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ABSTRACT 

CATALYTIC OXIDATION OF TRICHLOROETHYLENE OVER 
5% a-Fe203/ y-Al2O3 ON A HONEYCOMB MONOLITH 

by 
Jeongho Han 

This study addresses the ability of iron oxide to catalytically oxidize low 

concentrations of trichloroethylene (TCE) with air. The catalytic oxidation of 

trichloroethylene in a tubular reactor system was evaluated experimentally as a function of 

temperature and space velocity. A gas chromatograph with electron capture and flame 

ionization detectors was used for quantitative analysis of feed and product streams. X-ray 

diffraction measurement were used to qualitatively analyze the catalyst. The result indicate 

that over 99% conversion of 109 ppmv trichloroethylene in air is achieved at 1,490 v/v/hr 

and 450 °C, and at 21,768 v/v/hr, 550 0C. The major products from the oxidation of 

trichloroethylene over iron oxide are CO2, Cl., and HC1, with trace amount of CC14, 

CHCI3  and CO at lower temperatures. 
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CHAPTER 1 

INTRODUCTION 

Many organic chemical processes use organic solvents to dissolve feedstocks in order to 

promote reaction. Very often these solvents are chiorocarbons because of their stability 

and ability to dissolve different functional groups. A byproduct of these processes is a 

often a mixture of hydrocarbons contaminated with halogen containing compounds. 

Hydrocarbons contaminated with halogen compounds can not be disposed without 

treatment. Usually one condenses these compounds and recycles them back into the 

process. However, when their concentration is very small, then other means of treatment 

are needed. These compounds can be destroyed by incineration, removed by scrubbing, or 

adsorption. Incineration is the most frequently used method to destroys these compounds. 

They are combusted at temperatures greater than 1,000 °C or by catalytic oxidation at 

temperature between 300 and 550 °C (Bonacci , et al., 1988) 

Thermal incinerator (non catalytic) requires high temperatures, with concurrent high 

fuel costs and the potential for formation of acid gases such as NO, . Frequently, more 

highly chlorinated, and hence, more toxic products than the starting materials are formed. 

Thermal incinerators are widely used even though their operation also causes other 

problems. It need expensive high-temperature materials. Its higher fuel costs often make 

them less desirable than catalytic incinerators for destroying trace quantities of these 

hydrocarbons contaminated with halogenated compounds. 

Catalytic oxidation has been in use for over 25 years and is considered a proven 

method for treating hydrocarbons. However, the destruction of hydrocarbons 

contaminated with halogenated compounds needs to be investigated because the 

halogenated compounds tend to poison most catalysts. Furthermore, the halogenated 

compounds need to be reduced to the level mandated by the Clean Air Act. Current 



research continues to find ways to increase the effectiveness of catalytic oxidation and to 

extend its use to more demanding applications. 

Hydrocarbons contaminated with chlorocarbon compounds are currently destroyed 

by catalysts, that are supported on ceramic honeycombs, although some companies use 

metal substrates in place of traditional ceramic supports (Heck and Farrauto, 1994). 

Catalysts used for the destruction of VOCs lose activity when char and particulate in the 

gas cover catalytic sites or when contaminants interact with the catalyst. Activity can be 

regained by thermal, physical, or chemical regeneration (Jennings, 1985) Thermal 

regeneration burns off char or decomposes organic films. Physical treatment can be used 

to clean catalytic surfaces by pushing with compressed air or washing with water in order 

to remove dust and other particulates. Chemical treatment uses mild acid, bases, or 

chelating solutions to remove contaminants. With periodic regeneration, catalysts can be 

used for up to 12 years or even longer in specific applications (Heck and Farrauto 1994). 

Several companies have commercialized new oxidation catalysts. Allied-Signal 

reported success in catalytically oxidizing chlorinated hydrocarbons, but has not released 

details of the process. The Allied-Signal patent cites platinum, vanadium pentoxide, and 

titanium dioxide as major catalyst components (Lester, G.R. 1990 patent BOIJ23/64, No 

A62D3100). 

Photochemical oxidation of trichloroethylene to hydrochloric acid and carbon 

dioxide using titanium dioxide catalysts irradiated with ultraviolet light. However, more 

research is needed to determine the commercial feasibility of this process. 

A catalyst overall effectiveness depends on the selectivity to desirable products for 

practical detoxification. Previous research in the heterogeneous catalytic oxidation of low 

concentrations of chlorinated hydrocarbons with air has focused on identifying highly 

active catalysts and final reaction products at temperatures high enough to achieve 

essentially complete oxidation. In general, reaction condition are chosen that result in 

complete oxidation to H2O, CO, and HCI. 
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Although chlorinated hydrocarbons in waste water are usually removed by air-

stripping (air is forced through the waste water to pick up the hydrocarbons), a 

competitive approach is to treat them directly in the liquid phase. A catalytic 

hydrodechlorination method that yields chloride-free hydroacarbons and hydrochloric acid 

is being developed by Suphan Kovenklioglu (1992) at Stevens Institute of Technology in 

collaboration with Engelhard. Kovenklioglu and coworkers use precious-metal catalysts 

supported on carbon carriers to gain high conversion efficiencies and selectivities at room 

temperature in both batch and trickle-bed reactors (Kovenklioglu, et al., 1992) 

This research addresses some of the key issues necessary to move catalytic 

incineration closer to commercial application. The key items being studied are: (1) 

application of transition metal oxide catalytic material such as 5% a-Fe,03/ 

y-A1,03/monolith to oxidize chlorinated compounds; (2) determine how the synthesis of 

transition 	metal 	oxide catalysts affect activity; and (3) comparison with previous 

research on powdered Fe-,03  catalysts. As will be pointed out in the background, certain 

transition metal oxide form weak bonds with chlorides and are believed good candidates 

for chlorocarbon destruction. Furthermore, the research should examine the pathway for 

catalytic oxidation of hydrocarbons and chlorocarbons. There are very few studies that 

examine the reaction pathway for oxidation of compound that contain hydrocarbons, 

particularly at temperatures below 600 °C. This information is needed to optimize catalyst 

formulations and establish the data base for the design of commercial reactors. 



CHAPTER 2 

BACKGROUND 

2.1 Review of the Literature 

Hydrocarbons contaminated with halogen compounds are emitted from many industrial 

processes. These compounds are often found in trace amounts and are best disposed of by 

incineration. One such example involves the disposal of chlorinated hydrocarbons used 

commercially as stripping and dry cleaning solvents, transformer fluids, etc. These 

materials can become toxic wastes for which cost effective and environmentally sound 

methods of disposal are being sought. Incineration provides an option which can be 

applied to a wide range of such wastes. Thermal incineration requires high temperatures, 

with concurrent high fuel costs and the potential for formation of acid gases such as NO, . 

Frequently, more highly chlorinated, and hence, more toxic products than the starting 

materials are formed. Use of a catalytic approach result in lower temperatures, less toxic 

products and greater flexibility when compared to homogeneous thermal processes. 

