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ABSTRACT

The physiological relationship between the various components of sleep

and its variation due to drug administration has been used as one of the primary

tools to analyze the performance of drug. A number of studies have been

performed in recent years in this direction. Electroencephalogram (EEG) has

been characterized with the help of variables ranging from measurements of the

duration of different sleep stages to the activities that define the stages

themselves. Advances in computer hardware and software have improved the

methods of data acquisition and storage. Analysis of long stretch of data has

always been a problem considering the time and storage.

The present study is aimed at characterizing sleep data from a subject

suffering from neurologic disorder. It also aims at identifying the effect of

Oxycodon a Narcotic drug on the subject during sleep. The data considered for

analysis is the output of a whole night recording. It is for a duration of six hours.

EEG signals are analyzed using random data analysis procedures. The

assumption of stationarity will be used as the basis of analysis. However the fact

that analysis on long stretch of data introducing nonstationarity will not be ruled

out. The analysis will be performed using Fast Fourier Transformation. Spectral

analysis will be used as the primary tool in identifying the activities of various

frequency components and its variation with time. The three parameters that will

be considered are Mean square values and correlation function in time domain,

Spectral analysis application in frequency domain and the probability density

and distribution functions in the amplitude domain.. Algorithms will be

developed for computing these parameters and other statistical properties.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years a number of sleep variables have been defined that characterizes

sleep. These variables range from measurements of the duration of the different

stages of sleep to measurements describing the evolution of sleep through the

night. Using these variables, a number of studies aimed at understanding the

fundamental properties of sleep in normal subjects have been performed. These

studies essentially concern sleep modifications produced by drugs or other

experimental manipulations. The physiological relationships between the

various components of sleep are still largely unknown. Advances in computer

hardware and software have led to improved acquisition and display, as well as

storage of sleep data. Strides have been made in computerized discrimination of

electroencephalographic (EEG) frequency patterns and specific wave complexes.

The present work aims at determining the time varying statistical properties of

various sleep variables in an attempt to characterize the variations in EEG

patterns following drug administration.

1.2 Normal Sleep Patterns

A normal sleep pattern has been realized after several studies of EEG. As soon as

the normal subject drifts into sleep the waking voluntary eye movements which

make huge deflections in electrooculogram(EOG) disappear and the high level of

muscle activity decreases. The background alpha rhythm disappears and the

subject enters Non Rapid Eye Movement (NREM) sleep stage 1. With the

appearance of sleep spindles and K-complexes, the subject enters NREM sleep

1
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stage 2. The K-complex, consisting of an initial negative wave, followed by a

positive wave, sometimes follows a sudden environmental stimulus such as

noise. Other K-complexes follow internal autonomic events such as bladder or

gastrointestinal contractions [1]. The sleep spindle is a burst of 12 to 15cps

activity lasting over one-half second. As NREM sleep progresses, delta activity

becomes more and more predominant, the subject enters NREM sleep stages 3

and 4.

After about two hours of NREM sleep, the subject abruptly enters Rapid

Eye Movement Sleep (REM) sleep. The EEG changes to a relatively low voltage,

mixed frequency pattern, and the chin EMG markedly decreases its activity.

Frequently a burst of theta activity heralds the onset of a REM period. The theta

waves which occur during REM sleep sometimes have a notch on the rising or

falling phase to give the picture of a sawteeth. These sawtooth waves, which are

characteristic of REM sleep, frequently occur during or just before an eye

movement. While some reports say that the eye movements of REM sleep are

unlike any eye movements recorded during wakefulness, others have described

somewhat similar eye movements during periods of daydreaming. Figure 1

presents a sample of typical polygraphic records from waking, REM sleep and

some NREM sleep stages.

Periods of NREM and REM alternate during the night. The cyclicity of this

alternation averages about 90 minutes for adults and 45 minutes for infants. In

adults the first NREM period is normally dominated by stage 4. NREM periods

in the early morning hours mainly consist of stage 2. The first REM period is

shorter and has fewer eye movements than the later REM periods. Four to six

REM periods occur during a night. As summarized in Table 1, about 20 to 25

percent of a night's sleep is spent in the REM state. Very slight decrease in REM

percentage and a somewhat larger decline in NREM stage 4 may occur with



Figure 1 All-night polygraphic recording. Top three channels monitor the
EEG; the next three, eye movements; and the bottom EMG.



Table 1 Sleep patterns in normal man

Average Sleep Sleep Stage Percentages
N Age Time W REM 1	 2	 3 4- Reference

Preadolescent males 18 9.5 565 min 1.5 24.3 .6.1 	 44.2 5.9 17.9 Ross et al. (1968)
Young adult males 16 24.2 0.9 24.1 5.4	 48.7 7.7 13.2 Williams et al. 	 (1964)

Young adult females 16 23.9 451 1.1 21.9 5.9 	 48.0 6.9 16.2 Williams et al. (1966)
Adult males 12 33.9 2.4 21.9 7.5 	 53.0 5.5 9.6 Agnew and Webb (1968a)

Middle aged males 16 54.1 436 4.1 22.8 10.9 	 51.1 8.4 2.7 Agnew et al. (1967)

Elderly (both sexes) 16 63.4 - 9.9 20.4 11.9 	 50.6 4.5 2.7 Agnew and Webb (1968b)

Aged males 16 80.2 365.8 20.1 4.2 	 53.9 17.2 4.5 Kahn and Fisher (1969)

Aged females 16 76.7 383.0 18.0 2.6 	 63.4 10.4 5.6 Kahn et al. (1970)
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increasing age. Table 1 also presents the average sleep patterns of different age

groups.

The sleep of normal human infant can be divided into two types. One type

is characterized by no eye or body movements and regular respirations while the

other type is associated with eye and body movements, irregular respiration and

spontaneous suckling [2]. The first type develops into NREM sleep , the latter

into REM. Sleep spindles first appear in the NREM EEG record. Unlike the adult,

the infant usually passes from wakefulness directly into REM sleep. At about

three months of age the infant begins to show the adult pattern of falling from

wakefulness into NREM sleep. EOG during neonatal REM sleep are not identical

to either eye movements of the waking newborn or of the adult REM state. It has

been suggested that the changes in both REM and NREM EEG can determine

conceptional age and neurological maturation in premature infants. In the case of

newborn 40 to 50 percent of the sleeping time is acquired by the REM stage.

1.3 Clinical Sleep Disorders

Thousands of miles of sleep EEG data have been accumulated, and countless

hours of effort have been expended by sleep researchers around the globe.

Considerable information has emerged from the sleep laboratories which can be

useful to the physician [3]. Some of the common disorders known are listed

below

a. Narcolepsy

This describes a condition of recurring, uncontrollable episodes of brief sleep.

