
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1994

Performance evaluation and sequence control of an
automatedmanufacturing system
Vijaykumar D. Desai
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Desai, Vijaykumar D., "Performance evaluation and sequence control of an automatedmanufacturing system" (1994). Theses. 1183.
https://digitalcommons.njit.edu/theses/1183

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1183?utm_source=digitalcommons.njit.edu%2Ftheses%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

PERFORMANCE EVALUATION AND SEQUENCE CONTROL OF AN 
AUTOMATED MANUFACTURING SYSTEM 

by 
Vijaykumar D. Desai 

In an automated sequential manufacturing system Programmable Logic Controllers 

(PLC) are widely used. As the control specification varies, the control software needs to 

be rewritten to accommodate the new specification. Since PLC has high flexibility, one 

can update the current system while it is running thereby making easier implementation. 

In order to design flexible, reusable and maintainable control software, a good modeling 

tool is required. Petri nets are such a tool. Which facilitates analysis of behavioral 

properties, performance evaluation, and systematic construction of discrete event 

simulators and controllers. In this thesis a system with one robot and five sequential work 

stations is used as an example of an automated system. To illustrate the Petri net method, 

performance and other properties of this system are evaluated. The PLC program is also 

developed for sequence control of the system. 



PERFORMANCE EVALUATION AND SEQUENCE CONTROL OF AN 
AUTOMATED MANUFACTURING SYSTEM 

by 
Vijaykumar D. Desai 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Electrical Engineering 

Department of Electrical and Computer Engineering 

January 1995 



APPROVAL PAGE 

PERFORMANCE EVALUATION AND SEQUENCE CONTROL OF AN 
AUTOMATED MANUFACTURING SYSTEM 

Vijaykumar D. Desai 

Dr. MengChu Zhou, Thesis Advisor 	  Date 
Assistant Professor 
Department of Electrical and Computer Engineering, MUT 

Dr. Anthony Robbi, Committee Member 	 Date 
Associate Professor 
Department of Electrical and Computer Engineering, MIT 

Dr. Marshall Kuo, Committee Member 	 Date 
Professor 
Department of Electrical and Computer Engineering, MIT 



BIOGRAPHICAL SKETCH 

Author: 	Vijaykumar D. Desai 

Degree: 	Master of Science in Electrical Engineering 

Date: 	January 1995 

Undergraduate and Graduate Education: 

• Master of Science in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1995 

• Bachelor of Science in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1984 

Major: 	Electrical Engineering 

iv 



This thesis is dedicated to 
my family 



ACKNOWLEDGMENT 

I wish to express my sincere thanks to Dr. Zhou for his guidance and 

encouragement throughout the progress of this thesis. Special thanks to Dr. Robbi and Dr. 

Kuo for serving as members of the committee. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page 

1 INTRODUCTION 	  

2 THEORY OF PETRI NETS 	  3 

2.1 Introduction to Petri Nets 	  3 

2.2 Application of Petri Nets 	  3 

2.3 Description of Petri Nets 	  4 

2.4 Behavioral Properties of Petri Nets 	  9 

2.4.1 Reachability 	 9 

2.4.2 Boundedness 	  9 

2.4.3 Liveness 	  9 

2.4.4 Reversibility  	11 

2.4.5 Consistency  	11 

2.4.6 Persistence  	11 

2.5 Analysis Methods 	  11 

3 DEVELOPMENT OF A MODEL 	  18 

3.1 System Description  	18 

	

3.2 Building Graphical Model     23 

4 PERFORMANCE EVALUATION OF THE SYSTEM 	  28 

4.1 Software Packages 	  28 

4.2 Requirements and Terminology of SPNP 	  29 

vii 



TABLE OF CONTENTS 
(Continued) 

Chapter 	 Page 

4.3 Performance Analysis of the System 	  37 

5 CONTROL OF THE SYSTEM USING PLC 	  43 

5.1 History of PLC 	  43 

5.2 Description of PLC 	  44 

5.3 Description of Basics of Ladder Diagram 	  46 

5.4 Ladder Logic Program for the System 	  49 

5.4.1 Ladder Logic Program for S1 Module 	  49 

5.4.2 Ladder Logic Program for S1 Failure Module 	  51 

5.5 Ladder Logic Program for the System 	  52 

6 CONCLUSION 	  55 

APPENDIX A SPNP Program of the Illustrative Example 	  56 

APPENDIX B SPNP Program of Five Sequence Work Station System 	 59 

APPENDIX C Output files of S4 in a Five Sequence Work Station System 
as Shown in Figure 3.1 and 3.4 	  69 

APPENDIX D PLC Ladder Logic Program of SI in a Five Sequence work 
Station System 	  79 

APPENDIX E Flow Chart of Five Sequence Work Station System for Ladder 
Logic Program 	  91 

REFERENCES 	  94 

viii 



LIST OF TABLES 

Table 	 Page 

1 Place Designations of Illustrative Example 	  6 

2 Place Designations for SPNP Program 	  21 

3 Place Designations for S1 Module 	  24 

4 Place Designations for S1 Failure Module 	  27 

5 Terminologies for SPNP Software 	  30 

6 ".rg" File of Illustrative Example 	  31 

7 ".mc" File of Illustrative Example 	  33 

8 ".prb" File of Illustrative Example 	  34 

9 ".log" File of Illustrative Example 	  34 

10 ".out" File of Illustrative Example 	  35 

11 System Production rate and Utilization of S4 for failure rate at 1% 	 39 

12 System Production rate and Utilization of S4 for failure rate at 10% 	 40 

13 System Production rate and Utilization of S4 for failure rate at 30% 	 41 

14 Main Menu 	  53 

ix 



LIST OF FIGURES 

Figure 	 Page 

2.1 Deadlock free Petri Net Model of Illustrative Example 	  7 

2.2 Deadlock Occurs when in Initial Marking Number of Token in p1 > p7 in 
Illustrative Example 	  7 

2.3 Reachability Tree for the Illustrative Example  	14 

3.1 Five Sequence Work Station System 	  22 

3.2 Station Module of Petri Net Model 	  25 

3.3 Station Failure Module of Petri Net Model 	  25 

3.4 Petri Net Model of Five Sequence Work Station 	 26 

4.1 System Production rate and Utilization of S4 for failure rate at 1% 	 39 

4.2 System Production rate and Utilization of S4 for failure rate at 10% 	 40 

4.3 System Production rate and Utilization of S4 for failure rate at 30% 	 41 

5.1 Flow Chart of Five Sequence Work Station System for Ladder 
Logic Program 	  50 



CHAPTER 1 

INTRODUCTION 

Development of a software is dependent on the model it is based on. Petri nets have been 

extensively used in software development [20]. One of the major advantage of using Petri 

nets is that the same model is used for the analysis of behavioral properties and 

performance evaluation. 

Petri nets were successfully applied for sequence control. Petri net based sequence 

controllers are easy to design, implement, and maintain. In the early 80's, Hitachi Ltd. 

developed a Petri net based sequence controller [16] which was successfully used in real 

manufacturing applications to control parts assembly systems, and automatic warehouse 

load/unload system [17]. The use of Petri nets substantially reduced the development time 

compared with traditional approach. Numerous approaches to synthesis and 

implementation of Petri net based sequence controllers have been reported in the past few 

years [4]. 

Programmable Logic Controllers are commonly used for the sequence control in 

automated systems. They can be designed using ladder logic diagrams, which are known 

to be very difficult to debug. Since ladder diagrams are widely used in the industries for 

hardwired logic circuits, they became a standard way of providing control information 

from the designers to the users of equipment. When programmable controllers were 

introduced, this type of circuits was desirable because they were easy to use and interpret 

for practicing engineers. 

1 



2 

In this thesis, a system consisting of five work stations and a shared resource (robot) is 

used to show how a Petri net model can be developed for performance evaluation and a 

PLC Program is developed for sequence control. Stations 1 and 2 are loading machines 

for two different parts via a same robot, Station 3 is a dimpling machine, Station 4 is a 

marking machine and Station 5 is unloading machine which unloads and separates 

finished and unfinished goods. Unfinished goods may result due to failure of any work 

stations. This process can be extended to any number of work stations. Performance 

evaluation and behavior properties are also studied. Ladder Logic Programs are finally 

developed to implement a PLC for the system. 



CHAPTER 2 

THEORY of PETRI NETS 

2.1 Introduction to Petri Nets 

In 1962 Carl A. Petri created a net like mathematical tool for the study of communication 

with automata. The resulting tool was named as Petri nets. Petri net methodology utilizes 

both mathematical and graphical representations. 

Changing control specifications can be easily implemented using such a graphical 

tool. As mathematical models petri nets reflect behavior of the system. The performance 

evaluation can be conducted by using either analytical techniques, based on the underlying 

(semi)-markov processes or discrete event simulation. By incorporating time functions that 

follow probabilistic distributions to transitions, one can obtain production rates for 

manufacturing system models, throughput, critical resource utilization and reliability 

measures. 

Some of the most fundamental properties of Petri nets are reachability, 

boundedness, liveness, reversibility, consistency and persistence as given later in Section 

2.4. 

2.2 Application of Petri Nets 

Petri nets (PN's) were successfully used in modeling and analysis of communication 

protocols [3]. PN's are also applied to the modeling of Just-in-Time manufacturing 

3 



systems [22]. They are also widely used in flexible manufacturing systems due to their 

ability to model asynchronous operations, concurrence, deadlock, conflicting events, and 

event-driven systems [II]. PN's can be used from design through evaluation to control. 

It is possible to compile the net into control code data for implementation and execution 

on the shop floor [24]. Petri nets also inspired GRAFCET for the application to finite 

state automation processes, which became standard for specifying sequence control in 

France in 1977 [22], and later became an international standard called Sequential Function 

Charts. Since then more research and developments are done using Petri nets in various 

applications for automated manufacturing systems. A bibliography of Petri nets [19], 

published in 1991, contains 4099 entries dealing with Petri net theory and applications. 

2.3 Description of Petri Nets 

A Petri net can be identified by its graph in which there are three types of objects. They 

are places, transitions, and tokens. Directed arcs connect transitions to places and places 

to transitions. A place (P) can be shown as a circle, a transition (T) as bar or box and a 

token as a dot inside the place. Input function (I) defines the directed arcs from places to 

transitions. Output function (0) defines the directed arcs from transitions to places. In a 

real system, a place represents status of a resource or an operation. A transition represents 

either start or completion of an event or process. A place with a token represents resource 

available or operation being executed. 

A marked Petri net is defined as Z = (P, T, I, 0, m0). P is a finite set of places 

{p1, p2, 	pn}. T is a finite set of transitions {t1 , t2, 	t,} with the following condition, 

4 



5 

P v T ≠ 0 and P n T = 0. Input function (I) defines (PxT)→N and Output function (0) 

define as (PxT)→N, where N is a set of non-negative integers. If there exist k directed arcs 

connecting place p to transition t, I(p,t)=k or O(p,t)=k, which graphically represented by 

a single arc with multiplicity, or weight k. m0: (P→N) is an initial marking of places. A 

marking defines current status of the model system. A transition is enabled when each 

input place p of t contains at least the number of tokens equal to weight k of the directed 

arc connecting p to t. When a transition, t, is enabled, it may be fired. If fired it removes 

from each input place p the number of tokens equal to the weight of directed arc 

connecting p to t. Also, it deposits in each output place p the number of tokens equal to 

the weight of the directed arc connecting t to p. 