Subbanna, et al., (1988) studied various catalytic materials and their activities and 

selectivities towards incinerating polychlonated biphenyls (PCB). The results show 

significant performance differences between catalysts. For example, Cr203  converted 

69% of the PCB's at 873 K, but yield of oxidized carbon was only 50%. An automotive 

catalytic converter composed of Pt and Pd, destroyed 87% of the PCB's with the 

yield of carbon oxides reaching about at 76%. Clearly, a substantial amount of 

oxychlorination occurs over these catalysts. An explanation for this observation could be 

offered by appealing to a Mars-van Krevelen mechanism (Mars-van Krevelen, 1954) based 

on chlorides rather than oxides. This mechanism is consistent with the following two 

steps: 

4 
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1. A reaction takes place between the catalytic oxide or chloride, and the hydrocarbon. 

The hydrocarbon is oxidized and the surface oxide or chloride is reduced. 

2. The reduced oxide reacts with 0, from the air or with the chlorocarbon, returning to 

its initial state as an oxide or becoming a chloride. The surface component directly 

responsible for the oxidation is generally assumed to be the 02-  ion, or Cl-  ion. 

The Mars-van Krevelen mechanism led Sachtler and de Boer (1965) to postulate 

that the tendency of an oxide to donate its oxygen should be of major importance in 

determining whether it is a selective oxidation catalyst. If reduction of the oxide is easy 

(i.e., if the enthalpy of dissociation is small), then 0 can easily be donated to a molecule 

from the gas phase. Under these conditions, the catalyst is expected to be active and non 

selective. On the other hand, if it is difficult to dissociate 0, because the metal-oxygen 

bond is strong, then the oxide is expected to have low catalytic activity. In the 

intermediate range, the oxide might be moderately active and selective. 

Simmons, et al., (1968) considered the temperature at which 50 % of the reactants 

are converted into CO2  + CO at a particular set of flow conditions to be a characteristic 

measure of the activity of a catalyst. This measure allows a convenient comparison of the 

various metal oxide catalysts. Their data show that the temperature for 50 percent 

conversion to CO, + CO increase in roughly linear fashion with the heat of reaction Qo, 

defined as: 

MOn 	> MOn_i + 1/2 02 	- Qo 	 (1) 

The corresponding equation for chlorination is: 

MCln 	> MC1n_1 + 1/2 C12 	- Qo 	 (2) 

A comparison of equation 1 for oxidation with chlorination in equation 2 is provided in 

Table 1 by Shaw, 1993. 

According to this mechanism, one would expect MnO,, PdO, and V,05  to be 

among the best metal oxides for destruction of hydrocarbons and possibly chlorocarbons. 

It is important to note that Cu and Fe catalysts, which have particularly good 
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oxychlorination activity are among those having the lowest metal chloride bond energies 

(Satterfield,1990) 

Table Bond Energies of Catalytic Materials (Shaw, 1993) 

Equation I Equation 	2 

M-O, kcal/mol M-Cl, kcal/mol 

Co304  38 Co2C15  28 

Cr2O3 NA CrCl3 40 

CuO 34 CuCl2  17 

FeO23  54 FeCl3  15 

Mn02  17 MnC14  NA 

NiO 58 NiCl2  38 

PdO 20 PdCl2  23 

SnO2  70 SnCI4  23 

TiO2  69 TiC14  51 

V2O5  29 VCl 5  29 

ZnO 83 ZnCl2  50 

NA = Not Available 

Yao (1984) looked at CuO as an automotive exhaust catalyst for ethanol oxidation. He 

evaluated CuO catalysts using a simulated exhaust gas of I% 02  and 0.14% ethanol (in 

helium). CuO/y-A1203  had the highest activity, as measured by the lowest temperature 

requird to produce no detectable ethanol in the exit gas. Copper catalysts are also subject 

to deactivation by chlorine. Ostrovoskii, et al, (1987) (as reported by Satterfield, 1990) 

discovered at that deactivation was irreversible and was due to interaction of Cu with 

chlorine compounds. Earlier work has reported extensively on the characteristics of the 
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Deacon process (HC1 + 02  = CI, H2O), where copper-based catalyst are extensively 

deactivated by volatilization of CuCI, at the temperatures employed, normally around 600 

°C (Satterfield, 1990). 

Some studies have involved noble metal catalysts to treat chlorinated hydrocarbon 

compounds U.S patent 1,485,375 (Bond, 1973) showed that 0.8 to 1.5 wt % Pt 

on y-Al,03  catalyst are effective in treating a number of chlorinated compounds, such as 

CH,C12, CC14, 	C2HCl3, C2C14  and have good performance in the presence of 

propane. The percent of destruction of chlorinated compounds is above 95% but the 

selectivity to HC1 was not investigated. 

Pope, et al., (1978) studied the oxidation of 1,1,1-trichloroethane in a mixture of 

gases over a platinum-honeycomb catalyst. They compared the destruction efficient of a 

Co304  catalysts with a Pt catalyst. The Co304  catalyst was observed to be the more 

effective in the presence of chlorinated fuels. Huang and Prefferle (1989) showed that a 

Cr2O3/Co304  binary catalyst performed better than a Pt catalyst in the catalytic oxidation 

of CH3CI and CH2Cl2  in the presence of propane. The product distribution as a function 

of temperature was not investigated. 

Some investigators evaluated transition metal oxides catalysts on supports. A 

chromium oxide impregnated catalyst on a support was used in the oxidation of 

chlorinated compounds which treated CH3CI (Senkan, et al., 1986), 1,1-dichloroethane 

(Ramanathan, et al., 1989), hexachlorobenzene and hexachlobutadine (Johnston, 1976) . It 

was shown that Cr2O3  catalysts have good activity for chlorinated compounds destruction. 

In a study by Ramanathan, et al., (1989), the selectivity to chlorine from catalytic 

oxidation of 1,l-dichloroethane was determined to be 50% at 500 °C. 

Young (1982) investigated the oxidation of methylene chloride over a commercial 

12.5 wt % chromia/alumina catalyst.A significant increase in CO content and decrease in 

CO, content, of the exit gas over time, through this is not related to any observable 

change in catalyst composition, e.g., halogen or carbon disposition on the catalyst. It is 
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postulated, however, that chloride or perchlorate formation may occur on the catalyst. 