This disorder usually begins in adolescence or young adulthood, it continues

throughout life but is generally thought to improve in later years [4]. In

narcoleptics REM occurs at, or soon after, the onset of sleep when compared to

normal sleep pattern. Many stimulant and antidepressant medications have been
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used in the treatment of true narcolepsy, but nothing replaces an understanding

discussion with the patient and his family about the illness and ways they can

adjust themselves to it.

b. Cataplexy

Characterized by brief episodes of muscular weakness which are precipitated by

laughter, anger, or other emotional excitement. The degree of disability may

range in scope from a mere subjective feeling of weakness to almost total

paralysis.

c. Hypersomnia

The subject will have tendency to sleep for excessively long periods, either as an

extension of nocturnal sleep into the late morning or past noon, or at various

times during normal hours of wakefulness. Unlike narcoleptics, patients with

hypersomnia do not display the auxiliary symptoms of cataplexy and rarely

complain of disturbed nocturnal sleep [3].

d. Insomnia

Inability to fall asleep, frequent and prolonged awakenings, early morning

awakenings, in the absence of gross physical or psychological pathology is

probably one of the most common sleep disturbances. Sleep EEG studies indicate

that there is a physiological basis for the insomniac's complaints and it has been

found that these patients have significantly longer sleep latencies, shorter sleep

times and less efficient sleep.

e. Sudden Infant Death Syndrome (SIDS)

Is a sleep related phenomenon that has been strongly supported by the evidence

of a high incidence of infant mortality during sleep [5]. The typical clinical

syndrome is that of a generally healthy of 2 to 4 months of age who is put to

sleep in its crib at night and is found dead shortly thereafter or in the morning,

having died several hours before. Autopsy examination reveals no abnormalities
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recognized as cause for death. The automatic inspiratory-expiratory rhythmic

cycle is disrupted by recurrent periods of apnea. It is suggested that NREM sleep

stages in the infant might be more prone to be correlated with a prolonged apnea

than the REM sleep stage.

1.4 EEG and Drug Effect

Quantitative EEG methods have a well-documentated application in human

psychopharmacology. They are used to identify drugs which affect the central

nervous system, specify the times of drug activity, compare and classify drugs,

and relate EEG findings to other measured effects. The EEG signal is most

commonly quantified in fixed frequency bands, using power spectral density

analysis. Drug effects are defined as those EEG changes from pre-drug that differ

statistically from the changes after placebo.

In studies of newly developed drugs and low doses of known drugs, there

is frequently a problem in deciding whether there has been an effect on the EEG.

Probabilities are difficult to determine, since the many variables examined inflate

the likelihood of finding differences from placebo and standard statistical

adjustments are complicated by the high intercorrelations of EEG variables.

1.3 Visual and Computer Based Analysis

Sleep-waking patterns in the EEG have been studied in various species. Analysis

have been done using computers and visually. Visual analysis is based on the

interpretation of an individual with a good physiological background on sleep

characterizing the polygraphic records. The analysis depends on the individuals

view and the sleep criteria he considers. Visual analysis of the EEG remains

necessary and appropriate, but is time consuming and lacks quantification. The

expense and laboriousness of all-night polygraphy limits the number of subjects
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and the number of nights which can be monitored in any single study. These

limitations in visual analysis have opened doors for computerized quantitative

analysis.

Various techniques for a computerized quantitative analysis of the EEG

have been developed. Computerized method enable on-line analysis and

objective classification of sleep-waking patterns recorded over large periods.

Frequency domain statistics like spectral density which accurately quantify the

sleep state by power-frequency distributions can be best done through computer

processing. If both visual and computer analysis are performed over the same

length of EEG, they seem to mutually influence each other [6]. Automatic

analysis does not replace visual analysis but is helpful in handling and

organizing the enormous amount of data obtained during very long records.



CHAPTER 2

TECHNIQUES FOR RANDOM DATA ANALYSIS

2.1 Random Processes

Data representing a random physical phenomenon cannot be described by an

explicit mathematical relationship because each observation of the phenomenon

will be unique. In other words, any given observation will represent only one of

many possible results which might have occurred.

Random processes may be categorized as being either stationary or

nonstationary. When a physical phenomenon is considered in terms of a random

process, the properties of the phenomenon can hypothetically be described at

any instant of time by computing average values over the collection of sample

functions which describe the random process. The random process is said to be

nonstationary if the mean value and the joint moment values vary with time. For

special cases when mean and the joint moment do not vary as time varies, the

random process is said to be weakly stationary or stationary in a wide sense [7].

When all possible moments and joint moments are time invariant, the random

process is said to be strongly stationary.

Nonstationary process include all random processes which do not meet

the requirements for stationarity. The statistical properties of nonstationary

random process are time varying functions which can be only determined by

performing instantaneous averages over the ensemble of sample functions

forming the process. Spectral analysis is a powerful tool in characterizing such

signal. Coherence spectra is used as a measure of correlation between two

simultaneous signals as a function of frequency. This can be used as a useful

method in medical applications.

9
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2.2 Basic Properties of Random Data

Four main types of statistical functions are used to describe the basic properties

of random data.

a. Mean square value

The mean square value describe the intensity of data. It is simply the average of

the squared values of the time history. The mean square value for a sample time

history x(t) is given by

T

ki• 	 =1im 1 	
r,

T 	 x2(t) dt
	T-> 430	 0

Physical data is a combination of time-invariant component and a fluctuating

component. The static component can be described by the mean value and

dynamic component by the variance which is the mean square value of the

fluctuation about the mean.

b. Probability density function

Probability density function describes the properties of data in the amplitude

domain. It tries to describe the probability that the data will assume a value

within some defined range at any instant of time. The probability that a sample

time history x(t) assumes a value within the range between x and (x + zix) may

be obtained by taking the ratio of Tx/T, where T is the total amount of time that

x(t) falls inside the range (x, x + tax) during an observation time T. The

probability density function p(x) can defined as

p(x)=1im lim 1/T(Tx /Ax )
Ax->0 T-> CO

The principal application for a probability density function measurement of

physical data is to establish a probabilistic description for the instantaneous

values of the data.
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c. Autocorrelation Function

The autocorrelation function for random data describes the general dependence

of the values of the data at one time to the values at another. An estimate for the

autocorrelation between the values of a sample time history record x(t) at times t

and t + ti may be obtained by taking the product of the two values and averaging

over the observation time T. The autocorrelation function can be represented

mathematically as

T

	R x(t) lim 1 / T 	 x(t) x(t+t)dt
T-> OD 	 0

The autocorrelation function can be used to establish the influence of values at

any time over values at a future time. Autocorrelation measurement clearly

provides a powerful tool for detecting deterministic data which might be masked

in a random background.

d. Power spectral density function

Power spectral density function for random data describes the general frequency

composition of the data in terms of the spectral density of its mean square value.

