
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 10-31-1994

CEBus demonstration system CEBus demonstration system

Liang-Chuang Chen
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Chen, Liang-Chuang, "CEBus demonstration system" (1994). Theses. 1219.
https://digitalcommons.njit.edu/theses/1219

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1219?utm_source=digitalcommons.njit.edu%2Ftheses%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

CEBUS DEMONSTRATION SYSTEM

by
Liang-Chuang Chen

A CEBus demonstration system is constructed and applied

to aspects of home automation security. Two M68HC16Z1

evaluation boards are used as CEBus nodes. Two CEBus spread

spectrum power line modems (SSC PLCEMS) interconnect the

nodes. An SSC PLCEMS handles all spread spectrum signal

generation and reception.

The application programs in the two boards are written

in assembly language based upon CAL (Common Application

Language), a CEBus standard.

The standard CEBus frame format and FCS (Frame Check

Sequence) are implemented by software in the Data Link

Layer. Encoding and decoding binary information into UST

format are implemented in the Physical Layer.

The system responsiveness of 30 millisec was measured

experimentally for a case with 3 information bytes. The

noise sensitivity was measured experimentally with a

straight 3-wire connection of the modems with and without AC

power. The distorted AC line caused a packet error rate of

2%, a higher rate than obtained by injecting broadband

random noise.

CEBUS DEMONSTRATION SYSTEM

by
Liang-Chuang Chen

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfilment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1994

APPROVAL PAGE

CEBUS DEMONSTRATION SYSTEM

Liang-Chuang Chen

Dr. Anth iy Robb; thesis Co-Advisor
Associate Professor of Electrical and
Computer Engineering, NJIT

Dr. C. Manikopoulos, Thesis Co-Advisor
Associate Professor of Electrical and
Computer Engineering, NJIT

. John Carjinelli, Committee Member
Associate Professor of Electrical and
Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Liang-Chuang Chen

Degree: 	 Master of Science in Electrical Engineering

Date: 	 October 1994

Undergraduate and Graduate Education

4b Master of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, New Jersey, 1994

s Bachelor of Science in ElectricalEngineering,
Chung-Yung University,
Taiwan, ROC, 1988

Major: Electrical Engineering

iv

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to

his advisors, Professor Anthony Robbi, and Professor

Manikopoulos for his guidance, friendship, and moral support

throught this research.

Special thanks to Professors Carpinelli for serving as

members of the committee.

TABLE OF CONTENTS

Chapter 	 Page

	

1 INTRODUCTION 1

1.1 CEBus: A New Standard in Home Automation 	 1

1.2 OSI Reference Model Layers for CEBus 	 2

	

1.2.1 Physical Layer 2

1.2.2 Data Link Layer 	 3

1.2.3 Network Layer 	 6

1.2.4 Transport, Session, and Presentation Layers 	 7

1.2.5 Application Layer 	 8

	

1.3 CEBus Specification 11

1.3.1 PLBus 	 11

1.4 Thesis Description 	 12

1.5 Related Work 	 15

2 SYSTEM DESCRIPTION 	 18

	

2.1 System Configuration and Operation 18

2.2 I/O Hardware 	 19

2.3 Function Description 	 21

2.3.1 Mode 	 21

2.3.2 CEBus Real-Time Clock 	 21

2.3.3 A Starting Time for The CEBus Real-Time Clock 22

	

2.3.4 Alarm 22

2.3.5 Security 	 22

2.3.6 Light Control 	 22

3 SYSTEM DESIGN 	 23

3.1 System Initialization 	 23

vi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.2 QSPI and Data/Command Transfer 	 27

3.2.1 Master Mode 	 27

3.3 SCI and Data/Command Transfer 	 32

3.4 PC Side 	 34

	

4 PHYSICAL LAYER 37

4.1 SSC PLCEMS 	 38

4.2 Spread Spectrum Carrier Technology 	 39

4.3 Signal Encoding 	 39

4.4 Preamble Encoding 	 41

4.5 Subroutine for Preamble Encoding 	 42

4.6 Packet Body Encoding 	 42

4.7 Subroutine for Packet Body Encoding 	 43

4.8 Subroutine for Packet Body Decoding 	 44

5 DATA LINK LAYER 	 45

5.1 Normal Frame Format 	 45

5.1.1 Preamble (PRE) Field 	 45

5.1.2 Control Field 	 46

5.1.3 Destination Address (DA) Field 	 46

5.1.4 Destination House Code (DHC) Field 	 46

5.1.5 Source Address (DA) Field 	 47

5.1.6 Source House Code (SHC) Field 	 47

5.1.7 Information Field 	 47

5.1.8 Frame Check Sequence (FCS) Field 	 47

6 APPLICATION LAYER 	 49

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6.1 CAL Functions 	 49

6.1.1 Resource Allocation Function 	 50

6.1.2 Control Function 	 51

6.2 Contexts 	 51

6.3 Objects 	 51

6.4 Methods 	 52

6.5 Example CEBus Communication 	 52

6.6 C Version 	 54

7 SYSTEM PERFORMANCE 	 55

7.1 Responsiveness 	 55

7.2 Noise Immunity 	 56

8 CONCLUSION AND POSSIBLE WORK 	 - 59

8.1 Conclusion 	 59

8.2 SUggestions for Future Work 	 60

APPENDIX A CEBUS SPREAD SPECTRUM POWER LINE MODEM 	 61

A.1 SSC PLCE Integrated Circuit 	 61

A.1.1 Input Amplifier and A/D Converter 	 61

	

A.1.2 Matched Transversal Filter 61

A.1.3 Host Interface 	 64

A.1.4 CRC Logic 	 65

A.1.5 Clock Generation 	 66

A.1.6 Waveform Generator 	 66

A.1.7 Bias Generator 	 67

APPENDIX B SUBROUTINE FOR RS-232 COMMUNICATION 	 68

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX C SUBROUTINE FOR PREAMBLE ENCODING 	 71

APPENDIX D SUBROUTINE FOR PACKET BODY ENCODING 	 73

APPENDIX E SUBROUTINE FOR PACKET BODY DECODING 	 76

APPENDIX F NOISE DATA IN TABLE 	 78

REFERENCES 80

ix

LIST OF FIGURES

Figure 	 Page

1.1 LPDU Structure 	

1.2 NPDU Structure 	 7

1.3 APDU Structure 	 9

1.4 System Configuration 	 13

1.5 System State Diagram 	 14

1 .6 System Diagram 	 16

2.1 The Relation Between Switches and Devices 	 20

2.2 The Structure of Demonstration Screen 	 21

4.1 CEBus Physical Layer 	 37

4.2 Spread Spectrum Carrier Chirp 	 39

4.3 Amplitude Shift Keying (ASK) "1101" 	 41

4.4 Phase Reverse Keying (PRK) "1101" 	 43

6.1 CEBus Application Layer Interfaces 	 50

6.2 Timing Waveform 	 53

7.1 Timing Diagram 	 55

7.2 Errors vs. Noise Amplitude - 1 	 57

7.3 Errors vs. Noise Amplitude - 2 	 57

7.4 Errors vs. Noise Amplitude - 3 	 58

A.1 SSC PLCEMS Block Diagram 	 62

LIST OF TABLES

Table 	 Page

3.1 Relation Between Bits in Buffer[1] and Devices 	 35

3.2 Relation Between Bits in Buffer[2] and Devices 	 36

4.1 Power Line Symbol Encoding 	 40

6.1 Function Code for CAL 52

xi

CHAPTER 1

INTRODUCTION

1.1 CEBus: A New Standard in Home Automation

In 1984, EIA (Electronic Industries Association) formed the

CEBus (Consumer Electronic Bus) committee to develop a

standard to facilitate communications between various home

automation devices and appliances. The committee was made up

of such major corporations as Sony, Philips, Panasonic,

General Instrument, AT&T, Texas Instruments, Mitsubishi,

RCA, and Johnson Controls. It started out with the goal of

unifying infrared hand-held controllers in an effort to

reduce the jungle of remotes found in many entertainment

rooms. The committee quickly discovered that it made sense

to extend the standard to whole house communications over

assorted media.

According to EIA documents, the committee had five

primary goals for the CEBus: It would be retrofittable, use

distributed intelligence (have no central computer in order

to operate), be non-product specific, have an open

architecture, and be expandable.

CEBus isn't actually a bus, but a network

specification. It follows the ISO/OSI (International

Organization for Standardization Open System

Interconnection) seven-layer network model which defines the

physical, data link, network, transport, session,

1

2

presentation, and application layers. Each layer is

responsible for one aspect of network communication, with

each layer only able to talk to the layers directly above

and below it. For example, the physical layer is only

concerned with getting bits from one node to another,

without regard for what the bits mean or even whether they

make it from one node to the next error free (error

detection and correction are handled by the data link layer

which is one level higher).

By breaking the network model into well defined pieces,

implementation and support are greatly simplified. It is

also possible for one company to implement specific layers,

with another company implementing the rest. The two

implementations communicate through a well-defined boundary

between the layers.

1.2 OSI Reference Model Layers for CEBus

1.2.1 Physical Layer

At the lowest level is the physical layer. This is where

CEBus's greatest strengths lie since several different media

are defined in the specifications with the choice of which

medium to use up to the appliance designer. All the layers

above the physical layer are identical regardless of medium,

so the network is medium independent[1].

Signaling is done on most of the media by switching

between a "superior" state and an "inferior" state. Times

between changes determine the information being conveyed.

3

"One" bits last one "Unit Symbol Time" (UST), "zero" bits

last two USTs, end-of-field markers last three USTs, and

end-of-packet markers last four USTs. Exactly what defines

the superior and inferior states depends on the medium.

Characterizing communication speed for a CEBus medium in

bits per second is meaningless since one bits and zero bits

are of different durations. Thus, CEBus data rates are

defined in terms of "one bits per second." Statistically,

the overall throughput in bits per second is around two-

thirds the value of one bits per second.