The addition of water inhibited the formation of Cl, and heavier (than methylene chloride) 

chlorinated hydrocarbons which were observed in the absence of added water vapor in the 

inlet gas. However, the addition of water, by itself, does not affect selectivity to oxides of 

carbon, CO + CO-). The oxidation of a series of chlorinated ethylenes on 12.5 wt % 

Cr203/alumina and Cr203/silica (chromia content not given) among other catalyst. On the 

chlomia/alumina catalyst, the formation of chlorinated hydrocarbon polymers was 

observed both downstream of the catalyst and presumably on the catalyst as well in the 

oxidation of trichloroethylene. This is said to be formed by the reaction of C1, formed in 

the oxidation reaction with an undefined "chlorinated trichloroethylene. "The addition of 

water to the inlet gas increased both the conversion and CO2  yield and produced less 

polymers. Further increase in water content of the inlet gas (resulting in a 

hydrogen/chlorine atomic ratio of 2.94) caused essentially complete conversion and no 

polymer formation (Young, P.W. ,1982) 

Hydrated nickel oxides, manganese oxides, cobalt oxides (Lavanish, et al., 1976; 

Sare, et al., 1977) and titania catalysts (Tanguay, 1989) were evaluated for the catalytic 

oxidation of C2-C4 halogenated hydrocarbons and dichloromethane. Conversion of 45 to 

90 percent were obtain for vinyl chloride (VCM), vinylidene chloride (VDCM) and 

trichloroethane over the nickel oxides (II) and (II and III). At temperature over 450 °C, 

nickel oxide catalysts started to deactivate by thermal sintering. For an initial 

concentration of 46.5 ppm of VCM or VDCM at 107 °C, Tanguay showed that 99% 

conversion was obtained with the cobalt oxide (II) catalyst. Cobalt oxides (II) catalysts 

deactivated by reacting with A1203.  support forming CoA12O4  at temperature over 850 °C. 

The destruction of CH2C12  on titania catalyst showed poor activity. 
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2.2 Basic Principles of Catalysis 

2.2.1 General Description of a Catalyst 

The basic concept of a catalyst is that of a substance that increases the rate of reaction 

toward equilibrium without being appreciably consumed in the process. A catalyst cannot 

change the ultimate equilibrium determined by thermodynamics; its role is to accelerate the 

rate of approach to equilibrium. Many commercial heterogeneous catalysts are composed 

of an active material and a support. The active component is normally a metal or metal 

oxide, and the support is a ceramic or metal monolith. Molecules vary in size and chemical 

structure. So, different catalysts are necessary to promote different reactions. The 

optimization of a catalyst is specific for each reaction and requires selection of appropriate 

operating condition. Therefore, determination of performance of a catalyst is dependent on 

empirical results. 

2.2.2 Catalytic Processes and Kinetic Characterization 

In a catalytic process, reactants must interact with " active site " on the catalyst, the term 

"active site" is thought to be that site (or sites) on the catalyst surface in which 

chemisorption and reaction occur. Basically, a catalytic process includes the following 

steps (Augustine,1988; Du,1990) : 

1.Bulk diffusion: reactants must pass through stagnant film from the gas or liquid 

phase. 

2. Pore diffusion: reactants diffuse or are transported through pore structures to 

active sites. 

3. Chemisorption: a reactant chemically adsorbs on active sites, i.e., by bonding. 

4. Chemical reaction: a reactant is converted to a product on the active sites. 

5. Desorption: products desorb from the active sites. 

6. Product diffusion: products diffuse through pores from the active sites. 
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7. Product diffusion: products diffuse through the film to the bulk gas or liquid 

phase.  

Steps 1 and 7 are controlled by mass transfer limitations; steps 2 and 6 are 

controlled by pore diffusion limitations; and steps 3, 4 and 5 are controlled by chemical 

reaction limitations. The physical and chemical properties of catalysts and operating 

conditions that control the rate of reaction are carefully chosen. 

Much research is required to optimize the properties of a catalyst and the conditions 

for its practical use. The effort of rate limiting phenomena is correlated with the Arrhenius 

expression from which activation energies are deter 	mined. 

A general plot depiction the three rate regimes in catalysis is shown in Figure 1. 

Figure 2 illustrates a conversion versus temperature profile. The relationship used in 

plotting Figure 1, normally in k versus 1/T, is obtained from the Arrhenius expression as 

follows: 

k = A exp ( -Ea/RT) 

In k = In A + (-Ea/R) * (1/T) 

Where, 	k = rate constant, 

A= preexponential factor, 

Ea = activation energy, kcal/mole, 

R = gas constant, kcal/mole * K, and 

T = absolute temperature, K. 

The calculation of the activation energy, Ea, from the slope of the Arrhenius plot allows 

an assessment of the rate limiting step. From Figures 1 or 2, it is evident that reactions 

controlled by chemical kinetics are most sensitive to temperature, while mass transfer 

controlled reaction are essentially temperature independent. 
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2.2.3 Catalyst Deactivation 

A catalyst may lose its activity or its selectivity for a wide variety of reasons. The causes 

may be grouped loosely into: 

1. Poisoning 

2. Fouling 

3. Reduction of active area by sintering or migration 

4. Loss of active species 

A catalyst poison is a chemical present in the feed stream that interferes with the 

normal operation of the catalyst, reducing its activity. In the oxidation of chlorinated 

hydrocarbons, a catalyst can be poisoned by chloride. It may poison a metal by forming a 

surface metal chloride, or it may enhance sintering via the formation of volatile metal 

chlorides ( Satterfield, 1990). Therefore, development of a chloride tolerant catalyst or 

additives which can react with the chloride, thus avoiding catalyst poisoning is an 

important aspect for catalytic oxidation of chlorinated hydrocarbon. 

23 Catalyst Synthesis 

2.3.1 Impregnation 

The most common procedure for dispersing catalytic material into a carrier is by 

impregnating an aqueous solution containing a salt (precursor) of the catalytic element or 

elements. Most preparations simply involve soaking the carrier in the solution and 

allowing capillary and electrostatic forces to distribute the salt within the porous network. 

The salt generation of the cations or anions containing the catalytic element are chosen to 

be compatible with the surface charge of the carrier to obtain efficient adsorption or in 

some cases ion exchange ( Heck and Farrauto,1994). 



Figure 1 Arrhenius Equation in Catalytic Process (Heck and Farrauto 1994) 

Figure 2 Conversion of Reactant as a Function of Temperature 
Showing rate controlling regions (Heck and Farrauto, 1994) 

12 
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2.3.2 Incipient Wetness or Capillary Impregnation 

The maximum water uptake by the carrier is referred to as the water pore volume. This is 

determined by slowly adding water to a carrier until it is saturated as evident by the 

beading of the excess H20. The precursor salt is then dissolve in an amount of water 

equal to the water pore volume. In this manner, the precise amount of catalytic material is 

assured to be present in the carrier ( Heck and Farrauto ,1994). 

2.3.3 Fixing the Active Component 

Following impregnation it is often desirable to fix the active component so subsequent 

processing steps such as washing, drying and calcination will not cause significant 

movement or agglomeration of the well dispersed catalytic precursor materials. 

1. Precipitation 

The pH of the solution is adjusted to precipitate the catalytic material in the pores of the 

carrier. For example, by presoaking A1203 in a solution of NH4OH the addition of an 

acidic Pd salt such as Pd(NO3)2 will precipitate hydrated PdO on the surfaces within 

carrier. 