A band-pass filter can be used to find the mean square value of a sample time

history in a frequency range between f and f + Af. The power spectral density

function can be represented as

	yx2[ f
, f+Af = lim 1 	 / T 	 x2 (t, f, Apdt

	T-> e0	 0

Power spectral density function is used to establish the frequency composition of

the data which inturn bears an important relationship to the basic characteristics

of the physical system involved. A final smooth estimate of the power spectral

density can be found by applying Harming Window Techniques.



12

2.3 Analyzing techniques for nonstationary data

The processing techniques and the statistical formulas normally do not apply

when the data is nonstationary. Special considerations and procedures are

required for such analysis. Nonstationary data represent a class of data whose

statistical properties vary with time. Even though a vast majority of physical data

fall into the class of nonstationarity, many data can be assumed to be stationary

for the reasons of simplicity. The fundamental assumption made in this type of

analysis is that the power contains a stationary component coupled by a

nonstationary trend. Nonstationary conclusion is generally a negative statement

specifying the lack of stationary properties rather than defining the precise

nature of the nonstationarity [71.

In the past 3 types of models have been reported for analysing non-

stationary data.

a.Time-varying mean value

For a nonstationary data the mean values can be estimated using a computer. If

N different time intervals xi(t); i=1,2,3 N represent a nonstationary process

x(t), the estimate of mean value will vary over different choices of the N samples.

One must investigate how closely an arbitrary estimate will approximate the true

mean value. This can be done in two steps. The first step is to obtain mean value

for each record xi(t) as a function of t. After this has been done for N samples,

the average is determined by adding the records together and dividing by N.

b. Time-varying mean square value

The same analysis given for the time-varying mean is carried out to determine

the variation of nonstationary mean square value.

c. Time varying power spectra

The time-averaged power spectrum can be used for describing the time varying

spectral characteristics of an important special class of nonstationary random
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processes which possess the following characteristics [7]

1. The lack of stationarity is due to deterministic time trends which are

represented in every sample function.

2. The time trends are very slow relative to the instantaneous fluctuations of the

data.

2.4 Frequency domain techniques

It is well known that when a quantity varies periodically with time it may be

'analyzed into its harmonic components'. The quantities may be pressure, light,

electricity etc. The variation in these quantities repeats itself at some basic

frequency and the disturbances having repetition frequencies equal to the

multiples of the basic frequency. Time and frequency appear as a related pair of

variables in all these cases. Transformation is a technique used to change the

representation of a parameter from one domain to another as shown in figure 2.

In the case of a signal it is the time and frequency which form the pair of domain.

2.4.1 Fourier & Fast Fourier transformation

The basic essence of Fourier transform of a waveform is to decompose or

separate the waveform into a sum of sinusoids of different frequencies. Figure 3

illustrates this interpretation. The pictorial representation of the Fourier

transform is a diagram which displays the amplitude and frequency of each of

the determined sinusoids. Mathematically, this relationship is stated as

CYO

S(f) =1S(t) e-i2 ft dt
-CO

where s(t) is the waveform to be decomposed into a sum of sinusoids, S(f) is the

fourier transform of s(t).

It is desired to modify this fourier transformation in such a manner



CONVENTIONAL
ANALYSIS

PROBLEM
STATEMENT

Y=X/Z

TRANSFORM
ANALYSIS

TRANSFORM

log(Y) = log(X) log(Z)

"COMPLEX
ANALYSIS

LONG—HAND DIVISION

SIMPLIFIED
ANALYSIS

TABLE LOOK—UP AND
SUBTRACTION

V 
INVERSE

TRANSFORM
PROBLEM
SOLUTION

ANTI—LOGARITHM
TABLE LOOK—UP

14

Figure 2 Flow diagram relationship of conventional and transform analysis
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that the pair is amenable to digital computer computation. Discrete

Fourier transformation approximates Continuous Fourier transfolination as

closely as possible. Figure 4 illustrates a graphical development of the discrete

Fourier transformation. As shown in figure 4-(a) h(t) is the function whose

Discrete Fourier transform has to be found. It is sampled by multiplying with a

sampling function with a sample interval T. The waveform h(t) is sampled at a

frequency of at least twice the largest frequency component of h(t) in order to

avoid any loss of information. Sampled function is then truncated so that only

finite number of points are considered.

If there are N data points of a function and if we desire to determine the

amplitude of N separate sinusoids, then the computation time is proportional to

square of N. Even for high speed computers, computation of the discrete Fourier

transformation requires excessive machine time for large N.

To reduce the computational time of discrete Fourier transformation a

new mathematical algorithm known as Fast Fourier transformation was

developed. This algorithm makes the speed of computation time proportional to

Nlog2N times. If a computer takes half an hour to do a Discrete fourier

transformation on a data with N = 8192 samples, the calculation time required

by Fast Fourier transformation is only about five seconds.

2.5 Dynamics of Electroencephalography

Changes of the Electroencephalogram during sleep were already observed in the

early days of Electroencephalography [Caton, 1875; Burger, 1930]. Quantification

and explanation of EEG has been a problem for long times due to tremendous

amount of data generated during recording and unavailability of sophisticated

quantification methods. Modern developments in information theory and

statistical time series analysis have found their application also in



Figure 4 Graphical development of the discrete Fourier Transform
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Electroencephalography. These analytical techniques provide new insight into

the inherent structure and generation of neuroelectric activity, including mass

activity like the EEG [9]. The mathematically best-founded method is offered by

spectral analysis. The spectrum of single EEG records has already become

familiar by the use of various types of analog frequency analyzers [Grass and

Gibbs, 1938; Baldock and Walter, 1946; Suhara and Uemura, 1963].

Spectral analysis techniques have been widely used in interpreting the

inherent structure of EEG. The power spectrum displays the mean square value

or the average intensity of the EEG as a function of frequency. Figure 5 shows the

power spectra of an all-night sleep record. The cross-spectrum gives information

about the statistical interrelationship between two simultaneously recorded EEG

channels. The cross-spectrum is mathematically a complex quantity composed of

the cross-spectral amplitude, i.e. the average intensity of the activity shared by

the two records as a function of frequency, and the phase angle which gives the

average phase difference between the common frequency components. The

coherence spectrum provides a measure of the correlation between two EEG

records for each frequency band.