The mathematical representation of a PN consists of two matrices. The input 

matrix, I, is derived from the Petri net graphical representation. The input matrix is an (n 

x s) matrix where n is the number of places and s is the number of transitions. The entries 

in the input matrix correspond to the weights of the input arcs from places (row) to 

transitions (column). Similarly, the output matrix, 0, is an (n x s) matrix. The entries in 

the output matrix correspond to the weights of the output arcs from transitions (column) 

to places (row). Incidence matrix, C, describes the dynamic characteristics of the system 

and is equal to the difference between the output and input matrices, 0 - I. This matrix 

represents the change in tokens of places when transitions fire. Negative (positive) 

numbers in the incidence matrix signify the consumption (creation) of tokens. The state 

or marking of a Petri net denotes the number of tokens occupying each place and is 

captured in one dimension matrix of size n. 



6 

To illustrate how Petri nets can be used to model, we consider the following 

example of Robot #1, Machine #1 and a buffer with limited capacity. Machine #1 

acquires Robot #1 and loads parts using Robot #1, then processes it. Finished parts are 

unloaded into buffer automatically when it is available. The buffer is of limited capacity. 

When the robot is available, it unloads finished parts into storage from the buffer and the 

cycle continues. 

The net is shown in Figure 2.1 and its places are described in Table 1. 

Table 1 Place Designations of Illustrative Example 

p1  Machine #1 (MI) p5  Ml process using RI 

p, Robot #1 	(RI) p6  Buffer 

p3  MI acquire R1 p7  Buffer capacity 

p4  Raw Material /Part p8  Unload buffer using R1 

In this example the robot is shared by Ml for loading and by the buffer for 

unloading. Since the buffer has limited capacity, M1 does not continuously produce 

finished parts until the buffer is unloaded by RI. Assume that initial marking is m0  

=(3,1,0,1,0,0,2,0), where p1  has more tokens than buffer capacity p7. Then deadlock 



7 

FIGURE 2.1- DEADLOCK FREE PETRI NET MODEL OF 

ILLUSTRATIVE EXAMPLE 

FIGURE 2.2- DEADLOCK OCCURS WHEN NUMBER OF TOKEN IN 

INITIAL MARKING IN p 1 IS GREATER THAN p7 

IN ILLUSTRATIVE EXAMPLE 



1 0 0 0 0 0 0 0 0 1 
1 0 0 1 0 0 0 1 0 1 
0 1 0 0 0 1 0 0 0 0 

1= 0 1 0 0 0 0= 
00100 

0 0 1 0 0 0 1 o 0 0 
0 0 0 1 0 00100 

00100 0 0 0 1 0 
0000 1 0 0 0 1 0 

-1 
0 0 0 1 

-1 0 1 -1 1 

1 -1 0 0 0 
0 -1 1 0 0 
0 1 -1 0 0 
0 0 1 -1 0 
0 0 -1 1 0 
0 0 0 1 -1.  

c= 

8 

will be reached if firing sequence t1,t2,t3,t,,t2,t3,t1,t2  occurs. At this time (0,0,0,0,1,2,0,0)T  

marking is reached, as shown in Figure 2.2. Since p, does not have a token, t3  is unable 

to fire. And also, since p2  does not have a token, and t4 is unable to fire. To avoid this 

p1 should have less than buffer capacity tokens or a mechanism by which when the buffer 

is full the robot must unload the buffer before the MI uses the robot to produce next part. 

This is a Sequential Mutual Exclusion in which there is a shared resource [22]. This 

shows that one should verify deadlock condition, especially when there are shared 

resources present in the system. One of the advantages of Petri net models is that one can 

analyze some of the properties related to a manufacturing process. They can be 

behavioral, structural, qualitative properties and logical correctness. 

The input matrix I, output matrix 0 and incidence matrix C for the illustrative 

example considered are as follows: 

The behavioral properties depend on initial marking and its significance in 

manufacturing process is defined as below. 



9 

2.4 Behavioral Properties of Petri Net 

2.4.1 Reachability 

The reachability set R(m0) of a Petri net, is defined as the set of all markings which are 

obtainable from the initial marking m0, through some firing sequence L(m0) [8]. This 

means that a system can reach a specific state, or particular functional behavior. This can 

be verified by finding a sequence of transition firings which would result in transforming 

a marking m0  to mi m, represents a specific state, and the sequence of firings represents 

the required functioned behavior. Thus the problem of identifying the existence of a 

specific state m„ of the system can be redefined as the problem of finding if mi E R(m0). 

2.4.2 Boundedness 

A PN is said to be k-bounded for any reachable marking, m, none of the places contains 

more than k (k is a nonnegative integer number) tokens. A 1-bounded Petri nets is called 

safe [8]. In manufacturing, boundedness implies to the absence of capacity overflows. 

Safeness of an operation place, guarantees that there is no attempt to request execution 

of an ongoing process. If a resource place is safe, it implies only one available resource. 

2.4.3 Liveness 

There are five degrees of liveness, LO-L4. They are defined with respect to a single 

transition as follows [18]: 

LO 	"dead" if t can never be fired in any sequence of L(m0). 

L1 	"potentially firable" if t can be fired at least once in some 



10 

firing sequence L(m0). 

L2 	given any positive integer k, t can be fired at least k times in some 

firing sequence L(m0). 

L3 	if t appears infinitely often in some firing sequence L(m0). 

L4 	"live" if t is L1-live for every marking, m, in R(m0). 

A PN is said to be live" if all transitions in the net are L4-live. A live PN is one which 

cannot be deadlocked. This property guarantees that a system can successfully produce 

and all modeled processes can occur. Coffman at. al. [10] showed that four conditions 

must hold for a deadlock to occur. These four conditions are: 

1. Mutual exclusion: a resource is either available or allocated to a process 

which has an exclusive access to this resource [21]. 

2. Hold and Wait: a process is allowed to hold a resource(s) while 

requesting more resources. 

3. No preemption: a resource(s) allocated to a process cannot be removed 

from the process, until it is released by the process itself. 

4. Circular wait: two or more processes are arranged in a chain in which 

each process waits for resources held by the process next in the chain. 

In the illustrative example shown in Figure 2.2, deadlock can be reached when m0(p1) is 

greater than m0(p7). It can be shown that all four conditions of deadlock hold. 



11 

2.4.4 Reversibility 

A reversible PN is one that can always return to a home state via some firing sequence 

in L(mn). The home state is usually, but not necessarily, the initial state [18]. This 

property in manufacturing means the system can be initialized from any reachable state. 

2.4.5 Consistency 

A Petri net is said to be (partially) consistent if there exists a marking m0  and a firing 

sequence L(m0) returning to m0  such that every (some) transition appears at least once in 

L(m0) [18]. Reversibility implies consistency, but consistency does not necessarily imply 

reversibility. In manufacturing, this means that cyclic activities exist. 

2.4.6 Persistence 

A PN is considered to be persistent if firing of any enabled transition does not disable 

previously enabled transition [18]. In shared resource allocation a persistent net model 

implies that there is no conflict among processes. 

2.5 Analysis Methods 

Once the Petri net model is formulated, it must be analyzed to show that it does 

meet customer requirements and all inputs and outputs are considered. The fundamental 

methods of analysis are based on the reachability tree and matrix equation representation 

of a net. Also, a systematic transformation of a Petri net can be done, by reducing the 

number of places and transitions in a net, and at the same time preserving the properties 



12 

such as boundedness, conservativeness, liveness, etc. Some of these techniques were 

discussed in [8]. 

From the definition of the reachability tree the following observation can be made 

for the illustrative example when an initial marking is m0  = (2,1,0,1,0,0,2,0)T  [26]. In this 

marking transition t, is enabled. When t1  fires a new marking is obtained; m, = 

(1,0,1,1,0,0,2,0)T. This is a "new" marking in which transition t2  is enabled. Firing t2  in 

m, results in m2  = (1,0,0,0,1,0,2,0)T. This is a "new" marking in which transition t3  is 

enabled and m1, becomes an "old" marking. Firing t3  in m2  results in m3 = 

(1,1,0,1,0,1,1,0)T. This is a "new" marking in which transitions t4  and t, are enabled and 

m2  becomes an "old" marking. Firing t4  in m3  results in m5  = (1,0,0,1,0,0,2,1)T. This is a 

"new" marking in which t5  is enabled and m3  becomes an "old" marking. Firing t5  in m5  

results in m0  which is an "old" marking. At m3  firing t1 results in m4 = (0,0,1,1,0,1,1,0)T. 

This is a "new" marking in which t2  is enabled. Firing t2  in m4  results in m6  = 

(0,0,0,0,1,1,1,0)1. This is a "new" marking in which transition t3  is enabled and m4  

becomes an "old" marking. Firing t3  in m6  results in m, = (0,1,0,1,0,2,0,0)T. This is a 

"new" marking in which t4  is enabled and m6  becomes an "old" marking. Firing t4  in m, 

results in m8  = (0,0,0,1,0,1,1,1)T. This is a "new" marking in which transition t5  is enabled 

and m, becomes an "old" marking. Firing t5  in m8  results in m3  which is an "old" 

marking. Figure 2.3 shows reachability trees for deadlock free and deadlock of the 

illustrative example under different marking when m0(p1 ) is greater than m0(p7) such as 

m0  = (2,1,0,1,0,0,2,0)T  and m0  = (3,1,0,1,0,0,2,0)T  respectively. 



13 

A number of properties can be studied by using reachability tree. If each branch 

of tree contains only zeros and ones, then the net is safe. A transition is dead if it does 

not appear as an arc label in the tree. In this system all transitions are L2-Live for the 

above two initial marking, since it is possible to fire any transition at least k times in 

some firing sequence L(m0). Finally, reversibility property can also be observed by 

inspection that m0  is reachable from any marking m E R(m0) for m0  = 

This also implies consistency. This net is not persistent since at m3  in Figure 2.3 firing 

t, disable t4. 

The ordinary Petri nets do not include any concept of time. With this class of nets, 

it is possible only to describe the logical structure of the modeled system, but not its time 

evolution. Responding to the need for the temporal performance analysis of discrete-event 

systems, time has been introduced into Petri nets in a variety of ways. There are two 

fundamental types of timed Petri nets in the context of performance evaluation. These are 

Deterministic timed Petri nets, and Stochastic timed Petri nets. 

When time delays are modeled as random variables, or probabilistic distributions 

are added to the transitions of deterministic timed Petri nets models for the conflict 

resolution, stochastic timed Petri nets models are yielded. In such models, it has become 

a convention to associate time delays with the transition only. When the random variables 

are of general distribution or both deterministic and random variables are involved, the 

resulting net models cannot be solved analytically for general cases. Thus simulation or 

approximation methods are required. The stochastic timed Petri nets in which the time 

delay for each transition is assumed to be stochastic and exponentially 



Figure 2.3 Reachability Graph for Illustrate Example 

14  



15 

distributed are called stochastic Petri nets (SPN) [15]. The SPN models which allow for 

immediate transitions, i.e., with zero time delay, are called generalized SPN (GSPN) [14]. 

Both models include extensions such as priority transitions, inhibitor arcs, and 

probabilistic arcs. These models can be converted into their equivalent Markov process 

representations, and analyzed analytically. 

A conflict results when a place has two or more output transition and only one 

transition can be fire, others become disabled. When a conflict results, it has to be 

resolved by a mechanism, such as associating priority to transitions. Since this mechanism 

leads to stochastic nets the use of the deterministic timed Petri nets for performance 

evaluation has been restricted to the choice-free nets, which can be modeled as marked 

graphs [6,26]. 

The continuous time Markov chain is a state machine whose nodes are states or 

markings and links are labeled to the corresponding transitions. In a continuous time 

Markov chain transition rate au  is the rate of a process from state i to state j, i ≠ j. aii  is 

determined by 

Given the present state mi, the conditional probability that mi  goes to mj  during time 

interval dt is a1  dt. Also, 1 /a1  is the expected time between i and j. From the above 

definition transition rate matrix 



16 

Let n be a row vector of steady state probabilities. Then, it satisfies: 

For example, the transition rate matrix for the illustrative example shown in Figure 2.1 

with the initial marking m0  = (2,1,0,1,0,0,2,0) is 



17 

By solving equations (1) and (2) steady state probabilities of the process can be solved. 