1.2.2 Data Link Layer

The next highest OSI level is the data link layer. It is

primarily responsible for providing a clean channel of

communication for the higher levels. To do this, it-must

handle collision prevention, detection, and resolution;

packet acknowledgment; and final packet construction.

Collision prevention, detection, and resolution is

handled using CSMA/CDCR (Carrier Sense, Multiple Access/with

Collision Detection and Collision Resolution). Since all

nodes are connected to a common medium with no master node

dictating who may transmit when, there always exists the

possibility that two nodes may try transmitting at the same

time. Since it is always best to avoid such a situation,

collision prevention is tried first[2].

Before transmitting, each node listens to the network

to determine if another node is already transmitting. If so,

4

it simply waits for the transmitting node to finish. When

the network is free, the node waits a certain amount of time

before trying to transmit. The time it waits is a fixed

delay dependent on the packet's priority (high priority

packets are tried sooner than low priority packets) plus a

random channel access delay. Without the randomizing factor,

if two nodes sense the network free at the same time and

have equal priority packets to send, they would try

transmitting at the same time, resulting in a collision.

When a node determines to start transmitting, it starts

by sending out a preamble character. The preamble is a

random number designed to be a "sacrifical lamb." The

transmitting node listens as it sends out the preamble, and

if the preamble survives intact, the rest of the packet is

sent. If a collision is detected (another node sending a

different preamble), transmission is aborted and the process

starts again.

Depending on the packet type, an immediate

acknowledgement may be requested by the sending node. After

transmission is complete, but before the sending node gives

up the communications channel, the receiving node will send

an acknowledgment back to the sender. If the sender doesn't

receive the acknowledgment before timing out, the packet is

retransmitted once. If there is still a problem, a higher

network layer decides what to do.

The byte sent after the preamble is the Logical Link

Control Protocol Data Unit, or LPDU (Figure 1.1). It

I 	 I

Sery Priv Priority Packet Type

5

contains the packet type (which determines acknowledged or

unacknowledged service and local or nonlocal medium), packet

priority, privilege, and basic or extended service.

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Service Class
0 	 Basic Service
1 	 Extended Service

Privilege
0 	 Nonprivileged LPDU
1 	 Privileged LPDU

Priority
00 	 High
01 	 Standard
10 	 Deferred

Packet Type
000 	 Acknowledged Response
001 	 Local Data Acknowledged
010 	 Data Unacknowledged
011 	 Nonlocal Data Acknowledged
100 	 Failure Response

Figure 1.1 LPDU structure

Following the LPDU are the destination address,

destination house code, source address, and source house

code. Each node is identified by both q unit number and a

house code. It's possible to have several independent

networks using the same media by assigning different house

codes to different groups of devices. The house code is also

used to avoid conflicts with neighbors.

Both destination and source addresses are sent so the

receiving node knows the sender's address. For example,

6

there may be several TVs and a single VCR connected to the

same bus. One of the TVs may send a request to a VCR to

start playing a tape, but the VCR must first send a command

back to the TV to change to an appropriate channel. Knowing

the address of the TV which sent the play command, it's

possible for the VCR to tell the correct TV to change

channel.

Packet data follow the addresses. The information comes

from the higher network levels and will be discussed in more

detail later.

The final field contains the Frame Check Sequence. It

is simply an 8-bit checksum of all the bits in the packet

excluding the preamble[3].

1.2.3 Network Layer

The network layer is responsible for determining which media

are to receive the packet and for breaking apart packets

which would exceed the 32-byte limit.

The Network Protocol Data Unit (NPDU) is added to the

front of the information field passed down by the upper

levels. See Figure 1.2. There are six bit fields which

determine which media are to receive the packet. Setting a

bit in the field results in the corresponding medium

receiving the packet (assuming the proper bridge is present

to transfer packets across media). The last two bits

determine whether the packet is to be sent using flood

routing, directory routine, or directory routing with a

7

request for a return ID, and whether it is being segmented.

The application layer breaks long messages that can not be

contained in a single packet. If segmentation is requested,

the NPDU header contains the segment number of the current

packet.

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Type 	 RF
	

SR 	 FO
	

CX
	

TP
	

PL

NPDU Type
11 Flood Routing, Unsegmented
10 Directory Routing, Unsegmented
01 Directory Routing, Return ID, Unsegmented
00 Segmented Variable Header

Figure 1.2 NPDU structure

1.2.4 Transport, Session, and Presentation Layers

Since the OSI seven-layer network model was designed to be

useful in just about any application, there is bound to be

some fat that can be trimmed while implementing applications

that don't require all the facilities or segmentation

defined in the model. Such is the case in the definition of

CEBus. The functions of the transport, session, and

presentation layers as defined in the OSI model are handled

by the application, network and data link layers in the

CEBus definition. This doesn't mean that the OSI model isn't

being followed or that corners are being cut. Certain

facilities found in larger networks just don't exist in a

simple control network.

8

1.2.5 Application Layer

The highest OSI level is the application layer and it is

responsible for the end user functions. In the case of

CEBus, the highest level defined isn't necessarily what the

end user will see (because, in many cases, operation will be

transparent or part of a device existing functionality), but

what the programmer sees. EIA has defined CAL (Common

Application Language) to allow CEBus devices to communicate

intelligently with each other(31.

A header similar to those found in the lower layers is

added to the front of the CAL command before being passed

along. It is called the Application Protocol Data Unit

(APDU). The APDU may be up to 3,810 bytes long, but only the

first two bytes have been defined at present (Figure 1.3).

The first byte contains the mode information and type

identifier. The mode specifies the service class, header

type and data field length for the command which follows.

The service class may be either basic or privileged, though

most commands in use at this time are basic. The header may

be either fixed or variable in length, with fixed-length

headers being the norm. Finally, the command length may be

either short (up to 32 bytes), long (up to 3,808 bytes), or

huge (up to 1,638,375 bytes), including data.

The type identifier determines whether a command is

implicit or explicit, and defines the response code for an

explicit command. An implicit command doesn't require a

Oper Class Command Reference

9

response, so is simpler to program and faster to send, but

is subject to errors since the destination node does not

respond. An explicit command requires a response from the

destination node, with the response either a result, reject,

or error code.

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Mode 	 Type Identifier

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Mode
000 	 Basic service, Fixed header, Short data
001 	 Privileged service, Fixed header, Short data
010 	 Basic service, Variable header, Long data
011 Privileged service, Variable header, Long data
100 	 Basic service, Variable header, Huge data

Type ID
01011 Explicit Association Invoke
01100 Reject
01101 Error
01110 Result
01111 Implicit Association Invoke

Operation
0 	 Asynchronous Transmission
1 	 Synchronous Transmission

Class
00	 No response requested
01 	 Error or Rejected requested
10 	 Result requested
11 	 Result, Error, or Reject requested

Command Ref
User-definable codes (except 00000)

Figure 1.3 APDU structure

The second byte in the APDU determines whether

transmission will be synchronous or asynchronous, and what

1 0

kind of response is desired in the case of an explicit

command.

CAL is made up of three sections, with each section

more precisely defining just what the final action should

be. The first section is the context and defines general

categories of devices. For example, there are categories

already defined for an audio process (amplifiers,

loudspeakers, equalizers, etc.), video monitor,

communication control system (telephone, radio, etc.), time

service element (real-time clock, timer start and stop

times, etc.), environment management system, lighting

system, etc.

The second section is the Specific Application Service

Element, or SASE. The SASE defines the primary function of

the command sequence. Each context has a list of SASEs

defined, and are often similar or identical across different

contexts. Examples of SASEs for, say, an audio process are

primary mode switch (power), source switch (radio, CD, or

tape), feature switch (noise reduction, surround sound), and

level controls (volume, bass, treble, balance).

Finally the Common Application Service Element (CASE)

defines just what the final action should be. CASEs are the

same for all contexts and SASEs. Example CASEs include true,

false, add, subtract, and load.

Using the context, SASE, and CASE, it's possible to

create commands to do just about any function you can think

of. EIA has tables of predefined contexts, SASEs, and CASEs,

1 1

so most of the time it's just necessary to look up a command

in the table and use it. Manufacturers who want to add

commands can follow the rules for CAL and develop new

commands. Escape codes have been put in place to allow

unlimited extension of CAL commands should the main tables

ever fill up. EIA presumably will have ultimate control over

the tables and the commands that go in them. Possibilities

exist for manufacturers to implement proprietary command

sequences, but it's unlikely such a product would win any

sort of official CEBus-compatible approval.

1.3 CEBus Specification

The CEBus specification defines six media which may be used

to carry the signal: PLBus (Power Line Bus), SRBus (Single-

Room Bus, or infrared), RFBus (Radio Frequency Bus), TPBus

(Twisted-Pair Bus), CXBus (CoaX Bus), and FOBus (Fiber-Optic

Bus), the last three of which are often collectively

referred to as WIBus, or WIred Bus.

1.3.1 PLBus

PLBus is likely to be the medium of choice for most

appliances meant for retrofit installations since almost

every house and business in the world is wired for

electricity. Since the power line is such a harsh

environment, with noise and transients the norm, this is the

slowest of all the media, but is still able to attain a

rate of 1000 one bits per second with a UST of 1 ms.

12

Transmissions use a 120-kHz carrier to denote a

superior state and the lack of a signal for an inferior

state. Unlike the X-10 system which transmits only at the

60-Hz zero crossing, PLBus transmits regardless of the state

of the AC power on the line. As a result, transmission can

still take place even if power isn't present, something that

can't be done with X-10. Even though both PLBus and X-10 use

120-kHz carriers, the two systems are completely

incompatible and, indeed, interfere with one another [1].

1.4 Thesis Description

The purpose of this work is to build a CEBus demonstration

system applied to home automation security. Two MC68HC16Z1

evaluation boards are used as CEBus nodes. See Figure 1.4

for the layout. One node is for a simulated living room, LR,

and the other node is for a simulated bedroom, BR. It is

supposed that there are 3 lights, one in the living room,

another in the bedroom and the other outside the house, and

2 windows, one in the living room and the other in the

bedroom.