Spectral power density measurement has been used to detect the changes

in the slow wave activity of EEG [1]. Figure 6 represent the power density values

of EEG after drug administration. Peter Irwin has used 'Spectral difference index'

as a measure to determine whether a significant EEG change has occurred after

drug intervention [10]. He has used Spectral density index as a measure of the

difference between two relative power spectra (Figure 7). Coherence spectra can

be used as a measure of correlation between two simultaneous EEG records as a

function of frequency. Cross-spectrum is also of greater interest, which gives

information about the statistical interrelationship between two simultaneous

recorded EEG. The cross-spectrum is mathematically a complex quantity
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composed of cross spectral amplitudes, i.e. the average intensity of the activity

shared by two records as a function frequency and of the phase angle which

gives the average phase difference between common frequency components. The

coherence spectrum provides a measure of correlation between two EEG records

for each frequency band.
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Figure 5 The power spectra of all-night sleep record displayed in consecutive
samples of 20 sec
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Figure 6 The curves represent power density values in the 0.75-4.5 Hz range
plotted for 1-min epochs for a night following intake of flunitrazepam



Figure 7 Spectral density index of two subjects having different pre-drug
distributions ofpower



CHAPTER 3

MATERIALS AND METHODS

3.1 Characterization Criteria

An epoch-by-epoch approach is strongly recommended in all scoring and

characterization procedures. A convenient time interval for analysis has to be

selected. It should not be too short as to make the procedure cumbersome, nor so

long as to lose the variations. A convenient interval for most investigators would

be one page record, which is 300 mm. This interval would result in 20 to 30 sec

epoch time [11]. Once an epoch duration is selected it should be maintained for

the duration of analysis. During Wake stage alpha activity is of high or low

voltage amplitude. This stage is usually, but not necessarily, accompanied by a

relatively high tonic EMG, and often REMs and eye blinks are present in the

EOG tracing [11]. During this stage the EEG pattern variation may consist of

either decrease in amplitude, an increase in alpha activity, a paroxysmal burst of

high voltage activity, or the presence of EMG activity.

Stage 1 is defined by a relatively low voltage, mixed frequency EEG with

a prominence of activity in the 2-7 cps range. Stage 1 occurs most often in the

transition from wakefulness to the other sleep stages or following body

movements during sleep. The highest voltage about 50 - 75 microvolts [11] tends

to occur irregularly. This stage is characterized by the presence of slow eye

movements, each of several seconds duration. Rapid eye movements are absent.

Stage 2 is characterized by sleep spindles and K-complexes and the

absence of sufficient high amplitude. The total duration of the K-complex should

not exceed 0.5 sec. Waves of 12-14 cps may or may not constitute a part of

complex.
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Stage 3 is defined by an EEG record in which at least 20% but not more

than 50% of the epoch consists of waves of 2 cps or slower which have amplitude

greater than 75 microvolts from peak to peak.

Stage 4 is defined by an EEG record in which more than 50% of the epoch

consists of waves of 2 cps or slower which have amplitudes greater than 75

microvolts peak to peak. Sleep spindles may or may not be present in this period.

Stage REM is defined by the concomitant appearance of relatively low

voltage, mixed frequency activity and episodic REMs. Alpha activity usually

somewhat predominant during stage REM than during stage 1. The frequency is

generally 1-2 cps slower than during wakefulness. There is an absolute absence

of sleep spindles and K complexes. Table 2 gives a concise form of criteria

mentioned above. Figure 8 illustrates the placement of electrodes and the onset

of EEG. Figures 9, 10, 11 and 12 shows the EEG for Stage 2, Stage 3, Stage 4 and

REM stage respectively.

3.2 Experimental Setup

3.2.1 Subject

All-night EEGs, EOGs, and EMGs were recorded at the sleep laboratory of the

Robertwood Johnson Research Center from a 30 year old adult female suffering

from neurologic disorders. The recording was carried out in a sound-attenuated,

ventilated, temperature-controlled room. The data was recorded by Medilog

eight channel recorder for a period of six hours.

Two EEG channels (C3/A1 (Sz C4/ Al), two EOG channels (Al, one cm

vertically upward from outer canthus of left eye; Al, one cm vertically

downward from outer canthus of right eye), and one EMG channel (two

electrodes placed on the jawbone) were used which is schematically illustrated in

Figure 13. The five channel data obtained from the subject was amplified by



Table 2 Sleep stage scoring criteria

Stage W: 	 The EEG contains alpha activity associated with quiet wake-
fulness or low voltage activity with active wakefulness. The EMG
has a high level of activity and there are frequent voluntary eye
movements.

Stage 1: 	 The EEG shows less than half the epoch occupied by alpha waves.
No spindles or K-complexes occur in the EEG record. Occasional
slow, rolling eye movements occur.

Stage 2: 	 The EEG record shows K-complexes and bursts of 12 to 15 cycles
per second rhythm and contains less than 20 percent delta activity.
There are no eye movements.

Stage 3: 	 The EEG contains between 20 and 50 percent of the epoch oc-
cupied by delta activity. There are no eye movements.

Stage 4: 	 The EEG contains over 50 percent of the epoch occupied by delta
activity. There may be spindle activity superimposed on the delta
activity. There are no eye movements.

Stage REM: The EEG is relatively low voltage, mixed frequency activity with
bursts of theta rhythm and saw-tooth waves. Conjugate rapid eye
movements occur. The chin EMG reaches its lowest amplitude.
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Figure 8 Placement of electrodes and the onset of EEG
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Figure 10 Standard tracings of sleep EEG in stage 3 for four continuous 30 sec epoches



Figure 11 Standard tracings of sleep EEG in stage 4 for four continuous 30 sec epoches
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Figure 12 Schematic illustrations of starting of REM sleep
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Gould Universal amplifier with Band-pass filter across 0.3 to 100 Hz, and

continuously digitized at 256 Hz by a Data Translation Board. Figure 14 shows

the experimental setup.

3.2.2 Data Porting

The digitized data had to be transferred from the recording Center to the Sun

workstation which had the requisite tools for analysis. The binary data file, the

result of a six hour five channel recording was 66MB in size. Due to

nonavailability of INTERN-ET access at the time of this work, other means for

data transfer had to be thought of. An attempt to transfer the data through an

optical disk failed due to the mismatch of optical reader formats.

Alternative ways of transferring were through Floppy Disks, Laptop with

an ETHERNET card, Magnetic tapes etc. Storing onto floppy disks was not

feasible considering the size of the data. Laplink, a package which supports the

transfer of data between two computers, was used for this purpose. Laplink is a

sophisticated package having capabilities to transfer any form of data. Data can

be transferred to either a local or a remote machine. Local data transfer was

achieved at a rate of 33Kb/sec. The data was loaded onto the Sunsparc

mainframe using File Transfer Protocol. The binary file had to be converted into

a readable form. The size of converted file was three times its counterpart which

precluded its storage on the mainframe. Data Cartridge was employed to store

the 200MB of readable data.