A special case of fixation is when both carrier and catalytic species are co-

precipitated simultaneously. For example, a CuO, ZnO, A1203 methanol synthesis 

catalyst, can be prepared by adjusting the pH (between about 6 and 8) of a solution 

containing salts of all three component This method is commonly used when large 

amounts of catalytic components, i.e., greater than 15 %, are desired for a particular 

reaction. 

Sulfur compound such as H2S sometimes are used to precipitate and thus, immobilize the 

catalytic materials. Hydrotreating catalysts composed of CoO and Mn02 supported on 

A1203 are treated with gaseous H2S to fix them to the A1203 surface. These catalysts are 

then used in hydrodesufurization of petroleum feeds so exposure to sulfur in the 

preparation step offers no special poisoning problem. This method, however, is not 
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generally recommended for other catalysts since the removal of the sulfur compound 

may not be sufficient to avoid the negative poisoning effects. 

2. Reduction 

The addition of reducing agents such as hydrazine, formic acid, oxalate, and hydrogen are 

sometimes used to precipitate catalytic materials as metals an example of which is shown 

below for nickel. 

HCOOH + Ni (+2) 	 Ni + 2H + CO2 

Precious metals such as Pd and Pt can be generated on the internal surface of the catalyst 

carrier by addition of chemical reducing agents. This method is particularly effective for 

precious metals because they are easily reduced to their metallic states. The advantage of 

the reducing agents mentioned above is that upon subsequent heat treatment. They leave 

no residue to foul the catalyst. 

2.3.4 Drying 

Excess water and other volatile species are removed during drying at about 110 °C for 24 

hours. 

2.3.5 Calcination 

This is usually the last step in producing a catalyst. Its purpose is to decompose and 

volatilize the various salt components not needed in the final catalyst. For inorganic 

oxides, this is typically done in air at temperatures between 300-500 °C. Catalysts 

supported on carbon are only dried due to combustibility of the carbon. Great care must 

be taken to avoid rapid heat up since H2O trapped in the micro pores can build up 

sufficient pressure to crack particulate carriers. Occasionally, high temperature treatments 

may be carried out in a reducing or neutral environment to avoid oxidizing catalytic metals 

which could then react with the carrier. Nickel catalysts are used in reducing 

environments, e.g., steam reforming, hydrogenation, etc. and are less active if they are 
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calcined in air due to reaction between Ni+2  and the A1203 surface. High temperature 

conditions are required to reduce the oxide to the metallic state. Severe conditions such as 

high temperatures can result in sintering of the carrier and/or the well dispersed Ni 

crystallites decreasing catalytic surface area. 



CHAPTER 3 

EXPERIMENTAL APPROACH 

3.1 Catalyst Materials 

The catalyst used in this research were made by using the incipient wetness method. Iron 

oxide from Aldrich Chemical Co. was used to synthesize the catalyst. The iron oxide 

specification were: 

Iron(III) Oxide, Fe203  

-100 mesh 

Lot Number X 14439 

CAS # 1309-37-1 

Density 5.24 gm/cm3  

Melting Point 1,565 ºC 

The alumina specification were: 

Alumina, A1203  

CAS # 1344-28-1 

Density 3.970 gm/cm3  

The monoliths used in these experiments were manufactured by Corning and supplied to 

us by Engelhard. The monoliths were made out of cordierite and had 400 cells / in2  

3.2 Experimental Apparatus 

Catalyst evaluation experiments were conducted in a laboratory scale tubular reactor 

system as shown in Figure 3. This system consists of a 2.5 cm inside diameter quartz tube 

reactor (Kontes Scientific Glassware, Inc.) residing in a vertical three zone controlled 

furnace (Applied Test System, Inc.). The catalyst, consisting of iron oxide on γ-Al2O3  

16 
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Figure 3 Schematic of catalytic oxidation system 
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powder or on monolith was placed in the middle zone which was designed to maintain a 

flat temperature profile over the length of the catalyst. 

Approximately 1000 ppmv TCE from a calibrated gas mixture (Matheson) was 

mixed with the air to lower the concentration to about 100 ppm TCE and fed to the 

reactor. The concentration of TCE could be changed by varying the flow rate of dilution 

air. The flow rate of inlet gases were measured with two calibrated rotameter (Aalborg 

Co.). The range of both rotameter is 0-600 cm3  /min. 

The reactor temperatures was monitored by two 0.16 cm chromel (K-type) 

thermocoules (Omega Engineering, Inc.) which were inserted in both sides of the quartz 

tube reactor and place in the center line immediately before and after the catalyst. Since 

the measured temperatures was sufficiently low, no correction was made for radiation. 

Quantitative analysis of reactants and products was conducted 

chromatographically after individual calibrations of each peaks which include TCE, CO2  

and CO. The concentration of carbon monoxide, carbon dioxide was quantitatively 

analyzed by gas chromatography (GC) using a nickel hydrogenation catalyst system 

(Figure 6) to convert these components to methane and measure the methane with a flame 

ionization detector (FID) and the chlorinated hydrocarbons by gas chromatography (GC) 

with electron capture detector (ECD) (Griffith 1983). The concentration of chlorine was 

measured by methyl orange colorimetric method. In addition, the product gas was bubbled 

through a scrubber to absorb hydrogen chloride and the concentration of chloride ion in 

the aqueous solution was measured with a chloride ion selective electrode (Boltz 1992) 

The qualitative analysis used for ascertaining the composition of the catalyst was 

conducted using x-ray diffraction crystallography. 

The calibration and feed gases were purchased from the Matheson Co. and were 

used directly from cylinders in the experiments. The air which we used as the oxidizing gas 

was of research grade purity zero air, with less than 5 ppm water and less than 1 ppm 

hydrocarbons. 
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3.3 Instrumental Analysis 

The concentration of chlorine gas was measured by methyl orange colorimetric method. 

This method was specific for chlorine gas and had no interferences. First, 0.06 g of methyl 

orange was dissolved in water and diluted to I dm3  Several dm' of pH 2 buffer solution 

to prevent rapid changing of the color of the solution was also prepared. A mixture 

containing 5 cm3  methyl orange solution and 100 cm3  pH 2 buffer solution Was added to 

the bubblers. Then chlorine gas was bubbled through this solution. The decrease in the 

methyl orange color was proportional to the concentration of chlorine. The calibration 

curve for chlorine gas, shown in Figure 4, was made by bubbling purchased standard 

chlorine gas through the methyl orange solution for different periods of time. 