There are two operating modes, normal and vacation.

The microcontroller (LR node) always sends the status of all

devices and the updated time by its SCI to a STATUS PC

independent of the operating mode. The system state diagram

is shown in Figure 1.5.

In the normal mode, all 	 devices are controlled

by switches and buttons as shown in Figure 1.4. When

Figure 1.4 System configuration

Figure 1-5 State diagram

15

setting the house in the vacation mode, the

microcontroller (LR node) makes sure conditions are proper.

For example, if the homeowner does not close and lock an

open door in a short time, the ALARM will flash to indicate

improper conditions. When the system is in vacation mode,

the system first turns off all lights automatically. Later,

the system takes suitable actions according to the time. The

actions emulate that someone is in the house so as to

enhance security.

1.5 Related Work

CyberLYNX Computer Products, working with Texas Instruments,

and AISI Research Corp. are developing a single-chip CEBus

interface that will handle all the details of CEBus

communications. Though the chip is still in its early

stages, CyberLYNX has a CEBus evaluation board that

implements many of the CEBus functions in firmware. It also

includes a power line interface so several boards can

communicate [1]

AISI Research Corp. has implemented a CEBus

demonstration. The system diagram is shown in Figure 1.6.

The AISI SPIRIT chip has eight discrete inputs, eight

outputs, microprocessor control lines, and the requisite

CEBus input and output connections. In its simplest

configuration, SPIRIT is capable of monitoring network

communications and changing output bits based upon received

commands, and monitoring input bits and sending out commands

16

based on those inputs. The chip contains several hundred

bytes of EEPROM and is trained before hand with which CAL

commands to watch for, what outputs to change upon receipt

of those commands, what inputs to monitor, and what commands

to send out in response to those inputs. Once trained, the

chip plus any interface circuitry will operate stand-alone.

Figure 1.6 AISI demonstration system diagram

In cases where additional processor power is necessary,

SPIRIT can also be connected serially, or to the

microprocessor's data bus. The chip's hardware has been

17

designed to allow numerous modes of operation depending on

how it is hooked up.

The thesis work forms a more flexible foundation for a

CEBus test bed - more I/O and possible use of a high level

language at the application level. The microcontrollers use

in the nodes have real time I/O capabilities which could be

used in relatively sophisticated ways. Examples are light

dimming and the emulation of infra-red remote controls for

video and audio equipment.

CHAPTER 2

SYSTEM DESCRIPTION

2.1 System Configuration and Operation

As shown in Figure 1.4, two M68HC16Z1 evaluation boards are

used as CEBus nodes. Two CEBus spread spectrum power line

modems (SSC PLCEMS) interconnect the nodes. The SSC PLCEMS

is used to handle all spread spectrum signal generation and

reception. It also does preamble detection and stripping on

reception, and it provides for all data synchronization and

timing. The SSC PLCEMS handle portions of the CEBus Physical

Layer Symbol Encoding (PLSE) sub-layer, including complete

Cyclic Redundancy Codes (CRC) generation and detection, and

portions of the Medium Access Control (MAC) sub-layer. SSC

PLCEMS are ideal for adding power line communications to

existing systems or for development of new products in which

reliable power line communications are desired[4]. The

evaluation boards connect to the modems using their SPI

synchronous serial ports as shown in Figure 1.4.

The two M68HC16Z1 nodes are connected to host computers

via user-supplied 25-conductor cable assemblies. One end of

the cable assembly needs a female DB25 connector; this end

of the cable connects to the EVB parallel port (connector

P9) in Figure 1.4. The other end of this cable assembly

needs a male DB25 connector; this end of the cable connects

to the parallel printer port of the PC[5]. The two host

18

19

computers are used to download the application program to

each EVB from PC printer port to EVB PC printer port

(connector P9). EVB16 software runs on the PC to load the

application program[5).

The LR M68HC16Z1 node is connected to a RS-232C host

computer port via a separate 25-conductor cable assembly.

One end of the cable assembly needs a male DB25 connector;

this end of the cable connects to the EVB user interface

port (connector P10). The other end of the cable assembly

needs the appropriate connector for the RS-232C compatible

port of the PC, as shown in Figure 1.4. All of the messages

are from the LR EVB user interface port (connector P10) to

PC COM1 or COM2. The display program uses the RS-232

protocol to show all of the status messages. The parameters

are set to 8 data bits, 1 start bit, 1 stop bit, no parity

check, and 9600 bps.

The display program clears the STATUS PC screen, shows

a framework for the system status, and waits for messages

from the LR EVB. As part of its application level task, the

LR node sends system status information to the STATUS PC, as

detailed later. It does not matter which EVB application

program is downloaded first.

2.2 I/O Hardware

LEDs are used to show the status of all lights: outside

(LIGHT OUT), living room (LIGHT_LR), bedroom (LIGHT_BR), and

alarm (ALARM).

2 0

Switches are used to simulate condition detectors in a

home as shown in Figure 2.1.

location switch is ON switch is OFF

W_ LR _LK locked unlocked

W_ LR _CS closed open

W_BR_LK locked unlocked

W_ BR_ CS closed open

DOOR LK locked unlocked

DOOR _CS closed open

Figure 2.1 The relation between switches and devices

Buttons are used to change the status of all lights,

security and mode. See Figures 1.4 and 1.5. For example, if

the homeowner presses the TOG L OUT button once, the

application program will complement the status of the

outside light.

There are 4 LEDs on the boards standing for LIGHT_LR,

LIGHT BR, LIGHT OUT and ALARM. Because the system is for

demonstration, 7-segment LEDs and other LEDs which could be

on the boards in the real situation are simulated on the

STATUS PC screen. For example, if the system is in the

vacation mode, all devices are in the proper conditions,

LIGHT LR and LIGHT OUT are turned on automatically, and the

time is 13:20:55, the screen will appear as in Figure 2.2.

21

DOOR WINDOW LR WINDOW BR LIGHTLR

ON
CLOSE CLOSE CLOSE LIGHT BR.

LOCKED LOCKED LOCKED OFF
LIGHT OUT

ON

MODE SECURITY 	 ALARM TIME on PC CEBus CLOCK

VACATION SET 	 OFF 13:20:55 13:20:55

Figure 2.2 The structure of demonstration screen

2.3 Function Description

2.3.1 Mode

There are two operating modes, normal and vacation. The

default MODE is normal. When SET VM button is pressed, the

system is going to enter the vacation mode. It will check if

every device is in the proper condition before the vacation

mode is set, as show in Figure 1.5.

2.3.2 CEBus Real-Time Clock

A periodic interrupt routine makes the CLOCK change every

second. SET HR adds an hour to the CLOCK when it is pressed

once. HR number is from 0 to 23. 0 shows up after 23. SET_MN

adds a minute to the CLOCK when it button is pressed once.

MN number is from 0 to 59. 0 shows up after 59. SET_SC adds

a second to the CLOCK when it button is pressed once. SC

number is from 0 to 59. 0 shows up after 59. The CLOCK can

be changed by pressing the appropriate buttons.

22

2.3.3 A Starting Time for The CEBus Real -Time Clock

The TIME is obtained from PC. It can be used as a basis when

the CEBus CLOCK is set up.

2.3.4 Alarm

The ALARM flashes in 2 situations. One of the situations is

when the SET_VM button is pressed, but some devices are

still in improper conditions in few minutes. The other is

when someone invades, but SECURITY is not released in few

minutes. The flashing frequency is 1 Hz.

2.3.5 Security

SECURITY is set automatically when the system is in the

vacation mode and every device is in the proper condition.

When SECURITY is on, the system will turn on or turn off

LIGHT LR, LIGHT OUT or LIGHT BR in a random time. When

SECURITY is released, the system is in the normal mode. All

devices are controlled by switches and buttons.

2.3.6 Light Control

When the system is in normal mode, all lights are controlled

by TOG_L_OUT, Toq_L_LR, and Toa_L_BR. Every time they are

pressed once, the relative light will switch the status from

ON to OFF, or from OFF to ON. When the system is in vacation

mode, all lights are controlled by the system. The system

turns on or off every light at a random time.

CHAPTER 3

SYSTEM DESIGN

As described in the previous chapter, the system comprises

two M68HC16Z1 evaluation boards, two power line modems, and

three computers which are Intel 8088-based system. Two of

the computers are used to run monitor programs for the

evaluation boards. A third computer is used to show messages

from the two boards. A major work in this system is the

implementation of the QSPI (Queue Serial Peripheral

Interface) channel and SCI (Serial Communication Interface)

for data and command transfer.

3.1 System Initialization

LDD 	 #$0003 	 ; at reset, the CSBOOT block size

; is 512k. these instructions set

STD 	 CSBARBT 	 ; block size to 64k since that is

; what physically comes with EVB16

A base address is the starting address fdr the block enabled

by a given chip select. Block size determines the extent of

the block above the base address. Each chip select has an

associated base register so that an efficient address map

can be constructed for each application. The BLKSZ (Block

23

24

Size) field in CSBARBT (Chip-Select Base Address Register

Boot ROM) is set to $03 for block size 641([6].

LDAA 	 #$7F 	 ; w=0, x=1, y=111111

STAA SYNCR 	 ; set system clock to 16.78 MHz

When the on-chip clock synthesizer is used, system

clock frequency is controlled by the W, X, and Y bits in the

upper byte of SYNCR (Clock Synthesizer Control Register). W

and X are 1 bit each, and Y is a 6 bit field. Bits in the

lower byte show status of or control operation of internal

and external clocks.

System Clock = (Reference Frequency)[4(Y+1)(2"(2*W+X))]

= (32.768 KHz)[4(63+1)(2 A (2*0+1))]

= 16.78 MHz

CLR 	 SYPCR 	 ; turn COP (software watchdog)

; off, since COP is on after reset

SYPCR (System Protection Control Register) controls

system monitor functions, software watchdog clock

prescaling, and bus monitor timing. Clear SYPCR to disable

software watchdog.