3.3 Procedure

Analysis of overnight recording of EEG, EMG and EOG was performed on a Sun

Spark station. Matlab which supports mathematical and robust graphical

applications was used as an aid for analysis. Normally analysis is conducted on
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Figure 13 Electrode placements
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Figure 14 Experimental setup for the data collection
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small lengths of data which are later stacked to get a overall picture of the signal.

Following the steps analysis was performed for various lengths of epoch. Due to

the enormous size of data and the following computational problems, to start

with a smaller length of signal was considered.

The basic approach in analyzing the data was by using the Fast Fourier

Transformation. Spectral analysis was the tool used to detect the variations in the

signal. The use of other orthogonal functions such as Walsh and Haar was also

considered but Fourier transformation was applied in the present study. Initially

the digitized and filtered data was preprocessed for analysis by removing the de

component. The dc component inherent in the signal was removed in two ways

depending upon the type of analysis. First the mean value was calculated for

each epoch and subtracted from the epoch amplitude. To say a few words about

the decision of epoch length, there are some standard approaches. Normally the

epoch length recommended is 30 seconds. There are other cases where smaller

durations have been considered. It is a customary to reduce the duration of

epoch when finer details within a given length is required. The 30 second epoch

is a practise to characterise long stretch of data. Continuing on the dc shift, the

mean value calculated for each epoch was applied on the same. The second way

was by calculating mean value for the whole length of data and subtracted from

each epoch. The data was reduced by 1000 times to get a realistic scale. Figure 15

shows a small stretch of demagnified data with its dc component reduced.

Various methods were considered to obtain spectral plots depicting subtle

changes in the behaviour of the signal. As a test epoch with a duration of 5 sec

was subjected into Fast Fourier Transformation (Routine FFT, Matlab

subroutine). A program was designed to read assigned length of data and to

perform the transformation. This routine was made to run over the whole length

of data. Consecutive power spectrums thus obtained were stacked onto a matrix



Figure 15 Sample EEG signal of two minutes used for analysis
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to get a complete picture of the nature of the signal. Figure 16 shows the power

spectrum of one such epoch. Figure 17 shows the 3D graph obtained through the

algorithm. Due to computational and memory restrictions the whole stretch

could not be depicted in the three dimensional form.

The overall power of data can be described by computing mean square

value, which is simply the average of the squared values of the time history. This

has been estimated for the whole length of data using an algorithm. It performs

this operation by calculating the square of each digitized sample and by

averaging it for a given length of epoch. The mean square value obtained for

each epoch is stored in an array. This array is used to plot a graph of mean

square variation with respect to time. The moving mean square model thus

obtained will be used for analysis and discussion in the later paragraph. Figure

18 shows the plot of mean square variation.

For nonstationary data, a basic statistical parameter is to estimate the

nonstationary mean value change with time. A similar algorithm as that of mean

square value has been used to get the mean value. It calculates the mean for each

epoch and stores in a form that can be used to plot the change with respect to

time. Figure 19 gives the output of this moving mean value model.

An epoch length of 30 sec was used. Mean power spectra was calculated

in two ways for each epoch. 15 spectras of consecutive 2 sec segments was

averaged to find the outcome of the 30 sec stretch of signal. This computation

resulted in 30 degrees of freedom. Another procedure was aimed at considering

the effect of history on the signal. Moving Power Spectral Analysis was carried

out by applying Fourier Transforms on overlapping data segments each of 30

seconds, divided and overlapped by 2 seconds (512 samples of data). The

spectral estimates were smoothed using Harming window in the frequency

domain. Figure 20 shows a moving power spectral model with this approach.



Figure 16 Power Spectrum of EEG for a thirty second epoch



Figure 17 Three dimensional plot of power spectra of one hour EEG
--.3



Figure 18 Mean square variation for a five hour EEG with a epoch length of 30sec.



Figure 19 Mean value variation for a five hour EEG with a epoch length of 30sec.



Figure 20 Power variation for a five hour EEG with a epoch length of 30sec.
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The same procedure was applied for the second EEG which has been derived

from a different part of the brain. Figure 21 shows the spectral graph of both

EEGs at the same section of time. This relational plot helps us in studying the

common properties and behaviour of the different sections of brain at the same

instant of time.

3.4 Results and discussions

This thesis presents a few results with spectral analysis of sleep activity. Because

of the large amount of computation various calculations had to be limited to

small lengths of data ranging up to 5 hours. Keeping this in mind the results of

analysis should be considered preliminary. A couple of questions that

immediately came to mind were the following. Is the technique of spectral

analysis a useful tool for characterization and does spectral analysis provide new

insights into the physiological mechanisms underlying the different EEG

patterns at different stages of sleep?

Spectral analysis if not the only tool, is atleast a good way to get a feel of

the composition and characteristics of signals like EEG. Spectra displays the

distribution of average intensity of the different frequency components. This also

allows us to quantify the background activity during various stages of sleep,

especially regarding frequency and intensity of peaks in the 8-, a-, cc- and 13-band.

Figure 21 will be the centre of discussion to figure out the variation of different

bands. 5 (0.25 - 2.0 hz) activity as expected increased its power as it passed from

awake to NREM. A peak in 5 band appears at around 1.5 hz during stage 2. Its

intensity increased as the subject got into the REM sleep. Something which can

be slightly noticed in the graph is the shift of the 6 peak to around 1.8 to 2.0 hz as

we get into REM. This means that the frequency has slowed down during the

REM stage. This slow wave activity can be noticed more dominantly in a



Figure 21 Averaged power spectra of EEG samples from various stages of left derivation is shown in
the left half. On the right half is the power spectra for the right derivation.
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conventional EEG, but not in this spectra. 0 activity (7 hz) is seen to be similar to

frequency that of 6 activity. The a activity (9.5 to 11 hz) is seen to be as expected

in the wake and in stage 1. In one of the papers it was mentioned that harmonic

distortion of the a activity was a frequent feature of healthy subjects. In this

analysis a great detail of a activity variation could not be noticed. The a activity

(13 and 15 hz) showed peaks during stages 2 and 3. A small peak can also be

observed during paradoxial sleep. 13 activity (20 to 30 hz) decreased its intensity

with increasing depth of sleep. Its intensity can be noticed during the initial

stages of sleep. In the three dimensional graph shown in figure 17 the activity of

J3 band can be noticed clearly in the initial part of the EEG recording. The moving

power spectra shown in figure 20 is a bit confusing. The activity of signal seems

to be quite varied. Even though the spectras at different stages relate to the

expected activity of EEG, the overall power variation does not follow the usual

pattern.

