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ABSTRACT 

EFFECT OF FIBER-MATRIX COUPLING 
ON THE MECHANICAL PROPERTIES OF A TOTALLY 

BIOABSORBABLE COMPOSITE 

by 
Barbaro Jesus Perez 

The mechanical properties of a new class of bioabsorbable polymer-composite 

based on the amino acid tyrosine and calcium phosphate fibers were studied. The effect 

of the fiber aspect ratio on the elastic modulus of a discontinuous fiber composite was 

analyzed using the SMC composite micromechanics computer model. The mechanical 

stiffness of this polymer was found to be superior to that of poly-p-dioxanone, 

caprolactone and poly-o-ester. 

The fiber surface was modified with methane plasma spray to improve the fiber-

matrix coupling. The treated fiber composites had 16-40% higher tensile modulus than 

the untreated fiber composites. From the flexural test results it is suspected that the 

compression modulus is greater than tensile. The use of these innovative materials in 

fixation devices could eliminate a second surgery to retrieve the implant, eliminate the 

corrosion problems with metallic devices and provide load transfer to the healing bone, 

minimizing stress protection atrophy. 



EFFECT OF FIBER-MATRIX COUPLING 
ON THE MECHANICAL PROPERTIES OF A TOTALLY 

BIOABSORBABLE COMPOSITE 

by 
Barbaro Jesus Perez 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Masters of Science in Biomedical Engineering 

Biomedical Engineering Committee 

May 1995 



APPROVAL PAGE 

EFFECT OF FIBER-MATRIX COUPLING 
ON THE MECHANICAL PROPERTIES OF A TOTALLY 

BIOABSORBABLE COMPOSITE 

Barbaro Jesus Perez 

Dr. Clarence W. Mayott, Thesis Adviser 	 Date 
Professor of Mechanical Engineering, NJIT 

Dr. Harold Alexander, Commitee  Member & Immediate Supervisor 
Director of the Department of Bioengineering, Hospital for Joint Diseases 
Orthopaedic Institute and Professor, Department of Orthopaedic Surgery, 
New York University School of Medicine 

Date 

Dr. Albert K. Narh, Committee Member 	 Date 
Professor of Mechanical Engineering, NJIT 



BIOGRAPHICAL SKETCH 

Author: Barbaro Jesus Perez 

Degree: Master of Science in Biomedical Engineering 

Date: May 1995 

Undergraduate and Graduate Education: 

• Masters of Science in Biomedical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1995. 

• Bachelor of Science in Mechanical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1992. 

Major: Biomedical Engineering 

Presentations and Publications: 

Perez, Barbaro J., Harold Alexander and Clarence W. Mayott. "Mechanical Properties of 
a Discontinuous Random Fiber Composite for Totally Bioabsorbable Fracture 
Fixation Devices." IEEE 21st Annual Northeast Bioengineering Conference 
Proceedings, University of Maine (May 22, 1995). 

Perez, Barbaro J., Harold Alexander and Clarence W. Mayott. "Mechanical Properties of 
a Discontinuous Random Fiber Composite for Totally Bioabsorbable Fracture 
Fixation Devices." Fifth Annual Mini-Tech Student Conference (Best Paper Award in 
the Polymeric Materials Section), New Jersey Institute of Technology (April 21 
1995). 

Perez, Barbaro J., Konstantin Caploon, and Christopher B. King. "ART" wheelchair 
patent disclosure filed with the New Jersey Institute of Technology (August 31, 
1994). 

iv 



This thesis is dedicated to my parents, 
Jose and Lucia Perez, for all their love and support. 



ACKNOWLEDGMENT 

The author wishes to express his sincere gratitude to Dr. Harold Alexander and Dr. 

Clarence W. Mayott for their guidance, support and encouragement during the course of 

this research. Special thanks to Dr. Albert K. Narh for serving as member of the 

committee. Many thanks go to Dr. David Kristol and Sheridan Quarless for their support 

and excellent advice throughout the author's graduate education. The author also wishes 

to thank Jose Charvet, Lisa Anderson, Paul West and Dr. Deyu Chen from the Hospital 

for Joint Diseases (HJD) for their help with the manufacturing and mechanical testing and 

Dr. John L. Ricci (HJD) for his help with the SEM work. In addition, the help of Peggy 

Miller, Guo Gang Chen and Bill Green (HJD) is gratefully acknowledged. 

The author is grateful to Dr. Joachim Kohn, Arthur Schwartz and Dr. Yuelie Lu 

(Department of Chemistry, Rutgers University, Piscataway, NJ) for supplying the DTE 

polymer, and performing the GPC analysis. The timely help of Dr. William C. LaCourse 

(New York State College of Ceramics, Alfred University, Alfred, NY) by supplying the 

CaP fibers and Dr. Ih-Houng Loh (Advanced Surface Technology, Inc., Billerica, MA) by 

performing the plasma treatment is sincerely appreciated. 

The author wishes to acknowledge the technical support of Dr. George Brode 

(Integra Life Sciences, Inc.) and Dr. Mark Zimmerman (University of Medicine and 

Dentistry of New Jersey, Orthopaedic Department). In addition, Jack W. Gillespie, Jr. 

(Center for Composite Materials, University of Delaware) provided some of the literature 

and technical advise on the SMC software. 

This work was partially funded by NIST-ATP Award 70NANB4H1502. Finally, 

the author wishes to thank the New Jersey Institute of Technology Graduate Studies 

Program for the graduate assistantship support provided throughout this work. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page  

INTRODUCTION 	 1 

1.1 Anatomy and Physiology of Bone 	 1 

1.2 Biological Mechanisms of Fracture Repair 	 2 

1.3 Biomechanics of Fracture Fixation 	 3 

1.4 Fracture Fixation Devices 	 4 

1.4.1 History of Bone Plates 	 4 

1.4.2 Biomechanical Requirements of Bone Plates 	 5 

1.4.3 Problems with Metal Bone Plates 	 6 

1.5 Bioabsorbable Materials 	 7 

1.5.1 Tyrosine Polycarbonates 	 9 

1.5.2 Calcium Phosphate Fibers 	 11 

MATERIALS AND METHODS 	 12 

2.1 Analytical Calculations of Composite Materials 	 12 

2.1.1 Introduction 	 12 

2.1.2 Micromechanics of Chopped Fiber Composites Using SMC 	13 

2.2 Fabrication Processes 	 18 

2.2.1 Introduction 	 18 

2.2.2 "Neat" DTE Polymer Sheet Fabrication 	 19 

2.2.3 Calcium Phosphate Fiber Fabrication 	 21 

2.2.4 Fiber Surface Treatment 	 22 

2.2.5 Chopped Fiber Composite Sheet Fabrication 	  

2.2.6 Preparation of Specimens for Mechanical Testing 	 73 

vii 



TABLE OF CONTENTS 
(Continued) 

Chapter 	 Page 

2.3 Mechanical Testing 	 24 

2.3.1 Tensile Test 	 24 

2.3.2 Flexural Test (Three Point Bending) 	 25 

2.4 Scanning Electron Microscopy 	 28 

2.5 Fiber Volume Fraction Analysis 	 28 

2.6 Gel Permeation Chromatography 	 29 

RESULTS AND DISCUSSION 	 30 

3.1 Analytical Calculations of the Chopped Fiber Composite 	 30 

3.2 Mechanical Tests of the Neat DTE Polymer 	 31 

3.2.1 Tensile Test 	 31 

3.2.2 Flexural Test 	 33 

3.3 Mechanical Tests of the Chopped Fiber Composite 	 33 

3.3.1 Tensile Test 	 33 

3.3.2 Flexural Test 	 38 

3.4 Volume Fraction Analysis Results 	 43 

3.5 Gel Permeation Chromatography Analysis Results 	 44 

CONCLUSIONS & RECOMMENDATIONS 	 45 

4.1 Conclusions 	 45 

4.2 Recommendations for Future Work 	 47 

APPENDIX I EXPERIMENTAL RESULTS DATA 	 48 

APPENDIX II SEM MICROGRAPHS 	 57 

REFERENCES 	 62 

viii 



LIST OF TABLES 

Table 	 Page 

1 Poly(DTE Carbonate) properties of Batch # ALS 011995 	 20 

2 Calcium phosphate fiber properties 	 21 

3 SMC theoretical elastic modulus for the DTE/CaP chopped random-planar 
composite system 	 31 

4 Tensile test results for the neat DTE specimens 	 48 

5 Flexural test results for the neat DTE specimens 	 48 

6 Tensile test results for the 20% non-treated chopped fiber composite specimens 	49 

7 Tensile test results for the 20% plasma-treated chopped fiber composite 
specimens 	 49 

8 Tensile test results for the 30% non-treated chopped fiber composite specimens 	50 

9 Tensile test results for the 30% plasma-treated chopped fiber composite 
specimens 	 50 

10 Tensile test results for the 40% non-treated chopped fiber composite 
specimens 	 51 

11 Tensile test results for the 40% plasma-treated chopped fiber composite 
specimens 	 51 

12 Flexural test results for the 20% non-treated chopped fiber composite 
specimens 	 52 

13 Flexural test results for the 20% plasma-treated chopped fiber composite 
specimens 	 52 

14 Flexural test results for the 30% non-treated chopped fiber composite 
specimens 	 53 

15 Flexural test results for the 30% plasma-treated chopped fiber composite 
specimens 	 53 

ix 



LIST OF TABLES 
(Continued) 

Table 	 Page 

16 Flexural test results for the 40% non-treated chopped fiber composite 
specimens 	 54 

17 Flexural test results for the 40% plasma-treated chopped fiber composite 
specimens 	 54 

18 Volume fraction measurements for the non-treated tensile test specimens 	43 

19 Volume fraction measurements for the plasma-treated tensile test specimens 	55 

20 Volume fraction measurements for the non-treated flexural test specimens 	55 

21 Volume fraction measurements for the plasma-treated flexural test specimens 	55 

22 GPC analysis results for the tensile test specimens 	 44 

23 GPC analysis results and processing data for the tensile test specimens 	 56 



LIST OF FIGURES 

Figure 	 Page 

1 Tyrosine-derived polycarbonates 	 9 

2 Three dimensional fiber orientation definition via Eulerian angles 	 15 

3 Frame-type mold used for compression molding 	 21 

4 Tensile test specimen 	 24 

5 Three point bending test setup 	 25 

6 Typical SEM micrograph for volume fraction analysis (40% non-treated fiber 
at 350X) 	 29 

7 Fiber aspect ratio effect on the elastic modulus of DTE/CaP random-planar 
chopped fiber composite 	 30 

8 Typical tensile stress-strain curve for the neat DTE polymer (specimen No. 2) 	32 

9a) DTE polymer tensile test failure site (50X) 	 32 

9b) DTE polymer tensile test failure site (350X) 	 32 

10a) Typical crack propagation in neat DTE tensile test specimens (35X) 	 32 

10b) Typical crack propagation in neat DTE tensile test specimens (500X) 	32 

11 Typical flexural test stress-strain plot for neat DTE (specimen No. 1) 	 33 

12a) Typical tensile test stress-strain curves for non-treated 30% fiber composite 
specimen (specimen No. 7) 	 34 