LDD 	 #$0001

STD 	 RAMBAH 	 ; store high ram array, bank 1

25

LDD #$0000

STD RAMBAL ; store low ram array

CLR RAMMCR ; enable ram

LDAB #$01 ; set SK to bank 1 for system

TBSK ; stack. put SP at top of lk

LDS #$03FE ; internal SRAM

The CPU16 in the MC68HC16Z1 operates in supervisory

mode. Access to the SRAM array is controlled by the RASP

(RAM Array Space) field in RAMMCR (RAM Module Configuration

Register). SRAM responds to both program and data space

accesses based on the value in the RASP field in RAMMCR.

Internal SRAM is set to addresses $10000 - $103FF and stack

is inside it [7]

ORG $0070 ; put address of periodic

; interrupt routine at 1st user

DC.W VECRT ; defined interrupt vector

LDD #$0738 ; set the periodic interrupt at

STD PICR ; request level 7 & assign vector

; #56 (address $00070) to it

LDD 	 #$0110 	 ; initialize PITR to interrupt

STD 	 PITR 	 ; every 1 sec

VECRT is the name of the interrupt routine. PICR

(Periodic Interrupt Control Register) contains information

26

concerning periodic interrupt priority and vectoring.

Because the periodic interrupt request is assigned to level

7 & vector #56 (address $00070), PIRQ (Periodic Interrupt

Request Level) is 7 and PIV (Periodic Interrupt Vector) is

$38. PITR (Periodic Interrupt Timer Register) contains the

count value for the periodic timer. The interrupt request

for CEBus CLOCK happens every 1 second.

PIT Period = [(PITM)(Prescaler)(4)]/EXTAL

= [16*512*4]/32.768 KHz

= 1 sec

Where

PIT Period = Periodic interrupt timer period

PITM = Periodic interrupt timer register modulus

EXTAL = Crystal frequency

Prescaler = 512

ORG 	 $0080 	 ;Address for interrupt vector 64

DC.W RECV 	 ;Input Capture 1

LDD 	 #$008E 	 ;Give the GPT an IARB of $E

STD 	 GPTMCR 	 ;generate interrupts, elevate

LDD 	 #$1640 	 ;interrupt priority of PAOV,

STD 	 ICR 	 ;set GPT IRQ level to 6,

;& assign vector 64

LDAB #$02 	 ;Input Captures

STAB TCTL2 	 ;TIC1=FALL

27

IC1 (Input Capture 1) is used to detect *DA. When *DA

goes low, it will produce an interrupt to receive 8 USTs

from the modem[8].

3.2 QSPI and Data/Command Transfer

The QSPI is an intelligent, synchronous serial interface

with 1 16-entry, full-duplex queue built into the M68HC16

microcontroller. It can continuously scan up to 16

independent peripherals and maintain a queue of the most

recently acquired information with no central processor unit

(CPU) intervention. The clock must be furnished as separate

signal of the QSPI channel. Three QSPI signals are used:

MISO, MOSI and SCK[9].

3.2.1 Master Mode

LDAA #$08 ; set PSCO high between serial

STAA QPDR ; transfers

LDAA #$OB ; assign Port D pins as PSCO,

STAA QPAR ; MOSI,MISO

LDAA #$OE ; set data direction as output on

STAA QDDR ;	 PCSO, MOSI, 	 SCK pins

When operated in master mode, the QSPI may initiate serial

transfers. MISO is used as the data input pin in master

mode, and MOSI is used as the data output pin in master

mode. SCK is the serial clock output in master mode[7]. The

28

QSPI does not respond to externally initiated serial

transfers. QSM (Queued Serial Module) register QDDR should

be written to direct the data flow on the QSPI pins used.

The SCK pin should be configured as an output. Pins MOSI and

PCSO/*SS should be configured as outputs as necessary. MISO

should be configured as an input if necessary.

QSM register QPAR should be written to assign the

necessary 8 bits to the QSPI. The pins necessary for master

mode operation are MISO and MOSI, SCK, and one of the PCS

pins.

LDD 	 #$4000 	 ; set ENDQP to $0 for 1 serial

STD 	 SPCR2 	 ; transfers, wraparound enable

The QSPI transmits the data found at the addresses

$FFD21, and the QSPI stores received data at the addresses

$FFD01. Data is transferred synchronously with the

internally generated SCK.

LDD 	 #$A320 	 ; set master mode, 8 bits per

STD 	 SPCRO 	 ; transfer, clock polarity

; inactive high, clock phase

; change data on following edge,

; baud 0.42 MHz

The number of bits transferred is determined by BITSE

(Bits Per Transfer Enable) and BITS (Bits Per Transfer)

29

fields. The system uses the default value of 8 bits because

the power line modem allows only 8 bit transfers from the

host to the SSC PLCEMS, The QSPI employs control bits, CPHA

(Clock Phase) and CPOL (Clock Polarity), to determine which

SCK edge the MISO pin uses to latch incoming data and which

edge the MOSI pin uses to start driving the outgoing data.

SPBR (Serial Clock Baud Rate) determines the baud rate of

SCK.

SCK Baud Rate = System Clock / (2*SPBR)

= 16.78 MHz / 2*20

= 0.42 MHz

LDD 	 #$0202 	 ; set delay between PCSO and SCK,

STD 	 SPCR1 	 ; set delay between transfers,

; QSPI is disabled

DSCK (Delay before SCK) and DSCKL determine any

peripheral chip-selects valid to SCK start delay. DT (Delay

after Transfer) causes a delay to occur after the specified

serial transfer is completed. The length of the delay is

determined by DTL.

The QSPI cycles through the queue continuously. Each

time the end of the queue is reached, the SPIF (QSPI

Finished Flag) is set.

30

PCS to SCK Delay = DSCKL / System Clock

= 2 / 16.78 MHz

= 0.1 As

Delay after Transfer = (32*DTL) / System Clock

= 32*2 / 16.78 MHz

= 4 As

	LDAB	 #$B0 	 ; CONT=1, BITSE=O, DT=1, DSCK=1,

; PCSO active=0

	

STab 	 $FD40 	 ;initialize transfers 0

Command RAM consists of 16 bytes that are divided into

two fields. The peripheral chip-select field enables

peripherals for transfer. The command control field provides

transfer options. Command RAM is used by the QSPI when in

master mode. A maximum of 16 commands can be in the queue.

Queue execution by the QSPI proceeds from the address in

NEWQP (New Queue Pointer Value) through the address in ENDQP

(End Queue Pointer Value).

TABLE:

Fill data in the transmit data segment

	

ORAA 	 SPCR1	 ; read SPCR1

	

STAA 	 SPCR1	 ; enable the QSPI

***** QSPI READY CHECK *****

	

CHECK: LDAB 	 #$00 	 ; halt not enabled

	

STAB 	 SPCR3

31

LDAA 	 SPSR

ANDA 	 #$80	 ; mask off everything but SPIF

CMPA 	 #$80 	 ; see if SPIF is set

BNE 	 CHECK 	 ; branch until set

LDAA 	 #$7F

ANDA 	 SPSR	 ; don't disturb other flags

STAR 	 SPSR 	 ; clear SPIF

LDAB 	 #$01 	 halt enable

STAB 	 SPCR3

BRA 	 TABLE	 ; next value

The system writes the data to the transmit data segment

before enabling the QSPI. Shortly after SPE (QSPI Enable) is

set, the QSPI commences operation at the address indicated

by NEWQP[10]. Once the proper number of bits are

transferred, the QSPI stores the received data in the

receive data segment, stores the internal working queue

pointer value in CPTQP (Completed Queue Pointer), increments

the internal working queue pointer, and loads the next data

required for transfer from the queue. The internal working

queue pointer address is the next command executed unless

the CPU writes a new value first. The SPIF (QSPI Finished

Flag) bit must be checked because SPIF is set after

execution of the command at the address in ENDQP.

32

3.3 SC! and Data/Command Transfer

The SCI (Serial Communication Interface) is used to

communicate with an Intel 8088-based computer via an

asynchronous serial bus (serial port on PC).

LDD 	 #$0037 	 ; set the SCI baud rate to 9600

STD 	 SCCRO 	 ; baud

SCCRO (SCI Control Register 0) contains a baud rate

selection parameter. Baud rate must be set before the SCI is

enabled. SCI baud rate is programmed by writing a 13-bit

value to SCBR (Baud Rate). The baud rate is derived from the

MCU system clock by a modulus counter[9].

SCI Baud Rate = System Clock / (32*SCBR)

= 16.78MHz / 32*$37

= 9600

LDD 	 #$000C 	 ; enable the SCI receiver and

STD 	 SCCR1	 ; transmitter, 1 start bit, 8 data

; bits, 1 stop bit, parity disable

When initializing the SCI, the SCCR1 has two bits that

should be written last: the transmitter enable (TE) and

receiver enable (RE) bits, which enable the SCI. Registers

SCCRO and SCCR1 should both be initialized at the same time

or before TE and RE are asserted.

33

SEND CH:

LDAA SCSR	 ; read SCI status reg to

; check/clear TDRE bit

ANDA #$01 	 ; check only the TDRE flag bit

CMPA #$00

BEQ SEND_CH 	 ; if TDR is not empty, go back to

; check it again

LDAA #$00 	 ; clear A to send a full word to

; SCDR ($FFCOE)

STD SCDR 	 ; transmit one character to

; the screen

TC_LOOP:

LDAB SCSR+1

ANDB #$80 	 ; test the TC bit (transfer

; complete)

CMPB #$00

BEQ TC_LOOP 	 ; continue to wait until TO is set

The CPU writes data to be transmitted to register TDR

(Transmit Data Register), which automatically loads the data

into the transmit serial shifter. Before writing to TDR, the

system checks TDRE in SCSR. If TDRE = 0, then data is still

waiting to be sent to the transmit serial shifter. Writing

to TDR with TDRE clear overwrites previous data to be

transferred. If TDRE = 1, the register TDR is empty, and new

data may be written to TDR clearing TDRE. When the data is

34

completely shifted out and no preamble or send break is

requested, then TC (Transmit Complete Flag) is set to one.