Before we discuss about the results mentioned above, it is important to

remember that phenomena like K-complexes are not dealt in this analysis. The

reason is due to the fact that its frequency content is spread over large parts of

the frequency scale which we are unable to detect by spectral analysis. Since the

activity of various bands are quantified by averaging for the analyzed epoch,

intermittent spindles with high amplitude are not clearly distinguishable. This

shows that spectral approach is not suitable for EEG classification schemes which

use K-complexes, vertex potentials and spindle shaped activity. Haar

transformation is another suitable technique for analysis due its superior

convergence property, but has the disadvantage of losing resolution in the

estimated power spectrum.

One of the contradicting observations was the existence of a activity in the

paradoxial sleep. Strong feeling that came about during this analysis was the lack
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of information regarding other activities that characterize EEG. This means to

say that spectral analysis alone cannot be used for characterization purpose.

Strong statistical tools and pattern recognition techniques are necessary. One of

the physiological remarks that can be made from the observations of two

recordings of EEG is the possibility of one source for certain components of the

signal. Close observation of figure 21 the variation of signal between 13 and 17

hz in both the recordings vary similarly. In the analysis performed long intervals

of time have been considered and an average spectrum has been calculated. This

long interval averaging has the disadvantage of ignoring the short-term changes.

The attempt to characterize the unexpected variation in the moving power

spectra for any possible drug effect was not successful. However the analysis on

this stretch of time was performed by choosing comparitively a smaller length.

Faster EEG waveforms that occur concurrently with slow-wave may not be

detected, unless certain filtering techniques are used.



APPENDIX A

MATLAB

MATLAB is a technical computing environment for high performance numeric

computation and visualization. MATLAB integrates numerical analysis, matrix

computation, signal processing, and graphics in an easy-to-use environment

where problems and solutions are expressed just as they are written

mathematically - without traditional programming.

The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by UNPACK and

EISPACK projects, which together represent the state of the art in software for

matrix computation.

MATLAB is an interactive system whose base data element is a matrix that

does not require dimensioning. This allows you to solve many numerical

problems in a fraction of time it would take to write a program in a language

such as Fortran, Basic, or C.

MATLAB has evolved over a period of years with input from many users. In

university environments, it has become the standard instructional tool for

introductory courses in applied linear algebra, as well as advanced courses in

other areas. In industrial settings MATLAB is used for research and to solve

practical engineering and mathematical problems. Typical uses include general

purpose numeric computation, algorithm prototyping, and special purpose

problem solving with matrix formulations that arise in disciplines such as

automatic control theory, statistics, and digital signal processing.

MATLAB also features a family of application-specific solutions that it calls

as Toolboxes. Very important to most users of MATLAB, toolboxes are
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comprehensive collections of MATLAB functions(M-files) that extend the

MATLAB environment in order to solve particular classes of problems. Areas in

which toolboxes are available include signal processing, control system design,

dynamic systems simulation, systems identification, neural networks, and others.

Probably the most important feature of MATLAB, and the one that

MATLAB people took care to perfect, is its easy extensibility. This allows us to

become a contributing author too, creating our own applications. In the years

that MATLAB has been available, the company has enjoyed watching many

scientists, mathematicians, and engineers develop new and interesting

applications, all without writing a single line of low level code.

External Interfaces to MATLAB

Although MATLAB is a complete, self-contained environment for programming

and working with data, it is often very useful to interact with data and programs

external to MATLAB. Shell escape functions and MEX-files are the two methods

for calling your own C or Fortran subroutines.

a. Shell Escape Functions

Shell escape functions use shell escape command ! to make external stand alone

programs act like new MATLAB functions. A shell escape M-function is an M-

file that

1. Saves the appropriate variables on disk.

2. Runs an external program (which reads the external data file, processes the

data, and writes the result back out to disk).

3. Loads the processed file back into the workplace.

Shell escape functions are less efficient than MEX-files because they incur

the overhead associated with invoking an external program each time they are

called and because their arguments are passed via disk files. In situations where
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relatively large amount of processing is performed in the external program, this

overhead can be negligible, and converting to MEX-files offer no real advantage.

If the computation time of the external program is short compared to the

time spent loading the program and passing the variables, MEX-files may be

more suitable since the object code of a MEX-file is physically linked into

MATLAB.

b. Dynamically Linked Subroutines: MEX -Files

One can also call C and Fortran subroutines from MATLAB as if they were built-

in functions. MATLAB-callable C and Fortran programs are referred to as MEX-

files. MEX-files are dynamically linked subroutines that the MATLAB interpreter

can automatically load and execute. MEX-files have several applications:

1. Large pre-existing Fortran and C programs can be called from MATLAB

without having to be rewritten as M-files.

2. Bottleneck computations (usually for-loops) that do not run fast enough in

MATLAB can be recorded in C or Fortran for efficiency.

3. A/ D cards, D/A cards, and other hardware can be accessed directly for data

acquisition and control applications.

MEX-files are not appropriate for all applications. MEX-files offer an avenue

that unsuspecting users may follow when they would be much better of

programming in the MATLAB language. MATLAB is a high-productivity

system whose specialty is eliminating time consuming, low-level programming

in compiled languages like C and Fortran.

Techniques for importing and exporting data to and from the MATLAB

environment are also available. The most important approach is MAT-files-the

file format that MATLAB uses for saving data to disk. MAT-files offer a simple

and convenient mechanism for transporting our data between different

platforms.



APPENDIX B

"SIGNA" SIGNAL PROCESSING PACKAGE

The package supports a biomedical signals processing system. As a research tool

the system offers the potential to acquire and analyze experimental and clinical

data obtained in the form of photographs, polygraphic paper charts etc. In its

role as an adjunct to biomedical education, several self-teaching features are

implemented which enable the student of biomedical signals processing to gain

hands-on experience in the application of signals processing methodologies to

the analysis of clinical and experimental data. These features include a software

function generator and a help option. The modular approach employed in the

system design provides a great deal of flexibility to the investigator such that

when a new analysis is desired one can simply add on the particular user-

developed module to the system without causing any undue system constraints.

The types of analyses that are currently implemented include numerical

integration, curve fitting, Fourier, Walsh and Haar transformations, spectral

analysis and frequency response measurements. The system is being used for a

wide range of applications which include the analysis of electrical signals

generated at the neuromuscular junction, the computation of input impedance of

the arterial system, the analysis of pressure waveforms obtained during

anesthesia and in the characterization of respiratory dynamics in studies

pertinent to asthma.
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CLINICAL PHARMACOLOGY OF SLEEP
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Table 3 Lists a few drugs and their effect on sleep. The column numbered through 1 through 4 refer to
control (+) of lack of control (0) for some major problems in drug research. These conclusions have
been made by analysing a portion of data less than the entire night.