Then the chlorine concentration in the solution was measured by ultraviolet 

spectrophotometry at a wavelength 515 nm. Since the ultraviolet absorbance is 

proportional to the color strength of methyl orange solution, the decrease in the ultraviolet 

absorbance is therefore proportion to the concentration of chlorine. The concentrations of 

hydrogen chloride were determined by potentiometric titration. The potential of a chloride 

ion selective electrode (Jenco Co.) was employed to establish the equivalence for titration 

of HCI. The potentiometric titration for HC1 provides concentration of HC1 from a direct 

potentiometric measurement. The potentiometric end point, as shown Figure 5-(a), (b), 

(c), is widely applicable and provides inherently more accurate data than the 

corresponding method employing indicators. As shown in Figure 5-(d), the apparatus for a 

potentiometric titration is relatively simple. 

The on-stream analysis was conducted at 45 minute intervals by pulling part of the 

effluent product stream with a vacuum pump through a six point gas sampling valve, from 

which it was picked up by the carrier gas to either of the two on-line gas chromatography 

(Hewlett Packard 5890). 

The carbon monoxide, methane and carbon dioxide were separated on a 1/8 inch in 

diameter by 6 feet long stainless steel column packed with 80/100 mesh Poropak Q and 



Figure 4 Calibration curve of dissolved chlorine gas 



Figure 5 a) Potentio Metric Titration Curve for 2.334 meq of Cl with 0.10 M AgNO3  
b)First Derivative curve c) Second Derivative Curve d) Apparatus for potentiometric 
titration (Skoog, 1992) 



Figure 6 Nickel Hydrogenation Catalyst System 
(Hewlett Packard Application Note 228-92, 1989) 

')? 
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hydrogenated over nickel catalyst system to methane before detection by flame ionization 

detector (FID). This was done in order to increase the sensitivity for the analysis of the 

oxides of carbon by orders of magnitude, and thus improve carbon balances. The flow 

schematic for the nickel hydrogenation catalyst systems is shown Figure 6 . When the ten-

point sampling valve is at the off position, the product effluent pass through the sampling 

loop and discharge to the hood. Once the valve is switched over to the on position, the 

effluents are carried out by helium from the sampling loop in to the Poropak Q column. 

The individual peaks are then hydrogenated with hydrogen to methane using the nickel 

catalyst at 350 °C. Thus, the carbon monoxide, methane and carbon dioxide peaks are 

detected as methane but recognized based on retention time. 

All chlorinated hydrocarbons, carbon dioxide and carbon monoxide concentrations 

were calibrated with standard gas mixtures purchased from Matheson Co.. The calibration 

curve of TCE, shown in Figure 7, was made by diluting 1,000 ppmv TCE by a factor of 

ten lower concentrations with air using a calibrated rotameter. 

Figure 7 Calibration curve of trichloroethylene 



Facing 24 

Figure 9 Peak Resolution Time of CO, CH4  and CO2  with FID 
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GC one: for chlorinated hydrocarbons 

Column packing material : 2% SE 30 on GAW 80/100 

1/8" X 10', ss (Alltech Associates) 

Carrier gas: Nitrogen, 30 cm3/min 

Oven: 40 °C for 4 min, 40 °C-80 °C at 20 ºC/min, 80 °C for 10 min 

Injector: 150 °C 

Detector: ECD 250 °C 

Integrator attenuation: 9 

GC two: for methane, carbon monoxide, carbon dioxide 

Column packing materials: Porapak Q 80/100, 1/8"x6' ss (Hewlett Packard) 

Carrier gas: Helium, 20 cm3/min 

Oven: 40 °C 

Injector: 350 °C 

Detector: FID 250 °C 

Air flow rate: 400 cm3/min 

Hydrogen flow rate: 35 cm3/min 

Nickel catalyst reactor: 350 °C 

Integrator attenuation: 1 

Figures 8 and 9 (facing 24) show the typical peak resolution and retention times for 

TCE with an ECD and carbon monoxide, carbon dioxide and methane after hydrogenation 

using a FID. 

3.4 Qualitative Analysis for Determining Catalyst Structure 

Qualitative analysis for determining catalyst structure was conducted using X-ray 

diffraction. Diffraction analysis is useful whenever it is necessary to know the particular 

phases which are present. 
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The particular advantage of X-ray diffraction analysis is that if the material is 

-rystalline, it discloses the presence of a substances as that substance actually exists in the 

sample, and not in term of its constituent chemical elements. For example, if a sample 

contains the crystalline compound AxBy, the diffraction method will disclose the presence 

of AxBy as such, in the crystalline state, whereas ordinary chemical analysis would show 

only the presence of elements A and B. Furthermore, If the sample contained both AxBy  

and AxB2y, both of these compounds would be disclosed by the diffraction method, but 

chemical analysis would again indicate only the presence of A and B. To consider another 

example, chemical analysis of a plain carbon steel reveals only the amounts of iron, 

carbon, manganese, etc., which the steel contains, but gives no information regarding the 

phases present. Is the steel in question wholly martensitic, does it contain both martensite 

and austenite, or is it composed only of ferrite and cementite? Questions such as these can 

be answered by the diffraction method. Another rather obvious application of diffraction 

analysis is in distinguishing between different allotropic forms of the same substance: solid 

silica, for example, exist in one amorphous and six crystalline forms, and the diffraction 

patterns of these seven forms are all different. 

3.4.1 Basic Principles 

The powder pattern of a substance is characteristic of that substance and forms a sort of 

fingerprint by which the substance may be identified. If we had on hand a collection of 

diffraction patterns for a great many substances, we could identify an unknown by 

preparing its diffraction pattern and then locating in our file of known patterns one which 

matched the pattern of the unknown exactly. The collection of known patterns has to be 

fairly large, if it is to be at all useful, and then pattern-by-pattern comparison in order to 

fine a matching one becomes out of the question. 

What is needed is a system of classifying the known patterns so that one which 

matches the unknown can be located quickly. Such a system was devised by Hanawalt in 
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1936 (Cullity, 1980). Any one powder pattern is characterized by a set of line positions 

and set of relative line intensities I. But the angular positions of the line depend on the 

wavelength used, and more fundamental quantity is the spacing d of the lattice planes 

forming each line. Hanawalt therefore decided to describe each pattern by listing the d and 

I values of its diffraction lines, and to arrange the known patterns in decreasing values of d 

for the strongest line in the pattern. This arrangement made possible a search procedure 

which would quickly locate the desired pattern. In addition, the problem of solving the 

pattern was avoided ant the method could be used even when the crystal of the structure 

of the substance concerned was unknown (Cullity, 1980) 

3.4.2 Procedure 

Identification of the unknown begins with obtaining its diffraction pattern. Sample 

preparation should result in fine grain size and in a minimum of preferred orientation, 

which can cause relative line intensities to differ markedly from their normal values. Note 

also that relative line intensities depend to some extent on wavelength; this should be kept 

in mind if the observed pattern in compared with one in the data file made with a different 

wavelength. All of the patterns given here were made with Cu Ka radiation using a 

Demax x-ray diffractometer from Rakagu. 

After the pattern of the catalyst was obtained, the plane spacing corresponding to 

each line on the pattern were calculated and printed by computer controlling the 

apparatus. Since it was known that a-Fe2O3  and γ-Al2O3 were present, these d spacings 

and line intensities were compared to  those listed in the card file for these materials 

(Guinier 1968). 



CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Catalyst Synthesis 

4.1.1 Impregnation 

The most common procedure for dispersing the catalytic species into the carrier is by 

impregnation an aqueous solution containing a salt (precursor) of the catalytic element or 

elements. Most preparations simply involve soaking the carrier in the solution and 

allowing capillary and electrostatic forces to distribute the salt within the porous network. 

The salt generating the cation or anions containing the catalytic element are chosen to be 

compatible with the surface charge of the carrier to obtain efficient adsorption or in some 

cases ion exchange. This procedure was used to distribute 5% Fe2O3 in the γ -A12O3  pores. 

4.1.2 Incipient Wetness or Capillary Impregnation 

In order to make 5% a-Fe203  /γ -A1203  it is important to know the molecular weight of 

each material which is presented in each step. The physical properties of each iron 

compound is that could be used for catalyst synthesis as shown in Table 2. The reaction 

can be described as follows: 

Fe(NO3)3  + Water + NH4OH  + γ -Alumina --> Fe2O3  /γ -A12O3  

This experiment was designed for 5% a-Fe,O3  /y-A12O3. That means 95% γ -A12O3  and 

5% Fe2O3  are needed at the conclusion of the catalyst synthesis. Two mols of Fe(NO3)3  

needed to produce 1 mol of Fe2O3  

2 Fe(NO3)3 	1Fe2O3  

2 x 404 	--> 	1 x 159.69 

808g 	159.69g 

27 
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Therefore, 

808: 159.65 = 5 : X 	 X = 0.988 

Where , X = g of Fe(NO3)3  needed 

When using 5 g of Fe(NO3)3  , 0.988g of Fe2O3  can be produced and requires 18.772 g of 

y-A1203 . 

Table 2 Physical Properties of the Iron Compound used for Catalyst Synthesis 

Mol Weight, g Density, gm/cm3  Melting Point , 0C 

Fe203  159.69 5.24 1565 

Fe(NO3)3  404.00 1.684 47.2 

Fe(OH2) 	89.86 3.4 d 

The maximum water uptake by the carrier is referred to as the water pore volume. This is 

determined by slowly adding deionized water to a carrier until it is saturated as evident by 

the beading of the excess H20. Fe(NO3)3  is then dissolve in an amount of water equal to 

the water pore volume. In this manner, the precise amount of Fe(OH2) is assured to be 

present in the carrier. 

4.1.3 Fixing the Active Component 

Following impregnation, it is often desirable to fix the catalytic compounds so subsequent 

processing steps such as washing, drying and calcination will not cause significant 

movement or agglomeration of the well dispersed catalytic precursor materials. 

1. Precipitation 

The pH of the solution is adjusted to precipitate the catalytic compounds in the pores of 

the carrier. A special case for producing the desired catalyst is when both carrier and 

catalytic compounds are co-precipitated simultaneously. Thus 5% a-Fe,03  /y-A1,03  can 
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be prepared by adjusting the pH to 2 of a solution containing the iron salt and the y-A1,03  

component. This method is commonly used when large amounts of catalytic components 

i.e., greater than 15 %, are desired for a particular reaction. 

4.1.4 Drying 

Excess water and other volatile components are removed during drying at about 110 °C 

for 24 hours with air flowing through the oven. 

4.1.5 Calcination 

This is the last step in synthesizing a catalyst. Its purpose is to decompose and volatilize 

the various salt components not needed in the final catalyst. For 5% a-Fe2O3  /y-A12O3, 

this is typically done in air at temperatures between 300-500 °C. Great care must be 

exercise to avoid rapid heating since H20 trapped in the micro pores can build up 

sufficient pressure to crack particular carriers. 

4.1.6 X-ray Diffraction Crystallography 

To test the crystalline nature of the catalyst, X-ray diffraction was used. A standard 

samples of a-Fe,03  had narrow peaks at 20 values of around 33°, 36º, 40.5°, 49.5°, 

540, 62°, 64° and 72° as shown in Figure 10. The y-A12O3  had broad peaks at 32°, 370, 

39°, 45° and 67° as shown in Figure 11. The X-ray diffraction peaks of a Fe,03  catalyst 

on y-A1,03, which were prepared by using the incipient wetness method, contained all of 

the above peaks only after calcination (see Figure 12) not before (see Figure 13). That 

confirms that the catalyst which was prepared by incipient wetness must be calcinated to 

achieve the desired crystalline state, which is believed to be necessary for catalytic activity. 

Other X-ray diffraction spectra are included in the Appendix. 



Figure 10 X-Ray Diffraction Spectrum of pure Fe2O3 



Figure 11 X-Ray Diffraction Spectrum of pure y-A1203  



Figure 12 X-Ray Diffraction Spectrum of Catalyst after Calcination 
 



Figure 13 X-Ray Diffraction Spectrum of Catalyst before Calcination 
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4.2 Catalytic Oxidation of TCE over Powdered 5% a-Fe203/y-A1203  

4.2.1 Catalyst and Space Velocity 

The catalytic oxidation of TCE was conducted over 5% a-Fe203/y-A1203. For the 

indicated volume of catalyst and gas flow rate, the following space velocities were 

calculated: 

Vci  = 10.5 cm3  Flow rate was 259 cm3/min 

Vc2  = 5 cm3 	Flow rate was 616 cm3/min 

Vc3  = 5 cm3 	Flow rate was 1,104 cm3/min 

Space velocity (1) = total flow rate / catalyst volume 

= (259 cm3  / min X 60 min / hr) / 10.5 cm3  

= 1,453 v/v/hr 

(2) = 7,369 v/v/hr 

(3) = 13,250 v/v/hr 

4.2.2 Feed Concentration of TCE 

In order to obtain 109 ppmv trichloroethylene, 1,000 ppmv trichloroethylene from the gas 

mixture cylinder was diluted almost ten times with dry air. The actual concentration of 

trichloroethylene was measured by gas chromatography at various intervals throughout 

each experiment. 

4.2.3 The Effect of Temperature on TCE Oxidation 

At a space velocities of 13,250, 7,369 and 1,453 v/v/hr and an initial concentration of 109 

ppmv of trichroloethylene, the catalytic oxidation of 	over TCE _ 	5% a-Fe2O3/y-A12O3  

catalyst was conducted over the temperature range of 350 °C to 700 °C. The dependence 

of conversion of TCE on temperature is shown in Figure 14. The conversion is most 

sensitive to temperatures between 350 and 550 °C. The conversion is least sensitive to 
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temperature above 550 °C. This suggests that a chemical kinetics controlled zone exists in 

the temperatures 350-550 °C, and a mass transfer controlled zone occurs at temperature 

over 550 °C. 