12b) Typical tensile test stress-strain curves for plasma treated 30% fiber composite 
specimen (specimen No. 7) 	 34 

13a) Non-treated chopped fiber composite failure site by tensile testing (500X). 
Note the longer "clean" fibers and holes 	 34 

13b) Non-treated chopped fiber composite failure site by tensile testing (1000X). 
Note the longer "clean" fibers and holes 	 34 

xi 



LIST OF FIGURES 
(Continued) 

Figure 
	 Page 

14 Effect of plasma treatment on the tensile modulus of DTE/CaP random-planar 
chopped fiber composite 	 35 

15a) Plasma-treated chopped fiber composite failure site by tensile testing (1,500X) 	36 

15b) Plasma-treated chopped fiber composite failure site by tensile testing (500X) 	36 

16 Shorter fiber pullout length in a plasma-treated composite failure site after tensile 
testing (500X) 	 57 

17 Effect of plasma treatment on the tensile strength of DTE/CaP random-planar 
chopped fiber composite 	 37 

18 Non-uniform fiber distribution caused by poor manufacturing techniques (200X) 	37 

19 Random chopped fiber concentration on the composite surface (50X) 	 38 

20 Random chopped fiber concentration on the tensile side surface of a 40% 
flexural test failed specimen (35X) 	 57 

21 Effect of plasma treatment on the flexural strength of DTE/CaP random-planar 
chopped fiber composite 	 39 

22a) Tensile side of a 30% chopped fiber composite specimen after flexural 
failure (50X) 	 40 

22b) Tensile side crack across a 30% chopped fiber composite specimen after 
flexural testing (35X) 	 40 

23 Compression side of a 30% chopped fiber composite specimen after 
flexural failure (50X) 	 58 

24 Flexural failure site of a 20% plasma treated fiber composite (750X) 	 58 

25 Effect of plasma treatment on the flexural modulus of DTE/CaP random-planar 
chopped fiber composite 	 41 

xii 



LIST OF FIGURES 
(Continued) 

Figure 	 Page 

26a) Typical flexural test stress-strain curves for non-treated 30% fiber composite 
specimens (specimen No. 2) 	 42 

26b) Typical flexural test stress-strain curves for plasma treated 30% fiber composite 
specimens (specimen No. 7) 	 42 

27a) Failure site of an untreated bending test specimen (500X) 	 42 

27b) Failure site of a plasma-treated bending test specimen (750X) 	 42 

28 Cross-section showing fiber amount (20%, 30% and 40% left to right) in three 
untreated tensile test specimens (35X) 	 43 

29 Cross-section showing fiber amount (20%, 30% and 40% left to right) in three 
plasma-treated tensile test specimens (35X) 	 59 

30 Cross-section showing fiber amount (20%, 30% and 40% left to right) in three 
untreated flexural test specimens (35X) 	 59 

31 Cross-section showing fiber amount (20%, 30% and 40% left to right) in 
three plasma-treated flexural test specimens (35X) 	 60 

32 Typical SEM micrograph for volume fraction analysis (20% fiber at 350X) 	60 

33 Typical SEM micrograph for volume fraction analysis (30% fiber at 350X) 	61 

34 Typical SEM micrograph for volume fraction analysis (40% fiber at 350X) 	61 



CHAPTER 1 

INTRODUCTION 

1.1 Anatomy and Physiology of Bone 

Bone is a complex tissue which can be thought of as having several levels of structure. It 

is a highly specialized form of connective tissue composed of bone cells in an 

extracellular composite material [1]. At its most fundamental level, hydroxyapatite (HA) 

crystals, Ca10(PO4)6(OH))2, are embedded between collagen fibrils [2]. The HA mineral 

provides rigidity, while the collagen provides some ductility. The synergistic effect for 

bone is that it absorbs greater energy before failure as well as permitting high load 

bearing and stiffness [3]. 

At the second level, collagen and HA fibrils configure themselves into sheets 

(lamellae) with a preferred direction. Similarly to laminated composites, the orientation 

of these sheets define the directions of maximum and minimum strengths for a primary 

loading direction. The third structural level is the arrangement of these lamellae. 

Lamellae may arrange themselves into sheets, or circular concentric structures such as a 

tubular Haversian osteon [3]. 

The fourth level of structure represents the fundamental macroscopic types of bone, 

cortical and trabecular. At this level density is the controlling factor governing the 

strength. Trabecular orientation is also important in defining the maximum and 

minimum strength directions [3]. Compact or cortical bone is hard and dense and forms 

the outer shell of bones; it consists of bony tissue arranged in concentric layers • 

(Haversian systems) [2]. Trabecular bone (cancellous), also know as "spongy bone," is 

located in the intramedullary zone and consists of a loose network of rigid beams 

(trabeculae) [4]. The relative quantities of these structures depend on the function of the 

specific bone. 
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Bone is a living tissue, thus it must be provided with an adequate supply of 

nutrients; the Haversian system serves that purpose. The Haversian system consists of a 

central hole (Haversian canal) surrounded by rings of lamellae. The bone cells or 

osteocytes, reside between the lamellae in spaces called lacunae. Tiny pores (canaliculi) 

connect the osteocytes with one another and with the Haversian canals. The blood flows 

through the Haversian canals and canaliculi to supply the osteocytes with oxygen and 

nutrients and to remove the waste products [4]. This osteo-vascular system is especially 

important in fracture healing [5]. 

There are three types of bones cells: osteoblasts, osteocytes, and osteoclasts. 

Osteoblasts form bone via the secretion of collagen which then becomes mineralized. 

Once surrounded by calcified matrix, the osteoblasts become osteocytes. Osteocytes play 

a key role in the dissolution of bone mineral for the homeostatic regulation of calcium in 

body fluids [2]. Osteoclasts are large multinucleated cells that break down (resorb) 

previously formed bone. 

1.2 Biological Mechanisms of Fracture Repair 

There are three biological stages of fracture repair: inflammatory, reparative, and 

remodeling [6]. During the inflammatory stage a hematoma accumulates within the 

medullary canal in the endosteum and beneath the periosteum (a fibrous membrane 

covering the bone). Both periosteum and endosteum have osteogenic (bone forming) 

potential. The bone within the fracture region becomes necrotic due to lack of blood 

supply, creating an inflammatory response with macrophage invasion to digest the debris. 

The reparative stage begins within two to three days after injury, as the hematoma 

becomes organized. This is evident with the formation of fibrous tissue, fibrocartilage 

and hyaline cartilage [6]. These materials seal the fragment ends together. New bone is 

formed underneath the periosteum around the ends of the fracture and grows toward the 

fracture site. A similar process transpires at the endosteum. The cartilage tissue is then 
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replaced by bone. This is what is known as secondary ossification because the 

ossification occurs after the initial callus formation. Primary ossification is the fusion of 

fractured bone ends without callus formation [1]. 

The final stage of fracture healing occurs over a long period of time. Bone 

remodeling, performed by osteoclasts and osteoblasts, removes the superfluous tissue 

around the fracture site until bone returns to its original shape [6]. Bone remodeling is a 

phenomena by which bone adjusts its size and shape in the most efficient manner to 

support a specific loading condition. 

1.3 Biomechanics of Fracture Fixation 

One of the important factors in achieving primary ossification of the fracture site is the 

prevention of micromotion of the bone ends. Motion of these ends will stimulate callus 

formation and secondary healing will occur. In the worst case, excessive motion could 

even prevent secondary ossification and cause a non-union [1]. 

As the fracture site undergoes the stages of healing the biomechanical properties of 

the bone change. There are significant increases in maximum torque to failure and 

energy absorption throughout the healing process [7]. This is attributed to the increase in 

cross-sectional area of new bone in the healing region as a result of the callus formation. 

The increase in area is of most benefit if the new bone is deposited as far away from the 

central axis as possible, since this increases the bone's moment of inertia and in turn its 

stiffness and strength. 

The change in material properties in the vicinity of the fracture site also plays an 

important role. A decrease in bone porosity as the trabecular structure matures and an 

increase in the mineral content of the healing tissue are responsible for improvements in 

material properties [8]. In addition, total re-vascularization of the healing site seems to 

restore the biomechanical properties of the bone nearly back to normal [9]. 
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1.4 Fracture Fixation Devices 

1.4.1 History of Bone Plates 

Currently orthopedic surgeons have several fracture fixation methods at their disposal for 

the immobilization and treatment of fractured limbs: internal and external or closed 

treatments. Closed methods refers to casting and external immobilization of the injured 

site, while open methods require surgical intervention and the introduction of an implant. 

Internal fracture fixation devices include: bone plates, intra-medullary (IM) nails, pins 

and K-wires. The bioabsorbable material discussed in this thesis are meant to be used to 

fabricate bone plates, pins and IM-nails for the fracture management of low load bearing 

bones. Only bone plates will be discussed here, since they are probably the oldest and 

would be good first candidates for these materials. 

The use of bone plates was first reported in 1886 [10], although earlier use can't be 

ruled out since during the American Civil War several metal devices were used 

experimentally. The primary concern of early researchers was infection prevention, 

device strength and tissue tolerance [1]. 

In 1949, the effects of compressive forces on bone plates was first addressed [11] 

[12]. These investigators believed that the compressive forces, which pushed the newly 

fractured ends of bone together, would produce more rapid bone growth. Around 1958 a 

self-compressing plate was developed by G. W. Bagby and J. M. Janes [13]. The screws 

had a conical shoulder which glided down the edge of an oval screw hole and 

compression was achieved as the screws were driven home. This design was very 

successful in a canine femoral osteotomy model and in later clinical trials [14] [15]. 

There was some controversy regarding the actual effect of compressive forces on 

healing bone. Some researchers found no significant differences in using compressive 

plates [1]. Since then, it is generally accepted that even though compression itself does 

not stimulate bone growth, the opposition of the bone ends due to compression is crucial 
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if rapid primary bony union is to occur [16]. In fact, most of today's bone plates are of 

the compressive type. 

1.4.2 Biomechanical Requirements of Bone Plates 

The three main purposes of an artificial bone plate are: buttressing, neutralization and 

compression of the fracture site. The static compression of the bone fragments provides 

interfragmentary friction to oppose shearing forces which would otherwise induce large 

bending moments and torque on the plate. If compression is not applied, motion between 

the fragments can occur. The motion can stimulate bone resorption at the opposing ends 

of the fragments creating instability. 