Study Drug Subjects 1	 2	 3	 4 Results

Dunleavy et al. 	 (1971) Debrisoquine,
40 to 60 mg

3 normal + + + 	 0 Decreased rem; withdrawal rem rebound.

Cuanethidine, 40 mg 2 normal Decreased delta sleep.

Propanolol, 120 mg 1 normal No effect on sleep stages.

Haider and Oswald (1971) Amylobarbitone,
200 mg

6 normal 0 	 -I- 	 + 	 0  Decreased rem; increased stage 2.

Nitrazepam, 10 mg Decreased rem; increased stage 2.

Hartmann et al. (1971) Tryptophan,
120 mg/kg

10 normal + 0	 0 0 Increased rem sleep.

A. Kales et al. (1971) Levodopa 4 parkinson -1- + 	 0 	 0 Decreased rem sleep.

4 normal No effect on sleep stages.
j. Kales et al. 	 (1971) . Methapyrilene,

50 mg and
Scopolamine, 0.5 mg

5 insomnic + 0 + 0 Decreased rem in first part of night
only.

Kupfer et al. (1971) Chlorpromazine,
100 mg

9 mixed + 0 	 0 	 0 No effect on sleep stages; increased
total sleep time.

Lester et al. 	 (1971) Chlorpromazine,
150 mg

12 normal + + 0 0 No effect on sleep stages: decreased
latency to first rem period.

Wyatt et al. (1971b) Phenelzine,
60 mg/24 hr

6 mixed + 0 	 0 	 0 Total rem suppression without tolerance.

Wyatt et al. (1971c) 5-Hydroxytryptophan,
600 mg

8 normal + + 0 0 Increased rem sleep.



Study Drug Subjects 1 	 2 	 3 	 4 Results

Kales et al. 	 (1970f) Glutethimide, 500 mg 5 normal + 0 + 0 Decreased rem; increased stage 2;
withdrawal rem rebound.

Methyprylon, 300 mg 7 normal Decreased rem; withdrawal rem rebound.

Pentobarbital, 100 mg 4 normal Decreased delta sleep.

Kupfer et al. (1970b) Lithium, 1.8 gm/24 hr 7 manic-
depressive

+ + 0 0 Decreased rem; increased delta sleep

Lewis (1970) Fenfluramine, 40 mg 8 normal + + + 0 No effect on sleep stages

Chlorphenteramine,
50 mg.

Decreased rem sleep.

Diethylproprion, 25 mg Decreased rem sleep.

Amphetamine, 7.5 mg Decreased rem; increased stage 2.

Wyatt et al. (1970a) Levodopa,
variable dose

7 movement
disorder

+ 0 0 	 0 Decreased rem sleep.

Wyatt et al. (1970b) Tryptophan, 7.5 gm 5 normal + 0 	 0 	 0 Decreased rem; increased delta sleep.

7 insomnic No effect on sleep stages.

Baekeland and Lundwall (1971) Methyldopa,
1.25 gm/24 hr

10 normal + + + 0 Increased rein and decreased delta sleep
in first 3 hours only.

Coulter et al. 	 (1971) 	 . Reserpine, 1 mg 10 normal + 0 	 0 0 Increased rein and decreased delta
sleep on day after medication taken.



Study Drug Subjects 1	 2	 3	 4 Results

Evans and Ogunremi (1970) Chloral hydrate, 800 mg 4 normal 0 + 0 + Decreased rem sleep.

Dichloralphenazone,
1.3 gm

No effect on sleep stages.

Methaqualone,
250 mg and

No effect on sleep stages.

Diphenhydramine
25 mg

Firth et al. (1970) Fenfluramine, 40 mg 7 normal + + 0 0 No effect on sleep stages.

Kales et al. (1970b) Flurazepam, 30 mg 3 insomnic + 0 + 0 No effect on sleep stages.

Chloral hydrate 1 gm 4 insomnic No effect on sleep stages.

Glutethimide, 500 mg 4 insomnic Decreased rem; withdrawal rem rebound.

Kales et al. (1970d) Flurazepam, 30 mg 4 normal +0 	 + 	 0 No effect on sleep stages.

Flurazepam, 60 mg not given Decreased rem sleep.

Chloral hydrate, 1 gm 5 normal No effect on sleep stages.

Methaqualone, 300 gm 5 normal Decreased rem; withdrawal rem rebound.

Methaqualone, 150 mg 5 normal No effect on sleep stages.



Study Drug Subjects 1	 2	 3	 4 Results

Mebanazine, 15 mg I depressed Decreased rem; withdrawal rem rebound.

Phenelzine, 45 mg 1 depressed Decreased rem.

Pargyline, 100 mg 1 normal Decreased rem.

Zung (1969a) Desipramine, 75
mg/24 hr

6 depressed + 0 	 0 0 Increased delta sleep.

Zung (1969b) Desipramine, 75
mg/24 hr

17 normal Decreased rem and increased delta sleep
on fourth day of drug.

• • 	 • • . 	 • • • 	 •

Akindele et al. (1970) Nialimide, 10 mg/kg 5 normal + 0 + 0 No effect on sleep stages.

Phenelzine, 90 mg 4 normal Decreased rem; increased stage 2;
withdrawal rem rebound.

Phenelzine, 90 mg 3 depressed Decreased rem; increased delta sleep.
Bricolo et al. (1970) Levodopa, 4 gm/24 hr 14 parkinson + + 0 0 No effect on sleep stages.

Davison et al. (1970) Methaqualone, 250 mg
and Diphenhydramine,
25 mg

14 normal + + 0 0 No effect on sleep stages.

Quinalbarbital, 100 mg
and Amylobarbital,
100 mg

Decreased rem sleep.



Study Drug Subjects 1	 2	 3	 4 Results

Sagales et al. 	 (1969) Scopolamine, 0.006
mg/kg

it 	 normal 0 + 	 0 	 0 Decreased rem sleep.

Chlorpromazine, 0.4
mg/kg

No effect on sleep stages.

II. L. Williams et al. (1969a) Reserpine, 1 mg 16 normal + + + 0 Increased rem on second drug night.

Tryptophan, 7.5 gm 11 normal Increased delta sleep.

Phenylalanine, 7.5 gm 11 normal Increased delta sleep.

H. L. Williams et al. (1969b) Alpha-chloralose,
AO mg

10 normal -I- 	 +	 0	 0 Decreased rem; increased delta sleep.

R. L. Williams and Agnew (1969) Pentobarbital, 200 mg 9 normal 0 + 0 + Decreased rem; increased stage 2.

Meprobamate, 800 mg No effect on sleep stages.