To study performance using SPN the following steps are involved. 

1. Develop a stochastic Petri net model of a system. Define the initial state, and obtain 

the corresponding marking; 

2. Generate the reachability graph of the net, and obtain the set of Markov process; 

3. Perform the analysis of the Markov model, and; 

4. Convert the analysis results into the required performance measures. 

In this thesis SPN is used for performance evaluation as given above using SPNP 

software. 



CHAPTER 3 

DEVELOPMENT OF A MODEL 

To show how Petri net models can be used in performance analysis, a five sequenced 

work station model is used. This process can be extended into a larger system. 

3.1 System Description 

Assume that previously sub-assembled parts are automatically loaded on to pallets and 

then pallets enter the system one by one. When station #1 (S1) is available the pallet is 

loaded on to SI. The specification of the process is as follows: 

Step 1: The pallet is marked good at S1 within time given by timer T1. 

Step 2: S1 acquires robot (R) and then the timer T2 starts. Using R, part #1 is loaded on 

sub-assembled part. 

Step 3: If within given amount of time given by timer T2 S1 failed to load part #1 using 

R the pallet is marked bad within time given by timer T3 and robot (R) is released. The 

pallet is released when S2 is available. 

Step 4: S2 also verifies that the pallet is marked good or bad, before it acquires R to load 

part #2. 

Step 5: If the pallet is marked bad S2 releases the pallet, when S3 is available. 

Step 6: If the pallet is marked good, S2 acquires the robot (R) when available to load 

part #2, then the timer T4 starts. 

18 



19 

Step 7: If S2 fails to load part #2 using R in a given amount of time by timer T4 then the 

pallet is marked bad at S2 within time given by timer T5. The R and pallet is released 

when S3 is available. 

Step 8: Before S3 starts it process, it also, verifies either the pallet is marked good or bad. 

If the pallet is marked bad it releases the pallet when S4 is available. 

Step 9: At S3 there is s dimpling machine, If the pallet is marked good, timer T6 starts. 

At S3, using dimpling machine loaded part is dimpled and locked in its place. 

Step 10: If Within give amount of time, S3 does not complete its job using dimpling 

machine, the pallet is marked bad within time given by timer T7 and dimpling machine 

and the pallet are released when S4 is available. 

Step 11: As before S4 verifies if received pallet is good or bad, i.e., previous stations 

have completed their job or not. So, again if the pallet is marked bad it releases the pallet 

when S5 is available. 

Step 12: At S4 there is a marker machine which for example marks part number and/or 

date code etc. If the pallet is good S4 using the marker marks the finished product within 

given amount of time by timer T8. When the job is completed, the pallet and marker are 

released when S5 is available. 

Step 13: If S4 fails, the pallet is marked bad within time given by timer T9. 

Step 14: Finally S5 unloads the pallet with a part marked good or bad. At S5 the pallet 

is verified. If it is marked good, it means that all stations have finished their jobs and 

finished goods enters the storage or into next stage of production. The verification and 

unloading of the pallet are done automatically at S5. 



20 

Step 15: Finally the pallet is released into the cycle back to Si when it is available and 

cycle continues. See Figure 3.1 of a five sequenced work station system. 

In this example stations are in sequence and the pallet is not taken out of cycle 

if job is failed at one station. But each station receives pallet and each of them verifies 

if pallet is marked good or bad before it continues with its required job. At the unloading 

station S5, there can be a counter to count how many pallets are good or bad for the 

efficiency of stations. Also, at each station one can have counter to count consecutive job 

failed. When the counter accumulative value equals to the preset value it shut down the 

station and operator is warned. The station is reset with an operator key. The unfinished 

product can be returned into the system for reprocessing, depending on which station has 

failed. The Petri net model is shown in Figure 3.4 and place designations in Table 2. 



21 

Table 2 Place Designations for SPNP program. 

p1  Start 	 p18  
 

Part #2 p35  Process Completed 

P2 
Pallet Present Si p19  

 

Part#2 Load Using 
R1 

p36  

 

Pallet Present S5 

p3  Pallet Tag Good P20 Pallet Present S3 p37  Pallet Check S5 

p4  Part #1  p21  Pallet Check S3 p38  Bad Pallet Unload 

p5  Ready to Load part #1 p22  Good Pallet 
Present S3 

p39  Good Pallet 
Unload 

p6  Timer S1 p23  Bad Pallet S3 PA  Good Pallet from 
S1 

p7  Wait state p24  Dimpling Done at 
S3 

pB  Good Pallet from 
S2 

p8  Process completed at 
S1 

p25  Timer S3 pc  Good Pallet from 
S3 

p9  Process Fail at S1 p26  Wait State 
pD 

 Good Pallet from 
S4 

p10  Part #1 Load Using R1 p27  Process Completed 
at S3 

ps1  Station #1 (S1) 

p11  Pallet Present S2 p28  Pallet Present S4 Ps2 Station #2 (S2) 

p12  Pallet Check S2 p29  Pallet Check S4 Ps3  Station #3 (S3) 

p13  Bad Pallet at S2 p30  Bad Pallet at S4 Ps4 Station #4 (S4) 

p14  Good Pallet Present S2 p31  Good Pallet 
Present S4 

ps5 
 Station #5 (S5) 

p15  Timer S2 p32  Timer S4 pm  Marker(ex. P/N#) 

p16 Wait State p33  Marking Done At 
S4 

pd  Dimpling Machine 

p17  Process Completed p34  Wait State PR1 Robot #1 (RI) 



FIGURE 3.1- FIVE SEQUENCE WORK STATION SYSTEM 

22  



23 

3.2 Building a Graphical Model 

A five work station PN model is developed using a bottom-up modular approach. First, 

S1's process is developed then S2 S5's. Next, the failure check module is developed for 

each work station. Later on five work station processes are linked in sequence. Finally, 

all the modules are linked to complete the system modeling. There are several different 

methods available to develop a graphical model given in [25]. 

The following method is used in the model development of the first station. 

Identify the processes being done at the first station. They are: a pallet being loaded into 

S1 and marked good, using the robot a part is loaded. For each process in order, create 

a place to represent its status and add a transition to show the start of a process and a 

transition to show the end of the process. They are connected with an output arc(s) and 

with an input arc(s), respectively. 

For each kind of resource(s), create and label a place. If an activity place is a starting 

activity to require the resource(s), add input arc(s) from that resource place to the starting 

transition of that activity. If an activity is the ending activity to use the resource(s), add 

output arc(s) from the ending transition to the resource place(s). In the given system for 

station #1 resources are S1, robot, and part. For those resources places are ps1, pR1, and 

P4 respectively. In Table 3 process places and resource places of S1 are given. Starting 

activities are a pallet at station #1, the pallet is marked good and using robot a part is 

loaded. The first activity requires S1, therefore, from ps1  an input arc is added to transition 



24 

Table 3 Place Designations for S1 Module. 

Places  Processes places Resources 

p1  Pallet ready Ps1 Station #1 

P2 Pallet loaded to station 1 PRI Robot 

p3  Pallet marked good p4 Part 

p5  Robot is ready with part 
to be loaded 

P10 Part is being loaded 

For the loading of a part using the robot an input arc is added to transition t3  from both 

resources places pR1  and p4, respectively. Finally, the initial marking is specified. P1, ps1 

PR1 and P4 are marked with one token. For example since initially a robot is available, 

m0(PR1) = 1. The Petri net module for the first station is shown in Figure 3.2. One 

difference between S1 and the other stations is that, a pallet is marked good at Si but at 

the other stations a pallet is verified if it is good or bad. 

Similarly, a failure check module is developed. The processes are: start timer, if 

timer is done, mark pallet bad else the process is completed. In this module resource(s) 

is not used. Therefore, only arc(s) are to show the flow of the process. Table 4 lists 

process places and Figure 3.3 shows the Petri net module for failure check. 

Similarly, work stations S2 -S5 and their corresponding failure blocks are 

developed. Finally, all of them are linked to complete the system as shown in Figure 3.4 

and place designation in Table 2. It is noted that links are based on the system description 

as given in Section 3.1. 



25 

FIGURE 3.2- STATION 1 MODULE OF PETRI NET MODEL 

FIGURE 3.3- STATION 1 FAILURE MODULE OF PETRI NET MODEL 



26 

FIGURE 3.4- PETRI NET MODEL OF FIVE SEQUENCE 
WORK STATION 



Table 4 Place Designations for S1 Failure module. 

Places Processes 

P6 Timer start 

p7  Wait state 

P8 Process completed 

p9  Pallet marked bad 

27 



CHAPTER 4 

PERFORMANCE EVALUATION OF THE SYSTEM 

In order to evaluate the performance of the system, its PN model has to be analyzed. In 

this study SPNP software package is used for performance evaluation. 

In order to run the model with the SPNP software a source code must be written. 

This code provides the necessary input and also generates certain output. The input 

consists of places along with their initial markings, transitions along with their firing rates, 

placement of input and outputs arcs, and any variables that the user intends to change 

from run to run; e.g., firing rates and failure rates. 

4.1 Software Packages 

There are numerous software packages available for modeling and evaluating given 

systems. Some of the more popular packages used are SPNP, GRAMAN, SIMAN, 

SLAM, and SIMSCRIPT. Of these SIMAN, SLAM, and SIMSCRIPT are better suited 

for simulation. SPNP and GRAMAN were developed around and intended to be used for 

Petri nets. Beck and Krogh [13] have successfully utilized SIMAN to simulate their 

modified Petri nets models for manufacturing systems. Also, GreatSPN [8] software is 

powerful in the sense that it can accept various time variables, inhibitors, and random 

switches and has simulation capacity. SPNP (Stochastic Petri nets Package) developed 

by Ciardo [9] has been used by Al-Jaar and Desrochers [2] to investigate the performance 

28 



29 

of transfer lines and production networks, also by Zhou and Leu [23] to evaluate the 

performance of two robotic manipulator assembly station for printed circuit boards. A 

UNIX based version of SPNP has been found to be appropriate tool to evaluate this five 

work station example. SPNP is written in C and is also available for VMS systems 

(VAX). The syntax and semantics are based on the C language. 

4.2 Requirements and Terminology of SPNP 

The SPNP software was used to execute the Petri nets model. Due to the complexity of 

the PN, the input matrix is large and occupies much memory during system execution. 

Also, when there are more than one pallet in the system, numerous markovian states result 

and hence the execution of the PN consumes much time. Hence, the model was run on 

SPNP with an initial marking with one token for pallet and part so that throughput and 

utilization of resources can be analyzed with SPNP. Example of input terminology for 

SPNP is described in Table 5. Details of the illustrative example and a five work stations 

system given in Appendix A and Appendix B respectively. Also, the output of SPNP 

program is given in Tables 6 - 10 and in Appendix C for the illustrative example and S4 

in a five work station system, respectively. 



30 

Table 5 Terminologies for SPNP Software 

place("p1"); 	** 	Establishes a place p1. ** 

init("pl",1); ** 	Defines initial 	marking of p1 as 1. ** 

trans("t1"); ** 	Establishes a transition t1. ** 

iarc(" 	1","t1") ** 	Defines an input arc to t1 from p1. ** 

oarc("p1","t2") ** 	Defines an output arc from t2 to p1. ** 

rateval("t1",1.0) ** 	Defines firing rate of t1 is 1.0. ** 

rateval("t2",x) ** 	Defines firing rate of t2 is variable 	x,which is 
entered at the beginning of the program run. ** 

0UTPUT COMMANDS: 
reward_type ef0() {return(rate("t1"));} /* throughput */ 	** 
pr_expected("throughput,'t1' ",ef0); 

Defines Expected throughput of transition tl. 	** 
reward_type ef1 () {return(1-mark("pR1"));} 

pr_expected("utilization, 'pR1' ",efl); 
Defines Expected utilization of resources namely 	Robot #1. 