The elastic modulus of cortical bone ranges from 17 to 24 GPa depending upon age 

and location of the specimen [3]. The modulus of elasticity increases from birth until age 

50 and then starts to gradually decrease. Bone is strongest in longitudinal compression 

loading (ultimate strength 190 MPa) followed by longitudinal tension (ultimate strength 

130 MPa) [3]. 

Bone plates are usually exposed to bending forces in vivo. They undergo high 

cyclic bending stresses and lesser torsional moments. This requires adequate inpiane and 

shear properties [17]. Lawrence, et. al. [18] have measured the bending moment on a 

single bone plate, offset by 2 cm from the line of action in the tibia of a 67 kg person, 

during a normal gait cycle to be 54 Nm. The torsional moment measured ranged from 

13.7 Nm to 18.4 Nm . Other workers have done similar measurements on cadaver femurs 

with several types of metal plates and found that the bending moment ranged between 44 

Nm and 66 Nm [17]. The bending moment to failure and maximum bending stiffness to 

produce pain in humans has been observed to be 25-30 Nm and 2.0 Nm/degree, 

respectively [19]. 
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Studies indicate that rigid fixation (about 60% of intact bone bending stiffness) 

with a small fracture gap produces primary ossification with little callus formation, while 

more flexible fixation (about 20% of intact bone bending stiffness) with a larger fracture 

gap produces more callus [3]. Experiments have demonstrated that repetitive loading is a 

key factor in stimulating new bone formation, as compared with static compression [20]. 

1.4.3 Problems with Metal Bone Plates 

The most commonly used bone plates today are made of metal (stainless steel and 

titanium alloys) [1]. Steel has an elastic modulus approximately ten times that of cortical 

bone (316L steel 210 GPa, cortical bone 18 GPa). The rigidity of steel plates can be 

an advantage during the early healing period, but the same rigidity can be a strong 

disadvantage later. Investigators in the field have discovered that rigid fixation leads to 

bone remodeling and ultimately osteoporosis and atrophy due the stress protection 

produced by the plates [19] [21-23]. 

Bone plates shift the neutral axis away from the centroidal axis of the bone. This 

shifts the stress distribution towards the plate, changing the amount of load the bone 

experiences. If the plate is not removed once the fracture has healed, it can continue to 

carry the majority of the load and therefore understrain the bone beneath, leading to 

osteoporosis and eventually atrophy. If the removal of the plate becomes necessary at a 

later date, the remaining bone may not be sufficiently strong to support loads and a 

refracture of the bone may occur [3]. 

Another problem associated with metal plates is corrosion. Any form of corrosion 

can lead to premature cracking due to stress and fatigue of the implant [1]. Corrosion 

products are also a serious biocompatability concern. Chromium, cobalt, iron, nickel and 

titanium have been linked to carcinogenic effects in animal and human studies [24] [25]. 
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1.5 Bioabsorbable Materials 

Due to certain disadvantages of metallic devices, other types of materials such as 

polymers, ceramics and composites have been studied. Composites particularly offer 

attractive features such as stiffness variation by manipulation of fiber volume and 

orientation. Some of these composites include: glass/epoxy, graphite/polysulfone and 

graphite/polypropylene systems. 	Bone plates fabricated from these non-degradable 

materials had lower flexural rigidity than conventional plates and did in fact provide less 

stress shielding than their metallic counterparts [26]. Some degree of stress protection 

atrophy still occurred. 

The ideal bone plate would lose its stiffness at a rate corresponding to the gain in 

structural properties of the healing fracture, thus allowing progressive load sharing, while 

maintaining the stiffness of the fixation/bone construct [27]. This is where the 

biodegradable materials open a new door of opportunities. Another added benefit of 

biodegradable materials is that retrieval operations for device removal would have to be 

undertaken only to address cases of device failure, non-union or infection. This would 

mean a decrease in the risks to the patient associated with general anesthesia and also a 

savings to the health care system. 

Due to the stringent requirements that absorbable materials must meet, the list of 

candidates quickly shortens. The most widely used materials for absorbable orthopaedic 

implants are those which were initially developed for absorbable sutures [28]. These are 

a-polyesters: polyglycolic acid (PGA), polylactic acid (PLA) and polyparadioxanone 

(PDS). PGA was first developed by the American Cyanamid Co. in 1962 under the trade 

name of Dexon®. Copolymers of PGA/PLA have also been commercialized as 

absorbable Vicryl® sutures. There are other bioabsorbable materials available that are 

less widely known, including: poly-β-hydroxybutyrate (PHB), poly-β-hydroxyvalerate 

(PHV), poly-c-caprolactone (PCL), polyorthoester (POE) and the new tyrosine derived 

polycarbonates [28] [29]. 
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The degradation mechanism of these materials is mainly by hydrolysis, although 

enzymatic activity in vivo does increase the degradation process [30]. Water first 

diffuses into the material and causes swelling due to the disruption of inteiniolecular 

bonding within the material. In PGA, PDS and PLA, water is believed to cleave covalent 

bonds of the polyester groups within the polymer chains leading to chain breakdown and 

molecular weight degradation. Mass and strength loss eventually follows. 

Some of the first uses of these materials for fracture fixation devices were 

conducted in 1971 by investigators who used PLA rods, screws and plates to treat 

mandibular fractures in dogs [31] [32]. These studies showed the lack of strength of 

these materials and the need for an absorbable reinforced composite. This led to the 

development of self reinforced (SR) materials such as BioFix® (PGA) and oriented 

materials such as Orthosorb® (PDS), which are currently available commercially as pins 

for cancellous bone fixation [28]. There are however, some biocompatability concerns 

with these materials. A recent study of 516 patients who were treated with SRPGA rods 

revealed complication rates of 1.2% for failure of fixation necessitating reoperation, 1.7% 

for bacterial infection of the wound, and 7.9% for late noninfectious inflammatory tissue 

response that warranted operative drainage [33]. 

Other researchers developed fixation devices using high strength carbon fibers in a 

PLA matrix [1] [27]. The carbon fibers have been found to provide a scaffold for tissue 

ingrowth and increase the stiffness and strength of the polymer matrix. These works 

supported the concept of low modulus plating and introduced the idea of using a partially 

absorbable composite material. A concern with the PLA system was the delamination of 

the composite plates due to water absorption leading to hypertrophic nonunions. Other 

studies of the PLA material indicate late inflammatory foreign-body reactions and 

increased osteoclastic activity [34] [35]. The lactic-acid-rich degradation products have 

the potential to significantly lower the local pH in a closed space surrounded by bone. It 
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is hypothesized that this acidity tends to cause abnormal bone resorption and/or 

demineralization which could lead to a cytotoxic environment [35]. 

1.5.1 Tyrosine Polycarbonates 

Recently a new class of bioabsorbable materials was developed by Kohn, et. al. [36]. The 

synthesis of these new materials was based on derivatives of the naturally occurring 

amino acid L-tyrosine. Tyrosine-derived dipeptides replaced the diphenols employed in 

the synthesis of commercial polycarbonates. The length of the pendant chain (Fig. 1) can 

be modified by these dipeptides (ethyl, butyl, hexyl and octyl esters of desaminotyrosyl) 

to influence important polymer engineering properties. 

Figure 1 Tyrosine-derived polycarbonates [36]. 

Tyrosine-derived polycarbonates appear to be promising materials for orthopaedic 

applications. A recent comparative study with PDS-based Orthosorb® pins indicated that 

these new materials were mechanically stronger and degraded slower than PDS [37]. 

This could be beneficial in cases where more support is needed or slower healing is 

expected. Another interesting characteristic of these materials is their bone ingrowth 

potential. In the same study, significant bone ingrowth into the tyrosine-derived 
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polycarbonate pins was observed as early as one week after implantation. After four 

weeks, the trabecular network inside the pins was denser. This is very encouraging since 

it may provide strong implant anchorage and stimulate the progressive transfer of stress 

to the newly formed bone. 

The initial tensile modulus of these materials was found to range from 1.2-1.6 GPa 

[38]. Tyrosine-derived polycarbonates are stiffer than many degradable polymers, 

including PCL, POE and PDS which have an elastic modulus of 0.5 GPa, < 1 GPa and 

0.94 GPa, respectively, but are not as stiff as PLA and PGA which have an elastic 

modulus of 5 GPa and 6.5 GPa, respectively [1] [39]. The DTE and DTB polycarbonates 

had a tensile failure strength at break of 67 and 60 MPa and failed without yielding after 

4% elongation, while the DTH and DTO were ductile, yielding at 5% elongation with a 

yield point of 62 and 51 MPa, respectively. The weight average molecular weights of the 

polymers ranged from 120,000-450,000 da [38] prior to degradation. 

The degradation mechanism seems to involve the rapid cleavage of the pendent 

chain ester bonds followed by a slower hydrolysis of the carbonate bonds [38]. In vitro 

degradation proceeded at a similar rate as in soft tissue while an accelerated process 

occurred in hard tissue [37]. The length of the pendent chain affected the degradation 

behavior and strength retention; the polymers with short pendent chains were more 

readily hydrolyzable [38]. 

In vitro cytotoxicity studies have also been conducted. The tyrosine-derived 

polycarbonates did not elicit any noticeable cytotoxic effect on fibroblast cells, except for 

the more hydrophobic poly(DTO carbonate) which caused patchy cell death [36]. Cell 

proliferation was modulated by the pendent chain length; the least hydrophobic 

polycarbonate (DTE) being a more stimulating substrate for cell growth than the more 

hydrophobic polymers. This thesis will focus on poly-(desamino-tyrosyl-tyrosine ethyl 

ester) (DTE). 
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1.5.2 Calcium Phosphate Fibers 

Historically, the use of ceramic materials in orthopedic surgery dates back to 1892 when 

plaster of Paris (calcium sulfate) was used as a bone substitute [40]. Ceramic materials 

are extremely inert since they are fully oxidized, thus eliminating the possibility of 

corrosion [1]. Ceramics can be fabricated with a porous structure to allow tissue 

ingrowth and provide a scaffold for bone growth and attachment [3]. These materials 

have been used as bone defect fillers in the following forms: calcium sulfate (CaSO4), 

calcium phosphate (CaP), calcium oxide (CaO) and aluminate (A1,03), β-tricalcium 

phosphate (Ca3(PO4)2) and hydroxyapatite [1]. Calcium sulfate has also been used for 

the short term delivery of antibiotics and bone morphogenic proteins [41] [42]. 

Ceramic materials can also be manufactured as glasses. Ceramic glasses are of 

particular interest since they offer better mechanical properties and thus could be 

potential absorbable reinforcements [43-45]. Calcium phosphate glass fibers have been 

fabricated using various composition of Ca, ZnO, Fe2O3, P2O5, and Na. These CaP glass 

fibers can be degraded by water in an in vivo environment. Hydrolysis can occur at the 

P-O-P bonds producing P-OH end groups which are susceptible to acid/base reactions 

[1]. Water can also hydrate the entire chain; this is when the water "wicks-down" the 

entire fiber length. 