3.4 PC Side

The Turbo C [11][12][13] function SetComConfig shown in

Appendix B sets up the comport in the STATUS PC. The COM2

port is configured for 8-N-1, 9600 bps COM2.

The PC receives 5 status bytes from LR node in a loop.

while (i < 5)

{

byte_read=inp(base+5);

test=byte_read & 1;

if (test==1)

{

buffer[i] = inp(base);

i += 1;

}

The bytes are stored to buffers waiting for retrieval.

if ((buffer[1] & '\x1 1) == 1 \x1 1)

{

lowvideo();

cputs ("LOCKED ");

}

else

35

{

highvideo();

oputs("UNLOCKED");

}

The program gets the status of devices, mode and alarm

from the first two bytes. If the bit of the byte is 1, it

means something is locked, closed, on, or vacation mode. If

the bit of the byte is 0, it means something is unlocked,

open, off, or normal mode. Table 3.1 and Table 3.2 show the

relation between bits in buffers and devices. The program

knows the updated time on EVB from the last three bytes.

Table 3.1 Relation between bits in buffer[1] and devices

buffer[1] status of which device 	 (1/0)

b0 WLRLK (locked/unlocked)

b1 W LR _CS (closed/open)

b2 DOOR LK (locked/unlocked)

b3 DOOR CS (closed/open)

b4 RLS SR (set/release)

b5 W BR LK (locked/unlocked)

b6 W_ BR _CS (closed/open)

b7 reserved

36

Table 3.2 Relation between bits in buffer [2] and devices

buffer[2] status of which device (1/0)

b0 LIGHT_ BR (on/off)

b1 LIGHT _LR (on/off)

b2 SET_VM (vacation/normal)

b3 ALARM (on/off)

b4 LIGHT OUT (on/off)

The program also gets the updated time from PC itself.

time(&tnow);

tmnow=localti .me(&tnow); 	 ; call time function

hour = (*tmnow).tmhour;

min = (*tmnow).tmrnin;

sec = (*tmnow).tmsec;

gotoxy(38,16);

highvideo();

cprintf(" 9602d:%- 02d: 9602d", hour, min, sec);

CHAPTER 4

PHYSICAL LAYER

The physical layer is made up of two sublayers as shown in

Figure 4.1: the Medium Dependent Physical sublayer (MDP) and

the Symbol Encoding sublayer (SE). The SE sublayer functions

are as follows:

Data Link Layer

SE Sublayer
of the Physical Layer

MDP Sublayer
of the Physical Layer

Physical Medium

Figure 4.1 CEBus physical layer

- monitor the communication channel and reports channel

failures and recoveries to the layer system management.

- provide the data link layer with a time base that allows

its MAC sublayer to execute the CEBus medium access

protocol.

- accept transmission requests from the MAC sublayer and

reports back the success or failure of the transmission.

37

38

- accept state change indications from the MDP sublayer,

translates the period between state changes to CEBus

symbols, and relay the received symbols to the MAC sublayer.

The MDP sublayer includes electrical signaling

requirements, transceiver hardware specifications

(requirements, tolerances, delays, etc.), the physical

attachment to the medium, and all other mechanical

requirements. The MDP sublayer also includes the

representation of SUPERIOR and INFERIOR states for the

particular medium[14].

4.1 SSC PLCEMS

The SSC PLCEMS is a board level product for implementing

power line communication networks utilizing Intellon's

Spread Spectrum Carrier technology and the Electronic

Industries Association Consumer Electronics Bus (EIA CEBus)

protocol. The SSC PLCEMS handles portions of the CEBus

Physical Layer Symbol Encoding (PLSE) sublayer, including

complete CRC generation and detection, and portions of the

Medium Access Control (MAC) sublayer. A host microprocessor

is required to handle the remaining parts of the PLSE and

MAC as well as the Data Link, Network, and Application

layers of the CEBus protocol [41.

39

4.2 Spread Spectrum Carrier Technology

The SSC PLCE implements Spread Spectrum Carrier Technology

with a chirp that is swept in the range of 100 to 400 KHz

with a duration of 100 μsec, per the EIA CEBus Powerline Bus

physical layer standard. The chirp is swept from

approximately 200 KHz to 400 KHz and then from 100 KHz to

200 KHz. Figure 4.2 shows the CEBus PL chirp. This chirp

represents the filtered version of the SSC PLCEMS output.

Each chirp represents the shortest symbol time or Unit

Symbol Time (UST), allowing for a data rate of 10,000 USTs

per second[4].

Figure 4.2 Spread spectrum carrier chirp

4.3 Signal Encoding

The SSC PLCEMS transmits and receives packets of data as a

stream of symbols encoded following the EIA CEBus Power Line

(PL) standard. The signal encoding is a Non Return to Zero

(NRZ) Pulse Width Encoding format using the symbols "1",

"0", "EOF", "EOP". Each of the available symbols is encoded

as a number of USTs as shown in Table 4.1.

40

Each packet transmitted or received by the SSC PLCEMS

consists of three sections: a preamble, packet body, and

CRC. The SSC PLCEMS does not provide the symbol encoding for

the preamble or packet body. For transmission the symbols

for the preamble and packet body must be encoded by the host

controller and transferred to the SSC PLCEMS via the

synchronous serial port. Each bit transferred to or from the

SSC PLCEMS represents one UST. A one bit requests chirp for

one UST; a zero requests no chirp for one UST. The SSC

PLCEMS will generate and encode all CRC information for

transmission. Upon reception, the host controller must

decode the symbols for the packet body and check the status

of the CRC indicator. The SSC PLCEMS will decode and strip

off all preamble information[4] and perform the CRC check.

Table 4.1 Power line symbol encoding

Symbol
Preamble Packet Body

USTs Timing USTs Timing

"1" 1.0 114Asec 1.0 100Asec

"0" 2.0 228Asec 2.0 200Asec

End of Frame (EOF) 8.0 800gsec 3.0 300Asec

End of Packet(EOP) N/A N/A 4.0 400Asec

41

Figure 4.3 Amplitude shift keying (ASK) "1101"

4.4 Preamble Encoding

Two modulation schemes are used by the SSC PLCEMS. Amplitude

Shift Keying (ASK) is used in the preamble of the data

packet. ASK uses alternating SUPERIOR and INFERIOR states. A

superior state is =presented by the presence of a chirp, an

inferior state by the absence of a chirp. Because the

transmitter is quiet during inferior states, other devices

contending for the channel can be detected during the

preamble of the packet. An example of ASK is shown in Figure

4.3. This sequence of chirps represents the symbols "1101".

Note that in the preamble the duration of a UST is slightly

longer than in the body of the packet and the Preamble_EOF:

114 μsec for the preamble, 100 μsec for the body and

Preamble EOF. The SSC PLCEMS generates and recognizes the

proper timing internally.

When the preamble data is encoded, the first symbol,

whether it is a "1" or a "0" must be encoded as a superior

state. Following the preamble data, a Preamble_EOF

42

consisting of 8 superior states must be passed to the SSC

PLCEMS to indicate the end of the preamble data. The

Preamble EOF must be byte-aligned with the serial 8 bit

transfers from the host to the SSC PLCEMS. The encoded data

must be padded with leading zeros to force this alignment.

More detail on the SSC PLCEMS can be found in Appendix B.

4.5 Subroutine for Preamble Encoding

One byte of preamble must be translated to 2 bytes of UST.

The MSB of preamble must be translated to a superior state,

so the LSB of preamble must be translated to an inferior

state. The preamble byte is shifted left and translated bit

by bit. If the random preamble = $FF, let the first byte of

UST = $AA to avoid the modem from misinterpreting it as

PRE EOF. The subroutine is shown in Appendix C.

4.6 Packet Body Encoding

A second type of modulation is used in the body of the data

packet. Phase Reversal Keying (PRK) utilizes two phases of

the superior state, SUPERIOR 01 and SUPERIOR 02, which are

180 degrees out of phase with one another, to modulate the

encoded data. This modulation technique is more robust than

the ASK technique because it allows the SSC PLCEMS to

correlate and track each UST rather than just those encoded

as superior states. Figure 4.4. shows an example of PRK.

The symbols are encoded by the host controller with the

same scheme as the preamble data, but it is not necessary to

43

align the EOF symbols or the EOP symbol in the data packet

on byte boundaries. The first symbol following the

Preamble EOF must be encoded with the opposite state,

superior. The translated data packet must end with an EOP

symbol ("1111" or "0000") and not contain an EOP within the

body of the packet in order for the SSC PLCEMS to correctly

generate and transmit the CRC. The final byte to be

transmitted to the SSC PLCEMS may contain don't care values

after the final UST of the EOP symbol [4].

Figure 4.4 Phase reverse keying (PRK) "1101"

4.7 Subroutine for Packet Body Encoding

If PRE EOF = "11111111, the MSB of packet body must be

translated to an inferior state. Again we shift left once to

get the next data bit and translate it. Because 16 USTs are

created at a time, the program must take care of that there

is no PRE EOF before the end of packet. The subroutine is

shown in Appendix D.

44

4.8 Subroutine for Packet Body Decoding

If PRE EOF on the transmitting modem is "FF", the receiving

modem will get "FF" or "00" because the phase will change

according to the phase of power line. If USTs = "00" or

"11", it will be translated to "0". If UST = "0" or "1", it

will be translated to "1". The subroutine is shown in

Appendix E.

CHAPTER 5

DATA LINK LAYER

The job of the data link layer is to make a transmission

channel, which is subject to noise and interference from

other data traffic, appear to the network layer as an open,

error-free channel. This is done through standard frame

construction, an appropriate channel access technique, error

control, and a mechanism for acknowledgment and

retransmission[3].