OTHER OUTPUT FILES GENERATED BY SPNP SOFTWARE: 
iopt(IOP_PR_RSET,VAL_YES); 

If VAL_YES is specified, the program will print reachability set under ".rg" 
files. Which helps in analyzing deadlock marking(s) and other properties. 

Results of Evaluation 

For each given command for output the SPNP gives corresponding output at a designated 

output files. For the illustrative example some of the output commands and there outputs 

given by the SPNP are explained below. 

• (IOP_PR_RSET, VAL_YES) gives the following results under ".rg" files. 

Assign ascending order starting from zero to each places and transitions as given 

in the SPNP program. This output can be read as marking m0  being a tangible marking 

and having two tokens in place 0, one token in place 1, zero in place 2, one in place 3, 

zero in place 4, in place 5, two in place 6 and zero in place 7. If 



31 

(IOP_PR_FULL_MARK, VAL_NO) gives short form of _reachset in which only places 

with tokens are given with corresponding number of tokens in each place. VAL_YES 

gives long form as given above and is easy to read if SPN has a small number of places. 

• (I0P_PR_RGRAPH, VAL_YES) give the following results under ".rg" 

Table 6 ".rg" File of the Illustrative Example 

_nplace = 8; 
ntrans = 5; 

_places = 	 _transitions = 
0: p1; 	 0: t1; 
1: p2; 	 1: t2; 
2: p3; 	 2: t3; 
3: p4; 	 3: t4; 
4: p5; 	 4: t5; 
5: p6; 
6: p7; 
7: p8; 

ntanmark = 9; 

nabsmark = 0; 

_nvanmark = 0; 

_nvanloop = 0; 

nentries = 10; 

reachset = 

# 	P1 	P2 	P3 	P4 	P5 	P6 	P7 	P8 

: 0_t 	2 	1 	 : 	1 2 
 1_t 	1 	 1 	1 	 : 	2 

2_t 	1 	: 	 1 	 2 	: 
: 3_t 	1 	1 	 1 	1 

• : 4_t 	: 	 1 	1 	 1 	1 
5_t 	1 	1 	2 	1 

6_t 	: 1 	1 	1 



32 

Table 6 (Cont.) 

7 	t 	: 
8 	t 	: _ 

reachgraph = 

: : 

: 	1 2 	 : 

	

1 	1 	1 

0 	1: 0:1 

1 2: 1:1 

2 3: 2:1 

3 5: 3:1 4: 0:1 
4 6: 1:1 
5 0: 4:1 

6 7: 2:1 
7 8: 3:1 
8 3: 4:1 

This output can be read as marking 0 entering marking 1 by firing transition 0 with 

probability 1. Also, marking 3 can go to marking 5 by firing transition 3 with probability 

1 and to marking 4 by firing transition 0 with probability 1. 

With IOP PR RSET and/or IOP PR RGRAPH VAL TANGIBLE specifies that only 

tangible markings must be printed in ".rg" file. 

• (IOP_PR_MC, VAL_YES) gives ".mc" file. It has default VAL_CTMC, this 

describes the Continuous Timed Markov Chain (CTMC) derived from the SPN; the 

vanishing markings are absent and only numerical rates appear. The transition rate matrix 

is described by rows, since default is set for (IOP_PR_MC_ORDER,VAL_FROMTO) else 

if VAL TOFROM its transpose is printed in ".mc" file. The ".mc" file of the illustrative 

example is given in table 7. 



33 

Table 7 ".mc" File of the Illustrative Example 

firstindex = 0; 
nstates = 9; 
nentries = 10; 
order = _ 	FR0MTO;  
matrix = 

0 	1:1 

1 	2:1 

2 	3:1 
3 	4:1 	5:1 

4 	6:1 
5 	0:1 
6 	7:1 

7 	8:1 

8 	3:1 

This can be read as for _matrix = 3 	 4:1 	 5:1; 	means 	that 

transition rate from state 3 to state 4 is 1 or to state 5 is 1. The TOFROM is in the 

following format: 4 ... 3:1 ....; 

5 	... 3:1 ....; 

Also, these files have lOP_METHOD that allows to set the numerical solution method 

for the CTMC, the default setting is steady state SOR (_SSSOR), and other options are 

given in [9]. The precision can be set with FOP_PRECISION with non-negative double 

value or default is 1e-06, and maximum number of iterations can be set with 

IOP ITERATIONS with non-negative int or has default value is 2000. 

(IOP _ PR _PROB, VAL YES) gives ".prb" file. This file gives the steady-state 

probabilities for tangible markings; corresponds to the result of the CTMC solution. In 

this file the _method may be changed automatically and values in it reflect the actual 

choice and may be different from the one declared in ".mc" file. When the maximum 



34 

number of iterations has reached, it automatically switches to Steady State Gauss-Seidel. 

The ".prb" file of the illustrative example is given in Table 8. 

Table 8 ".prb" File of the Illustrative Example 

firstindex = 0; 
nstates = 9; 
method = SSSOR; 

_precision = 0.000 
iterations = 1; 

_probabilities = 
0:0.111 1:0.111 2:0.111 
3:0.111 4:0.111 5:0.111 
6:0.111 7:0.111 8:0.111 

end; 

Also, output generates ".log" file which contains the number of tangible markings, 

number of vanishing markings, number of arcs, number of remaining arcs after 

elimination of redundant arcs, number of remaining arcs after elimination of vanishing 

markings and solving method. This file is also, shown during the execution of SPNP 

program. The ".log" file of the illustrative example is given in Table 9. 

Table 9 ".log" File of the Illustrative Example 

The Reachability graph contains: 

9 tangible markings 

0 vanishing markings 

10 arcs 



35 

Table 9 (Cont.) 

After elimination of redundant arcs: 

# of remaining arcs: 	10 

After elimination of vanishing markings: 

# of remaining arcs: 	10 

Solving the Markov chain.... 

...Markov chain solved 

Reading the reachability graph info ... 

End of execution. 

".out" file in Table 10 gives output request in ac_final, Probability of each places having 

nonempty token, Average token in each places, Probability of enabled transitions and 

Average throughput of each transitions. 

Table 10 ".out" File of the Illustrative Example 

EXPECTED: throughput,'t3' = = 0.222 
EXPECTED: throughput,'t5' = = 0.222 
EXPECTED: utilization, 'Robot' = = 0.667 
EXPECTED: utilization, 'Buffer' = = -0.333 

AVERAGE: 

PLACE Pr[nonempty] Av[tokens] 
0:p1 0.555 0.667 
1:p2 0.333 0.333 
2:p3 0.222 0.222 
3:p4 0.777 0.777 
4:p5 0.222 0.222 
5:p6 0.555 0.667 
6:p7 0.889 1.333 



36 

Table 10 (Cont.) 

7:p8 	0.222 

TRANSITION Pr[enabled] 

0.222 

Av[throughput] 
0:t1 0.222 0.222 
1:t2 0.222 0.222 
2:t3 0.222 0.222 
3:t4 0.222 0.222 
4:t5 0.222 0.222 

The Production rate (P) in the five station assembly system is taken to be small 

so that a result can be obtained from SPNP software. The failure rate (F) is defined as 

where R is the rate of failure 

The production rate of all the other station was constant while production rate of station 

in question varies. Similarly, failure rate was constant for all the stations while production 

rate varies for the station in question. The data has been taken for four stations and at 

three failure rates namely 1% ,10%, 30%, also data has been taken with one pallet in the 

system. The data for three failure rates are given in Table 11, Table 12 and Table 13 

respectively. The firing rate of transition is exponentially distributed. The time delay is 

random and exponentially distributed, and the resulting firing rate, X, is equal to inverse 

of expected time delay 



37 

where E(τ) is the average time delay. See Appendix C for the output files of S4 in a five 

sequence work station system. 

4.3 Performance Analysis of the System 

The outputs requested from SPNP include station and robot utilizations, throughput of 

each station, as well as system production rate. The throughput of the stations S1, S2, S3, 

S4 and S5 are the throughput of transitions t6, t12, t20, t28  and t37  respectively. The system 

production rate is the throughput of the last station, i.e., S5. The utilization of a resource 

is defined as 

1 - (token availability of the resource place). 

From the Table 11 and Figure 4.2 utilization of S4 is 0.214790 when production speed 

of the stations S1-S3 and S5 is 5; the failure rate of each stations S1-S3 and S5 is 0.1; 

the production speed of S4 is 0.1 and failure rate of S4 is 0.1. The token availability in 

place Ps4  is 0.785210. 

The following observation is made. As the average machine rate increases, the 

system production rate increases and the utilization of the work station decreases, until 

the system production rate is saturated. The average firing rate of t36  gives throughput of 

finished goods unloaded at S5 and t37  gives throughput of unfinished goods unloaded at 

S5. 



38 

The system production rate = 

The system production rate and utilization of S4 are given in Figures 4A - 4.3 for each 

failure rate of 1%, 10% and 30% respectively. As shown in Figures 4.1 - 4.3 increase in 

failure rate of the system reduces production rate. Thus the system efficiency decreases. 

Due to the production rate (P) in the five station assembly system is taken to be small 

significant difference in the outputs for three failure rates is not achieved. 



39 

Table 11 System Production rate and Utilization of S4 when Failure rate is I% 

Average Machine 
Rate S4 

Average Failure 
Rate S4 

System 
Production Rate 

Utilization S4 

.020 .01 6.437935E-03 4.140652E-01 

.040 .01 7.663150E-03 3.025704E-01 

.060 .01 8.475539E-03 2.559349E-01 

.080 .01 8.453690E-03 2.306162E-01 

.100 .01 8.626459E-03 2.148873E-01 

.120 .01 8.743051E-03 2.042707E-01 

.140 .01 8.826289E-03 1.966889E-01 

Figure 4.1 
Average Failure Rate for S4 is 1%. 
Average Machine Rate is 5 and Average Failure Rate is 10% for SI, S2, S3, and S5. 



40 

Table 12 System Production rate and Utilization of S4 when Failure rate is 10% 

Average Machine 
Rate S4 

Average Failure 
Rate S4 

System 
Production Rate 

Utilization S4 

.020 .1 6.438082E-03 4.140612E-01 

.040 7.663084E-03 3.025535E-01   

.060 .1 8.175379E-03 2.558972E-01 

.080  8.453401E-03 2.305513E-01 

.100 .1 8.626012E-03 2.147897E-01 

.120 .1 8.742420E-03 2.041356E-01 

.140 .1 8.825454E-03 1.965124E-01 

Figure 4.2 

Average Failure Rate of S4 is 10% 
Average Machine Rate is 5 and Average Failure is 10% for S1, S2, S3, and S5 



41 

Table 13 System Production rate and Utilization of S4 when Failure rate is 30% 

Average Machine 
Rate S4 

Average Failure 
Rate S4 

System 
Production Rate 

Utilization S4 

.020 .3 6.438044E-03 4.140489E-01 

.040 7.662883E-03 3.02508E-01 

.060 .3 8.174898E-03 2.557839E-01 

.080 .3 8.452544E-03 2.303590E-01 

.100 .3 8.624704E-03 2.145043E-01 

.120 .3 8.740601E-03 2.037463E-01 

.140 .3 8.823076E-03 1.960108E-01 	I 

Figure 4.3 
Average Failure Rate of S4 is 30%. 
Average Machine Rate is 5 and Average Failure Rate is 10% for S 1, S2. S3 and S5. 



42 

From the other output files of SPNP program (Appendix D) the following Petri 

net properties can be observed. ".log" file states that, the reachability graph contains 45 

tangible markings, 0 vanishing markings and 57 arcs. Since this file does not contain any 

absorbing marking, the system is deadlock free. From ".rg" file, the system is found to 

be bounded and safe. The system is live, since for any marking m0, it is possible to fire 

ultimately any transition by executing some firing sequence. The system is reversible, 

since marking m0  can be reached from any marking m E R(m0  ), which also implies 

consistency. 