The fairly rapid degradation process must be slowed down in order to retain the 

mechanical properties of composite fracture fixation devices for the required time. Using 

a hydrophobic matrix to protect the fibers can decrease the degradation rate. Also the use 

of short fibers instead of continuous fibers, slows down the "wicking effect" since the 

water must now pass through more matrix to hydrolyze all of the fibers. Surface 

modification of the fibers through plasma treatment have been also found to retard the 

degradation process [46] [47]. 



CHAPTER 2 

MATERIALS AND METHODS 

2.1 Analytical Calculations of Composite Materials 

2.1.1 Introduction 

A useful definition of a composite is, "the combination of a reinforcement material (such 

as a particle or fiber) in a matrix or binder material" [48]. The term composite implies 

that the component materials are macroscopically identifiable. The advantage of a 

composite material is that it usually exhibits a synergistic effect of some of the 

constituent's properties. The following are other major advantages that composites have 

over competitive materials (usually metals): 

• High specific tensile strength (ratio of material strength to density) 

• High specific modulus 

• Improved fatigue life 

• Corrosion resistance 

Some of the major disadvantages are; 

• High cost of manufacturing 

• Complexity of material behavior (synergy of undesirable material properties) 

• Increased sensitivity to the environment (temperature, moisture and chemical 

agents) 

There are three general types of composites: laminated, fibrous and particulate 

[49]. This work will be limited to discontinuous fibrous composites. These types of 

materials have been widely used in the automobile, aircraft, medical, and sports 

12 
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equipment industry in products such as car panels, airplane struts, medical prostheses and 

ski equipment [48]. The analysis of such products is well documented in many works 

[49-52]. 

Composites material properties are described from two points of view, 

micromechanics and macromechanics. Micromechanics is the study of composite 

material behavior wherein the interaction of the constituents is examined at the local 

level. Macromechanics is the study of composite material behavior where the material is 

presumed homogenous and the effects of the constituents are detected only as averaged 

apparent properties of the composite [1]. 

2.1.2 Micromechanics of Chopped Fiber Composites Using SMC 

A discontinuous fiber composite consists of chopped fibers imbedded in a polymer 

matrix. The fibers serve as the reinforcement while the matrix supports and protects the 

fibers. In addition, the matrix, transfers the load to the fibers through shearing stresses. 

Aligned continuous fiber composites have microstructures which allow the 

implementation of mathematical simplifications to produce reasonable estimates of their 

elastic behavior. Some of these estimates (elastic modulus) can be obtained through the 

well known "rule of mixtures." However, the situation for chopped fiber composites is 

much more complex. This complexity is reflected through variable states of fiber 

orientation and distributions of fiber lengths coupled with dispersed or aggregate textures 

[53]. 

The SMC (Sheet Molding Composites) micromechanics model for composite 

materials, a computer program developed by the University of Delaware Center for 

Composite Materials, was used to predict the elastic properties of the DTE/CaP 

discontinuous fiber composites. This software package can predict the thermoelastic 

properties of a wide range of composite materials (continuous fiber lamina, particulate 

reinforced composites, porous composites and foams, chopped fiber sheet molding 
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materials, short-fiber bulk molding materials, and circular platelet reinforced composites) 

[54]. Not all of the equations for the calculations made by this program will be discussed 

in this paper. The theoretical basis for these calculations can be found in the following 

references: [53] and [55-59]. 

Microstructural parameters such as composition, degree of orientation of the 

reinforcement and constituent properties are the program's input parameters. The 

following are the basic assumptions of the micromechanics model used by SMC [54]: 

1. Perfect bonding (Chemical and/or physical) between the fiber and matrix. 

2. Statistical homogeneity. Significant variations in the reinforcement distribution 

and orientation within the composite structure are common in short fiber 

composites. This represents, the most common source of discrepancy between 

predicted and observed properties. 

3. The distribution of fiber aspect ratios (length/diameter) falls within a narrow band 

about an average value. A broad distribution may result in deviations between the 

predicted and observed properties. 

4. The fiber orientation distributions are assumed to be uni-modal, centered about the 

origin of the principal axes. 

5. The matrix and reinforcement materials are assumed to be isotropic. 

In discontinuous fiber composites, the fiber length will have a dramatic effect on 

the elastic properties of the material. An imposed load is transferred to the fiber by 

matrix shear stresses acting over the surface of the fiber. The section of the fibers near 

the ends is referred to as the "ineffective" or "critical" length (Lc) and is defined as the 

length required for the stress to achieve 95% of the asymptotic value experienced by the 

matrix at a point far away from the fiber. The critical aspect ratio for a cylindrical fiber is 

defined as Lc/fiber diameter. In order for the fiber to provide significant reinforcement, 
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the fiber aspect ratio must be greater than the critical aspect ratio [53]. The range of 

aspect ratio for short fiber reinforcements is between 1 and 1,000 [54]. The aspect ratio 

may be the most dominant geometric parameter governing the elastic behavior of a 

chopped fiber composite [53]. 

In general, individual fibers will be oriented in 3-dimensions. Three Eulerian 

angles are required to define their orientation as illustrated in Fig. 2. The angle o 

measures the orientation of fiber projections within the "1-2" plane with respect to the 

longitudinal 1-axis. The angle 0 quantifies the degree of tilt out of the "1-2" plane for 

individual fibers. The angle ψ is redundant for ellipsoidal particles (SMC assumes 

ellipsoidal inclusions) and is not required for input into the program [54]. 

Figure 2 Three dimensional fiber orientation definition via Eulerian angles [54]. 

The following equations, taken from references [53] and [54], describe the 

derivation of the cosine fiber orientation distribution used by SMC: 

where, 

(1) 

N(o, 0) = distribution function which defines the fraction of fibers that share a common 
orientation. 



(5) 

The following symmetry conditions are required: 
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Assuming that the orientation distribution is separable, 

where, 

N = planar distribution 
Na  = axial distribution 

and satisfies the normalization conditions, 

where, 

A = planar orientation averaging tensor 
A„ = axial orientation averaging tensor 
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Finally, vector and tensorial averages (see reference [53] for complete derivation) 

along with the simplifications in equations (5), (8) and (9) result in only two independent 

orientation parameters being required to specify the general state of fiber orientation. 

Defining 

(10) 

(11)  

(12)  

(12) 

where, 

f = planar orientation in the "1-2" plane (Fig. 1) 

fa  = axial orientation about the "3" or perpendicular plane (Fig. 1) 

The values of fp  range from zero to one. Values of zero correspond to a random 

distribution in the "1-2" plane. When fp  = 1 the fibers are totally aligned to the 1-axis in 

Fig. 1. The values of fa  range from -0.5 to +1.0 and measure the tendency for fibers to tilt 

out of the "1-2" plane and align parallel to the normal 3 direction. For fa  = -0.5, all the 

fibers lie perpendicular to the 3-axis, fa  = 0 corresponds to a random distribution in the 

angle 0, and fa  = 1 implies that all fibers are aligned along the 3-axis [54]. 
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A random-planar fiber orientation was assumed for the DTE/CaP composites due to 

the small sheet thickness. This assumes that the fibers are confined to lie in the "1-2" 

plane with minimal out-of-plane tilting. The assignment of fa  = -0.5 assures that the 

fibers are confined to the "1-2" plane while fp  = 0 yields random fiber orientation in the 

"1-2" plane [54]. 

The SMC software requires the user to enter mechanical properties for both the 

fiber and polymer material. The DTE elastic modulus entered was the mean value 

obtained from the tensile test. 	Poisson's ratios of 0.33 (from industrial grade 

polycarbonate) and 0.22 (from E-glass fibers) were used for the polycarbonate DTE and 

the CaP fibers, respectively [53]. The SMC program outputs the thermoelastic properties 

of the mentioned composite systems for various fiber volumes, aspect ratios and 

orientations. 

2.2 Fabrication Processes 

2.2.1 Introduction 

One of the major differences in designing with polymeric materials versus metals is that 

the fabrication parameters can have a significant impact on the mechanical properties of 

the product. This is why careful planning of the manufacturing processes must be made 

at the start of any new plastic design project. DTE like any new polymer, is no exception. 

Along with choosing the correct processing parameters such as temperature, pressure and 

cooling rate manufacturing costs must be minimized if the product is going to be 

competitive in today's markets. 

Injection molding is the most widely used process for high-volume production of 

thermoplastic resin parts, reinforced or otherwise [60]. Pellets of resin with or without 

fiber reinforcement are fed into a hopper and then into a heated barrel containing a 

rotating screw that mixes and heats the material. The heated resin is then forced at high 



19 

pressure through sprues and runners into a matched-metal mold. Molding is rapid, and 

parts can be very precise and complex. This process however, usually requires a large 

amount of polymer, making it inappropriate to investigate the fabrication parameters of a 

new material such as DTE. 

Compression molding is one of the least expensive plastic forming processes. It 

offers more control over the dimensional accuracy of the product, as the entire part 

surface is in contact with the mold. Machining can be virtually eliminated since holes 

and slots could be molded into the part. However, compression molding does have its 

disadvantages, flow patterns within the dies can result in weaknesses at knit (weld) lines, 

where different streams of compound flow together in the mold and certain shapes can 

result in voids or incomplete mold filling [61]. 

The two processes mentioned above are probably the most widely used in the 

composite industry today. There are other fabrication techniques which are also 

employed. Some of these include: filament winding, braiding, hand lay-up and 

pultrusion. This paper will concentrate on the compression molding process, but the 

following references are included for further reading on this subject [62-66]. 

2.2.2 "Neat" DTE Polymer Sheet Fabrication 

The DTE polycarbonate was obtained from Dr. Joachim Kohn (Dept. of Chemistry, 

Rutgers University, Piscataway, New Jersey). The method of polymerization used was a 

phosgenation/capping reaction followed by direct isopropyl alcohol precipitation of the 

desamino-tyrosyl-tyrosine ethyl ester. The low molecular weight grade was end-capped 

and had a tan powdery particulate appearance. Table 1 lists DTE's physical properties. 
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Table 1 Poly(DTE Carbonate) properties of Batch # ALS 011995. 

