + 4,
XmNcolormap, colormap,
NULL);

sw = XtVaCreateManagedWidget("scroll",
xmScrolledWindowWidgetClass, top[num],
XmNscrollingPolicy, XmAUTOMATIC,
XmNscrollBarDisplayPolicy, XmAS_NEEDED,
NULL);

95

area[num]= XtVaCreateManagedWidget("area",
xmDrawingAreaWidgetClass, sw,
XmNuserData,
XmNwidth,
XmNheight,
ximage[num]->height,
NULL);

num,
ximage[num]->width,

XtAddCallback(area[num],
XmNexposeCallback, redraw, NULL);

XtAddCallback(area[num],
XmNinputCallback, input_cb, NULL);

XtAddCallback(area[num],
XmNdestroyCallback, destroy, NULL);

/* Allocate a pixmap to place the image. */

pixmap[num] = XCreatePixmap(theDisplay,
theRootWindow, ximage[num]->width,
ximage[num]->height, theDepth);

if (mode & MY_COLORMAP)
{
/* If using a private colormap, there is no */

/* need to map the pixel values. Just place */
/* the image in memory. */
XPutImage(theDisplay, pixmap[num], theGC,

ximage[num], 0, 0, 0, 0,
ximage[num]->width,
ximage[num]->height);

96

>

else
{
/* If using a standard colormap, the image */
/* needs to be remapped to point to the */
/* correct colormap position. Gray lavels are */
/* not always allocated in order, also there */
/* are some colormap cells being used by other */
/* programs in the display. */
ix = ximage[num]->width;
iy = ximage[num]->height;
img = (PIXEL *)ximage[num]->data;

/* Notice that we create a temporary image so */
/* that we do not alter the original. */

temp = t = (PIXEL *)XtCalloc(ix*iy,
sizeof(PIXEL));

for (y=0; y < iy; y++)
for (x=0; x < ix; x++)

(t + +) = (PIXEL)cmap[(PIXEL) ((img++))] ;
xtemp = XCreatelmage(theDisplay, theVisual, 8,

ZPixmap,
0, (char *) temp, ix, iy, 8, 0);

xtemp->byte_order = MSBFirst;
xtemp->bitmap_bit_order = MSBFirst;

XPutImage(theDisplay, pixmap[num], theGC, xtemp,
0, 0, 0, 0, ix, iy) ;

97

XDestroyImage(xtemp);
}

XtRealizeWidget(top[num]);
/* One more image in the display. */
image_count++;

}

void write_image(Widget w, XtPointer client_data,
XmFileSelectionBoxCallbackStruct *cbs)

{

char *filename, *dire;
imgfmt *format;
int write_JPEG(char *, int);
int write_RPGM(char *) ;
int write_APGM(char *) ;
int write_PS(char *) ;
int write_TIFF(char *) ;

if (!image_count)
{

wprint("No image present.\n");
return;

}

XDefineCursor(theDisplay, XtWindow(top_level) ,
watch);

XFlush(theDisplay);

98

XmStringGetLtoR(cbs->value,
XmSTRING_DEFAULT_CHARSET, ^filename);

XmStringGetLtoR(cbs->dir,
XmSTRING_DEFAULT_CHARSET, &dire);

wprint("Writing file %s\n",
filename+strlen(dire));

/* Retreive the file format from the client data.*/
format = (imgfmt *)client_data;

/* Choose the corresponding function to format. */
switch(format->class)
{
case 0 : write RPGM(filename); break;
case 1 : write_ APGM(filename); break;
case 2 : break; /* Not yet implemented. */
case 3 : write_ JPEG(filename, format->qlty);break;
case 4 : write_ PS(filename); break;
case 5 : write TIFF(filename);

>

XUndefineCursor(theDisplay, XtWindow(top level));

void set_colormap(int n)
{
int i;

99

int count=0
int close=0
XColor gray

/* Number of gray levels used. */
/* Number of closely allocated */

for (i=0; i < 256; i++)
{
if (hist[n][i]) /* if the grey level is used...*/
i
count++;
if (!allc[i]) /* if not yet allocated. . .*/
{
gray.red = (unsigned short)(i * 2 57)
gray.green = (unsigned short)(i * 2 57)
gray.blue = (unsigned short)(i * 2 57)
gray.flags = DoRed I DoGreen I DoBlue;

/* Allocate color in standard colormap. */

if (IXAllocColor(theDisplay, theColormap,
&gray))

{
/* If allocation failed. Allocate closest */

/* gray level. */

if (i % 3 == 1)
cmap[i] = cmap[i-1];

else
cmap[i] = cmap[i +1];

close++;
}

100

else
{

/* Success. Do not forget to keep the */

/* colormap position. */
cmap[i] = gray.pixel;
allc[i] = 1;

}
}

}

}

wprint("%d gray levels. Allocated %d true,
%d close.\n",
count, count-close, close);