CHAPTER 5 

CONTROL OF THE SYSTEM USING PLC 

In this thesis PLC is used to control the system. The application of Programmable 

Logic Controllers (PLCs) for system control is given in this chapter. 

PLC can be defined as a specialized computer processor in a computer family. It 

is capable of storing instructions to implement control functions such as sequencing, 

timing, counting, arithmetic, data manipulation and communication. 

5.1 History of PLC 

In 1968 in order to eliminate high costs, Hydramatic Division of the General Motors 

Corporation replaced inflexible relay-controlled systems with PLCs which are flexible, 

easily maintainable, and programmable. PLCs are able to sustain in a harsh environment 

and can be reused in the system. Also, it provides expendability for the future. To achieve 

these criteria a PLC was developed. In the beginning the PLC was designed to replace 

relay-controlled systems which were widely used in automotive industry. In 1970's with 

improvement of microprocessor technology PLCs were capable of data manipulation, 

arithmetic and communication with other PCs and PLCs. PLCs have diagnostic indicators 

that aid trouble shooting and PLCs are designed in a modular form for replacement or 

repair of sub-assemblies. By 1971 PLCs were also being used in food and beverage, 

metals manufacturing and pulp and paper. CRT technology made PLC programming more 

43 



44 

flexible and aided a trouble shooting process. Between 1975 and 1979 Hardware and 

Software enhancements gave PLCs more flexibility in memory capability, remote 

Input/Output capability, communications and fault detection. Also, a PLC reduces cost of 

installation and implementation of a control system. With today's technology, PLCs have 

developed programs that are flexible, shorter, faster and higher memory capacity. 

Compared with a PC-based controller, they are very expensive. However, the harsh 

environments still justify their extensive usage. 

5.2 Description of a PLC 

A PLC is composed of two basic sections, the CPU and Input/Output interface to the 

system. The CPU is composed of three components: the processor, the memory system 

and power supply of the system. In the operation of PLCs, Inputs/Outputs are connected 

to field devices which are used in the control of a process. CPU receives and processes 

information from field devices via control program and then updates the output devices. 

The ladder diagrams are used in providing control information from the designers 

to the users of equipment. Since it is easy to use and interpret, it was widely accepted in 

the industry. Proper implementation of a control system depends on the knowledge of 

PLC operation, scanning and instruction programming. In PLC logic functions are 

programmed and can be easily changed. Relay logic implemented in PLCs is based on 

three basic functions (AND, OR, NOT). These functions are used either singly or in 

combinations to form instructions to control devices. These instructions are implemented 

using ladder diagram language, which is a one step translation from relay logic. 



45 

The complete ladder diagram can be thought of as being formed by individual 

circuits, each circuit having one output. Each of these circuits is known as a rung. A rung 

is the contact symbology required to control an output in the PLC. Some controllers allow 

a rung to have multiple outputs, but one output per rung is convention. Each rung is a 

combination of input conditions (symbols) connected from left to right between two 

vertical lines, with the symbols that represent the output at the far right. The input 

symbols are connected in series, parallel or some combination to obtain the desired logic. 

Each symbol on the rung has a reference number, which is the address in memory 

where I/O status is stored. The address for given I/O can be used throughout the program 

as many times as required by the control logic. In relay logic, additional contacts mean 

additional hardware, compared to ladder logic. The address reference is dependent on the 

controller, but most of them are octal (base 8) or decimal (base 10) numbering. 

The main function of the ladder diagram program is to control outputs and perform 

functional operations based on input conditions. The continuity is achieved whenever a 

path contains contact elements in a closed condition so that power flows from left to 

right. These contact elements will either close or remain closed according to the status of 

its reference inputs. The maximum number of ladder contact elements that can be used 

to program a rung is restricted by the ladder rung matrix, and its size differs among 

different PLC manufactures and programming device used. One of the most important 

rules in all PLCs is that of reverse power flow. Reverse power is not allowed in PLC 

logic to prevent possible sneak paths that could occur in hardwired electromechanical 

relay systems. 



46 

5.3 Description of Basics of Ladder Diagrams 

The following symbols are used in translating relay control logic to contact symbolic 

logic. 

—] [— Normally-opened contact: Input to control logic, either external input 

or internal output. When evaluated by the program it is examined for its status "1". If so, 

the contact is closed, else it is open. 

—]/[— Normally-closed contact: Input to control logic, either external input or 

internal output. When evaluated by the program it is examined for its status "0" if so then 

contact is closed else contact will open. 

-( )- Output: Represents any output that is driven by some combination of input 

logic. It can be connected to device or can be internal output. If any left-to-right path of 

a rung has all contact closed then output of the rung is energized. 

Timer: There are different types of timers supplied by manufacturers. They are 

1) Timer ON Delay Energize 2) Timer ON Delay De-energize 3) Timer OFF Delay 

Energize and 4) Timer OFF Delay De-energize. 

Also, there are two formats. Block format timer may have one or two inputs in which 

case one pin is control and the other is for enable/reset. If both inputs are true, then the 

timer block starts timing. Ladder format timer has one pin input. If it is high then timer 

starts. There are two registers used in the timer. One is to store the preset value and the 

other is to store the accumulated value. The time base is dependent on type of PLC used 

(e.g. 0.01 sec, 0.1 sec, 1.0 sec, etc.) 



47 

-(L)- Latch output: A latch output remains energized, even though the status of 

the contacts which cause the output to energize may change. It remains latched ON until 

it is unlatched by an unlatch output instruction of the same reference address. 

-(U)- Unlatch output: The unlatch output instruction is programmed to reset a 

latched output having the same reference address. If any rung path has logic continuity 

to the unlatch output, the reference address is unlatched to an OFF condition. 

There are other types of contact symbolic logic used in PLC program such as 

counter, jump to, go to subroutine, return coil, arithmetic instructions, etc. These 

applications and their instructions can be found in [5]. 

The programmable controller reads all field input devices, executes the control 

program and updates all field output devices. This process is called scan. 

The last process of updating output is in two steps. First step is to update internal 

output and continue to execute the program until it has finished evaluating the control 

program; second step is to update output interface modules thereby the field devices. The 

scan time, the time it takes to implement scan, consists of the program scan time and the 

I/O update time. PLC manufactures generally specify the scan time based only on the 

amount of application memory used (e.g. 10 msec/1K of programmed memory) [5]. The 

remote location of I/O subsystems increases scan time. Some PLCs provide software 

instructions that allow the interruption of the continuous program scan in order to receive 

an input or update an output immediately. These immediate instructions are very useful 

when the PLC must react instantaneously to a critical input or output. 



48 

The power supply requirement to run PLC is usually 120VAC or 220VAC, but 

some controller provides PLC's to run on 24 VDC. Input supply must be connected to 

Isolation Transformer and through EMI filter for any fluctuation of line voltage and noise 

due to on/off of devices connected to PLC causing noise and power loading. If summation 

of the current requirements for a particular I/O configuration is greater than the total 

current supplied by the power supply, then the second power supply is required. 

The amount of application memory is specified in terms of unit K where each K 

unit represents 1024 word locations. The total number of storage locations available is 

indicated by the memory capacity of a particular controller in the units of K. After 

determining the minimum memory requirements for the application, one should add 25% 

to 50% more memory for future changes and modifications. 

The memory organization and interaction of the data table's I/O mapping and 

storage area helps to comprehend the functional operation of a programmable controller. 

Also, it helps in understanding of how the control software program is organized and 

developed. 

In PLC the word length is two bytes, 16 bits. The starting address of control 

program is not very important but register address references are. 

There are different types of input and output interfaces connected to a PLC. 

Selector switches, pushbuttons, limit switches, proximity switches, and Thumbwheel 

switches are example of digital or discrete type. The standard ratings for these inputs 

and/or outputs are 24 Volts AC/DC, 48 Volts AC/DC, 120 or 230 Volts AC/DC, 1 IL 



49 

level etc. Detail of these inputs and outputs can be found in [5]. Also, there are Analog 

I/O that can be connected to PLC [5]. 

5.4 Development of the PLC Program 

In the development of PLC program, a modular approach similar to the Petri net model 

is used. First, all the common rungs are written for all the stations and then these rungs 

are copied into files for each station. Next, individual rungs and their addresses in each 

station are added as per each stations job. These process are valid in a PLC, since it does 

not update any output until it has scanned the program completely. If input conditions are 

satisfied then the output contacts are made. Thus, the execution of the process is done in 

the actual sequence, even if the program steps are not in sequence. The PLC program is 

written considering many of the practical conditions such as motion of robot arms, the use 

of an operator key for the reset of a work station due to the machine failure. 

5.4.1 Ladder Logic Program for S1 Module 

The portion of flow chart for the sequence of process is shown in Figure 5.1 and the PN 

model in Figure 3.2, the token in ps1  implies that S1 is ready; in ladder logic program 

(LLP), output B:3/1 is energized in rung 2:0. In rung 2:1 output O:3/0 is energized, when 

p2  has a token in the PN model. When timer T4:0 is done the pallet is marked good and 

output O:3/3 is energized in rung 2:6, i.e., p3  has a token in the PN model. When a part 

for S1 is available in the feeder input I:1/6, I:1/6 becomes a closed contact, as in the PN 

model p4 has a token. Similarly, 1:1/5 becomes a closed contact when robot is available 



50 

Figure 5.1 Flow Chart of Five Sequence Work Station For Ladder Logic Program 



51 

and ready or NI  has a token. Place p5  having a token implies that robot is ready with the 

part to be loaded, and output O:3/8 is energized and latched at rung 2:20. The operation 

at S1 is completed when B:3 /5  is energized at rung 2:25. The enabling of a transition in 

the PN model can be regarded as that all the input conditions are satisfied to have an 

output to be energized in the LLP's. 

5.4.2 Ladder Logic Program for S1 Failure Module 

Similar to the S1 module, all places and transitions in the PN model of the failure module 

as shown in Figure 3.3, can be represented in a LLP. In the LLP when an operation fails, 

a counter C5:0 starts counting the number of consecutive failures of an operation at a 

given station. If a next operation is successfully completed or, if operator resets the station 

then the counter is reset. When the counter reaches its preset value it shuts down that 

particular station and a red light goes on, which is done in rungs 2:3 and 2:4. In the PN 

model an operation fails when t7  fires; and in the LLP output O:3/9 is energized and 

latched. A token in place p9  states that a pallet is being marked bad. This process in LLP 

is done in three rungs with four inputs, two outputs and a timer. Timer T4:1 starts when 

either the operation at the S1 fails or when an operator resets using a key. When T4:1 

starts timing, output O:3/4  is energized and the pallet begins to tag bad. The output, 

O:3/5, a latched output is energized when timer T4:1 is done and the pallet is tagged bad. 

The pallet is released when t8  or t10  fires in the PN and in LLP input B:3/4 or 0:3/5 is 

closed and output O:3/6 is energized. Once the pallet is released all the latched output are 



52 

unlatched. Also, in the LLP an operator key unlatches all the latch outputs of the station. 

The rest of the flow chart is given in Appendix E and S1's LLP is given in Appendix D. 

5.5 Ladder Logic Program for the System 

The ladder logic program for the S1 of the system considered is shown in Appendix D. 

This has been developed using Allen-Bradly's Advance Programming Software [1]. In the 

system, 10 slot rack has been used. Each slot has 16 I/O locations. There are different 

racks, each of which can have different type of slots, different I/O, and CPU given in the 

software configuration files. Slot 0 is for CPU with 12K user memory, slots 1,2,7,8 are 

used for inputs with 24VDC and slots 3,4,5,6 are used for discrete outputs. Internal bits 

for S1 are from B3/0 to B3/10. Similarly, internal bits for S2, S3, S4, and S5 are from 

B3/I 1 to B3/20, B3/21 to B3/30, B3/31 to B3/40 and B3/41 to B3/50, respectively. The 

internal bit in the software can go up to B3/999. There are thirteen timers and five 

counters used in the system LLD program. Following steps are used to develop the LLP 

in Allen-Bradly's Software using a PC. 