Weight Average Molecular Weight, Mw  (da) 68,000 
Number Average Molecular Weight, Mn  (da) 31,000 
Glass Transition Temperature (°C) 93 
Decomposition Temperaturea (°C) 290 
Densityb (g/cm3) ~1.2 

a - Obtained from reference [38] 
b - Measured experimentally by author 

The molecular weight measurements were obtained, prior to processing, via gel 

permeation chromatography (GPC) at a rate of 1 ml/min, using tetrahydrofuran (THF) as 

the solvent medium. The "neat" DTE (polymer alone) was molded into 40-mm2  sheets, 

approximately 0.5 mm thick using a Carver Laboratory Press (Model C). The hydraulic 

press is equipped with top and bottom electric heaters and water heat-exchangers. A 

frame-type mold, with a 1.4-cm3  cavity volume, was used (Fig. 3). The mold 

temperature was monitored via a thermocouple located in the center of the frame. The 

polymer was introduced between two thin Teflon sheets (0.01-mm thick) to prevent it 

from sticking to the mold surfaces. The mold was then introduced between the press 

plates and kept under slight pressure until the temperature reached 116 °C. At this point 

in time, a constant pressure of 40.6 MPa was applied for 5 minutes. The maximum 

temperature allowed was 127 °C. The mold was then cooled to room temperature at a 

rate of approximately 30 °/min. Finally, the mold was disassembled and the polymer 

sheet removed. These techniques and processing parameters were found to be optimum 

to completely fill the mold cavity, prevent sticking of the sheet to the mold surfaces and 

minimize polymer degradation. They were arrived at through experimentation and the 

previous work of Lisa Anderson (Duke University, North Carolina) during her NSF 

Scholar Internship at the Hospital for Joint Diseases. 



21 

Figure 3 Frame-type mold used for compression molding. 

2.2.3 Calcium Phosphate Fiber Fabrication 

The CaP glass fibers were obtained from Prof. William C. LaCourse (New York State 

College of Ceramics, Alfred University, Alfred, New York). The fibers were composed 

of 27% Ca, 12% ZnO, 4.5% Fe2O3, 54% P705, and 2.5% Na and were drawn from a 

molten glass fired at 800 °C through a platinum bushing and were wound onto a 

cylindrical mandrel spinning at about 1,200 r.p.m [43]. The wound fibers were cut into 

300 mm long strands. Some of the physical and mechanical properties of the CaP fibers 

are listed in Table 2. 

Table 2 Calcium phosphate fiber properties [43]. 

Nominal Fiber diameter (p.m) 20 
Ultimate Tensile Strength (MPa) 700 
Modulus of Elasticity, E (GPa) 50 
Melting Temperature (°C) 759 
Density (g/cm3) 2.86 
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2.2.4 Fiber Surface Treatment 

The CaP fibers were sent to Advanced Surface Technology (AST), Inc., Billerica, 

Massachusetts for surface plasma treatment. Dr. Ih-Houng Loh, of AST, modified the 

fiber surface using methane (CH4) gas plasma treatment. The experimental apparatus 

used for plasma surface modification consisted of a quartz reactor chamber, a radio 

frequency generator, a gas inlet system and controls, and a vacuum pump and control 

system. 

The fiber bundles were mounted on a glass rack, which was then positioned in the 

center of the plasma chamber. The pressure of this chamber was reduced below 0.1 

mmHg. The reacting gas (CH4) monomer was introduced and allowed to flow for 

approximately 10 min before turning on the plasma. The chamber pressure was 

maintained at 50 mmHg throughout the reaction period. The plasma was generated using 

a radio frequency generator operating at 13.56 MHz. The power was generally between 

50-100 W. The thickness and surface energy on the substrates and the concentration of 

gas monomers in the reacting vapor determined the reaction time [46]. For a 103  A 

thickness the reaction lasted approximately 10 min . The plasma was then turned off and 

inert gas (helium) was used to bring the system back to atmospheric pressure. Helium 

after treatment prevents oxidation of the fiber surface [47]. The fibers were removed and 

vacuum sealed for shipment. 

2.2.5 Chopped Fiber Composite Sheet Fabrication 

The chopped random planar fiber composite sheets (20%, 30%, 40% fiber by volume) 

were fabricated via a prepreg method. The CaP fibers were chopped, using an electric 

razor, to lengths of 2-4 mm. A weighed amount of chopped fibers (0.56, 0.85, 1.13 gms 

for 20, 30 and 40% fiber, respectively) was placed randomly in a 40-mm2  aluminum foil 

cavity. 
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The DTE polymer (0.96, 0.84, 0.72 gms for 20, 30 and 40% fiber, respectively) was 

dissolved in 5.5-mL of methylene chloride, using a Vortex shaker, and poured into the 

cavity containing the chopped fibers. The prepreg was dried for at least 3 days in a 

vacuum dessicator before further processing. 

The prepregs were molded into 40-mm2  sheets approximately 0.5-mm thick using a 

Carver Laboratory Press (Model C). Teflon sheeting (0.01-mm thick) was used between 

the mold surfaces to avoid sticking. The temperature at the time of compression was 

116 °C. The temperature was not allowed to exceed 127 °C. A constant pressure of 

40 MPa was held for 5 min. The mold was then cooled to room temperature at a rate of 

30 °/min. The Teflon sheets were removed from the composite sheet. 

2.2.6 Preparation of Specimens for Mechanical Testing 

Both tensile and flexural specimens were cut slightly over sized using a surgical scalpel. 

The samples were sanded down to 40 X 5 mm using #240 and then #600 grit 

carburundum paper. 	The samples were carefully screened for signs of stress 

concentrations and cracks. All samples were measured with digital calipers. The mean 

width and thickness of each sample were obtained from three measurements. 

Cellulose triacetate tabs were glued on with cyanocrylate to protect the tensile test 

specimens from grip damage and reduce stress concentrations. The tabs were sanded in a 

±45° fashion to prevent grip slippage. A 20-mm gauge length was used (Fig. 4). Each 

specimen was numbered appropriately for tracking purposes. 

The flexural test specimens did not required any tab material. They were marked 

for proper alignment in the testing fixture, and numbered for tracking purposes. A 30-

mm beam span was used, giving a 60 span/thickness (L/h) ratio. The literature suggest a 

L/h ratio of at least 32 in order to minimize the influence of interlaminar shear 

deformation and to achieve failure in bending rather than in interlaminar shear. In fact, if 
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the specimens are not strained gauged and only deflection is measured, higher L/h ratios 

are desirable [67]. 

Figure 4 Tensile test specimen. 

2.3 Mechanical Testing 

2.3.1 Tensile Test 

The tensile test was based on ASTM D638 and ASTM D3039-76 for the neat polymer 

and composite, respectively. However, the specimen dimensions were changed from the 

recommended value due to the smaller mold available. All tensile tests were carried out 

on an Instron Uniaxial Testing Apparatus (Model 1321). A 10 kN load cell was used to 

measure the load. The specimens were held with pneumatic grips and pulled at a cross-

head speed of 0.2 mm/min until failure. 

The data acquisition was performed using LabTech data collection software on an 

IBM compatible 386 PC. A 1 Hz sampling rate was used to collect the data. An Omega 

X-Y-T chart recorder (Model Omegaline 1321) was used as a backup recording system. 

Load and stroke data were collected and exported to a spreadsheet, containing specific 

specimen information such as width and thickness, to obtain the modulus via a least-

squares curve-fit method. The spreadsheet was used to calculate the stress and strain at 
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failure for each specimen as well. Care was taken to protect the failure site of each 

specimen by securing them with tape in individual containers. 

2.3.2 Flexural Test (Three Point Bending) 

The flexural test was based on ASTM D790-1. Once again, the specimen size was 

changed from the recommended, because of the mold cavity constraint. Due to the small 

specimen size, a three point bending test was chosen instead of a four point bending test. 

The same testing apparatus and data collection setup as in the tensile tests were used. 

However, a 500 N load cell was installed to accurately measure the smaller loads and data 

were sampled at 5 Hz. 

An aluminum three point bending testing fixture was built (Fig. 5) with supports 

(stainless steel dowel pins, 3.175 mm in diameter) set 30 mm apart. A maximum 

deflection of 6 mm 2.2% strain) and 7 mm (≈2.8% strain) was used for the neat DTE 

and composites, respectively with a cross-head speed of 5 mm/min. The spreadsheet 

calculated the flexural modulus and stress and strain to failure when possible. Some 

samples did not break. All failed specimens were also secured and saved for SEM 

analysis. 



(16) 
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Assuming that the modulus in tension is the same as in compression [68] the 

following equations, taken from [67] and [68], were used to compute the flexural 

properties; 

1. Maximum Normal Bending Stress max) 

where, 

M = bending moment 
h = thickness of the beam 
I = moment of inertia of cross-section 

2. Bending Moment (M) 

where, 

P = load at center of beam 
L = beam span 

3. Moment of Inertia (I) 

(14)  

(15)  

where, 

w = beam width 



(17) 

(18) 

(19) 

(20) 

Substituting into eq. (14) gives 
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4. Flexural modulus (E1) 

where, 

6 = deflection at beam center 
G13  = interlaminar shear modulus 

Recognizing that the shear deformation modulus is negligible due to the high 

span/thickness ratio [67], leads to a simplified version of eq. (18) where P/δ is the slope 

of the load-deflection curve. 

The strain of the outer fiber at the center of deflection was calculated by using the 

following equation, obtained from [69]; 
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2.4 Scanning Electron Microscopy 

Two test specimens were chosen at random from each test group for scanning electron 

microscopy analysis. The cross-section of the failure site was gold coated, at 50 millitorr, 

using a Denton Vacuum Etch/Sputter System (Desk 1 Model). The coated specimens 

were examined via a Jeol (Model No. JSM-T300) scanning electron microscope. The 

tensile test specimens were examined at a 45° angle from the horizontal. The flexural 

specimens were examined by looking at the tension side of the failure (lower outer fiber) 

and side view of the failure site. Black and white Polaroid photographs were taken at 

various magnification to help elucidate the failure mechanism. 

2.5 Fiber Volume Fraction Analysis 

The volume fraction was calculated before fabrication by converting the fiber weight 

percent to volume percent. To confirm this calculation after fabrication, the cross-

sectional area of two specimens out of 10 samples were examined at random. The 

samples were potted in epoxy and the cross-section was polished using #600 grit 

sandpaper. The samples were gold coated. The Quantum Kevex Image Analysis System 

(Delta 2 Model) was used in conjunction with the SEM. This system allows the user to 

select an area of interest and select certain features by using the color spectrum. The 

SEM was set for backscatter scanning mode. The white pixels on the screen indicated the 

CaP fibers, while the dark ones referred to the polymer (Fig. 6). Three areas (69,000-µm2  

each) were chosen at random from each specimen. The magnification was held constant 

(350X) for all measurements. The imaging system calculated the percent area occupied 

by the fiber. The mean and standard deviation was calculated for each area measurement. 

Lower magnification (35X) pictures were also taken for relative comparison of larger 

areas between the three fiber volume concentrations. 
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Figure 6 Typical SEM micrograph for volume fraction analysis 
(40% non-treated fiber at 350X). 

2.6 Gel Permeation Chromatography 

Gel permeation chromatography was used to determine the degradation of the polymer 

matrix during processing. A small sample of material (polymer or composite) was 

chosen at random from the fabricated sheets. The specimens were shipped to Dr. Yuelie 

Lu (Dept. of Chemistry, Rutgers University, Piscataway, NJ) for analysis. The composite 

specimens were first dissolved in methylene chloride and then the fibers were filtered out. 