>

/* Initialize colormaps so there are always gray */
/* levels to work with. */
void init_colormap(void)
{
int i, count=0, flag=0;
XColor colors[256], gray;

/* Allocate private colormap. All gray levels */
/* allocated in order starting from the first */
/* colormap cell. */
for (i=0; i < 256; i++)
{
colors[i].pixel = i;

101

colors[i].red = (unsigned short)(i * 257);
colors[i] .green = (unsigned short) (i * 257) ;
colors[i].blue = (unsigned short)(i * 257);
colors[i].flags = DoRed I DoGreen I DoBlue;

>

myColormap = XCreateColormap(theDisplay,
theRootWindow,
theVisual, AllocAll);

XStoreColors(theDisplay, myColormap, colors, 256);

/* Allocate a minimum of 83 gray levels to work */
/* wi th. */
for (i=0; i < 256; i += 3)
{

gray.red = (unsigned short)(i * 257);
gray.green = (unsigned short)(i * 257);
gray.blue = (unsigned short)(i * 2 57);
gray.flags = DoRed I DoGreen I DoBlue;
if (!XAllocColor(theDisplay, theColormap, &gray))
flag = 1;

else
{

/* Success. Do not forget to keep the colormap*/
/* position. */
count++;
cmap[i] = gray.pixel;
allc[i] = 1;

102

}

}

/* if less than 83 gray levels were allocated, */
/* warn the user. */
if (flag)
{
wprint("Colormap to crowded. Could only allocate

%2d gray lev", count);
wprint("els.\nRecomend to quit some applications

to free colormap cell");
wprint("s\nand reinit colormap, or to continue

by using a private colo");
wprint("rmap.XnFailure to do so may result in

undesireble effects.\n");
}

>

/* Redraw the image every time there is an */
/* expose event. */
void redraw(Widget w, XtPointer client_data,

XmDrawingAreaCallbackStruct *cbs)
{

int n ;

f* Retreive the image number from the drawing */

/* widget. */
XtVaGetValues(w, XmNuserData, &n, NULL);

103

XCopyArea(cbs->event->xexpose.display, pixmap[n],
cbs->window, theGC,
0, 0, ximage[n]->width,
ximage[n]->height, 0, 0);

}

/* Process input events from the image area. */

void input_cb(Widget w, XtPointer client_data,
XmDrawingAreaCallbackStruct *cbs)

{

int n ;
static int x[NUM_OF_IMAGES], y[NUM_OF_IMAGES];
void sub_view(int, int, int, int, int);
void ascii_view(int, int, int, int, int);
void display_histogram(int);

/* Retreive the image number from the drawing */
/* widget. */
XtVaGetValues(w, XmNuserData, &n, NULL);

/* Select the event type. */
switch(cbs->event->type)
{

case ButtonPress:
/* Select the pressed button. */
switch(cbs->event->xbutton.button)
{

c a s e B u t t o n 3 :

104

/* Button 3 pressed. Destroy the image and */
/* reset the corners. */

XtDestroyWidget(gettopshell(w));
x [n] = y [nj = 0;
break;

case Button2:
/* Button 2 pressed. Update lower corner. */
wprint("Image %d: subwindow lower corner %d

%d\n", n+1, cbs->event->xbutton.x,
cbs->event->xbutton.y);

/* Check if Shift was pressed to select ascii *!
/* view or sub image. */
if (cbs->event->xbutton.state & ShiftMask)
ascii_view(n, x[n], y[n],
cbs->event->xbutton.x, cbs->event->xbutton.y);

else
sub_view(n, x[n], y[n],
cbs->event->xbutton.x, cbs->event->xbutton.y);

x [n] = y [n] = 0;
break;

case Buttonl:
/* But 1 pressed. If shift update upper */
/* corner or display histogram. */

if (cbs->event->xbutton.state & ShiftMask)
display_histogram(n);

else

105

{

x[n] = cbs->event->xbutton.x;
y[n] = cbs->event->xbutton.y;
wprint("Image %d: subwindow upper corner

%d %d\n", n+1, x[n], y[n]);
}
break;

>

}

}

/* Image has been destroyed free resources and */
/* update variables. */
void destroy(Widget w, XtPointer client_data,

XmDrawingAreaCallbackStruct *cbs)
{
int c=0, i, n;
unsigned long pixels[256];

/* Retreive the image number from the drawing */
/* widget. */

XtVaGetValues(w, XmNuserData, &n, NULL);

/* If a histogram is present, destroy it too. */
if (top_hist[n])
XtDestroyWidget(top_hist[n]);

XFreePixmap(theDisplay, pixmap[n]);
XDestroyImage(ximage[n]) ;

106

ximage[n] = NULL;

/* Get a new current image unless image limit */
/* has been exceeded. */
if (current == n && !client_data)
for (current=0; (current < NUM_OF_IMAGES) &&