Glutethimide, 500 mg Decreased rem sleep.

Methaqualone, 300 mg No effect on sleep stages.

Wyatt et al. (1969a) Parachlorophenylalanine,
4 gm/24 hr

4 carcinoid + 	 0 	 0 	 0 Decreased rem with no tolerance.

Wyatt et al. (1969b) Isoniazid, 400 mg 1 normal + 0 + 0 No effect on sleep stages.
Isocarboxazid, 60 mg 1 normal Decreased rem sleep.
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Brebbia et al. 	 (1969) Lithium, 1 gm/24 hr 6 mixed + + 0 0 No effect on sleep stages.

Feinberg et al. (1969e) Phenobarbital, 200 mg 6 mixed + + 0 0 Decreased rem sleep.

Chlorpromazine, 200 mg Decreased rem sleep.

Greenberg et al. (1969) Nitrous oxide by
inhalation

7 normal + 0 	 0 	 0 No effect on sleep stages

Haider (1969) Amylobarhitone, 200 mg 6 normal + + + 0 Decreased rem; increased stage 2.

Nitrazepam, 10 mg Decreased rem; increased stage 2.

Hoffman and Domino (1969) Reserpine, 0.14 mg/kg 20 prisoners + 0 	 0 	 0 Increased rem, prolonged effect.

Kales et al. (1969) Glutethimide, 500 mg 5 normal + + 0 0 Decreased rem; withdrawal rem rebound.

Methyprylon, 300 mg 7 normal Decreased rem; withdrawal rem rebound.

Chloral hydrate, 500 mg 10 normal No effect on sleep stages.

Lewis and Evans (1969) Chlorpromazine, 25 mg 7 normal + 	 ? 	 0 	 0 Increased rem after the first night.

Chlorpromazine, 100 mg Decreased rem sleep.

Rubin et al. (1969) Glutethimide, 1 gm 4 normal + 0 	 0 	 0 Decreased rent sleep.



Study Drug Subjects 1	 2	 3	 4 Results

Hartmann (1966) Reserpine, 2 mg 6 normal -I- 	 0 	 0 	 0 Increased rem sleep.

Lester and Guerrero-Figueroa
(1966)

Chlorpromazine, 100 mg 8 normal + 0 + 0 Increased delta sleep.

Alpha-chloralose,
500 mg

Decreased rem; increased delta sleep.

Phenobarbital, 120 mg Increased delta sleep.

Thiopental, 300 mg IV Decreased rem; increased delta sleep.

Muzio et al. (1966) LSD, 30 mcg 12 normal + 0 + 0 Increased rem in first part of night.

Oswald et al. (1966) Tryptophan, 5 gm 16 normal + + + 0 Increased rem (2 hr. recording only).

Toyoda (1966) Atropine, 10 mg 9 mixed -I- 	 0 	 + 	 0 No effect on sleep stages.

Yuko et al. (1966) Alcohol, 1 gm/kg 3 normal + + + 0 Decreased rem in first half of night;
rem rebound on withdrawai.

• •	 • • •	 • • • 	 •

Baekeland (1967) Pentobarbital, 100 mg 20 normal -I- 	 +	 + 	 -I- Decreased rem sleep.

Amphetamine, 15 mg Decreased rem sleep.

Hartmann (1967a) Tryptophan, 120 mg/kg 8 normal + 0 	 0 0 Increased rem; increased total sleep time.

Ritvo et al. (1967) Imipramine, 50 mg 7 enuretics 0 	 0 	 0 	 0 Decreased rem; increased stage 2 (first
drug night discarded).
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Yules ct al. 	 (1967) Alcohol 1 gm/kg 4 normal + 	 ++ 	 0 Decreased rem; rem rebound on
withdrawal

• • 	 • • •	 • • • 	 •

Evans and Lewis, (1968) Amylobarbitone, 400 mg 2 normal + + 0 0 Decreased rem; rem rebound on
withdrawal; rem rebound blocked by
chlorpromazine.

Hartmann (1968b) - Pentobarbital, 100 mg 8 normal + + 0 0 Decreased rem sleep.

Amitryptyline, 75 mg Decreased rem sleep.

Chlordiazepoxide,
100 mg

No effect on sleep stages.

Knowles et al. (1968) Alcohol, 180 ml 1 normal + 0 + 0 Decreased rem in first half of night;
rem rebound on withdrawal.

Lester et al. 	 (1968) Secobarbital, 200 mg 14 normal + 0 + 0 No effect on rem; delta sleep increased in
first half of night, decreased in second
half.

Oswald et al. (1968) Diethylproprion, 50 mg 6 normal + + + 0 Decreased rem; withdrawal rem rebound 
(2 hr. recording).

Fenfluramine, 40 mg No effect on sleep stages (2 hr.
recordings).

Torda (1968) LSD, variable,
given during
third rem period.

2 normal 0 	 0 	 -I- 	 0 Decreased latency to fourth rem
period.

• • 	 • • • 	 • • • 	 •
Brannen and Jewett (1969) Promethazine, 50 mg 7 normal 0 + + 0 No effect on sleep stage percentages;

sleep cycle length increased.
Trifluoperazine, 5 mg Increased rem sleep.
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Gresham et al. 	 (1963) Alcohol, 1 gm/kg 7 normal 0 + + 0 Decreased rem sleep.

Oswald et al. 	 (1963) Heptabarbitone, 400 mg 6 normal 0 	 0 	 + 0 Decreased rem sleep.

6 depressed
• • 	 . . 	 . 	 . • •

Rechtschaffen and Maron (1964) Amphetamine, 15 mg 8 normal + 	 + 	 0 	 0 Decreased rem; decreased total sleep time;
rem rebound upon drug withdrawal.

Toyoda (1964) Chlorpromazine, 50 mg 6 mixed + 	 +	 0 	 0 Increased rem sleep.
Imipramine, 50 mg Decreased rem sleep.

• • • • 	 • • • 	 •

Freemon et al. (1965) Meprobamate, 1200 mg 8 normal + + + + Decreased rem; increased stage 2.

Green (1965) LSD, 300 mcg 1	 alcoholic + + 	 +	 0 Increased rem sleep.

Oswald and Priest (1965) Amyloharbitone, 400 mg 4 normal + + + 0 Decreased rem sleep; withdrawal rem
rebound.

Nitrazepam, 15 mg Decreased rem sleep; withdrawal rem
rebound.

• • 	 • • • 	 • . 	 • 	 •

Baelceland (1966) Methylphenidate, 5 mg 6 normal + + + 0 Decreased rem; increased stage 2.

Evans and Oswald (1966) Tryptophan, 5 gm 7 narcoleptic + + 	 + 	 0 Increased rem (not an all-night
recording).
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