Once the solvent evaporated this poly(DTE) was used in the GPC analysis. 

Molecular weights were obtained by GPC on a system consisting of a Perkin Elmer 

pump (Model 410) and a Waters differential refractometer (Model 410). Two PL-gel 

columns (Polymer Laboratories) with pore sizes 103  and 105  A were operated in series in 

THE (1 ml/min). Molecular weights were reported as weight averages relative to 

polystyrene standards. The "virgin" poly(DTE carbonate) (68,000 da Mw) was used to 

check the apparatus accuracy. 



CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Analytical Calculations of the Chopped Fiber Composite 

The SMC software package predicted that a fiber aspect ratio (length/diameter) greater 

than 100 would optimize the modulus of the DTE/CaP discontinuous random-planar fiber 

composite. Figure 7 depicts the effect that the aspect ratio has on the elastic modulus of 

the composite. There was no noticeable gain in modulus by going to an aspect ratio 

greater than 100. Since the CaP fibers have a nominal diameter of 20 µm, a 100 aspect 

ratio corresponds to a 2 mm long fiber. It was observed, that larger fibers resulted in less 

dense packing and more voids. A compromise was reached and the fiber length 

specification was set between 2- and 4-mm. 

Figure 7 Fiber aspect ratio effect on the elastic modulus 
of DTE/CaP random-planar chopped fiber composite. 
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Fiber 	Elastic Modulus, 
Vol. % 	GPa 

20 3.3  
30 5.2 
40 7.3 
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The theoretical values for the elastic modulus of the DTE/CaP composite system 

are shown in Table 3. It should be pointed out that these results are based on the 

assumptions discussed in the previous sections. These values should only be used to 

judge the performance of the manufacturing process, as well as the fiber/matrix coupling 

efficiency. The theoretical values represent an upper bound which may never be 

achieved, but one could strive to approach them by optimizing the various parameters 

which affect the composite performance. 

Table 3 SMC theoretical elastic modulus for the DTE/CaP 
chopped random-planar composite system. 

3.2 Mechanical Tests of the Neat DTE Polymer 

3.2.1 Tensile Test 

The tensile test results of the neat DTE polymer are shown in appendix I (Table 4). Some 

specimens failed near the grip area, indicating a failure due to stress concentrations near 

the grips. These data points were removed from the mean and standard deviation 

calculations. The breaking strength fell within previously reported values [38] of 67 MPa 

±23 MPa. However, the mode of failure this time was more ductile. Figure 8 illustrates a 

typical tensile stress-strain plot of the neat DTE. Figures 9a)-b) and 10a)-b) illustrate the 

failure mechanism through SEM. The tensile modulus of the DTE polycarbonate (1.46 

GPa) was lower than that of industrial grade polycarbonates 	2.2 GPa) [70]. This can 

probably be attributed to the greater backbone flexibility of the DTE polymer versus that 

of polycarbonate. 
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Figure 8 Typical tensile stress-strain curve for the neat DTE polymer (specimen No. 2). 

Figures 9a) and 9b) DTE polymer tensile test failure site 
(50X and 350X, respectively). 

Figures 10a) and 10b) Typical crack propagation in neat DTE 
tensile test specimens (35X and 500X respectively). 
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3.2.2 Flexural Test 

The three point bending test for the neat DTE yielded only flexural modulus information 

for the four specimens tested (Table 5 in appendix I). None of the specimens failed 

before or at the full deflection (6 mm or 2.2% strain) employed in this test (Fig. 11). 

Higher deflections were not used since the specimen would then start to slip and fall 

through the two outer beam supports. The mean flexural modulus was somewhat lower 

than the mean tensile modulus of the neat polymer. This may be attributed to error 

buildup from using very thin testing specimens. 

Figure 11 Typical flexural test stress-strain plot for neat DTE (specimen No. 1). 

3.3 Mechanical Tests of the Chopped Fiber Composite 

3.3.1 Tensile Test 

As expected, all of the chopped fiber composite specimens had higher tensile modulus 

than the neat polymer. Some of the specimens, as with the neat polymer, failed too close 

to the grip area, and they were not included in the mean and standard deviation 

calculations. The mechanical results for each specimen are included in appendix I 

(Tables 6-11). Figures 12a) and 12b) depict the stress-strain curves for typical non-

treated and plasma treated composites respectively. 
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Figures 12a) and 12b) Typical tensile test stress-strain curves for non-treated 
and plasma treated 30% fiber composite specimens, respectively (specimens No. 7). 

Figures 13a) and 13b) Non-treated chopped fiber composite failure site by tensile testing 
(500X and 1000X, respectively). Note the long "clean" fibers and holes. 

The untreated fiber composites had greater tensile modulus than the neat polymer 

by 49-55% and increased with fiber volume fraction. The contribution of going to a 

higher fiber volume fraction was not statistically significant. This is possibly due to poor 

fiber-matrix coupling. SEM examination of the untreated composites revealed "clean" 

fibers and holes in the matrix at the failure site, both of which phenomena are indicative 

of poor coupling [71]; see Fig(s). 13a) and 13b). The primary mode of failure for the 

untreated short fiber composites is thought to be first by fiber debonding followed by 
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fiber pullout and ending in matrix fracture. This failure mode is typically found in 

composites with poor interfacial bonding [72]. 

The plasma treated fibers had a tensile modulus 16-40% higher than the non-treated 

fibers (Fig. 14). An unpaired t-test with unequal variances and a 95% confidence level, 

showed that at 20%, 30% and 40% there was considerable statistical significance 

(p < 0.002 respectively) between the treated and non-treated tensile moduli. Overall, the 

treated fibers increased the tensile modulus of the neat polymer by 74-116% as the fiber 

volume fraction was increased from 20% to 40%. 

Figure 14 Effect of plasma treatment on the tensile modulus 
of DTE/CaP random-planar chopped fiber composite. 

The SEM analysis showed that the treated fibers at the failure site had some 

polymer attached to them, Fig(s) 15a) and 15b). Also, the fiber pullout length seemed 

much shorter than in the untreated composite (Fig. 16, in appendix II). The SEM 

micrographs represent only a small section of a particular specimen and not the entire 
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failure site nor all of the specimens. There were also "clean" fibers in the plasma treated 

composites, but for the majority of the cases the pulled-out fibers had polymer attached to 

their surface. The mode of failure in this case, is similar to the non-treated fiber 

composites, but differs in that the fiber pullout strength is higher, allowing the more 

opportunity for fiber fracture which increases the stiffness. There was no statistical 

significant difference between the modulus of the 30% and 40% plasma treated fiber 

composites (p < 0.6), may be due to poor fabrication technique: as the fiber volume 

fraction increased, more voids and defects were introduced into the composite. 

Figures 15a) and 15b) Plasma-treated chopped fiber composite failure 
site by tensile testing (1,500X and 500X, respectively). 

The nominal breaking strength of both the plasma treated and non-treated chopped 

fiber composites was slightly lower than the neat polymer (Fig. 17); however, there was 

no significant statistical difference. The small changes can be accounted for by the fact 

that the composite does have more voids and defects than the neat polymer which are 

inherit in the manufacturing process (Fig. 18). 



37 

Figure 17 Effect of plasma treatment on the tensile strength 
of DTE/CaP random-planar chopped fiber composite. 

Figure 18 Non-uniform fiber distribution caused 
by poor manufacturing techniques (200X). 
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3.3.2 Flexural Test 

The three point bending test did not yield any bending strength data for the 20% fiber 

composites since not enough specimens broke (Tables 12 and 13, in appendix I) to 

provide statistically significant results. The higher fiber percent specimens broke, for the 

most part, during the course of the test (Tables 14-17, in appendix I). The flexural 

strength for both 30% and 40% composites was higher than their tensile strength. 

According to the literature flexural strength is often higher than tensile strength [69] [73]. 

This is usually attributed to the statistical nature of the failure process. In the flexure 

specimen, the maximum stress is attained only at the "outer fiber," while in a tensile 

specimen it is attained across the sample cross-section [69]. Thus, the probability of 

finding a critical flaw or defect in the flex specimen is less than in the tensile specimen. 

The SEM analysis showed that there were large fiber concentrations on the surface of the 

specimens as seen in Fig(s). 19 (below) and 20 (appendix II). 

Figure 19 Random chopped fiber concentration 
on the composite surface (50X). 
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There was no statistical significant differences between the untreated and plasma-

treated composite flexural strengths (Fig. 21). The bending failure mechanism is quite 

different from the mechanism of tensile failure. In bending the fibers above the neutral 

axis are in compression, while the ones below experience tension. Figures 22a) and 22b) 

and Fig. 23 (appendix II) depict the failure site of a flexural specimen. The large space 

surrounding the fibers (Fig. 24, appendix II) indicates that the fibers experience stresses 

at an angle, which is common in flexural tests. 

Figure 21 Effect of plasma treatment on the flexural strength 
of DTE/CaP random-planar chopped fiber composite. 

The flexural modulus of all three fiber volume concentrations for both untreated 

and treated fibers was significantly higher than their tensile moduli. It was thought that 

this may be explained by the differences in testing speed. The flexural test was 

performed at a higher cross-head speed than the tensile test (5 mm/min vs. 0.2 mm/min). 

It has been shown that higher strain rates do in fact yield higher elastic modulus in 
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polymeric materials due to their viscoelastic behavior, [74] [75]. However, if this were 

the case, the flexural modulus for the neat DTE would also follow this trend. Since the 

neat DTE bending modulus was actually lower than the tensile modulus, the strain rate 

effect does not seem to explain this discrepancy, assuming both flexural and tensile 

specimens degraded equally during processing. 

Figure 22a) and 22b) Tensile side of a 30% chopped fiber 
composite specimen after flexural failure (50X and 35X, respectively). 

Any variation in properties (i.e. fiber amount, voids and defects) between the 

sample skin and the core will be amplified in the flexural test [69]. Non-isotropic 

conditions and the previous assumption of equal moduli in compression and tension is 

inadequate. It seems that the "true" neutral axis of the bending composite specimens 

tends to shift downward. If the former is true, then the specimens would experience more 

of a compression effect. The neutral axis shifting hypothesis would probably be more 

prevailing in the composites with the lower fiber amount, since the variation in fiber 

distribution would be greater. In fact, the bending modulus of the 20% fiber composites 

(3.10 GPa) closely approaches the theoretical value of 3.3 GPa. 

Another factor which could explain these discrepancies is the fact that the bending 

test specimens were very thin. The thickness measurements were done at three locations 
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in each specimen and the mean thickness was used in the modulus and strength 

calculations. In some instances the standard deviation was as high as ±0.1-mm for a 

mean specimen thickness of 0.6-mm. After closely examining the beam equations, a very 

small error in thickness would result in a large error in the stress and modulus 

computations, since the thickness is raised to the second and third power, respectively. 