The software is loaded under IPDS/ATTACH/SLC500 directory. At the prompt entering 

APS allows programming, editing and executing of a PLC program. All the menu are 

given at the bottom of the screen and controlled by function key from F1 through F10 and 

ESC key is used for cancel. The main menu in the software package is given in Table 14. 



53 

Table 14 Main Menu 

F1 F2 F3 F4 F5 F6 F7 F7 F9 F10 

ONLI 
NE 

ONLI a 
NE 
CON 
FI 

OFFL I 
INE 	I  
PRO 
G/DO 
C 

OFFL f  

INE 
CON a 
FIG 

	  

WH 
 0 

 SYST 
EM 

F CONF 
 IGUR  

ATIO 
N 		 

 FILE 
 OPTI 

0NS 
 

PRIN 
T 

I REP 
0RT 
	S 

SYST 
EM 
UTIL 
ITIES 

EXI 
T 
SY 
STE 
M 

 

The program edited in offline configuration mode since no PLC is connected to a 

communication port. In the file, option file is created and I/O configuration is setup. In 

the next menu F8, monitor file, is entered and at this level file is edited. In the file edit 

mode, other options are given, such as insert rung, modify rung,rung, append rung, delete 

rung, edit branch. In this mode the last rung is always "end" which cannot be deleted. At 

this point all the rungs are added and edited. Once the rung is inserted, the insert 

instruction is entered. At this point another set of menu is given at the bottom of the 

screen, where one can enter different types of instructions, for example, timer/counter, 

comparator, I/O message, and bit (normally open input, normally close input, output, latch 

output, unlatch output). After an input type, input bit address is entered. The bit address 

is at which your particular input is connected in the particular slot or it is an internal input 

bit. For example input I:1/0 is an external input connected in slot one location zero and 

is a cycle start input. Similarly all the instruction can be edited and at the exit of the file 

monitor it prompts you to save the file and to overwrite the old one. One can edit any 

instruction during the running process. At the next scan, the program responds to the new 

instruction and output is updated accordingly. 



54 

The program printout also gives for each contact used in the rung their locations 

throughout the program. 



CHAPTER 6 

CONCLUSIONS 

Petri nets (PN's) are an emerging tool for performance modeling and discrete event 

control of advanced manufacturing systems. In this thesis, in order to show the application 

of PN's for modeling and performance analysis, an example system is considered. The 

system consists of one robot and five work stations. The detailed operation of this system 

is clearly modeled using the PN model. From the model, the system performance is 

investigated to study the effects of machine failure rates and machine rates on system 

throughput and resource utilization. Furthermore, a PLC program to control this system 

is developed using ladder logic diagram (LLDs) in Allen-Bradley PLC. 

The reason for using PNs for system performance is that they are more suitable 

for the detailed investigation of the effect of system parameters on system performance. 

However, LLDs are used for programming Programmable Logic Controllers (PLCs) since 

PLCs are widely used in industry and suitable for the harsh environment. This work aims 

to convince industrial practitioner to highlight the applicability of PNs for their modeling 

application. 

Further research should focus on using the PN model to generate automatically the 

LLD for discrete control. 

55 



Appendix A 

SPNP Program of the Illustrative Example 

# include 	"user.h" 

/* Illustrative Example */ 

/* The System is Deadlocked When number of token in p1 is greater than p7 */ 

parameters() { 

iopt(IOP_PR_FULL_MARK, VAL_YES); 

iopt(IOP_PR_RSET,VAL_YES); 

iopt(IOP_PR_MC,VAL_YES); 

iopt(IOP_PR_RGRAPH,VAL_YES); 

iopt(IOP_PR_PROB,VAL_YES); 

net() { 

place("p1"); 

place("p2"); 

place("p3"); 

place("p4"); 

place("p5"); 

place("p6"); 

place("p7"); 

place("p8"); 	 56 



init("p 1 ",2); 

init("p2", 1); 

init("p4", 1 ); 

init("p7",2); 

57 

trans("t 1 " ); 

trans("t2"); 

trans("t3"); 

trans("t4"); 

trans("t5");  

rateval("t 1 " , 1 .0); 

rateval(t2",1.0); 

rateval(t3",1.0); 

rateval("t4",1.0); 

rateval(t5",1.0); 

iarc("t1","p1"); iarc("t1","p2"); 

oarc("t 1 ","p3"); 

iarc("t2","p3"); iarc("t2","p4"); 

oarc("t2","p5"); 

iarc("t3","p5"); iarc("t3","p7"); 

oarc("t3","p2"); oarc("t3","p4"); oarc("t3","p6"); 

iarc("t4","p6"); iarc("t4","p2"); 

oarc("t4","p7"); 

oarc("t4","p8"); 

iarc("t5","p8"); 

oarc("t5","p2"); 

oarc("t5","p1"); 

} 

/* the following 3 lines should appear in all programs */ 

assert() return(RES_NOERR); } 

ac_init() { } 



ac_reach() { fprintf(stderr,"\nThe reachibility graph has been generated\n\n");} 

/* user defined out functions */ 

reward_type ef0() {return(rate("t3"));} /* throughput */ 

reward_type ef1() { return(rate("t5")); } /* throughput */ 

reward_type ef6() {return(1-mark("p2"));} 

reward_type ef7() {return(1-mark("p7"));} 

ac_final() pr_expected("throughput, 't3' = ",ef0); 

pr_expected("throughput, 't5' = ",ef1); 

pr_expected("utilization, 'Robot' = ",ef6); 

pr_expected("utilization, 'Buffer' = ",ef7); 

58 

pr_std_average();} 



Appendix B 

SPNP Program of Five Sequence Work Station System 

# include 	"user.h" 

/ SPNP program for five work stations */ 

float x,y,z,f,a,b; 

parameters() { 

iopt(IOP_PR_FULL_MARK, VAL_NO); 

iopt(IOP_PR_RSET,VAL_YES); 

iopt(IOP_PR_MC,VAL_YES); 

iopt(IOP_PR_RGRAPH,VAL_YES); 

iopt(IOP_PR_PROB,VAL_YES); 

x=input("production rate of station1,station2,station3 and station5"); 

b=input("failure rate of station 1 ,station2,station3 and station5"); 

y=(b/(1-b))*x; 

z=input("production rate of station4"); 

a=input("failure rate of station4"); 

f=(a/(1-a))*z; 

net() { 

place("p 1 "); 

place("p2"); 

place("p3"); 

p1ace("p4"); 

place("p5"); 	 59 



place("p6"); 	
60 

place("p7"); 

place("p8"); 

place("p9"); 

place("p10"); 

place("p11"); 

place("p12"); 

place("p13"); 

place("p14"); 

place("p15"); 

place("p16"); 

place("p17"); 

place("p18"); 

place("p19"); 

place("p20"); 

place("p21"); 

place("p22"); 

place("p23"); 

place("p24"); 

place("p25"); 

place("p26"); 

place("p27"); 

p1ace("p28"); 

place("p29"); 

place("p30"); 

place("p31"); 

place("p32"); 



place("p33"); 

place("p34"); 

place("p35"); 

place("p36"); 

place("p37"); 

place("p38"); 

place("p39"); 

place("ps1"); 

p1ace("ps2"); 

place("ps3"); 

place("ps4"); 

place("ps5"); 

place("pm"); 

place("pd"); 

place("pR1"); 

place("pA"); 

place("pB"); 

place("pC"); 

place("pD"); 

init("p1",1); 

init("p4",1); 

init("p18",1); 

init("ps1",1); 

init("ps2",1); 

init("ps3",1); 

init("ps4",1); 

init("ps5",1); 

61 



init("pd", 1); 

init("pm",1); 

initCpR1",1: 

62 

trans("t1"); 

trans("t2"); 

trans("t3"); 

trans("t4"); 

trans("t5"); 

trans("t6"); 

trans("t7"); 

trans("t8"); 

trans("t9"); 

trans("t10"); 

trans("t11"); 

trans("t12"); 

trans("t13"); 

trans("t14"); 

trans("t15"); 

trans("t16"); 

trans("t17"); 

trans("t18"); 

trans("t19"); 

trans("t20"); 

trans("t21"); 

trans("t22");  

rateval(t1",x); 

rateval(''t2",x); 

rateval(t3",x); 

rateval(t4",y); 

rateval(t5",y); 

rateval("t6'',x); 

rateval("t7",y); 

rateval("t8",x); 

rateval("t9",x); 

rateval("t10",y); 

rateval(t11",x); 

rateval(t12",x); 

rateval("t 13",y); 

rateval("t14",y); 

rateval("t15",y); 

rateval("t16",x); 

rateval("t17",x); 

rateval("t18",x); 

rateval(t 19",y); 

rateval("t20",x); 

rateval("t21",y); 

rateval(t22",y); 



trans t23"); 	rateval("t23",y); 

trans("t24"); 	rateval("t24",x); 

trans("t25"); 	rateval("t25",x); 

trans("t26"); 	rateval("t26",x); 

trans("t27"); 	rateval("t27",y); 

trans("t28"); 	rateval("t28",z); 

trans("t29"); 	rateval("t29",y); 

trans("t30"); 	rateval("t30",y); 

trans("t31"); 	ratevart31",x); 

trans("t32"); 	rateval("t32",f); 

trans("t33"); 	rateval("t33",x); 

trans("t34"); 	rateval("t34",x); 

trans("t35"); 	rateval("t35",y); 

trans("t36"); 	rateval("t36",x); 

trans("t37"); 	rateval("t37",y); 

iarc("t1","p1"); iarc("t 1 '',''ps l "); 

oarc("t1","p2"); 

iarc("t2","p2"); 

oarc("t2","p3"); 

iarc("t3","p3"); 

iarc("t3","p4"); iarc("t3","pR1"); 

oarc("t3","p6"); oarc("t3","p5"); 

iarc("t4","p6"); oarc("t4","p7"); 

oarc("t5","pR1"); 

iarc("t5","p7"); oarc("t5'',"p8"); 

iarc("t6","p5"); oarc("t6","p10"); 

63 



iarc("t7","p7"); iarc("t7","ps2");iarc("t7","p10"); 

oarc("t7","p9"); 

oarc("t7","p11"); oarc("t7","ps1"); oarc("t7","pR 1 "); 

oarc("t7","p4"); 

iarc("t8","p10"); iarc("t8","ps2"); 

iarc("t8","p8"); 

oarc("t8","p11 "); oarc("t8","ps 1 "); 

oarc("t8","p4"); oarc("t8","pA"); 

iarc("t9","p11"); 

oarc("t9","p12"); 

iarc("t10","p9"); iarc("t10","p12"); iarc("t10","ps3"); 

oarc("t10","ps2");oarc("t10","p13"); oarc("t10","p20"); 

iarc("t11","p12"); iarc( 	I ","pA"); 

iarc("t11","p18"); iarc("t11","pR1"); 

oarc("t11","p14"); oarc("t11","p15"); 

iarc("t12","p14"); 

oarc("t12","p19"); 

iarc("t13","p15"); 

oarc("t13","p16"); 

iarc("t14","p16"); oarc("t14","p17"); 

iarc("t15","p19"); iarc("t15","ps3"); 

iarc("t15","p16"); 

oarc("t15","p20"); oarc("t15","p18"); 

oarc("t15","p13"); 

oarc("t15","ps2"); oarc("t15","pR1"); 

iarc("t16","p19"); iarc("t16","ps3"); 

iarc("t16","p17"); 