4.2.4 The Effect of Space Velocities on TCE Oxidation 

Experiments were conducted over the range of 1,453 to 13,250 v/v/hr. Increasing space 

velocity tends to decrease conversion for the same temperature. Or, alternatively, for the 

same conversion to be achieved, higher temperatures are need at higher space velocities. 

As shown in Figure 14, 99% conversion is achieved at 550 °C, while at 1,453 v/v/hr the 

temperature was only 500 °C. 

Figure 14 Conversion of 109 ppm TCE as a Function of Temperature at 13,250 v/v/hr 
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4.2.5 Product Distribution of TCE Oxidation over Powdered 5% a-Fe203  /γ -A1203  

The product distribution from the catalytic oxidation of TCE over 5% a-Fe203 /y-A120;  

was conducted in the temperature range of 250 to 700 °C, and at the indicated space 

velocities of 13,250 and the initial concentrations of trichloroethylene 109 ppmv. The 

dependence of product distribution on temperature is plotted in Figure 15, The product 

distribution is summarized in Table 3. The main products are carbon dioxide, hydrogen 

chloride and chlorine. At low oxidation temperatures, the concentration of carbon 

monoxide increases with increasing temperature. The concentration of carbon monoxide 

reaches a maximum at a temperature of 450 °C and then decreases with increasing 

temperature. 

Table 3. Material Balance of TCE Oxidation over 5% a-Fe 0 /y-Al O3 

Temp. TCE C0 CO?  HC1 Cl2  

°c ppm ppm ppm ppm ppm 

300 109 

350 108 

400 83 38 22 

450 62  65 30 91 29 

500 25 89 86 102 77 

550 4 63 128 110 91 

600 21 159 119 94 

650 191 115 99 

The result for space velocities 1,453 v/v/hr and 7,396 v/v/hr are given in the Appendix.  



Figure 15 Catalytic Oxidation of TCE over 5% a-Fe203/y-A1203  at 13,250 v/v/hr 
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4.3 Catalytic Oxidation of TCE over 5% a-Fe203/y-Al203/monolith 

4.3.1 Catalyst and Space Velocity 

The catalytic oxidation of TCE was conducted over 5% ct-Fe203/y-A1203  on monolith. 

Volume of catalyst was calculated as follows: 

Since the monolith contains 400 cells per square inches and 174 cells were blocked, 

226 cells allowed to remain. The length of monolith was 0.9 cm, therefore, the actual 

volume of modified catalyst was (Wang, 1991): 

Vc = 0.9 X (226/400) X 2.542  

= 3.28 cm3  

Flow rate is 1,190 cm3/min 

Space velocity = total flow rate / catalyst volume 

= (1,190 cm3 / min X 60 min / hr) / 3.28 cm3  

= 21,768 v/v/hr 

However, different space velocities were obtained during the experiments by using 

different flow rates and different volumes of catalyst. All the data obtained in the research 

is included in the Appendix. 

4.3.2 Feed Concentration of TCE 

In order to obtain 109 ppmv trichloroethylene, 1000 ppmv trichloroethylene from gas 

mixture cylinder was diluted almost ten times with dry air. The actual concentration of 

trichloroethylene that was feed to the catalytic reactor was measured by gas 

chromatography at various intervals throughout each experiment. 

4.3.3 The Effect of Temperature on TCE Oxidation 

At a space velocity of 21,768 v/v/hr and an initial concentration of 109 ppmv of 

trichroloethylene, the catalytic oxidation of TCE over 5% a-Fe2O3/y-A12O3 catalyst was 

conducted in the temperature range of 350 °C to 700 °C. The dependence of conversion 
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of TCE on temperature is shown in Figure 16. The conversion is most sensitive to 

temperatures between 350 and 450 °C. The conversion of least sensitive to temperature 

above 550 °C. This suggests that a chemical kinetics controlled zone exists in the 

temperatures 350-450 °C, and a mass transfer controlled zone occurs at temperature over 

550 °C. 

4.3.4 The Effect of Space Velocities on TCE Oxidation 

Experiments were conducted over the range of 1,490 to 21,768 v/v/hr. In order to achieve 

the some conversion at higher space velocities, one must increase reaction temperature. 

As shown Figure 16, 99% conversion is achieved at 550 °C Another important result is 

that two byproducts, CCl4  and CHCl3  were detected when the experiment was conducted 

at 21,768 v/v/hr space velocity. Other trace products were also observed but were not 

identify. It appears that these trace products may be present at concentration of less than 

0.001 ppmv. 

Figure 16 Conversion of 109 ppm TCE as a Function of Temperature at 21,768 v/v/hr 
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4.3.5 Kinetic Studies of TCE Oxidation 

In this experiments, the initial concentration of TCE was approximately 109 ppm, different 

space velocities were used for each case, and air was employed as the oxidant. For kinetic 

studies, the measured rates of oxidation of TCE in air are correlated first using the 

empirical power law as the form: 

-rC2HC13 =kCICC2HC13a CO2b 

Where Cc2Hc1, and Co, are the concentration of TCE and oxygen, respectively. Since the 

experiments were conducted in large excess of oxygen, one can assume the concentration 

of oxygen is constant and a pseudo first order rate constant can be measured that 

incorporated the concentration of oxygen. 0ne can assume that the oxidation of TCE is 

first order with respect to TCE. This course must be verified experimentally. 

In order to keep the reaction in the chemical kinetics controlled region, all data were 

collected at conversions of less than 30%. The linearity of the plots of logarithm of the 

(Co/C) versus residence time shown in Figure 17 confirm that the oxidation of 

trichloroethylene over 5% a-Fe)03  /y-A12O3  can be represented as first order reaction that 

follows the Arrhenius equation. 

k = A exp (-Ea/RT) 

where: 	A is the preexponential factor, sec-1  

Ea is activation energy, kcaUmole, 

R is gas constant, kcal/mole * K 

T is absolute temperature, K 

then, 	Ink = InA + (-Ea/R) * (1/T) 

Figure 18 is a plot of the logarithm of the rate constant versus 1/T The Ea and A were 

obtained from the slope and intercept. The activation energy, Ea, is calculated as 23.2±1 

kcal/mole and the preexponential factor, A, is 14.8±5 * 108  sec- I. So, the rate equation 

can be written: 

-rC2HC13 = 14.8 * 108  ( 23 .2±1/RT) * CoHC13 
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Figure 17 Plot used to obtain first order rate constants, i.e., slopes of the straight lines 

Figure 18 Arrhenius plot of first order rate constant for TCE oxidation 

5% a-Fe103  /y-A1,03/monolith 
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4.3.6 Product Distribution and Material Balance of TCE Oxidation over 
5% a-Fe2O3  /y-A1203/monolith 

The product distribution from the catalytic oxidation of TCE over 5% a-Fe2O3  /y-A1,03  

was conducted in the temperature range of 250 to 700 °C, and at the indicated space 

velocity of 21,768 v/v/hr and the initial concentrations of trichloroethylene 109 ppmv. The 

dependence of product distribution on temperature is plotted in Figure 19, The product 

distribution, material balances for carbon and chlorine are summarized in Table 4. The 

main products are carbon dioxide, hydrogen chloride and chlorine. Trace amounts of CC14  

and CHCI3  are produced. At low oxidation temperature, the concentration of carbon 

monoxide increases with increasing temperature. At a temperature of 500 °C, the 

concentration of carbon monoxide reaches a maximum and then decreases with increasing 

temperature. 