The author suggests that in future studies thicker test specimens should be used in order 

to validate this data. 

Figure 25 Effect of plasma treatment on the flexural modulus 
of DTE/CaP random-planar chopped fiber composite. 

The effect of the plasma treatment on the bending moduli is depicted in Fig. 25. 

Only the flexural modulus of the 30% plasma-treated composites was statistically 

significantly different from the untreated specimens (p < 0.0004). Typical flexural stress-

strain plots for the 30% untreated and treated composites are illustrated in Fig(s). 26a) 

and 26b). The SEM examination of the failure site did show clean fibers in the untreated 

specimens vs. some fibers with polymer attached in the plasma treated specimens, see 

Fig(s). 27a) and 27b). However, this was not seen as much as with the tensile test 
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specimens. These results support the drafted hypothesis, since the coupling effect would 

not play a significant role in the flexural stiffness if compression is in fact the major 

contributor. In compression the fibers and matrix are pushed against one another, while 

in tension they are pulled apart leading to debonding. 

Figures 26a) and 26b) Typical flexural test stress-strain curves for non-treated 
and plasma treated 30% fiber composite specimens, respectively (specimens No. 2 & 7). 

Figure 27a) and 27b) Failure site of an untreated and plasma-treated bending test 
specimens (500X and 750X, respectively). 
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3.4 Volume Fraction Analysis Results 

The volume fraction analysis revealed that there are variations in the amount of fiber 

distribution throughout the composites. For example, Table 18 shows that one of the 

20% specimens had only about 11% fiber. 

Statistically the photomicrographic technique requires many samples in order to 

produce reliable results, due to the small area that is viewed [67]. However, these results 

could also indicate that there are variations which are unavoidable with the fabrication 

techniques employed in this work. Figure 28, below shows that there were some relative 

differences in the fiber amount of the chopped fiber composites. Complete results for this 

analysis can be found in appendix I and II (Tables 19-21 and Figures 29-34, respectively). 

Table 18 Volume fraction measurements for the non-treated tensile test specimens. 

Location 
No. 

20% theoretical 
fiber volume 

30% theoretical 
fiber volume 

40% theoretical 
fiber volume 

1 11.00 19.56 36.18 33.32 36.73 36.69 
2 10.79 26.72 23.84 23.92 33.97 44.30 
3 10.90 12.26 33.70 34.51 35.77 32.62 

Mean 10.90 19.51 31.24 30.58 35.49 37.87 
STDEV 0.110 7.23 6.53 5.80 1.40 5.93 

Figure 28 Cross-section showing fiber amount (20%, 30% and 40% left to right) 
in three untreated tensile test specimens (35X). 
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3.5 Gel Permeation Chromatography Analysis Results 

The GPC analysis (Table 22) showed that there was some degradation (≈ 14%) during 

processing for the neat DTE polymer. The non-treated composites lost about 18% of 

their initial molecular weight, while the plasma-treated composites lost about 17%. 

There was no statistical significant differences in processing degradation between the neat 

DTE and the non-treated or the neat DTE and the plasma-treated composites (p <0.0025 0.025). 

In addition, there weren't any statistical significant differences between the degradation of 

the non-treated and plasma-treated composites (p < 0.59) due to processing. The 

statistical significance was computed using an unpaired t-test, assuming unequal 

variances, with a 95% confidence level. A more complete history of the processing 

parameters and molecular weight is listed in the appendix (Table 23). 

Table 22 GPC analysis results for the tensile test specimens. 

"Virgin" DTE 
(before 
process) 

Mw  after processing 
Neat DTE 	Non-Treated Plasma-treated 

69,000 60,050 57,705 56,426 
59,266 54,128 56,120 

55,881 56,575 
55,675 58,765 
59,865 57,537 
57,520 58,533 

Mean 59,658 56,796 57,326 
STDEV 554.4 1,999 1,131 



CHAPTER 4 

CONCLUSIONS & RECOMMENDATIONS 

4.1 Conclusions 

The mechanical properties of a totally bioabsorbable composite material were obtained 

via tensile and flexural testing. The matrix material used was a poly-(desamino-tyrosyl-

tyrosine ethyl ester)-carbonate (DTE) and it was reinforced with an absorbable calcium 

phosphate (CaP) glass fiber. A methane plasma treatment was used to improve the fiber-

matrix coupling. 

All fabrication was done via compression molding. The chopped fiber composites 

were fabricated using a prepreg method. Teflon sheeting proved to be an effective way to 

prevent the materials from sticking to the mold surfaces. The processing temperature of 

116 °C was adequate to fill the entire mold cavity and minimize polymer degradation. 

The GPC analysis demonstrated that a maximum of 18% molecular weight loss was 

encountered by using these processing parameters. The volume fraction analysis 

indicated significant fiber volume concentration gradients which were unavoidable with 

the fabrication techniques employed in this work. 

The tensile tests results for the neat polymer were consistent with published data. 

However, the mode of failure this time was more ductile. The tensile modulus of neat 

DTE (1.46 GPa) along with other biocompatability features, makes this absorbable 

polymer a good candidate to compete with other materials such as poly-p-dioxanone, 

poly-c-caprolactone and poly-o-ester in the fracture fixation arena. The neat DTE 

flexural modulus was lower (1.16 GPa) than the tensile modulus. It is suspected that 

using very thin testing specimens caused this discrepancy via error buildup. None of the 

neat polymer specimens failed during the bending test. 
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The SMC computer program (University of Delaware Center for Composite 

Materials), was used to predict the elastic properties of the DTE/CaP discontinuous fiber 

composites. The program suggested that an optimum elastic modulus would be obtained 

if the fiber aspect ratio (length/diameter) was kept greater than 100, which corresponds to 

a fiber length greater than 2-mm for 20-µm diameter fibers. Theoretical predictions of 

the moduli were 3.3, 5.2 and 7.3 GPa for 20, 30 and 40% fiber by volume, respectively. 

Plasma treatment of the CaP fibers provided a moderate improvement in the 

modulus of the chopped fiber composites. The tensile strength was not improved by this 

coupling method. The treated fiber composites had a tensile modulus 16-40% higher 

than that of untreated fiber composites. In addition, treating the fibers increased the 

tensile modulus of the neat polymer by more than 115%. The tensile modulus was not 

improved significantly by further increasing the fiber volume above 30%. SEM 

micrographs revealed shorter fiber pullout length and polymer attached to fiber ends in 

the treated fiber composites while in the untreated fiber composites, more holes and 

longer "clean" fibers were observed. 

It is believed that the tensile and compression modulus of this composite material 

are not equal. The flexural test results support this hypothesis. The breaking strength in 

bending was higher than in tensile loading; a common phenomenon with materials that 

are weaker in tension than in compression. The neutral axis of such a material would 

shift towards the tensile side of the specimen being tested. The flexural modulus was 

higher than the tensile modulus and in some cases it approached the theoretical value. 

There were no statistically significant differences in flexural modulus between the treated 

and untreated fiber composites, except at the 30% fiber volume. In compression the 

coupling does not have an effect on the mechanical properties, since the fibers and matrix 

are pushed against one another, while in tension the coupling delays the debonding of the 

fiber from the matrix. 
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In their present form, these composite materials are not suitable for high load 

applications; for the fixation of long bones such as femurs. Recent reports have described 

the clinical use of biodegradable rods and screws for the fixation of bimalleolar fractures 

of the ankle, intra-articular fractures of the elbow joint, and for bony avulsions [3]. CaP-

reinforced DTE may be suitable for these applications provided it retains strength and 

stiffness long enough to support proper healing. 

4.2 Recommendations for Future Work 

Although the results of this work are encouraging there is room for improvement. Better 

fabrication techniques should be employed in the future to further improve the 

mechanical properties of these materials. For example, polymer degradation can be 

reduced by molding in an inert atmosphere. Also, the molding pressure should be 

lowered to reduce the manufacturing cost associated with high pressure molding 

equipment. 

With regards to the mechanical tests, ASTM standard sized specimens should be 

employed in future tests as more materials and larger molds become available. The 

flexural test specimens should be thicker in size, but a large span/thickness ratio should 

be maintained. The strain rate effect on the polymer and composite test specimens should 

be investigated in more detail. GPC should be performed on both tensile and bending test 

specimens. New flexural equations should be derived from the beam theory to account 

for the anisotropy of a discontinuous fiber composite. These suggestions may help 

elucidate the neutral axis shifting hypothesis presented in this work. Finally, the 

mechanical properties of other forms of tyrosine-derived polycarbonates, such as DTH 

and copolymers of such, should be studied in this same manner. 



APPENDIX I 

EXPERIMENTAL RESULTS DATA 

Table 4 Tensile test results for the neat DTE specimens. 

Specimen 
No. 

Yielding Stress 
MPa 

Elongation 
% Strain 

Tensile Modulus 
GPa 

1 50.5 4.8 1.51 
2 43.9 4.4 1.26 
3* 49.5 5.5 1.11 
4 46.3 4.1 1.49 
5 47.2 4.2 1.47 
6* 51.1 5.0 1.56 
7 44.7 4.2 1.60 
8* 42.7 4.0 1.44 
9* 50.6 6.0 1.35 
10 49.6 5.6 1.41 

Mean 47.0 4.5 1.46 
STDEV 2.61 0.581 0.112 

* Failure near grips (data point thrown out from all mean/stdev 
calculations) 

Table 5 Flexural test results for the neat DTE specimens. 

Specimen 
No. 

Flexural Modulus 
GPa 

1 1.18 
2 1.20 
3 1.19 
4 1.10 

Mean 1.16 
STDEV 0.466 

Note: None of the specimens broke, but all had 
stress crazing and permanent deformation. 
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Table 6 Tensile test results for the 20% non-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

Elongation at break 
% Strain 

Tensile Modulus 
GPa 

1* 22.5 1.1 2.48 
2* 38.7 2.3 1.98 
3 40.1 2.1 2.20 
4 40.0 2.2 2.17 
5* 40.7 2.2 2.18 
6 49.8 3.2 2.15 
7 49.4 2.7 2.26 
8 43.6 2.6 2.06 
9 52.6 2.9 2.18 

10* 55.7 3.6 1.82 
Mean 45.9 2.6 2.18 

STDEV 5.39 0.418 0.076 
Failure near grips (data point thrown out from all mean/stdev calculations) 

Table 7 Tensile test results for the 20% plasma-treated chopped fiber 
composite specimens. 
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Specimen 
No. 