5.1 Normal Frame Format

Normal MAC frames using MAC level error detection must

adhere to the following frame format:

PRE PRE EOF Control DA DHC SA SHC information FCS EOP

5.1.1 Preamble (PRE) Field

The Preamble is a fixed length, 8-bit field which contains a

random value. It is a noninformation-bearing field,

transmitted ahead of the information-carrying fields to vie

for use of the channel. Another node may interfere during

transmission of the Preamble, but no real information will

be lost. PRE is a fixed value (69H) for this demonstration

system[3].

45

46

5.1.2 Control Field

The Control field directs the handling of the frame at its

destination. The field is variable in length up to a maximum

of 8 bits. The contents of the Control field are generated

within the Data Link Layer from parameters in the data

request service primitive. Refer to Figure 1.1. The contents

of the Control field are OAH for unacknowledged data in this

demonstration system. The Packet Priority is standard, it is

nonprivileged, and the Service Class is basic.

5.1.3 Destination Address (DA) Field

The Destination Address field specifies which node within a

network, or home system, is to receive the frame. The field

is variable in length up to a maximum of 16 bits. There are

two nodes in the demonstration system, so "0001" is assigned

to the living room and "0002", the bedroom.

5.1.4 Destination House Code (DHC) Field

The Destination House field identifies the destination home

system out of a group of systems which share common

communications media. Together, the Destination Address and

Destination House Code identify a unique node, or group of

nodes. The destination House Code field is variable in

length up to a maximum of 16 bits. There is one house in the

demonstration system, so "0001" is assigned to the house.

47

5.1.5 Source Address (DA) Field

The Source Address field defines the node within a home

system from which the frame originated. The Source Address

may reference only one node. The field is variable in length

up to a maximum of 16 bits.

5.1.6 Source House Code (SHC) Field

The Source House Code field identifies the source home

system on a shared common communications media. Together,

the Source Address and Source House Code identify a unique

node.

5.1.7 Information Field

The information field contains an NPDU (see Figure 1.2) from

the network Layer. The Data Link Layer performs no

operations on this field. The field is variable in length up

to a maximum of 32 bytes and may be Null.

5.1.8 Frame Check Sequence (FCS) Field

The Frame Check Sequence field is the last field in the

frame and provides a means for determining the integrity of

the contents of the frame. The field is variable in length

up to a maximum of 8 bits and is generated within the Data

Link Layer. Its value is a checksum which is calculated in

the following manner:

The checksum value is initialized to zero.

48

Each 8-bit field from the frame (excluding the

Preamble) is added with carries discarded. Fields longer

than eight bits are subdivided into 8-bit subfields. The

subfield containing the least-significant eight bits is

added first. Other subfields are added in order up to the

subfield containing the most-significant eight bits.

The two's complement operation is performed on the

checksum and this final value is supplied to the FCS field.

Error detection is possible at the receiving Data Link

Layer by summing each of the 8-bit fields and subfields as

they arrive. If no errors are introduced during

transmission, the data will sum in the same way it did for

the checksum calculation. However, when the last arriving

field (the checksum, which is the two's complement of all

data summed so far) is added, the result will be zero. A

non-zero value indicates the presence of errors.

CHAPTER 6

APPLICATION LAYER

The CEBus application layer consists of four main elements

as shown in Figure 6.1. Layer System Management administers

functions which have significance across layer boundaries or

to the CEBus device as a whole. These functions may be of

local importance, such as addressing, or of system-wide

importance, such as routing information. The application

process is the interface to the application layer. Services

are provided by the Common Application Language (CAL)

element to the user element of the application process. CAL

is the language framework through which resource allocation

and control functions are executed. Services are provided by

the message transfer element to the CAL element. The message

transfer element interfaces to the network layer either

directly or through the association control element[4].

6.1 CAL Functions

CAL provides two main functions: resource allocation and

control. Requests for these services are received from both

the user element and LSM. Using CAL syntax, CAL translates

these requests into Application Layer Service Data Units

(ASDUs) and passes them to the message transfer element for

delivery. The CAL element also receives and interprets

incoming ASDUs[15].

49

50

Figure 6.1 CEBus application layer interfaces

6.1.1 Resource Allocation Function

The resource allocation function within CAL is concerned

with requesting, using, and releasing CEBus resources. These

resources include, but are not limited to Medium Access

Control (MAC) individual addresses, group addresses, system

addresses (house codes), and data channels. The node

control, data channel receiver, and data channel transmitter

objects are used to perform the resource allocation

function [15]

51

6.1.2 Control Function

The CAL control function provides to the user element the

capability to send CAL commands to remote devices and to

respond to incoming CAL commands. The CAL command syntax is

designed to encode command packets using the smallest number

of bytes possible, while still retaining the flexibility to

control diverse current and future devices.

6.2 Contexts

Each context has a unique context identifier by which it is

addressed. The first part of the context identifier is the

context number. This number only needs to be used as part of

the context identifier if there is more than one context of

the same type in the product. The second part of the context

identifier is the context class. The class identifies the

context type (i.e., Audio, Tuner, etc.). The context class

is always sent in CAL commands[15].

6.3 Objects

A CAL object is a model of a single functional entity used

to perform a single control task within a product. Objects

are designed to be generic in form such as a "switch" or a

"button." Objects do not assume a specific application until

they are placed in a specific context.

52

6.4 Methods

Methods represent the functions within an object which

perform some action within the device. Methods are invoked

when a message is received by an object. Methods are divided

into two classes, simple and complex. A simple method uses

only the arguments supplied in the message. An example of a

simple method is increment, which takes as its arguments the

variable to increment and the amount to add to the variable.

A complex method is a method which may be composed of one or

more simple and/or complex methods. An example of a complex

method is the if method, which performs a similar function

to the IF statement in programming languages such as Pascal

or C.

6.5 Example CEBus Communication

If the window in the bedroom is closed, according to Table

6.1, a message ($81, $05, $42) is sent to the living room.

Table 6.1 Function code for CAL

context object method

LIGHTING[16]
21	 Lighting

CONVENIENCE
81 	 Window Control
83 	 Door/Gate Control

05 Binary Switch 41
42

Set Off
Set On

Figure 6.2 Timing waveform

As shown in Figure 6.2, the house is in the normal

mode. The bedroom (BR node) always sends the status of all

devices to the living room (LR node). The LR node uses

interruption to receive the packets. The first five fields

are for the LR node. The others are for BR node. DCLK shows

SPI clock. When a node is the receiver, TX/RX goes low. When

a node is the transmitter, TX/RX goes high. DI means data

input. DO means data output. When data is avaible, DA goes

low. When it is at the end of one packet, PTERM goes low.

CLR is used to delay a short time before the next packet is

53

54

transmitted. See Figure 1.5 for the state diagram of the

demonstration system.

When the 3-byte message above combined with the other

packet bytes specified in the frame format above, a 16-byte

packet results. When this is encoded in UST format, it

becomes 27 bytes. The LR node receives packets with PREAMBLE

and EOP stripped off. The physical layer software converts

the rest of the UST formatted packet into information bytes

(now 14).

6.6 C Version

A C version of an application program was written before the

version described above. It sets all parameters the

demonstration needs. One subroutine CHECK DEVICE() is used

to check all devices in the demonstration system in a

routine. The RS-232 protocol is used to send messages

continuously from the LR node to the STATUS PC. An internal

interrupt routine is implemented every 1 second for the

CEBus CLOCk. This version was not completed.

CHAPTER 7

SYSTEM PERFORMANCE

7.1 Responsiveness

The system responsiveness was measured experimentally for a

case of the transmission of a packet with 3 information

bytes. The entire packet has 16 bytes and becomes 27 bytes

of UST after it is encoded. The BR node continuously sends

the test packet to the LR node. When a packet is decided to

be sent, a specific output pin on the BR node produces a

pulse as a start indicator. When the packet is decoded

completely, a specific output pin on the LR node produces a

pulse as a complete indicator. We measure the delay between

the two indicators to get the timing diagram of Figure 7.1.

The delay between a decision to send and the time for the

information bytes to become available to the receiving

application is 30 ms. The time for transmitting the packet

is 22 ms. The remaining 8 ms are spent with encoding,

decoding, and the frame check, all accomplished in software.

Figure 7.1 Timing diagram

55

56

7.2 Noise Immunity

The loaded AC line in the lab has an obvious distortion of a

few volts amplitude at the positive peak. When power line

modems are connected to it, a consistent CRC error rate of

2% (packet error rate) is produced. Capacitively coupling

a broadband noise generator to the power line does not

increase this error rate noticeably. The loading of all the

devices plugged in the line under test and the need to block

out 60 Hz combine to make the introduced noise amplitude not

noticeable on the scope.

When a straight 3-wire connection of the modems,

without AC power and with no introduced noise, is

established, the result is error free operation for at least

30,000 packets.

When random noise up to 500 kHz (the modems cut off at

400 KHz) is introduced, using a coupling capacitor, both CRC

and FCS errors occur. The random-noise generator is model

1390-B manufactured by General Radio Company. The noise rms

value was measured from the voltmeter on the random-noise

generator. The noise peak to peak voltage on the CEBus was

also measured. For one case, 8 Vp-p was measured when the

noise was 1.2 V-rms at the meter. The CRC error rate is

approximately 1%, weakly dependent on noise amplitude above

400 mV-rms. The FCS error rate is about 1/3 of the CRC error

rate. Figure 7.2 shows a curve of error packets vs. rms

noise level.

57

Figure 7.2 Errors vs. noise amplitude - 1

Figure 7.3 shows the curve of error packets vs. rms

noise level from 0.04 V to 0.36 V. The CRC error rate of

0.2% with noise amplitude at 0.04 V-rms increases to 0.8% at

a noise amplitude 0.36 V-rms. The FCS error rate 0.1% at a

noise amplitude 0.04 V-rms increases to 0.31 at a noise

amplitude 0.36 V-rms.