64 



oarc("t16","p20"); oarc("t16","p18"); oarc("t16","pB"); 

oarc("t16","ps2"); oarc("t16","pR I "); 

iarc("t17","p20"); 

oarc("t17","p21"); 

iarc("t18","p2 1 "); iarc("t18","pB"); 

iarc("t18","pd"); 

oarc("t18","p22"); oarc("t18","p25"); 

iarc("t19","p13"); iarc("t19","p21"); 

iarc("t19","ps4"); 

oarc("t19","ps3"); oarc("t19","p23"); 

oarc("t19","p28"); 

iarc("t20","p22"); 

oarc("t20","p24"); 

iarc("t21","p25"); oarc("t21","p26"); 

iarc("t22","p26"); oarc("t22","p27"); 

iarc("t23","p24"); iarc("t23","p26"); 

iarc("t23","ps4"); 

oarc("t23","p28"); oarc("t23",''ps3"); 

oarc("t23","pd"); oarc("t23","p23"); 

iarc("t24","p24"); iarc("t24","p27"); 

iarc("t24","ps4"); 

oarc("t24","p28"); oarc("t24","ps3"); 

oarc("t24","pd"); oarc("t24","pC"); 

iarc("t25","p28"); 

oarc("t25","p29"); 

iarc("t26","p29");iarc("t26","pC"); 

iarc("t26","pm"); 

65 



oarc("t26","p31"); oarc("t26","p32"); 

iarc(''t27","p29"); iarc("t27","p23"); 

iarc("t27","ps5"); 

oarc("t27","ps4");oarc("t27","p30"); oarc("t27","p36"); 

iarc("t28","p31"); 

oarc("t28","p33"); 

iarc("t29","p32"); 

oarc("t29","p34"); 

iarc("t30","p34"); 

oarc("t30","p35"); 

iarc("t31","p33"); iarc("t31","ps5"); 

iarc("t31","p35"); 

oarc("t31","pD"); 

oarc("t31","ps4"); oarc("t31","p36"); 

oarc("t31","pm"); 

iarc("t32","p33"); iarc("t32","ps5");iarc("t32","p34"); 

oarc("t32","p30"); 

oarc("t32","ps4"); oarc("t32","p36"); 

oarc("t32","pm"); 

iarc("t33","p36"); 

oarc("t33","p37"); 

iarc("t34","p37");iarc("t34","pD"); 

oarc("t34","p39"); 

iarc("t35","p30"); iarc("t35","p37"); 

oarc("t35","p38"); 

iarc("t36","p39"); 

oarc("t36","p1"); oarc("t36","ps5"); 

66 



67 
iarc("t37","p38"); 

oarc("t37","p1"); oarc("t37","ps5"); 

/* net is defined , analysis part */ 

/* the following 3 lines should aplear in all programs */ 

assert() {return(RES_NOERR);} 

ac_init() { } 

ac_reach() {fprintf(stderr,"\nThe reachibility graph has been generated\n\n");} 

/* user defined out functions */ 

reward_type ef0() {return(rate("t6"));} /* throughput */ 

reward_type ef1() { return(rate("t 12")); /* throughput */ 

reward_type ef2() {return(rate("t20"));} /* throughput */ 

reward_type ef3() {retum(rate("t28"));} /* throughput */ 

reward_type ef15() {return(rate("t36"));} /* throughput */ 

reward_type ef16() {return(rate("t37"));} /* throughput */ 

reward_type ef5() {return(rate("t36"));} /* system production rate */ 

reward_type ef6() return(1-mark("pR1")); 

reward_type ef7() {return(1-mark("ps1"));} 

reward_type ef8() { return(1-mark("ps2")); 

reward_type ef9() { return(I-mark("ps3"));} 

reward_type ef10() {return(1-mark("ps4"));} 

reward_type ef11() {return(1-mark("ps5")); 

reward_type ef17() { return(1-mark("p38")); } 

reward_type ef13() { return(1-mark("p39"));} 



reward_type ef14() { return(1.0- 

(mark("ps1")+mark("ps2")+mark("ps3")+mark("ps4")+mark("ps5"))/5.0); } 

ac_final() {pr_expected("throughput,'t6' ",ef0); 

pr_expected("throughput,'t12' ",ef1); 

pr_expected("throughput,'t20' ",ef2); 

pr_expected("throughput,'t28' ",ef3); 

pr_expected("throughput,'t36' ",ef15); 

pr_expected("throughput,'t37' ",ef16); 

pr_expected("System Production Rate = ",ef5); 

pr_expected("utilization 'pR1' ",ef6); 

pr_expected("utilization 'ps 1' ",ef7); 

pr_expected("utilization 'ps2' ",ef8); 

pr_expected("utilization,'ps3' ",ef9); 

pr_expected("utilization,'ps4' '',ef10); 

pr_expected("utilization ,'ps5' ",ef11); 

pr_expected("utilization,'p38' ",ef17); 

pr_expected("utilization,'p39' ",ef13); 

pr_expected("Average utilization ",ef14); 

pr_std_average();} 

68 



APPENDIX C 

Output files of S4 in a Five Sequence Work Station System 
as Shown in Figure 3.1 and 3.4 

69 



".mc" file of the five sequence work station system 

firstindex = 0; 

nstates = 45; 

nentries = 57; 

order = FROMTO; 

matrix = 

0 	1:5.000000000000e+00; 

1 	2:5.000000000000e+00; 

2 	3:5.000000000000e+00; 

3 	4:5.555555820465e-01 	5:5.000000000000e+00; 

4 	6:5.555555820465e-01 	7:5.000000000000e+00; 

5 	7:5.555555820465e-01; 

6 	8:5.000000000000e+00; 

7 	8:5.555555820465e-01 	9:5.555555820465e-01; 

8 	10:5.000000000000e+00; 

9 	11:5.000000000000e+00; 

10 	12:5.000000000000e+00; 

11 	13:5.555555820465e-01; 

12 	14:5.000000000000e+00; 

13 	15:5.000000000000e+00; 

14 	16:5.000000000000e+00 	17:5.555555820465e-01; 

15 	18:5.555555820465e-01; 

16 	19:5.555555820465e-01; 

17 	19:5.000000000000e+00 	20:5.555555820465e-01; 

18 	21:5.000000000000e+00; 

19 	13:5.555555820465e-01 	22:5.555555820465e-01; 

20 	22:5.000000000000e+00; 

21 	23:5.555555820465e-01; 

70 



22 	24:5.000000000000e+00; 

23 	25:5.000000000000e+00; 

24 	26:5.000000000000e+00; 

25 	27:5.555555820465e-01; 

26 	28:5.000000000000e+00; 

27 	0:5.555555820465e-01; 

28 	29:5.000000000000e+00 	30:5.555555820465e-01; 

29 	31:5.555555820465e-01; 

30 	31:5.000000000000e+00 	32:5.555555820465e-01; 

31 	18:5.555555820465e-01 	33:5.555555820465e-01; 

32 	33:5.000000000000e+00; 

33 	34:5.000000000000e+00; 

34 	35:5.000000000000e+00; 

35 	36:5.000000000000e+00; 

36 	37:1.000000014901e-01 	38:5.555555820465e-01; 

37 	39:5.555555820465e-01; 

38 	39:1.000000014901e-01 	40:5.555555820465e-01; 

39 	23:1.111111138016e-02 	41:5.555555820465e-01; 

40 	41:1.000000014901e-01; 

41 	42:5.000000000000e+00; 

42 	43:5.000000000000e+00; 

43 	44:5.000000000000e+00; 

44 	0:5.000000000000e+00; 

method = SSSOR; 

_precision = 1 e-06; 

iterations = 2000; 

solve = ALL; 

71 



".log" file of the five sequence work station system example 

The reachability graph contains: 

45 tangible markings 

0 vanishing markings 

57 arcs 

After elimination of redundant arcs: 

	

of remaining arcs: 	 57 

After the elimination of vanishing markings: 

	

# of remaining arcs: 	 57 

Solving the Markov chain... 

ERROR/WARNING: switching from SOR to Gauss-Seidel 

...Markov chain solved 

Reading the reachability graph info ... 

End of execution. 

72 



".prb" file of the five sequence work station system example  

_firstindex=0; nstates = 45; 

method = SSSOR; 

precision = 5.971728161432e-07; 

iterations = 10; 

probabilities = 

0:1.339571526201e-02 1:1.339571526201e-02 2:1.339571526201e-02 

3:1.205614367832e-02 4:1.205614419571e-03 5:1.085052879309e-01 

6:1.339571641177e-04 7:5.967790859484e-02 8:6.764836213062e-03 

9:6.630879048944e-03 10:6.764836213062e-03 11:5.967790859484e-02 

12:6.764836213062e-03 13:9.979470971818e-03 14:6.088352562724e-03 

15:8.981523446364e-02 16:5.479517045168e-02 17:6.088352824008e-04 

18:1.167050989431e-02 19:3.013734386600e-02 20:6.764836793693e-05 

21:1.050345840403e-01 22:3.416242290500e-03 23:1.168004300357e-02 

24:3.416242290500e-03 25:1.051203820196e-01 26:3.416242290500e-03 

27:1.051203820196e-01 28:3.074618046789e-03 29:2.767156110161e-02 

30:3.074618178737e-04 31:1.521935866526e-02 32:3.416242583718e-05 

33:1.725202358168e-03 34:1.725202358168e-03 35:1.725202358168e-03 

36:1.315832250914e-02 37:2.368497974000e-03 38:1.115112082622e-02 

39:4.289901626404e-03 40:6.195067328768e-02 41:1.715669243212e-03 

42:1.715669243212e-03 43:1.715669243212e-03 44:1.715669243212e-03; 

end = • 

73 



".out" file of S4 in the five sequence work station system 	 74 

INPUT: production rate of stationl,station2,station3 and station5 = 5 

INPUT: failure rate of station 1,station2,station3 and station5 = 0.1 

INPUT: production rate of station4 = 0.1 

INPUT: failure rate of station4 = 0.1 

EXPECTED: throughput,'t6' = 0.06697857631 

EXPECTED: throughput,'t12' = 0.0338241810653 

EXPECTED: throughput,'t20' = 0.0170812114525 

EXPECTED: throughput,'t28' = 0.00862601179084 

EXPECTED: throughput,'t36' = 0.00857834621606 

EXPECTED: throughput,'t37' = 0.0584002150178 

EXPECTED: System Production Rate = = 0.00857834621606 

EXPECTED: utilization 'pR 1' = 0.276558547445 

EXPECTED: utilization 'ps 1' = 0.215135178525 

EXPECTED: utilization 'ps2' = 0.174952052891 

EXPECTED: utilization,'ps3' = 0.154659554432 

EXPECTED: utilization,'ps4' = 0.214789684118 

EXPECTED: utilization ,'ps5' = 0.227067814772 

EXPECTED: utilization,'p38' = 0.89487961798 

EXPECTED: utilization,'p39' = 0.998284330757 

EXPECTED: Average utilization = 0.197320856948 

AVERAGE: 

PLACE 	Pr[nonempty] 	Av[tokens] 