Stress at break 
MPa 

Elongation at break 
% Strain 

Tensile Modulus 
GPa 

1* 55.9 3.1 2.62 
2 44.8 2.4 2.44 
3 47.2 2.6 2.28 
4 41.2 2.3 2.57 
5 40.8 2.3 2.44 
6 48.6 2.1 2.85 
7 49.0 2.6 2.81 
8 46.7 2.1 2.60 
9 40.8 2.1 2.32 

10 34.2 1.6 2.56 

Mean 43.7 2.2 2.54 
STDEV 4.84 0.300 0.197 

* Failure near grips (data point thrown out from all mean/stdev calculations) 



Table 8 Tensile test results for the 30% non-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

Elongation at break 
% Strain 

Tensile Modulus 
GPa 

1 44.6 2.9 2.10 
2 40.9 2.4 2.32 
3* 43.4 2.7 2.10 
4 43.7 2.8 2.15 
5* 42.0 3.2 1.95 
6 50.4 2.9 2.27 
7 44.5 2.4 2.27 
8* 49.3 3.5 2.12 
9* 41.8 2.3 2.15 

10 48.0 2.9 2.37 
Mean 45.3 2.7 2.24 

STDEV 3.36 0.239 0.103 
* Failure near grips (data point thrown out from all mean/stdev calculations) 

Table 9 Tensile test results for the 30% plasma-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

Elongation at break 
% Strain 

Tensile Modulus 
GPa 

43.7 2.5 2.97 
2 38.3 1.9 2.86 

40.8 2.1 2.60 
4 40.7 1.9 2.91 
5* 35.2 1.5 3.20 
6 41.1 2.0 2.87 
7 40.2 2.4 3.17 
8 42.4 2.1 3.21 
9* 38.3 1.9 2.75 
10 39.8 1.9 3.52 

Mean 40.9 2.1 3.07 
STDEV 1.75 0.263 0.242 

* Failure near grips (data point thrown out from all mean/stdev calculations) 
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Table 10 Tensile test results for the 40% non-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

Elongation at break 
% Strain 

Tensile Modulus 
GPa 

1* 35.9 1.8 2.59 
2 41.6 2.3 2.20 
3 41.1 2.3 2.27 
4 41.2 2.1 2.32 
5 34.6 1.7 2.04 
6 43.9 2.5 2.17 
7 39.2 2.1 2.24 
8 41.6 2.7 1.93 
9 41.7 2.6 2.41 
10 47.8 4.1 2.74 

Mean 41.4 2.5 2.26 
STDEV 3.51 0.665 0.230 

* Failure near grips (data point thrown out from all mean/stdev calculations) 

Table 11 Tensile test results for the 40% plasma-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

Elongation at break 
% Strain 

Tensile Modulus 
GPa 

1* 36.5 1.6 3.16 
2 40.1 1.8 3.28 
3* 39.0 1.8 2.96 
4* 24.9 1.1 2.78 
5 35.4 1.5 3.63 
6 36.0 1.6 3.09 
7 46.0 2.6 2.81 
8 39.0 2.1 2.59 
9* 34.3 1.7 3.22 
10 41.6 2.0 3.58 

Mean 39.7 1.9 3.16 
STDEV 3.90 0.382 0.416 

* Failure near grips (data point thrown out from all meanlstdev calculations) 
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Table 12 Flexural test results for the 20% non-treated 
chopped fiber composite specimens. 

Specimen 
No. 

Flexural Modulus 
GPa 

1 '2.63 
2 2.38 
3 2.65 
4 2.74 
5 2.92 
6 2.40 
7 2.64 
8 2.65 
9 2.80 
10 2.51 

Mean 2.63 
STDEV 0.170 

Note: None of the specimens broke, but all had 
stress crazing and permanent deformation. 

Table 13 Flexural test results for the 20% plasma-treated chopped fiber 
composite specimens. 
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Specimen 
No. 

Stress at break 
MPa 

% Strain 
at break 

Flexural Modulus 
GPa 

1* 
2* 
3* 
4** 55.3 2.2 

2.62 
2.35 
3.22 
3.41 

5** 60.1 2.0 3.76 
6* 2.58 
7* 3.07 
8* 3.14 
9** 57.9 1.9 3.85 

10* 3.03 
Mean 3.10 

STDEV 0.492 
Stress crazing and permanent deformation, (no break, data point thrown 
out for breaking/strain calculations) 

** Partial break 



Table 14 Flexural test results for the 30% non-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

% Strain 
at break 

Flexural Modulus 
GPa 

1*** 48.6 2.1 3.02 
7** 53.7 2.1 3.37 
3*** 60.2 2.2 3.50 
4* 2.91 
5*** 48.3 2.6 2.77 
6*** 62.6 2.7 3.18 
7** 65.8 2.6 3.44 
8*** 62.0 2.2 3.72 
9*** 64.6 2.0 3.95 

10*** 59.0 2.7 3.10 
Mean 58.3 2.4 3.34 

STDEV 6.58 0.293 0.363 
* Stress crazing and permanent deformation, (no break, data point thrown 

out for breaking/strain calculations) 
** Partial break 
*** Complete break 

Table 15 Flexural test results for the 30% plasma-treated chopped fiber 
composite specimens. 
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Specimen 
No. 

Stress at break 
MPa 

% Strain 
at break 

Flexural Modulus 
GPa 

1 61.2 2.2 3.43 
2 74.1 2.0 4.56 
3 63.3 2.0 3.91 
4 60.3 2.2 3.87 
5 63.2 1.9 4.55 
6 58.9 1.6 4.14 
7 61.3 1.8 4.52 
8 59.4 1.8 3.98 
9 56.8 1.8 3.66 
10 61.1 2.1 3.78 

Mean 62.0 1.9 4.04 
STDEV 4.71 0.196 0.395 

Note: All specimens suffered partial breaks 



Table 16 Flexural test results for the 40% non-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

% Strain 
at break 

Flexural Modulus 
GPa 

1* 69.4 1.5 5.75 
2** 70.3 1.8 5.41 
3* 70.4 1.7 5.22 
4** 64.2 1.8 4.49 
5* 65.3 1.7 4.84 
6* 63.9 1.6 4.84 
7* 67.4 1.5 5.21 
8* 64.7 1.5 4.92 
9** 72.7 2.2 4.56 

10* 73.5 1.9 4.95 
Mean 68.2 1.7 5.02 

STDEV 3.56 0.221 0.385 
* Partial break 
** Complete break 

Table 17 Flexural test results for the 40% plasma-treated chopped fiber 
composite specimens. 

Specimen 
No. 

Stress at break 
MPa 

% Strain 
at break 

Flexural Modulus 
GPa 

1 55.2 1.3 4.77 
2 56.4 1.1 5.36 
3 68.7 1.5 5.81 
4 63.5 1.4 5.24 
5 63.8 1.5 5.38 
6 63.5 1.6 4.98 
7 53.5 1.2 5.15 
8 52.9 1.2 5.02 
9 65.2 1.6 5.22 

10 61.4 1.4 5.46 
Mean 60.4 1.4 5.24 

STDEV 5.47 0.154 0.289 
Note: All specimens suffered partial breaks 
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Table 19 Volume fraction measurements for the plasma-treated tensile test specimens. 

Location 
No. 

20% theoretical 
fiber volume 

30% theoretical 
fiber volume 

40% theoretical 
fiber volume 

1 26.96 18.48 21.48 29.46 38.97 32.75 
2 21.57 15.57 25.74 26.91 29.95 43.90 
3 15.57 18.81 24.93 27.00 28.49 43.47 

Mean 21.37 17.62 24.05 27.79 32.47 40.04 
STDEV 5.70 1.78 2.26 1.44 5.68 6.32 

Table 20 Volume fraction measurements for the non-treated flexural test specimens. 

Location 
No. 

20% theoretical 
fiber volume 

30% theoretical 
fiber volume 

40% theoretical 
fiber volume 

1 14.14 23.16 22.48 27.65 41.77 42.33 
2 14.51 19.30 33.06 26.24 28.46 28.56 
3 14.63 15.76 20.51 34.71 29.61 30.69 

Mean 14.43 19.41 25.35 29.53 33.28 33.86 
STDEV 0.260 3.70 6.75 4.54 7.38 7.41 

Table 21 Volume fraction measurements for the plasma-treated flexural test specimens. 

Location 
No. 

20% theoretical 
fiber volume 

30% theoretical 
fiber volume 

40% theoretical 
fiber volume 

1 21.34 25.69 32.96 28.92 30.02 44.37 
2 27.38 30.89 36.17 33.09 31.11 45.41 
3 16.11 19.62 39.95 23.79 36.46 26.98 

Mean 21.61 25.40 36.36 28.60 32.53 38.92 
STDEV 5.64 5.64 3.50 4.66 3.45 10.35 
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Table 23 GPC analysis results and processing data for the tensile test specimens. 

Description 
Fiber 

Vol. % 
Specimen 

No. 

Processing 
Press Temp. 

°C 

Processing 
Peak Temp. 

°C Mw Mn 
"Virgin" DTE — 69,000 29,884 

Neat DTE 1-5 113 117 60,050 25,654 
Neat DTE 6-10 99 114 59,266 25,274 
Untreated 20 1-5 116 127 57,705 26,609 

20 6-10 117 123 54,128 22,322 
fiber 30 1-5 116 125 55,881 24,270 

30 6-10 116 124 55,675 22,595 
composites 40 1-5 116 124 59,865 26,916 

40 6-10 116 127 57,520 25,967 
Treated 20 1-5 116 125 56,426 24,352 

20 6-10 116 126 56,120 22,329 
fiber 30 1-5 116 126 56,575 25,962 

30 6-10 116 127 58,765 25,179 
composites 40 1-5 116 123 57,537 28,739 

40 6-10 116 124 58,533 25,319 



APPENDING II 

SEM MICROGRAPHS 

Figure 16 Shorter fiber pullout length in a plasma-treated 
composite failure site after tensile testing (500X). 

Figure 20 Random chopped fiber concentration on the tensile side 
surface of a 40% flexural test failed specimen (35X). 
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Figure 23 Compression side of a 30% chopped fiber 
composite specimen after flexural failure (50X). 

Figure 24 Flexural failure site of a 20% plasma 
treated fiber composite (750X). 
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Figure 29 Cross-section showing fiber amount (20%, 30% and 40% left to right) 
in three plasma-treated tensile test specimens (35X). 

Figure 30 Cross-section showing fiber amount (20%, 30% and 40% left to right) 
in three untreated flexural test specimens (35X). 
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Figure 31 Cross-section showing fiber amount (20%, 30% and 40% left to right) 
in three plasma-treated flexural test specimens (35X). 

Figure 32 Typical SEM micrograph for volume 
fraction analysis (20% fiber at 350X). 
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Figure 33 Typical SEM micrograph for volume 
fraction analysis (30% fiber at 350X). 

Figure 34 Typical SEM micrograph for volume 
fraction analysis (40% fiber at 350X). 
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