(!ximage[current]); current++);

/* Update the number a given pixel is used. If */
/* it is allocated and it isn't longer in use */
/* and it isn't part of the initial 83, prepare */
/* to deallocate it from the standard colormap. */
/* No need to worry if using the private */
/* colormap since it doesn't set the variable */
/* allc[] and therefore no pixel will be */

/* deallocated. */
for (i=0; i < 256; i++)
{

use[i] -= hist[n][i];
if (allc[i] ScSc !use[i] && (i % 3))
{

pixels[c++] = cmap[i];
a 11 c [i] = 0 ;

>

>

/* Free selected colormap cells. */
XFreeColors(theDisplay, theColormap,

107

pixels, c, 0) ;
XtFree(hist[n]) ;
image_count— ;/* One image less in the display. */

>

int get_current(void)
{
int i;

/* Find an empty ximage structure. */

for (i = 0; (i < NUM_OF_IMAGES) &&
(ximage[i]); i++);

/* If search is succesful. Allocated histogram */
/* memory and return value. */

if (i < NUM_OF_IMAGES)
{
/* Success. Allocate memory for the histogram */
/* and return the value. */
hist[i] = (unsigned int *)XtCalloc(256,

sizeof(unsigned int));
return i;

}

else
{
/* Failure. Maximum number of images on */
/* display. Need to destroy one to make room */

108

/* for the new one. */
XtRemoveCallback(area[current],

XmNdestroyCallback, destroy, NULL);
XtDestroyWidget(gettopshell(top[current]));
destroy(area[current], &i, NULL);

/* Allocate memory for the histogram and */

/* return the value. */
hist[current] = (unsigned int *)XtCalloc(256,

sizeof(unsigned int));
return current;

}

>

gauss.c

#include "ipt.h"
#include <stdlib.h>
#include <sys/t ime . h>

void gauss(Widget w, XtPointer client_data,
XmAnyCallbackStruct *cbs)

{

int x, y, ix, iy;
float sum;
gaussian *distrib;
PIXEL *image, *result, *img, *res;
float number_generator(float, float);

if (!image_count)
{

wprint("No image present.\n");
return;

>

XDefineCursor(theDisplay, XtWindow(top_level),
watch);

XFlush(theDisplay);

/* Retreive the mean and standard deviation.
distrib = (gaussian *)client_data;

ix = ximage[current]->width;
iy = ximage[current]->height;

110

image = img = (PIXEL *)ximage[current]->data;

result = res = (PIXEL *)XtCalloc(ix*iy,
sizeof(PIXEL));

current = get_current();

srand(time (NULL)) ; /* Initialize random seed. */

/* Add gaussian noise to the pixels. Make sure */
/* that no pixel is higher. */
for (y=0; y < iy; y++)
for (x=0; x < ix; x++)
{

sum = number_generator(distrib->std,
distrib->mean);

sum += *(img++);
if (sum > 255)
sum = 2 55;

if (sum < 0)
sum = 0;

*res = (PIXEL)sum;
use[*res]++;
hist[current] [*(res + +)]++;

}

ximage[current] = XCreatelmage(theDisplay,
theVisual, 8,
ZPixmap, 0, (char *)result,

I l l

ix, iy, 8, 0) ;
ximage[current]->byte_order = MSBFirst;
ximage[current]->bitmap_bit_order = MSBFirst;

display_image(current);
XUndefineCursor(theDisplay, XtWindow(top_level));

>

float number_generator(float std, float mean)
{
int i;
float val = 32767.0, a=0;

for (i=0; i<12; i++)
a += ((077777 & rand()) / val);
a = (a - 6.0) * std + mean;
return a;

>

REFERENCES

1. Barkakati, Nabaiyoti. 1991. X Window System Programming.
Carmel, Indiana: SAMS.

2. Gonzales, Rafael C., and Paul Wintz. 1977. Digital Image Processing.
Boston: Addison-Wesley.

3. Heller, Dan. 1991. Motif Programming Manual.
Sebastopol, California: O’Reilly & Associates, Inc.

4. Pratt, William K. 1991. Digital Image Processing.
New York: Wiley.

5. Rosenfeld, Azriel, Avanish C. Kak. 1982. Digital Picture Processing.
San Diego: Academic Press.

6. Shih, Frank Y., and Christopher C. Pu. 1993. “ Threshold Decomposi­
tion of Soft Morphological Filters.” Proc. o f IEEE Conference on
Computer Vision and Pattern Recognition. 672-673.

112

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1993

	Design and implementation of IPIS : an X-Window based image processing interactive system
	Eduardo Morales
	Recommended Citation

	Copyright Warning & Restrictions
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: System Overview
	Chapter 3: Image Processing Routines
	Chapter 4: Extending IPIS
	Chapter 5: Future Work
	Appendix A: Widget Hierarchy
	Appendix B: Selected Program Listings
	References

	List of Figures