Figure 7.3 Errors vs. noise amplitude - 2

58

Figure 7.4 shows the curve of error packets vs. rms

noise level from 0 V to 0.036 V. The CRC error rate of 01 at

a noise amplitude 0 V-rms increases to 0.21 at a noise

amplitude of 0.036 V-rms. The FCS error rate of 0% at a

noise amplitude of 0 V-rms increases to 0.11 at a noise

amplitude of 0.036 V-rms.

Figure 7.4 Errors vs. noise amplitude - 3

Evidently the designers of the CEBus PL standard have

achieved their goal of low error rates. Line distortion

causes more errors than injected high frequency noise. See

Appendix F for the noise data.

CHAPTER 8

CONCLUSION AND POSSIBLE FUTURE WORK

8.1 Conclusion

In this thesis work, a flexible CEBus demonstration system

applied to home automation security has been designed and

implemented. When the system is in vacation mode, it

emulates that someone is in a house so as to enhance

security. The system demonstrates the application of a

Motorola single-chip microcontroller and a power line modem

to implement each of two system nodes. An interconnected

personal computer PC-XT/AT acts as a special peripheral on

one of the nodes to display system status.

The demonstration functions were implemented in CAL

(Common Application Language), the standard language by

which CEBus devices communicate. It provides a language for

controlling CEbus devices, reporting status, and allocating

resources.

To make microcontrollers communicate with power line

modems through a serial synchronous link (QSPI), the QSPI

(Queued Serial Peripheral Interface) parameters must be set

up to match the modem parameters. Packet bytes must be

encoded in UST before being sent to a power line modem. Then

they must be decoded after reception by a modem. When this

process is implemented in software, it adversely affects the

system responsiveness. The delay between a decision to send

59

60

and the time for 3 information bytes to become available to

the receiving application is 30 ms, of which 8 ms is

software delay.

When a straight 3-wire connection of the modems without

AC line voltages is established, the result is error free

operation with no introduced noise. When noise up to 500

kHz is introduced, CRC and FCS errors occur. The CRC error

rate is approximately IA, weakly dependent on noise

amplitude above 0.4 V-rms. The FCS error rate is about 1/3

of the CRC error rate. A distorted AC line connection

resulted in a packet error rate of about 2 5 3.

8.2 Suggestions for Future Work

There are many approaches to advance the demonstration

system functions.

The system can be expanded beyond 2 nodes to

demonstrate more interesting applications.

Power line modems are used in the demonstration system.

Other modems for different media can be connected and tried.

CAL is still under development, As it evolves, more

complicated functions can be added to the demonstration

system in the future.

APPENDIX A

CEBUS SPREAD SPECTRUM POWER LINE MODEM

A.1 SSC PLCE Integrated Circuit

A.1.1 Input Amplifier and AID Converter

The input amplifier provides a gain of 20 to the filtered

signal received from the powerline as shown in Figure A.1.

The amplified input passed to a one-bit A/D converter

consisting of a slope detector and single-bit quantizer. The

characteristics of the slope detector are controlled by the

external components connected to Fl, F2, and F3. The

quantizer samples the output of the slope detector at the

XTAL frequency. The output of the quantizer is serial

digital data indicating the slope of the input signal.

A.1.2 Matched Transversal Filter

The serial output of the A/D is passed through a digital

low-pass filter and the supplied to a matched transversal

filter which provides a fuzzy logic correlation of the

received signal to the Spread Spectrum Carrier (SSC) chirp.

The SSC chirp is designed to provide a very high self-

correlation at a single point in the filter. The magnitude

of the correlation is directly related to the quality of the

received SSC chirp, and the sign (positive or negative) of

the correlation is determined by the phase of the chirp.

61

Figure A.1 SSC PLCEMS block diagram

63

Chirps which are corrupted by noise or other impairments

will not correlate as strongly as clean signals.

SSC chirps provide the carrier function in the

communications system. The presence of a carrier is

determined by magnitude of the correlation output of the

filter. When no chirps are present on the communications

medium, the output of the filter will be at a nominal level.

When chirps are present at the beginning of a reception, the

filter will look for a correlation exceeding a detection

threshold. When the threshold is initially broken, the

filter indicates that a carrier is present on the medium and

begins to track the incoming data. The detection threshold

is adjustable with the TO and Ti inputs.

When a carrier is present, correlations should occur at

regular intervals as successive chirps are received by the

filter. When the filter correlates a SSC chirp, it looks for

the next correlation one chirp later. This allows marginal

correlations to be interpreted correctly, thereby improving

the performance of the system. Marginal correlations may

occur if the characteristics of the communication medium

change (i.e. impulse noise, impedance, modulation, etc.)

while data are being received. Once the filter has begun to

track the incoming data, it will maintain tracking with only

marginal correlations for over 1 ms before indicating a loss

of carrier.

The tracking system in the filter also adjusts for the

asynchronicity between the transmitting and receiving nodes

64

resulting from slightly different XTAL frequencies. By

comparing when each correlation occurs to when it is

expected, the filter can sense any drift in the frequency of

the incoming data and adjust for it.

The final portion of the filter contains the steering

logic necessary to extract the UST data from the correlator

output and recognize the Preamble EOF and the EOP symbols.

The data extraction logic recognizes positive correlations

as l's and negative correlations as 0's. This data is passed

to the host interface for transfer to the host

microprocessor.

A.1.3 Host Interface

The host interface provides all of the logic required to

interface to the host microprocessor. This includes the

synchronous serial port and handshake logic. The serial

interface is used for transferring data to and from the SSC

PLCEMS. The handshake logic provides status and control of

the SSC PLCEMS.

The serial interface is a three wire synchronous serial

interface compatible with industry standard synchronous

serial interfaces and simple shift registers. Data is passed

to, and received from, the SSC PLCEMS in 8-bit sections. The

host microprocessor is the master and the SSC PLCEMS is the

slave: the host provides the clock signal to the interface.

In transmit mode, the SSC PLCEMS receives data MSB first on

DI on the rising edge of DCLK. DO is high-impedance in

65

transmit mode to allow DO and DI to be tied together if two

wire synchronous serial communication is desired. In receive

mode, the SSC PLCEMS presents new data MSB first to DO on

the falling edge of DCLK. Data presented to DI during

receive mode are not accepted by the SSC PLCEMS. Each data

transfer requires exactly eight rising edges and eight

falling edges of DCLK. The host must provide DCLK exactly

eight clock pulses for each data transfer (see Figure A.1).

The handshake logic is used to control and receive

status information from SSC PLCEMS. It provides the

interrupt signal to the host based upon the status of the

SSC PLCEMS. It also indicates when new data is available at

the serial port or when the serial port is ready for more

data. The handshake logic works in conjunction with the CRC

logic to indicate the integrity of the received data.

The control functions of the handshake logic enable the

SSC PLCEMS for operation and select the transmit or receive

mode.

A.1.4 CRC Logic

The CRC logic provides the generation of 16-bit CRC on

transmit and decoding of CRC on received packets. The CRC

codes are generated based upon each UST received by the SSC

PLCEMS from the host. Each 01 bit is counted as a 1 for CRC

generation. On reception, the CRC logic must determine the

polarity of the incoming data in order to properly decode

the CRC appended to the packet. The polarity of the incoming

66

packet is indicated by Preamble_EOF received and decoded by

the data extraction logic. If the incoming data is

determined to be of the opposite phase, the received data is

complemented to calculate the CRC at the receiver. The CRC

is transmitted and received in binary from as opposed to

being encoded and decoded as symbols.

A.1.5 Clock Generation

The clock generation logic generates all of the clock

frequencies required internally by the SSC PLCEMS. Each of

the clock signals is derived from the XTAL frequency. The

clock frequency also provides a buffered output at the XTAL

frequency (CKOUT) suitable for driving the clock input of a

microprocessor.

A.1.6 Waveform Generator

The waveform generator consists of three sections: a ROM-

based wavetable, D/A converter, and an output amplifier. The

wavetable is a 358x6-bit ROM which contains the binary image

of the SSC chirp. An address generator is clocked at the

XTAL frequency to sequence through the wavetable for

generation of a chirp.

The output of the wavetable is latched at each clock

cycle. Either the true or inverted version of the wavetable

data is presented at the input to a 6-bit DAC. The output of

the DAC is buffered by an output amplifier and sent out on

so.

67

A.1.7 Bias Generator

The bias generator provides the bias currents required by

analog sections of the SSC PLCEMS. All bias currents are

provided through a 5.11“5",4) resistor connected to ground

from BIAS.