Table 4 Material Balance of TCE Oxidation over 5% a-Fe2O3  /y-A12O3/monolith at 

21,718 v/v/hr 

Temp. TCE CC14  CHCI3  C0 CO2  HC1 C12 Carbon Chlorine 

°C ppm ppm ppm ppm ppm ppm ppm Balance Balance 

300 109 100 100 

350 100 98 ±5 98 ± 5 

400 78 40 20 61 98 ±5 90±5 

450 61 0.2 65 28 85 28.2 98.5+5 99.3+5 

500  20 0.5 110 65 111 75.1 98.8±5 98.6±5 

550  5 2 98 90 113 89.2 90.0±10 97.0±5 

600  2.5 82 124 120 95.4 95.6±5 97.3±5  

650  1.2 75 139 121 99.2 98.7±5 98.7±5 

700 212 118 102 97.0±5 98.4±5 

The result at 1,490 v/v/hr is included in the Appendix. 



Figure 19 Catalytic Oxidation of TCE over 5% a-Fe203/y-A1203/monolith at 21,768 v/v/hr 



CHAPTER 5 

CONCLUSIONS 

As a consequence of the research, the following conclusion were reached: 

. The light-off temperature for oxidation of 109 ppm TCE over powdered 5% a-Fe203  /y- 

A12O3 at 13,250 v/v/hr is 350 °C, and 99 % conversion is achieved at 550 °C. 

. The main products from the oxidation of trichioroethylene are carbon monoxide, carbon 

dioxide, hydrogen chloride, chlorine gas. 

. Excellent carbon and chlorine balances are achieved for the oxidation of TCE over 

powdered 5% a-Fe2 O3/y-A1203  at a space velocity of 13,250 v/v/hr. 

. The light-off temperature for oxidation of 109 ppm TCE over 5% a-Fe2O3/y-A12O3/ 

monolith/400 cpsi at 21,768 v/v/hr is 350 °C, and 99 % conversion is achieved at 500 

oc.  

. The main products from the oxidation of trichloroethylene over the catalyst based on a 

monolith are carbon monoxide, carbon dioxide, hydrogen chloride, chlorine gas. Trace 

amount of CCl4  and CHCl3  are found at higher space velocities. 

. Excellent carbon and chlorine balances are achieved for oxidation of TCE over 5% 

a-Fe,03/y-A12O3/monolith at the space velocity of 21,768 v/v/hr even the temperature 

range of 350 to 550 °C. 

The oxidation reaction of TCE obeys pseudo first order reaction kinetics with respect 

to TCE. 

. The activation energy, Ea, for the oxidation of TCE over 5% a-Fe203 /y-A12O3  

/monolith is 23.2 ± 1 kcal/mole, and the preexponentiai factor, A, is 14.8±5 * 108sec-1. 

. A comparison with Xu's (1994) shows different result. First, she used powder Fe203  

without monolith or y-A1,03. The monolith helps provide better access to catalyst. 

Consequently, this catalyst tested as part of this research is more active than Xu's. 
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Xu's research showed that the light-off temperature for oxidation of 100 ppmv TCE 

over powdered Fe2O3  at 12,000 v/v/hr is 300 °C and 99 % conversion is achieved at 

637 °C. 

A comparison of this research to Xu's research shows that the powdered Fe703  needed 

almost 150 °C higher temperature to achieve 99% conversion. 

A comparison of the kinetic results showed that the improved activity results in lower 

activation energy and higher preexponential factor as summarized in Table 5. 

Table S Comparison between Xu's and this Research 

Xu's Research This research This research 

Catalyst Fe,03  powder 5% cc-Fe203/7-A1,03  5% ce..-Fe2O3/ 

y-A1,03  /monoiith 

Light-off Temp. 	for 

Catalytic Oxidation 

397 °C 350 °C 350 °C 

99% Conversion 637 °C 550 °C 500 °C 

Space Veiocity 12,000 v/v/hr 13,250 v/v/hr 21,768 v/v/hr 

Activation Energy  23.15± 1 kcal/mole NA 23.2 ± 1 kcal/mole 

Preexponential factor 14.75±5 * 108sec-1  NA 14.8+5 * 108sec-1  

NA = Not Available 



APPENDIX A 

X-ray Diffraction Crystallography 

Figure A 1 X-ray Diffraction Crystallography of Catalyst without Cordierite monolith 

* Pure y-A12O3  Support 

* Pure a-Fe203 

• 5% a-Fe203/y-Al203 before calcination 

* 5% a-Fe2O3/y-Al203  after Calcination 

Figure A 2 X-ray Diffraction Crystallography of Catalyst with Cordierite monolith 

* Pure y-A1203  Support 

* Pure -Fe203a 

• 5% a-Fe203/y-Al203 before calcination 

* 5% a-Fe2O3/y-A1203  after Calcination 
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Figure A 20 X-Ray Diffraction Crystallography of Catalyst 



Figure A 21 X-Ray Diffraction Crystallography of Catalyst 



APPENDIX B 

Catalytic Oxidation of TCE over Powdered 5% ct-Fe2O3  /y-A1203  
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Table A 1 Product distribute of Catalytic Oxidation of T 

Temp TCE C0 CO7  HCI Cl2  

°c ppmv ppmv ppmv ppmv  ppmv 

300 109 

350 89 41 24 

400 63 71 29 85 27 

450 32 93 77 105 78 

500 2 70 131 117 85 

550 62 154 120 94 

600 12 181 118 100 

650 204 118 111 

Table A 2 Product distribute of Catalytic Oxidation of TCE at 1,453 v/v/hr 

Tern . TCE CO CO HCI Cl2_ 

°c ppmv ppmv ppmv ppmv ppmv 

300 109 20 

350 81 43 20 

400 60 74 28 81 15 

450 11 89 82 110 69 

500 0 62 159 122 82 

550  20 179 125 95 

600  193 107 104 

650 203 102 111 
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Figure A 3 Catalytic Oxidation of TCE over 5% a-Fe203/7-A1203  at 7,396 v/v/hr 



Figure A 4 Catalytic Oxidation of TCE over 5% a-Fe203/y-A1203  at 1,453 v/v/hr 



APPENDIX C 

Catalytic Oxidation of TCE over 5% a-Fe203  /y-A1203/monolith 
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Figure A 5 Catalytic Oxidation of TCE over 5% a-Fe203/y-A1203  /monolith at 1,490 v/v/hr 
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