0: p1 1.339571526201e-02 1.339571526201e-02 

1: p2 1.339571526201e-02 1.339571526201e-02 

2: p3 1.339571526201e-02 1.339571526201e-02 



75 
3: p4 

4: p5 

5: p6 

6: p7 

7: p8 

8: p9 

8.116562519992e-01 

1.339571526201e-02 

1.205614316092e-01 

6.088352301441e-02 

6.898793377180e-03 

6.630878764378e-02 

8.116562519992e-01 

1.339571526201e-02 

1.205614316092e-01 

6.088352301441e-02 

6.898793377180e-03 

6.630878764378e-02 

9: p10 1.749480327388e-01 1.749480327388e-01 

10: p11 1.339571526201e-02 1.339571526201e-02 

11: p12 6.644274480790e-02 6.644274480790e-02 

12: p13 9.979470543545e-02 9.979470543545e-02 

13: p14 6.764836213062e-03 6.764836213062e-03 

14: p15 6.088352301441e-02 6.088352301441e-02 

15: p16 3.074617914840e-02 3.074617914840e-02 

16: p17 3.483890658436e-03 3.483890658436e-03 

17: p18 9.048864071788e-01 9.048864071788e-01 

18: p19 8.834875660818e-02 8.834875660818e-02 

19: p20 1.339571326232e-02 1.339571326232e-02 

20: p21 9.323147675414e-02 9.323147675414e-02 

21: p22 3.416242290500e-03 3.416242290500e-03 

22: p23 1.167050939346e-01 1.167050939346e-01 

23: p24 4.461612212505e-02 4.461612212505e-02 

24: p25 3.074617914840e-02 3.074617914840e-02 

25: p26 1.552682048314e-02 1.552682048314e-02 

26: p27 1.759364784006e-03 1.759364784006e-03 

27: p28 1.339571225247e-02 1.339571225247e-02 

28: p29 1.067597863985e-01 1.067597863985e-01 

29: p30 1.168004250232e-01 1.168004250232e-01 



30: p31 8.626011662304e-02 8.626011662304e-02 

31: p32 1.552682048314e-02 1.552682048314e-02 

32: p33 8.374068843615e-03 8.374068843615e-03 

33: p34 1.544102245262e-02 1.544102245262e-02 

34: p35 6.366634253089e-02 6.366634253089e-02 

35: p36 1.339571224678e-02 1.339571224678e-02 

36: p37 1.068360512628e-01 1.068360512628e-01 

37: p38 1.051203820196e-01 1.051203820196e-01 

38: p39 1.715669243212e-03 1.715669243212e-03 

39: ps 1 7.848648214752e-01 7.848648214752e-01 

40: ps2 8.250479471088e-01 8.250479471088e-01 

41: ps3 8.453404455680e-01 8.453404455680e-01 

42: ps4 7.852103158824e-01 7.852103158824e-01 

43: ps5 7.729321852276e-01 7.729321852276e-01 

44: pm 9.053658145333e-01 9.053658145333e-01 

45: pd 9.519676355845e-01 9.519676355845e-01 

46: pR1 7.234414525551e-01 7.234414525551e-01 

47: pA 1.352967242612e-02 1.352967242612e-02 

48: pB 6.832484580999e-03 6.832484580999e-03 

49: pC 3.450404716337e-03 3.450404716337e-03 

50: pD 3.431338486424e-03 3.431338486424e-03 

TRANSITION 	Pr[enabled] Av[throughput] 

0: t1 1.339571526201e-02 6.697857631003e-02 

1: t2 1.339571526201e-02 6.697857631003e-02 

2: t3 1.339571526201e-02 6.697857631003e-02 

3: t4 1.205614316092e-01 6.697857631003e-02 

4: t5 6.088352301441e-02 3.382418106531e-02 

76 



5: t6 

6: t7 

7: t8 

8: t9 

9: t10 

10: t11 

1.339571526201e-02 

5.967790859484e-02 

6.764836213062e-03 

1.339571526201e-02 

5.967790859484e-02 

6.764836213062e-03 

6.697857631003e-02 

3.315439524472e-02 

3.382418106531e-02 

6.697857631003e-02 

3.315439524472e-02 

3.382418106531e-02 

11: t12 6.764836213062e-03 3.382418106531e-02 

12: t13 6.088352301441e-02 3.382418106531e-02 

13: t14 3.074617914840e-02 1.708121145250e-02 

14: t15 3.013734386600e-02 1.674296961281e-02 

15: t16 3.416242290500e-03 1.708121145250e-02 

16: t17 1.339571326232e-02 6.697856631159e-02 

17: t18 3.416242290500e-03 1.708121145250e-02 

18: t19 8.981523446364e-02 4.989735485909e-02 

19: t20 3.416242290500e-03 1.708121145250e-02 

20: t21 3.074617914840e-02 1.708121145250e-02 

21: t22 1.552682048314e-02 8.626011790842e-03 

22: t23 1.521935866526e-02 8.455199661656e-03 

23: t24 1.725202358168e-03 8.626011790842e-03 

24: t25 1.339571225247e-02 6.697856126237e-02 

25: t26 1.725202358168e-03 8.626011790842e-03 

26: t27 1.050345840403e-01 5.835254947153e-02 

27: t28 8.626011662304e-02 8.626011790840e-03 

28: t29 1.552682048314e-02 8.626011790842e-03 

29: t30 1.544102245262e-02 8.578346216061e-03 

30: t31 1.715669243212e-03 8.578346216061e-03 

31: t32 4.289901626404e-03 4.766557478090e-05 

77 



32: t33 1.339571224678e-02 6.697856123391e-02 

33: t34 1.715669243212e-03 8.578346216061e-03 

34: t35 1.051203820196e-01 5.840021501784e-02 

35: t36 1.715669243212e-03 8.578346216061e-03 

36: t37 1.051203820196e-01 5.840021501784e-02 

78 



APPENDIX D 

PLC Ladder Logic Program of S1 in the five 

Sequence Work Station System 

79 



80 



81 



82 



83 



84 



85 



86 



87 



88 



89 



90 



APPENDIX E 

Flow Chart of Five Sequence Work Station System for 

Ladder Logic Program 

91 



92 



FLOW CHART OF FIVE SEQUENCE WORK STATION 

FOR LADDER LOGIC PROGRAM 

93 



REFERENCES 

1. Allen-Bradly's Advance Programming Software, Catalog No. 1747-PA2E, Series F. 
P/N# 40846-915-01, Revision 4.02. 

2. R. Y. Al-Jaar and A. A. Desrochers, "Performance Evaluation of Automated 
Manufacturing System using Generalized stochastic Petri Nets." IEEE Transactions 

on Robotics and Automation, vol. 6, no. 6, pp. 621-639, 1990. 

3. J. Billington, G. R. Wheerler, and M. C. Wilbur-Ham, " PROTEAN: A high level 
Petri net tool for the specification and verification of communicat protocols." IEEE 

Transactions on Software Engineering, vol. 14, no. 3 , pp. 301-31, 1988. 

4. K. Brand and J. Kopainsky, "Principles and engineering of process control with 
Petri nets," IEEE Transactions on Automatic Control, vol. 33, no. 2, pp. 138-149, 
1988. 

5. L. A. Bryan and E. A. Bryan, Programmable Controllers Theory and 
Implementation. Industrial Text Co., 1988. 

6. J. Campos, J. M. Colom, and M. Silva, "Performance evaluation of repetitive 
automated manufacturing systems." Rensselaer's 2nd  International Conference on 

Computer Integrated Manufacturing, Troy, New York, pp. 74-81, 1990. 

7. J. Campos, G. Chiola, J. M. Colom, and M. Silva, "Properties and Performance 
Bounds for Timed Marked Graphs." IEEE Transactions on Circuits and Systems -
I.: Fundamental Theory and Applications, vol. 39, no. 5, pp. 386-401, 1992. 

8. G. Chiola, " A graphic Petri Net Tool for Performance analysis." Proc. of Int. 
Workshop on Modeling Techniques and Performance Evaluation, France, pp. 323-333, 

1987. 

9. G. Ciardo, Manual for the SPNP Package. Duke University, February 1989. 

10. E. G. Coffman, M. J. Elphick, and A. Shoshani, "System Deadlocks." Computing 

Surveys, vol.3, pp. 67-78, 1971. 

11. A. Desrochers, "Modeling and Control Using Petri Nets." Modeling and Control of 

Manufacturing Systems, IEEE Computer Society Press, pp. 239-251, 1990. 

12. P. Freedman, "Time, Petri Nets, and Robotics." IEEE Transactions on Robotics and 

Automation, vol.7, no.4, pp. 417-433, 1991. 

94 



95 

13. B. H. Krogh and C. L. Beck, "Synthesis of place/transition nets for simulation and 
control of manufacturing Systems," in Reprints of e IFAC/IFORS Symp. Large Scale 
Systems, Zurich, pp. 661-666, 1986. 

14. A. M. Marsan, G. Balbo, and G. Conte, "A Class of Generalized Stochastic Petri 
Nets for the Performance Evaluation of Multiprocessor Systems." ACM Transactions 
on Computer Systems, vol. 2, no. 2, pp. 93-122, 1984. 

15. M. K. Molly, "Performance Analysis using Stochastic Petri Nets." IEEE 
Transactions on Computer, vol. 3, no. 9, pp. 913-917, 1982. 

16. T. Mutra, N. Komoda, K. Matsumoto, and K. Haruna, "A Petri Net Based 
Controller for Flexible and Maintainable Sequence Control and its Applications in 
Factory Automation." IEEE Transactions on Industrial Electronics, vol. 1E33, no. 1, 
pp. 1-8, February, 1986. 

17. T. Mutra and N. Komoda, "Development of a Petri nets based FA Controller and its 
applications." Proc. 10th  International Conference on Application and Theory of Petri 
Nets, Bonn, Germany, pp. 394-402, 1989. 

18. T. Mutra, "Petri Nets: Properties, Analysis and Applications." IEEE, vol. 17, no. 4, 
pp. 541-580, April, 1989. 

19. H. Plunnecke and W. reisig, "Bibliography of Petri Nets 1990." Advances on Petri 
Nets, G. Rozenberg (Ed.), Lecture Notes in Computer Science, vol. 524, pp. 317-572, 
1991. 

20. W. Reising, "Petri nets in software engineering", in Advances in Petri Nets 1986, 
part H, Lecture Notes in Computer Science, vol. 255, W. Brauer, W. Reisig, G. 
Rozenberg (Eds.), Springer Verlag. , pp. 63-98, 1987. 

21. M. Silva, "Las redes de Petri en la Automatica y la Informatica." Editorial AC, 
Madrid, 1985. 

22. M. Silva and R. Valette, "Petri Nets and Flexible Manufacturing." E. T. S. 
Ingenieros Industriales, Technical Report #E50015, Zaragoza, Spain, pp. 1-43, 
January 1990. 

23. M. C. Zhou and M. C. Leu, " Modeling and Performance Analysis of a Flexible PCB 
assembly Station using Petri Nets." Transactions of the ASME, Journal of Electronic 
Packinging, vol. 113, no. 4, pp. 410-416, 1991. 



96 

24. M. C. Zhou, F. DiCesare, and D. L. Rudolph, "Design and Implementation of a Petri 
Net Based Supervisory for Flexible Manufacturing System." Automatica, vol. 28, no. 
6, pp.1199-1208, November, 1992. 

25. M. C. Zhou and F. DiCeasare, Petri Net Synthesis for Discrete Event Control of 
Manufacturing Systems. Kluwer Academic Publishers, Boston, MA, pp. 120, 1993. 

26. Zurawski, and M. C. Zhou. "Petri Nets and Industrial Applications: A Survey." IEEE 
Transactions Industrial Electronics, vol. 41, no. 6, pp. 567-583, December 1994. 


	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1994

	Performance evaluation and sequence control of an automatedmanufacturing system
	Vijaykumar D. Desai
	Recommended Citation


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Theory of Petri Nets
	Chapter 3: Development of a Model
	Chapter 4: Performance Evaluation of the System
	Chapter 5: Control of the System Using PLC
	Chapter 6: Conclusions
	Appendix A: SPNP Program of the Illustrative Example
	Appendix B: SPNP Program of Five Sequence Work Station System
	Appendix C: Output Files of S4 in a Five Sequence Work Station System as Shown in Figure 3.1 and 3.4
	Appendix D: PLC Ladder Logic Program of S1 in the Five Sequence Work Station System
	Appendix E: Flow Chart of Five Sequence Work Station System for Ladder Logic Program
	References

	List of Tables
	List of Figures