APPENDIX B

SUBROUTINE FOR RS-232 COMMUNICATION

SetComConfig(comport, baudrate);

/* baudrate 	 MSB (b+1) 	 LSB (b)

* 110	 04	 17h

* 300	 01 	 80h

* 1200 	 00 	 60h

* 2400 	 00	 30h

* 4800 	 00 	 18h

* 9600 	 00	 Och

* 19200 	 00 	 07h

* wordlength 	 7 bits = 2

8 bits = 3

* stopbits 	 1 bit = 0

2 bit = 1

* parity 	 none = 0 or 2

odd = 1

even = 3

* config 	 wb + sb + pb = (3+0+0)

* out (b+4), 0

* out (b+3), 128

* out (b), 	 LSB

* out (b+1), MSB

* out (b+4), 3

* out (b+3), config

68

69

* /

{

int msb, lsb, base, config=0x03;

switch (baudrate) {

case 9600:

msb=0x00;

lsb=0x0c;

break;

case 4800:

msb=0x00;

lsb=0x18;

break;

case 2400:

msb=0x00;

lsb=0x30;

break;

case 1200:

msb=0x00;

lsb=0x60;

break;

case 300:

msb=0x01;

lsb=0x80;

break;

case 110:

msb=0x04;

lsb=0x17;

break;

default :

printf("\n Baudrate error\n");

exit(0);

}

switch (comport) {

case 1:

base=0x3f8;

break;

case 2:

base=0x2f8;

break;

default:

printf("\n Com port error: Use com 1 or 2\n");

exit(0);

}

outp(base+4, Ox00);

outp(base+3, 0x80);

outp(base, lsb);

outp(base+l, msb);

outp(base+4, 0x03);

outp(base+3, config);

70

}

APPENDIX C

SUBROUTINE FOR PREAMBLE ENCODING

TRANS PRE:

BRSET PREAMBLE,X,#$80,BIT_FILL_1 	 ; check odd bit of pre

JSR 	 FILL 11 	 ; = "0", fill "11"

BRA	 TRANS_ NEXT

BIT FILL 1:

JSR 	 FILL 1 	 ; = "1 11 , FILL "1"

TRANS NEXT:

INC	 NO BIT,X 	 ; record no. of bit

ROL 	 PREAMBLE,X 	 ; shift left to get

; the next bit

BRSET PREAMBLE,X,#$80,BIT_FILL_O ; check even bit of pre

JSR 	 FILL 00 	 ; = "0", fill "00"

BRA	 CHECK LAST 	 ; if last bit

BIT FILL 0:

JSR	 FILL 0 	 ; = "1", fill "0"

CHECK LAST:

INC 	 NO BIT,X

LDAA 	 NO BIT,X

CMPA 	 #$08

BEQ 	 GET_ UST	 ; finish, get UST

ROL	 PREAMBLE,X 	 ; or get next bit

BRA 	 TRANS PRE

GET UST:

71

72

LDAA 	 TEMP1,X 	 ; get 2 bytes of USTs

STAA 	 PRE1 UST,X

LDAA 	 TEMP2,X

STAA 	 PRE2 UST,X

CMPA 	 #$00

BNE 	 CLEAR_B

LDAA 	 #$AA 	 PRElUST = "00", fill "AA"

STAR 	 PRE1 UST,X

CLEAR B:

CLRB

CLRW 	 TEMP1,X

CLR 	 NO BIT,X

RTS

APPENDIX D

SUBROUTINE FOR PACKET BODY ENCODING

TRANS BIT:

JSR 	 CHECK_UST16 	 ; 16 USTs is completed

BRSET 	 BYTE1,Y,#$80,D_BIT_FILL_0 ; odd bit of one byte

JSR 	 FILL_00 	 ; 	 "0", fill "00"

BRA 	 TRANS_BIT_NEXT

D BIT FILL 0:

JSR	 FILL_0 	 ;	 "1", fill "0"

TRANS BIT NEXT:

INC	 NO_BIT,X 	 ; record no. of bit

JSR	 CHECK_UST16 	 ; 16 USTs is completed

ROL	 BYTE1,Y 	 ; shift left one bit

BRSET 	 BYTE1,Y,#$80,D_BIT_FILL_1 ; even bit of one byte

JSR 	 FILL_11	 ; = "0", fill "11"

BRA 	 CHECK_BIT_LAST

D_BIT_FILL_1:

JSR 	 FILL_1 	 ; = "1", fill "1"

CHECK_BIT_LAST:

INC 	 NO_BIT,X 	 ; record no. of bit

LDAA 	 NO_BIT,X

CMPA	 #$08

BEQ 	 CHECK_END

ROL 	 BYTE1,Y 	 ; shift left one bit

BRA 	 TRANS_BIT

73

74

CHECK END:

CLR 	 NO BIT,X

AIY 	 #$01

CPY 	 #$06

BEQ 	 CHECK UST 	 ; last byte

LBRA 	 TRANS BIT 	 ; not yet, next byte

CHECK UST:

CMPB 	 #$OF

BEQ 	 PUSH UST 	 ; 15, 16 USTs, no need

CMPB 	 #$10 	 ; to shift data left

BEQ 	 PUSH UST 	 ; until available UST

; is msb, or do it

STAB 	 FILL NO,X

SHIFT UST:

ROLW 	 TEMP1,X 	 ; shift left once

BCLR 	 TEMP2,X,#$01	 ; clear bit 0 of UST

INCB

CMPB 	 #$10 	 ; 16 USTs

ENE 	 SHIFT UST

PUSH UST:

PSHM

LDY 	 NOY,X

LDAA 	 TEMP1,X 	 ; GET 16 USTs

STAA 	 UST1,Y

AIY 	 #$01

LDAA 	 TEMP2,X

STAA 	 UST1,Y

75

CLRW 	 TEMP1,X

CLRB

STY 	 NOY,X

PULM 	 Y

LDAA 	 FILL NO,X

CMPA 	 #$OC

BGT 	 ADD 08 	 12<NOUST<16, add

; one byte = "08"

CMPA 	 #$08

LBGT 	 END 	 8<NO UST<12, return

CMPA 	 #$04

BGT 	 FILL 08 	 ; 4<NO UST<8, fill

; last byte = "08"

DEC 	 NO_Y,X 	 ; O<NO UST<4, delete

; last byte

END:

RTS

APPENDIX E

SUBROUTINE FOR PACKET BODY DECODING

TRANS UST B7:

LDAA 	 UST1,Y 	 ; check if PRE EOF appears

CMPA 	 #$00

BEQ 	 ADD Y

CMPA 	 #$FF

BEQ 	 ADD Y

BRA 	 TRANS UST

ADD Y:

INC 	 PRE EOF NO,X 	 ; record no. of PRE EOF

LDAA 	 PRE EOF NO,X

CMPA 	 #$05

BEQ 	 TRANS UST 	 ; not finish

AIY 	 #$01

TRANS UST:

JSR 	 CHECK DATA 	 ; if one byte appears

BRSET UST1,Y,#$80,UST_INC_1 ; check UST

JSR 	 INC 0 	 = "0", record it

BRA 	 TRANS UST NEXT 	 ; translate next UST

UST INC 1:

JSR 	 INC 1 	 ; = "1", record it

TRANS UST NEXT:

INC 	 NO UST,X 	 ; record no. of UST

LDAA 	 NO UST,X

76

77

CMPA 	 #$08

BEQ 	 CHECK UST END

ROL 	 UST1,Y
	 ; get next UST

BRA 	 TRANS UST

CHECK UST END:

CLR 	 NO UST,X

AIY 	 #$01

CPY 	 #$06

LBEQ 	 END 	 ; finish, return

LBRA 	 TRANS UST B7

END:

RTS

APPENDIX F

NOISE DATA IN TABLE

Noise Data for Figure 7.2

Noise Amplitude 	 (V-rms) CRC Error FCS Error Total Error

0.4 97 24 121

0.8 105 41 146

1.2 84 34 118

1.6 91 29 120

2.0 106 42 148

2.4 106 33 139

2.8 96 40 136

3.2 93 32 125

3.6 107 44 151

4.0 116 46 162

4.4 133 38 171

78

Noise Data for Figure 7.3

Noise Amplitude 	 (V-rms) CRC Error FCS Error Total Error

0.04 19 12 31

0.08 25 18 43

0.12 49 18 67

0.16 63 21 84

0.20 72 25 97

0.24 60 17 77

0.28 83 38 121

0.32 74 31 105

0.36 86 35 121

Noise Data for Figure 7.4

Noise Amplitude 	 (V-rms) CRC Error FCS Error Total Error

0.0 0 0 0

0.004 1 1 2

0.008 7 7 14

0.012 12 5 17

0.016 14 8 22

0.020 13 11 24

0.024 19 11 30

0.028 18 9 27

0.032 17 14 31

0.036 29 15 44

79

REFERENCES

[1] Davidson, Ken, "CEBus: A New Standard in Home
Automation, " Circuit Cellar Ink, Aug./Sep., 1989,
pp. 40-46,

[2] Davies, D. W., Computer Networks and Their Protocols,
Chichester, New York: Wiley, 1983.

[3] EIA Home Automation System (CEBus), EIA Engineering
Department, Oct. 1992.

[4] CEBus Spread Spectrum Power Line Modem, Intellon
Corporation, 1992.

[5] M68HC16Z1EVB User's Manual, Motorola Inc., 1991.

[6] M68HC16Z1 Technical Summary, Motorola Inc., 1992.

[7] M68HC16 Reference Manual, Motorola Inc., 1991.

[8] General Purpose Timer Reference Manual, Motorola Inc.,
1991.

[9] Queued Serial Module Reference Manual, Motorola Inc.,
1991.

[10] Toolware M68HC16 Macro Assembler User's Manual for
MS-DOS, Motorola Inc., 1991.

[11] Turbo C Reference Guide, Borland International Inc.,
1987.

[12] Turbo C User's Guide, Borland International Inc., 1987.

[13] Barkakati, Nabajyti, The Waite Group's Turbo C Bible,
Howard W. Sams & Company, Indianapolis, Indiana, 1989.

[14] Khawand, Jean; Douligeris, Christos; Khawand, Charbel,
"A Physical Layer Implementation for a Twisted Pair
Home Automation System ", IEEE Transactions on Consumer
Electronics, Vol. 38, No. 3, August 1992, pp. 530-536.

[15] IS-60.08 Common Application Language (CAL), Part/: CAL
Specification, EIA Engineering Department, May 1994.

[16] IS-60.08 Common Application Language (CAL), Part2: CAL
Context Description, EIA Engineering Department, May
1994.

80

	CEBus demonstration system
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: System Description
	Chapter 3: System Design
	Chapter 4: Physical Layer
	Chapter 5: Data Link Layer
	Chapter 6: Application Layer
	Chapter 7: System Performance
	Chapter 8: Conclusion and Possible Future Work
	Appendix A: CEBUS Spread Spectrum Power Line Modem
	Appendix B: Subroutine for RS-232 Communication
	Appendix C: Subroutine for Preamble Encoding
	Appendix D: Subroutine for Packet Body Encoding
	Appendix E: Subroutine for Packet Body Decoding
	Appendix F: Noise Data in Table
	References

	List of Figures
	List of Tables

